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A Low Cost BIST Methodology and Associated Novel
Test Pattern Generator

Abstract

The conventional BILBO methodology requires every combinational logic block be driven by a
BILBO register (TPG) and drive another BILBO register(SA). The area overhead and perfor-
mance degradation associated with these BILBO registers can often be excessive. This technical
report presents a new BILBO-oriented methodology, called Built-In test for Balanced Structure
(BIBS), that significantly reduces the number of BILBO registers used in creating a testable
circuit, and thus decreases the area overhead and performance degradation. The concepts of k-
pattern detectable faults and k-step functionally testable circuits are introduced. When the BIBS
methodology is employed, circuits under test are guaranteed to be 1-step functionally testable and
thus a high fault coverage can be achieved. A novel test pattern generator design employing a
combination of linear feedback shift registers and shift registers is used to achieve the I1-step func-
tional testability. A new concept, called functionally pseudo-exhaustive testing, is presented that
can reduce test time of a balanced BISTable structure when applicable. Preliminary ezperiments
have been performed on several digital filter designs to demonstrate the saving in terms of test

hardware when using the BIBS TDM.

Keyword: Built-in self-test, test pattern generator design, BILBO, functionally exhaustive test-

ing.



1 Introduction

In the conventional BILBO[1] testable design methodology(TDM)[2] every combinational logic
block is driven by a BILBO register and its output drives another BILBO register. To test a
combinational logic block the driving BILBO register operates as a test pattern generator(TPG)
and the driven BILBO register operates as a signature analyzer(SA). Each combinational logic
block in the circuit is a test primitive, called a kernel, in the sense that test patterns are ap-
plied and output responses compressed outside of the kernel. For a complex circuit the area
overhead of these BILBO registers can be excessive. These registers may also increase circuit
delay and thus adversely affect circuit performance. In general, kernels need not be restricted
to single combinational logic blocks. Several researchers have addressed the problem of reducing
high area overhead and/or performance degradation associated with the conventional BILBO
TDM][3, 4, 5, 6]. Larger kernels, usually sequential structures, are identified in these approaches
that lead to a fewer number of kernels and reduced test hardware. These previous techniques
either suffer from poor fault coverage or long test time[4], or lack of a systematic way to identify
kernels[5, 6]. In this technical report we present a new TDM, called Built-In test for Balanced
Structure(BIBS), that significantly reduces test hardware and performance degradation. In ad-
dition, good fault coverage and acceptable test time can usually be obtained by employing the
BIBS TDM. The methodology presented in [3] is a special case of the BIBS TDM, and may lead
to higher area overhead than that of the BIBS TDM. In this study CBILBO registers[7] are only
used when necessary since these registers introduce a significant amount of hardware overhead

and performance degradation.

This report is organized as follows. In Section 2 the motivation for this study is presented,
and the concepts of k-pattern detectable faults and k-step functionally testable circuits are in-
troduced. The circuit graph model employed in this work and the BIBS TDM are described in
Section 3. Section 4 presents a novel TPG design scheme employing a combination of LFSRs
(linear feedback shift registers) and SRs (shift registers) for 1-step functional testability. Finally

Section 5 concludes this report with a brief summary and an outline of current research.



2 Motivation

Increasing the size of kernels usually leads to fewer kernels and thus less test hardware. However,
as the size of a kernel increases and sequential kernels are formed, it becomes more difficult to
excite a fault and propagate its faulty effect to an observable output. This may lead to a decrease
in fault coverage, an increase in test length, and an increase in TPG complexity. It is important
to identify kernels that tend to minimize the above problems.

A synchronous sequential circuit is said to be balanced if it is acyclic and the sequential lengths
of all paths between every pair of combinational blocks in the circuit are the same. Testability of
a sequential kernel may be reduced due to circuit imbalance. For example, consider the circuit
shown in Figure 1. C' is a combinational logic block. F is a fanout block that is fed by a primary
input PI and transfers data to its outputs unaltered. R is a register. This circuit is unbalanced
since the two paths from F' to C have different sequential lengths. To detect a fault f in C' may
require a test pattern consists of two vectors, u and v, be applied at the inputs to C. This in
turn requires that a test sequence of two vectors (v followed by u) be applied at PI. In general,
some faults in an unbalanced circuit require a test sequence of vectors for their detection. On
the other hand, it has been shown that all detectable stuck-at faults in balanced circuits are
single pattern detectable[8]. An arbitrary stuck-at fault in such a circuit is tested by applying a
test pattern to the inputs of the circuit, clocking the circuit one or more times allowing data to
propagate through the circuit, and finally observing the output response. Note that this property
of single pattern testability assumes all registers consist of D-type flip-flops(F/F). Single pattern
testability is usually no longer guaranteed when designs contain F/Fs that have a hold mode of
operation, such as JK or SR F/Fs. In general, a fault is k-pattern detectable if there exists an
input sequence of length k (or less) that will detect this fault. Every detectable stuck-at fault in
the circuit shown in Figure 1 is 2-pattern detectable.

Consider the circuit shown in Figure 2 where C; and C; are combinational logic blocks and
assume that Ry and R, are n-bit registers. By applying all 2" patterns at R; we say that Cs is
tested 1-step functionally exhaustively even though the output of Ci may not cover all possible

9" patterns at the input of Cy. The concept of 1-step follows because each detectable stuck-at
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Figure 1: An unbalanced circuit

fault only requires a single test pattern for its detection. The phrase functionally ezhaustive is
used since any test pattern that may occur under functional operation also occurs during the test
mode. In fact C is tested both exhaustively and 1-step functionally exhaustively. This circuit is
said to be I-step functionally testable. That is, by applying all possible test patterns at PI, all
detectable stuck-at faults are detected. In practice, it may not be necessary or feasible to apply
all possible'test patterns to a 1-step functionally testable circuit. For example, in many data
path circuits that are 1-step functionally testable, a small portion of the functionally exhaustive
test set suffices to detect every detectable stuck-at fault. In addition, when the input width of
a kernel is large, say n equals 40 in Figure 2, it may not be feasible to apply all possible test
patterns to the kernel.
I
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Figure 2: A 1-step functionally testable circuit

The circuit shown in Figure 1 is 2-step functionally testable since by applying all possible
pairs of test patterns at PI, all detectable stuck-at faults are detected. In general, an acyclic
circuit is said to be k-step functionally testable if for each detectable fault that does not modify
the sequential aspects of the circuit, there exists a test sequence of length k (i.e. consists of
k vectors) that detects this fault. Note that after applying the last test sequence it may be
necessary to apply d random patterns to flush the data through the circuit, where d is the
sequential depth of the circuit.

A circuit that is not 1-step functionally testable is considerably harder to test than a 1-step
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functionally testable circuit since for the former circuit sequences of test patterns are required
to ensure a éomprehensive fault coverage([8, 9]. In BIST test patterns are generated within the
circuit itself often using an LFSR. Conventional LFSRs usually cannot efficiently and effectively
generate test sequences in a particular order. Therefore, if conventional LFSRs are used as TPGs
then the fault coverage may be low due to the low coverage of faults that require sequence of
test vectors. On the other hand, TPG designs that can generate a large subset of all the test
sequences of length k are complicated, even for k = 2[10]. The area overhead required for such
TPGs and the test application time are usually excessive and unacceptable. Therefore, 1-step
functionally testable sequential kernels are desired to ensure BISTable circuits with acceptable

area overhead, test time and fault coverage.

