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Abstract

In ATM networks supporting B-ISDN, the traffic is highly correlated and neglecting
this correlation may lead to severe underestimation of end-to-end delay and loss. The
ability to accurately estimate end-to-end performance is of paramout importance for the
traffic control. The purpose of this paper is to introduce a procedure for estimating end-
to-end delays in ATM virtual paths. We model the flows in ATM network as Discrete
Batch Markovian Arrival Processes (D-BMAP) and present a framework for the analysis
of queueing networks with markov modulated type of flow. We also show a procedure for

modeling the output process of a D-BMAP/D/1/k queue.



[) INTRODUCTION

The future Broadband Integrated Services Digital Network will carry video, voice and
data applications with different Quality of Service requirements. The cell arrival stream
from integrated traffic is highly correlated and neglecting its correlations may lead to
severe underestimation of the delay and loss probability [1]-[3]. Although, many
researchers have evaluated the impact of correlated traffic on the performance of an iso-
lated multiplexer [4]-[9], little attention has been given to the estimation of end-to-end
performance. In this paper, we introduce a procedure for computing end-to-end delay in
ATM networks. We specify a framework for queueing networks with Markov modulated
flow and show a procedure for modelling the output process of an ATM switching An
ATM multiplexer.

In delay sensitive applications, if a cell arrives at the destination after a certain tresh-
old, it becomes useless for signal reconstruction. While the propagation and transmis-
sion delay account for the fixed part of the end-to-end delay, the queueing delay is
mainly responsible for the variable component of end-to-end delay (jitter). A precise esti-
mation of end-to-end loss metrics such as loss probability and length of loss gap [10]
depends on the accurate estimation of these metrics at each individual node. Finding an
appropriate queueing network representation for B-ISDN networks is of paramount
importance for the computation of end-to-end values.

We assume that the input traffic to the queueing network is modelled as a Discrete
Time Batch Markovian Arrival Process (D-BMAP) [11]. The D-BMAP process has been
successfully used for modelling the integration of voice, video and data sources [15]-[16].
An ATM multiplexer is viewed as a finite buffer queue with FCFS services
(D-BMAP/D/1/k) . We model the output process of a multiplexer as a two-state Markov
Modulated Bernoulli Process (MMBP). Insofar as the MMBP is a sub-case of the more
general D-BMAP, we are able to maintain an uniform representation of the flows in a
queueing network. We use the parametric decomposition approximation to decompose
the network of queues in isolated queues [17]. Our approach can be seen as a generali-

zation of the Queueing network Analyzer [18] approach for queueing networks with



Markov modulated flow

This paper is organized as follows. In section Il, we briefly describe the traffic model.
Section Il details the framework for queueing networks with Markov modulated flow.
Section IV shows a matching procedure for modeling the output process of a
D-BMAP/D/1/k. In section V, we introduce a procedure for computing end-to-end delay in
virtual paths. Section VI validates the computational procedure through numerical exam-

ples, and finally some conclusions are drawn in section VII.

i) THE TRAFFIC MODEL

In this section we briefly describe the stochastic processes which are used to repre-
sent the traffic flow in our queueing network model. In the Discrete Time Batch Mark-
ovian Arrival Process [11], a batch may arrive at every discrete time. The batch size
probability mass function depends on the state of an underlying discrete time Markov
chain. A D-BMAP is completely specified by the matrices D, whose elements (dj), give
the probability that a transition from state /to state joccurs and a batch of size n arrives.

Clearly, we have that:

where m is the number of states of the underlying Markov chain.
The matrices D, are related to the transition probability matrix D of the underlying

Markov chain by:

D= Y D,

n=0
The Discrete Time Batch Markovian Arrival Process is the discrete time version of the
Batch Markovian Arrival Process [12]-[14]. The D-BMAP is a non-renewal process. Such
a process is very attractive for modelling integrated traffic due to the flexibility that we

have to set the parameters ((dj),) to generate a specific correlation pattern [15]-[20].



