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Abstract

In a redesign situation, the compatibility of the replacement chips is critical. This

can only be obtained by verifying both their functionality and timing. In this report,

we will postulate that the general RTL verification problem is too difficult to be solved.

Hence, it is necessary for a RTL verification system to trade off generality for usability.

In fact, there is a real need for an automatic tool that can check the functional and

timing compatibility of automatically synthesized chips quickly and effectively. We

found that synthesized designs have several common properties that can be utilized

to facilitate this task. By making use of the USC design data structure (DDS) graph

models, we developed a hybrid symbolic approach that will not only verify functional

compatibility but also take into account the timing and the interaction between the

controller and the datapath. Experiments have been performed on two designs, an

AR filter and a robot arm controller synthesized by the ADAM system. The results

are very encouraging. In fact, these experiments helped to identify problems with the

early version of the control signal generator (CSG) software.



1 Introduction

In a redesign situation, the compatibility of the replacement chips is critical. This can

only be obtained by verifying both their functionality and timing. In this report, we will

postulate that the general RTL verification problem is too difficult to be solved. Hence, it is

necessary for a RTL verification system to trade off generality for usability. In fact, there is

a real need for an automatic tool that can check the functional and timing compatibility of

automatically synthesized chips quickly and effectively. We found that synthesized designs

have several common properties that can be utilized to facilitate this task. By making use of

the USC design data structure (DDS) graph models [KP85], we developed a hybrid symbolic

approach that will not only verify functional compatibility but also take into account the

timing and the interaction between the controller and the datapath. Experiments have

been performed on two designs, an AR filter and a robot arm controller synthesized by

the ADAM system. The results are very encouraging. In fact, these experiments helped

to identify problems with the early version of the control signal generator (CSG) software

[WP92].

This report is organized as follows. We start with a brief discussion of the related work

in Section 2. Next, we apply computation theory to show the undecidability of the general

RTL verification problem in Section 3. Hence, We analyze a high-level synthesis model in

Section 4 to identify properties of automatically synthesized designs. In Section 5, we give an

overview of our approach for the compatibility checking of synthesized designs. The hybrid

symbolic simulation model used in our approach will be described in Section 6. In Section 7

we will show that there is an isomorphic property between the behavioral specifications

and the extracted behaviors of the corresponding implementations. A behavior-comparison

procedure based on this property will then be given. Finally, some experiment results are

given in Section 8



2 Related Work

Compatibility checking is essentially a verification problem. There are a variety of approaches

for design verification (see [CP88, McFb] for the survey). However, formal methods are still

not practical at present and simulation-based ones have their theoretical limitations. We

found that the RLEXT system by Knapp and Winslett [KW89] is the only one which can

achieve some of our objectives. RLEXT is a rule-based system which relies on a formal

model derived from the USC DDS. It allows the user to modify the design structure and

then check the consistency of the design with the ability to repair some design-rule violations

automatically. This feature can be considered as a form of partial redesign. Their approach,

however, does not mention the control logic, nor the interaction between the datapath and

the controller. How the clocking scheme and other important physical parameters such as

wiring delays are taken into account is not described.

In our research, symbolic simulation is utilized to check the functional and timing com

patibility of the synthesized chips. The idea behind symbolicsimulation is to evaluate circuit

behavior overexpanded sets of signal values so that a number of operating conditions can be

simulated in a single run. In late 1970's, researchers at IBM first applied symbolic simulation

to hardware verification at the register-transfer level [Dar79]. The research activities [CorSl]

on this problem only lasted till the early 1980's due to the weakness of the algebraic ma

nipulation and the non-determinacy caused by conditional and looping constructs [Bry90].

Although this form of symbolic evaluation is not powerful enough for general functional

verification at the RT level, we will show in this proposal that it can be made very useful

when applied to the synthesis domain where both the functional behavior and timing of a

design are equally important and the implementation is derived from the specification in a

well-defined manner.

3 The General RTL Verification Problem

The general RTL verification problem can be described as follows:



Given:

• a behavioral design specification 5, and

• an RTL implementation /.