3 The BIBS TDM

In this section we will first present a circuit graph model that is employed in this report. The
definition of a balanced BISTable kernel and its properties are then described, followed by a
comparative study of the BIBS TDM and the TDM in [3].

3.1 Circuit Graph Model

A CUC consists of RTL components such as combinational logic blocks, fanout blocks, registers,
PIs/POs, and the connections between them. An additional class of logic blocks, called vacuous
blocks, are introduced which simply consists of wires connecting its inputs and outputs. A
vacuous block is present between a pair of registers when one of the registers directly feeds the
other register and there is no fanout. A CUC is modeled as a directed graph G = (V,E,w).
v € V represents a combinational block, a PI/PO, a fanout block, or a vacuous block; e € £
represents a connection between two vertices through a register or wires; and w : E — Z% defines
the weight of each edge. A vertex is called a logic vertez, I/0 vertez, fanout vertex, or vacuous
vertez if it represents a combinational logic block, a PI/PO, a fanout block, or a vacuous block,
respectively. An edge is called a register edge or wire edge if it represents a connection between

vertices through register or wires, respectively. When e is a register edge, w(e) denotes the width



of the register, otherwise w(e) is co (a large number in practice). An example circuit is shown in
Figure 3(a) where every register is assumed to be 8 bits wide. The corresponding circuit graph

is illustrated in Figure 3(b) where wire edges are represented as bold arcs and the weights for

register edges are shown next to the edges in Figure 3(b).
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Figure 3: (a) An example circuit; (b) corresponding circuit graph

Notice that there is a fanout from the outputs of Ry the blocks A, B and C' in the circuit, hence
a fanout vertex F'O; in required in the circuit graph. Between this fanout vertex and the logic
vertices A, B and C are wire edges as denoted by the bold arcs. Furthermore, there is no logic
between the two registers Ry and Rs, thus a vacuous vertex V; is required in the circuit graph.
A path in G is said to form a cycle if it contains at least one register edge and starts and ends at
the same vertex. It should be noted that combinational cycles (i.e. cycles composed of vertices
and wire edges only) are not allowed in this report since they may cause a circuit to behave
asynchronously. A subgraph of G is called an unbalanced reconvergent-fanout structure (URFS)

if it contains two vertices where two or more paths between them have an unequal number of



register edges. The subgraph (V = {F, H}, E = {(F,H), (H, F)}) of the circuit graph shown
in Figure 3(b) is a cycle; the subgraph (V = {FO4, A, C, D, E, G, H}, E = {(FO4, A), (A, D),
(D,H), (FO4,C), (C,E), (E,G), (G,H)}) constitutes an URFS.

An input port of a logic block C' is a collection of inputs at C that are directly driven by logics
originating from a common block C’. Similarly an output port of C is a collection of outputs
at C' that directly drive logics in a common block C’. Note that the blocks C' and C’ must be
distinct, otherwise there exists a combinational cycle that is not allowed in this study. An input
port is represented by the entrance of an in-coming edge on a vertex in a circuit graph; and an
output port is represented by the exit of an out-going edge on a vertex in a circuit graph. For
example, there are two input ports and one output port on the combinational logic block D in
Figure 3(a). In its corresponding circuit graph shown in Figure 3(b), there are two in-coming

edges and one out-going edge connecting to the vertex D.

3.2 Balanced BISTable Kernels

Let S be an arbitrary synchronous sequential circuit with a circuit graph G = (V, E, w).
Definition 1 S is said to be balanced BISTable if

1. G is acyclic,

2. Yy, vy € V, all directed paths (if any) from vy to vy are of equal sequential length, and

3. there does not exist a pair of input and output ports on S that is directly driven by and

directly drives a common register.

Clearly the first two requirements force S to be a balanced structure as defined in [11].
BALLAST[8] is a design-for-test partial scan TDM that employs balanced structures. It has
been shown in [8] that every balanced structure is 1-step functionally testable. Due to this
property, only an ATPG system for combinational logic is required. A procedure is presented in
[11] to modify a CUC by converting a set of registers to scan registers so that the circuit becomes

balanced. A scan register can operate as both a pseudo PI and a pseudo PO simultaneously



during the testing of a kernel. On the other hand, a normal BILBO register can operate as
either a TPG or a SA, but not both, during the testing of a kernel. Due to this reason the third
requirement is necessary to ensure that each pair of input and output ports of a kernel is driven

by and drives distinct BILBO registers. This concept can be illustrated by the example below.

Example 1 Consider a circuit S and its corresponding circuit graph shown in Figures 4(a) and
(b), respectively. S is not balanced since the sequential lengths of the paths from C; to Cj are
different. In a partial scan design a minimal cost solution to balance the circuit is to convert Rj
and Ry to scan registers. The resulting circuit is illustrated in Figure 5. The BIST equivalence
of this solution is to convert R3 and Ry (along with R; and Rg) to BILBO registers. However,
the modified circuit is not balanced BISTable since R3 and Rg are used simultaneously as both a
TPG and a SA. To make this circuit balanced BISTable, additional registers have to be converted
to BILBO registers. One solution is to convert two additional registers, Ry and Rs, to BILBO
registers. This leads to two kernels, each being balanced BISTable, as shown by the shaded
blocks in Figure 6. To test the circuit, two test sessions are required. In the first session kernel 1
is tested by configuring R; as a TPG and Rs, Rz, Rs and Ry as SAs. In the second session
kernel 2 is tested by configuring R3, R7, Rg and Ry as TPGs and s as a SA. O

Figure 4: (a) Circuit for Example 1; (b) corresponding circuit graph

BIBS is a BIST TDM that requires kernels under test to be balanced BISTable. Given a

CUC, it is usually necessary to modify the circuit by converting a set of registers to BILBO
registers in order to satisfy the requirements of the BIBS TDM. The modified circuit is said to

be BIBS testable. Every edge in the circuit graph that represents a BILBO register is called a
BILBO edge.
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Figure 5: A partial scan design for circuit in Figure 4(a)
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Figure 6: A BISTable design for circuit in Figure 4(a)

3.3 Properties of Balanced BISTable Kernels

Theorem 1 A balanced BISTable kernel is 1-step functionally testable.
Proof By definition a balanced BISTable kernel is a balanced structure. Therefore, the theorem

follows from the results presented in [8]. a

Theorem 2 Given a circuit S with a circuit graph G, at least two BILBO edges are required in
every cycle and URFS (if any) in G to make S BIBS testable.

Proof Clearly at least one BILBO edge is required in every cycle and URFS to balance G since
a balanced circuit has to be free of cycles and URFSs. Let G’ be the modified circuit graph (and
S’ the modified circuit) of G so that there is one BILBO edge in every cycle and URFS. Consider
a cycle in G as shown in Figure 7(a) where (u,v) represents a BILBO edge. Let U and V be
the combinational logic blocks represented by the vertices u and v, respectively, and R be the
BILBO register represented by the edge (u,v). Clearly the input port of V' is an input port of S’
and the output port of U is an output port of S’. This pair of input and output ports of S’ is fed



by and feeds the same BILBO register R, thus S’ is not balanced BISTable. Similarly, consider
an URFS in G that contains only one BILBO edge, say (u,v), as shown in Figure 7(b). Again let
U and V be the combinational logic blocks represented by the vertices u and v, respectively, and
R be the BILBO register represented by the edge (u,v). The input port of V and output port of
U form a pair of input/output ports of S’ that is fed by and feeds the same BILBO register and
thus S’ is again not balanced BISTable. Consequently, at least two BILBO edges are required in
every cycle and URFS in G to make S balanced BISTable. o

(@ (b)

Figure 7: (a) A cycle with one BILBO edge; (b) an URFS with one BILBO edge

Note that if a cycle contains only one register edge, then either an extra register needs to be
added in the circuit or a CBILBO register is required. In the former case, the extra register can

be transparent during normal functional mode and operates as an LF'SR during test mode.