Wang and Silvester [15] developed an accurate procedure for matching the statistics of
integrated (video, voice and data) traffic with the statistics of a two state D-BMAP.
Blondia [16] showed how to map the short and long-term correlations of a video source
into a D-BMAP. In [11], Blondia provides a comprehensive description of the D-BMAP
process and specifically of its counting process. Hashida et al. [19] derived the statistics
of both the counting and interarrival processes for the specific case where the underlying
Markov Chain has only two states. In [11], it was demonstrated that the mean arrival

rate, the variance of number of arrivals and the covariance at lag k are given by:

A= n(z ka]é
k=1
var = n(z ksz]é—l‘?
k=1

cov(Xy, X;) = n[z nDnJDk_z[ 2 nDn)é—l‘?
= |

n=1
where € is the unit column vector and Tt is the steady state probability of the underlying
Markov chain, i.e;
D =7 e = 1

The Markov Modulated Bernoulli Process (MMBP) is a subcase of D-BMAP of inter-
est in this paper. In a Markov Modulated Bernoulli Process, at most a single cell may
arrive at each time epoch. We focus our attention on the two-state MMBP which is totally
specified by (p4, pa, oy a2) where p; (i=1,2) is the probability of having an arrival when
the underlying Markov chain is at state /, and Q. (i=1,2) is the probability of remaining in

state i at each time epoch. The matrices D,, of a two-state MMBP are given by:

(1-py) (1-0y)  (1=py)a,

D, =



p‘]a1 p1(1_a1)
p2(1—(12) p2a2

| =

The Markov Modulated Bernoulli Process has also been widely applied to the model-
ling of integrated traffic [21]-[23]. Le Boudec used the MMBP as input traffic to evaluate
the cell loss rate in a multiplexer with buffer priority [21]. Guillermin et al. [22] studied the
burstiness concept in B-ISDN networks via an MMBP model. They solved the MMBP/D/
1/K and proved a relationship between the stationary queue length distribution and the

arrival time distribution in a MMBP/D/1/K queue.

) QUEUEING NETWORKS WITH MARKOV MODU-
LATED FLOWS

The global flow of a communication network is normally described by queueing net-
work models. In the so-called product form networks, the flow is (or is assumed to be)
Poisson and the probability mass function of the distribution of customers among the net-
work nodes can be computed as the product of the probability mass function of the num-
ber of customers at each node [24]. Although the product form assumptions allowed the
development of computationally efficient algorithms, they are too restrictive to be used in
many practical situations [25]. Alternatively, a more realistic approach is to represent the
flow in communication networks as a renewal process specified by the mean and vari-
ance of the number of arrivals [17]-[26]. The parametric decomposition approximation is
used in this approach [17]. The parametric decomposition evaluates each queue in the
network as if they were stochastically independent. The queues are analyzed in isolation
only after the input flow parameters (mean and variance) are computed via renewal
approximations. The parametric decomposition can be seen as a generalization of the
product form concept in which the dependencies among the queues are captured by the
estimation of the flow parameters. Whitt used the parametric decomposition together
with renewal approximations of point processes to develop the Queueing Network Ana-

lyzer [18].



In the future B-ISDN network, the traffic will be highly correlated; a renewal represen-
tation of the network flow can no longer be accepted [27]. Recently, some studies have
modelled B-ISDN networks as queueing networks with non-renewal flows. Kroner et al.
[28] considered a queueing network in which each connection at the transport level was
represented as an on-off source. The long and the short term fluctuations in the links
were computed respectively by a fluid flow approximation and by an M/D/1-S model.
They showed how to compute the end-to-end delay and the distribution of the transfer
delay at each queue in a tandem network. Reising analyzed two queues in tandem [29].
The input of the first queue is a two-state Markov Modulated Bernoulli Process and the
interfering traffic of both queues is a Bernoulli process. He derived an approximation
model for the output process of the first queue as a two-state MMBP. Grienenfield [30]
studied two queues in tandem by using a pertubation method to compute approximations
for the mean and the variance of the end-to-end delay too. He considered that both the
input and the interfering traffic were wide sense stationary processes, and he used a pro-
cedure for matching intermediate results in a Weibuill distribution to compute the jitter
delay which is associated with the input traffic (pertubation).