Goal:

show the behaviors Bs and Bj of S and / respectively are functionally equivalent.

The specification S specifies what the system should do, and it is usually described function

ally in some HDL (Hardware Description Language). On the other hand, the implementation

/, typically described by a netlist, models the system structurally as an interconnection of

RTL components. The verification task is to show that, for all feasible inputs, Bj is equiva

lent to Bs required by the specification S [McFa]. The behaviors Bs and Bi are regarded as

the way the system or its components interact with their environment, i.e., the mapping from

inputs to outputs [MPC88]. However, if the system possesses sequential behavior1, Bs and

B\ describe the mapping from "sequences" of inputs to "sequences" of outputs. Therefore,

the definition of equivalence of two behaviors has to be modified accordingly.

Since S and / are given in different languages, it is necessary to translate both of them

into a model in which their behavior can be compared. For example, we can simulate both

S and / using their respective simulators for all feasible inputs, in theory, to get Bs and

Bi and verify their output correspondence. Alternatively, we can describe both S and /

in a formalism in which a theorem-prover can be used, hopefully, to prove that Bs and B\

are equivalent. Whichever way we use, a "reasonable" verification model representing the

behaviors must be capable of expressing every design in the functional model of S and in

the RTL model of /. Figure 1 shows the relationships between the verification model and

the associated functional and RTL models.

'The output at any point depends on the current state which in turns relies on the past history of inputs

[McFb].



Functional Model RTL Model

Verification Model

Figure 1: The verification model and its relationships with the functional and RTL models.

Definition 3.1 A verification model is called complete if for each instance cj) in the func

tional/RTL model there exists a counterpart t/> in the verification model such that cj) and \j>

are functionally equivalent.

Definition 3.2 A complete verification model is feasible if we can find a translation from

the associated functional/RTL model to it.

In other word, a complete verification model is at least as powerful as the functional and

RTL models in terms of the expressive capability, and the model is feasible (useful) only if

we can effectively translate all the designs into it.

If we do not consider the fact that / is derived from 5, Bs and Bj simply correspond to

two independent points in a complete verification model. Let fty be the complete verification

model. Solving the general RTL verification problem is then equivalent to finding a decision

function / such that for all ?/>,-, tpj E ft v

f(hj) =
1 \[il)i=ij)j

0 otherwise



In what follows, we will show that it is not possible to find such a decision function no

matter which complete verification model we use. However, some background computation

theory needs to be introduced first.

Informally, a function is a partial recursive function (prf) if it is effectively "computable"

[MY78]. In other words, given a definition of a partial recursive function we can produce

an algorithm, e.g. write a RAM program, to compute it. A programming system is a list of

programs (/>0,</>i,- • • which includes all of the prfs. A programming system is an acceptable

programming system (APS) if and only if the following conditions are met.

• For every prf /, there exists an index i such that </>,• = /. That is, there is at least a

program for each prf.

• For all indices i, fa is a prf. In other words, every program is a prf.

• There exists a universal program </>u such that for all i and x </>u(*, x) = $j(%% where x

is the argument over N (natural numbers).

• There exists a total recursive function c such that <j)c(i,j) = &° $j f°r all i and j, where

o denotes function composition.

In fact, any "reasonable" programming system will satisfy the definition of an APS. Hence,

any results applied to APSs should also hold for all "reasonable" programming systems, and

certainly for all existing general purpose programming languages [MY78].

Now, we can introduce the notion of undecidable (algorithmically unsolvable) problems

concerning APSs. Let N be the set of natural numbers.

Definition 3.3 For all S C yV, the function Cs '• N -* {0,1} is called the characteristic

function of S if and only if

( 1 ifieS
Cs(i) =

I 0 otherwise

Definition 3.4 For all S C N, S is decidable if and only if Cs is a prf.



The following lemma describes an important undecidable set which will be used to show the

undecidability of the general RTL verification problem.

Lemma 3.1 For all APS {fa}, the set V = {< i,j >| fa = fa}2 is undecidable.

The proof method can be found in [MY78]. Basically, Lemma 3.1 says that there is no

algorithm for deciding whether or not two arbitrary programs in any APS are equivalent.

