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Abstract

We present a new data structure called Edge-Valued Binary-Decision Diagrams (EVBDDs)
for representing integer functions. EVBDDs are directed acyclic graphs constructed in the
same way as Ordered Binary-Decision Diagrams (OBDDs), except that there is a dangling
edge on the root node and every edge is annotated with an integer. An OBDD represents
a Boolean function but an EVBDD represents an integer function. Since Boolean functions
can be implemented as a special case of integer functions, EVBDD is a more powerful rep-
resentation than OBDD. We present a few applications of EVBDDs: proving correctness of
circuit designs, solving integer linear programming problems, computing spectral coefficients
of Boolean functions, and performing multiple-output Boolean function decomposition. In
each case, experimental results are provided.



1 Introduction

Ordered Binary-Decision Diagrams (0BDDs) [9] are a graphical representation of Boolean
functions. With the canonical property of OBDDs, many Boolean properties such as the
number of supporting variables, the unateness of variables, and the symmetry between vari-
ables can be easily detected. With the compactness property and high hit ratio for caching
computational results, many Boolean operations can be effectively carried out in OBDD rep-
resentation. For example, tautology checking and complementation take constant time while
conjunction and disjunction take polynomial time in the size of OBDDs. Although the num-
ber of nodes in OBDD representations may be exponential in the input size, OBDDs have a
reasonable size in many practical applications.

In addition to Boolean functions, many problems defined in small, finite domains can
also employ OBDD representation through binary encoding of these domains. For example,
after encoding each element in a set of size N by a vector of n = [log, N| binary variables,
a set can be represented by a Boolean function with n variables such that an element is in
the set if and only if its corresponding function value is true. Set operations such as union
and intersection then correspond to Boolean disjunction and conjunction; testing if a set is
empty is equivalent to checking if its corresponding Boolean function is constant function 0.
Similar to the above ‘symbolic analysis’, many tasks encountered in computer aided design,
combinatorial optimization, mathematical logic, and artificial intelligence can be formulated
and solved through OBDD representation [10].

While oBDDs are useful for problems which can be solved through symbolic Boolean
manipulation, they are not very effective for those requiring arithmetic operations in integer
domain. Although we can represent integer functions by vectors of Boolean functions and
perform arithmetic operations through Boolean operations on each bit, it is very time con-
suming. In this paper, we present a new data structure called Edge-Valued Binary-Decision
Diagrams (EVBDDs) which can represent and manipulate integer functions as effectively as
oBDDs do for Boolean functions.

EVBDDs are directed acyclic graphs constructed in a similar way to OBDDs. As in OBDDs,
each node either represents a constant function with no children or is associated with a
binary variable having two children, and there is an input variable ordering imposed in every
path from the root node to the terminal node. However, in EVBDDs there is an integer
value associated with each edge. Furthermore, the semantics of these two graphs are quite
different. In OBDDs, a node v associated with variable 2 denotes the Boolean function
(x A fi) V(T A [r), where fi and f, are functions represented by the two children of v. On
the other hand, a node v in an EVBDD denotes the arithmetic function z(v; + fi) + (1 —
z)(v, + f.), where v and v, are values associated with edges going from v to its children, and
fi and f, are functions represented by the two children of v. To achieve canonical property,
we enforce v, to be 0.

EVBDDs constructed in the above manner are more related to pseudo Boolean func-
tions [26] which have the function type {0,1}" — integer. For example, f(z,y,z) =
3z + 4y — Saz with z,y,2z € {0,1} is a pseudo Boolean function, and f(1,1,0) = 7 and
f(1,1,1) = 2. However, for functions with integer variables, we must convert the inte-
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ger variables to vectors of Boolean variables before using EVBDDs. In the above example, if

S



z € {0,...,5}, then f(z,y, 2) = 3(4wa+2x1 +20)+4y—5(dwg+221 +20)z and f(4,1,1) = —4.

By treating Boolean values as integers 0 and 1, EVBDDs are capable of representing
Boolean functions and perform Boolean operations. Furthermore, when Boolean functions
are represented by OBDDs and EVBDDs, they have the same size and require the same time
complexity for performing operations. Thus, EVBDDs are particularly useful in applications
which require both Boolean and integer operations.

We present four applications of EVBDDs. The first application is in logic verification
where the objective is to show the equivalence between a behavioral specification and an
implementation. The correctness of a circuit design can only be proved up to the specification
used. For example, if the behavior of a 64-bit adder is specified through 65 Boolean functions
(64 bits plus carry), then the behavior of arithmetic addition can never be proved. On the
other hand, if the specification language allows to specify the operator ‘+’ directly (e.g.,
‘z + 1), then the correctness is up to the arithmetic addition. Since EVBDDs can represent
both Boolean and arithmetic functions, the equivalence between these two functions can be
proved directly up to the arithmetic behavior.

The second application is in solving integer linear programming (ILP) problems. An
ILP problem is to find the maximum (or minimum) of a goal function subject to a set
of linear inequality constraints. Each constraint defines a feasible subspace which can be
represented as a Boolean function. The conjoining of these constraint (i.e., the conjunction
of the corresponding Boolean functions) defines the overall feasible subspace. The problem
is then solved by finding the maximum (or minimum) of the goal function over the feasible
subspace.

The third application is in computing the spectral coefficients of a Boolean function.
The main purpose of spectral methods [52] is to transform Boolean functions from Boolean
domain into spectral (integer) domain so that a number of useful properties can be more
casily detected. When a Boolean function is represented in Boolean domain, the function
value for each minterm precisely describes the behavior of the function at that point but
says nothing about the behavior of the function for any other point. In contrast, spectral
representation of a Boolean function gives information which is much more global in nature.
For example, for function f(wg,...,&n-1, the spectral coefficient of Tg...Tn 1 corresponds
to the number of onset points of f(zg...a,—1). Since EVBDDs can represent functions in
both Boolean and spectral domains, we are able to use arithmetic operations in EVBDDs to
efficiently carry out the spectral transformations.

The fourth application is in the representation of multiple output Boolean functions.
Clearly, we can use the OBDD representation to solve integer problems through the binary
encoding of integer variables. Similarly, we can also use the EVBDD representation to perform
multiple output Boolean function operations through integer interpretation of the functions
(e.g., a multiple output function fo, ..., fm—1 can be represented by an integer function
9m=1 fot ... 4+2°f_1). We will present an EVBDD-based function decomposition algorithm as
an example. When this algorithm is applied to an EVBDD representing a Boolean function, it
performs single-output function decomposition; when it is applied to an EVBDD representing
an integer function representing a multiple-output Boolean function, it performs multiple-

output function decomposition.
The remainder of this paper is organized as follows. In section 2, we define the syntax



and semantics of EVBDDs, prove their canonical property, and show their relationship to
Boolean functions. Four applications of EVBDDs: verifying circuit behavior, solving ILP
problems, computing spectral coeflicients, and performing multiple output Boolean function
decomposition are presented in sections 3, 4, 5, and 6, respectively. Conclusions are given
in section 7.

2 Edge-Valued Binary-Decision Diagrams

In this section, we first define the EVBDD data structure and prove its canonical property.
We then present a general paradigm for operating on EVBDDs and elaborate on EVBDD
properties which are useful in speeding up operations. Finally, we show that representing
Boolean functions by 0BDDs and EVBDDs have the same space (in terms of the number of
nodes in the data structure) and time (in terms of the number of operations) complexities.

2.1 Definitions

The following definitions describe the syntax and semantics of EVBDDs.

Definition 2.1 An EVBDD is a tuple (¢, f) where c is a constant value and f is a directed
acyclic graph consisting of two types of nodes:

1. There is a single terminal node with value 0 (denoted by 0).

2. A nonterminal node v is a 4-tuple (variable(v), child|(v), child.(v),value),
where variable(v) is a binary variable 2 € {g,...,2-1}.

An EVBDD is ordered if there exists an index function indez(z) € {0,...,n — 1} such that
for every nonterminal node v, either childi(v) is a terminal node or index(variable(v)) <
index(variable(child)(v))), and either child,(v) is a terminal node or indez(variable(v)) <
index(variable(child,(v))). If v is the terminal node 0, then index(v) = n. An EVBDD is
reduced if there is no nonterminal node v with childi(v) = child,(v) and value = 0, and
there are no two nonterminal nodes u and v such that u = v.

Definition 2.2 An EVBDD (c,f) denotes the arithmetic function ¢+ f where f is the function
denoted by f. 0 denotes the constant function 0, and (z,1,r,v) denotes the arithmetic

function z(v + 1) + (1 — z)r.

In this paper, we consider only reduced, ordered EVBDD. In the graphical representation
of an EVBDD (¢, f), f is represented by a rooted, directed, acyclic graph and ¢ by a dangling
incoming edge to the root node of f. The terminal node is depicted by a rectangular node
labelled 0. A nonterminal node is a quadruple (z,1,r,v), where @ is the node label, 1 and r
are the two subgraphs rooted at x, and v is the label assigned to the left edge of z.



(a) (b)

Figure 1: Two examples.

Example 2.1 Fig. 1 shows two arithmetic functions fy = 3 — 42 + 42y + 2z — 2y + y=z and
fi = dag + 221 + 4 represented in EVBDDs. The second function is derived as follows:

f] = 0 + f::m

f.‘ng = 10(4+fx1)+(1 '_J:O)fz'l = 410'{'231 +3:21
o = @@+ f)+ (=2 = 2u1+as,

fes = w2(140)4 (1 —22)0 = @.

i

Note that an EVBDD requires only n nonterminal nodes to represent an n variable linear
function, for example, Fig. 1 (b) is a linear function which can also be interpreted as a 3-bit
integer.

Definition 2.3 Given an EVBDD (¢, f) with variable ordering o < ... < Zn-1, the evalua-
tion of (¢, f) with respect to an input pattern (bo,...,bi-1),0 <@ <mnis defined as follows:

eval({c,0), (bo,...,bic1)) = ¢
eval({c+v,1), (bo, ..., bi—1)) if j <iand b;j =1,
eval({c, (z;,1,r,0)), (boy ... bic1)) = eval((c,r), (bo, - .., bi-1)) if j < and b; =0,
(e, (s 1,7,v)) if § 2.

From the above definition, function values in an EVBDD representation are obtained by
summing edge values (right edge values are always set to 0) along the path associated with
the input assignment. For example, in Fig. 1 (a), the function value of # = 1,y = 0 and
z=1is3+(—4)+ 0+ 1 =0, and the function value of 2o = 1,2, = 0 and zo = 1 in Fig. 1
(b)is0+4+0+1=05.



EVBDD is a canonical representation of functions from {0, 1}" to the set of integers. This
is stated in the following lemma.

Lemma 2.1 Two EVBDDs (cy,f) and (c,,g) denote the same function (i.e., Yb € B®,
eval((cy,f),b) = eval((cy, g), b)), if and only if ¢; = ¢, and f and g are isomorphic.

Proof: Sufficiency: If ¢; = ¢, and f and g are isomorphic, then Vb eval({cs,f),b) =
eval({c,, g), b) directly follows from the definitions of isomorphism and eval.
Necessity: If ¢y # ¢, then let b = (0,...,0) be the input assignment to f and g (e.g., Fig. 2
(a)). We have the following

eval((cs,f),b) = ¢y # ¢y = eval({c,, g),b).
Thus, we focus on the latter condition on f and g. We want to show if f and g are not iso-
morphic, then 3b € B" such that eval({0,f),b) # eval((0,g),b). Without loss of generality,
we assume index(variable(f)) < index(variable(g)). Let k = n — index(variable(f)), we
prove the lemma by induction on k.
Base: When & = 0, f is a terminal node and so is g. Furthermore, f = g = 0. Thus, fand g
are isomorphic.
Induction hypothesis: Assume it is true for n — index(variable(f)) < k.
Induction: We show that the hypothesis holds for n — index(variablef) = k.
Let f = (.‘En_k, fl,fg,vf).

case 1: n — index(variable(g)) = k, that is, g = (Zn—k, 81, &r, Vy)-
If v; # vy, let b= (...,0,1,0,...), that is, b,_x = 1 and b; = 0,Vi # n — k, then
eval((0,f),b) = vy # v, = eval({0,g),b) (e.g., Fig. 2 (b)). If vy = v,, then either f;

and g are nonisomorphic, or fy and g, are nonisomorphic.

subcase 1: If fj and g are not isomorphic, then from n — index(variable(fi)) < k, n—
indez(variable(gy)) < k, and induction hypothesis, there exists b = (bo, .. ., bo—1) such
that eval((0,1)),b) # eval((0,g1),b). Let b’ = (bf,...,b,_;) such that b,_, =1 and
b, = b; for i # n — k, then eval((0,f),V') = eval({vy, i), V') # eval({vy, g1), ") =
eval({0,g),b) (e.g., Fig. 2 (c)).

subcase 2: Otherwise, fy and g are not isomorphic, then by similar arguments, letting

! . =0and b = b;,Vi #n—k will result in eval((0,f), t') # eval((0, g), ).

n—k —

case 2: n —index(variable(g)) < k.

