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Abstract

Previously, most behavioral synthesis tools emphasized the synthesis of single chip
and single process designs. However, application-specific digital systems today are
usually too large to fit into a single chip and consist of multiple concurrent pro-
cesses. This thesis addresses two important issues for the design of such systems;
namely, system partitioning and synthesis of concurrent processes. The system
partitioning methodology presented here is aimed at partitioning the system at
the process level onto multiple chips while considering chip packaging options as
well as the potential process design alternatives in the system. Synthesis techniques
for concurrent processes are also introduced so that not only the performance and
area constraints of each individual process can be met but also the communication
among the processes can be synchronized.

In this thesis, we also address the issue of design verification. Although syn-
thesized designs are often considered to be correct by construction, in reality there
is no such guarantee unless the whole synthesis process, including techniques and
programs, can be formally validated. Hence, we developed an efficient verification
approach using a hybrid symbolic/numeric simulation to check both the functional
and timing correctness of synthesized RTL designs.

Finally, a VHDL to DDS compiler software which transforms the system spec-
ification written in the VHDL hardware description language into a synthesizable

representation for the ADAM synthesis system is also included here.

xii



Chapter 1

Introduction

1.1 Background

VLSI technology has reached densities of over one million transistors per chip, and
VLSI chips are being used in more diverse applications than ever before. At the
same time, the life cycles of electronic products are rapidly decreasing. An effective
way to deal with the increasing complexity of designs while reducing the design
turnaround time is to apply design automation on more levels of abstraction at
which circuits are designed.

Today, design automation tools for layout generation, placement and routing,
module generation, simulation, and logic synthesis have become fairly reliable and
widely available. As the market pressure constantly demands higher-level design
tools, automation of the entire design process from conceptualization to silicon
has become an important goal and an intensive research field in the last decade.
The benefits of such a methodology include not only shorter design time, but also
ease of modification of the design specifications and the ability to explore different
design tradeoffs more effectively.

This thesis addresses the issues that arise in behavioral and system-level syn-

thesis of application-specific digital systems.



1.2 Behavioral Synthesis

Behavioral synthesis, also known as high-level synthesis, is a process which takes
a behavioral specification of a digital system along with a set of constraints and
goals on the resulting hardware and finds a structure that realizes the given be-
havior while satisfying the given goals and constraints. The behavior is usually
described algorithmically in some hardware description language (HDL) such as
VHDL [Ins88], ISPS [Bar81], or HardwareC [MK88]. The structure is a register-
transfer level (RTL) implementation which includes a data path as well as a control
path. The data path is a network of registers, functional units, multiplexers, and
buses. The control path, on the other hand, is usually a finite-state machine which
drives the data path in order to produce the required behavior.

Due to its complexity, behavioral synthesis is often divided into several dis-
tinct yet inter-dependent tasks [MPC88]. First, the behavioral specification must
be translated and possibly optimized into an internal representation, generally
referred to as a control data flow graph (CDFG), that models both the control
and data flow of the input behavior. Next, scheduling, allocation and binding are
performed to map the CDFG into structure. Scheduling discretizes the execution
of operations in the CDFG by assigning them to control steps as shown in Fig-
ure 1.1. The allocation task determines the number and types of required hardware
resources including functional units, storage elements and interconnection paths.
Resource binding assigns operations and values to specific allocated hardware re-
sources. At this stage, an RTL data-path implementation is produced as shown
in Figure 1.2. Once the schedule and the data path have been determined, the
required control path can be synthesized to activate components in the data path
according to that schedule. Most behavioral synthesis approaches stop at this stage
and pass the RTL implementation to the lower level design automation tools for

further optimization and the layout generation.



Figure 1.1: A schedule for a CDFG
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1.3 Motivations

Although the sizes of implementable VLSI chips have increased drastically in recent
years, most modern digital systems still can hardly fit into a single chip. Traditional
behavioral synthesis research has had the objective of producing single-chip VLSI
implementations from behavioral specifications. After a design is synthesized as
a single-chip design, it may not be possible to partition the design onto multiple
chips while satisfying the constraints; especially, timing constraints. Even if a
feasible partitioning can be found, it is likely that the multi-chip implementation
would be inferior since all the synthesis decisions and optimization made assume
a single-chip implementation as the target design.

Another common characteristics of hardware systems is that they are inherently
parallel. In fact, complex application-specific systems often consists of multiple
concurrent tasks (processes). For example, three GM production designs illus-
trated by Fuhrman [Fuh91] contain from 4 to 10 concurrent processes. A typical
JPEG image compression system consists of 6 major tasks; namely, forward/inverse
discrete cosine transform, quantization/dequantization and encoding/decoding.

