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Abstract

In this paper, we propese an array handling technique called
the Direct Access Method (DAM) which enables array ele-
ments to be sent directly from the producer to the consumer
activation while providing non-strict and parallel array ac-
cesses. The advantage of this technique over conventional
structure storage is that network traflic is reduced and that
no global memory space is required. Instead, array ele-
ments are produced in the frame memory of the producer
activation and forwarded directly to the frame memory of
the consumer activation. It is demonstrated lere how the
technique can be fine-tuned to those cases where an array
behaves as a temporary variable and its consumption pat-
tern can be determined at compile-time. Thus, the DAM
is proposed as a complement rather than a replacement of
the I-Structure representation. Performance measurements
obtained by a deterministic simulation of a multithreaded
model show that the Direct Access Method indeed performs
better than the equivalent I-Structure implementation. The
measurements further show that although the [-Structure
model has a lower execution time under low network latency
conditions, the DAM displays a performance advantage for
higher communication network latencies.

1 Introduction

Almost all scientific applications which can benefit from par-
allel computing entail the manipulation of large data struc-
tures. The resulting performance can vary greatly depend-
ing on how these large structured data are partitioned and
distributed across multiple processing elements. This must
be done in such a way as to fully exploit existing parallelism
with as little overhead as possible. Since communication
accounts for much of this overhead, eflicient structure rep-
resentation and transmission schemes are needed. This pa-
per presents an array handling technique geared mainly for
scientific applications in an environment where the compu-
tation model is data-driven while the target machine is a
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multithreaded architecture.

Although every data partition and allocation scheme at-
tempts to render all memory accesses local, remote memory
accesses cannot be completely avoided. Frequent remote
accesses can have a detrimental effect on the overall perfor-
mance because of their long latency which can result in low"
processor utilization. The data-flow computing approach
addresses the data partition/allocation problem indirectly
by striving to provide a latency tolerant computing envi-
romment. The adverse effect of long latencies can be in-
deed minimized by effectively overlapping computation and
communication[7]. To this end, three basic requirements
must be satisfied:

1. The compiler should be able to expose all the fine/me-
dium grain parallelism contained in the user's pro-
gram.

2.-The architecture of the target machine should be able
to exploit such parallelism efficiently.

3. Communication costs should be minimized or at least
tolerable.

The following is the current data-flow solution to the
above requirements:

1. Use a functional language as a programming language
which makes it relatively easy for a compiler to extract
parallelisin.

2. Use a multithreaded architecture to efficiently exploit
fine/medium grain parallelism exposed by the com-
piler.

3. Use I-Structures[4] when arrays can be produced and
consumed in parallel.

The concept of I-Structures is an important component
of the overall data-flow solution because its objective is to
exploit producer-consumer parallelism. This is achieved by
providing noun-strict and parallel accesses coupled with split-
phased memory operations. Specifically, each of the I-Struc-
ture memory cell contains presence bits indicating the status
of the cell i.e., full, empty, or pending. Initially, each cell is
set to empty. If a read request is made to an empty cell,
the state of the cell is changed to pending and the request
is queued in the deferred read request list. When the cell is
written, the state changes to present. If the cell is marked
pending prior to being written to, all deferred read requests
are serviced.



4 l-allocate request msg. A
I > Allocate IS memory
|-descriptor msg.
PRODUCER
l-write request msg.

Needed for every
array access

\ l-read request msg.
-

CONSUMER | a0 msg.
e ——— —

N, 4

Figure 1: [-Structure and producer-consumer parallelism.

In addition to providing mechanisms to support the sta-
tus of each memory cell, 2 memory manager which can ef-
ficiently handle dynamically created and deallocated arrays
is also required. A complex hardware configuration of the I-
Structure memory may be required to provide parallel array
accesses as well. For example, the [-Structure memory can
be low-order interleaved across the I-Structure nodes[20].
Alternatively, it can be high-order interleaved[14]. However,
providing parallel accesses and split-phased read operations
can cause excessive network traffic. This means that in the
worst case, three remote messages are required for every ar-
ray element to be written or read.

This overhead associated with the I-Structure represen-
tation may render it prohibitively expensive when an ar-
ray behaves similarly to a temporary variable. This refers
to cases where the life-time of an array is short because it
is quickly consumed and destroyed after being created. In
such situations, the fraction of the total time attributable
to the overhead (allocate/deallocate + network traffic) may
be relatively large resulting in inefficient operations. This
paper thus introduces an alternate array handling mecha-
nism called the Direct Access Method which, just like the I-
structures, provides non-strict and parallel accesses, minus
the overhead. We will show how this method can be used in
situations where the arrays behave like temporary variables
while the I-Structure representation is used for those situa-
tions where the arrays behave more like global variables. We
will demonstrate that the Direct Access Method is an effi-
cient array handling scheme in which each array element is
sent directly from the producer to the consumer without be-
ing stored in an intermediate array storage. The mechanism
makes the issue of structure memory management moot and
reduces the number of remote accesses because write oper-
ations are guaranteed to be local memory operations.

In summary, the objective of this paper is to introduce
the Direct Access Method for the passing of large chunks
of data between producer and consumer processes. It is
also intended to demonstrate its performance as well as its
most likely context of utilization. Section 2 discusses how
the data-flow computing model evolved from pure data-flow
to multithreading. Section 3 introduces the Direct Access
Method and its predecessor, the Token Relabeling approach.
The simulation results which demonstrate the performance
and the applicability of the Direct Access Method are pre-
sented in section 4. Finally, concluding remarks and direc-
tions for future research are offered in section 5.

t

2 Multithreading

We will now discuss first how the principles of data-flow com-
puting have been evolving from pure data-flow toward mul-
tithreading, then we will describe the multithreading execu-
tion model. Multithreading is viewed as a practical means to
promote data-flow computing rather than as a conceptually
different model.

2.1 From Data-flow to Multithreading

One of the first basic tenets of parallel computing must
be the ability to expose as much parallelism as possible at
compile-time so that parallel (independent) instructions can
be distributed across multiple processing elements of a ma-
chine and executed concurrently, resulting in higher perfor-
mance. Traditional approaches to parallel computing using
conventional languages such as FORTRAN make it diffi-
cult for a compiler to extract large amounts of parallelism
automatically. This is due to the nature of the language
semantics which are based on the von Neumann computa-
tion model: the model is inherently sequential in nature.
On the other hand, the data-flow approach to parallel com-
puting consists in starting at the top with languages such
as 1d[17] and SISAL[16] whose functional semantics make it
comparatively easy for a compiler to expose all the paral-
lelism contained in a program.

Being able to exploit large amounts of parallelism is cru-
cial to the data-flow approach because its objective is to
tolerate communication latency rather than to reduce it by
executing ready instructions whenever long-latency inducing
operations are initiated. By effectively overlapping commu-
nication with computation, latency caused by remote ac-
cesses can be masked[22]. Therefore, it is important to pos-
sess excess tasks ready for execution whenever long latency
which is unavoidable in parallel computing occurs[17]. First
generation data-flow machines were designed to switch con-
text at every instruction, i.e., the length of a thread is one
instruction. For this purpose, a complex hardware facility
called the mateh unit was developed to synchronize incom-
ing data tokens and dynamically schedule instructions de-
pending on the availability of their input operands. The
first generation of data-flow machines is represented by the
Manchester Dataflow Machine[1, 23], the Sigma-1[1,.12],
and the Tagged Token Dataflow Architecture (TTDA)[3, 1].
However, these machines possessed the following drawbacks
wlich hampered their economic viability and performance:

o The cost of the resulting hardware rendered them not
economically viable. Indeed, associative matching of
tokens to determine instruction executability requires
expensive hardware.

o Dynamic scheduling of every instruction causes unnee-
essary overhead. Even those instructions which can be
determined at compile-time to execute sequentially are
needlessly scheduled dynamically.

Subsequent research efforts in the architecture arena have
concentrated on addressing these points. The first break-
through occurred in the design of the matching mechanism.
The reason for the associative matching in the first data-flow
machines was that the tag field of a token which indicates,
among other things, the context of the token, has no corre-
spondence to memory location[2]. Thus tokens were stored



randomly inside the waiting token storage pool of the proces-
sor and associative search was performed to find the match-
ing token whenever a new token arrives at the processor. A
direct matching scheme called the Explicit Token Storage
(ETS) which does not use associative matching was first in-
troduced in the Monsoon[6, 20]. This mechanism allocates
at compile-time a memory slot to each arc (of a data-flow
graph) belonging to the same code block, by assigning an
offset from the base of a frame memory. A code block is
a group of instructions which becomes activated when the
frame memory is allocated to it at run-time. In general, a
function body or a loop body corresponds to a code block.
Therefore, once a code block is activated, tokens “know”
exactly where in the frame memory they need to check for
synchronization, making associative matching unnecessary.
This mechanism resulted in faster matching speed (since it
took locality into consideration) while the hardware could
be made simpler.

Further improvement for eflicient execution can be a-
chieved by grouping instructions to form threads. One of
the drawbacks of the previously meutioned data-flow ma-
chines is that every instruction is still scheduled dynamically.
This generates an unnecessary burden on the machine when
scheduling those instructions that are known to be executed
in sequence. Such instructions can be better scheduled stat-
ically for sequential execution, thereby avoiding the cost of
synchronization. In multithreading, instructions of a code
block are partitioned to form threads. Although a thread
may be scheduled dyramically once activated, instructions
belonging to the thread are executed sequentially without
further synchronization. Instruction-level parallelism can be
further exploited by way of pipelining or superscalar tech-
niques. The first multithreaded architectures that evolved
from the data-flow architectures are the Dataflow/von Neu-
mann Hybrid Architecture[13] and the P-RISC[18]. The ba-
sic difference between the two is that synchronization is im-
plicit in the Hybrid Architecture provided by the hardware
supported presence bits while in P-RISC, synchronization
is explicit by the compiler generated codes. More recent
proposals such as *T[19, 5] and the Threaded Abstract Ma-
chine (TAM)[7] render the concept of thread more explicit
by compile-time specification of the beginning and the end
of a thread. Clear delineation of threads can make thread
scheduling more efficient.

The important point to recognize is that the fundamental
data-driven approach to parallel computing lias not changed,
te., extract a lot of parallelism at compile-time so that
computations can be effectively overlapped with unavoid-
able communications (thereby incurring long latency costs)
occurring in a large parallel system. Multithreading is an
outgrowth of that research aimed at developing an eflicient
execution model for fine/medium grain parallelism. Initially,
every aspect of execution functions were given to the hard-
ware which resulted in costly systems. Gradually, the em-
phasis is being shifted to software (compiler) resulting in the
current version of multithreading execution models.

2.2  Execution Model

The multithreading execution model used for this study is
adapted from that of *T and TAM. A code block correspond-
ing to a loop body or a function body in the program text is
divided at compile-time into threads. An instance ol a code
block is said to be active when a frame memory is allocated
ta it and the input parameters are sent. The frame memary
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Figure 2: The multithreaded architecture model of a pro-
cessing element.

request is sent to the frame manager residing at each pro-
cessing node. The amount of memory needed in the frame
is determined at compile-time by analyzing the memory re-
quirements of the code block. After a code block is activated,
each thread is executed when its activation requirement is
satislied. A thread executes in a non-preemptive mode, i.c.,
once a thread is activated, its execution continues without
suspension until all the instructions of the thread have been
executed. The first thread to be executed is the initializa-
tion thread which receives and stores the input parameters
in the appropriate frame locations. It may also initialize
synchronization variables used to activate other threads.

In general, an activated code block performs various other
functions in addition to the actual computations as speci-
fied in the program. The initialization thread as described
in the previous paragraph is one. Threads constituting a
code block can be classified into the following four classes:

1. Initialization thread: There is always one initializa-
tion thread in a code block. It is the first thread to be
executed in the code block and its function is to receive
input parameters and initialize other local constants
and variables.

2. Interface thread: There can be a number of these
threads. Their main function is to communicate with
the outside world; that is, activations in other pro-
cessors. For every remote read request, a matching
interface thread is required to receive data because of
a split-phase operation. An interface thread may up-
date synchronization variables after receiving a token.
When the terminal value is reached, the corresponding
compute thread is activated.

3. Compute thread: These are the threads that actually
perform the computations specified in the program as
the programmer sees it. A compute thread may be
triggered by the initialization thread, interface threads
or other compute threads.

4. Control thread: This thread determines whether the
current activation has done all its required work. For
instance, if the code block represents a loop body of a
parallel loop, the thread determines whether the frame
memory should be reused by another loop iteration or
be deallocated.

The multithreaded architecture model used for this study
(Figure 2) is similarin basic concept to the Decoupled Grapl/
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Figure 3: The state of a thread is completely specified by a
descriptor consisting of <IP.FP>.

Computation Data-Driven Architecture[8] and *T[19]. The
basic concept behind the two models is to decouple the func-
tions of thread activation from that of thread computation.
In the Decoupled architecture, the thread executability is
determined by the Data-Flow Graph Engine (DFGE) while
the activated threads are executed in the Computation En-
gine (CE). On the other hand, in the *T architecture, the
Synchronization Coprocessor (sP) performs thread activa-
tion while the Data Processor (dP) executes the activated
threads. The difference between the two models is that asso-
ciative matching is assumed in the Decoupled architecture
whereas in *T, the join instruction, first proposed in P-
RISC, is used for synchronization.

The multithreaded architecture shown in Figure 2 con-
sists of two processing units. The Message Processing Unit
(MPU) is used to execute the interface threads whose main
function is fo receive tokens and activate compute threads.
Once a compute thread is activated, the MPU enqueues
the thread descriptor in the Active Thread Queue (ATQ)
where it is eventually dequeued by the Data Processing
Unit (DPU). The DPU reads a new thread descriptor from
the ATQ when the last instruction of the current thread
is executed. A thread descriptor consisting of two values,
<IP.FP>, completely specifies a thread. IP is an instruction
pointer which points at the first instruction of the thread
and FP is a frame pointer which points at the base of the
frame memory. Once the IP is loaded in the IP register
of the DPU, subsequent instructions are executed by incre-
menting the register value appropriately. Frame locations
are accessed using the FP in conjunction with the instruc-
tion operands which are offset values. Figure 3 shows how
the first instruction of a thread is executed using the thread
descriptor.