By definition of reduced EVBDD, we cannot have both (v; = 0) and (fj and f; are
isomorphic). If vy # 0, let b, = 1 and b; = 0 for ¢ # n—k, then eval({0,f),b) = vy #
0 = eval({0,g),b) (e.g., Fig. 2 (d)). (Since g is independent of the first n — k bits.)
Otherwise, fj and fy are not isomorphic and at least one of them is not isomorphic
to g. If fi (fr) and g are not isomorphic, then by induction hypothesis, there exist a
b such that eval({0,fi(f:)),b) # eval({0,g),b). Again, let ,_, = 1(0) if fy(fy) is not
isomorphic to g, and b} = b; for i # n — k, eval((0,f), V') # eval((0,g),V).

O



(d)

Figure 2: Examples for proving canonical property.

2.2 Operations

The following algorithm describes the function (EVBDD) apply which takes (cs, f), {c;, g) and
op as arguments and returns (cx, h) such that ¢, +h = (¢s + f) op (¢, + g) where op can be
any operator which is closed over the integers.

In algorithm apply, a terminal case (line 1) occurs when the result can be computed
directly. For example, op = x and (cs,f) = (1,0) is a terminal case because (1,0) = 1+0 =
1, {c;,8) = ¢, + g, and 1 x (¢, + g) = (¢g + g) = (¢4, 8), thus the result can be returned
immediately without traversing the graph.

A comp_table storing previously computed results is used to achieve computation effi-
ciency. An entry of comp_table has the form (f,g,op, h} which stands for f op ¢ = h. To
compute f op g, we first look up the comp_table with key (f, g, op), if an entry is found then
the last element of the entry h is retrieved as the result; otherwise, we perform op on the
subgraphs of f and g and store the result in comp.table after the completion of [ op g. The
entries of comp_table are used in line 2 and stored in line 21.

After the left and right children have been computed resulting in {cp,, hy) and (ch, , hy)
(lines 17 and 18), if (enshy) = (cn,, hy), the algorithm returns {ch s hy) to ensure that the
case of (z,k, k,0) will not occur; otherwise, it returns (c,, (var, hy, hy, ey, —cp,)) to preserve
the property of right edge value being 0. There is another table (uniq-table) used for the
uniqueness property of EVBDD nodes. Before apply returns its result, it checks this table
through operation find_or_add which either adds a new node to the table or returns the
node found in the table.



apply((cy, f), (cy, ), 0p)

{

I if (terminal_case((cy,f), (c,, 8), op) return((c;, ) op (c,,)));
2 if (comp_table_lookup((cy,f), (c,,8), op, ans)) return(ans);
3 if (2ndex(f) > index(g)) {

4 (cqs81) = (¢ + value(g), child(g));

9 (co,+ 8r) = (cy, child,(g));

6 var = variable(g);

T}

8  else {

9 (cqrs 81) = (Cg,+ 8r) = (¢4, 8);

10 var = variable(f);

11}

12 if (indez(f) < index(g)) {

13 e Ty = {ey —|~va!ue(f) child)(f));

14 {es,, Iry = {ey, child (f));

15 '}

16 else { (cg, 1) = (e, fr) = (cr,f)i}

17 (en, i) = (tppfy((cf,,fl), (Cars 81), op);

18 (en,, hr) = apply({cs,, fr), (¢, ), oP);

19 if ((en,, ) == (en,,hy)) return ({en,, hy));
20 h = find_or_add(var,hy,hy, cp, — cn,);

21 comp_tableansert({cs,f), (cy, 8),0p, (cn,, h));
2 return ({c;,,h));

Example 2.2 An example of apply((0,f),(0,g),+) is shown in Fig. 3. Let the variable
ordering be zo < #;. Fig. 3 (a) shows the initial arguments of apply; (b) is the recursive call
of apply on line 17 whose result is (c). Similarly, another call to apply on line 18 and its
results are shown in (d) and (e). The final result is shown in (f).

O

If operator op is commutative, then we do the following normalization to increase the hit

ratio of computational results:

if (is_commutative(op)) {
if (index(f) > index(g)||index(f) == index(f) && addr(f) > addr(g))

} swap((es, f), (C_qag));

where addr(f) is the machine address of EVBDD node f. The above code is carried out before

performing comp_table_lookup in line 2 of apply.



(a) b ©

(d) (e) n

Figure 3: Example of the apply((0,f), (0,g),+) operation.

2.2.1 Complexity Analysis and Flattened EVBDDs

The time complexity of operations in OBDD representation is O(|f| - |g|) where |f| and |g]
are the number of nodes of OBDDs f and g. The time complexity of operations in EVBDD
representation is however not O(| (c;,f) | - | (¢;,8) |) where | (cs,f) | and | (c,,g) | are the
number of nodes of EVBDDs (cy,f) and (c,,g). This is because for an internal node v of
(cs,f) or {c,,g), apply may generate more than one (c,,v) (lines 4, 5, 13, and 14).

Definition 2.4 Given an EVBDD (cy,f) with variable ordering zy < ... < 2,1 and a node
v of £ with variable z;, we define the domain of v (D), and the cardinality of v (]| v |) as
follows:

I

{cu | (cu,u) = eval({cy, ), (bo, ..., bi_1)) where u = v, ¥({bo, ..., b;_1) € B'},
I stnl |

Dzual
Ivl

The cardinality of (c;s,f), denoted as | {cy,f) [, is then given as:

lep B = 220V

vef

Note that | (c;,f) | gives the number of possible (¢, v)’s which may be generated from (ey, f)
by apply.

Example 2.3 Let (0,%p) be the EVBDD in Fig. 2.1 (b), then |xo[= 1, [x1]= 2, | x2 = 4,
|o|=8, and | (0,xo) |= 15. The (c,,V)’s for node x2 are shown in Fig. 4.

9



0 2 i 6
1 1 1 1
0 0

Figure 4: The (¢,,v)’s of x3.

Figure 5: An example of flattened EVBDD.

To have a more precise measure of the time complexity of operations in EVBDD represen-
tation, we define flattened EVBDDs as [ollows.

Definition 2.5 A flattened EVBDD is a directed acyclic graph consisting of two types of
nodes. A nonterminal node v is represented by a 3-tuple (variable(v), child)(v),child.(v))
where variable(v) € {zo,...,2a-1}. A terminal node v is associated with an integer v.
Reduced, ordered, flattened EVBDDs are defined in the same way as OBDDs.

Definition 2.6 Given a flattened EVBDD f with variable ordering zg < ... < Z,_1, the
evaluation of f with respect to an input pattern (bg,...,bi—1),0 < i < n is defined as follows:

evaly(v, {bg,...,bi-1)) = v, if v is a terminal node,
evaly(1, (by,...,bi-1)) if j <z and b; =1,
6?)&!_{((:173;,1, I’), (bg, o b,‘_l)) = EU(I.ZI(I‘, (bg, witiive b,'_])) 1f_] < and b_-,' = f),
{4 LT if # 2 1.

Example 2.4 The flattened EVBDD for the function in Fig. 1 (b) is shown in Fig. 5.

O

From the above definition, flattened EVBDDs are exactly the same as Multi-Terminal
OBDDs in [12]. Function values in the flattened EVBDD representation are obtained in the
same way as in the OBDD representation. The flattened EVBDD representation also preserves
the canonical property.

10



Lemma 2.2 Two flattened EVBDDs f and g denote the same function if and only if they
are isomorphic.

Proof: The proof of the canonical property of OBDD representation in [9] can be used to
prove the canonical property of flattened EVBDD representation by replacing terminal nodes
0 and 1 by terminal nodes u and v where u # v.

]

Lemma 2.3 Given a function f represented by an EVBDD (¢, f) and a flattened EVBDD f,
I (e, £) |=[£"]-

Proof: For any b € B', eval({c,f),b) = (c,,v) and evals(f',b) = v' denote the same function.
Since both EVBDD and flattened EVBDD are canonical representations, the mapping between
(c,v) and v’ is one-to-one. Thus, for any b # V', evals(f',b) = evaly(f', V') if and only if
eval({c,f), b) = eval((c,f), V).

O

Since EVBDDs are acyclic directed graphs and there is no backtracking in apply, the time
complexity of apply is O(|| {(¢s,f) || - | {¢;»8) ). In many practical applications, the number
of nodes in an EVBDD may be small, but its cardinality can be very large. For example, an
n-bit integer represented by an EVBDD requires only n nonterminal nodes, but its flattened
form requires exponential number of nodes.

apply is a general procedure for performing operations in EVBDDs without incorporating
any property to reduce complexity. In the following, we present a number of properties that
can be used to reduce the computational complexity of apply in many situations.

2.2.2 The Additive Property

The EVBDD representation enjoys a distinct feature, called additive property, which is not
seen in the OBDD representation.

Definition 2.7 An operator op applied to (cs,f) and (c,,g) is said to satisfy the additive
property if
(cs+ f) op (g +g) = (c5 op ¢y) + (f op 9).

Examples are (¢; + f) 4 (cy+9), (er+ 1)~ (eg+9), (er+f) x (c+0), and (¢ + f) << (c+0)
where << is a left shift operator as in C programming language [32] (i.e., (cy + f) % 2°).
We use (¢; + f) — (¢ + g) as an example:
(1 + 1)~ (cg +9) = (e = ¢) + (F — 9).

Because the values ¢; and ¢, can be separated from the functions f and g, the key for this
entry in comp_table is ((0,f), (0,g), —). After the computation of ((0,f), (0,g),—) resulting
in (cx, h), we then add ¢; — ¢, to ¢, to have the complete result of ((cs, f), (cg, g),—). Hence,
every operation ((¢},f), (¢}, g), —) can share the computation result of ((0,f), (0,g),—). This
will then increase the hit ratio for caching the computational results. For operators satisfying
the additive property, the time complexity of apply is O(| (¢s,f) | - |{¢s,&|) (as opposed to

Ol (e, D)) - 1 {eqr 8) )-

i |



To implement this class of operators, we insert the following lines between lines 1 and 2
of apply:

Ll &y=¢pop¢;
1.2 ¢r=¢=0

We also replace lines 2, 19, and 22 of apply by the following lines:

2 if (comp_table_lookup((cys,f), (¢, 8), 0P, (cn, h)))
return ((cx + ¢y, h));

19 if ((en,, 1) == (en,, hr)) return ({en, + cs4, h1));

22 return ({cp, + cgg,h));

For cases of (¢; + f) x ¢ and (¢ + f) << ¢, we can further separate the processing of
edge values. The following pseudo code times.c({c;,f),¢) performs operation (¢; + f) x ¢
with time complexity O(|f]). Note that the new edge value value(f) x ¢ is computed in line
5 instead of passing down to the next level in line 3 (cf. line 4 or 13 of apply).

times_c((cys,f), ¢)

if (f == 0) return {¢; X ¢, 0);

if (comp_table_lookup({0,f),c,times_c,(0,h))) return (cy x ¢, h);
(chyy hy) = times_c((0, childi(£)), c); [*cn, = 0%/

(ch,, hy) = times_c((0, child,(f)), ¢); [*cp, = 0%/

h = find_or_add(variable(f), hy, hy, value(f) x ¢);
comp_table_insert((0,f), ¢, times_c, (0, h));
return {¢; x ¢, h);

=1 O O i LD B

An important application of this class of operators is to interpret a vector of Boolean
functions as an integer function: 2™~ fo + ... 4+ 2° fra_1.

2.2.3 The Bounding Property

Before defining this property, we present a new type of computation sharing occurring for
relational operations. We use operator < as an example. Let (cs,f) <v (c,;,g) denote that
{¢f,f) < (e, g) holds for all input patterns. It follows that

(0,f) <y (0,g) and (¢; — ¢,) <0 implies (cy,f) <v (¢y,8)

which can be seen to be true based on the following derivation:

(0,f) <v (0,g) 04+ f<v0+g,
OSV _f+g1

Cf— G SV_f_l_ga
cr+ f<veg+ g,

(ef,f) <v {58

(cf—¢y) <0

A



To achieve the above computation sharing, we can have a comp_table entry ({0, f), (0, g), <v

,(1,0)). However, we can do better as follows. Consider the following transformation of the
above implication:

(0,£) <v (0,8) = (0,f) —(0,8) <v(0,0),

= maz({0,f) — (0 g)) <0

= —m = maz((0,f) — (0, )) <0,
(cf—c)<m = (¢f—¢)—m<0,

= (¢ — ¢) +maz({0,f) — (0,g)) <0,

= maz((cs, ) — (cg,8)) <0,

= (Cj, f} - (Cg’ g) (0 0)

= (¢, f) Sv e 8)-

Based on the above implication, we replace (¢s,f) < (¢;,g8) by two operations: (cs,f) —
(cgrg8) = (cn,h) and (¢, h) < (0,0). We store the maximum and minimum function values
with each EVBDD node and have the following terminal cases:

if (¢ 4+ maz(f)) <0 return (1,0), and
if (¢; +man(f)) > 0 return (0, 0).

Another important reason for the inclusion of the maximum and minimum values in each
node is that we can easily incorporate branch and bound algorithms into EVBDD represen-
tation and thus can solve optimization problems more effectively.

Definition 2.8 An operator op applied to (cs,f) and (c,,0) is said to satisfy the bounding
property if

((cs +m(f)) op ¢,) =0, 1, or (¢; + f),

where m(f) is the maximum or minimum of f.