In our investigation, we consider open queueing networks with multiple class of cli-
ents. In each node there is a single server with finite buffer space and constant service
time. Service is provided in a First-Come-First-Served fashion. Both internal and external
traffic are represented as Discrete Time Batch Markovian Arrival processes (figure 1).
The discrete time assumption derives from the ATM standard. In order to solve this
queueing network with non-renewal flow, we employ the parametric decomposition
approximation. The fact that the correlétion structure of a cell stream tends to be pre-
served along the network reinforces the idea of solving the queues in isolation [28]. The

network elementary operations are defined as:

Th tput pr fA D-BMAP/D/1
The output process of a D-BMAP/D/1/K queue is also correlated, and neglecting its

correlations leads to inaccurate results. In [31] the output process of an ATM switch was



modelled as two different memoryless processes: i) a Bernoulli process and ii) an Inter-
rupted Poisson Process with the mean duration of the active state equal to the mean
busy period. In both cases, the model failed to produce accurate results. At each time
slot, at most one cell may depart from a queue. The Markov Modulated Bernoulli Pro-
cess, a correlated process with single arrivals, is a good candidate for modelling the out-
put process of a D-BMAP/D/1/K queue. We, therefore, developed a procedure for
matching the statistics of the output process with the statistics of a two-state MMBP (sec-
tion IV). Moreover, by modelling the output process as a MMBP, we were able to repre-

sent all the flows in the network as D-BMAP process (see figure 2).

Joining

The superposition of two D-BMAP processes with my, m, states and ny, np maximum
batch size is also a D-BMAP with m; x m» states and ny + n, maximum batch size. The
matrix Dy which elements (dj), which give the probability of going from state / to state j
and having a batch arrival of size k is computed as:

n,
p.= Y p{"en?,
g=0
For instance, the superposition of an MMBP and a D-BMAP with maximum batch size

of 2 is given by:
D, = D" ® D{?

_ pM (2) (1) (2) (1) (2) (1) (2)
Dy =Dy ®@D3™" +Dy " ®Dy," +D, " ® Dy +Dg ® D,
where A ® B denotes the Krockener product of matrix A by matrix B.



Splitting

We assume that routing is state independent. It means that the probability of a cell
departing from one node and going to another node is fixed. When characterizing the
flow between two nodes, we represent the output process of the first queue as an MMBP
process, and then model the flow that goes to the second queue as an MMBP with
parameters:

(PjjX P1s PjjX P> 0ty 0p)

where pj;is the probability that a cell leaves node /and goes to node .

IV) THE MATCHING PROCEDURE

Finding an appropriate representation for the output process of a queue is of para-
mount importance for defining a queueing network framework. With the advent of traffic
integration, we now face the challenge of obtaining a suitable representation for the out-
put process of queues with correlated input. Only recently, have some studies derived
the statistical properties of the output process of queues with Markov Modulated input
[32]-[34]. Saito [32] studied the output process of an N/G/1 queue and particularly of the
MMPP/D/1 queue. He analyzed the interdeparture time process and explicitly detailed
the expressions for the mean, variance and covariance at lag 1. The burstiness of a pro-
cess (Cp (2)) was defined as the Z-transform of the covariance of interdeparture time (in
[33] Cp (z) was used to analyze integrated traffic). By comparing the Cp (2) curves for the
input and for the output processes, Saito concluded that covariances are likely to be pre-
served. He also pointed out that the reduction of the coefficient of variation is larger in
heavily loaded systems than it is in lightly loaded ones. Thus, the departure process of a
lightly loaded system with bursty arrival process tends to be bursty too. Takine et al. [34]
studied the output process of a D-BMAP/D/1/K queue. They derived not only the expres-
sion for the m'"-factorial moment of the interdeparture time process, but also the distribu-
tion of the idle and the busy periods. They pointed out that, when the variation of arrivals
is high, both the mean and the idle periods become larger as the correlation increases.

This observation is also valid for the coefficient of variation of busy periods and of the



interdeparture time.