3 The Direct Access Method

The first subsection describes the Token Relabeling method
which inspired the development of our array handling tech-
nique called the Direct Access Method. In the second sub-
section, implementation of this idea in the multithreading
context is discussed. Specifically, the direct access mecha-
nism and necessary compile-time analysis is described,
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Figure 4: A token_carrying an array element needs to be
relabeled appropriately in order for it to be forwarded to
the correct consumer context.

3.1 Token Reiabciing

The Token Relabeling (TR) scheme has been proposed for
handling structured data in the tagged token data-flow ar-
chitecture [9]. Like I-Structures, it is mainly aimed at sci-
entific applications in which arrays are the main structured
data types. The central point of this scheme is that, un-
like other methods, array elements should not be stored in
the structure store facilities. Instead, each array element is

‘treated as a scalar entity and is carried in a token. Individ-

ual array elements are uniquely identified by the iteration
field of the tag. The basic array accessing mechanism of the
TR method is also different from the other array handling
methods using a structure store. In the I-Structure scheme,
[or example, array clements are first sent to the I-Structure
controller to be written into the corresponding memory lo-
cation. Likewise, an array consumer sends a read request
Lo the structure store for consumption. In the Token Rela-
beling method, each array element is sent directly from the
producer to the consumer, bypassing the structure store.
Array elements are temporarily stored in the waiting stor-
age pool of the consumer’s match unit until they are selected
and consumed. Functionally, the Token Relabeling method
is identical to the I-Structure approach. Both schemes pro-
vide non-strict array accesses and deferred reads. The dif-
ference is that the Token Relabeling method does it without
special structure storage,

A common scenario for applying the Token Relabeling
method is a situation where parallel loops form a producer-
consumer relationship such that array(s) produced by the
producer loop is input to the consumer loops. The basic
token relabeling rule is that an array element A[{] is com-
puted by the producer loop iteration i and is tagged by
i, Alt]¢y. Likewise, a consumer loop iteration J consumes
array element Aff]g;y. I A[]g; is consumed by the loop
iteration j =i, no token relabeling is required. However, if
Ali] (i) is consumed by the consumer loop iteration j # i, ar-



ray element A[i] must be appropriately relabeled for correct
consumption. For example, assume a consumer iteration j
consumes Afi + 1], 7 # i 4+ 1. Then Al + 1]¢i+1) produced
at iteration 1 + 1 must be relabeled to Ali 4 1](;) so that
the token is correctly consumed by the consumer iteration
j- Figure 4 shows how the iteration field of the tag is ap-
propriately relabeled before the array element is consumed.

The advantages of the Token Relabeling method over the
[-Structure is that, 1) no special resources are required to
provide parallel non-strict array accesses and that 2) it is
more cfficient. The Token Relabeling method is a more ef-
ficient technique because, for every array element transfer
from a producer to a consumer, at most only one remote
access is required. On the other hand, there are potentially
three remote accesses when an [-Structure is used. A study
has shown that given the same program, the TR method
generales less network traflic than the [-Structure resulting
in faster execution time[10]. The Token Relabeling method
has been also applied in a scheme which exploits at run-time,
parallelism that were hidden at compile-time[15]. However,
there are a number of drawbacks to using the Token Rela-
beling method. One of the drawbacks is that precious match
unit storage space is taken by the array elements. Therefore,
the TR method is best suited for those situations in which
the array in question has the characteristics of a temporary
variable. In other words, the TR method may be more ap-
propriate when an array is produced and consumed over a
relatively short period of time. For those cases in which
an array is accessed over a long period of time, I-Structure
representation may be a better choice.

3.2 Direct Access Mechanism in a Multithreaded Execu-
tion Model

The implementation of the Token Relabeling scheme in the
tagged token data-flow architecture used the following two
key features:

o The iteration field is part of the context identifier and
its value can be modified at run-time so that a token
produced in one context can be made to belong to an-
other context by appropriately changing the iteration
tag field.

o Ounce the context of a token is changed, the token is
guaranteed to be forwarded to the processor that exe-
cutes the new context by a predefined mapping func-
tion which uses the tag as its input argument.

Since the multithreaded architecture does not provide
the features mentioned above, a run-time system is required
if the Token Relabeling scheme is to be implemented. The
responsibility of the run-time system is to provide the tagged
token abstraction to the programmer. To do this, the run-
© time system needs to map the context tag field to the con-
text of the multithreaded architecture, the frame pointer
FP. Thus, whenever a relabeling occurs, the run-time sys-
tem must search its mapping table to determine which frame
pointer maps to the new context as represented by the mod-
ified tag value. This approach, which faithfully reproduces
the Token Relabeling mechanism in a multithreaded archi-
tecture may, however, result in poor performance due to the
overhead of the run-time system.

Our new array handling techunique called the Direct Ac-
cess Method, does not require the type of run-time system
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Figure 5: The mapping between the producer loop activa-
tion frames and the consumer loop activation frames is static
when the array consumption pattern is regular.
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Figure 6: Producer and consumer loop schema using the
[-Structure.

mentioned above. This technique, like the Token Relabel-
ing scheme, directly forwards computed array elements from
the producer to its consumer. Unlike the Token Relabel-
ing scheme, however, the connection between the producer
and the consumer activation is determined at compile-time.
This static connection is achieved by determining the con-
sumer’s array consumption pattern through array subscript
analysis'. The consumption pattern in conjunction with the
producer-consumer loop bounds and k is used to ascertain
which producer and consumer loop activations interact with
each other at run-time.

Let us assume that the producer loop ranges from i =
Uo-. .1 and the consumer loop ranges from j = jio... Jni.
In addition, further assume that only k iterations are al-
lowed to be executed in parallel for each loop. Then there
are k producer frames, Prod Frame; and k consumer frames,
ConsFrame,, I,n =0...k — 1. Furthermore, assume that
the consumer loop consumes the array, A, computed by the
producer loop according to the array subscript, S(j). The

U1t is wssumed that Intermediste Form 1 (IF1)[21] data dependency
graph produced by the SISAL compiler is used in the analysis,
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Figure 7: Producer and consumer loop schema using the
Direct Access Method.

objective is to connect (at compile-time) the producer iter-
ation S(j) which computes A[S(j)] with the consumer iter-
ation 7 which consumes it.

Once allocated, a frame is generally reused by multi-
ple iterations without going through the deallocate/allocate
process by the frame manager. The reason is to reduce over-
lead caused by dynamic memory management. Assune, in
the context of this discussion that a frame memory used by
iteration 1 is reused by iteration 1 + k. In otler words, a
frame memory m is reused by iteration i according Lo the
following expression wlere i, is the lower loop bound:

m = (t — ua) mod k

An iteration 1 is said to be connected to iteration j if it
has the FP of the frame memory used by iteration 7. There-
fore, the connection between the producer iteration i = S(7)
and the consumer iteration j can be equivalently repre-
sented in terms of the corresponding {rames ProdFrame;
and ConsFrame, in which ! and n are determined by the
following expression:

l=(5(7) — tta) mod k, n= (5 — jio) mod k

Once k producer frames are connected to k consumer
frames according to the array consumption pattern, all iter-
ations are guaranteed to be connected. This is because all
iterations map to one of k frames. An example is shown in
Figure 5 (1 = 1...20, j = 1...17, §(3) = j +4, k = §).
In the example, ConsFrame; is mapped to ProdFrameg.
This is correct because the consumer iteration 2 consum-
ing A[6] is activated on ConsFrame, whereas the producer
iteration 6 producing A[6] is activated on ProdFrameq.

We also see in the example that the array elements com-
puted by the producer loop are not completely consumed.
Assuming that there are no other consumer loops, iterations
i=1...4 are not consumed. In the Direct Access Method,
it is crucial for the compiler to determine the exact number
of consumers for each producer loop activation. Otherwise,
a deadlock may occur due to the nonterminating loop body.

Figure 6 shows that the [-Structure descriptor is sent as
an input parameter to every producer and consumer activa-
tions. Bach activation uses the descriptor to compute the
exact location of the I-Structure memory cell it needs Lo ac-
cess. In the Direct Access Method, a frame pointer of the
communicating counterpart activation is sent to each acti-
vation instead of the [-Structure descriptor. Figure 7 shows
that frame pointers of the consumer activations are sent to

the producer. Upon receiving the corresponding consumer’s
frame pointer, a producer activation can transmit computed
array elements. After a small initial start-up time, the ac-
tual computation performed by the activations is overlapped
with the transmission of frame pointers. In the current im-
plementation, a buffer of size k is allocated in the frame of
the producer loop spawning code block to store the incoming
consumer frame pointers. The function that maps frames to
iterations are code generated as part of the loop spawning
code block. As each producer activation is created, the cor-
responding consumer frame pointer is read from the buffer
according to the mapping function and sent to the activation
along with other input parameters.

4  Performance Measurement

This section reports on the performance of three different
implementations of the Livermore Loop 1. Each version is
implemented using a different array handling technique and
the resulting performance is discussed.

4.1 The Simulated Architecture

The basic configuration of a processing node of the sim-
ulated architecture used in the performance measurement
is as shown in Figure 2. Each node consists of a Message
Processing Unit (MPU) and a Data Processing Unit (DPU)
which operate asynchronously to each other. The main func-
tion of the MPU is to receive incoming messages and acti-
vate threads that are triggered by the incoming data tokens.
When a thread is activated, its descriptor is inserted into the
Active Thread Queue (ATQ) for eventual execution by the
DPU. As thread scheduling is not the main research issue,
a simple FIFO policy was adopted. The execution of an
instruction is assigned one time unit assuming that one in-
struction can be issued at each clock cycle. A hypercube
topology was selected for the interconnection network.

In the simulator, the I-Structure controller is implemented
with the following key implementation parameters:

e Array elements are low-order interleaved across [-Struc-
ture (IS) nodes; an array element A[i] is mapped to
the IS node, inode =1 Mod M, where M is the total
number of the [-Structure nodes in the system. There
are as many IS nodes as there are processing nodes.

The cost of the I-Structure memory allocation and the
initialization time is idealized to zero.

e Within the IS node, each memory read and write oper-
ation takes one time unit. Every enqueue and dequeue
operation to/from the deferred read queue also takes
one time unit.

e No exira cost is assigned for accessing an IS node, i.e.,
no cost is incurred if an activation exccuting in the
processing node k accesses an 1S node that is local to
the processing node.

The cost of any remote message including i-write and
i-fetch messages is determined by the currently set net-
work latency value and the routed path.

The processing node in which an array producer ac-
tivation executes and the 1S node in which it writes
into are allocated independently. Therefore, i-write or
i-fetcl operations are not guaranteed to be local.



DAM-MIF

PE:DATA SIZE 16:500 32:1000 64:2000 128:4000
L=00 27190 2687.0 3195.0 41110
L=10 2788.0 27110 280 4176.0
L=50 3107.0 12170 371990 4678.0
L=100 $604.0 4790.0 5786.0 6995.0

I-Structure

PE:DATA SIZE 16:500 32:1000 | 64:2000 128:4000

L=00 17420 1844.0 21210 3756.0
L=1.0 17420 1848.0 2168.0 3792.0
L=50 2691.0 37550 47510 ST85.0
L=100 52710 7506.0 93300 1151.0
DAM-SIF
PE:DATA SIZE 16:500 | 321000 | 64:2000 | 1284000
L=00 19350 2668.0 4603.0 §743.0
L=10 1953.0 2699.0 4624.0 8754.0
L=50 2483.0 580 5043.0 9190.0
L=100 44830 6009.0 0910 10012.0

Table 1: Execution time of each implementation when the
data and the processors are scaled.

4.2 Benchmark and Conditions of Experiments

Three versions of the Livermore Loop 1 are implemented to
observe the effects of different array handling techuiques on
the overall performance of the program. Livermore Loop
1 is a simple parallel loop which produces an array of one
dimension. To supply two of its array input parameters, Y
and Z, a producer loop is provided. A SISAL version of the
program is shown in Figure 8. Oune of the three versions of
the Livermore Loop 1 is implemented using the [-Structure
with the assumptions listed in the previous subsection.

The other two implementations are different versions of
the Direct Access Method. In the first version, a single it-
eration is active at a time in a given frame memory and the
frame is reused by another activation only after the current
activation is terminated. This implementation is called the
DAM-Single Iteration Frame (DAM-SIF). In the second ver-
sion, multiple iterations are active simultaneously in a given
frame memory. In this implementation, called the DAM-
Multiple Iteration Frame (DAM-MIF), w iterations are si-
multaneously active using the same frame memory. In this
mechanism, memory space to store loop variables for w it-
erations are provided in a frame. In addition, since different
instances of a thread may be active simultaneously in the
DAM-MIF, the thread descriptor is provided with an extra
field, 4, in addition to FP and IP to differentiate between dif-
ferent instances of a thread. Using this new field, different
instances of a thread may become activated and executed
independently within a given {rame memory.

Two different performance measurements were performed
on each implementation under various network latency con-
ditions. The first one measures the data scalability inspired
by [11]. In the Livermore Loop 1, the amount of parallelism
is simply the upper loop bound, n. Ideally, the execution
time should stay constant if the problem size and the num-
ber of processors were increased simultancously by the same
factor. In reality, the execution time will vary depending

(dcﬂm.— Haln

type OneDim = array[real):

function Producer(n:integer returns OneDlm, OneDim)
for k in 1,n
returns array of real(k) * 0.5
array of real(k) * 0.8
end for
end function

function Loopl(n:integer: Q.R,T:veal; Y,Z:OneDim; returns OneDim)
for k in 1,n
returns array of
Q + [Y[K) * (R = Z(kelO] & T = Z{kelll})
end for
end function

function Main(nl,n2:integer: Q.R,Tireal recurns OneDim)
let
Answer := loopl(n2,Q.R.T,Producer(nl})
in
Answer
end let
end function

L v

Figure 8: SISAL program of Livermore Loop 1.

on a number of parameters. For example, machine char-
acteristics such as network latency and compiler dependent
factors such as the activation spawning mechanism as well
as the actual amount of iterations allowed to be active si-
multaneously all influence the execution time. For the mea-
surements, the data size was varied from 500 to 4000 and
the number of processors from 16 to 128. Since the actual
amount of parallelism is capped by a loop-bounding mecha-
nism, the maximum number of activations allowed concur-
rently was made to vary from 96 to 768; on the average, 6
iterations are active concurrently at each processing node.
The measurements were repeated f{or four different commu-
nication latencies (L = 0, 1, 5, and 10 time units).