As a result, when the maximum or minimum of a function exceeds a boundary value (e.g., ¢,
in Def. 2.8) in an operation, then the result can be determined without further computation.
As an example, the following pseudo code leq0((cy, f)) performs operation (¢f 4 f) < 0:

eq0({cy, f))

if ((¢y + max(f)) < 0) return((1,0));

if ((c; + min(f)) > 0) return((0,0));

if (comp_table_lookup((cy,f),leq0, ans)) return(ans);
(e, ) = leq0({cs + value(f), child(f)));

(ch,, hy) = leq0({cy, child,(£)));

if ((cn,,h1) == (cn,, hy)) return ({cn,,hy));

h = find_or_add(variable(f), hy, hy, ¢y, — ¢, );
comp_table_insert({(cy,f),leq0, (cx,, h));

return ({cp,,h));

~—
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2.2.4 The Domain-Reducing Property

In (cs,f) op (cy, g) where op satisfies the additive property, exactly one (0, v} pair is generated
for each node v of f and g. Thus, the ‘effective’ domain of each node becomes {0}. There
are other operators which have similar effect on reducing the domain of EVBDD nodes.

Definition 2.9 Given an EVBDD (¢, f), the domain of a node v of f with respect to an
operator op is defined as:

D = {c, | {cy,Vv)’s are the pairs that need to be generated with respect to op}.

Definition 2.10 An operator op applied to (¢s, f) and (¢,, g) is said to satisfy the domain-
reducing property if there exist some node v of f or g such that D% C D&+,

An example of this is the following:
(c;+ f) mod ¢ = ((¢; mod ¢) + f) mod c.

The domain of a node v of fis DI = D' 0 {0,...,¢ — 1}. In this case, (¢; + kc,f)
can share the computation result of (¢s,f) for any integer k. When ¢ is small, computation
sharing is large; when ¢ is large, then the following check (using the boundary property) can
be used to increase the computation saving:

if ((¢y + maz(f)) < ¢ && (¢j + min(f)) > 0) then {cy, f).

Another example is integer division operator with constant divisor:

(c; + /e = (cs/e) + ((ef mod c) + f)]e,

assuming both ¢; and ¢ are positive integers for this example. In fact, integer division
operator with constant division satisfies the three properties: (cy/c) satisfies the additive
property, (¢; mod c¢) satisfies the domain-reducing property, and

if ((¢f +maz(f)) < ¢ && ¢p + min(f) > 0) then 0

satisfies the bounding property.

2.3 Representing Boolean Functions

By using integers 0 and 1 to represent Boolean values false and true, Boolean operations can
be implemented through arithmetic operations as shown below:

Ay = zy, (1)
zVy = z+4y—ay, (2)
rhy = z+y-—2zy, (3)

T = l=ga. (4)

Thus, Boolean functions are a special case of integer functions and OBDDs are a special case
ol EVBDDs.

14



Figure 6: A full-adder represented in EVBDDs: (a) carry (b) sum.

Example 2.5 The sum and carry of a full adder in EVBDD are shown in Fig. 6. By using
the above equations, we have the following arithmetic functions for sum and carry:

sum = wv+y-+z-—2zy—2yz—2zx + dayz,
carry = zy+yz+zz — 2zyz.

a

A full adder represented by arithmetic functions may seem more complicated than when it
is represented by Boolean functions. However, the above equations are only for converting
from Boolean functions to arithmetic functions. Pseudo code apply is capable of directly
performing Boolean operations. For example, Boolean disjunction is carried out through
apply((c;, ), (cy, g), V) with the following terminal cases:

1.1 if ({¢f,f) == (1,0) | {c;,8) == (1,0)) return((1,0));
1.2 if ({er,f) == (0,0) | {¢s,f) == (c;,8)) return((cy, 8));
1.3 if ((135,1 g) == (0,0)) return((cy,));

Furthermore, when a Boolean function is represented by an EVBDD, it requires the same
number of nonterminal nodes and nearly the same topology as when it is represented by an
oBDD. This is shown by the following algorithm and lemmas.

Algorithm A: Converting a Boolean function from OBDD representation to EVBDD repre-
sentation.

1. Convert terminal node 0 to {0,0) and 1 to (1,0).

9. For each nonterminal node (z;,1,r) in OBDD such that 1 and r have been converted to
EVBDDs as (¢, 1) and (c,,r'), apply the following conversion rules:

(a) (=i, (0,1'), (0,x")) = (0, (=, 1,1, 0)),
(b) {x:, (0,1, (1,2%) = (1, (=, 1,0, —1)),

15
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Figure 7: A full-adder represented in OBDDs: (a) carry (b) sum.

(C) (:I:,-, (15 ll)! <0! r’)) = (01 ("Eia I, ¥, 1))1
(d) {aq, (1,1%,{1, 2}) = (1,{z:, 1,2, 0)).

Example 2.6 Fig. 7 shows the OBDD representation of carry and sum. After Algorithm
A, they will be converted to the EVBDDs in Fig. 6

Lemma 2.4 Algorithm A converts an OBDD v to either (0,v') EVBDD or (1,v') EVBDD.

Proof: In step 1, only (0,0) or (1,0) can be generated, and in step 2, only (0,v) and (1,v)
can be generated for some v.

a
Lemma 2.5 Algorithm A will neither add nor delete any nonterminal node or edge.
Proof: Directly follows from Algorithm A.

Lemma 2.6 Algorithm A preserves functionality. That is, given an OBDD v, if the appli-
cation of Algorithm A on v results in an EVBDD (¢, V'), then v and (¢, v') denote the same
function.

Proof: Let v represents a Boolean function with n variables, we prove the lemma by induction
on n.

Base: n = 0. v is 0 or 1 and denotes constant function 0 or 1. From step 1 of Algorithm A,
{e,v") = (0,0) or (1,0) and denotes the function 0 +0=0o0r 1 +0=1.

Induction hypothesis: Assume it is true forn =0,..., k- L.

Induction: Let v be an OBDD node (z,1,r) representing the Boolean function (z Al)V (Z A7)
where [ and r are the functions represented by 1 and r respectively, and each has less than
k variables. By induction hypothesis, 1 and r can be converted into (¢;,1’) and (¢, 1) such
that | = ¢;+ ' and r = ¢, + 1. From step 2 of Algorithm A, v will be converted into (c, v')

16



and we need to show (z Al)V (TAr) = c+v'. In the following, we only prove the correctness

of case (b) above, the other three cases can be proved similarly. In case (b), (¢;,1) = (0,1')

and (c.,r') = (1,r'). From induction hypothesis, =0+ = 1" and r = 1 + 7. 1
LHS = (zAlV(ZAr)

zl+ (1 —a)r —zl(l —a)r

el4+r —ar —alr+2lr

zl+r—ar

al'+ (1+7") —a(l+ 1)

2l + 147" —2—ar

RHS = 147

l+a(=1+I)+(1—a)’

1l =z4zl'+r' =2

= LHS

I

O

Theorem 2.1 Given a Boolean function represented by an OBDD v and an EVBDD (¢, V'),
then v and v’ have the same topology except that the terminal node 1 is absent from the
EVBDD v’ and the edges connected to it are redirected to the terminal node 0.

Proof: It directly follows from lemmas 2.4, 2.5, and 2.6 and the canonical property of EVBDD
representation.

0l

Lemma 2.7 When EVBDDs are used to represent Boolean functions, exactly one of (0,v)
or (1,v) can be generated during the process of apply (lines 4, 5, 9, 13, 14, and 16) where v
is a nonterminal node.

Proof: If (¢, v) is generated where ¢ # 0 and ¢ # 1, then eval({c,v),(0,...,0)) = ¢ which
implies that it is not a Boolean function. If both (0,v) and (1,v) are generated, then
there exist by and b; such that eval((0,v),by) = 0 and eval((0,v),b;) = 1 because v is
a nonterminal node (i.e., v denotes nonconstant function). Then, eval((1,v),bo) = 1 and
eval({1,v),b;) = 2 which again leads to a non-Boolean function.

O

Theorem 2.2 Given two 0BDDs f and g and the corresponding EVBDDs (cy, f') and (g, &),
the time complexity of Boolean operations on EVBDDs (using apply) is O(If]-|gl)-

Proof: From lemma 2.7, since only one (¢, v) can exist for every nonterminal node v during
the process of apply, we have | (cs,f) |=| (¢, f) | and | (s, 8) [=| (cg,8) |- It is well known
that the time complexity of Boolean operations in OBDD representation is o(f]-lgl)
where |f| and |g| are the number of nodes in OBDD representation. From theorem 2.1, both
representations have the same number of nonterminal nodes, thus the complexities are also

the same.



O

Based on the above theorem, we can use EVBDDs to replace OBDDs for representing
Boolean functions with the following overhead:

1. An integer representing the dangling edge for each function (graph),
2. An integer representing the left edge value for each nonterminal node, and
3. One addition and one subtraction for each call of apply operation (lines 4 and 20).

In the following sections, we present applications of EVBDDs. For the sake of readability,
we also use the flattened form of EVBDDs in graphical representation. In flattened form, edge
values are pushed down to the bottom such that a terminal node is some integer representing
the function value.

3 Logic Verification

The process of logic verification is to show the equivalence between the specification of
intended behavior and the description of implemented designs. If both specification and
implementation are Boolean expressions, then the correctness can only be proved up to the
Boolean behavior. On the other hand, if the specification is an arithmetic function while the
implementation is a set of Boolean expressions, then the correctness is up to the arithmetic
behavior.

When used for logic verification, EVBDDs provide two advantages over OBDDs. First, they
allow equivalence checking between Boolean functions and arithmetic functions. Second, they
handle hierarchical designs, that is, the implementation of a design can be described using
previously verified components rather than having to flatten the design down to the gate
level.

In this section, we first present a simple example of how to use EVBDDs to verify the func-
tional behavior of circuit designs and then describe our verification paradigm for proving data
paths. In order to verify control paths and do hierarchical verification, we extend EVBDDs
to structured EVBDDs. Finally, the input variable ordering strategy for logic verification will
be discussed. *

Example 3.1 We prove that carry(z,y, z) and sum(z,y, z) implement the full adder z+y+
z. That is, with the interpretation of (carry, sum) as a 2-bit integer, we show 2carry+sum =
& + vy + z. Given a gate-level (Boolean) description of a full adder, it is easy to construct
the EVBDD representation of the carry and sum functions as shown in Fig. 6. Carrying out
the expression 2carry + sum results in the rightmost EVBDD shown in Fig. 8. On the other
hand, the specification of the arithmetic behavior of the full adder, z +y + 2, represented in
EVBDDs is shown in Fig. 9. The equivalence between 2carry + sum and z +y + z can then
be checked by comparing the two rightmost EVBDDs in Figures 8 and 9.

18



Figure 8: EVBDD expression: 2carry + sum.
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Figure 9: EVBDD expression: = +y + 2.
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As shown in the above example, the implementation of a design is described by Boolean
functions while its behavioral specification is described as an arithmetic function. The equiv-
alence checking between two different levels of abstraction is carried out by using one repre-
sentation - EVBDD.

3.1 The Verification and Synthesis Paradigm

In this section, we show how EVBDDs can be used to perform functional verification and
synthesis.
We are given the following:

1. The description of an implementation:
7:777'])(-7511: e e 1-1’:11-:) = (91(35111 tee ;wnk)s siere sgm('rlls w e ey ﬂ:nk))a

where @;;’s are Boolean variables and g¢;’s are Boolean functions.

2. The interpretation of the input variables z;;’s:
X1 = fi(zur,. .. 215) (for a j-bit integer),
X, = falza,...,&a) (for a k-bit integer),

where X; = fi(2i1,..., ;) describes how variables (x;,..., ;) should be interpreted
as a p-bit integer through function f;. Thus, X; is an integer variable and f; specifies
the number system used. A number system may be unsigned, two’s complement, one’s
complement, sign-magnitude, or residue. For example, if X; is an unsigned integer,
then fi(zir,...,Tip) = 2P 1an + ... + 2%z,

3. The interpretation of the output variables gi's: G = g(g1,-..,9m). Again, g is a
function representing a number system.

4. The description of a specification:

spec( X1, ..., Xn) = f(X,. .., Xn),

where function f specifies the intended behavior of the implementation.

To show imp realizes spec, we show the following equivalence relation:

H&yyew - y K} = g(gl,...,gm)or
f(fl(frlls---13"1j)a-~-=fn(:[“u'11--- . g(g1(3711,.--,27nk),-.-,gm(ﬂﬁll,---,xnk))-

-
~
=1
Eoad
—
—
|

I'The experimental results in this section were generated on a Sun 3/200 with 8 MB of memory.
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Using the example in the previous section, we have:

imp(x,y,2) = (carry(z,y, z), sum(z,y, 2)),
X = m,
o=y,
Z = 3
G = 2carry + sum,

spec(X,Y,2) = X+Y+2.

And, the correctness of the full adder is verified by showing z + y + z = 2carry(z,y, z) +
sum(z,y,z).