Most existing behavioral synthesis approaches primarily address synthesis of a
single component (process) in a system without considering its system-level inter-
action. Using this synthesis paradigm for multiple-process systems, each process
must be synthesized separately, and the integration and synchronization of the pro-
cesses usually have to be done manually by the designers. However, if processes
are synthesized one at a time, the decisions made previously may affect and con-
strain the synthesis of other processes in the system, which is also likely to result
in an inferior system implementation. Furthermore, these synthesis approaches
are limited in their ability to handle I/O and communication requirements, with
a few exceptions [Nes87, Hay90, KM92]. In fact, many of them only consider the

overall latency between the inputs and outputs of synthesized designs. Hence, it



may become very difficult for the designers to integrate the processes in the system
after their implementation have been synthesized without taking into account the
synchronization issue.

In order to design complex ASIC systems effectively with acceptable design
time and quality using design automation tools, we identify several important
system-level issues to be addressed and incorporated into the current behavioral

synthesis paradigm.

e Parlitioning. As the design prediction techniques become more advanced
and accurate [KP93], it is now feasible and preferable to partition a system
onto multiple chips before the behavioral synthesis process. Partitioning
before synthesis allows the design space to be explored in a system-level
view. Several system-level tradeoffs, such as chip count, chip packaging, the
performance and resource requirements of data processing and data trans-
fers, can be taken into account during partitioning. Consequently, proper
directions can be provided to the subsequent synthesis process and the syn-
thesized multi-chip system will likely to be feasible with respect to the given

constraints.

o Synthesis. To design a system such that its processes can coordinate their ac-
tions flawlessly, the synthesis approach requires simultaneously solving all the
timing and synchronization constraints imposed by one process on another.
Also, if the time when an external synchronization will occur is not known
a priori, the delay of the corresponding operation becomes data dependent;
hence, synthesis algorithms can no longer assume that all operations have
fixed delays. Furthermore, we need to budget the chip resources allocated to
each process on a chip since the total resources taken by the processes on a

chip are limited by the chip package to be used.



e Verification. A common approach to avoiding costly design iterations is to
find the design problems as early as possible. Although synthesized designs
are often argued to be correct by construction, in reality there is no such
guarantee unless the whole synthesis process, including techniques and soft-
wares, can be formally validated. As the synthesis tools advance to higher
levels of abstraction, they become even more sophisticated and may still be
under constant evolution. Also, they often require complex interaction with
other tools and/or the designers. Hence, the chances for errors are greatly
increased, and an effective verification methodology to cross-check the syn-

thesized results becomes highly desirable.

With a better understanding of these system-level issues, an effective system design
methodology can be formed to increase the design quality and to reduce the design

cycles.

1.4 Problem Approach

This research focuses on a system design methodology for synthesizing multi-chip
systems with multiple concurrent processes as shown in Figure 1.3. In this figure,
the specific problems addressed in this thesis are highlighted by bold-line boxes.
The first task is to compile the system specification written in VHDL into a
unified design representation called the Design Data Structure (DDS) [KP85]. At
this step, the behavior of each process is transformed into a pair of data-flow and
control-flow graphs so that the parallelism is extracted and the representation is
ready for synthesis. In addition, the inter-process communication is extracted and
represented by the DDS bindings in a manner to be described in Section 3.2.2.
Next, several process behavioral transformations could be evaluated to trade off
among hardware sharing, communication overhead, and control complexity. For

example, we could collapse two processes into one so that the the inter-process

i
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communication between them can be replaced by direct data transfers, and the
hardware resources can be shared in the merged behavior. On the other hand, if
a process is found too big to fit in a single chip while meeting its constraints, its
behavior should be decomposed into a number of smaller processes. The process
transformations essentially try to determine a proper coarse-grain concurrency for
the system by resetting the process boundaries.

In this system synthesis methodology, partitioning of the system onto multiple
chips is performed at the process level. The advantage of this approach is that the
number of objects to be considered during partitioning is small and the functional
boundaries specified by the designers are preserved. Also, with the aid of advanced
prediction tools, the exploration of process design alternatives can be done con-
currently with partitioning. Finally, the chip count and the chip capacities (area
and pins) can be traded off according to the available chip packaging options.

After partitioning, a concurrent approach is used to synthesize the processes in
the system. In this approach, each process is mapped to its own data path with
a single thread of control. The objective is to schedule and allocate each process
in such a way that all the timing and synchronization constraints are met and
the hardware resources are distributed to processes according their performance
requirements. Once the schedule and allocation of each process have been deter-
mined, its RTL implementation and layout can be generated independently from
other processes using lower level design tools.

Finally, a distinctive feature of this synthesis methodology is the inclusion of a
design verification step to ensure the correctness of the RTL implementations on
not only with respect to their functional behaviors but also their I/O sequencing
and timing. Due to the fact that synthesized implementations are derived from
their specifications in a well-defined manner, a hybrid symbolic/numeric approach
is developed in this research to perform this verification task formally and yet

automatically.



Some potential applications of the system design methodology described here

include but are not limited to
e design of cost-effective systems,
e rapid prototyping of complex system designs, and

e partial or full system redesign.