We define the scaling factor SF as the ratio between the
execution time of the reference set and the execution time
when the processors and the data size are scaled:

SF(PE,DATA SIZE) = EX,.;|EX(PE, DATA SIZE)

The EX;.y is the execution time of the smallest set (the
reference set), i.e., EX(16,500) for each latency condition.

The second is the measurement of speedup. For this
measurement, the problem size of the Livermore Loop 1 was
fixed at 2000 and the number of processors was varied from
1 to 64. The execution time of each implementation uti-
lizing different numbers of processors was measured for two
latency values of 1 and 10. For a fixed number of proces-
sors, the execution time can vary greatly depending on how
many loop instances are allowed to be active simultaneously.
Therefore, for each measurement, the loop bounding value
k was varied and the best execution time was selected.

4.3 Observations

Table 1 shows the execution time and Figure 9 shows the
data scalability curve of each implementation at different
latency conditions. Each point of Figure 9 is computed ac-
cording to the scaling factor formula. For example, the scal-
ing factor SF(128,4000) of the DAM-MIF at latency = 10 is
computed by EX(16,500)/EX(128,4000) = 0.80. To avoid
cluttering, only the data scalability curve for the DAM-MIF
and the [-Structure implementations are shown.

In terms of absolute execution time, the [-Structure im-
plementation performns the best for small latencies (L=0,1).
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Figure 9: Data scalability graph for DAM-MIF and I-
Structures.

DAM-MIF [-Structure DAM-SIF
Number of PEs L=10 L=100 L=10 L=100 L=10 L=100
i 108083.0 | 108083.0 | 104155.0 | |04155.0 764550 76455.0
2 53982.0 53973.0 52109.0 52139.0 383920 384830
4 271370 27265.0 27045.0 30700.0 19384.0 24976.0
8 14599.0 16329.0 13076.0 209080 9997.0 19021.0
16 79700 11755.0 7188.0 16594.0 5511.0 14000.0
12 4597.0 £230.0 3469.0 10274.0 37580 10030.0
& 2623.0 5283.0 2187.0 B434.0 33960 0910

Table 2: Execution time of each implementation when the
data and the processors are scaled.

On the other hand, DAM-MIF produces the best result for
longer latencies (L=5,10) and larger processors (> 32). In
terms of data scalability, DAM-MIF consistently performs

‘the best for all latencies. As can be seen from the graph

of Figure 9, the scalability of the DAM-MIF degrades to
0.8 (L=10) and to 0.67 (L=1,5); the scalability of the I-
Structure implementation degrades to around 0.47 for all
three latencies. For a higher latency value, DAM-MIF per-
forms better in both the execution time and data scalability.
However, the DAM-SIF performs poorly against other im-
plementations. Its only best execution time is for two cases
when 16 processors (L=>5,10) are utilized.

Table 2 lists the execution time of each implementation
when the problem size is fixed at 2000 and the processors
are increased from 1 to 64. As observed in the data scala-
bility measurement, the DAM-MIF performs the best when
a larger number of processors are used under longer latency
condition. In the measurement, the DAM-MIF produced
the best execution time when the processors > 8 and the la-
tency is 10. For alatency of 1, the I-Structure had the fastest
execution time when the number of processors were 32 and
G4. For a smaller number of processors, the DAM-SIF im-
plementation resulted in the best execution time. Figure 14
shows the speedup curve of each implementation at different
latency conditions. At latency = 1, the [-Structure results in
the best speedup (= 47.5). Because of the ineflicient frame
usage, the speedup curve of the DAM-SIF implementation
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Figure 10: Speedup of three different implementations when
latency = 1.0, 10.0.

quickly saturates after 32 processors. Wlhen tle latency is
increased by 10-fold to 10, the DAM-MIF produces best
speedup (= 20.5). At this latency condition, the speedup
of the [-Structure version is only 25 % of the speedup at
latency = 1 while the speedup of the DAM-MIF and the
DAM-SIF is only reduced by half.

4.4 Interpretation

The key to achieving good performance is to effectively over-
lap computation and communication. At the same time,
available resources must be utilized efficiently. In both the
data scalability and the speedup measurement, the perfor-
mance of the [-Structure version degraded rapidly for longer
latency conditions. The cause of such performance charac-
teristic is that the [-Structure implementation over-utilizes
the network. Although split-phased remote memory opera-
tions provide environment for efficient processor utilization,
network resources may easily be overloaded with remote
message traffic becoming a bottleneck. In the simulated
program, the producer loop creates two array elements and
the consumer loop (Livermore Loop 1) consumes three ar-
ray elements at every iteration. Assuming the array size is
N, the worst case expression for the total number of remote
array operations is:

Total remote msgs = i-write msgs 4 i-felch msgs + data
msgs

=2N +3N + 3N =8N

In the DAM-SIF implementation, the network resource
is better utilized than in the [-Structure implementation be-
cause the message traffic is reduced. This is achieved by the
direct array accessing mechanism in which the array ele-
ments are sent directly from the producer to the consumer
activations; write operation is always a fast local memory
write operation to a frame memory. The expression for the
total number of remote messages is,

Total remote msygs = data msgs 4+ sync msgs

=3N +3N =GN

Synchrounization message in the above expression is re-
quired by the very mechanism of the Direct Access Method
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Figure 11: In the DAM-SIF implementation, a frame cannot
be reused immediately after an activation until the Sync msg
is received.

when a frame memory is reused®. Its function is to syn-
chronize the producer and the consumer activations before
an array clement is sent directly from the producer to the
consumer activation. Without synchronization, an array el-
ement may be sent before the next consumer iteration be-
comes active. Unfortunately, this mechanism makes effec-
tive overlapping of computation and communication diffi-
cult, resulting in low processor utilization. More specifically,
a frame used by a previous producer activation cannot be
reused immediately by a new producer aclivation until a
sync msg is received, indicating that the new consumer in-
stance is active (Figure 11). In the meantime, the frame
memory is not utilized by any activation. A relatively poor
performance of the DAM-SIF in both performance metrics
is the result of low processor utilization caused by this syn-
chronization mechanism.

The DAM-MIF mechanism solves the low processor uti-
lization problem by allowing multiple iterations to be ac-
tive simultaneously using the same frame memory. At the
same time, remote message traffic is further reduced. In
this implementation, a thread descriptor is represented by
<IP.FP.i>. The i field is used to distinguish different in-
stances of a same thread. Figure 12 shows that for w iter-
ation instances, the producer activation sends the data to
the consumer activation without exchanging synchroniza-

tion messages. The total number of remote messages for the
DAM-MIF is thus:

Total remote msys = data msgs + sync msgs

= 3N 4+ 3[N/w]

The DAM-SIF is a special case of the DAM-MIF in which
the value of w is one.

Figures 13 and 14 show the processor and the network
utilization of the three implementations at different latency
values when the same number of instances are allowed to
be active simultaneously. Because of the reasons discussed,
the [-Structure implementation saturates the network for
a latency of 5 and above, although it performs well under
low latency conditions. It is difficult to increase processor
utilization under longer latency condition because the net-
work is already saturated. In the DAM-SIF implementation,
processors are consistently underutilized. In the DAM-MIF
implementation, the network utilization is still around 50 %
even at latency=10 leaving more room for extra activations.
Among the three implementations, the DAM-MIF imple-
mentation utilizes the processor and the network resources
most efficiently given the same conditions.

2Synchmnizmion messages are not required in an ideal case where
a parallel loop can always be unraveled. However, in most real situa-
tions where memory resources are finite, memory frame must always
be reused.

activation | activation l+k activation l+wk
Compute  Compute compute Wait
PRODUCER
kalam-g Data msg kzumw/
“- . o= Sync ms:
CONSUMER Compute Compute Compute

Aclivation | Activation J+k Activation Jewk

Figure 12: A processor is better utilized in the DAM-MIF
implementation because a frame memory is reused immedi-
ately after an activation is terminated. At the same time,
network load is reduced.
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5 Conclusions

We lave described in this paper a new array handling tech-
nique called the Direct Access Method, measured its perfor-
mance, and compared it with that of the I-Structure rep-
resentation on a simple parallel loop. It was found that
the chief application of this technique would be in those
cases where arrays display the characteristics of temporary
variables (i.e., the array is consumed “shortly™ after being
produced). It has been shown that this technique produced
better performance under more realistic conditions by effi-
ciently utilizing the system resources. At the same time, a
large amount of the I-Structure memory is freed to be used
by other portions of the program.

However, the Direct Access Method cannot be used in
large programs at the exclusion of other approaches. For
those arrays which are accessed over a long period of time
after being produced, the I-Structure approach is still the
most appropriate array handling method. Therefore, the
Direct Access Method can be used selectively in conjunc-
tion with the I-Structures in order to enhance performance.
A preliminary examination of large programs such as SIM-
PLE shows that the Direct Access Method can be applied
to arrays produced and consumed within a function. How-
ever, further research is needed to determine the criteria for
using the Direct Access Method. Using this criteria, the
data dependence graph of a program can be analyzed at
compile-time to determine the most appropriate array han-
dling method.
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A Direct Array Handling Technique for Non-strict and
Parallel Accesses in a Multithreaded Architecture*

Chinhyun Kimt

Abstract

In this paper, we propose an array handling technique called
the Direct Access Method (DAM) which enables array ele-
ments to be sent directly from the producer to the consumer
activation while providing non-strict and parallel array ac-
cesses. The advantage of this technique over conventional
structure storage is that network traffic is reduced and that
no global memory space is required. Instead, array ele-
ments are produced in the frame memory of the producer
activation and forwarded directly to the frame memory of
the consumer activation. It is demonstrated here how the
technique can be fine-tuned to those cases where an array
behaves as a temporary variable and its consumption pat-
tern can be determined at compile-time. Thus, the DAM
is proposed as a complement rather than a replacement of
the I-Structure representation. Performance measurements
obtained by a deterministic simulation of a multithreaded
model show that the Direct Access Method indeed performs
better than the equivalent I-Structure implementation. The
measurements further show that although the I-Structure
model has a lower execution time under low network latency
conditions, the DAM displays a performance advantage for
higher communication network latencies.

1 Introduction

Almost all scientific applications which can benefit from par-
allel computing entail the manipulation of large data struc-
tures. The resulting performance can vary greatly depend-
ing on how these large structured data are partitioned and
distributed across multiple processing elements. This must
be done in such a way as to fully exploit existing parallelism
with as little overhead as possible. Since communication
accounts for much of this overhiead, efficient structure rep-
resentation and transmission schemes are needed. This pa-
per presents an array handling technique geared mainly for
scientific applications in an environment where the compu-
tation model is data-driven while the target machine is a

“This work is supported in part by the National Science Founda-
tion under grant No. CCR-9013965.

Electrical Engineering-Systems University of Southern California
Los Angeles, California 90089.2562

Jean-Lue Gaudiot!

multithreaded architecture.

Although every data partition and allocation scheme at-
tempts to render all memory accesses local, remote memory
accesses cannot be completely avoided. Frequent remote
accesses can have a detrimental effect on the overall perfor-
mance because of their long latency which can result in low’
processor utilization. The data-flow computing approach
addresses the data partition/allocation problem indirectly
by striving to provide a latency tolerant computing envi-
ronment. The adverse effect of long latencies can be in-
deed minimized by effectively overlapping computation and
communication[7]. To this end, three basic requirements
must be satisfied:

1. The compiler should be able to expose all the fine/me-
diwin grain parallelism contained in the user’s pro-
gram.

[2%]

."The architecture of the target machine should be able
to exploit such parallelism efficiently.

3. Communication costs should be minimized or at least
tolerable.

The following is the current data-flow solution to the
above requirements:

1. Use a functional language as a programming language
which makes it relatively easy for a compiler to extract
parallelism.

2. Use a multithreaded architecture to efficiently exploit
fine/medium grain parallelism exposed by the com-
piler.

3. Use I-Structures[4] when arrays can be produced and
consumed in parallel.

The concept of I-Structures is an important component
of the overall data-flow solution because its objective is to
exploit producer-consumer parallelism. This is achieved by
providing non-strict and parallel accesses coupled with split-
phased memory operations. Specifically, each of the [-Struc-
ture memory cell contains presence bits indicating the status
ol the cell i.e., full, empty, or pending. Initially, each cell is
set to empty. If a read request is made to an empty cell,
the state of the cell is changed to pending and the request
is queued in the deferred read request list. When the cell is
written, the state changes to present. If the cell is marked
pending prior to being written to, all deferred read requests
are serviced.
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In addition to providing mechanisms to support the sta-
tus of each memory cell, a memory manager which can ef-
ficiently handle dynamically created and deallocated arrays
is also required. A complex hardware configuration of the I-
Structure memory may be required to provide parallel array
accesses as well. For example, the [-Structure memory can
be low-order interleaved across the I-Structure nodes[20].
Alternatively, it can be high-order interleaved[14]. However,
providing parallel accesses and split-phased read operations
can cause excessive network traflic. This means that in the
worst case, three remote messages are required for every ar-
ray element to be written or read.

This overhead associated with the I-Structure represen-
tation may render it prohibitively expensive when an ar-
ray behaves similarly to a temporary variable. This refers
to cases where the life-time of an array is short because it
is quickly consumed and destroyed after being created. In
such situations, the fraction of the total time attributable
to the overhead (allocate/deallocate + network traffic) may
be relatively large resulting in inefficient operations. This
paper thus introduces an alternate array handling mecha-
nism called the Direct Access Method which, just like the I-
structures, provides non-strict and parallel accesses, minus
the overhead. We will show how this method can be used in
situations where the arrays behave like temporary variables
while the I-Structure representation is used for those situa-
tions where the arrays behave more like global variables. We
will demonstrate that the Direct Access Method is an effi-
cient array handling scheme in which each array element is
sent directly from the producer to the consumer without be-
ing stored in an intermediate array storage. The mechanism
makes the issue of structure memory management moot and
reduces the number of remote accesses because write oper-
ations are guaranteed to be local memory operations.