The above paradigm can be reversed to become a procedure for functional synthesis.
Again, we use the full adder as an example except now the goal imp(z,y,z) is not given.
From the description of spec, we have

sum(x,y,z) = spec mod 2,
carry(z,y,z) = (spec— (spec mod 2))/2,

where spec = 2 +y+z. The following sequence of apply operations on EVBDDs then produces
the sum and carry automatically:

(0, xy) = apply((0,x),(0,y), +),
(0, fa) = apply((0,2), (0,xy), +),
(0,sum) = apply((0,fa), (2,0),mod),
(0,temp) = apply((0,fa), (0,sum), —),
(0,carry) = apply((0,temp), (2,0), /).

As presented in Sec. 2.2.4, operations modulo and integer division can be effectively
carried out in EVBDDs. An application of the above synthesis procedure is in logic verification
without variable binding. For example, we can specify a 64-bit adder as ‘z + y’ while the
variable sets in the implementation are a’s and b’s. In this case, we first convert the arithmetic
expression into a vector of Boolean functions and then use Boolean matching [33] to perform
the equivalence checking.

Example 3.2 The design (imp) is a 64-bit 3-level carry lookahead adder which has 129
inputs, 65 outputs, and 420 logic gates. The intended behavior (spec) is specified as:

unsigned(65) add64(x, y, c)
unsigned(64) x, y;
unsigned c;

{
}

where (64) and (65) declare the number of bits. In our experimental implementation, the
generation of 65 EVBDDs of imp (575 nodes in total) takes 1.47 seconds and the generation of

return(x + y + ¢);
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(a) (b) (©)

Iligure 10: Graphical representation of SEVBDDs.

one EVBDD of spec (129 nodes) takes 0.17 seconds. The verification process which converts
65 EVBDDs into one, performing 2% x by+...+2" x bg4, and then compares the result with the
spec takes 4.48 seconds. That is, it takes less than 5 seconds to show 65 Boolean expressions
are really carrying out an addition.

3.2 Structured Edge-Valued Binary Decision Diagrams

As shown in the previous section, we can use EVBDDs to show the equivalence between
Boolean expressions and arithmetic expressions. In this section, we introduce Structured
EVBDDSs, or SEVBDDs for short, which can be used to show the equivalence between Boolean
expressions and conditional expressions. For example, the implementation of a multiplexer
can be described as ‘(z A y) V (2 A z)’ while the specification can be described as ‘if z then
y else z’. In addition to the specification of conditional statements, SEVBDDs also allow the
declaration of vectors.

Definition 3.1 SEVBDDs are recursively defined as follows:
1. An EVBDD is an SEVBDD. (This is the alomic type of SEVBDDs.)

2. (p — t;e) is an SEVBDD if p is an SEVBDD with the {0, 1} range, and ¢ and e are
SEVBDDs. For every input assignment b, the function denoted by (p — t;e) returns
the value £(b), if p(b) = 1; otherwise it returns e(b). (This is the conditional type of
SEVBDDS.)

3. [fis-.-sfm] is an SEVBDD if fi,..., fi are SEVBDDs. For some input assignment b,
[f1, ... fm] returns the vector (f1(b), ..., fm(b)). (This is the vector type of SEVBDDs.)

In graphical representation of SEVBDDs, terminal nodes are atomic type SEVBDDs (Fig. 10
(a)) and there are two types of nonterminal nodes: a conditional node which has three
children (Fig. 10 (b)) and a vector node which has an indefinite number of nodes (Fig. 10

(€))-



(a) (b)

Figure 11: Examples of SEVBDDs.

Example 3.3 Let x,y, z, yo. 71, 20, and z; be EVBDDs, Consider
1. &, 2Ny, & Nz, and
2. (zAy)V(ZAz);
3. (z—y;z), (x> aAy;2), (e —>y;8Az2), (@ > Ay;TAz), and
4. (z = [yo,11]; [20, 21]);
5. [(z — yo; 20), (x — y1;21)] and
6. [(x Ayo) V(T A z0),(z— 2 Ay @Az

SEVBDDs in groups 1 and 2 are atomic type SEVBDDs; Those in groups 3 and 4 are conditional
type SEVBDDs; Those in groups 5 and 6 are vector type SEVBDDs. Note that the SEVBDDs in
groups 2 and 3 represent a 1-bit multiplexer while the SEVBDDs in groups 4, 5, and 6 represent
two 1-bit multiplexers which have the same control signal x. The graphical representation
of those in groups 4 and 5 are shown in Fig. 11 (a) and (b), respectively.

O

Definition 3.2 The type graph of an SEVBDD f is obtained by replacing all terminal nodes
of f by a unique terminal node A.

Example 3.4 The type graphs of the SEVBDDs in Fig. 11 are shown in Fig. 12,

O

SEVBDD would be a canonical representation if two SEVBDDs denote the same function if
and only if they are isomorphic. This is however not true because we can have two SEVBDDs
denoting the same function which have different types (e.g., Ex. 3. 3). However, with proper
restrictions, SEVBDDs can still have the canonical property. That is, if two SEVBDDs satisfy
those conditions then they denote the same function if and only if they are isomorphic. In
the following, we define two conditions such that the subset of SEVBDDs which satisfy these
conditions have the canonical property.



=) ®
Y &

Figure 12: Ixamples of type graph of SEVBDDs.
The first condition is to be isotypic which is defined as follows:

Definition 3.3 Two SEVBDDs are isotypic if their type graphs are isomorphic. Equivalently,
two SEVBDDs f and g are isotypic if

1. Both f and g are EVBDDs, or

2. f=(p;—tsier), g=(p, — ty;€,), py and p, are isotypic, t; and ¢, are isotypic, and
ey and e, are isotypic, or

3. f=[fiseresSmls9=1[0:--.,9m) and every pair of f; and g; are isotypic.

Example 3.5 In Ex. 3.3, the SEVBDDs in groups 1 and 2 are isotypic; the SEVBDDs in group
3 are isotypic but none of them is isotypic to that of 4; SEVBDDs in groups 5 and 6 are not
isotypic.

a

Note that two SEVBDDs which are isotypic but are not isomorphic, may still denote the
same function. In Ex. 3.3, the SEVBDDs in group 3 are isotypic but are not isomorphic, yet
they all denote the same function. Given an SEVBDD p — {5 ¢, for any input assignment b such
that p(b) = 1, the function value of e(b) will not influence the result; similarly, if p(b) = 0,
then ¢(b) is irrelevant. Therefore, we can use operators cofactor (p,t) and cofactory(p,e)
to transform ¢ and e to ¢ and ¢’ such that if p(b) = 1, then ¢'(b) = ¢(b) and €'(b) = 0; if
p(b) = 0, then #'(b) = 0 and €'(b) = e(b). Consequently, we obtain a reduced form (p—tse)
for p — t;e. Operator cofactori(p,t) is carried out in a similar way to the restrict operator
in [14] except for the following differences: When p = 0, restriet returns error while cofactor,
returns 0; Restrict applies to Boolean functions while cofactor, applies to arithmetic and
Boolean functions.

The second condition for SEVBDDs to have the canonical property is to be reduced as
defined in the following:
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Definition 3.4 An SEVBDD is reduced if

1. It is an EVBDD, or

2. It is a conditional SEVBDD of the form (p — ¢; ¢) with cofactor,(p,t) = t, cofactore(p, e) =
e, and ¢t and e are reduced, or

3. It is [fi,..., fm] and every f; is reduced.

In Ex. 3.3, the SEVBDDs in groups 1 and 2 are reduced; the last SEVBDD in group 3 and
the one in group 6 are also reduced.

To show the canonical property of the restricted form of SEVBDDs, we define a function
level on SEVBDDs as follows:

Definition 3.5 The function level : SEVBDD — integer is defined recursively as:
1. level(ev) =0, if ev is an EVBDD,
2. level(p — t;e) = 1 + maa{level(t), level(e)},
3. level([fo,- .-, fm—1]) = 1 + maz{level(fo),...,level(fm-1)}.

In Ex. 3.3, the SEVBDDs in groups 1 and 2 have level 0; the SEVBDDs in group 3 have
level 1, and the SEVBDDs in groups 4, 5, and 6 have level 2.

Lemma 3.1 If two SEVBDDs [ and g are isotypic and reduced, then f and g denote the
same function if and only if they are isomorphic.

Proof: Necessity: It is trivial to show that il f and g are isomorphic, then they denote the
same function.

Sufficiency: If f and ¢ are not isomorphic, then they denote different functions, that is,
Jb € B™ such that eval(f,b) # eval(g,b). We show this by induction on level(f).

Base: level(f) = 0, then both [ and g are EVBDDs. This is true from lemma 2.1.
Induction hypothesis: Assume it is true for level(f) < k.

Induction:

Case 1: f=(p— ts;es) and g = (p = 1,5 €g).

Since [ and ¢ are not isomorphic, then ¢; and t, are not isomorphic and/or e; and ¢, are
not isomorphic. If #; and ¢, are not isomorphic then by induction hypothesis there exists b
such that eval(t;,b) # eval(t, b). Because t; and t, are reduced, that is, if eval(p,b) =0
then eval(t;,b) = eval(ty,b) = 0 by operator cofactor;, we have eval(p,b) = 1. Thus,
eval(f,b) = eval(ts,b) # eval(l,,b) = eval(g,b). By a similar reasoning, we can show that
the induction step holds true when e; and e, are not isomorphic.

Case 2: f=[fi,. -, fm) and g = [g1,- .. Gm]-
There exist 1 < i < m such that f; and g; are not isomorphic and from induction hypothesis

there exists b such that eval(fi,b) # eval(g:,b). Then, eval(f,b) = (..., eval(f; b),...) #
(...,eval(gi,b),...) = eval(g,b).

(]
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Alter proving that isotypic and reduced SEVBDDs enjoy the canonical property, we need
procedures for converting an SEVBDD from one form to another and/or reducing an SEVBDD.
Operator cofactor; and cofactorg are used for converting from atomic (EVBDDs) to condi-
tional form. To convert from conditional to atomic form, we use operator ite which is nearly
the same as the one described in [8] except that our ite operator also applies to arithmetic
functions. Operator ite takes a conditional SEVBDD such as (p — t;¢) (¢ and e are EVBDDs)
as argument and returns an EVBDD [ such that (p — ¢;€) and f denote the same function.
The following pseudo codes are for converting the forms of SEVBDDs and reducing SEVBDDs,
where cofactor_s, cofactor_sy, and ite_s are SEVBDD versions of cofactory, cofactory, and
ite, respectively.

convert(f,g) [+ converting g to the same form as that of [ #/
[+ assuming [ and g have the same number of outputs,*/
[+ e.g., both f and g are atomic form or vector form with the same number of elements #/
{
if (f is an EVBDD)
if (g is an EVBDD) return(g);
if (9 == (p — t;€)) return(ite(p, convert(f,t), convert(f,e)));
else if (f == (p — t;¢))

return(p — convert(t,cofactor_si(p,g)); convert(e, cofactor_so(p,g)));
else /*f:[fIﬁ"'i m] o
if (9 ==(p—t;e))
return(ite_s(p, convert(f,1),convert(f,e)));
else return([convert( fi, g1), .., convert( frm, gm)]);

reduce( f)
{

if (f is an EVBDD) return(f);
else if (f == (p — t;¢))

return(reduce(p) — reduce(cofactor_sy(p,t)); reduce(cofactor_so(p,¢)));
else return([reduce(fy), ... ,reduce( fn)]);

cofactor_s,(p,t)
{ if (1 is an EVBDD) return(cofactor(p,t));
else if (t ==p — t';€')
return(cofactor_sy(p,p') — cofactor_si(p,t'); cofactor_si(p,€'));
else [*t = [t1,...,lm] */
return([cofactor_si(p,t1), ..., cofactor_si(p,tm s
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ite_s(p,t,e) [+ assuming ¢ and e are isotypic #*/
{
if (p is a conditional SEVBDD) return(ite_s(ite_s(p) — t;¢€));
if (¢ is an EVBDD) return(ite(p,t,e));
if (t == (p = ti;er) && e == (p. — te;€c))
return(zte_s(p, p, pe) — tte-s(p,ts,te);ite_s(p, e €e));
if (t ==[t1,...,lm] && e == [e1,...,€n])
return([ite-s(p, t1,€1)y. .., ites(p, tm,em)]);

}

To show the equivalence between a specification and an implementation described in
two different forms, we need to convert from one form to another. In our implementation,
we use the specification as the target form and convert the implementation to the target
form. This is because specifications usually have more compact representations than that of
implementations have. For example, a specification of ‘z <y — z + y; & —y’ where z and y
are n-bit integers, requires 3n, 2n, and 2n nonterminal nodes for representing = <y, z + ¥,
and & —y, respectively. On the other hand, a gate implementation of the above specification
requires 7 + 1 Boolean functions in which the i function (for generating i*" bit) requires
at least 2¢ nonterminal nodes, and the carry function (bit) requires at least 2n nonterminal
nodes. Thus, it requires at least n(n + 3) nonterminal nodes. The following two examples
verify SN74L85 and SNT74181 chips [49], where the first one is a 4-bit comparator and the
second one is a 4-bit ALU.