Finally, we can establish the main result of this section by the following theorem.

Theorem 3.2 The general RTL verification problem is algorithmically unsolvable for all

complete verification models.

Outline of Proof: Recalling earlier discussion, we know that solving the general RTL

verification problem is equivalent to finding a decision function / as defined in Equation 1.

Also, the general RTL verification problem can be represented by the following set:

V = {< i, j >| ifri = ipj for all fa, ipj in Oy}

Hence, / is actually the characteristic function of V.

From Lemma 3.1, we know that V is undecidable for all APSs. Informally, any complete

verification model Cly should satisfy the definition of an APS3 since its associated functional

model of design specifications is based on some hardware description language such as VHDL

or HardwareC which certainly qualifies as a "reasonable" programming system. Hence, /

is not a partial recursive function and the general verification problem is algorithmically

unsolvable for all complete verification models. D

4 Properties of the Synthesized Designs

In high-level synthesis, the synthesis system actually derives the structural design from the

behavioral specification in a well-defined manner [MPC88]. Consequently, the specification

2<,> is any pairing function which can establish an effective one-to-one correspondence between the

2-tuples in N x TV and the numbers in N. For example, f(x,y) = 2x(2y+ 1) - 1.
3A formal proof will need to show this argument mathematically. However, we feel that this enormous

work will lead us out of focus of this research.



less USABILITY more

less LINKS more

more GENERALITY less

Figure 2: The tradeoff between generality and usability of verification systems

S and the implementation / are not independent. In fact, there are links between S and

/. These links can be utilized in verifying their correspondence. Depending on the use of

these links, a verification system, however, is trading off generality for usability as shown

in Figure 2. This is because each such link required by a verification system represents an

additional assumption (restriction) on the verification problem to be solved even though it

may help to make the problem tractable. While this is inevitable, an obvious goal is to

ask for only reasonably available links while achieving the ability to verify all the designs of

interest.

In Figure 3, we show a generic model of high-level synthesis. In this model, the synthesis

process is divided into two major steps - transformation and mapping. The transformation

step performs a number of behavior-preserving transformations to "optimize" the initial be

havioral specification CDFGs- For example, tree-height reduction is a typical transforma

tion for reducing the critical paths of a behavioral specification at the expense of additional

computation [NP91]. Next, a structure / is synthesized at the mapping step according to the

transformed behavior CDFGt- The mapping step generally consists of three tasks; namely,

scheduling, data path allocation and controller synthesis [MPC88]. The order of these tasks,

however, is not important in our model.

Based on this model, the verification problem which we are describing can be divided

into two subproblems:

1. Show CDFGs and CDFGt are functional equivalent.
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CDFGs

RTL Design /

Figure 3: A high-level synthesis model

2. Show the RTL design / possesses the behavior CDFGt-

The first subproblem requires us to show the functional equivalence of two CDFGs. If

we do not acknowledge the fact that CDFGt is the result of a sequence of transformations

on CDFGs, this problem is still equivalent to the general RTL verification described in

Section 3, which is undecidable. Even the problem which simply shows the equivalence of

two finite-precision algebraic expressions is in neither P nor NP if NP ^ co-NP.

Lemma 4.1 Showing the equivalence of two finite-precision algebraic expressions is a co-NP

problem which cannot be done in P nor NP time if NP ^ co-NP.

Proof: The proof is straightforward. First, we know that the not tautology problem4 is an

NP-complete problem and its complement, the tautology problem, is a co-NP problem which

cannot be solved in P nor NP time if NP ^ co-NP [GJ79].

The tautology problem can be easily reduced in polynomial time to the problem ofshowing

the equivalence of two Boolean expressions since each instance ofthis problem is the same as

4A tautology is a Boolean expression that has the value 1for all assignments ofvalues to its variables. The

not tautology problem is to return 1 if a given Boolean expression is not a tautology and return 0 otherwise.