Before showing how to match the statistics of the output process with the statistics of
a two-state MMBP, we need to characterize the output process itself. Having exactly one
departure at each time instants of a busy period suggests that we can represent the out-
put process as a D-MAP in which the matrices D'1 and D'0 correspond respectively to
busy and idle periods. In order to capture the behavior of busy/idle periods, we need to
associate each state of the D-MAP with the phase of the arrival process and with the
number of enqueued cells at the end of each time slot [11]. If we have a gated server
(i.e., if a cell finds the server empty at its arrival slot, it can only be transmitted at the next

slot) then, the output process is given by [11]:
DyDy .. Dy_y Y, D,

---------

(0 00.. O o |
DyDyDy... Dy_y Y. D,
n=k
Dy=10DyD;..00_, Y D,
n=k-1
000.. D >D,
i n=1 |

On the other hand, if we have a cut-through type of service (i.e. the cell can be trans-

mitted in the same slot in which it arrives) the output process is specified by:



The index of dispersion time curve completely defines the correlation structure of a
counting process. Consequently, to accurately approximate the output process, it is
important to provide a good match with the index of dispersion time curve. In our proce-
dure, we chose to match the long-term index of dispersion and the covariance of the
number of arrivals between consecutive slots and between two consecutive slots (at lags

of 1 and 2). Our procedure is:

OutPUtmean - MMBPmean
outputyariance = MMBP, zpjance

output;oyariance lag=1 = MMBPoyariance 1ag=1

outpUtcoyariance lag=2 = MMBP oyariance lag = 2
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We showed in [34] that the results produced when the output process of a
D-BMAP/D/1/k is substituted by a two-state MMBP are accurate. In the matching proce-
dure validation experiments, the maximum percentual error was below 7% for highly

loaded systems and as low as 0.1% for moderated loaded systems.

V) THE END-TO-END DELAY COMPUTATION

To compute the end-to-end delay in an ATM virtual path, we make use of the para-
metric decomposition approximation. In the parametric decomposition approximation,
the queueus are analyzed in isolation only after their input process are fully character-
ized. In this approach, the dependences among the queues are represented approxi-
mately by the flow parameters. We model an N node ATM virtual path as N queues in
sequence (tandem). The input process of the #h queue is composed by both the output

process of the j-1th

queue and by an interfering traffic (except for the first queue). We
assume that with a fixed probability p; a cell may leave the system (figure 3). The com-
putation procedure can be summarized as:
1- Forifrom1 to N do:
1.1- Characterize the input process by performing a joining operation between the

1" queue and the " interfering process. For the first queue, the

output process of the i-
input process is given by the input process to the network;

1.2- Compute the steady state queue length distribution of the " D-BMAP/D/1/K
queue. Compute the mean delay seen by an arriving cell at queue i, d; (see [11], [16] for
the solution of the D-BMAP/D/1/K queue);

1.3- Characterize the output process of the " queue by matching the statistics of
the output process with the statistics of a two-state MMBP;

1.4- Characterize the flow that departures from the fh queue and goes to the i+1th
queue by a splitting operation; N

2- Compute the end-to-end delay d = Z d;
i=1
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VI) NUMERICAL EXAMPLES

To validate the computational procedure, we consider two different D-BMAP pro-
cesses. The first process is a two state D-BMAP with the same transition probability in
each state (ot) [34]. The batch size is Poisson distributed with mean (1+ c) p (state 1)
and (1—c)p (state 2) where p is the overall traffic intensity and c is a parameter. It
was demonstrated in [34] that the square coefficient of variation ( C%) and the correlation

coefficient of the number of arrivals atlagn ( C c(”) ) are respectively given by:
— A1
2=+ P

C,(n) = x (2a—1)"

L9
1+ 02p

Unless otherwise stated, the data shown in this section corresponds to a network of
five queues in sequence. Each server provides service in a First-Come-First-Served
basis and has buffer size of 100. Time is normalized to one slot. The interfering traffic is
the same for all queues, except the seeds for the queue random number generator [36].

We show the percentual error of the estimated end-to-end delay which is defined by:
d

%:“' where dsjn, is the end-to-end delay obtained in a simulation experiment (95%
confidence interval) and dgg; is the end-to-end delay estimated by section VII computa-
tional procedure.