3.4 Comparison of the BIBS TDM and the TDM in [3]

The problem of adding BILBO registers to a CUC so that the circuit can be tested functionally
ezhaustively has been addressed by Krasniewski and Albicki[3]. The criteria used in [3] for adding

BILBO registers are:

1. a BILBO register is required for every input port of a combinational logic block if the block

has more than one input port,
2. a BILBO register is required for every PI/PO port, and

3. at least two BILBO registers are required in any cycle of the circuit.



Theorem 3 The methodology presented in [3] is a special case of the BIBS TDM.

Proof To prove this theorem it suffices to show that every circuit satisfying the three criteria
in [3] consists of only balanced BISTable structures, and the converse is not always true. Assume
that there exists a circuit satisfying the three criteria, but containing a non-balanced BISTable
structure S. Note that .S is connected. Based on the definition of a balanced BISTable structure,
S must either (1) contain a cycle, (2) contains an URFS, or (3) feed and be fed by the same
BILBO register.

Case 1 is clearly impossible since there will be at least two BILBO registers in any cycle of the
original circuit, thus no cycles exist in the modified circuit. Since a BILBO register is required
for every input port of a combinational logic block if the block has more than one input port,
these BILBO registers essentially break all reconvergent fanout paths, therefore case 2 is not
possible either. For case 3, suppose a BILBO register R feeds a combinational logic block V in S
and is fed by another combinational logic block U in S (see Figure 8(a)). Since S is connected,
U and V must be connected as shown in either Figure 8(b) or Figure 8(c). In Figure 8(b) there
is a path from V to U. In other words a cycle exists before register R is converted to a BILBO
register. It is necessary to convert another register in this path to a BILBO register as stated by
the third criterion above. The extra BILBO register breaks the path and disconnects 5, leading
to a contradiction. In Figure 8(c) there exists a pair of combinational logic blocks U’ and V'
that can be the same blocks as U and V, respectively, that form a reconvergent fanout structure.
Since V' has more than one input port, BILBO registers are required in front of both input ports
of V'. This breaks the path between U’ and V' and disconnects S. Thus the assumption that
there exists a circuit satisfying the three criteria in [3] but containing a non-balanced BISTable
structure is not possible. Therefore every circuit that satisfies the three criteria in [3] consists of
only balanced BISTable structures.

Next Consider the circuit shown in Figure 4(a). Clearly all nine registers in the circuit are
required to be converted to BILBO registers according to the methodology in [3]. On the other
hand, only six BILBO registers are required by the BIBS TDM as shown in Example 1. Therefore
a balanced BISTable structure need not satisfy the criteria in [3] and this completes the proof.

]
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Figure 8: (a) A connected structure that feeds and is fed by a BILBO register R; (b) and (c)
possible configurations

Next we consider the example circuit employed in [3] which is shown in Figure 9(a). To make
the circuit BISTable using the technique presented in [3], 10 BILBO registers are required as
shown in Figure 9(b). The total number of F/Fs that require modification is 52. On the other
hand, only 8 BILBO registers that consists of a total of 43 F/Fs are required if the BIBS TDM is
employed. Both TDMs partition the circuit into two kernels as illustrated by the shaded blocks

in the figure.

Figure 9: (a) The example circuit employed in [3]; (b) BISTable design using technique in [3];
(c) BISTable design using BIBS TDM

To further compare these two techniques in terms of area overhead, performance degradation,
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_ Circuit c5a2m c3a2m cdadm
Function o=(a+b)*(c+d)+(e+f)*(g+h) o=((a+b)*c+d)*e+f o=a*(f+g)+e*(b+c)
p=d*(b+c)+h*(f+g)

a bcde f gh a bcde f gh

Implementation

# of gates 2,542 4,096

Table 1: Summary of the data path circuits

fault coverage and test time, we performed a series of experiments on several data path circuits
consisting of adders and multipliers as summarized in Table 1. These circuits are portions of a
digital filter design synthesized by MABAL, a CAD tool developed by the USC design automa-
tion group[12]. These data paths are all 8 bits wide. Due to the specific application of these
circuits, only the 8 least significant output lines of each multiplier feed the next stage in the data
path. The comparison between these two TDMs is summarized in Table 2.

In Table 2 for each circuit the first column shows the results of applying the BIBS TDM and
the second column shows the results of the approach presented in [3]. We assume pseudo-random
testing is employed rather than 1-step functionally exhaustive testing. Since every circuit in Ta-
ble 1 is balanced BISTable, only registers at the PI and PO need be converted to BILBO registers
when employing the BIBS TDM. The remaining circuit is a single kernel and only one test session
is required. Whenever a BILBO register is used, it introduces a certain amount of delay, say 1
time unit, due to the extra hardware required. We assume that each BILBO register introduces
a delay of 1 time unit. A mazimal delay is thus calculated for each BISTable circuit that is equal
to the maximal number of BILBO registers from a PI to a PO. The maximal delay for each of
the circuits is 2 time unites when using the BIBS TDM. For the methodology presented in [3],
every register that feeds an input port of each adder and multiplier, as well as the PI and PO

12



Circuit c5a2m c3a2m c4adm

BIBS [3] BIBS [3] BIBS [3]
1 # of kernels 1 7 1 5 1 7
2 # of test sessions 1 2 1 2 1 2
3 # of BILBO registers 9 15 7 15 10 20
4 Maximal delay 2 4 2 6 2 4
5 #9%f_ kg 321;;;6 1,440 | 1,660 | 2060 | 1,596 | 1,900 | 4,128

Test time to achieve

99.5% fault coverage 1440 | 782 | 2060 | 782 [ 1900 | 1,037

7 # of patterns to achieve
100% fault coverage 7,300 4,440 9,240 4,376 19,120 8,688

Test time to achiev
8 100% Fault coveragi: 7,300 2172 9,240 2,172 19,120 2,172

Table 2: Summary of the experimental results

registers, need be converted to BILBO registers. Each adder and multiplier is a kernel by itself
during the test. By using the test scheduler presented in [13], it can be observed that the optimal
test schedule for each circuit requires two test sessions. For example, in circuit c5a2m the two
multipliers can be tested in the first test session and the five adders can be tested in the second
test session. The maximal delay for each circuit is significantly larger when using the procedure
in [3] than for the BIBS TDM. For instance, the maximal delay for circuit c3a2mis 6 time units
(from PI a to PO o) in [3] while it is 2 time units when using the BIBS TDM. As can be seen
from rows 3 and 4 in Table 2, the BIBS TDM requires significantly less test hardware and circuit
delay than the approach in [3] for the data path circuits considered.