In summary, the objective of this paper is to introduce
the Direct Access Method for the passing of large chunks
of data between producer and consumer processes. [t is
also intended to demonstrate its performance as well as its
most likely context of utilization. Section 2 discusses how
the data-flow computing model evolved from pure data-flow
to multithreading. Section 3 introduces the Direct Access
Method and its predecessor, the Token Relabeling approach.
The simulation results which demonstrate the performance
and the applicability of the Direct Access Method are pre-
sented in section 4. Finally, concluding remarks and direc-
tious for future research are offered in section 5.

2 Multithreading

We will now discuss first how the principles of data-flow com-
puting have been evolving from pure data-flow toward mul-
tithreading, then we will describe the multithreading execu-
tion model. Multithreading is viewed as a practical means to
promote data-flow computing rather than as a conceptually
different model.

2.1 From Data-flow to Multithreading

One of the first basic tenets of parallel computing must
be the ability to expose as much parallelism as possible at
compile-time so that parallel (independent) instructions can
be distributed across multiple processing elements of a ma-
chine and executed concurrently, resulting in higher perfor-
mance. Traditional approaches to parallel computing using
conventional languages such as FORTRAN make it diffi-
cult for a compiler to extract large amounts of parallelism
automatically. This is due to the nature of the language
semantics which are based on the von Neumann computa-
tion model: the model is inherently sequential in nature.
On the other hand, the data-flow approach to parallel com-
puting consists in starting at the top with languages such
as 1d[17] and SISAL[16] whose functional semantics make it
comparatively easy for a compiler to expose all the paral-
lelism contained in a program.

Being able to exploit large amounts of parallelism is cru-
cial to the data-flow approach because its objective is to
tolerate communication latency rather than to reduce it by
executing ready instructions whenever long-latency inducing
operations are initiated. By effectively overlapping commu-
nication with computation, latency caused by remote ac-
cesses can be masked[22]. Therefore, it is important to pos-
sess excess tasks ready for execution whenever long latency
which is unavoidable in parallel computing occurs[17]. First
generation data-flow machines were designed to switch con-
text at every instruction, i.e., the length of a thread is one
instruction. For this purpose, a complex hardware facility
called the match unit was developed to synchronize incom-
ing data tokens and dynamically schedule instructions de-
pending on the availability of their input operands. The
first generation of data-flow machines is represented by the
Manchester Dataflow Machine[l, 23], the Sigma-1[, 12),
and the Tagged Token Dataflow Architecture (TTDA)]3, 1].
However, these machines possessed the following drawbacks
which hampered their economic viability and performance:

® The cost of the resulting hardware rendered them not
economically viable. Indeed, associative matching of
tokens to determine instruction executability requires
expensive hardware.

¢ Dynamic scheduling of every instruction causes unnec-
essary overhiead. Even those instructions which can be
determined at compile-time to execute sequentially are
needlessly scheduled dynamically.

Subsequent research efforts in the architecture arena have
concentrated on addressing these points. The first break-
through occurred in the design of the matching mechanism.
The reason for the associative matching in the first data-flow
machines was that the tag field of a token which indicates,
among other things, the context of the token, has no corre-
spondence to memory location[2]. Thus tokens were stored



randomly inside the waiting token storage pool of the proces-
sor and associative search was performed to find the match-
ing token whenever a new token arrives at the processor. A
direct matching scheme called the Explicit Token Storage
(ETS) which does not use associative matching was first in-
troduced in the Monsoon[6, 20]. This mechanism allocates
at compile-time a memory slot to each arc (of a data-flow
graph) belonging to the same code block, by assigning an
offset from the base of a frame memory. A code block is
a group of instructions which becomes activated when the
frame memory is allocated to it at run-time. In general, a
function body or a loop body corresponds to a code block.
Therefore, once a code block is activated, tokens “know”
exactly where in the frame memory they need to check for
synchronization, making associative matching unnecessary.
This mechanism resulted in faster matching speed (since it
took locality into consideration) while the hardware could
be made simpler.

Further improvement for efficient execution can be a-
chieved by grouping instructions to form threads. One of
the drawbacks of the previously mentioned data-flow ma-
chines is that every instruction is still scheduled dynamically.
This generates an unnecessary burden on the machine when
scheduling those instructions.that are known to be executed
in sequence. Such instructions can be better scheduled stat-
ically for sequential execution, thereby avoiding the cost of
synchronization. In multithreading, instructions of a code
block are partitioned to form threads. Although a thread
may be scheduled dyramically once activated, instructions
belonging to the thread are executed sequentially without
further synchronization. Instruction-level parallelismn can be
further exploited by way of pipelining or superscalar tech-
niques. The first multithreaded architectures that evolved
from the data-flow architectures are the Dataflow/von Neu-
mann Hybrid Architecture[13] and the P-RISC[18]. The ba-
sic difference between the two is that synchronization is im-
plicit in the Hybrid Architecture provided by the hardware
supported presence bits while in P-RISC, synchronization
is explicit by the compiler generated codes. More recent
proposals such as *T[19, 5] and the Threaded Abstract Ma-
chine (TAM)[7] render the concept of thread more explicit
by compile-time specification of the beginning and the end
of a thread. Clear delineation of threads can make thread
schieduling more efficient.

The important point to recognize is that the fundamental
data-driven approach to parallel computing lias not changed,
t.e., extract a lot of parallelism at compile-time so that
computations can be effectively overlapped with unavoid-
able communications (thereby incurring long latency costs)
occurring in a large parallel system. Multithreading is an
outgrowth of that research aimed at developing an efficient
execution model for fine/medium grain parallelism. Initially,
every aspect of execution functions were given to the hard-
ware which resulted in costly systems. Gradually, the em-
phasis is being shifted to software (compiler) resulting in the
current version of multithreading execution models.

2.2 Execution Model

The multithreading execution model used for this study is
adapted from that of *T and TAM. A code block correspond-
ing to a loop body or a function body in the program text is
divided at compile-time into threads. An instance of a code
block is said to be active when a frame memory is allocated
to it and the input parameters are sent. The frame memory
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Figure 2: The multithreaded architecture model of a pro-
cessing element.

request is sent to the frame manager residing at each pro-
cessing node. The amount of memory needed in the frame
is determined at compile-time by analyzing the memory re-
quirements of the code block. After a code block is activated,
each thread is executed when its activation requirement is
satisfied. A thread executes in a non-preemptive mode, i.e.,
once a thread is activated, its execution continues without
suspension until all the instructions of the thread have been
executed. The first thread to be executed is the initializa-
tion thread which receives and stores the input parameters
in the appropriate frame locations. It may also initialize
synchronization variables used to activate other threads.

In general, an activated code block performs various other
functions in addition to the actual computations as speci-
fied in the program. The initialization thread as described
in the previous paragraph is one. Threads constituting a
code block can be classified into the following four classes:

1. Initialization thread: There is always one initializa-
tion thread in a code block. It is the first thread to be
executed in the code block and its function is to receive
input parameters and initialize other local constants
and variables.

2. Interface thread: There can be a number of these
threads. Their main function is to communicate with
the outside world; that is, activations in other pro-
cessors. For every remote read request, a matching
interface thread is required to receive data because of
a split-phase operation. An interface thread may up-
date synchronization variables after receiving a token.
When the terminal value is reached, the corresponding
compute thread is activated.

3. Compute thread: These are the threads that actually
perform the computations specified in the program as
the programmer sees it. A compute thread may be
triggered by the initialization thread, interface threads
or other compute threads.

4. Control thread: This thread determines whether the
current activation has done all its required work. For
instance, if the code block represents a loop body of a
parallel loop, the thread determines whether the frame
memory should be reused by another loop iteration or
be deallocated.

The multithreaded architecture model used far this study
(Figure 2) is similar in basic concept to the Deconpled Graph/
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Figure 3: The state of a thread is completely specified by a
descriptor consisting of <IP.FP>.

Computation Data-Driven Architecture[8] and *T[19]. The
basic concept behind the two models is to decouple the func-
tions of thread activation from that of thread computation.
In the Decoupled architecture, the thread executability is
determined by the Data-Flow Graph Engine (DFGE) while
the activated threads are executed in the Computation En-
gine (CE). On the other hand, in the *T architecture, the
Synchronization Coprocessor (sP) performs thread activa-
tion while the Data Processor (dP) executes the activated
threads. The difference between the two models is that asso-
ciative matching is assumed in the Decoupled architecture
whereas in *T, the join instruction, first proposed in P-
RISC, is used for synchronization.

The multithreaded architecture shown in Figure 2 con-
sists of two processing units. The Message Processing Unit
(MPU) is used to execute the interface threads whose main
function is to receive tokens and activate compute threads.
Once a compute thread is activated, the MPU enqueues
the thread descriptor in the Active Thread Queue (ATQ)
where it is eventually dequeued by the Data Processing
Unit (DPU). The DPU reads a new thread descriptor from
the ATQ when the last instruction of the current thread
is executed. A thread descriptor consisting of two values,
<IP.FP>, completely specifies a thread. IP is an instruction
pointer which points at the first instruction of the thread
and FP is a frame pointer which points at the base of the
frame memory. Once the IP is loaded in the IP register
of the DPU, subsequent instructions are executed by incre-
menting the register value appropriately. Frame locations
are accessed using the FP in conjunction with the instruc-
tion operands which are offset values. Figure 3 shows how
the first instruction of a thread is executed using the thread
descriptor.

3 The Direct Access Method

The first subsection describes the Token Relabeling method
which inspired the development of our array handling tech-
nique called the Direct Access Method. In the second sub-
section, implementation of this idea in the multithreading
context is discussed. Specifically, the direct access mecha-
nism and necessary compile-time analysis is described.
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Figure 4: A token carrying an array element needs to be
relabeled appropriately in order for it to be forwarded to
the correct consumer context.

3.1 Token Relabeling

The Token Relabeling (TR) scheme has been proposed for
handling structured data in the tagged token data-flow ar-
chitecture [9]. Like I-Structures, it is mainly aimed at sci-
entific applications in which arrays are the main structured
data types. The central point of this scheme is that, un-
like other methods, array elements should not be stored in
the structure store facilities. Instead, each array element is

‘treated as a scalar entity and is carried in a token. Individ-

ual array elements are uniquely identified by the iteration
field of the tag. The basic array accessing mechanism of the
TR method is also different from the other array handling
methods using a structure store. In the I-Structure scheme,
for example, array elements are first sent to the I-Structure
controller to be written into the corresponding memory lo-
cation. Likewise, an array consumer sends a read request
to the structure store for consumption. In the Token Rela-
beling method, each array element is sent directly from the
producer to the consumer, bypassing the structure store.
Array elements are temporarily stored in the waiting stor-
age pool of the consumer’s match unit until they are selected
and consumed. Functionally, the Token Relabeling method
is identical to the [-Structure approach. Both schemes pro-
vide non-strict array accesses and deferred reads. The dif-
ference is that the Token Relabeling method does it without
special structure storage.

A common scenario for applying the Token Relabeling
method is a situation where parallel loops form a producer-
consumer relationship such that array(s) produced by the
producer loop is input to the consumer loops. The basic
token relabeling rule is that an array element A[i] is com-
puted by the producer loop iteration i and is tagged by
i, A[i]¢iy. Likewise, a consumer loop iteration j consumes
array element A[j](,). If A[t]{;) is consumed by the loop
iteration j = 1, no token relabeling is required. However, if
A[i](iy is consumed by the consumer loop iteration ; #1,ar-



ray element A[{] must be appropriately relabeled for correct
consumption. For example, assume a consumer iteration j
consumes Afi + 1], 7 # i+ 1. Then A[i + 1](i4+1) produced
at iteration 1 4 1 must be relabeled to A[i + 1](;) so that
the token is correctly consumed by the consumer iteration
J- Figure 4 shows how the iteration field of the tag is ap-
propriately relabeled before the array element is consumed.

The advantages of the Token Relabeling method over the
I-Structure is that, 1) no special resources are required to
provide parallel non-strict array accesses and that 2) it is
more efficient. The Token Relabeling method is a more ef-
ficient technique because, for every array element transfer
from a producer to a consumer, at most only one remote
access is required. On the other hand, there are potentially
three remote accesses when an |-Structure is used. A study
has shown that given the same program, the TR method
generates less network traffic than the I-Structure resulting
in faster execution time[10]. The Token Relabeling method
lias been also applied in a scheme which exploits at run-time,
parallelismu that were hidden at compile-time[15]. However,
there are a number of drawbacks to using the Token Rela-
beling method. One of the drawbacks is that precious match
unit storage space is taken by the array elements. Therefore,
the TR method is best suited for those situations in which
the array in question has the characteristics of a temporary
variable. In other words, the TR method may be more ap-
propriate when an array is produced and consumed over a
relatively short period of time. For those cases in which
an array is accessed over a long period of time, I-Structure
representation may be a better choice.

3.2 Direct Access Mechanism in a Multithreaded Execu-
tion Model

The implementation of the Token Relabeling scheme in the
tagged token data-flow architecture used the following two
key features:

o The iteration field is part of the context identifier and
its value can be modified at run-time so that a token
produced in one context can be made to belong to an-
other context by appropriately changing the iteration
tag field.

e Once the context of a token is changed, the token is
guaranteed to be forwarded to the processor that exe-
cutes the new context by a predefined mapping func-
tion which uses the tag as its input argument.

Since the multithreaded architecture does not provide
the features mentioned above, a run-time system is required
if the Token Relabeling schieme is to be implemented. The
responsibility of the run-time system is to provide the tagged
token abstraction to the programmer. To do this, the run-
- time system needs to map the context tag field to the con-
text of the multithreaded architecture, the frame pointer
FP. Thus, whenever a relabeling occurs, the run-time sys-
tem must search its mapping table to determine which frame
pointer maps to the new context as represented by the mod-
ified tag value. This approach, which faithfully reproduces
the Token Relabeling mechanisin in a multithreaded archi-
tecture may, however, result in poor performance due to the
overhead of the run-time system.