!)



showing whether or not the Boolean expression in question is equivalent to constant 1. The

later problem in turn can be easily reduced to one which determines the equivalence of two

finite-precision algebraic expressions since Boolean expressions are a subset of finite-precision

algebraic expressions. Therefore, the latter problems are both co-NP problems which cannot

be done in P nor NP time if NP ^ co-NP. •

To solve this subproblem effectively, we must rely on the link between CDFGs and

CDFGt, which is a sequence of transformations TxrT%r,,.,2&. Obviously, CDFGs and

CDFGt are functionally equivalent if 2\, 2-2,... , T/. are all behavior-preserving. To achieve

this, we could, in theory, prove the transformation algorithms used by the optimizer so that

the transformations it made always preserved behavior. The advantage of this is the proofs

would only have to be done once, rather than for every design. In practice, even if the

abstract transformation algorithms could be verified, this would not guarantee that their

implementations were correct. At present, we do not have the technology to verify them at

the code level [McFb]. Alternatively, if we can prove each type of transformation abstractly

once and in advance, we only have to check the conformity of the transformations T\,... ,7*

which actually have been done during the transformation step with proven transformation

models. This approach still only requires us to do the proofs once, but the errors resulting

from the incorrect implementations of transformation algorithms can be found. However,

the checking has to be done for every design. Unfortunately, the verification of high-level

transformations is beyond the scope of this research. Currently, we assume that this task-

has been carried out manually by applying some formal verification techniques[CP88].

In the second subproblem, we are asked to show that a structural design / possesses the

behavior CDFGt- The problem is that CDFGt specifies the dynamic relationship between

sequences of inputs and outputs, while the implementation / is a static structure. Since they

are built on different concepts, it becomes very difficult to prove their equivalence if they are

regarded as two independent descriptions.

Fortunately, the design / is the result of a mapping from CDFGt- The major tasks of

this mapping involve assigning the operations to control steps (scheduling), assigning the

10



operations and values to hardware (data path allocation), and generating a controller to

deliver the required control signals (control synthesis) [MPC88]. Consequently, the design

/, if mapped correctly, will have the following properties:

Property 4.1 For each operation op in CDFGt, there exists a functional unit u in I such

that u can be configured to perform op and op is achieved by directing all the input values of

op to the corresponding input ports of u.

Property 4.2 For each data dependence (val,op) in CDFGt, there exists an interconnect

path in I between the source of val and the corresponding input port of the functional unit u

which is designated to perform op. The source of val can be an output port of a Junctional

unit or a storage element. The interconnect path is set up by using buses and/or switching

devices.

Property 4.3 CDFGt defines the required computations which have to be done in I for

every execution instance.

We will show in Sections 6 and 7 how these properties can be effectively utilized to verify

synthesized designs.

In addition, there exist links between CDFGt and /, and the information regarding

these links is generally available after the mapping step. For example, this information

is represented explicitly in DDS by means of bindings. We found that this information

is particularly useful in diagnosing the design errors because these bindings represent the

design decisions made during the mapping process and the events that should occur while

the design is operating. If errors are found, the bindings which did not occur during the

simulation of the implementation can be traced to determine the cause.

5 Approach Overview

In order to produce an automatic tool for checking the compatibility of synthesized designs

quickly and effectively, we developed an approach which combines symbolic simulation at

11



the RT level with a behavior-comparison procedure based on the properties described in

Section 4.

The motivations to apply symbolic simulation for our approach are twofold. First, it pro

vides formal results because the simulator operates over a symbolic domain, and at the same

time we are able to take into account design timing. Second, the symbolic simulation results

are ready for behavior comparison since the design specifications for high-level synthesis are

usually represented in a similar form such as a CDFG.

Figure 4 shows a flow chart which briefly illustrates our approach. First, the design data

is read from the DDS. It includes the behavioral specification, the structural implementation,

the physical information if available, and the module library. Next, we set up the simulation

parameters such as delays and clocking, and the input/output protocol. We estimate the

wiring delays if the floorplan is provided. The control flow of the design is analyzed to

produce a list of all possible execution paths. For each execution path, the associated path

condition will be used to drive the simulation.