The effects on fault coverage and test time for these two approaches are also analyzed and
compared as follows. 100% fault coverage of detectable faults can be achieved by both TDMs.
Row 7 in the table shows that both TDMs achieve 100% fault coverage if a sufficient number of
patterns are applied. The number of patterns required is substantially less than that required
by functionally exhaustive testing. The number of patterns required by the approach in [3] is
generally less than that by the BIBS TDM. The total test time in [3] can be further reduced
if the tests for kernels are properly scheduled. For example, 2,140 and 32 patterns are needed

to detect all detectable faults in each multiplier and adder, respectively. To test each kernel of
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c5a2m in sequence requires 4,440 patterns (i.e. 2,149 x 24+ 32 x 5.) If the tests are scheduled so
that the two multipliers are tested in one test session and the five adders are tested in another
test session, the total test time is only 2,172 clock cycles. It should be noted that in practice
it is not always necessary to achieve 100% fault coverage. In such cases, the differences in test
time between these two TDMs are substantially less as can be observed from rows 5 and 6.

The increase in test time for the BIBS TDM seems to be inevitable because larger and more
complex structures are tested as kernels. On the other hand, this phenomenon provides a de-
signer with trade-offs between test time, test hardware and performance degradation. In a high
performance circuit where performance degradation and area overhead usually have higher pri-
ority than test time, the BIBS TDM is an attractive option in making the design BISTable. In
this experiment the fault coverage and test time analysis is performed by using a fault simulator
where random patterns instead of pseudo-random patterns generated by LFSRs are used. The
actual number of test patterns required may vary slightly if LEFSRs are employed. It should also
be noted that if functionally exhaustive testing is desired, the differences in test time between
these two TDMs may be greater since the input widths of the kernels in the BIBS TDM are
usually larger. However, for the data path circuits considered, it is not necessary to apply func-
tionally exhaustive testing to achieve 100% fault coverage.

From the above theoretical analysis and experimental results we conclude that the BIBS TDM
is very attractive when the area overhead and performance degradation are important attributes
in a BISTable circuit. In addition, good fault coverage can be achieved if adequate test patterns

are applied to a circuit under test.

4 TPG Design for 1-step Functional Testable Circuits

In the previous section we presented the BIBS TDM that ensures every kernel under test to be
1-step functionally testable. To guarantee a comprehensive fault coverage, all possible patterns
(i.e. functionally exhaustive patterns) should be applied to a kernel under test. When a kernel K
under test is a combinational logic block with a single input port, a TPG design that configures

the input register of K as a maximal length LFSR is sufficient to provide such an exhaustive
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test set. When K has n input ports and is driven by a set of registers Ri, Rs, ..., R,, these
registers need to be concatenated and made into a single maximal length LESR. When a kernel is
sequential, the TPG design that can provide a functionally exhaustive test set when the sequential
lengths of paths from the TPG to blocks in the kernel are unequal may be more complicated.
We address the issue of TPG design for balanced BISTable kernels in this section.

Consider the balanced BISTable kernel shown in Figure 10(a). When R;, R, and R3 are
concatenated and made into a maximal length LF'SR, a functionally exhaustive test set may not
be obtained at the inputs of C3 and Cs. This is due to the unequal sequential lengths of the paths
from the input registers Ry, Ry and Rz to C; and C3. To compensate for the imbalance in the
sequential lengths of these paths, one and two clock cycles of delay can be added to the paths
by inserting transparent registers to the circuit which balance the sequential lengths of these
paths (see Figure 10(b)). This, however, would add significant area overhead and the circuit
performance may be adversely affected. On the other hand, the same balancing effect can be
achieved by adding one D-type F/F before each of R, and Rs if a type 1 LFSR[14] is employed
(see Figure 10(c)). This modification works because in a type 1 LFSR L, the data present in the
ith stage of L at time ¢ is the same as the data present in the (7 —1)** stage of L at time ¢ —1 for
i > 1, where the most significant bit of the LFSR is the first stage. The area overhead for this
approach is much smaller than the previous one and no additional performance degradation is

introduced apart from the LFSR circuitry.

Figure 10: (a) a balanced BISTable kernel; (b) a simple approach to test kernel in (a); (c)
proposed approach

As can be seen from the above example, more complicated TPG design may be required to
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balance the sequential lengths of paths in a sequential kernel. In this section we will first introduce
a novel TPG design scheme using a combination of LFSRs and SRs. This scheme can be easily
applied to a balanced BISTable kernel with single output port (single cone). We will then extend
the design scheme for circuits with multiple output ports (multiple cones). A cone in a circuit
consists of all the logic associated with an output port. In some circuits having multiple cones,
when the input width of each cone is less than the input width of the entire circuit, the test
time for these circuits can often be reduced by using a technique similar to pseudo-ezhaustive
testing[14]. A new concept, called functionally pseudo-ezhaustive testing, will be introduced to

deal with these circuits.

4.1 TPG Design for Single-cone Kernels

A balanced BISTable kernel having a single cone can be represented as a generalized structure
shown in Figure 11(a), where C is the combinational logic block that feeds the output port of the
kernel. dy, ds, ..., d, are the sequential lengths of the paths from Ry, Ry, ..., R,, respectively,
to C. Each path in Figure 11(a) can be a data path between R; and C, or a set of parallel
data paths between R; and C all having the same sequential length. For example, referring to
the circuit shown in Figure 12(a) the data paths from R; through C; and C; to C3 and from
R, through C; and Cy4 to Cs are represented by a single path with a sequential length of 2
in Figure 12(c). Note that different balanced BISTable kernels may have the same generalized
structure. For example, both the balanced BISTable kernels shown in Figures 12(a) and (b) are
represented by the same structure shown in Figure 12(c). It should also be noted that the paths
in a generalized structure may not be disjoint. For example, the paths from R; to U3 and from
R, to Cs in Figure 12(c) correspond to two data paths in Figure 12(b), namely the path from
Ry through Cy, C; to Cs and the path from Ry through Cj to Cs, that share Cy and the register
fed by Cs.

Without loss of generality assume dy > dy > ... > d,. A TPG design for the generalized
structure employing type 1 LFSR is illustrated in Figure 11(b). A; extra D-type F/Fs are added
in front of R;, where A; = d;_y — d; for 1 < i < n. Therefore, the total number of extra F/Fs
in the TPG is % ,(di-y — d;) = dy — d,,. In other words the TPG consists of (M + di — dy)
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Figure 11: (a) a generalized structure for representing balanced BISTable kernels; (b) a TPG
design for the structure

F/Fs, where M = Y™, |R;| and |R;| is the width of R;. Among the string of (M + d; — d,)
F/Fs, the first M F/Fs are connected as a type 1 LFSR. In general, the number of extra F/Fs
depends on the difference of sequential lengths between the longest path and the shortest path

from the TPG to C'. For simplicity, we ignore the all-0 pattern in the following discussion. The
all-0 pattern can be provided by modifying an LFSR to be a complete LFSR[15].

Ry Ro Rjg

(a) (b) (©

Figure 12: (a) and (b) two different balanced BISTable kernels; (c) a generalized structure for
(a) and (b)

Example 2 Consider the balanced BISTable kernel shown in Figure 12(a). Suppose Ri, R and
R are all 4-bit registers. A TPG design for this kernel is shown in Figure 13 where the primitive
polynomial z'% + 27 4 z* 4 2® + 1 is employed in the LFSR configuration. Only 2 extra D-type
F/Fs are required, thus adding 7.2% extra area to a 12-bit BILBO register based on the magic
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layout tool. The test time for the kernel is 2'? — 1 +2 clock cycles, where the extra 2 clock cycles
are needed to flush the last test pattern through the circuit. O

12-bit LFSR

To C1 To C5 To C3
- extra D-type F/F

Figure 13: A TPG design for the balanced BISTable kernel in Figure 12(a)

Theorem 4 The TPG design scheme presented above provides a functionally exhaustive test
set to a balanced BISTable kernel having a single cone.