Our new array handling technique called the Direct Ac-
cess Method, does not require the type of run-time system

o
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Figure 5: The mapping between the producer loop activa-
tion frames and the consumer loop activation frames is static
when the array consumption pattern is regular.
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Figure 6: Producer and consumer loop schema using the
I-Structure.

mentioned above. This technique, like the Token Relabel-
ing scheme, directly forwards computed array elements from
the producer to its consumer. Unlike the Token Relabel-
ing scheme, however, the connection between the producer
and the consumer activation is determined at compile-time.
This static connection is achieved by determining the con-
sumer’s array consumption pattern through array subscript
analysis'. The consumption pattern in conjunction with the
producer-consumer loop bounds and k is used to ascertain
which producer and consumer loop activations interact with
each other at run-time.

Let us assume that the producer loop ranges from 1 =
tlo...thi and the consumer loop ranges from j = Jio. .. Jhi-
In addition, further assume that only k iterations are al-
lowed to be executed in parallel for each loop. Then there
are k producer frames, Prod Frame; and k consumer {rames,
ConsFrame,, {,n =0...k— 1. Furthermore, assume that
the consumer loop consumes the array, A, computed by the
producer loop according to the array subscript, S(j). The

It is assumed that Intermediate Form 1 (IF1)[21] data dependency
graph produced by the SISAL compiler is used in the analysis.
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Direct Access Method.

objective is to connect (at compile-time) the producer iter-
ation S(j) which computes A[S(j)] with the consumer iter-
ation 7 which consumes it.

Once allocated, a frame is generally reused by multi-
ple iterations without going through the deallocate/allocate
process by the frame manager. The reason is to reduce over-
head caused by dynamic memory management. Assume, in
the context of this discussion that a frame memory used by
iteration 1 is reused by iteration { 4+ k. In other words, a
frame memory m is reused by iteration i according to the
following expression where 1, is the lower loop bound:

m = (i — t0) mod k

An iteration 1 is said to be connected to iteration j if it
has the FP of the frame memory used by iteration j. There-
fore, the connection between the producer iteration i = S(j)
and the consumer iteration j can be equivalently repre-
sented in terms of the corresponding frames Prod Frame,
and ConsFrame, in which ! and n are determined by the
following expression:

I=(5(7) —i1c) mod k, n=(j— jio) mod k

Once k producer frames are connected to k consumer
frames according to the array consumption pattern, all iter-
ations are guaranteed to be connected. This is because all
iterations map to one of k frames. An example is shown in
Figure 5 (1 = 1...20, j = 1...17, S(j) = j +4, k = 5).
In the example, ConsFrame; is mapped to ProdFrameg.
This is correct because the consumer iteration 2 consum-
ing A[6] is activated on ConsFrame; whereas the producer
iteration 6 producing A[6] is activated on Prod Frameq.

We also see in the example that the array elements com-
puted by the producer loop are not completely consumed.
Assuming that there are no other consumer loops, iterations
t=1...4 are not consumed. In the Direct Access Method,
it is crucial for the compiler to determine the exact number
of consumers for each producer loop activation. Otherwise,
a deadlock may occur due to the nonterminating loop body.

Figure 6 shows that the [-Structure descriptor is seut as
an input parameter to every producer and consumer activa-
tions. Each activation uses the descriptor to compute the
exact location of the [-Structure memory cell it needs to ac-
cess. In the Direct Access Method, a frame pointer of the
communicating counterpart activation is sent to each acti-
vation instead of the [-Structure descriptor. Figure 7 shows
that frame pointers of the consumer activations are seut to

6

the producer. Upon receiving the corresponding consumer’s
frame pointer, a producer activation can transmit computed
array elements. After a small initial start-up time, the ac-
tual computation performed by the activations is overlapped
with the transmission of frame pointers. In the current im-
plementation, a buffer of size k is allocated in the frame of
the producer loop spawning code block to store the incoming
consumer frame pointers. The function that maps frames to
iterations are code generated as part of the loop spawning
code block. As each producer activation is created, the cor-
responding consumer frame pointer is read from the buffer
according to the mapping function and sent to the activation
along with other input parameters.

4 Performance Measurement

This section reports on the performance of three different
implementations of the Livermore Loop 1. Each version is
implemented using a different array handling technique and
the resulting performance is discussed.

4.1 The Simulated Architecture

The basic configuration of a processing node of the sim-
ulated architecture used in the performance measurement
is as shown in Figure 2. Each node consists of a Message
Processing Unit (MPU) and a Data Processing Unit (DPU)
which operate asynchronously to each other. The main func-
tion of the MPU is to receive incoming messages and acti-
vate threads that are triggered by the incoming data tokens.
When a thread is activated, its descriptor is inserted into the
Active Thread Queue (ATQ) for eventual execution by the
DPU. As thread scheduling is not the main research issue,
a simple FIFO policy was adopted. The execution of an
instruction is assigned one time unit assuming that one in-
struction can be issued at each clock cycle. A hypercube
topology was selected for the interconnection network.

In the simulator, the I-Structure controller is implemented
with the following key implementation parameters:

e Array elements are low-order interleaved across I-Struc-
ture (IS) nodes; an array element A[{] is mapped to
the IS node, inode =1 Mod M, where M is the total
number of the I-Structure nodes in the system. There
are as many IS nodes as there are processing nodes.

The cost of the I-Structure memory allocation and the
initialization time is idealized to zero.

L]

Within the IS node, each memory read and write oper-
ation takes one time unit. Every enqueue and dequeue
operation to/from the deferred read queue also takes
one time unit.

o No extra cost is assigned for accessing an IS node, i.e.,
no cost is incurred if an activation executing in the
processing node k accesses an IS node that is local to
the processing node.

The cost of any remote message including i-write and
i-fetch messages is determined by the currently set net-
work latency value and the routed path.

The processing node in which an array producer ac-
tivation executes and the IS node in which it writes
into are allocated independently. Therefore, i-write or
i-fetch operations are not guaranteed to be local.



DAM-MIF

PE:DATA SIZE 16:500 32:1000 64:2000 128:4000

L=00 271940 2687.0 3195.0 4111.0

L=10 2788.0 2711.0 32180 4176.0

L=50 3107.0 32170 37199.0 4678.0

L=100 5604.0 4790.0 5786.0 6995.0
I-Structure

PE:DATA SIZE 16:500 32:1000 | 64:2000 | 128:4000

L=00 17420 1844.0 2121.0 3756.0

L=10 1742.0 1848.0 21680 imo

L=50 2691.0 31550 47510 5785.0

L=100 5271.0 1506.0 93300 1isio
DAM-SIF

PE:DATA SIZE 16:500 321000 | 64:2000 | 128:4000

L=00 1935.0 2668.0 4603.0 87430
L=10 1953.0 2699.0 46240 87H.0
L=50 24830 H580 50430 9150.0
L=100 44830 6009.0 7091.0 10012.0

Table 1: Execution time of each implementation when the
data and the processors are scaled.

4.2 Benchmark and Conditions of Experiments

Three versions of the Livermore Loop 1 are implemented to
observe the effects of different array handling techniques on
the overall performance of the program. Livermore Loop
1 is a simple parallel loop which produces an array of one
dimension. To supply two of its array input parameters, ¥
and Z, a producer loop is provided. A SISAL version of the
program is shown in Figure 8. One of the three versions of
the Livermore Loop 1 is implemented using the [-Structure
with the assumptions listed in the previous subsection.

The other two implementations are different versions of
the Direct Access Method. In the first version, a single it-
eration is active at a time in a given frame memory and the
frame is reused by another activation only after the current
activation is terminated. This implementation is called the
DAM-Single Iteration Frame (DAM-SIF). In the second ver-
sion, multiple iterations are active simultaneously in a given
frame memory. In this implementation, called the DAM-
Multiple Iteration Frame (DAM-MIF), w iterations are si-
multaneously active using the same frame memory. In this
mechanism, memory space to store loop variables for w it-
erations are provided in a frame. In addition, since different
instances of a thread may be active simultaneously in the
DAM-MIF, the thread descriptor is provided with an extra
field, 1, in addition to FP and IP to differentiate between dif-
ferent instances of a thread. Using this new field, different
instances of a thread may become activated and executed
independently within a given frame memory.

Two different performance measurements were performed
on each implementation under various network latency con-
ditions. The first one measures the data scalability inspired
by [11]. In the Livermore Loop 1, the amount of parallelism
is simply the upper loop bound, n. Ideally, the execution
time should stay constant if the problem size and the num-
ber of processors were increased simultaneously by the same
factor. I reality, the execution time will vary depending

fdetlne Main '\

type OneDim = array[reall:

function Producer(n:integer returng OneDim, OneDim)
for k in 1,n
returns array of real(k) * 0.5
array of real(k] * 0.8
end for
end function

function Loopl(n:integer; Q,R,T:real; ¥Y,2:0neDim; returne OneDim)
for k in 1.n
returns array of
Q « (Y[k] = (R * 2Z[kel0] « T * Z[kell]))
end for
end function

function Main(nl.n2:integer: Q.R.T:real returnc OneDim)
let
Answer := Loopl(n2,Q.R.T,Producer(nl})
in
Answer
end let
end fuaction

. v

Figure 8: SISAL program of Livermore Loop 1.

on a number of parameters. For example, machine char-
acteristics such as network latency and compiler dependent
factors such as the activation spawning mechanism as well
as the actual amount of iterations allowed to be active si-
multaneously all influence the execution time. For the mea-
surements, the data size was varied from 500 to 4000 and
the number of processors from 16 ta 128. Since the actual
amount of parallelism is capped by a loop-bounding mecha-
nism, the maximum number of activations allowed concur-
rently was made to vary from 96 to 768; on the average, 6
iterations are active concurrently at each processing node.
The measurements were repeated for four different commu-
nication latencies (L = 0, 1, 5, and 10 time units).

We define the scaling factor SF as the ratio between the
execution time of the reference set and the execution time
when the processors and the data size are scaled:

SF(PE,DATA SIZE) = EX,.;[EX(PE, DATA SIZE)

The EX;ef is the execution time of the smallest set (the
reference set), i.e., EX(16,500) for each latency condition.

The second i1s the measurement of speedup. For this
measurement, the problem size of the Livermore Loop 1 was
fixed at 2000 and the number of processors was varied from
1 to 64. The execution time of each implementation uti-
lizing different numbers of processors was measured for two
latency values of 1 and 10. For a fixed number of proces-
sors, the execution time can vary greatly depending on how
many loop instances are allowed to be active simultaneously.
Therefore, for each measurement, the loop bounding value
k was varied and the best execution time was selected.

4.3 Observations

Table 1 shows the execution time and Figure 9 shows the
data scalability curve of each implementation at different
latency conditions. Each point of Figure 9 is computed ac-
cording to the scaling factor formula. For example, the scal-
ing factor SF(128,4000) of the DAM-MIF at latency = 10 is
computed by EX(16,500)/EX(128,4000) = 0.80. To avoid
cluttering, only the data scalability curve for the DAM-MIF
and the I-Structure implementations are shown.

In terms of absolute execution time, the [-Structure im-
plementation performs the best for small latencies (L=0,1).



Problem Scalabillty

. ~J DAM-MF(L=10.0)

sl N DAL

RN S A=
s b ! s P el [ T
2 " "_! '~-“'f':_\_':-:'\
a 07 3 S 3
~ il
15{L=10p) e ipatd \ o
06 [, =< =
5(L520) S N
—— N
05 . ‘“Pk’j
04
500 1000 1500 2000 2500 3000 3500 4000
Problem Size

Figure 9: Data scalability graph for DAM-MIF and I-
Structures.
DAM-MIF

[-Structure DAM-SIF

Number of PEs L=10 L=100 L=10 L=100 L=10 L=100

1 108083.0 | 108083.0 | 104155.0 | 1041550 | 76455.0 76455.0
2 53982.0 53978.0 52109.0 52139.0 38392.0 38483.0
4 271370 27265.0 27045.0 30700.0 19384.0 24976.0
2 14599.0 16329.0 13076.0 20908.0 99970 19021.0
16 7970.0 11755.0 7188.0 165%4.0 55110 14000.0
32 4597.0 8230.0 3469.0 10274.0 37580 10090.0
64 2623.0 5283.0 2187.0 84340 33960 7091.0

Table 2: Execution time of each implementation when the
data and the processors are scaled.

On the other hand, DAM-MIF produces the best result for
longer latencies (L=5,10) and larger processors (> 32). In
terms of data scalability, DAM-MIF consistently performs
‘the best for all latencies. As can be seen from the graph
of Figure 9, the scalability of the DAM-MIF degrades to
0.8 (L=10) and to 0.67 (L=1,5); the scalability of the I-
Structure implementation degrades to around 0.47 for all
three latencies. For a higher latency value, DAM-MIF per-
forms better in both the execution time and data scalability.
However, the DAM-SIF performs poorly against other im-
plementations. Its only best execution time is for two cases
when 16 processors (L=5,10) are utilized.

Table 2 lists the execution time of each implementation
when the problem size is fixed at 2000 and the processors
are increased from 1 to 64. As observed in the data scala-
bility measurement, the DAM-MIF perforns the best when
a larger number of processors are used under longer latency
condition. In the measurement, the DAM-MIF produced
the best execution time when the processors > 8 and the la-
tency is 10. For alatency of 1, the [-Structure had the fastest
execution time when the number of processors were 32 and
G4. For a smaller number of processors, the DAM-SIF im-
plementation resulted in the best execution time. Figure 14
shows the speedup curve of each implementation at diflerent
latency conditions. At latency = 1, the [-Structure results in
the best speedup (= 47.5). Because of the inefficient frame
usage, the speedup curve of the DAM-SIF implementation
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Figure 10: Speedup of three different implementations when
latency = 1.0, 10.0.

quickly saturates after 32 processors. When the latency is
increased by 10-fold to 10, the DAM-MIF produces best
speedup (= 20.5). At this latency condition, the speedup
of the I-Structure version is only 25 % of the speedup at
latency = 1 while the speedup of the DAM-MIF and the
DAM-SIF is only reduced by half.