Example 3.6 The implemented design (imp) is the SNT4L85 chip [49] which is a 4-bit
comparator. This chip has 11 inputs, 3 outputs and 33 gates. The specification (spec) of the
design may be described as:

unsigned(3) comp4(x, y, gt, 1t, eq)
unsigned(4) x, y;
unsigned gt, lt, eq;

if (x > y) return((1,0,0));
else if (x < y) return((0, 1, 0));
else return((gt, 1t, eq))

}

It takes 0.05 seconds to generate the SEVBDD of imp which has 39 nodes and it takes 0.02
seconds to construct the conditional SEVBDD of spec which has 25 nodes. The conversion
from the SEVBDD of imp to that of spec and then the comparison take 0.02 seconds.

O
Example 3.7 The implementation is the SN74181 chip which is a 4-bit ALU [49]. A par-
tial specification is given below. Note: un.comp, two and unsigned perform type coercion.

un_comp results in an unsigned integer, with the most significant bit being complemented.
two means that the result is to be a two's complement integer.
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SNT74181(M, S, A, B, Cin)
unsigned M, Cin;
unsigned(4) S, A, B;

if (M =0)
if (S = 0) return((un-comp (5)) A + (= Cin));

else if (S = 3) return((two(5)) — Cin);
else if (S = 6) return((un_comp(5)) A—B—Cin);

else
if (S = 0) return((unsigned (4)) not(A));
else if (S=1) return((unsigned(4)) not(A or B));

}

Note that we allow the interpretation of the same outputs to different number systems
as well as different sizes in different branches of conditional statements.

The implementation SEVBDD has 765 nodes and can be generated in 0.31 seconds. The
specification SEVBDD has 187 nodes and can be constructed in 0.13 seconds. And the verifi-
cation process takes 0.35 seconds to complete.

O

In addition to providing the ability to check equivalence between Boolean and arithmetic
expressions and between conditional and nonconditional expressions, SEVBDDs are suitable
for hierarchical verification, i.e., verification without having to flatten a component which
has already been verified. In the following two examples, a 64-bit comparator and a 64-bit
adder, the implementations are constructed from 4-bit comparators and 4-bit ALU’s. The
construction of implementation SEVBDDs are however based on the specification SEVBDDs of
the 4-bit comparator and 4-bit ALU’s.

Example 3.8 The design is a 64-bit comparator implemented through serial connection of
16 SN74L85s. A net list description of this design we use is:

outl SNT74L85 a0 al a2 a3 b0 bl b2 b3 gt 1t eq
out2 SNT4L85 ad ab a6 a7 b4 b5 b6 bT outl

outl6 SN74L85 a60 a6l ... b62 b63 outld
Output : outl6

where a net list has the form of : output_name module_name input_name_list. The specifica-
tion of this design is the same as the one in Example 3.6 except that the size declaration is
changed from 4 to 64. Generation of implementation and specification SEVBDDs take 0.26
and 0.39 seconds respectively, and the proof takes 3.35 seconds.
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Example 3.9 The design is a 64-bit ripple-carry adder implemented through serial connec-
tion of 16 SNT74181s. The specification of this design is exactly the same as the one used in
Example 3.2. A net list description of this design we use is:

scl SNT74181 GP G G P a0 al a2 a3 b0 bl b2 b3 c0
sl tail scl
cl  head scl
sc2 SN74181 G P G G P a4 a5 a6 a7 b4 b5 b6 b7 cl

s15  tail sclh

cl5 head sclh

scl6 SNT74181 G P G G P a60 a6l ... b62 b63 cl15
Output : sl s2...sl14 s15 scl6

The first 5 parameters of each SN74181 are connected to the ground or power to select the
addition operation. tail groups all the inputs except the first one (the most significant bit)
while head selects the first bit.

Time to generate the SEVBDDs for the implementation and specification are 2.09 and
0.16 seconds, respectively and time to verify their equivalence is 0.98 second. Note that
generation of implementation SEVBDD takes longer time while verification takes less time
than the case in Example 3.2. This is because, here, we generate 16 SEVBDDs each with the
sum of 4 bits instead of 64 SEVBDDs each with the sum of 1 bit.

3.3 Ordering Strategy

The conditional type of SEVBDDs provides information for determining the ordering of input
variables. For example, for SEVBDD (p — ¢;¢), we assign variables occurring in p lower
indices compared to those in ¢ and e. This ordering strategy matches the suggestion (con-
trolling variables should be put on top of 0BDDs) in [9]. It is more difficult to identify
controlling variables in a Boolean expression. In addition, we assign variables with larger
integer coefficients lower indices compared to those with smaller integer coefficients. This
ordering strategy also matches the observation in [9], and is easier to identify from arithmetic
expressions than from Boolean expressions.

4 Integer Linear Programming

Integer Linear Programming (ILP) is an NP-hard problem [22] that appears in many applica-
tions. Most of existing techniques for solving ILP such as branch and bound [35, 16, 40] and
cutting plane methods [23, 24] are based on the linear programming (LP) method. While
they may sometimes solve hundreds of variables, they cannot guarantee to find an optimal
solution for problems with more than , say, 50 variables. It is believed that an effective
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ILP solver should incorporate integer or combinatorial programming theory into the linear
programming method [4].

Jeong et al. [30] describe an OBDD-based approach for solving the 0-1 programming
problems. This approach does not, however, use OBDDs for integer related operations such as
conversion from linear inequality form of constraints into Boolean functions and optimization
of nonbinary goal functions. Consequently, the caching of computation results is limited to
only Boolean operations (i.e., for constraint conjunction).

Our approach for solving the ILP is to combine benefits of the EVBDD data structure (in
terms of subgraph sharing and caching of computation results) with the state-of-the-art 1LP
solving techniques. We have developed a minimization operator in EVBDD which computes
the optimal solution to a given goal function subject to a constraint function. In addition,
the construction and conjunction of constraints in terms of EVBDDs are carried out in a
divide and conquer manner in order to manage the space complexity.

4.1 Background

An ILP problem can be formulated as follows:
T
minimize Z e
¥=1

n
subject to Za,-‘j:v; <b, 1 €5 =m,
=]

x; integer.

The first equation is referred as the goal function and the second equation is referred as
constraint functions. Throughout this section we will assume the problem to be solved is a
minimization problem. A mazimization problem can be converted to a minimization problem
by changing the sign of coefficients in the goal function.

There are three classes of algorithms for solving ILP problems [48]. The first class is
known as the branch-and-bound method [35, 16, 40]. This method usually starts with an
optimum continuous LP solution which forms the first node of a search tree. If the initial
solution satisfies the integer constraints, it is the optimum solution and the procedure is
terminated. Otherwise, we split on variable  (with value z* from the initial solution) and
create two new subproblems: one with the additional constraint @ < |z*] and the other
with the additional constraint @ > |2"| + 1. Each subproblem is then solved using the LP
method, e.g., the simplex method [17] or the interior point method [31]. A subproblem is
pruned if there are no feasible solutions, the feasible solution is inferior to the best one found,
or all variables satisfy the integer constraints. In the last case, the feasible solution becomes
the new best solution. The problem is solved when all subproblems are processed. Most
commercial programs use this approach [36].

The second class is known as the implicit enumeration technique which deals with 0-1
programming [2, 3, 46]. Initially, all variables are free. Then, a sequence of partial solutions
is generated by successively fizing ree variables, i.e., setting free variables to 0 or I. A
completion of a partial solution is a solution obtained by fixing all free variables in the partial
solution. The algorithm ends when all partial solutions are completions or are discarded.

30



The procedure proceeds similar to the branch and bound except that it solves a subproblem
using the logical tests instead of the LP. A logical test is carried out by inserting values
corresponding to a given (partial or complete) solution in the constraints. A complete
solution is feasible if it satisfies all constraints. A partial solution is pruned if it cannot
reach a feasible solution or could only produce an inferior feasible solution (compared to
the current best solution). One advantage of this approach is that we can use partial order
relations among variables to prune the solution space. For example, if it is established that
z < y, then portions of the solution space which correspond to # = 1 and y = 0 can be
immediately pruned [7, 27].

In the early days, these two methods were considered to be sharply different. The branch
and bound method is based on solving a linear program at every node in the search space
and uses a breadth first strategy. The implicit enumeration method is based on logical
tests requiring only additions and comparisons and employs a depth first strategy. However,
successively versions of both approaches have borrowed substantially from each other [3].
The two terms branch and bound and implicit enumeration are now used interchangeably.

The third class is known as the cutting-plane method [23, 24]. Here, the integer variable
constraint is initially dropped and an optimum continuous variable solution is obtained. The
solution is then used to chop off the solution space while ensuring that no feasible integer
solutions are deleted. A new continuous solution is computed in the reduced solution space
and the process is repeated until the continuous solution indeed becomes an integer solution.
Due to the machine round-off error, only the first few cuts are effective in reducing the
solution space [48].

4.2 The Main Algorithm

In this section, we first show a straightforward method to solve the ILP problem using
EVBDDs. We then describe how to improve this method in this and the following sections.

Example 4.1 We illustrate how to solve the ILP problems using EVBDDs through a simple
example. For the sake of readability, we use flattened EVBDDs (see Sec. 2.2.1).
The following is a 0-1 ILP problem:

minimize 3z + 4y,

subject to 6z + 4y < 8, (1)
z,y € {0,1}.

We first construct an EVBDD for the goal as shown in Fig. 13 (a). We then construct the
constraints. The left hand side of constraint (1) represented by an EVBDD is shown in Fig. 13
(b). After the relational operator < has been applied on constraint (1), the resulting EVBDD
is shown in Fig. 13 (c). Similarly, EVBDDs for constraint (2) are shown in Fig. 13 (d) and
(e). The conjunction of two constraints, Fig. 13 (c) and (e), results in the EVBDD in Fig. 13
(f) which represents the solution space of this problem. A feasible solution corresponds to a
path from the root to 1.

31



()
() ()
7 3 4 0 0 6 4 0 0 11 1

(a)

(b) (c)
() (x) (&)
(1) () (N (1) ()
1 o1 1 0o 01 1

(d) (e) (H

8 g 4 0

(g)

Figure 13: A simple example (using flattened EVBDDs and OBDDs).

We then project the constraint function ¢ onto the goal function g such that for a
given input assignment X, if ¢(X) = 1 (feasible) then p(X) = g(X); otherwise p(X) =
infeasible_value. For minimization problems, the infeasible_value is any value which is
greater than the maximum of g, and for maximization problems, the in feasible value is
any value which is smaller than the minimum of ¢g. In our example, we use 8 as the
infeasible_value. Thus, in Fig. 13 (g), the two leftmost terminal values have been replaced
by value 8. The last step in solving the above ILP problem is to find the minimum in Fig. 13
(g) which is 0.

The above approach has three problems:

1. Converting a constraint from inequality form to a Boolean function may require expo-
nential number of nodes;

2. Even if all constraints can be constructed without using excessive amounts of memory,
conjoining them altogether at once may create too big an EVBDD; and

3. The operator projection is useful when we want to find all optimal solutions. How-
ever, in many situations, we are interested in finding any optimal solution. Thus, full
construction of the final EVBDD (e.g., Fig. 13 (g)) is unnecessary.



In the remainder of this section, we will show how to overcome the first two problems
by divide and conquer methods. In the next section, we will present an operator minimize
which combines the benefits of computation sharing and branch and bound techniques to
compute any optimal solution.

In our ILP solver, called FGILP, every constraint is converted to the form AX — b < 0.
Thus, we only need one operator leq0 (Sec. 2.2.3) to perform the conversion. AX < b is
converted to AX — b+ 1 < 0 (since all coeflicients are integer); AX > b is converted fo
—AX +b<0; and AX = b is converted to two constraints AX —b <0 and —AX + b6 <0.

Initially, every constraint is an EVBDD representing the left hand side of an inequality
(i.e., AX —b) which requires n nonterminal nodes for an n-variable function. FGILP provides
users with an n_supp parameter such that only if a constraint has less than n_supp supporting
(dependent) variables, then it will be converted to a Boolean function. FGILP allows users to
set another parameter c_size to control the size of EVBDDs. Only if constraints, in Boolean
function form, are smaller in size than this parameter, they will be conjoined.

Parameters n_supp and c_size provide two advantages. First, they provide FGILP with
a space-time tradeoff capability. The more memory FGILP has, the faster it runs. Second,
combined with the branch and bound technique, some subproblems may be pruned before
the conversion to the Boolean functions or the conjunction of constraints are carried out.

When there is only one constraint and it is in Boolean form, then the problem is solved
through minimize. Otherwise, the problem is divided into two subproblems and is solved
recursively. Since both the goal and constraint functions are represented by EVBDDs. The
new goal and constraint functions for the first subproblem are the left children of the root
nodes of the current goal and constraints. Similarly, the new goal and constraint functions
for the second subproblem are the right children of the root nodes of the current goal and
constraints.

Our main algorithm, ilp_minimize, employs a branch and bound technique as shown
in Fig. 14. In addition to goal and constraint functions, n_supp, and c.size, there are
two parameters which are used as bounding condition: Lower bound is either given by the
user or computed through linear relaxation or Lagrangian relaxation methods; Upper bound
represents the best feasible solution found so far. The initial value of the upper bound is the
maximum of the goal function plus 1.

If the maximum of goal function is less than the lower bound or the minimum of goal
function is greater than or equal to the upper bound, the problem is pruned. Furthermore,
if there exists a constraint whose minimum feasible solution is greater than or equal to the
current best solution (upper bound), then again the problem is pruned.