Proof To show that a TPG provides a functionally exhaustive test set to a kernel we need to
prove that every combinational logic block in the kernel is tested functionally exhaustively when
the TPG goes through all possible states of its state space. In a single-cone balanced BISTable
kernel, each combinational logic block having a single input port, such as Cs in Figure 12(a),
clearly can be tested functionally exhaustively. Due to the balance property of the kernel, the
difference in sequential lengths of the paths from a pair of input registers, say R; and R;, to a
combinational logic block with fan-ins, such as Cy or C3 in Figure 12(b), is the constant (d; —d;).
For example, the difference in sequential lengths of the paths from R; to C3 and from R, to Cs
in Figure 12(b) is 1; and the difference in sequential lengths of the paths from R; to C; and from
R, to Cy is also 1.

We first consider the combinational logic block C that drives the output port of the kernel
as shown in Figure 11(a). Let Q1(t)Q2(t)...Qn(t) be a pattern at the inputs of C' that occurs
during normal functional operation. Then there exists a vector in R;, say P;(t — d;) where
1 < i < n, which when present at time ¢ — d;, will produce Q;(t) at the inputs of C. To exercise

all possible functionally patterns at the input of C' during test mode, the pattern Py (t—di)P(t—
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dy)...P,(t —d,) should go through all (24 — 1) combinations. Note that the M-stage LFSR. in
the TPG shown in Figure 11(b) can be divided into n segments where segment S; contains |R;]
F/Fs (see Figure 14). For each register R;, 1 < i < n, there exists a displacement of (d; — d;)
F/Fs with respect to segment S; due to the extra D F/Fs added in the TPG construction. This
displacement is equivalent to a time shift between the vectors in R; and S;. In other words, the
vector in R; at time ¢ is the same as the vector in S; at time ¢ — (d; — d;). Therefore, the pattern
Pi(t—dy)Py(t—dy) ... Py(t—d,) in Ry, Ry, ..., R, isequivalent to Py(t—dy)Py(t—dy) ... Py(t—dy)
in Si, Ss, ..., Sp. Clearly the latter can go through all (2 — 1) combinations since Sy, Sa, ...,
S, are connected as a maximal length LFSR of degree M, thus functionally exhaustive patterns
can be applied to C'. As was seen above, the difference in the sequential lengths of the paths
from R; and R; in the TPG to any block Cj is the constant (d; — d;) for a balanced kernel.
Consequently, the same TPG will generate all patterns required to functionally exhaustively test
C). Therefore, the proposed TPG can provide a functionally exhaustive test set to a single-cone

balanced BISTable kernel. O

N \/
Segment S4 Segment Sy Segment Sy Segment Sy,

Figure 14: TPG for a balanced BISTable kernel

Corollary 1 The test time to functionally exhaustively test a single-cone balanced BISTable
kernel is 2 — 1 + d, where M and d are the input width and sequential depth, respectively, of

the kernel.
Proof It follows from Theorem 4 that a TPG containing a maximal length LFSR of degree

M exists for each single-cone balanced BISTable kernel. From the construction of the TPG,
the TPG can apply one test pattern per clock cycle to the kernel. Therefore, it takes (2M —1)
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clock cycles to generate a functionally exhaustive test set and d clock cycles to propagate the

last pattern through the kernel. 0

Note that even though extra F/Fs are needed in a TPG, they do not increase the test
time required to functionally exhaustively test a balanced BISTable kernel. This scheme can be
contrasted with the circular self-test path (CSTP) TDM proposed by Krasniewski and Palarski[4].
Here kernels can also be sequential and need not be balanced. It is estimated that to apply an
exhaustive test set requires about T -2M test patterns, where T' varies from 4 to 8. Since kernels
need not be balanced, they may not be tested functionally exhaustively.

In general, the sequential lengths of the paths from input registers to an output cone may not
be in descending order. We have developed a procedure described below to construct a TPG for
a general single-cone balanced BISTable kernel. The procedure first creates a string of N D-type
F/Fs (step 2), where N is the kernel width plus the number of required extra D F/Fs. Register
cells are then assigned to the created F/Fs (steps 3 and 4). We denote the j™ cell of register R;
as R; ;. The assignment is done in the order of Ry, Ry, ..., R,, and is based on the difference in
the sequential lengths of the paths from each pair of consecutive input registers to the output.
For example, let A; = d;_; — d;, where d; is the sequential length from R; to the output. Let
P;_1(t) and P;(t) be the vectors present in R;_; and R;, respectively, at time ¢. If A; > 0,
P;(t) will propagate to the output A; clock cycles earlier than P;_;(t) does. To compensate for
this imbalance so that functionally exhaustive patterns can be applied to the circuit, R; should
be shifted A; stages away from R;_; in the TPG. This can be achieved by allocating A; F[Fs
between the last cell of R;_y and the first cell of R; (step 4(c)). On the other hand, if A; <0
then P;(¢) will propagate to the output |A;| clock cycles later than P;_;(t) does. To compensate
for this imbalance, R; should be shifted |A;| stages closer to R;_; in the TPG. This can be
accomplished by making the first and the last |A;| cells of R; and R;_;, respectively, share the
same signals (step 4(b)). Two cells are said to share the same signal if they are fed by the
same fanout stem. Due to the separation or sharing of register cells, a pair of consecutive input
registers R;_; and R; may not be physically adjacent to each other in the TPG. In other words, a
displacement of R; with respect to R;_; may exist. For a single-cone kernel, the displacement of

R; with respect to R;_y is equivalent to A;. Once register cells are assigned to F/Fs, an M-stage
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LFSR can then be constructed (steps 5 and 6). When a signal is shared by two or more register
cells, only one of the cells needs to be in the LFSR and the remaining cells are simply fed by the
same fanout stem (step 6). This procedure, known as SC_TPG, is presented next.

Procedure SC_TPG

/* INPUT: Input registers Ry, Ry, ..., R, and the associated sequential lengths dy, ds, ..., dy.
*/

/* OUTPUT: a TPG design. */

1. Let r; be the width of R; and M be 377, ;.

2. Let D be the difference between max”™_, d; and min?, d;. Create a string S of N unlabelled
D-type F/Fs, where N = M + D.

3. Let Ry ; be the j%* F/F in S and label it as L; for j =1 to ry. k =ry.
4. For : =2 ton do

(a) let A; =diq — d;.
(b) if (A; < 0) then k£ =k — |A;].
(c) otherwise for | = k+1 to k+ A, label the first unlabelled F/F in S as L;. k = k+A;.
(d) let R;; be the first unlabelled F/F in S and label it as Liy; for j =1 to r;.
(e) k=k+r:.
5. Let L,, be the last labelled F/F in S. If (M > m) then for k£ = m + 1 to M, label the first
unlabelled F/F in S as L.

6. Connect F/Fs labelled Ly, Lo, ..., Ly as a maximal length LFSR. If two or more F'/Fs have
the same label, only connect the last F/F (based on their order in the TPG). Configure the
remaining I'/Fs as shift registers where a F/F labelled Ly is fed by a F/F labelled Lj_;.