4.4 Interpretation

The key to achieving good performance is to effectively over-
lap computation and communication. At the same time,
available resources must be utilized efficiently. In both the
data scalability and the speedup measurement, the perfor-
mance of the I-Structure version degraded rapidly for longer
latency conditions. The cause of such performance charac-
teristic is that the I-Structure implementation over-utilizes
the network. Although split-phased remote memory opera-
tions provide environment for efficient processor utilization,
network resources may easily be overloaded with remote
message traffic becoming a bottleneck. In the simulated
program, the producer loop creates two array elements and
the consumer loop (Livermore Loop 1) consumes three ar-
ray elements at every iteration. Assuming the array size is
N, the worst case expression for the total number of remote
array operations is:

Total remote msgs = 1-write msgs + i-fetch msgs + data
msgs
=2N +3N 4+ 3N =8N

In the DAM-SIF implementation, the network resource
is better utilized than in the [-Structure implementation be-
cause the message traffic is reduced. This is achieved by the
direct array accessing mechanism in which the array ele-
ments are sent directly from the producer to the consumer
activations; write operation is always a fast local memory
write operation to a frame memory. The expression for the
total number of remote messages is,

Total remote msgs = data msgs + sync msgs

=3N + 3N =GN

Synclironization message in the above expression is re-
quired by the very mechanism of the Direet Access Method
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Figure 11: In the DAM-SIF implementation, a frame cannot
be reused immediately after an activation until the sync msg
is received.

when a frame memory is reused®. Its function is to syn-
chronize the producer and the consumer activations before
an array element is sent directly from the producer to the
consumer activation. Without synchronization, an array el-
ement may be sent before the next consumer iteration be-
comes active. Unfortunately, this mechanisin makes effec-
tive overlapping of computation and communication diffi-
cult, resulting in low processor utilization. More specifically,
a frame used by a previous producer activation cannot be
reused immediately by a new producer activation until a
sync msg is received, indicating that the new consumer in-
stance is active (Figure 11). In the meantime, the frame
memory is not utilized by any activation. A relatively poor
performance of the DAM-SIF in both performance metrics
is the result of low processor utilization caused by this syn-
chronization mechanism.

The DAM-MIF mechanism solves the low processor uti-
lization problem by allowing multiple iterations to be ac-
tive simultaneously using the same frame memory. At the
same time, remote message traffic is further reduced. In
this implementation, a thread descriptor is represented by
<IP.FP.i>. The i field is used to distinguish different in-
stances of a same thread. Figure 12 shows that for w iter-
ation instances, the producer activation sends the data to
the consumer activation without exchanging synchroniza-

tion messages. The total number of remote messages for the
DAM-MIF is thus:

Total remote msgs = data msgs + sync msgs
= 3N + 3[N/w]

The DAM-SIF is a special case of the DAM-MIF in which
the value of w is one.

Figures 13 and 14 show the processor and the network
utilization of the three implementations at different latency
values when the same number of instances are allowed to
be active simultaneously. Because of the reasons discussed,
the I-Structure implementation saturates the network for
a latency of 5 and above, although it performs well under
low latency conditions. It is difficult to increase processor
utilization under longer latency condition because the net-
work is already saturated. In the DAM-SIF implementation,
processors are consistently underutilized. In the DAM-MIF
implementation, the network utilization is still around 50 %
even at latency=10 leaving more room for extra activations.
Among the three implementations, the DAM-MIF imple-
mentation utilizes the processor and the network resources
most efficiently given the same conditions.

2Synchroniznlion messages are not required in an ideal case where
a parallel loop can always be unraveled. However, in most real situa-
tions where memory resources are finite, a memory frame must always
be reused.
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Figure 12: A processor is better utilized in the DAM-MIF
implementation because a frame memory is reused immedi-
ately after an activation is terminated. At the same time,
network load is reduced.
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Figure 13: Processor utilization of the three implementa-
tions for different latency conditions.
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§ Conclusions

We have described in this paper a new array handling tech-
nique called the Direct Access Method, measured its perfor-
mance, and compared it with that of the I-Structure rep-
resentation on a simple parallel loop. It was found that
the chiefl application of this technique would be in those
cases where arrays display the characteristics of temporary
variables (i.e., the array is consumed “shortly™ after being
produced). It has been shown that this technique produced
better performance under more realistic conditions by effi-
ciently utilizing the system resources. At the same time, a
large amount of the I-Structure memory is freed to be used
by other portions of the program.

However, the Direct Access Method cannot be used in
large programs at the exclusion of other approaches. For
those arrays which are accessed over a long period of time
after being produced, the I-Structure approach is still the
most appropriate array handling method. Therefore, the
Direct Access Method can be used selectively in conjune-
tion with the I-Structures in order to enhance performance.
A preliminary examination of large programs such as SIM-
PLE shows that the Direct Access Method can be applied
to arrays produced and consumed within a function. How-
ever, further research is needed to determine the criteria for
using the Direct Access Method. Using this criteria, the
data dependence graph of a program can be analyzed at
compile-time to determine the most appropriate array han-
dling method.
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Abstract

In this paper, we propose an array handling technique called
the Direct Access Method (DAM) which enables array ele-
ments to be sent directly from the producer to the consumer
activation while providing non-strict and parallel array ac-
cesses. The advantage of this technique over conventional
structure storage is that network traffic is reduced and that
no global memory space is required. Instead, array ele-
ments are produced in the [rame memory of the producer
activation and forwarded directly to the frame memory ol
the consumer activation. It is demonstrated here how the
technique can be fine-tuned to those cases where an array
behaves as a temporary variable and its consumption pat-
tern can be determined at compile-time. Thus, the DAM
is proposed as a complement rather than a replacement of
the I-Structure representation. Performance measurements
obtained by a deterministic simulation of a multithreaded
model show that the Direct Access Method indeed performs
better than the equivalent I-Structure implementation. The
measurements further show that although the I-Structure
model has a lower execution time under low network latency
conditions, the DAM displays a performance advantage for
higher communication network latencies.

1 Introduction

Almost all scientific applications which can benefit from par-
allel computing entail the manipulation of large data struc-
tures. The resulting performance can vary greatly depend-
ing on how these large structured data are partitioned and
distributed across multiple processing elements. This must
be done in such a way as to fully exploit existing parallelism
with as little overhead as possible. Since communication
accounts for much of this overliead, efficient structure rep-
resentation and transmission schemes are needed. This pa-
per presents an array handling technique geared mainly for
scientific applications in an environment where the compu-
tation model is data-driven while the target machine is a

*This work is supported in part by the National Science Founda-
tion under grant No. CCR-9013965.

TElectrical Engineering-Systems University of Southern California
Los Angeles, California 90089-2562

Jean-Lue Gaudiot!

multithreaded architecture.

Although every data partition and allocation scheme at-
tempts to render all memory accesses local, remote memory
accesses cannot be completely avoided. Frequent remote
accesses can have a detrimental effect on the overall perfor-
mance because of their long latency which can result in low’
processor utilization. The data-flow computing approach
addresses the data partition/allocation problem indirectly
by striving to provide a latency tolerant computing envi-
ronment. The adverse effect of long latencies can be in-
deed minimized by effectively overlapping computation and
communication[7]. To this end, three basic requirements
must be satisfied:

1. The compiler should be able to expose all the fine/me-
dium grain parallelism contained in the user’s pro-
gram.

2." The architecture of the target machine should be able
to exploit such parallelism efficiently.

3. Communication costs should be minimized or at least
tolerable.

The following is the current data-flow solution to the
above requirements:

1. Use a functional language as a programming language
which makes it relatively easy for a compiler to extract
parallelism.

[3=]

. Use a multithreaded architecture to efficiently exploit
fine/medium grain parallelism exposed by the com-
piler.

3. Use I-Structures[4] when arrays can be produced and
consumed in parallel.

The concept of [-Structures is an important component
of the overall data-flow solution because its objective is to
exploit producer-consumer parallelism. This is achieved by
providing non-strict and parallel accesses coupled with split-
phased memory operations. Specifically, each of the [-Struc-
ture memory cell contains presence bits indicating the status
of the cell i.e., full, empty, or pending. Initially, each cell is
set to empty. If a read request is made to an empty cell,
the state of the cell is chianged to pending and the request
is queued in the deferred read request list. When the cell is
written, the state changes to present. If the cell is marked
pending prior to being written to, all deferred read requests
are serviced.
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Figure 1: [-Structure and producer-consumer parallelism.

In addition to providing mechanisms to support the sta-
tus of each memory cell, a2 memory manager which can ef-
ficiently handle dynamically created and deallocated arrays
is also required. A complex hardware configuration of the I-
Structure memory may be required to provide parallel array
accesses as well. For example, the [-Structure memory can
be low-order interleaved across the [-Structure nodes(20].
Alternatively, it can be high-order interleaved[14]. However,
providing parallel accesses and split-phased read operations
can cause excessive network traffic. This means that in the
worst case, three remote messages are required for every ar-
ray element to be written or read.

This overhead associated with the I-Structure represen-
tation may render it prohibitively expensive when an ar-
ray behaves similarly to a temporary variable. This refers
to cases where the life-time of an array is short because it
is quickly consumed and destroyed after being created. In
such situations, the fraction of the total time attributable
to the overhead (allocate/deallocate + network traffic) may
be relatively large resulting in inefficient operations. This
paper thus introduces an alternate array handling mecha-
nism called the Direct Access Method which, just like the I-
structures, provides non-strict and parallel accesses, minus
the overhead. We will show how this method can be used in
situations where the arrays behave like temporary variables
while the I-Structure representation is used for those situa-
tions where the arrays behave more like global variables. We
will demonstrate that the Direct Access Method is an effi-
cient array handling scheme in which each array element is
sent directly from the producer to the consumer without be-
ing stored in an intermediate array storage. The mechanism
makes the issue of structure memory management moot and
reduces the number of remote accesses because write oper-
ations are guaranteed to be local memory operations.

In summary, the objective of this paper is to introduce
the Direct Access Method for the passing of large chunks
of data between producer and consumer processes. It is
also intended to demonstrate its performance as well as its
most likely context of utilization. Section 2 discusses how
the data-flow computing model evolved from pure data-flow
to multithreading. Section 3 introduces the Direct Access
Method and its predecessor, tlie Token Rel abeling approach.
The simulation results which demonstrate the performance
and the applicability of the Direct Access Method are pre-
sented in section 4. Finally, concluding remarks and direc-
tions for future research are offered in section 5.

2 Muiltithreading

We will now discuss first how the principles of data-flow com-
puting have been evolving from pure data-flow toward mul-
tithreading, then we will describe the multithreading execu-
tion nodel. Multithreading is viewed as a practical means to
promote data-flow computing rather than as a conceptually
different model.

2.1 From Data-flow to Multithreading

One of the first basic tenets of parallel computing must
be the ability to expose as much parallelism as possible at
compile-time so that parallel (independent) instructions can
be distributed across multiple processing elements of a ma-
chine and executed concurrently, resulting in higher perfor-
mance. Traditional approaches to parallel computing using
conventional languages such as FORTRAN make it diffi-
cult for a compiler to extract large amounts of parallelism
automatically. This is due to the nature of the language
semantics which are based on the von Neumann computa-
tion model: the model is inherently sequential in nature.
On the other hand, the data-flow approach to parallel com-
puting consists in starting at the top with languages such
as 1d[17] and SISAL[16] whose functional semantics make it
comparalively easy for a compiler to expose all the paral-
lelism contained in a program.

Being able to exploit large amounts of parallelism is cru-
cial to the data-flow approach because its objective is to
tolerate communication latency rather than to reduce it by
executing ready instructions whenever long-latency inducing
operations are initiated. By effectively overlapping commu-
uication with computation, latency caused by remote ac-
cesses can be masked[22]. Therefore, it is important to pos-
sess excess tasks ready for execution whenever long latency
which is unavoidable in parallel computing occurs[17]. First
generation data-flow machines were designed to switch con-
text at every instruction, i.e., the length of a thread is one
instruction. For this purpose, a complex hardware facility
called the match unit was developed to synchronize incom-
ing data tokens and dynamically schedule instructions de-
pending on the availability of their input operands. The
first generation of data-flow machines is represented by the
Manchester Dataflow Machine[l, 23], the Sigma-1[1, .12],
and the Tagged Token Dataflow Architecture (TTDA)[3, 1].
However, these machines possessed the following drawbacks
which hampered their economic viability and performance:

o The cost of the resulting hardware rendered them not
economically viable. Indeed, associative matching of
tokens to determine instruction executability requires
expensive hardware.

o Dynamic scheduling of every instruction causes unnec-
essary overhead. Even those instructions which can be
determined at compile-time to execute sequentially are
needlessly scheduled dynamically.

Subsequent research efforts in the architecture arena have
concentrated on addressing these points. The first break-
through occurred in the design of the matching mechanism.
The reason for the associative matching in the first data-flow
machines was that the tag field of a token wlhich indicates,
among other things, the context of the token, has no corre-
spondence to memory location[2]. Thus tokens were stored



randomly inside the waiting token storage pool of the proces-
sor and associative search was performed to find the match-
ing token whenever a new token arrives at the processor. A
direct matching scheme called the Explicit Token Storage
(ETS) which does not use associative matching was first in-
troduced in the Monsoon[6, 20]. This mechanism allocates
at compile-time a memory slot to each arc (of a data-flow
graph) belonging to the same code block, by assigning an
offset from the base of a frame memory. A code block is
a group of instructions which becomes activated when the
frame memory is allocated to it at run-time. In general, a
function body or a loop body corresponds to a code block.
Therefore, once a code block is activated, tokens “know”
exactly where in the frame memory they need to check for
synchronization, making associative matcling unnecessary.
This mechanism resulted in faster matching speed (since it
took locality into consideration) while the hardware could
be made simpler.