1.5 Thesis Organization

The organization of this thesis is as follows:

Chapter 2 surveys the related work on four major areas of this research: design
specification and representation, system partitioning, multiple-process synthesis
and design verification.

In Chapter 3, we describes the problem of HDL compilation in general and
the translation from VHDL to the DDS representation in particular. The required
techniques for control/data flow analysis and flow graph generation/optimization
are presented. We will also discuss the modeling of arrays, input/output and
inter-process communication in both VHDL and DDS. The implementation of the
prototype software VHDL2DDS based on this work has created a VHDL front-
end for the ADAM synthesis system and has led to numerous top-down design
experiments from behavioral VHDL descriptions to chip layouts.

Chapter 4 describes the research on the system-level partitioning problem. A
novel partitioning approach is presented to partition a system at the process level,
to explore each process’s design alternatives, to determine proper chip count, and
to consider chip packaging options concurrently. Two partitioning techniques, an
MILP formulation and a genetic-search procedure, will be described. Experimental
results, including a JPEG image compression system, using the prototype software

ProPart are also given.
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Chapter 5 deals with the synthesis of designs with unbounded-delay operations
under timing constraints and with multiple communicating processes. The concept
of single-threaded processes will be introduced and used as the basis of our synthesis
approach. We will also show how to satisfy detailed timing constraints when
unbounded-delay operations are present and how to synchronization inter-process
communication.

In Chapter 6, we discuss the RTL design verification problem. We will show
that though the correctness of synthesized designs cannot be guaranteed, there
exists several important properties in synthesized RTL designs which can be used
to simply the verification task. An effective verification approach based on a hybrid
symbolic/numeric simulation will be introduced. The advantage of this verification
approach is that it not only can formally verify the data path but also can faithfully
exercise the control path and allow timing issues, such as delays, clocking schemes,
and I/0 protocols, to be taken into account.

Finally, Chapter 7 summarizes this thesis and outlines future research direc-

tions.
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Chapter 2

Related Research

In this chapter, a number of related research efforts will be described. They are
divided into four major areas; namely, design specification and representation, sys-
tem partitioning, multiple-process synthesis and design verification. Some related
research directly relevant to the research described in this thesis will be described

further in the appropriate chapters.

2.1 Design Specification and Representation

In general, a behavioral synthesis system requires a behavioral specification lan-
guage which has the expressive power to describe all the design behaviors in the
targeted domain. In addition, the semantics of the language must be translated
into a representation that is suitable for synthesis.

To date, there is still no agreement in the synthesis community on how a be-
havioral specification language should be designed. In fact, several input languages

have been used by current behavioral synthesis systems. For example,

e VHDL [Ins88], used by the ADAM system at USC, the SpecCharts language
[VNG91] at UCI, and the System Architect’s Workbench (SAW) [TLW*90]
at CMU,
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e HardwareC, used by Hercules [MK88],
e ISPS [Bar81] and Verilog, used by SAW [TLW*90],
e Silage [Hil85], used by Cathedral [GRVM90].

The selection of a specification language depends on the domain of the targeted
designs, the degree of expressivity and the ease of implementation. A survey of
several specification languages can be found in [Nar92].

The internal representations used by most behavioral synthesis systems to
model the design behaviors are also different in style, but share a common ob-
jective which is to capture the essential control and data flow information of the
design behavior using flow graphs. Most of these flow-graph representations can
be classified into either disjoint or hybrid control and data flow representations.

The Design Data Structure [KP85] of the ADAM system is a typical disjoint
control and data flow representation. The control and data flow information are
kept in separate graphs and a set of bindings is used to relate objects in these
graphs. Descart [OG86] and VSS [LG88] use a control-flow graph similar to the
one used in standard software compilers. Each node in the control-flow graph
represent a basic block and the computations within each basic block are mapped
to a separate data-flow graph.

The hybrid control and data-flow representation merges both the control and
data flow information into one graph. The Value Trace (VT) [McF78] of the CMU-
DA system and the Control and Data Flow Graph (CDFG) of the HAL system
[PK89] follow this scheme. The SIF representation used in the Olympus system
[MKMT90] uses a hierarchical sequencing graph to show both data and control flow
dependencies. The DSFG representation [LGP*91] for capturing DSP designs in
the Silage language is another hybrid representation in which the signal-flow graph

is annotated with control information and design constraints.
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The task of compiling design descriptions and producing the flow-graph repre-
sentation as output is complicated by the fact that the design behavior is described
by sequential statements in some hardware description language like VHDL. There-
fore, extensive local/global flow analysis and graph optimization are needed to
produce fully parallelized flow graphs. Many of the analysis techniques required
for this compilation task are similar to those used traditional software compilers
[ASU86]. However, additional global data-flow analysis and graph generation steps
are needed. Though HDL compilation using these steps had been performed as
early as 1978 [McF78], formalization of the problem and detailed description have

not been presented to our knowledge.