Theorem 5 Procedure SC_.TPG generates a minimal test time TPG to functionally exhaus-
tively test a single-cone balanced BISTable kernel.
Proof The TPG generated by Procedure SC_TPG employs an LFSR of M stages whose test
time (2™ — 1) is minimal for a circuit with M inputs. Therefore, what remains to be shown is
the coverage of the patterns generated.

Given a single-cone balanced kernel, the condition that a displacement (d; — d;) of R; with

respect to R; for every pair of input registers R; and R; (j < 1) is sufficient to functionally
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exhaustively test the kernel. Procedure SC_TPG assigns register cells to the F/Fs in a TPG
incrementally where a displacement (d;—1 — d;) of R; with respect to R;_; is ensured in each iter-
ation. Consequently, the displacement of R; with respect to R; obtained by Procedure SC_TPG
is (di—y —d;) +(di—2 —di—1) +... +(dj —dj41) = d; — d;, thus satisfying the above condition and

the kernel can be tested functionally exhaustively. o

Example 3 Consider the generalized structure as shown in Figure 12(c). Assume that each
register is 4 bits wide and the sequential lengths from Ry, R; and R3 to C3 are 1, 2, and 0,
respectively. The TPG generated by Procedure SC_TPG is shown in Figure 15, where the
primitive polynomial z'? + 27 4+ 2* + 2® + 1 is employed. The line below the F/Fs illustrates
the assignment of register cells to F/Fs. The displacement of R; with respect to R; is —1.
Therefore, Ry 4 and Ry, share the same signal of LFSR stage Ls. On the other hand, R, and
Rj5 are separated by two F/Fs due to the positive displacement (+2) of Rz with respect to R,.
Neither of the two F/Fs labelled Ly can be deleted since both are used in the normal mode of

operation of the circuit. O

Ri1 Ri2 Rys Rys4 R21 Rao Raa Rog R31 Rs2 Ras Raa

Figure 15: A TPG design for Example 3

It should be noted that if there exists a A; < 0 and |A;| > r;_1, the number of signals shared

by register R; and R;_; is less than |A;|. This can be illustrated by the following example.

Example 4 Consider a kernel with a generalized structure as shown in Figure 16(a). Suppose
that both R, and R, are 4 bits wide. The difference in sequential lengths of the paths from £,
and R, to C results in a displacement —5 of R, with respect to R;. Since the width of R; is
only 4, Ry and Rj can share at most 4 signals in the TPG. A TPG design for a kernel with this
generalized structure is shown in Figure 16(b), where the first stage in the LFSR is Lo instead
of L;. As can be seen from this TPG design, R; and R, in fact share only 3 LFSR stages L1,

22



L, and L3. Note that this type of kernels rarely happen in practical design since the difference
in sequential lengths is normally small compared with register widths. Therefore, this example
is primarily for theoretical interests and we will assume the absence of this type of kernels in the

remaining of this section. 0

Rii Ri2 Riz Ria Rzq Ra2 Ros Rag
(a) (b)

Figure 16: (a) an example generalized structure; (b) TPG design for (a)

4.2 TPG Design for Multiple-cone Kernels

In the previous section, given a pair of consecutive registers R;_y and R;, the displacement of
R; with respect to R;_; in a TPG is simply the difference in their associated sequential lengths.
This may not be true for kernels having multiple cones since a pair of registers may both drive
two cones and the differences in the associated sequential lengths from these registers to the

cones are unequal. This can be illustrated by the example below.

Example 5 Consider a balanced BISTable kernel with 2 cones as shown in Figure 17(a). We
assume that both R; and R, are 4 bits wide. The first cone, denoted by (2, is associated with
output port O; and depends on R; and R;. The sequential lengths of the paths from R; and R
to Oy are 2 and 0, respectively. The second cone, denoted by €2, is associated with port O, and
also depends on R; and R,. However, the sequential lengths of the paths from R; and R, to O,
are 1 and 0, respectively. To test this kernel with a TPG consisting of R; and R, the differences
in sequential lengths of paths from Ry and R; to O; and Oz should be considered to determine
the displacement of R, with respect to Ry in the TPG. Consider O, first. Since the difference
in sequential lengths of the paths from R; to O; and from R; to O, is 42, a displacement +2 of
R, with respect to R; in the TPG is sufficient. Next we consider O,. A displacement +1 of Ry
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with respect to R; in the TPG is sufficient due to the sequential length difference between the
paths from R; to O, and from R, to O,. Therefore, a displacement +2 of R, with respect to R;
in the TPG is sufficient to compensate for the sequential length imbalance. This displacement

implies that R; and R, are separated by 2 F/Fs in the TPG as shown in Figure 17(b).

Figure 17: (a) an example multiple-cone kernel; (b) TPG design for (a)

Once the displacement between registers are determined, the size of the required LF'SR can then
be determined as described below. To simplify the following analysis, we assume that C; and C;
are vacuous blocks. It should be noted that this assumption is only for illustration and the result
of the analysis is valid without the assumption. Suppose that at time ¢, the pattern in the 10 F/Fs
shown in Figure 17(b) is Pi(t)Py(t) ... Pio(t). At time t + 1, the pattern present at the inputs of
Cyis Pi(t)... Py(t)Py(t +1) ... Po(t + 1), which is equivalent to Py(t)... Py(t)Ps(t) ... Ps(t). To
functionally exhaustively test Cy (or cone §;), an LFSR of at least 9 stages is required. Similarly
at time ¢+ 2, the pattern present at the inputs of Cs is Py(t) ... Ps(t)Pr(t+2). .. Pio(t+2), which
is equivalent to Py(t)...Py(t)Ps(t)... Ps(t) and thus an LFSR of at least 8 stages is required to
functionally exhaustively test cone Q;. Therefore, although the maximal cone size (width of
the inputs on which a cone depends) of the circuit is 8, an LFSR of degree 9 is required (see
Figure 17(b)). ]

Next we extend the procedure presented in the previous section to deal with multiple-cone
kernels. Usually we cannot determine the number of F/Fs to be used in a TPG design for a

multiple-cone kernel a priori, hence in step 1 a string of “adequate” F/Fs are created. In the
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register cell ;ssignment process (steps 2 and 3), the sequential length information for every pair
of input registers (not necessarily consecutive) has to be considered for each cone that depends
on both registers (steps 3(a) and 3(b)). For example, suppose d;, — d;i = &; j(z) where R;,
R; (j < i) are a pair of registers on which O, depends, and d;, is the sequential length from
R; to output port Op. There can be more than one cone that depends on both R; and R;.
Let A;; = max,é;;(z) for all z, where cone 2, depends on both R; and R;. Clearly the
displacement of R; with respect to R; must be at least A; ;. When R; and R; are consecutive
registers (i.e. 7 =¢— 1), A;; > 0 implies a separation of A;; F/Fs between R; and R; in the
TPG; and A;; < 0 implies a sharing of |A; ;| signals between R; and R;. When R; and R; are not
consecutive registers, let Ly, and Ly,_, be the labels of the last cells of R; and R;_;, respectively.
Then the sufficient displacement of R; with respect to R;_; is simply k; +A;; —k;—; and the

separation or sharing between R; and R;_; can then be determined.

Theorem 6 The above register assignment guarantees that every register cell is assigned to the
F/F with the minimal label.