Further improvement for efficient execution can be a-
chieved by grouping instructions to form threads. One of
the drawbacks of the previously mentioned data-flow ma-
chines is that every instruction is still scheduled dynamically.
This generates an unnecessary burden on the machine when
scheduling those instructions that are known to be executed
in sequence. Such instructions can be better scheduled stat-
ically for sequential execution, thereby avoiding the cost of
synchironization. In multithreading, instructions of a code
block are partitioned to form threads. Although a thread
may be scheduled dyramically once activated, instructions
belonging to the thread are executed sequentially without
further synchronization. Instruction-level parallelism can be
further exploited by way of pipelining or superscalar tech-
niques. The first multithreaded architectures that evolved
from the data-flow architectures are the Dataflow/von Neu-
mann Hybrid Architecture[13] and the P-RISC[18]. The ba-
sic difference between the two is that synchronization is im-
plicit in the Hybrid Architecture provided by the hardware
supported presence bits while in P-RISC, synchronization
is explicit by the compiler generated codes. More recent
proposals such as *T[19, 5] and the Threaded Abstract Ma-
chine (TAM)[7] render the concept of thread more explicit
by compile-time specification of the beginning and the end
of a thread. Clear delineation of threads can make thread
scheduling more efficient.

The important point to recognize is that the fundamental
data-driven approach to parallel computing las not changed,
i.e., extract a lot of parallelism at compile-time so that
computations can be effectively overlapped with unavoid-
able communications (thereby incurring long latency costs)
occurring in a large parallel system. Multithreading is an
outgrowth of that research aimed at developing an efficient
execution model for fine/medium grain parallelism. Initially,
every aspect of execution functions were given to the hard-
ware which resulted in costly systems. Gradually, the em-
phasis is being shifted to software (compiler) resulting in the
current version of multithreading execution models.

2.2  Execution Model

The multithreading execution model used for this study is
adapted from that of *T and TAM. A code block correspond-
ing to a loop body or a function body in the program text is
divided at compile-tine into threads. An instance of a code
block is said to be active when a frame memory is allocated
to it and the input parameters are sent. The frame memory
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Figure 2: The multithreaded architecture model of a pro-
cessing element.

request is sent to the frame manager residing at each pro-
cessing node. The amount of memory needed in the frame
is determined at compile-time by analyzing the memory re-
quirements of the code block. After a code block is activated,
each thread is executed when its activation requirement is
satisfied. A thread executes in a non-preemptive mode, i.e.,
once a thread is activated, its execution continues without
suspension until all the instructions of the thread have been
executed. The first thread to be executed is the initializa-
tion thread which receives and stores the input parameters
in the appropriate frame locations. It may also initialize
synchronization variables used to activate other threads.

In general, an activated code block performs various other
functions in addition to the actual computations as speci-
fied in the program. The initialization thread as described
in the previous paragraph is one. Threads constituting a
code block can be classified into the following four classes:

1. Initialization thread: There is always one initializa-
tion thread in a code block. It is the first thread to be
executed in the code block and its function is to receive
input parameters and initialize other local constants
and variables.

2. Interface thread: There can be a number of these
threads. Their main function is to communicate with
the outside world; that is, activations in other pro-
cessors. For every remote read request, a matching
interface thread is required to receive data because of
a split-phase operation. An interface thread may up-
date synchronization variables after receiving a token.
When the terminal value is reached, the corresponding
compute thread is activated.

3. Compute thread: These are the threads that actually
perform the computations specified in the program as
the programmer sees it. A compute thread may be
triggered by the initialization thread, interface threads
or other compute threads.

4. Control thread: This thread determines whether the
current activation has done all its required work. For
instance, if the code block represents a loop body of a
parallel loop, the thread determines whether the frame
memory should be reused by another loop iteration or
be deallocated.

The multithreaded architecture model used for this study
(Figure 2) is similar in basic concept to the Decoupled Graph/
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Figure 3: The state of a thread is completely specified by a
descriptor consisting of <IP.FP>.

Computation Data-Driven Architecture[8] and *T[19]. The
basic concept behind the two models is to decouple the func-
tions of thread activation from that of thread computation.
In the Decoupled architecture, the thread executability is
determined by the Data-Flow Graph Engine (DFGE) while
the activated threads are executed in the Computation En-
gine (CE). On the other hand, in the *T architecture, the
Synchronization Coprocessor (sP) performs thread activa-
tion while the Data Processor (dP) executes the activated
threads.” The difference between the two models is that asso-
ciative matching is assumed in the Decoupled architecture
whereas in *T, the join instruction, first proposed in P-
RISC, is used for synchronization.

The multithreaded architecture shown in Figure 2 con-
sists of two processing units. The Message Processing Unit
(MPU) is used to execute the interface threads whose main
function is to receive tokens and activate compute threads.
Once a compute thread is activated, the MPU enqueues
the thread descriptor in the Active Thread Queue (ATQ)
where it is eventually dequeued by the Data Processing
Unit (DPU). The DPU reads a new thread descriptor from
the ATQ when the last instruction of the current thread
is executed. A thread descriptor consisting of two values,
<IP.FP>, completely specifies a thread. IP is an instruction
pointer which points at the first instruction of the thread
and FP is a frame pointer which points at the base of the
frame memory. Once the IP is loaded in the IP register
of the DPU, subsequent instructions are executed by incre-
menting the register value appropriately. Frame locations
are accessed using the FP in conjunction with the instruc-
tion operands which are offset values. Figure 3 shows how
the first instruction of a thread is executed using the thread
descriptor.

3 The Direct Access Method

The first subsection describes the Token Relabeling method
which inspired the development of our array handling tech-
nique called the Direct Access Method. In the second sub-
section, implementation of this idea in the multithreading
context is discussed. Specifically, the direct access mecha-
nism and necessary compile-time analysis is described.
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Figure 4: A token carrying au array element needs to be
relabeled appropriately in order for it to be forwarded to
the correct consumer context.

3.1 Token Rclabeiing

The Token Relabeling (TR) scheme has been proposed for
handling structured data in the tagged token data-flow ar-
chitecture [9]. Like [-Structures, it is mainly aimed at sci-
entific applications in wlhich arrays are the main structured
data types. The central point of this scheme is that, un-
like other methods, array elements should not be stored in
the structure store facilities. Instead, each array element is

-treated as a scalar entity and is carried in a token. Individ-

ual array elements are uniquely identified by the iteration
field of the tag. The basic array accessing mechanism of the
TR method is also different from the other array handling
methods using a structure store. In the [-Structure scheme,
for example, array elements are first sent to the I-Structure
controller to be written into the corresponding memory lo-
cation. Likewise, an array consumer sends a read request
to the structure store for consumption. In the Token Rela-
beling method, each array element is sent directly from the
producer to the consumer, bypassing the structure store.
Array elements are temporarily stored in the waiting stor-
age pool of the consumer’s match unit until they are selected
and consumed. Functionally, the Token Relabeling method
is identical to the [-Structure approach. Both schemes pro-
vide non-strict array accesses and deferred reads. The dif-
ference is that the Token Relabeling method does it without
special structure storage.

A common scenario for applying the Token Relabeling
method is a situation where parallel loops form a producer-
consumer relationship such that array(s) produced by the
producer loop is input to the consumer loops. The basic
token relabeling rule is that an array element A[i] is com-
puted by the producer loop iteration i and is tagged by
i, A[i]{;y. Likewise, a consumer loop iteration j consumes
array element A[7](,). If A[{(;y is consumed by the loop
iteration j = 1, no token relabeling is required. However, if
Al1] iy is consumed by the consumer loop iteration j # 1, ar-



ray element A[{] must be appropriately relabeled for correct
consumption. For example, assume a consumer iteration j
consumes A[i + 1], j # i+ 1. Then A[i + 1]{i41) produced
at iteration 1 + 1 must be relabeled to A[i + 1];) so that
the token is correctly consumned by the consumer iteration
j. Figure 4 shows low the iteration field of the tag is ap-
propriately relabeled before the array element is consumed.

The advantages of the Token Relabeling method over the
[-Structure is that, 1) no special resources are required to
provide parallel non-strict array accesses and that 2) it is
more efficient. The Token Relabeling method is a more el-
ficient technique because, for every array element transfer
from a producer to a consumer, at most only one remote
access is required. On the other hand, there are potentially
three remote accesses when an [-Structure is used. A study
has shown that given the same program, the TR method
generates less network traffic than the [-Structure resulting
in faster execution time[10]. The Token Relabeling method
has been also applied in a scheme which exploits at run-time,
parallelism that were hidden at compile-time[15]. However,
there are a number of drawbacks to using the Token Rela-
beling metliod. One of the drawbacks is that precious match
unit storage space is taken by the array elements. Therefore,
the TR method is best suited for those situations in which
the array in question has the characteristics of a temporary
variable. In other words, the TR method may be more ap-
propriate when an array is produced and consumed over a
relatively short period of time. For those cases in which
an array is accessed over a long period of time, [-Structure
representation may be a better choice.

3.2 Direct Access Mechanism in a Multithreaded Execu-
tion Model

The implementation of the Token Relabeling scheme in the
tagged token data-flow architecture used the following two
key features:

e The iteration field is part of the context identifier and
its value can be modified at run-time so that a token
produced in one context can be made to belong to an-
other context by appropriately changing the iteration
tag field.

e Once the context of a token is changed, the token is
guaranteed to be forwarded to the processor that exe-
cutes the new context by a predefined mapping func-
tion which uses the tag as its input argument.

Since the multithreaded architecture does not provide
the features mentioned above, a run-time system is required
if the Token Relabeling scheme is to be implemented. The
responsibility of the run-time system is to provide the tagged
token abstraction to the programmer. To do this, the run-
- time system needs to map the context tag field to the con-
text of the multithreaded architecture, the frame pointer
FP. Thus, whenever a relabeling occurs, the run-time sys-
tem must search its mapping table to determine which frame
pointer maps to the new context as represented by the mod-
ified tag value. This approacl, which faithfully reproduces
the Token Relabeling mechanism in a multithreaded archi-
tecture may, however, result in poor performance due to the
overhead of the run-time system.

Our new array handling technique called the Direct Ac-
cess Method, does not require the type of run-time system
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Figure 5: The mapping between the producer loop activa-
tion frames and the consumer loop activation frames is static
when the array consumption pattern is regular.
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Figure 6: Producer and consumer loop schema using the
I-Structure.

mentioned above. This technique, like the Token Relabel-
ing scheme, directly forwards computed array elements from
the producer to its consumer. Unlike the Token Relabel-
ing scheme, however, the connection between the producer
and the consumer activation is determined at compile-time.
This static connection is achieved by determining the con-
sumer’s array consumption pattern through array subscript
analysis’. The consumption pattern in conjunction with the
producer-consumer loop bounds and k is used to ascertain
which producer and consumer loop activations interact with
each other at run-time.

Let us assume that the producer loop ranges from : =
o---14i and the consumer loop ranges from 7 = jio... Jhi-
In addition, further assume that only k iterations are al-
lowed to be executed in parallel for each loop. Then there
are k producer frames, Prod Frame; and k consumer frames,
ConsFrameg, ,n =0...k— 1. Furthermore, assume that
the consumer loop consumes the array, A, computed by the
producer loop according to the array subscript, S(7). The

't is assumed that Intermediate Form 1 (1F1)[21) data dependency
graph produced by the SISAL compiler is used in the analysis.
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Direct Access Method.

objective is to connect (at compile-time) the producer iter-
ation S(j) which computes A[S(7)] with the consumer iter-
ation 7 which consumes it.

Once allocated, a frame is generally reused by multi-
ple iterations without going through the deallocate/allocate
process by the frame manager. The reason is to reduce over-
head caused by dynamic memory management. Assume, in
the context of this discussion that a frame memory used by
iteration 1 is reused by iteration i 4 k. In other words, a
frame memory m is reused by iteration i according to the
following expression where iy, is the lower loop bound:

m = (i — i,) mod k

An iteration 1 is said to be connected to iteration j if it
has the FP of the frame memory used by iteration j. There-
fore, the connection between the producer iteration i = S(j)
and the consumer iteration j can be equivalently repre-
sented in terms of the corresponding frames Prod Frame,
and ConsFrame, in which ! and n are determined by the
following expression:

1 =(S(7) —dte) mod k, n= (7 = Jio) mod k

Once k producer frames are connected to k consumer
frames according to the array consumption pattern, all iter-
ations are guaranteed to be connected. This is because all
iterations map to one of k frames. An example is shown in
Figure 5 (1 = 1...20, j = 1...17, S(j) = j +4, k = 5).
In the example, ConsFrame; is mapped to Prod Frames.
This is correct because the consumer iteration 2 consum-
ing A[6] is activated on ConsFrame, whereas the producer
iteration G producing A[6] is activated on ProdFrameq.

We also see in the example that the array elements com-
puted by the producer loop are not completely consumed.
Assuming that there are no other consumer loops, iterations
t=1...4 are not consumed. In the Direct Access Method,
it is crucial for the compiler to determine the exact number
of consumers for each producer loop activation. Otherwise,
a deadlock may occur due to the nonterminating loop body.

Figure 6 shows that the I-Structure descriptor is sent as
an input parameter to every producer and consumer activa-
tions. Each activation uses the descriptor to compute the
exact location of the I-Structure memory cell it needs to ac-
cess. In the Direct Access Method, a frame pointer of the
communicating counterpart activation is sent to each acti-
vation instead of the [-Structure descriptor. Figure 7 shows
that frame pointers of the consumer activations are sent to

the producer. Upon receiving the corresponding consumer’s
frame pointer, a producer activation can transmit computed
array elements. After a small initial start-up time, the ac-
tual computation performed by the activations is overlapped
with the transmission of frame pointers. In the current im-
plementation, a buffer of size k is allocated in the frame of
the producer loop spawning code block to store the incoming
consumer frame pointers. The function that maps frames to
iterations are code generated as part of the loop spawning
code block. As each producer activation is created, the cor-
responding consumer frame pointer is read from the buffer
according to the mapping function and sent to the activation
along with other input parameters.

4 Performance Measurement

This section reports on the performance of three different
implementations of the Livermore Loop 1. Each version is
implemented using a different array handling technique and
the resulting performance is discussed.