2.2 System Partitioning

Partitioning plays a key role in the design of digital systems. There are various
goals that are commonly achieved during system partitioning. For example, a
digital system may be partitioned to reduce the design complexity, to perform
concurrent design, and to satisfy physical-capacity constraints. System partition-
ing approaches can be classified into two categories: structural partitioning and
behavioral partitioning.

In structural partitioning, the system specification (behavior) is first synthe-
sized into structure, and then the structure is partitioned onto chips, modules and
boards. Numerous approaches have been proposed in solving circuit partitioning
problems at the logic or RT level, such as group migration [KL70, FM82], simulated
annealing [CH90, GS84], evolution [SR89], clustering [LLT69], and even interac-
tive partitioning [BKM*66]. While structural partitioning usually can provide a
solution that satisfies physical constraints such as area and pins, it ignores the fact
that the design of the structure can be heavily influenced by the system partition-

ing. For example, after the system structure is synthesized as a single-chip design,
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it may not be possible to partition the design onto multiple chips while satisfying
the constraints (especially timing constraints).

Behavioral partitioning is a process of dividing the system behavior onto a num-
ber of partitions which can be synthesized into separate hardware modules or chips.
There are essentially two levels of granularity at which behavioral partitioning can
be performed. Previous approaches have been mostly at the operation level. A
detailed survey of these approaches has been done by Vahid [Vah91]. Alternatively,
behavioral partitioning can be performed at a higher level of granularity, such as
processes, procedures and memory blocks.

In BUD [McF86], McFarland uses a clustering algorithm based on a similarity
measure to partition control data flow graphs (CDFGs) in a manner that encap-
sulates scheduling and allocation decisions. A similar approach was proposed by
Lagnese and Thomas in APARTY [LT91] by employing multiple stages of clus-
tering with different closeness functions. The partitioning method used in YSC
[CvE8T7] by Camposano and van Eijndhoven clusters logic and operations in the
behavioral specification into groups in order to improve the tractability of subse-
quent logic synthesis. In Vulcan [GM90], Gupta and De Micheli use a hierarchical
hypergraph model for repeated two-way partitioning of the largest vertex at each
level of the hierarchy until the constraints are met.

CHOP by Kiigiikgakar [Kuc91] evaluates a partitioned CDFG using a com-
prehensive behavioral area-delay prediction tool called BEST [KP93] to explore
possible alternative implementations of each partition. The tool then searches for
a combination of predicted design points for the partitions which will make the syn-
thesized multi-chip design feasible while taking into account the design integration
overhead. An interactive partitioning interface and a simple two-way partitioning

procedure are also provided.
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A system-level behavioral partitioning tool called SpecPart is described by
Vahid and Gajski [VG92]. In this work, the objects to be partitioned are ele-
vated to a higher level of abstraction such as processes, procedures, and other
code groupings imposed by the specification language. An estimated area and
delay is assigned to each object and a group migration technique similar to the
Kernighan-Lin algorithm is used for partitioning. Gupta and De Micheli [GM92]
also described an approach for partitioning the system specification at the process
level into hardware and software components in order to satisfy the performance
and cost constraints. In SpecSyn [GGVN93], Gajski et al. proposed a system-level
design methodology and framework for mapping system functionalities onto a set

of mixed-technology modules through a comprehensive designer interface.

2.3 Multiple-Process Synthesis

Though behavioral synthesis of digital hardware has received enormous attention
over the years, most approaches’ have focused on the synthesis of single-process de-
signs. Hence, synthesis of systems with multiple processes is often achieved by syn-
thesizing individual processes separately and then interconnecting their structure
[Fuh91]. This kind of approach requires that I/O and inter-process communication
be specified manually by the designers.

Hung [HP92] and Gebotys [Geb92] extended traditional behavioral synthesis to
multiple-chip designs. Under these approaches, the design behavior is still repre-
sented by a single CDFG. The CDFG is first partitioned and then the partitioned
CDFG is scheduled globally so that each chip’s execution is fully synchronous with

the others and the inter-chip communication is achieved completely in lock step.

1A comprehensive study of these approaches and related synthesis topics can be found in

[MPC8].
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Like many previous scheduling techniques, these approaches still assume that all
the operations in the CDFG have fized execution delays.

There is a class of work [TW93, Nes87, Hay90] which address the issue of
1/0 and inter-process communication as a separate problem, known as interface
synthesis. These techniques, however, are mostly applicable to control-dominated
designs with little or no data computation. The approach reported by Takach and
Wolf [TW93] first analyzes a network of communicating processes to generate a
small set of communication constraints. Solving the set of generated communica-
tion constraints and the internal constraints of each process results in a feasible
schedule for the network.