Proof Since cells of the same register are assigned to F/Fs with contiguous labels, we will
consider only the last cell of each register in this proof. We first claim that if the last cell of
R;_1, namely R;_1,,_,, 1s assigned to the F/F with the minimal allowable label, this will lead to
the assignment of the last cell of R;, namely R;,,, to the /F with the minimal label.

Assume the above claim is false and let Ly,_, be the minimal allowable label for R;_i,_,.
Then assigning Ri_1,,_, to a F/F labelled Ly_ will lead to the assignment of R, to a F/F
labelled Ly, , while assigning R;i_1,,_, to a F/F labelled Ly,_, will lead to the assignment of R;,,
to a F/F labelled Ly,,, where ki_; > k;_y and ki < k2. However, it can be observed from the
assignment process presented above that if there exists no output cone that depends on both
R;_; and R;, R;,, will be assigned to the same F/F (i.e. ki = ki) independent of the assignment
of R;_1,_,; and if there exists an output cone that depends on both R;_; and R; then k;; > k.
Therefore, the assumption cannot be true and this proves our claim. Notice that registers are
assigned incrementally, namely register R; is assigned only if registers Ry, R, ..., R;_1 have

been assigned. This claim is true for all z, where 1 <1 < n, and thus the theorem is true. O
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Once register cells are assigned to F/Fs, a sufficient number of LFSR stages for every cone
is then determined(step 4). Consider a cone (), that depends on p input registers R,,, Rs,, ...,

R., as shown in Figure 18, where R,, proceeds R,,,, in the TPG for £ =1 to p — 1. Let L,

k+1

and L,, be the labels assigned to the first and the last cells, respectively, of R,.

Theorem 7 (u, — Il + 1+ d;,» — ds, ) LFSR stages are sufficient to functionally exhaustively
test the logic in cone (.
Proof Every pair of input ports of C' that depend on register R,; and R,,, where j < ¢, are
connected to LFSR stages having a span of (u; — [; + 1) F/Fs, as can be seen from Figure 18.
This number is called the physical span of these two input ports. Due to the difference in
sequential length, the same ports depend on a span of (u; —l; + 1 + dp, o - dz; ) LFSR stages
as was illustrated in Example 5. This number is called the logical span of these two input ports.
The logical span of the output port O, is defined as the the maximum among the logical spans
of all (z,7) pairs. This number determines a sufficient number of LFSR stages to functionally
exhaustively test the logic associated with cone 2.

We claim that (u, — b + 1+ dy, o — doy o) > (ui — lj+ 1+ dg, o — d; o) for any (7, 7) pair. This

is true by examining the following equation.

(Up — ll + 1+ dxp,g; = dg;l,g;) = (ui = l] +1+ dx;,r - da:]-,z)
(up - ui) - (dm.',z - dxp,m) + (l] - ll) - (d:rl,x - da:j,:c)
Arp.:ve = 5-'13py1'i($) =+ Azwvl - 6%‘@1 (z)

0

AV

vV

It should be noted that the value (u, — u;) is the displacement of R, with respect to R, in
the TPG design, which is obtained by considering every : that is less than p. Therefore, it is at
least as large as A;, ;;, namely the required displacement of R, with respect to R,, when only
a particular 7 is considered. Similarly the value (I; — ;) is the displacement of R,, with respect
to Ry, and is at least as large as Ay, 4,. Furthermore, Ay, 4 > 8z,0,(2) and Ag, o 2 Oy ()

since Ay, » = MaX, 6z,0,(z) and A, 5, = max, 6z, (). Therefore, (v, — 1l +1+ dzp o — oy iz)

LFSR stages are sufficient to functionally exhaustively test cone €2,. O
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Figure 18: An output cone that depends on R, Ry,, ..., Ry

P

Once the sufficient number of LFSR stages to functionally exhaustively test each cone has
been determined, the sufficient number of LFSR stages to functionally exhaustively test the entire
circuit can then be obtained by taking the maximum among the sufficient number of LF'SR stages
for individual cones. The procedure for generating a TPG for a multiple-cone kernel, known as
MC_TPG, is presented next. Note that in this procedure Li,, 1 < ¢ < n, denotes the label for
the last cell of register R;.

Procedure MC_TPG
/* INPUT: Input registers Ry, R, ..., R, and output cones Qy, Qs, ..., Qn. Each Q; contains
a set of registers on which Q, depends and the associated sequential lengths. */

/* OUTPUT: a TPG design. */
1. Let r; be the width of R; and create a string S of adequate unlabelled F'/Fs.
2. Let Ry be the j** F/F in S and label it as L; for j =1 to ry. ki = 7.
3. Fori =2tondo

(a) forj=1toz—1do
i. for each cone 2 if Q, depends on both R; and Rj, let é;j(z) = djz — dig-
ii. let A;; be the maximum among &; ;(z) for all =.
iii. let A;(j) be Ai; + k; — ki_a.
(b) let A; be the maximum among A;(j) for j =1 toz — 1.
(c) if (A; < 0) let ki = kiq — |A]-
(d) otherwise for k = ki_y + 1 to ki1 + Ay, label the first unlabelled F/F in S as L.
ki = ki + As.
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(e) let R;; be the first unlabelled F/F in S and label it as Ly, 4; for 7 =1 to ;.
(f) ki = k,‘ + ;.

4. Let M = 0. For each cone (), in the circuit do

(a) determine the sufficient number of LFSR stages to functionally exhaustively test Q,
say M’', as follows. Let R,, and R,, be the first and last registers on which (, depends.
Let L;, and L,, be the labels of the first and the last cells of R;, and R,,, respectively.
Then M' =up, — i+ 14 dy, 2 — dgy 5

(b) if (M' > M) then M = M’

5. Let L,, be the last labelled F/F in S. If (M > m) then for k = m +1 to M, label the first
unlabelled F/F in S as L.

6. Connect F/Fs labelled Ly, Lo, ..., Ly as a maximal length LFSR. If two or more F/F's have
the same label, only connect the last F/F (based on their order in the layout). Configure
the remaining labelled F/Fs as shift registers where a F/F labelled Ly is fed by a F/F
labelled Lj_;.

Procedure MC_TPG is a polynomial time algorithm with a complexity of O(mn?), where m

is the number of cones and n is the number of input registers.

Example 6 Consider the circuit shown in Figure 19(a). The registers are assigned as shown in
Figure 19(b) where a displacement of R, with respect to Ry is 42 due to the sequential length
difference in ;. Based on this register assignment, the physical span of €, is 10 (from L; to Lyo).
Due to the sequential length difference (i.e. +1), the logical span of Q5 is 11 (from L; to Lq1).
Therefore, an 11-stage LFSR as shown in Figure 19(b) is sufficient to functionally exhaustively
test the circuit. The TPG shown in Figure 19(b) can be obtained by using Procedure MC_TPG.

0

It should be noted that if the 2 cones in Figure 19(a) are tested separately (in 2 test sessions),
the test time is approximately 2 x 28 = 29, which is much smaller than the test time 2'! using
the TPG described above. In such a case, a reconfigurable TPG[16] that can test different cones
at different test sessions by changing the configurations of the LFSRs might be desired to reduce
the test time. For the kernel in Figure 19(a), a reconfigurable TPG as shown in Figure 20 can
be used. When the control line 0;/Q; is 0, the TPG is configured to test cone {; and when
the control line 9/, is 1, the TPG is configured to test cone Q2. Although a reconfigurable
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Figure 19: (a) a multiple-cone kernel for Example 6; (b) TPG design for (a)

TPG may reduce the test time for a multiple-cone kernel, the area overhead and performance
degradation of such design are usually high. Therefore, a designer can make trade-offs between

test time and area overhead when a reconfigurable TPG is more time efficient.