The hybrid symbolic simulation performed next is event-driven. It is a hybrid model

because the data path is evaluated symbolically but the controller is simulated numerically

so that all the control signals will be either 1, 0 or unknown throughout the simulation. A

transport delay model is used in the simulation. During the evaluation of active elements,

an additional timing analysis procedure is performed to detect potential timing violations.

The simulator will also constantly monitor the occurrences of value collision on the wires. If

any timing or collision error is found during the simulation, a diagnosis procedure is called to

determine the cause. The result of the simulation is represented by a dataflow graph which

describes the actual data operations and data transfers done by the design.

Finally, the graphical simulation result iscompared with the graphical specification. If the

comparison procedure finds any difference between these two graphs, a diagnosis procedure

is called to find the possible design errors. The whole process will be repeated until no more

execution paths are left.

12
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Figure 4: A flow chart of our approach for compatibility checking.
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R2 R3

Initial State:

R1 =a

R2 = b

R3-cR1 \ mux / — sel

Control Signals:

+

sel = 1

en= 1

Result:

R4 = d, where d = a + c

R4 — en

Figure 5: An example of symbolic simulation

6 Hybrid Symbolic Simulation

As we have discussed earlier, what is important for a synthesized design is whether or not it

performs the required data operations and the correct sequencing of data transfers for each

execution instance. Also, many design errors are related to the control and timing of the

design. Hence, we need to be able to extract the circuit behavior in terms of the symbolic

data operations and data transfers that occur in the datapath and at the same time to

emphasize exercising the control and modeling the timing. The hybrid symbolic simulation

to be described here performs exactly this task.

The idea behind symbolic simulation is similar to extending arithmetic over numbers to

symbolic algebraic operations over symbols and numbers. For example, Figure 5 shows an

RTL circuit with an adder, a two-to-one multiplexor and four registers. Let the symbolic

values a, b and c represent the initial register values stored in Rl, R2 and R3 respectively.

Suppose both the control signals sel and en are 1. After simulating the circuit symbolically,

a new symbolic value d is produced by the adder and stored in R4, and d is equivalent to

a + c. In this way, we have the response to all possible values of Rl, R2 and R3, given a

particular control sequence, in one simulation run.

The simulation model we developed is event-driven. Figure 6 shows a typical flow of

14



event-driven simulation [ABF90]. The main difference between our model and traditional

ones is that the evaluation of activated elements and the representation of data values are

symbolic in our model. In addition, a transport delay model is used to reflect the circuit

operation more accurately. We also incorporate a timing analysis procedure in the element

evaluation to detect timing violations. The delay modeling and timing analysis, however,

will not be elaborated in this report.

In our simulation model, the simulation of a design proceeds from one execution path to

another.

Definition 6.1 An execution path is a direct path from an initial state to an end state in

the state-transition graph of a FSM controller.

For example, the state-transition graph shown in Figure 7 contains three execution paths,

each of which is associated with a path condition that represents the assumptions made along

the path during the control flow analysis.

Definition 6.2 A path condition is an assignment for a set of Boolean symbolic values which

together determine alternative paths through the state-transition graph.

6.1 Element Evaluation

The evaluation of an element is done to compute its output values according to its current

input values.

Data Path

The evaluation of a datapath module depends on its behavior model. In DDS, this informa

tion is available from the behavioral model of the component used to implement the module.

We represent this information internally in the form of function tables. The function table

of a datapath module defines the manipulation of symbolic data for each possible condition

on the control lines. For example, a simple four-function ALU is shown in Figure 8. The

following types of elements are evaluated in the data path:

15
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Figure 7: Execution paths of a state-transition graph
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Figure 8: A four-function ALU
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• Functional Units. These modules are used to perform the operations given in a

specification (CDFG). When a functional unit is evaluated, a new symbolic operation

is performed. In general, its control inputs, if any, are used for function selection. Then,

one or more new symbolic values are produced at its output ports after a specified delay

time. The input/output symbolic values are related by the symbolic operation being

performed.

• Switching Devices. The result of evaluating a switching device is that symbolic

values are transferred from its input ports to its output ports. The current values of

its control lines determine the paths on which the transfers take place. Similarly, the

output change is separated from the input change by a propagation delay. No new

symbolic value is produced in the evaluation of a switching device.