For the synthesis of more general designs, Ku introduced a technique called rel-
ative scheduling [KM92] which can handle operations with unbounded delays under
detailed timing constraints. In relative scheduling, the start time of an operation
is specified in terms of offsets from a set of anchors (unbounded-delay operations).
This approach requires resource binding be performed before scheduling. Once
resource binding is determined, the operations bound to the same resource must
be serialized by adding proper sequencing dependencies among them to resolve
conflicts. Furthermore, the control scheme for the hardware architecture targeted
by relative scheduling is fairly complicated.

Recently, Ku et al. [KFJM92] applied relative scheduling to designs with mul-
tiple processes. Like Takach’s approach [TW93], the inter-process communication
events are first extracted from the process specifications and composed into a
causality graph. The causality graph is then scheduled using relative scheduling.
The sequencing and timing constraints implied by this composed interface sched-
ule are then reflected to the individual processes as external timing constraints,
and each process is scheduled and synthesized accordingly. Since relative schedul-
ing requires resource allocation/binding to be performed before scheduling, this

approach is not suitable for the synthesis of multiple-process designs under global
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resource constraints; e.g., the area capacity of a chip. A preferred approach is one
that can concurrently trade off the performance and resource requirements of each

process during scheduling.

2.4 Design Verification

There are a variety of systems and approaches for design verification. A com-
prehensive survey can be found in [CP88, McF93]. The most common approach
for design verification at virtually every abstraction level is numeric simulation.
However, without simulating all possible operating conditions, numeric simulation
can only show the existence of errors but not their absence [CP88].

Formal methods, on the other hand, use mathematical reasoning rather than
test-case experiments to show that the design will behave properly as required by
the specification. Generally, formal verification relies on a formal model, which
must be mathematically sound, to represent specifications, implementations and
properties. Additionally, a set of reasoning rules associated with this formalism
must be developed to perform proofs. Some reputed formalisms are higher-order
logic [HD86], temporal logic [Boc82] and behavior expressions [MP83]. However, it
requires a great deal of expertise and time to express designs or to do a nontrivial
proof in any of these formalisms [McF]. Hence, formal verification at present is
still extremely difficult, if not impossible, to automate.

There is another class of verification approaches called symbolic simulation.
The idea behind symbolic simulation is to evaluate circuit behavior over expanded
sets of signal values so that a number of operating conditions can be simulated
in a single run. In late 1970’s, researchers at IBM applied symbolic simulation to
hardware verification at the register-transfer level [Dar79]. The research activities
on this problem only lasted till the early 1980’s [Cor81] due to the weakness of

the symbolic manipulation methods. For example, the algebraic expressions built
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up during the course of simulation may become too large and cumbersome to
manipulate effectively. Also, conditional branching and looping constructs proved
even more intractable, since in general the simulator could not determine which
conditional branches would be taken or the conditions under which a loop would
terminate. The fundamental problem is that many properties of algebra on the
integer domain are undecidable [Bry90]. Hence, it becomes very difficult for the
algebraic manipulator to determine the equivalence of two complex expressions.

Recently, there is a renewed interest in symbolic simulation at the logic level
due to the introduction of Ordered Binary Decision Diagrams (OBDDs) [Bry86].
This representation has been shown to be canonical; i.e, each Boolean function
has a unique representation. Hence, a BDD-based symbolic simulator [BBB*87]
becomes very useful for verifying combinational circuits. The verifier can sim-
ply introduce Boolean symbols for each primary input and simulate the circuit to
obtain a Boolean function in OBDD for each primary output. These functions
can then be compared with the ones derived from the circuit specification. For
sequential circuits, however, more sophisticated approaches are required if the cir-
cuit and its specification are using different state encodings. One approach [BF89]
is to require the relation between the state encodings be specified explicitly. A
hindrance of BDD-based approaches is that the size of an OBDD can become ex-
ponential in terms of the number of Boolean symbols. Hence, the scale of circuits
that can be handled is limited. In CATHEDRAL [GRVM90], a divide-and-conquer
approach called SFG-tracing [GGP*91] is employed. In SFG-tracing, the specifi-
cation is first partitioned, and the partitions in the specification are used to verify
the implementations by BDD-based symbolic simulation.

RLEXT [KW89] is a rule-based system developed by Knapp and Winslett for
automatic verification of synthesized RTL designs,, RLEXT relies on a unified
representation similar to the USC Design Data Structure (DDS) [KP85] for design

information including the behavioral specification, the structural implementation
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and the relation between them. A set of rules are defined to detect possible de-
sign inconsistencies like value collisions, unbound operations and data dependency
violations. On novel feature of RLEXT is that it allows the user to modify the
design structure and then provides the ability to repair some design-rule violations
automatically. This approach, however, does not consider the control logic nor the
interaction between the datapath and the controller. How the timing issues such

as clocking schemes and delays are handled is not described.
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Chapter 3

System Specification, Representation and

Translation

In general, the first task of an automatic synthesis system is to translate a behav-
joral specification of a design into a representation that is suitable for synthesis.
In fact, this task may be the most critical one when the specification language and
the representation system have incompatible models to describe the given design.
This is because most specification languages and their simulation models need to
be intuitive to the designers; contrarily, the internal design representations for
behavioral synthesis are geared toward ease of synthesis.