Ry

Figure 20: A reconfigurable TPG design for kernel in Figure 19(a)

4.3 Functionally Pseudo-Exhaustive Testing

Example 7 Consider the circuit with 3 cones as shown in Figure 21(a). According to Procedure
MC.TPG, two F/Fs are required between R; and R and one F/F is required between R, and
Rs. Based on this register assignment, the logical span of €y is 8 (from L to Lg); the logical
span of Qg is 16 (from L; to Lie); and the logical span of Q3 is 8 (from L7 to L14). Therefore,
a maximal length LFSR of degree 16 is sufficient in the TPG design as shown in Figure 21(b).

The test time for the circuit using this TPG is approximately 246,
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If the input registers are allowed to be permuted, significant reduction in the LFSR size and
test time can be achieved. For example, suppose the input registers are ordered as Ry, Rs and R,.
A TPG design that employs an LFSR of degree 8 can be obtained by using Procedure MC_TPG
as shown in Figure 21(c). It should be noted that although the input width of the circuit is
12, the test time to functionally exhaustively test the entire circuit using this TPG design is
approximately 28. This is due to the fact that each cone only depends on a subset of the inputs.

O

(b)

Figure 21: (a) a three cones kernel; (b) a TPG design for (a); (c) an alternative TPG design for
(a)

The concept of pseudo-exhaustive testing has been widely employed in testing combinational
circuits, where exhaustive patterns are applied to individual output cones of a combinational
circuit. This technique ensures the detection of all detectable stuck-at faults in the circuit and
the associated test time is usually less than that of exhaustive testing. As can be observed
from Example 7, functionally exhaustive patterns can be applied to individual output cones

of a balanced BISTable kernel and the test time of this technique may be less than that of
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applying exhaustive patterns to the entire kernel. This test strategy is called functionally pseudo-
ezhaustive testing. Functionally pseudo-exhaustive testing ensures the detection of all stuck-at
faults in the circuit that would interfere with normal operation.

Research problems in pseudo-exhaustive testing, such as finding the minimal test signal set and
test sets[17, 18] and TPG design for pseudo-exhaustive testing[19, 17, 16] have been extensively
studied. It has been shown that the problem of generating an optimal pseudo-exhaustive test set
is NP-complete[17] and the problem of minimal test time TPG design is also hard. The problem
of TPG design for functionally pseudo-exhaustive testing differs from this previous work in two
aspects. Namely register level instead of gate level components are considered, and the concepts
of time shift and sequential length difference must be taken into account. We can easily extend
the procedure in finding the minimal number of test signals presented in [17] to deal with register

level signals efficiently as illustrated below.

Example 8 Consider the the circuit shown in Figure 21(a). The cone dependency[17] is shown

in the dependency matrix D.

1 10
D=1101
011

D;; = 1 if cone §; depends on R;. Clearly 3 test signals, each of which being a group of 4 wires,
are required which implies an LFSR of 12 stages is needed in the TPG design. Therefore, the
test time using this approach will be approximately 2'? which is much greater than 28 obtained

in Example 7 when employing Procedure MC_TPG and the register permutation. O

As was seen in the above example, the result obtained by the extended minimal test signal
procedure is not optimal in terms of the LF'SR size and test time. This is due to the lack of the
ability to handle sequential length information in this procedure. In addition, once a TPG is
configured based on the RTL test signals generated, the connection between the TPG and the
kernel under test needs to be done in the gate level based on the sequential length differences.
Therefore, this simple extension of an existing procedure that finds the minimal number of test
signals[17] does not always generate a minimal test time TPG design for a multiple-cone kernel.

As illustrated in Example 7, the test time for a multiple-cone kernel can vary according to
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the ordering of the input registers. Under certain register orderings, test time to detect all de-
tectable stuck-at faults may be less than that of applying a functionally exhaustive test set and
thus functionally pseudo-exhaustive testing can be applied. It is often desirable to reduce the
test time for a kernel by finding a best register ordering. This can be achieved by executing Pro-
cedure MC_TPG once for each input register ordering. In practice, the number of input registers
of a multiple-cone kernel is usually small, say less than 5. In addition, Procedure MC_TPG is a
polynomial time algorithm. Therefore, it is feasible to employ the above approach to reduce the
test time for a multiple-cone kernel. It should be noted that the test time for a multiple-cone
kernel is lower bounded by 2%, where w is the maximal cone size of the kernel. Therefore, if this
lower bound is achieved by a particular register ordering, a minimal test time TPG has been

obtained and the test time reduction process can be terminated.

5 Conclusion

We have presented a BILBO-oriented methodology, called BIBS, which in general requires less
test hardware and performance degradation than the conventional BILBO methodology. The
BIBS TDM employs balanced BISTable structures that are 1-step functionally testable, thus
TPGs with low area overhead and acceptable test time can be used to achieve high fault coverage.
The methodology presented in [3] has been shown to be a special case of the more general BIBS
methodology. A novel TPG design scheme for the BIBS TDM that can be used in functionally
exhaustive testing and functionally pseudo-exhaustive testing was presented. From this study it
can be observed that the size of a TPG depends on the difference in sequential lengths from the
TPG to outputs of a balanced BISTable structure. The test time for such a structure also depends
on this sequential length difference and the maximal cone size of a structure. In practice these two
factors need to be considered during the process of finding balanced kernels to ensure acceptable
test hardware overhead and test time. Preliminary experiments have been performed on three
different digital filter designs to compare the BIBS TDM with the methodology presented in [3].
The experimental results show that the BIBS TDM requires fewer BILBO registers and leads
to less performance impact than the TDM in [3]. Both approaches achieve 100% fault coverage
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of detectable faults using pseudo-random patterns and the test application time is substantially

less than that of using functionally exhaustive testing.

Currently we are working on procedures to allocate test hardware and identify kernels in
making a circuit BIBS testable. A polynomial time algorithm for generating minimal cost BIBS
testable design has been implemented for a class of circuits. Procedures to generate BIBS testable
design for more general circuits are being implemented. The necessary and sufficient condition
for a k-stage LFSR to functionally exhaustively test a balanced BISTable kernel having n inputs,
where k£ > n, has been identified. A procedure to generate a TPG using the minimal number
of F/Fs and LFSR stages to functionally exhaustively test a balanced BISTable kernel can be
developed using this condition. The development of such a procedure remains an open problem.
The BIBS TDM, procedures to generate BIBS testable circuits, and the TPG design procedure
for BIBS testable circuits are integrated with the Built-In Test System(BITS) developed by
the USC test group. BITS is an integrated CAD test system that reads in a circuit (in EDIF
description) to be made BISTable, reorganizes the circuit into a RTL description useful for the
BISTable design process, systematically explores the BISTable design space to provide a family
of solutions, generates an optimal test schedule, designs low area and high fault coverage TPGs
and SAs, synthesizes a test controller, and finally exports the fully testable circuit to another
EDIF description for layout. More experiments are being performed using the BITS system to

demonstrate the advantages of employing the BIBS TDM.
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