Example 4.2 We want to solve the following problem:

minimize —4z + 5y + z + 2w,

subject to 3z + 2y —4z —w <0,
20 +y+ 3z —4w <0,
z,y,z,w € {0,1}.

1. The initial goal and constraint EVBDDs are shown in Fig. 15 (a). Suppose both pa-
rameters n_supp and c_size are set to 4.
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ilp_minimize(goal, constraints, lower_bound, upper_bound, n_supp, c_size)

if (max(goal) < lower_bound) return;

if (min(goal) > upper_bound) return;

if (3¢ € constraints such that minimize(goal, ¢, upper_bound) == 0) return;

new_constraints = conjunction_constraint(constraints, c_size);

if (new_constraints has only one element and is in Boolean form) {
minimize(goal, new_constraints, upper_bound);

}

else {
((goal, new_constraints;), (goal_r, new_constraints,)) =

divide_problem(goal, new_constraints, n_supp);
10 ilp.minimize(goal;, new_constraints;, lower_bound, upper_bound, n_supp, c_size);
11 ilp-minimize(goal,, new_constraints,, lower_bound, upper_bound, n_supp, c_size);
12}

WO 00 =1 O Wt B O B

Figure 14: Pseudo code for idp_minimize.

* 2 3 2 0 0 0
5 1 2 1 5 2 1

1 3 -4 3 1 b 3

2 -4 -1 -4 2 -1 4

(b) (c)
5 1 4
1 T / \ / \
0 1 0 0
2 2
0
(e) ()

Figure 15: An example for conjoining constraints.
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2. Since the number of supporting variables in the constraint EVBDDs is not less than 4,
we divide the problem into two subproblems: one with z = 1 (Fig. 15 (b)) and the
other with z = 0 (Fig. 15 (¢)). The final solution is the minimum of solutions to these
two subproblems.

3. Next, we want to solve the subproblem with 2 = 1. Since the number of support-
ing variables in constraint EVBDDs is smaller than n_supp, we convert the constraint
EVBDDs into Boolean functions by carrying out operation leq0 (Fig. 15 (d)).

4. Since the size of constraint EVBDDs are not less than c_size, we divide the problem
into two subproblems: one with y = 1 (Fig. 15 (e)) and the other with y = 0 (Fig. 15

(£)).

5. Now, we want to solve the subproblem with y = 1. Since the size of both constraint
EVBDDs are less than c_size, we conjoin them together and then solve this subproblem
using the minimize operator (Sec. 4.3).

6. The remaining subproblems are solved in the same way. Note that the solution found
from a subproblem can be used as an upper bound for the subproblems which follow.

O

4.3 The Operator minimize

Operator minimize is similar to the apply operator with one additional parameter b. Given
a goal function g, a constraint function ¢, and an upper bound b, minimize returns 1 if it
finds a minimum feasible solution v < b of ¢ subject to ¢; otherwise, minimize returns 0. If
v is found, b is replaced by v; otherwise, b is unchanged.

Note that when minimize returns 0, it does not imply that there are no feasible solutions
with respect to ¢ and ¢. This is because minimize only searches for feasible solutions that
are smaller than b. Those feasible solutions which are greater than or equal to b are pruned
because of the branch and bound procedure.

The parameter b serves two purposes: it increases the hit ratio for computation caching
and is a bounding condition for pruning the problem space. To achieve the first goal, an
entry of the computed table used by minimize has the form (g, ¢, (b,v)) where v is set to
the minimum of g which satisfies ¢ and is less than b. If there is no feasible solution (with
respect to ¢ and ¢) which is less than b, then v is set to b.

The following pseudo code implements minimize. Lines 1-8 test for terminal conditions.
In line 1, if the constraint function is the constant function 0, there is no feasible solution.
In line 2, if the minimum of the goal function is greater than or equal to the current best
solution, the whole process is pruned. Il the goal function is a constant function, it must be
less than bound; otherwise, the test in line 2 would have been true. Thus, a new minimum is
found in line 3. In line 6, if the constraint function is constant 1, then the minimum of the
goal function is the new optimum. Again, this must be true, otherwise, the condition tested
in line 2 would have been true.
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Lines 9-17 perform the table lookup operation. If the lookup succeeds, no further com-
putation is required; otherwise, we traverse down the graph in lines 19-26 in the same way as
apply. Since minimize satisfies the additive property (Sec. 2.2.2), we subtract ¢, from bound
to obtain a new local bound (local_bound) in line 9. ¢, will be added back to bound in lines
13 or 32 if a new solution is found.

Suppose we want to compute the minimum of ¢ subject to ¢ with current local upper
bound local_bound. We look up the computed table with key (g,¢). If an entry (g,c,
(entry.bound, entry.value)) is found, then there are the following possibilities:

1. entry.value < entry.bound, i.e., a smaller value v was previously found with respect
to g, ¢, and entry.bound (i.e., the minimization of ¢ with respect to ¢ has been solved
and the result is entry.value).

(a) If entry.value < local_bound, then entry.value is the solution we wanted.

(b) Otherwise, the best we can find under g and ¢ is entry.value which is inferior to
local_bound, so we return with no success.

2. entry.bound = entry.value, i.e., there was no feasible solution with respect to g, ¢,
and entry.bound (i.e., there is no stored result for the minimization of g with respect
to ¢ and entry.bound).

(a) If local_bound < entry.bound, then we cannot possibly find a solution better than
entry.bound for g under ¢. Therefore, we return with no success.

(b) Otherwise, no conclusion can be drawn and further computation is required. Al-
though there is no better feasible solution than entry.bound, it does not imply
that there will be no better solution than local_bound.

In cases 1.b and 2.a pruning takes place (also computation caching), in case 1.a, computation
caching is a success, while in case 2.b both operations fail. Note that there is no need for
updating an entry (of the computed table) except in case 2.h.

In lines 25-30, the branch whose minimum value is smaller is traversed first since this
increases chances for pruning the other branch. Finally, we update computed table and
return the computed results in lines 31-39.
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bound = ¢y;

return 1;

J

if ({ce,c) == (1,0)) {

bound = min((c,,g));

return 1;

}

return 0;

local_bound = bound — c,;

if (comp_table_lookup((0,g), (c., ), entry)) {
if (entry.value < entry.bound) {
if (entry.value < local_bound) {
bound = entry.value + cg;

return I;
else return 0;

else {

if (local_bound < entry.bound) return 0;
entry.bound = local_bound;

(Corr 81) = (value(g),child(g));

)
}

(g, gr) = (0, child.(g));

if (index(variable(c)) < index(variable(g))) {
(e €1) = {ce + value(c), child)(c));
(€, Cr) = (ce, child,(€));
(ccncl) = (CCNCT) = (CC,C); }

else {

if (min(gy) < min(gy)) {
t_ret = minimize({cy, 81), (¢q» 1), local_bound);
e_ret = minimize({cy,,gr), (¢, , Cr), local_bound);

else {

}

} o}

e_ret = minimize((cy,,8r), (Cers Cr), local_bound);
t_ret = minimize({cy, 81), (o> €1), local bound);  }
if (tret || eret) {

bound = local _bound + ¢g;
entry.value = local _bound,
comp_table_insert({0,g), (e, c), entry);

return 1;
else {

I

entry.value = entry.bound,

comp_table_insert((0,g), (c., ), entry);

return 0;

}

}



Example 4.3 We want to minimize the goal function —4z + 5y + z + 2w subject to the
constraint (zzw V Tyzw V Zjz V &§zw = 1) shown in Fig. 16. For the sake of readability, the
goal function is represented in EVBDD while the constraint function is represented in OBDD.
The initial upper bound is max(goal) +1=0+5+142+1=9. The reason for plus 1 is
to recognize the case when there are no feasible solutions.

(a) We traverse down to nodes a and b through path = 1 and y = 1. By subtracting
the coefficients of z and y from upper bound, we have 9 — (—4) — 5 = 8 which is the
local upper bound with respect to nodes a and b. That is, we look for a minimum of
a subject to b such that it is smaller than 8. It is easy to see that the best feasible
solution of a subject to b is 1 which corresponds the assignments of z = 1 and w = 0.
Thus, we insert (a,b, (8,1)) as an entry into the computed table and recalculate the
upper bound as —4 +5+14+0=2.

(b) We traverse down to nodes a and b this time through path z = 1 and y = 0. The
new local upper bound is 2 — (—4) — 0 = 6, i.e., we look for a feasible solution which
is smaller than 6. From computed table look up, we find that 1 is the best solution
with respect to a and b and it is smaller than 6. Thus, the new upper bound is
—44+0+4+1=-3.

(c) We reach a and b through path = 0 and y = 1. The local upper bound is —3—-0—5 =
—8. Again, from the computed table, we know 1 is the best solution which is larger
than —8. Thus, no better solution can be found under a and b with respect to bound
—8 and the current best solution remains —3.

(d) We reach nodes a and ¢ through path # = 0 and y = 0. The local upper bound is
—3 —0—0=—3. The minimum of the goal function a is 0 which is greater than —3.

The optimal solution is —3 with z =1,y =0,z =1, and w = 0.

4.4 Discussion

A branch and bound/implicit enumeration based ILP solver can be characterized by the way
it handles search strategies, branching rules, bounding procedures and logical tests. We will
discuss these parameters in turn to analyze and explore possible improvements to FGILP.
Search Strategy

Search strategy refers to the selection of next node (subproblem) to process. There are two
extreme search strategies. The first one is known as breadth first which always chooses
nodes with best lower bound first. This approach tends to generate fewer nodes. The second
one is depth first which chooses a best successor of the current node, if available, otherwise
backtracks to the predecessor of the current node and continues the search. This strategy

requires less storage space. FGILP uses the depth first strategy.
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(a) (b)

Figure 16: An example for the minimize operator.

Branching Rule
This parameter refers to the selection of next variable to branch. Various selection criteria
which have been proposed use priorities [39], penalties [18, 50], pseudo-cost [5], and integer
infeasibility [3] conditions. Currently, FGILP uses the same variable ordering as the one used
to create EVBDDs because it simplifies the implementation. When the variable selected does
not correspond to the variable ordering of EVBDD, operation cofactor (instead of child; and
child,) should be used.

Bounding Procedure
The most important component of a branch and bound method is the bounding procedure.
The better the bound, the more pruning of the search space. The most frequently used
bounding procedure is to use the linear programming method. Other procedures which
can generate better bounds, but are more difficult to implement include the cutting planes,
Lagrangian relaxation [21, 45], and disjunctive programming [4]. The bounding procedure
used in FGILP is similar to the one proposed in [2]. In our experience, the most pruning takes
place at line 3 of the code for ilp_minimize. This pruning rule however has two weak points.
First, it is carried out on each constraint one at a time. Thus, it is only a ‘local’ method.
Second, it can only be applied to a constraint which is in the Boolean form. The other
bounding procedures described above are ‘global’ methods which are directly applicable to
the inequality form.

Logical Tests
It is believed that logical tests may be as important as the bounding procedure [41]. In
addition to partial ordering of variables, a particularly useful class of tests, when available,
are those based on dominance [29, 30]. Currently, FGILP employs no logical tests. We believe
that the inclusion of logical tests in FGILP will improve its performance.

Despite the fact that there are many improvements which can be made to FGILP, the
performance of our ILP solver, as it is now, is already comparable to that of LINDO [44] which
is one of the most widely used commercial tools [41] for solving ILP problems.
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4.5 Experimental Results

FGILP has been implemented in C under the sIs environment. Table 1 shows our experi-
mental results on ILP problems from MIPLIB [38]. It also shows the results of LINDO [44]
(a commercial tool) on the same set of benchmarks. FGILP was run under SPARC station 2
(28.5 M1PS) with 64 MB memory while LINDO was run under SPARC station 10 (101.6 MIPS)
with 384 MB memory. In Table 1, column ‘Problem’ lists the name of problems, columns ‘In-
puts’ and ‘Constraints’ indicate the number of input variables and constraints, and columns
‘FGILP’ and ‘LINDO’ are the running time in seconds for obtaining the optimal solution shown
in the last column.

FGILP provides three options for the order in which constraints are conjoined together.
When all constraints are conjoined together, the order of conjunction will not affect the size
of final EVBDD, but it does affect sizes of the intermediate EVBDDs. It is possible that an
intermediate EVBDD has size much larger than the the final one. Our motivation for this
ordering is to control the required memory space and save computation time. These three
options are:

1. Based on the order of constraints in the input file. This provides users with direct
control of the order.

2. EVBDDs with smallest size are conjoined first.
3. Constraints with the highest probability of not being satisfied are conjoined first.
The parameters used for the problems in Table 1 are summarized below:

1. Constraint conjunction order. Using the third option in problem ‘p0201° led to much
less space and computation time than the other two options. The same option led
to more time in other problems due to the overhead of computing the probability of
function values being 0. For consistency, results are reported for this option only.

2. EVBDD size of constraints. Without setting c_size, ‘bm23’ failed to finish and ‘stein27’
required 71.56 seconds. The run time reported in Table 1 for the above two problems
were obtained by setting c_size = 8000 while others were run under no limitation of
c_size. In general, this parameter has a significant impact on the run time. We believe
that the correct value for c_size is dependent on the size of available memory for the
machine.