Several languages have been used to specify behavioral descriptions as input
to high-level synthesis systems. The major consideration in selection of the be-
havioral specification language involve specifying the behavior without introducing
unnecessary structure or timing information which overconstrain the synthesis pro-
cess. In the USC ADAM system, VHDL [Ins88] has been adopted as the primary
specification language due to its standardization and popularity. Although the
popularity of using VHDL as a behavioral specification language for behavioral
synthesis is increasing, the major problem with VHDL is that it was intended
to be a simulation language. Therefore, many semantics of the language are not

suitable for synthesis or may severely overconstrain the design. Hence, the VHDL
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subset used by the ADAM system is restricted to purely functional behavior. The
essential timing constraints must be supplied separately to the synthesis tools by
the designers. ADAM’s VHDL subset is described in Appendix A.

The design representations used by most behavioral synthesis approaches are
quite different in style but, in general, they shares a similar objective which is to
capture the necessary control and data flow information of the design behavior
using one or two flat or hierarchical graphs. The ADAM system use a unified
multi-level design representation called the DDS (Design Data Structure) [KP85]
to model the design under development. This unique form of representation divides
design information into four models (graphs) which describe the data flow behavior,
the control and timing behavior, the logical structure and the physical structure
of a hardware design. In addition, the relations among the objects in these models
are represented by two or three-way bindings.

The task of VHDL to DDS translation is complicated by the fact that each
VHDL process is described by sequential statements while DDS employs single-
assignment data flow graphs for behavioral representation. Hence, extensive lo-
cal/global data flow analysis and graph optimization are needed to produce fully
parallelized data flow graphs for behavioral synthesis.

In this chapter, we will discuss several important aspects of the translation from
VHDL to DDS; namely, flow analysis, optimization and modeling. A prototype
compiler called VHDL2DDS has been developed and used to experiment with
many examples including an AR filter, a robot-arm controller, arithmetic Fourier
transformation, an FFT butterfly node and a JPEG image compression system.
This tool currently serves as the front end of the ADAM system for accepting
new designs to be synthesized. Since the details regarding VHDL and DDS have
been described thoroughly elsewhere [Ins88, KP85], their terminology shall be used

without further explanation in the following discussion.
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3.1 Translation of VHDL Processes into DDS

In practice, most hardware designs consist of a number of concurrent processes,
where a process is defined as an independent thread of control. Therefore, a
hardware system described in VHDL is modeled by a number of concurrently
running processes, each of which represents a piece of hardware that gets activated
when one or more of its inputs on the sensitivity list changes or simply runs forever
if it has neither a sensitivity list nor any wait statement. The behavior of a process
in VHDL is described by a sequence of statements. For example, Figure 3.1 shows
a sample VHDL description that consist of one process for a ones-counter module.
Hence, the fundamental problem in the VHDL to DDS translation is to produce
a data flow graph (DFG) and a control timing graph (CTG) in DDS for each
process along with bindings between the two so that together they are functionally

equivalent to the process description in VHDL.

3.1.1 Problem Statement

Basically, a VHDL process is described algorithmically by a sequence of statements.
The statements are sequentially executed unless they specify alternative branching
destinations. The main side effect of these statements is to modify the current state
(variables) of the process.

In DDS, the behavior specification of a design is represented by a data flow
graph (DFG), a control timing graph (CTG) and a set of bindings B between DFG
and CTG. The DFG is a directed acyclic bipartite graph (O, V, E), where O is a
set of operations, V' is a set of values, and F is a set of directed edges that connect
operations and values. This graph is a single-assignment graph. That is, a value
in DFG is the result of function application and can be generated only once. The
CTG is also a directed graph (P, R), where P is a set of points represent control or

timing events and R is a set of directed edges (ranges) represent relations between
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-- Ones-Counter - An Example VHDL Description

package OCtypes is
type BYTE is array (0 to 7) of BIT;

end OCtypes;

use work.OCtypes.all;
entity ONES_CNT is

port ( A: in BYTE; C: out INTEGER);
end ONES_CNT;

architecture BEHAVIOR of ONES_CNT is
begin
process
variable NUM, I: INTEGER;
begin
NUM :=
I 2= 0;
while I < 8 loop
if A(I) = ‘1 then
NUM := NUM + 1;
end if;
I :=T1+ 1;
end loop;
C <= NUM;
end process;
end BEHAVIOR;

0;

Figure 3.1: A sample VHDL description
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points. Special points are defined in CTG to represent conditional branches and
loops. The modeling of conditional branches and loops in DDS will be discussed
shortly in Section 3.1.2.4. The bindings B are a set of 2-tuples (O, R) which
tentatively assign dataflow operations to timing ranges.