4.1 The Simulated Architecture

The basic configuration of a processing node of the sim-
ulated architecture used in the performance measurement
is as shown in Figure 2. Each node consists of a Message
Processing Unit (MPU) and a Data Processing Unit (DPU)
which operate asynchronously to each other. The main func-
tion of the MPU is to receive incoming messages and acti-
vate threads that are triggered by the incoming data tokens.
When a thread is activated, its descriptor is inserted into the
Active Thread Queue (ATQ) for eventual execution by the
DPU. As thread sclieduling is not the main research issue,
a simple FIFO policy was adopted. The execution of an
instruction is assigned one time unit assuming that one in-
struction can be issued at each clock cycle. A hypercube
topology was selected for the interconnection network.

In the simulator, the I-Structure controller is implemented
with the following key implementation parameters:

e Array elements are low-order interleaved across I-Struc-
ture (IS) nodes; an array element A[i] is mapped to
the IS node, inode =i Mod M, where M is the total
number of the I-Structure nodes in the system. There
are as many IS nodes as there are processing nodes.

The cost of the I-Structure memory allocation and the
initialization time is idealized to zero.

o Within the IS node, each memory read and write oper-
ation takes one time unit. Every enqueue and dequeue
operation to/from the deferred read queue also takes
one time unit.

No extra cost is assigned for accessing an IS node, i.e.,
no cost is incurred if an activation executing in the
processing node k accesses an IS node that is local to
the processing node.

The cost of any remote message including i-write and
i-fetch messages is determined by the currently set net-
work latency value and the routed path.

e The processing node in which an array producer ac-
tivation executes and the IS node in whiclh it writes
into are allocated independently. Therefore, i-write or
i-fetch operations are not guaranteed to be local.



DAM-MIF

PE:DATA SIZE 16:500 | 32:1000 | 64:2000 | 128:4000
L=00 27940 2687.0 31950 41110
L=10 2788.0 2710 32180 4176.0
L=50 Jo7.0 32170 3799.0 4678.0
L=100 5604.0 47900 5786.0 6995.0
I-Structure
PE:DATA SIZE 16:500 32:1000 | 64:2000 | 128:4000
L=00 1742.0 1844.0 21210 3756.0
L=1.0 17420 18480 2168.0 37920
L=50 2691.0 3755.0 47510 5785.0
L=100 5271.0 7506.0 9330.0 1151.0
DAM-SIF
PE:DATA SIZE 16:500 321000 | 64:2000 | 128:4000
L=00 1935.0 26680 4603.0 §743.0
L=10 1953.0 2699.0 4624.0 8794.0
L=50 24830 1580 5043.0 9190.0
L=100 44830 6009.0 7091.0 10012.0

Table 1: Execution time of each implementation when the
data and the processors are scaled.

4.2 Benchmark and Conditions of Experiments

Three versions of the Livermore Loop 1 are implemented to
observe the effects of different array handling techniques on
the overall performance of the program. Livermore Loop
1 is a simple parallel loop which produces an array of one
dimension. To supply two of its array input parameters, Y
and Z, a producer loop is provided. A SISAL version of the
program is shown in Figure 8. One of the three versions of
the Livermore Loop 1 is implemented using the I-Structure
with the assumptions listed in the previous subsection.

The other two implementations are different versions of
the Direct Access Method. In the first version, a single it-
eration is active at a time in a given {rame memory and the
frame is reused by another activation only after the current
activation is terminated. This implementation is called the
DAM-Single Iteration Frame (DAM-SIF). In the second ver-
sion, multiple iterations are active simultaneously in a given
frame memory. In this implementation, called the DAM-
Multiple Iteration Frame (DAM-MIF), w iterations are si-
multaneously active using the same frame memory. In this
mechanism, memory space to store loop variables for w it-
erations are provided in a frame. In addition, since different
instances of a thread may be active simultaneously in the
DAM-MIF, the thread descriptor is provided with an extra
field, 1, in addition to FP and IP to differentiate between dif-
ferent instances of a thread. Using this new field, different
instances of a thread may become activated and executed
independently within a given frame memory.

Two different performance measurements were performed
on each implementation under various network latency con-
ditions. The first one measures the data scalability inspired
by [11]. In the Livermore Loop 1, the amount of parallelism
is simply the upper loop bound, n. Ideally, the execution
time should stay constant if the problem size and the num-
ber of processors were increased simultaneously by the same
factor. In reality, the exccution time will vary depending

-1

Fﬂe(lne Main
type OneDim = array|reall:

function Producer(n:integer returns OneDim,OneDim)
for k in 1,n
returns array of real(k) * 0.5
array of real(k) * 0.8
end for
end function

function Loopl(n:integer: Q.R.Tireal: Y,Z:0neDim; returns OneDim)
for k in 1.,n
returns array of
Q + (Y[K] = (R * Z(kel0] + T * Z[ke11]))
end for
end function

function Main(nl,n2:integer: Q.R,T:real returns OneDim)
let
Answer :e« Loopl(n2.0.R.T.Producer{nl))
in
Answer
end let
end function

. 4

Figure 8: SISAL program of Livermore Loop 1.

on a number of parameters. For example, machine char-
acteristics such as network latency and compiler dependent
factors such as the activation spawning mechanism as well
as the actual amount of iterations allowed to be active si-
multaneously all influence the execution time. For the mea-
surements, the data size was varied from 500 to 4000 and
the number of processors from 16 to 128. Since the actual
amount of parallelism is capped by a loop-bounding mecha-
nism, the maximum number of activations allowed concur-
rently was made to vary from 96 to 768; on the average, 6
iterations are active concurrently at each processing node.
The measurements were repeated for four different commu-
nication latencies (L = 0, 1, 5, and 10 time units).

We define the scaling factor SF as the ratio between the
execution time of the reference set and the execution time
when the processors and the data size are scaled:

SF(PE,DATA SIZE) = EX,.;/EX(PE, DATA SIZE)

The EXres is the execution time of the smallest set (the
reference set), i.e., EX(16,500) for each latency condition.

The second is the measurement of speedup. For this
measurement, the problem size of the Livermore Loop 1 was
fixed at 2000 and the number of processors was varied from
1 to 64. The execution time of each implementation uti-
lizing different numbers of processors was measured for two
latency values of 1 and 10. For a fixed number of proces-
sors, the execution time can vary greatly depending on how
many loop instances are allowed to be active simultaneously.
Therefore, for each measurement, the loop bounding value
k was varied and the best execution time was selected.

4.3 Observations

Table 1 shows the execution time and Figure 9 shows the
data scalability curve of each implementation at different
latency conditions. Each point of Figure 9 is computed ac-
cording to the scaling factor formula. For example, the scal-
ing factor SF(128,4000) of the DAM-MIF at latency = 10 is
computed by EX(16,500)/EX(128,4000) = 0.80. To avoid
cluttering, only the data scalability curve for the DAM-MIF
and the [-Structure implementations are shown.

In terms of absolute execution time, the [-Structure im-
plementation performs the best for small latencies (L=0,1).
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Figure 9: Data scalability graph for DAM-MIF and I-
Structures.

DAM-MIF I-Struciure DAM-SIF
Number of PEs L=10 L=100 L=10 L«100 L=10 L=100
1 108083.0 | 108083.0 | 1041550 | 104155.0 | 764550 76455.0
2 539820 53978.0 521090 52139.0 383920 38483.0
4 27370 27265.0 27045.0 30700.0 19384.0 24976.0
L 14599.0 16329.0 13076.0 20908.0 99970 19021.0
16 7970.0 11755.0 7188.0 16594.0 55110 14000.0
3z 4597.0 8230.0 3469.0 102740 31580 10090.0
(2} 2623.0 5283.0 2187.0 B434.0 33960 7091.0

Table 2: Execution time of each implementation when the
data and the processors are scaled.

On the other hand, DAM-MIF produces the best result for
longer latencies (L=5,10) and larger processors (> 32). In
terms of data scalability, DAM-MIF consistently performs
‘the best for all latencies. As can be seen from the graph
of Figure 9, the scalability of the DAM-MIF degrades to
0.8 (L=10) and to 0.67 (L=1,5); the scalability of the I-
Structure implementation degrades to around 0.47 for all
three latencies. For a higher latency value, DAM-MIF per-
forms better in both the execution time and data scalability.
However, the DAM-SIF performs poorly against other im-
plementations. Its only best execution time is for two cases
when 16 processors (L=5,10) are utilized.

Table 2 lists the execution time of each implementation
when the problem size is fixed at 2000 and the processors
are increased from 1 to 64. As observed in the data scala-
bility measurement, the DAM-MIF performs the best when
a larger number of processors are used under longer latency
condition. In the measurement, the DAM-MIF produced
the best execution time when the processors > 8 and the la-
tency is 10. For alatency of 1, the I-Structure had the fastest
execution time when the number of processors were 32 and
64. For a smaller number of processors, the DAM-SIF im-
plementation resulted in the best execution time. Figure 14
shows the speedup curve of each implementation at different
latency conditions. At latency = 1, the [-Structure results in
the best speedup (= 47.5). Because of the inefficient frame
usage, the speedup curve of the DAM-SIF implementation
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Figure 10: Speedup of three different implementations when
latency = 1.0, 10.0.

quickly saturates after 32 processors. When the latency is
increased by 10-fold to 10, the DAM-MIF produces best
speedup (= 20.5). At this latency condition, the speedup
of the I-Structure version is only 25 % of the speedup at
latency = 1 while the speedup of the DAM-MIF and the
DAM-SIF is only reduced by half.

4.4 Interpretation

The key to achieving good performance is to effectively over-
lap computation and communication. At the same time,
available resources must be utilized efficiently. In both the
data scalability and the speedup measurement, the perfor-
mance of the I-Structure version degraded rapidly for longer
latency conditions. The cause of such performance charac-
teristic is that the I-Structure implementation over-utilizes
the network. Although split-phased remote memory opera-
tions provide environment for efficient processor utilization,
network resources may easily be overloaded with remote
message traffic becoming a bottleneck. In the simulated
program, the producer loop creates two array elements and
the consumer loop (Livermore Loop 1) consumes three ar-
ray elements at every iteration. Assuming the array size is
N, the worst case expression for the total number of remote
array operations is:

Total remote msgs = i-write msgs + i-fetch msgs + data
msgs

=2N 43N + 3N =8N

In the DAM-SIF implementation, the network resource
is better utilized than in the [-Structure implementation be-
cause the message traffic is reduced. This is achieved by the
direct array accessing mechanism in which the array ele-
ments are sent directly from the producer to the consumer
activations; write operation is always a fast local memory
write operation to a frame memory. The expression for the
total number of remote messages is,

Total remote msgs = data msgs 4 sync msygs

=3N +3N =GN

Synclironization message in the above expression is re-
quired by the very mechanism of the Direct Access Method
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Figure 11: In the DAM-SIF implementation, a frame cannot
be reused immediately after an activation until the sync msg
is received.

when a frame memory is reused®. Its function is to syn-
chronize the producer and the consumer activations before
an array element is sent directly from the producer to the
consumer activation. Without synchronization, an array el-
ement may be sent before the next consumer iteration be-
comes active. Unfortunately, this mechanismm makes effec-
tive overlapping of computation and communication diffi-
cult, resulting in low processor utilization. More specifically,
a frame used by a previous producer activation cannot be
reused immediately by a new producer activation until a
sync msg is received, indicating that the new consumer in-
stance is active (Figure 11). In the meantime, the frame
memory is not utilized by any activation. A relatively poor
performance of the DAM-SIF in both performance metrics
is the result of low processor utilization caused by this syn-
chronization mechanism.

The DAM-MIF mechanism solves the low processor uti-
lization problem by allowing multiple iterations to be ac-
tive simultaneously using the same frame memory. At the
same time, remote message traffic is further reduced. In
this implementation, a thread descriptor is represented by
<IP.FP.i>. The i field is used to distinguish different in-
stances of a same thread. Figure 12 shows that for w iter-
ation instances, the producer activation sends the data to
the consumer activation without exchanging synchroniza-

tion messages. The total number of remote messages for the
DAM-MIF is thus:

Total remote msgs = data msgs + sync msgs
= 3N +3[N/w]

The DAM-SIF is a special case of the DAM-MIF in which
the value of w is one.

Figures 13 and 14 show the processor and the network
utilization of the three implementations at different latency
values when the same number of instances are allowed to
be active simultaneously. Because of the reasons discussed,
the I-Structure implementation saturates the network for
a latency of 5 and above, although it performs well under
low latency conditions. It is difficult to increase processor
utilization under longer latency condition because the net-
work is already saturated. In the DAM-SIF implementation,
processors are consistently underutilized. In the DAM-MIF
implementation, the network utilization is still around 50 %
even at latency=10 leaving more room for extra activations.
Among the three implementations, the DAM-MIF imple-
mentation utilizes the processor and the network resources
most efficiently given the same conditions.

2Sym:hn:miz:xr.icm messages are not required in an ideal case where
a parallel loop can always be unraveled. llowever, in most real situa-
tions where memaory resources are finite, a memory frame must always
be reused.
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Figure 12: A processor is better utilized in the DAM-MIF
implementation because a frame memory is reused immedi-
ately after an activation is terminated. At the same time,
network load is reduced.
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Figure 13: Processor utilization of the three implementa-
tions for different latency conditions.
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5 Conclusions

We have described in this paper a new array handling tech-
nique called the Direct Access Method, measured its perfor-
mance, and compared it with that of the I-Structure rep-
resentation on a simple parallel loop. It was found that
the chief application of this technique would be in those
cases where arrays display the characteristics of temporary
variables (i.e., the array is consumed “shortly” after being
produced). It has been shown that this technique produced
better performance under more realistic conditions by effi-
ciently utilizing the system resources. At the same time, a
large amount of the I-Structure memory is freed to be used
by other portions of the program.

However, the Direct Access Method cannot be used in
large programs at the exclusion of other approaches. For
those arrays which are accessed over a long period of time
after being produced, the I-Structure approach is still the
most appropriate array handling method. Therefore, the
Direct Access Method can be used selectively in conjunec-
tion with the I-Structures in order to enhance performance.
A preliminary examination of large programs such as SIM-
PLE shows that the Direct Access Method can be applied
to arrays produced and consumed within a function. How-
ever, further research is needed to determine the criteria for
using the Direct Access Method. Using this criteria, the
data dependence graph of a program can be analyzed at
compile-time to determine the most appropriate array han-
dling method.
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