Takine et al. [34] pointed out that when the coefficient of variation of the input stream
is moderate (c = 0.5) to high (c = 0.9), the correlation of arrivals plays a key role in deter-
mining the characteristics of the output process (mean interdeparture time, mean dura-
tion of busy period and idle periods) In our experiment, we kept constant two of the three
statistics (p, Cv, CC(1 ) ) and varied the third one by changing either p, € , or a. In
figures 4 and 5, we varied C, by changing ¢ from 0.1 to 0.9 for p = 0.4 and p = 0.8,
respectively. In order to avoid both the non-queueing phenomenon in tandem queues
with constant service time and to make the output process the major responsible for the

delay, we kept the interfering traffic intensity low (p = 0.1, ¢ = 0.1, o = 0.55). We verified
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that the computational procedure captures accurately the variations in C,, However, we
noticed that it performs much better at moderate loads (p = 0.4, figure 4) than at high
loads (p = 0.8, figure 5). The percentage error was less than 2% at moderate load and
was below 8% even at high loads. By varying o from 0.1 to 0.9, we evaluated the impact
of both positively and negatively correlated streams in the precision of the computational
procedure. No significant impact was observed (figures 5 and 6). The same trend seen in
figures 4 and 5 is carried over to figures 6 and 7. The matching procedure gives better
delay estimations for lightly loaded systems (p = 0.2, figure 6) than for highly loaded
systems (p = 0.8, figure 7).

To make sure that the delay estimation is not affected by the buffer size, we fixed both
the input and the interfering process, and varied the buffer size of all the queues from 50
to 250. No significant impact was observed. Figure 8 shows an experiment with p = 0.7,
c=0.1and o = 0.9 for both input and interfering processes.

In order to evaluate the accuracy of the computational procedure in a wide range of
delay values, we fixed the input process and varied the interfering process. In figure 9,
the input process parameters are p = 0.5, c=0.5 and o = 0.9. The interfering process of
each queue is the same; cand o are 0.5 and 0.55 respectively, and p varies from 0.05 to
0.8. We noticed again that the computational procedure is more accurate for lightly/mod-
erately loaded systems than it is for highly loaded systems. A maximum error of 8.3%
was observed.

We analyzed networks of queues in which a cell may leave the system after receiving
service. We assumed that the probability of leaving the system (splitting probability) is
the same for all queues. In figure 10, we show an experiment whose input process
parameters are (p = 0.8, ¢=0.5, a = 0.9), and the interfering process parameters are (p
= 0.1, ¢ = 0.1, o = 0.55). The introduction of the splitting operations had no significant
impact on the accuracy of the computational procedure. Due to the decrease in the
offered load (as observed before) the error decreased as the splitting probability
increased.

To ensure that the obtained results were not influenced by the size of the network, we
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increased the number of queues from 5 to 20. Figure 11 shows an experiment with the
same traffic parameters of figure 10. We observed that the number of queues did not
affect the accuracy of the estimated values.

The second process used in the validation experiments was a D-BMAP, the parame-
ters of which (transition probability and distribution of batch size) were computed accord-
ing to a matching procedure which took into account the underload/overload periods of a
server. This procedure is quite flexible and one can easily incorporate data, voice and
video sources into a stream.

Overall, the maximum observed error of the end-to-end delay estimation was under
8.5%

VI) CONCLUSIONS

In this paper, we introduced a procedure for computing the end-to-end delay in an
ATM virtual path. This procedure was shown to be accurate. Errors were less than 8.5%
and parameters such as buffer size and network size had no significant impact on the
accuracy of the computational procedure. Moreover, we showed a procedure for model-
ling the output process of a D-BMAP/D/1/K queue, and we described a framework for the
analysis of queueing networks with Markov modulated flow. We are currently validating

the queueing network framework for more generally connected networks.
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Figure 1: In product form networks the flow is characterized by the mean of a Pois-
son process. In queueing networks with renewal flow by the mean and the vari-
ance of the renewal process. In queueing networks with Markov modulated flow,
the number of parameters depends on the size of the underlying Markov Chain. If
the MC is a two state, we need four parameters.
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Figure 2: The output process of a D-BMAP/D/1/K is modelled as a two-state MMBP.
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Figure 3: The focused network topology.
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Figure 9: Percentage error as a function of the splitting probability.
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Figure 10: percentage error as a function of the pre-specified end-to-end delay.
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