The task of VHDL to DDS translation can be briefly described as following:

e map the usage of each variable in the process into a sequence of values in the

DFG.

e map the data manipulation constructs in the statements into the operations

of the DFG.

e map the essential control flow implied by the process description into the

CTG and produce the proper bindings between the DFG and CTG.

This translation is both important and difficult since it is analogous to the
parallelization problem that transforms a sequential algorithm into a maximally
parallel one. The objective is to extract the parallelism from the design specifica-
tion in VHDL so that the parallel flow graphs in DDS can be selectively serialized
during high-level synthesis to produce a RTL implementation that satisfies the

design constraints.

Design VHDL High .
i DFG/CT Level
N — €
VHDL Dt;S Synthesis ® Implementation
S; qr'l'l i) g)a}:alifaf selectively serialized design
ehavior ehavior

Figure 3.2: The parallelization during the VHDL to DDS translation
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3.1.2 VHDL Translation Approach

There are two major issues to be dealt with in this mapping; namely, how to sep-
arate the control flow and the data computation information and how to analyze
the data usage and dependency in a process description. In order to tackle this
massive task, we approach it by a sequence of steps as shown in Figure 3.3. Briefly
speaking, our approach is to first construct a flow graph from the parsed VHDL
description® by performing control flow analysis [ASU86]. The vertices in this flow
graph are so-called basic blocks. The flow graph effectively isolates the compu-
tations from the control flow by confining them in the basic blocks. Then, local
data flow analysis is performed to collect intra-block data dependencies, followed
by global data-flow analysis to find the inter-block data dependencies. After this
step, the annotated flow graph becomes a combination of the data flow and control
flow graphs. Finally, a number of graph reduction rules are executed to optimize

the flow graph. In what follows, we will briefly discuss each of these steps.

3.1.2.1 Control Flow Analysis

In a VHDL process, the statements are sequentially executed unless the current
statement specifies an alternative branching destination. Therefore, the sequence
of statements from the one which was the target of the previous branching to the

one currently altering the flow of execution constitutes a computation unit.

Definition 3.1 A sequence of consecutive statements S;, . .., S; that does not have

the possibility of branching out in the middle is called a basic block By [ASUS6].

Definition 3.2 A flow graph G is a directed graph (B,E) where B is a set of ver-
tices representing the basic blocks and each edge (Bg, By) € £ denotes a conditional

or unconditional branch from the basic block x to y.

1We use a commercial VHDL syntax analyzer from Compass Design Automation to parse the
VHDL descriptions.
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Parsed VHDL Description

Control Flow Analysis

Flow 'Graph
(Basic blocks)

Local Data Flow Analysis

Annotated Flow Graph
(A local data flow graph for each basic block)

Global Data Flow Analysis

Global Data Flow Graph &
Control Flow Graph

Graph Optimization

DDS Data Flow Graph &
Control Timing Graph

Figure 3.3: The steps to translate a VHDL process into DDS
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Control flow analysis is a procedure that partitions a sequence of statements into
basic blocks and constructs a flow graph that represents the flow of control.
Let the first statement of a basic block be called the leader. The set of leaders

in a sequence of statements can be determined by the following rules:
e The first statement is a leader.

e Any statement that is the target of a conditional or unconditional branch is

a leader.
e Any statement that immediately follows a branching statement is a leader.

After the leaders are identified, the following rules can be used to construct
the flow graph of a sequence of statements {Si,...,Sn}. Let the leaders be

{Sty5.- -y Sty }, where [} < ... <y

1. For each leader Sj, produce a basic block vertex By that consists of the

statements from .5, to S, 1.

2. For each branching statement, add an edge from the basic block in which
it is located to each one of its target basic blocks. The edge is associated
with the branching condition if the statement is conditional or simply true

otherwise.

For example, after performing control flow analysis on the ones-counter example
given in Figure 3.1, six small basic blocks can be found. The corresponding flow
graph is shown in Figure 3.4.

The flow graph represents the essential flow of control of the VHDL process
being translated. In fact, it can be regarded as the preliminary CTG in DDS since

each basic block corresponds one or more sequential ranges in the CTG and each
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while I < 8 loop

ey

if A(I) = *1*' then

W

NUM := NUM + 1;

C <= NUM;

Figure 3.4: The flow graph of the one-counter example

edge® between two basic blocks can be transformed into a range from the ending

point of the source block to the starting point of the destination block.

3.1.2.2 Local Data Flow Analysis

Fach basic block in the flow graph is a computation unit. The only forms of
statements that will appear in a basic block are those which perform computation
and/or produce side effects; namely, assignments, procedure calls and expressions.
Each of them can be modeled as (I(.S), O(S), F(S)) where I(S) is a set of variables
which are referenced by the statement S, O(S) is a set of variables whose values
are updated by S, and F(S) is the set of operations performed by S.