• Storage Elements. Symbolic values can be written into or read from storage elements

via their data input/output ports. Both registers and on-chip memory are allowed in

our simulation model. A storage element is evaluated whenever its clock or enable

signals change. The memory addresses are regarded as control signals; therefore, they

are numeric.

If the input condition of a module being evaluated is invalid, its outputs and data storage,

if any, are set to unknown.

The datapath carriers (nets) are used for propagating the symbolic values. A carrier

connecting more than one output port requires those outputs to be tristate. Normally, at

most one tristate output is enabled at any time. A value collision occurs if two or more

output ports drive a carrier at the same time [KW89]. This type of design error can be

easily detected by the simulator.

Controller

The controller is evaluated when there is a change on its clock signal. If the clock change

results in a state transition, the outputs are computed and the controller moves to the next

18



state in the current execution path. The path condition of the current execution path is

updated, if necessary, at each state transition. For example, if the state transition requires

the inputs i\ and z*2 to be 1 and 0 and if the symbolic values currently appear at z'i and £2 are

a and b respectively, then a = 1 and 6 = 0 will be added to the path condition. If there is a

conflict between the assumptions made in the state transition and the path condition to be

updated, the current execution path is a false path which will never occur. The simulation

will proceed to the next execution path immediately if a false path is found. On the other

hand, if a required input for the state transition contains an unknown value, the simulator

aborts the current execution path and reports a data-dependency violation.

6.2 Representation of Symbolic Data

The symbolic values and operations which occur during the simulation are the actual events

exhibited by the RTL design. These values and operations constitute the actual datapath

behavior of the structural implementation to be compared with the design specification.

Hence, it is very important to represent these symbolic data in a way that is suitable for

comparison with the specification.

In our simulation model, the symbolic values and operations produced during the simula

tion are used to build a bipartite data flow graph, which is the same representation used for

the design specification. A vertex is created in the data flow graph whenever a new symbolic

value or operation is produced during the simulation. If a symbolic value is the result of

an operation performed by a functional unit, the operation becomes its direct predecessor.

Similarly, the symbolic values which appear at the input ports of a functional unit become

the direct predecessors of the operation being performed.

Our model is different from the early works [Dar79, CorSl] on symbolic simulation at the

RT level in the following ways:

1. The overhead to propagate the algebraic expressions is eliminated since we focus on

collecting the actual data operations and data transfers that occur in the data path.
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2. A powerful algebraic manipulator is not required since we do not try to simplify the

expressions during the simulation. Instead, the data flow graph representing the simu

lation result is compared with the specification using the graph-isomorphism property.

This difference is also the reason that symbolic simulation can be effectively applied to solve

our problem.

Besides the data flow graph which represents the computations performed by the design,

the simulator can also check the bindings between the specification and the implementation.

This is because the occurrence of a symbolic value or operation, the structural component in

which it take place, and the current simulation time constitute a binding which represents

what is actually happening during the simulation. By collecting the actual operation and

value bindings from the simulation and comparing them with those specified in the DDS, we

are able to determine which design decisions are causing the problem if the design fails.

7 Graph-Based Verification

In our approach, the behavior comparison is based on the behavioral model of DDS. Since

the design specification is already represented in this model, only the behavior of the struc

tural implementation has to be translated into this model. The hybrid symbolic simulation

described in Section 6 performs the translation task for us. Therefore, the verification of the

RTL implementation / becomes the problem of comparing two CDFGs, CDFGt derived

from the input specification and CDFGj derived during the simulation. Because the de

sign / is the result of a mapping from CDFGt, there exists a strong relationship between

CDFGt and CDFGi (see Section 4). In fact, we will show that there is an isomorphic prop

erty between the two. Consequently, a graph-matching procedure based on this property is

developed to compare them efficiently.

20



7.1 The Isomorphic Property

From Section 4, we know that the RTL implementation /, if mapped correctly, will have sev

eral properties. In summary, / will perform the required computations specified by CDFGt

for every execution instance. The computations are done by making sure the input values

of each required operation are available at the corresponding input ports of the designated

functional unit which is configured properly.