3. Size of supporting variables. There was no limitation on the size of n_supp.

As results indicate, the performance of FGILP is comparable to that of LINDO. Since ILP
is an NP-complete problem, it is quite normal that one solver outperforms the other solver
in some problems while performs poorly in others.

FGILP, however, requires much more space than LINDO. As technology improves, memory
is expected to become cheaper in cost and smaller in size. Increasing the available memory
size will improve the speed of FGILP while will not benefit LINDO as much.
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Problem | Inputs | Constraints | FGILP (sec) | LINDO (sec) | Optimal
bm23 27 20 1509.07 Error 34
lseu 89 28 Unable 186.44 1120
p0033 33 16 2.91 4.31 3089
p0040 40 23 0.98 0.37 62027
p0201 201 133 765.48 529.46 7615
steinlh 15 36 1.44 1.66 9
stein27 27 118 51.24 120.03 18
stein9 9 13 0.13 0.31 H

Table 1: Experimental results of ILP problems.

5 Spectral Techniques

The main purpose of spectral methods [52] is to transform Boolean functions from Boolean
domain into another domain so that the transformed functions have more compact imple-
mentations. It was conjectured that these methods would provide a unified approach to the
synthesis of analog and digital circuits [51]. Although spectral techniques have solid theo-
retical foundation, until recently they did not receive much attention due to their expensive
computation times. With new applications in fault diagnosis, spectral techniques have re-
cently invoked interest [28]. New computational methods have been proposed. In [20], a
technique based on arrays of disjoint ON- and DC-cubes is proposed. In [51], a cube-based
algorithm for linear decomposition in spectral domain is proposed.

Recently, [13] proposed two 0BDD-based methods for computing spectral coefficients. The
first method was to treat integers as bit vectors and integer operations as the corresponding
Boolean operations. The main disadvantage of this representation is that arithmetic opera-
tions must be performed bit by bit which is very time consuming. The second method em-
ployed a variation of OBDD called Multi-Terminal Binary Decision Diagrams (MTBDDs) [12]
which are exactly the same as the flattened form of EVBDDs. The major problem with using
MTBDDs is the space requirement when the number of distinct coefficients is large.

We propose EVBDD-based algorithms for computing Hadamard (sometimes termed Walsh-
Hadamard) spectrum [52]. In our approach, the matrix representing Boolean function values
used in spectral methods is represented by EVBDDs. This takes advantage of compact rep-
resentation through subgraph sharing. The transformation matrix and the transformation
itself are carried out through EVBDD operations. Thus, the benefit of caching computational
results is achieved. The algorithms presented here include both the transformation from
Boolean domain to spectral domain and the operations within the spectral domain itself.

The Hadamard transformation is carried out in the following form:

™™ 77 — Rn’ (5)
where T is a 2" x 2" matrix called transformation matruz,
Z™ is a 2" x 1 matrix which is the truth table representation ofa Boolean function,
R™ is a 2" x 1 matrix which is the spectral coefficients of a Boolean function.

41



Different transformation matrices generate different spectra. Here, we use the Hadamard
transformation matrix [52] which has a recursive structure as follows:

[ Tn—1 Tn-1 }

™ = Tn—l __Tn.—l

and
™ = 1.

Example 5.1 The spectrum of function f(z,y) = = @ y is computed as

11 1 1770 2
1 =1 ¥ =tflzf _ 0
11 =1 =1||1] - 0
1 -1 -1 1]]o -2

The order of each spectral coefficient r; (¢ row of R") is the number of 1’s in the binary
representation of 7,0 < ¢ < 2" — 1. For example, rgo is the zeroth-order coefficient, ro;
and ry0 are the first-order coefficients, and ry; is the second-order coefficient. Let RY =
multi-set of the absolute value of 7’s where ry is an i**-order coefficient of R"}, 0 <7 < n.
In Example 5.1, RZ = {2}, R} = {0,0}, and R} = {2}. An operation on f and its R"
which does not modify the sets R! is referred as an invariance operation. Given a function
f(zy,...,2,) with spectrum R", three invariance operations on f and R" are as follows
(formal proofs may be found in [19]):

1. Input negation invariance: if x; is negated, then the new spectrum R™ is formed by
rf, = —ry where the ith bit of kis 1, and 7} = ry otherwise.

2. Input permutation invariance: if input variables z; and z; are exchanged, then the new
spectrum is formed by exchanging ri’s and r’s where k — 2¢ = | — 27, That is, the i**
and j* bits of k and [ are (1,0) and (0, 1), respectively, while all other bits of k and !
are the same.

3. Output negation invariance: if f is negated, the R™ is formed by replacing all rj by

—Tk.
Lemma 5.1 Two Boolean functions are input-negation, input-permutation, and output-

negation equivalent (NPN-equivalent) only if their R’s are equivalent.

Proof: For negation equivalent, since | ri |=| —ry |, replacing ry by —r will not change .
For permutation equivalent, since ry’s and r;’s have the same order, exchanging their values
is equivalent to permuting values in multi-set .

O

With this property, B? can be used as a filter to improve performance in a Boolean matching
algorithm as presented in [33].
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5.1 Spectral EVBDD (SPBDD)

The major problem with Equation 5 is that all matrices involved are of size 2". Therefore,
only functions with a small number of inputs can be computed. We overcome this difficulty
by using EVBDDs to represent both Z" and R". When an EVBDD is used to represent R",
we refer to it as SPectral EVBDD, or SPBDD for short. The difference between EVBDDs and
SPBDDs is in the semantics, not the syntax. A path in EVBDDs corresponds to a function
value while a path in SPBDDs corresponds to a spectral coefficient. The matrix multiplication
by T™ is implicitly carried out in the transformation from Z" to R" (i.e., from EVBDD to
SPBDD).
We define Z™ and R" recursively as follows:

T
7 - [

and

n—1
no__ 0
R - [ R;l—l ] i

Then, Equation 5 can be rewritten as:

Tn—l Trn—1 ZO -1 _ Tn—IZ(T)L—l L Tn—IZ;w-—l _ Ro—l (6)
Tn-—l _Tn—l Zi!—l == Tn—l Zg—'l _ Tn—lzln—l - R?—l .
Equation 6 then is implemented through EVBDD ? as :
(@ 5 27 = (e (B = (2,2 + (), (7)
(1) = 1, (8)
7(0) = 0. (9)

where 7 is the transformation function which converts an EVBDD representing a Boolean
function to an SPBDD. To show the above equations correctly implement Equation 6, we
prove the following lemma.

Lemma 5.2 Let 7 : EVBDD — SPBDD as defined in Equations 7-9, then 7 implements 7", that
is, 7(f™) = T"f*, where f" is an n-input function. Or, equivalently, 7({(z., Z]"™", = =

(xna R?—l ’ Rg_l)'

Proof: By induction on input size n.
Base: n =0, f° = ¢ is a constant function, ¢ € {0,1},
T(e) =¢ by Equations 8 and 9,
T°le] = [1][e] = [¢].
Induction hypothesis: assume it is true for 0 <n < k-1, 7(f") =1T"f".
Induction:

r({z*, 281, Z5)

= (2%, 7(Z5Y) — 7(Z5Y), 7(Z5Y) + 7(ZF 7)) by Equation 7
= (z*, T 12 - Th=1zk=1 pk=17k=1 4 k=17E=1y " by induction hypothesis
(z*, R¥1 RETY) by Equation 6

2For the sake of readability, we use flattened EVBDD in this section.
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Example 5.2 The exclusive-or function in Example 5.1 is redone in terms of EVBDD repre-
sentation.

7({z, (¥,0,1), (y,1,0)))
= (=, 7((y,1,0)) = 7({,0,1)), 7((,1,0)) + 7({y,0,1)))
= (a,(y,7(0) — 7(1),7(0) + 7(1)) — (y,7(1) — 7(0), 7(1) + 7(0)),
(y,7(0) — 7(1),7(0) + 7(1)) + (v, ( ) —7(0),7(1) + 7(0)))
= {=, {y,—1, 1) =, L, 1}4,~1,1) + ( 1,1))

1,1
(z, (y,— ~,0),(y,0,2)>

Pseudo code evbdd_to_spbdd(ev, level,n) is the implementation of Equation 6. Because
of the following situation, this procedure requires level and n as parameters:

t((z,2,2)) = (2,7(2) —7(2),7(z) + 7(2)),
= (2,0,2 x 7(2)).

Il

In reduced EVBDD, (z, z,z) will be reduced to z while (z,0,2 x 7(z)) cannot be reduced in
sPBDD. We need to keep track of the current level so that when the index of the root node
ev is greater than level, we generate (level, 0,2 x 7(ev)) (lines 3-8).

evbdd_to_spbdd(ev, level,n)

if (level == n) return ev;
if (ev == 0) return 0;
if (index(ev) > level) {
sp = evbdd_to_spbdd(ev,level + 1,n);
left =0;
right = evbdd_add(sp, sp)
return new_evbdd(level, left,right);
}
spr = evbdd_to_spbdd(child(ev), level 4+ 1,n);
sp, = evbdd_to_spbdd(child,(ev), level + 1,n);
1 left = evbdd_sub(sp,,sp);
12 right = evbdd_add(sp,, sp);
13 return new_evbdd(level,left,right);

O 00 1T O U= WK A

—
o

5.2 Boolean Operations in Spectral Domain

In this section, we show how to perform Boolean operations in SPBDDs. We first present the
algorithm for performing Boolean conjunction in SPBDDs by the following definition.

Definition 5.1 Given two SPBDDs f and g, the operator A is carried out in the following
way:

Il

fAhg f xg, if fand g are terminal nodes,
(xafhfr) A (mﬁghgr) = (ma(ﬁ Ag:‘|‘fr/\9'l)/23 (fl/\gl"l'_fr/\gr)/?)a otherwise.
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The following lemma and theorem prove that the above definition carries out the Boolean
conjunction in SPBDDs.

Lemma 5.3 (f+g)A(i+j)=fAi+[Aj+gAi+gAj, where f,g,i,j € SPBDD. (Note
that +’s may be replaced by —’s.)

Proof: by induction on the size of inputs.
Base: n =0, f, g, 7, and j are constant functions.

(f+9)A(E+7) from LHS
= ([+9)x({i+)) by Def. 5.1
= fxi+fxj+gxi+gxj bydistributive laws of x and +

fAi+fAj+gAi+gAj from RHS
= fxi+fxj+gxit+gxj byDef 5.1

Induction hypothesis (IH): assume it is true for 0 < n < k.
Induction: let f = {(xk, fi, fr)s 9 = (Tk,91,9-), © = (Tk, U, 8r), and j = (zk, 1, Jr), Where fi,
frs Gts Grs s Try Ji1, and j, have at most k£ — 1 inputs.

((.’Ek, fh fr') =} <$k:g11 gr>) A (($kaih ?'r) + (mkajhjr)) from LHS
= {xk, fi+ g, fr + g) Ay it + J1s i + ) by + in SPBDD
= (& ((fi+9) A G+ 3) + (fr +90) Ali+50) /2,
((fr 4+ g) A G+ )+ (F + 90) A G +52))/2) by Def 5.1

= (ﬂlk,(fj'/\ir“'f[/\jr +gl/\lr+gl/\.]r+fr/\?!+fr/\]f“l‘gr/\zl'l'gr/\Jl)/Q:
(N +iANji+aANa+ghi+fr N+ fr Ajr + g Nie +9- A Jr)[2) by TH

(:L‘ fh fr) (T“k;ihir) =t (mk?.ffﬁ f?‘) A (mkvjhji’)_i_
<’B th‘-") <lk,i[, . ) + (mksglagr) A (mk;jf:jr) from RHS
(zk, (i Nie + fr AU [2,(fi N+ fr Nir)[2)+
(@, (fi NJr + o AJ0)/2, (fz Ajr+ fr A Je)[2)+
(i, (g0 At 4 g ANi)[2, (00 N+ gr A in) [2)+
(ks (90 A Jr + g0 A Jr)/2 (90 A Ji+ gr A 3r)[2) by Def 5.1
('LK (fl A, + fr A zf)/) + (f! /\Jr 4 fr A]l)/2+

(g1 Air 4 gr A1) /2 + (90 AJr + 90 A J1)/2,

(i N+ fr Nig) /24 (AN G+ fr A Ge) 24

(g A+ g ANip) /24 (g0 A Ji+ g0 A Ge)/2) by + in SPBDD
= (zr,(finir+ fr AU+ iNGe+ A+ Aee+ g A+ @ Nie+g- AJt)/[2,

(NG 4+ foNbe 4+ NG+ T AJrH @i At 4 ge N 4+ gt A Gt + g0 A Jr)[2) by + and /



Theorem 5.1 Given two Boolean functions f and g represented in EVBDDs, 7(f - g) =
7(f) A 7(g), where - is the conjunction operator in Boolean domain.

Proof: by induction on the size of inputs.
Base: n =0, f and g are terminal nodes or constant functions.
T(f-9)=7(/xg)=1[xg
T(f)AT(g)=fNg=[xg.
Induction hypothesis (IH): assume it is true for 0 <n < k — 1.
Induction: let f = (a, fi, fr) and g = (zk, g1, 9-) where fi , f-, g and g, have at most k£ — 1
inputs.