Let DFGi be the result of simulating / for one execution instance under the path con

dition pc. If the specification CDFGt is interpreted symbolically under the same path

condition pc, the result is a data flow graph DFGt such that the predicate of each operation

in DFGt is evaluated to true under pc.

Before we show the isomorphic property between DFGt and DFGi, we will first estab

lish the correspondence for all their primary input/output values. This correspondence is

important because it provides the starting point to compare these two graphs.

Lemma 7.1 There exists an one-to-one correspondence between DFGt o-nd DFGj for the

primary input/output values.

Proof: The primary input values are applied to / according to the input protocol. For each

primary input value iiiT of DFGt, there exists an input port iport of / and some period

of time [ts, te] such that a symbolic value z'n/, which corresponds to zuj, is created and

applied to iport externally from ts to te during the simulation. Therefore, inj is in DFGi

as a primary input value and it is assumed to correspond to iut by the input protocol.

Similarly, for each primary output value outf of DFGt, there exists an output port oport

of / and some time t such that a symbolic value outj is read from oport at time t. Hence,

the symbolic value outj is in DFGi and is assumed by the output protocol to correspond to

outT- C3

Intuitively, the isomorphic property between DFGt and DFGi exists because / is synthe

sized in such a way that each required operation in DFGt will be performed by a designated

functional unit at some time and every data dependency will be preserved by establishing a
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proper interconnection. Hence, if / is synthesized correctly, each corresponding primary out

puts of DFGt and DFGi should have similar geometric properties which will be explained

by the following theorem.

Theorem 7.2 For each pair of the corresponding primary output values (outT,outi) of

DFGt and DFGi, &e cones5 of outj and outi are isomorphic.

Proof: From Property 4.1 and 4.2, we know that for each operation oprx in DFGt, there

exists a functional unit u of the design / and some timet such that u is configured to perform

the operation type of opTT\ otherwise, a synthesis error occurs.

Hence, if opr? is a required computation, a list of symbolic values in DFGi which corre

sponds to the input values of opi'T in DFGt, must appear at the respective input ports of u

at time t so that an operation oprj which is equivalent to opi'T is performed. Consequently,

a list of new symbolic values which corresponds to the output values of oprT in DFGt will

be produced in DFGi.

In other words, there exists a one-to-one mapping6 from DFGt to DFGi for all the

operations and values in DFGt-

Let Ct and Ci be the cones of ouIt and outi respectively. We claim that there exists

a one-to-one and onto relation between Ct and C/. This relation is one-to-one as we have

discussed earlier. Assuming this relation is not onto, there must exist either a vertex or a

edge in C/ which does not have a counterpart in Ct-

Case I. Let vi be the vertex that has no correspondence.

Since nj is a predecessor of outi, there exists a path in C/ from vi to outi. In this

path, there must be an edge M\vf) such that vj corresponds to vT in Ct but

5A cone of a vertex v in a graph G = (V, E) is a subgraph C = (V, E') such that

• V = { v } U predecessors(v)

• for all v\, vo in V, if edge (vi,vo) in E then (v\,V2) is also in E'.

6It is not necessary an onto mapping.
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vsj does not have a counterpart in Ct- Hence, (vsj,vj) is an incident edge of vj

which does not correspond to any of vT. However, the correspondence between

vj and vT implies that there is a one-to-one correspondence for all their incident

edges'. Therefore, we have a contradiction.

Case II. Let (uJ,U/) be the edge that does not have a counterpart in Ct-

From Case 1, we know that every vertex in C/ must have a counterpart in Ct-

Let vT be the vertex in DFGt that corresponds to vj. Then, vj has an incident

edge {vsi,vj) which does not correspond to any ofvr. Therefore, this edge do not

exist.

Thus, there exists a one-to-one and onto relation between Ct and Ci for all the vertices and

edges; i.e., Ct and C/ are isomorphic. •

The isomorphic property between Ct and C/ not only implies that there is a one-to-

one correspondence between their vertices and edges such that the incidence relationship is

preserved, but also requires that each pair of corresponding vertices are compatible. In other

words, if the corresponding vertices are operations, they must be of the same type. If they

are values, they have same bitwidths.

7.2 A Graph Matching Procedure

Knowing that there is an isomorphic property between CDFGt and CDFGi, it becomes

straightforward to develop a method for behavior comparison. In fact, all we need to do is

to check whether or not the cones of their corresponding output values are isomorphic for

all the execution paths.

Unlike the general isomorphism problem in graph theory, which is still an important

unsolved problem, it is much easier to check the isomorphic property between the cones

of the corresponding output values because the correspondences of their primary input and

"Otherwise, if vj is an operation, it. will have onemore input than Vj. does, which contradicts the fact that

their operation types are the same. On the other hand, if vj is an value, it will be driven by two operations

in Ci, which violates the single-assignment rule.
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output values are known in advance. Furthermore, the correspondences of two operations can

be established as soon as they are of the same type and all their input values are equivalent

whereas the vertices in the former problem are typeless.

In what follows, we will present a polynomial-time procedure for checking the isomorphic

property between the cones of two corresponding output values. Let outrp and outj of DFGt

and DFGi he a pair of corresponding output values and let Ct and Cj be their respective

cones to be checked. The following procedure will return true if Ct and Ci are equivalent;

otherwise, false is returned.

equiv_check(Cr, Cj)

1. Create an attribute for each vertex in Ct and Ci and initialize it to nil.

2. For each pair of corresponding primary input values of Ct and Cj, give their attributes a

unique identifier.

3. Find all the operations in Ct and Cj such that

• they are of the same type;

• their attributes are still nil; and

• all of their corresponding input values have the same attributes.

If found, then

(a) Give the attributes of these operations an unique identifier.

(b) For each set of corresponding output values of these operations, give their attributes

an unique identifier as well.

4. Repeat step 3 until no change can be made.

5. If there exists a vertex in Ct or Cj whose attribute is nil, return false. Otherwise, return

true.
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8 Experiments

In order to show the effectiveness of our approach, we performed a number of experiments

with the designs synthesized from the USC ADAM system. In fact, our preliminary ex

periments immediately identified that the controllers generated by CSG for these designs

were incorrect. CSG was then revised using the FINESSE package from the Cascade Design

Automation. Finally, two successful experiments were performed.

We first experimented with a non-pipelined AR filter. MAHA was used for scheduling

and Mabal for datapath allocation and binding. This design is characterized as follows:

• It has 4 time steps.

• Both the input and output values are not latched.

• A two-phase non-overlapping clocking scheme is used.

The analysis of the controller generated by CSG resulted in only one execution path with

four states. The experiment was carried out by holding the input values (symbolic) at the

input ports during the execution and obtaining the output values from the output ports at

the end of the 4th clock cycle. The cones of these output values were then extracted from

the data flow graph which was built during the simulation and compared correctly with the

ones specified in the original data flow graph.

The second experiment dealt with a robot arm controller whose control flow is much

more complex than the previous one. The design was synthesized in a similar way except we

required the inputs values to be latched. The RTL implementation has 12 time steps and 16

possible execution paths. The controller was generated by CSG using status registers. We

were able to verify this RTL implementation with the following conclusions:

• All the constant values were required to be supplied externally, which results in ineffi

cient use of input ports.

• Conditional values were unnecessarily routed to the output ports.
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• Some of the input values were not latched as specified.

From these experiments, we feel that our approach is indeed capable of verifying synthe

sized designs effectively and efficiently.

9 Conclusions

In this report, we have demonstrated the difficulty of the general RTL verification problem

and have identified the properties of automatically synthesized designs to facilitate the veri

fication task. We also presented a hybrid symbolic approach for checking both the functional

and timing compatibility of synthesized designs. Several experiments have been conducted

using this approach, and the results indicate that our approach is indeed effective and effi

cient.

Further experiments with designs whose timing is critical should be performed to demon

strate our ability and the advantage to take into account design timing during verification.

In addition, data-dependent delays and loops need to be worked on in the future.
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