T({@k, fir, 1) - (Tks 01, 97)) from LHS
=  r({ek: fiogi fr  gr)) by - in EVBDD
= (onr(fo - 00) = Ui a7y 90) + 7 ) by 7 operation
= (24, 7(fr) AT(gr) = 7(fi) AT(90)s 7(fi) AT(ge) + 7(f) A7(g)) by TH
r(@k, fiy f:)) A7((2h, 91, 97) (REE)
= (e 7(fr) = T(f),7(fr) + 7(f) A2ks 7(gr) — 7(g1), 7(gr) + 7(90)) ()
= (e, ((7(fr) = 7(f)) A (r(gr) + 7(90) + (7(fr) + 7(f)) A (7(g:) = 7(@)))/2, (A)
((r(fr) = 7(f)) A (7(g:) = 7(@0)) + (7(fr) + 7(fi)) A (7(gr) + 7(91)))/2)
= A(zp, (r(fr) A7(ge) +7(F) A(g) = 7(fi) AT(g:) — 7(fi) A7(g)+ (LEMMA 5.3)
T(fr) A7(g:) —7(fr) A7(yg ) T(fi) A7(g:) = 7(fi) A7(an))/2,
(r(fr) A (gJ-—r(ﬂ)A7Tm)—41ﬂ)A7(m)+4Tﬁ)A719ﬂ+
T(fe) A7(g) +7(F:) A7(g) +7(fi) A(ge) + 7(fi) A7(9))/2)
= (zk,7(f) A7(gr) = 7(f) AT(gr), 7(fe) A7(ge) + 7(fi) A7(90)) (=41
O

Other Boolean operations in SPBDDs are carried out by the following equations:

fvg = f+g9—[fAy, (10)
fdg = f+9—2%x(fNg), (11)
f = -4, (12)
(13)

where V, @, and”, are or, zor, and not in spectral domain (SPBDD),
Jr = [2%,0,...,0].

These operations V, @, and~are from [28] with minor modification to match the 7 operation.
Operations +, —, and x are carried out in the same way as in EVBDDs (Sec. 2.2).

5.3 Experimental Results

Table 2 shows the results of some benchmarks represented in both EVBDD and SPBDD forms.
Column ‘EVBDD’ depicts the size and time required for representing and constructing a
circuit using EVBDDs while column ‘SPBDD’ depicts the size of SPBDDs and the time required
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for converting from EVBDDs to SPBDDs. In average, the ratio of the number of nodes required
for representing SPBDDs over that of EVBDDs is 6.8, and the ratio of the conversion time for
SPBDDs over the construction time of EVBDDs is 41.

One application of spectral coefficients is that they can be used as a filter for pruning
search space in the process of Boolean matching [13, 33]. The performance of a filter depends
on its capability of pruning (effectiveness) and its computation time (cost). Experimental
results of [13] show that this filter is quite good because this filter rejected all unmatchable
functions that were encountered. However, according to results of Table 2, this filter is
relatively expensive to compute when comparing with other filters [33]. We believe that this
filter should be used only after other filters have failed to prune.

In | Out EVBDD SPBDD
Size | Time | Size | Time
9symml 9 1 24 | 0.17 39 0.15

c8 28 18 | 142 | 0.09 | 1310 4.79
v 21 20 76| 0.02] 951 1.59
cmb 16 4 35| 0.04 88 0.17

comp 32 31 145 0.10| 809 | 35.31
cordic 23 2 84 0.09] 208 1.35
count, 35 16 233 | 0.14 | 1197 8.39

cu 14 11 66 | 0.04 | 266 0.67
f51m 8 8 65| 0.08| 295 0.34
lal 26 19 99 | 0.07 | 1111 2.99
mux 21 1 86| 0.11 | 144 0.99

my-adder | 33 | 17| 456 | 0.62 | 5043 14.1
parity 16 1 16 | 0.02 30 0.14

pcle 19 9 94 | 0.03| 640 1.18
pcler8 27 17| 139 | 0.05| 1617 4.53
pml 16 13 57| 0.01 | 465 0.74
sct 19 15| 101 | 0.07 | 1295 2.42
ttt2 24| 21| 173 | 0.23 | 2046 5.35
unreg 36 16 | 134 | 0.04 | 816 5.78
x2 10 7 41| 0.01| 305 0.42
z4ml 7 4 36| 0.09 83 0.13
b9 41| 21| 212| 0.10 | 1809 | 12.08
alu2 10 6| 248 | 0.69 | 889 2.69
alud 14 8| 1166 | 3.78 | 5913 | 66.12

terml 34| 10| 614 | 1.39| 5643 | 104.35
apex’ 49 | 37| 665 | 0.35]|3017 | 52.51
cht 47| 36| 133 | 0.08| 452 5.19
example2 | 85 | 66| 752 | 0.22 | 5163 | 23.14

Table 2: Experimental results of SPBDDs.
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6 Multiple-Output Boolean Functions

While a problem with finite domain can be solved by conversion to Boolean functions, a
problem related to multiple-output Boolean functions can also be solved by interpreting
them as the bit representation of an integer function. For example, a multiple-output Boolean
function (fp, ... s Jm-1) can be transformed to an integer function F' by F = 2=l
2% fn—1. Based on this formulation, we present the application of EVBDDs to performing
function decomposition of multiple-output Boolean functjons.

The motivation for using function decomposition in logic synthesis is to reduce the com-
plexity of the problem by a divide-and-conquer paradigm: A function is decomposed into a
set of smaller functions such that each of them is easier to synthesize.

The function decomposition theory was studied by Ashenhurst (1], Curtis [15], and Roth
and Karp [42]. In Ashenhurst-Curtis method, functions are represented by Karnaugh maps
and the decomposability of functions are determined from the number of distinct columns
in the map. In Roth-Karp method, functions are represented by cubes and the decompos-
ability of functions are determined from the cardinality of compatible classes. Recently,
researchers [6, 11, 34, 43] have used OBDDs to determine decomposability of functions. How-
ever, most of these works only consider single-output Boolean functions.

In this section, we start with definitions of function decomposition and cut_sets in EVBDD
representation. Based on the concept of cut_sets, we develop an EVBDD-based disjunctive
decomposition algorithm.

6.1 Definitions

Definition 6.1 A pseudo Boolean function f(@oy ..., ) is said to be decomposable under
bound set {xo,...,x;_y} and free set {ziy... 201}, 0 < i < n, if f can be transformed to
['(go(zo,...,2i_1),. «+19i(%0y .+, Tiz1), iy . ., Ty ) such that the number of inputs to f' is
smaller than that of f. If j equals 1, then it is simple decomposable.

Note that since inputs to a pseudo Boolean function are Boolean variables, function gx’s
are Boolean functions. Here, we consider only disjunctive decomposition (the intersection of
bound set and free set is empty).

Definition 6.2 Given an EVBDD (c,v) representing f(zq, ..., z,_1) with variable ordering
Zo < ...< ZTnp-1 and bound set B = {xy,...,z;}, we define

cut_set({c,v), B) = {{c', V') | (¢, V') = eval({c,v),j),0 < j < 2}.
For the sake of readability, we use the flattened form of EVBDDs in this section.

Example 6.1 Given a function f as shown in Fig. 17 with bound set B = {zq,zy, 25},

cut_set(f,B) = {a,b,c,d}.
O

If an EVBDD is used to represent a Boolean function, then each node in the cut__set
corresponds to a distinct column in the Ashenhurst-Curtis method [1, 15] and a compatible

class in the Roth-Karp decomposition algorithm [42].

A%




564 56 34 126

Figure 17: An example of cut._set in EVBDD.

6.2 Disjunctive Decomposition

Disjunctive decomposition algorithms for single-output Boolean functions based on OBDDs
can be found in [11, 34, 43]. Here, we present an EVBDD-based disjunctive decomposition
algorithm which is generalization of the previous work.

Algorithm D: Given a function f represented in an EVBDD v and a bound set B, a
disjunctive decomposition with respect to B is carried out in the following steps:

1. Compute the cut_set with respect to B. Let cut_set(v, B) = {uo,...,ux_1}.
2. Encode each node in the cut_set by [log, k] = j bits.

3. Construct vi’s to represent g,,’s, 0 <m < j:
Replace each node u with encoding bo, ..., b;—1 in the cut_set by terminal node by.

4. Construct vg to represent function f:
Replace the top part of vy by a new top on variables go, . . ., gj—1 such that eval(ve, 1) =
uy for 0 <l < k—1, eval(ve, 1) =ug_q for k-1 <1< 2.

The correctness of this algorithm can be intuitively argued as follows: For any input
pattern m in the bound set, the evaluation of m in function f will result at a node in the
cut_set with encoding e. The evaluation of m on the g functions should thus produce the
function values e. The evaluation of ¢ in function f’ should also end at the same node in the
cut_set. Thus, the composition of f" and g;’s becomes equivalent to f.

In step 2 of Algorithm D, we use an arbitrary input encoding which is not unique.
Different encodings will result in different decompositions. Furthermore, when k < 27, not
every j-bit pattern is used in the encoding of the cut_set; Function gi’s can never generate
function values which correspond to the patterns absent from the encoding, thus we can
assign these patterns to any node in the cut_set. In step 4, we assign them to the last node
in the cut_set (ux_1). Alternatively, we could have made them into explicit don’t-cares.
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Figure 18: An example of disjunctive decomposition in EVBDD.

Lemma 6.1 Given an EVBDD vg¢ with variable ordering zp < ... < ®p_; representing
f(2o,-..,2n_1), a bound set B = {zo,...,2i—1} and cut_set(ve, B) = {up,...,ux_1}, if
Algorithm D returns EVBDDs Vg, Vg, ... » Ve 15 then

f(.’l:o, mc ,.’L‘n.,.l) = f’(go(l‘g, s d e ,:L‘i_l), v o ,gj_l(:cg, AR :B,'_l),.’r;, . e :Bn_.l)
where f’, go,...,gj-1 are the functions denoted by vg, vg,, ... Ve 1 respectively.

Proof: Consider the behavior of an input pattern (bg, ..., bi—1) on vg, ver and v, ’s. Suppose
Up is the node we reach in vg using the input pattern, that is, eval(vg, (bo, ..., bi—1)) = Um,
where um = f(bo,...,bi_1,%i,...,2n_1). Since uy, has been replaced by the [t bit of m

in vg, eval(vg], (boy ..., bi1)) = bm,, that is, gi(bo,...,bi—1) = bm,. Because of the way we
construct v, eval(ve, (bug, .. bm,_,)) = um, that is,
f’(bmo‘!" -1bm1_11$i:' -'$$n—-l) = Um = f(b())--'abf—la‘z:i'l' "1‘1:11—1)'

ThLlS, f’(gg(bg, ciais g b,‘_l), o ,g'j_l(bg, o €N b;_l),:v,-, e ,:l?n._l) = f(bg, ey b,‘_l, Tiyseny :L‘n_l),
for any input pattern in the bound set.

O

Example 6.2 Fig. 18 shows an example of disjunctive decomposition in EVBDDs. The
evaluation of the input pattern zo = 1, z; = 0, and z; = 1 in function F' will end at
the leftmost z4-node which has encoding 10. The evaluation of the same input pattern in
functions go and ¢; would produce function values 1 and 0. Then, with go being 1 and g,
being 0 in function F”, it would also end at the leftmost z4-node.

O

When an EVBDD is used to represent a Boolean function, Algorithm D corresponds to
a disjunctive decomposition algorithm for Boolean functions; when an EVBDD represents an
integer function, then Algorithm D can be used as a disjunctive decomposition algorithm for
multiple-output Boolean functions as shown in the following example.
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Figure 19: Representation of multiple-output functions.

Example 6.3 A 3-output Boolean function as shown in Fig 19 (a) can be converted into
an integer function as shown in Fig. 19 (b) through f =4f, +2f; + f2. The application of
Algorithm D on F is the one shown in the previous example. After applying the synthesis
paradigm described in Sect. 3.1 on F”, we can convert f back to a 3-output Boolean function

fo, fi, and f3.

7 Conclusions

We demonstrated that by associating an integer with each edge of an OBDD and giving a
new meaning to each node of the OBDD, a new graphical data structure is created whose
domain is that of the integer functions. The new data structure, called EVBDD, admits
arithmetic operations. EVBDDs preserve the canonical property as well as the capability
to cache computational results. With these two properties, we have found EVBDDs to be
valuable in many applications.

Because of compactness and canonical properties, OBDDs and EVBDDs have been shown
effective for handling verification problems (e.g., section 3); because of additive property,
EVBDDs are also useful for solving optimization problems (e.g., section 4). Boolean values
are a subdomain of integer values and Boolean operations are special cases of arithmetic
operation. With this interpretation, EVBDDs are particular useful for applications which
require both Boolean and integer operations. Examples are shown in performing spectral
transformations (e.g., section 5) and representing multiple output Boolean functions (e.g.,
section 6).

EVBDDs could be used for other applications. For example, [12] uses MTBDDs to represent
general matrices and to perform matrix operation such as standard and Strassen matrix
multiplication, and LU factorization; [25] uses OBDDs to implement a symbolic algorithm for
maximum flow in 0-1 network.
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