Here, we are interested in the inter-statement data dependency within each

basic block. That is, we want to know which statements within a basic block

2Except the loop-back edges. Each such edge is implied by a pair of special points in the CTG
which denote the places where control is returned or transferred when a loop-back is made.
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define the values for each I set and similarly who will use the values of each O set.

Let B={S;,...,S;} and i < k < j. The following rules can be used to collect the

definition /use information:

1. The definition of a variable = € I(Sy) is either the largest d such that ¢ <
d < k and z € O(Sy) or it is defined outside B if no such Sy can be found.

2. The use of a variable y € O(S) is a list of statements U after Sy such that y
is in their I sets but y is not in the O set of any statement within this region

(from Sy to the last statement in U).

For example, let a basic block contain the following statements:

ay = 1ing * Py

ay = 1Ny * pp

by = ingy + ay

out; = by * p3

c1 = outy * pyg

oul, = a; + ¢
After producing the input and output sets of each statement and analyzing the
inter-statement data dependency, we have the definition/use table shown in Ta-
ble 3.1.

Additionally, we need to know the input set of B that are the variables whose

values are defined elsewhere but are referenced in B and the output set of B that
contains all the variables being updated by B. These two sets are important in

the global data flow analysis. /(B) and O(B) can be determined by the next two

equations.

=1

f(B)=1(sf)U{ J (I(Sk)— U O(sz))}

k=i+1 ]

O(B) = [_Jj O(Sk)

k=t

30



Statement Input Set || Output Set
val | def || val | use

1: a; =g * py my |0 a i
pr |0

2: ag = 1ng * Py my |0 ) 3
pz |0

3:by=iny+ay |[iny |0 b, 4
as 2

4: tmp =by *p3 || by 3 tmp | 5, 6
P3 0

5 ¢ =tmp*pyg | tmp | 4 ¢ 7
P4 0

6: out; =tmp tmp | 4 outy | 0

T:tmp=ai+c || a1 1 tmp | 8
C1 5

8: outy = tmp tmp | 7 outs | 0

Table 3.1: The use/definition table of the basic block example

As a result, the basic block example given earlier will have an input set
{iny,ing, p1, P2, P3, pa} and an output set {ay, az, by, €1, tmp, outy, outy}.

After this analysis, it is conceptually easy to produce a piece of DFG that
corresponds to each basic block. This is because the definition and use informa-
tion provides the inter-statement data dependencies while the syntax trees of the
expressions within a statement give the intra-statement data dependencies. By
transforming each operation in the F sets of all the statements in the basic block
into a node and each data dependency into a link between nodes, a piece of DFG
is built. For instance, Figure 3.5 shows a piece of data flow graph that corresponds

to our basic block example.

3.1.2.3 Global Data Flow Analysis

Unfortunately, the inter-block data dependency is much more complex than the

intra-block one previously discussed, because the flow of execution is no longer a
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Figure 3.5: The data flow graph of the basic block example

straight line as within a basic block. For example, a basic block after a conditional
structure may have more than one basic block which define its input values; con-
sequently, the correct data dependencies are decided by the branching conditions.
Hence, it is not sufficient to simply scan backward (forward) along the incoming
(outgoing) paths of a basic block in the flow graph.

Our approach for this global data flow analysis is outlined in the following

steps:

1. Hierarchically group the basic blocks within the same structure, such as if-

then-else or while-loop structures, into a meta block as shown in Figure 3.6.

2. Calculate the input and output sets of those meta blocks according to Ta-

ble 3.2 3.

3. Analyze the definition and use relationships among the meta blocks hierar-

chically.

Readers may wonder why the input set of a if-then-else meta block shown in

Table 3.2 contain some variables also in its output set. Specifically, any variable

30ther forms of conditional and iterated statements can be transformed into those two shown
in Table 3.2.
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/\E <

T

N —

if-then-else while loop

Figure 3.6: Meta blocks for if-then-else and while-loop structures

| Type of meta block [ Input and output sets ]

if C then T IIF)=I1(C)UI(T)UI(E)U

else £ {O(IF)— (O(T)NO(E))}
O(IF)=0(T)UO(E)

while C loop L IWL)=I(C)UI(L)UO(L)
OWL)=0(L)

Table 3.2: Calculation of input and output sets for the meta blocks



appearing in the output set of the /F' block but not modified by both the T' and
E blocks must be included in the input set of the I F' block. This is illustrated in

Figure 3.7. Here y get the value of  either from the if statement if C' is true or

blocks I sets O sets
% = assign | x
if.C then x:= if-then-else | x | x
: assi X ;/
yi=x ssign

Figure 3.7: A conditional assignment

the old value of z from the earlier assignment. By enforcing = as one of the input
variables of the if meta block, this block can then supply the correct value for y
by merging these two possible definitions of z during the global definition and use
analysis.

By introducing meta blocks into the flow graph, the global data flow analysis
can be done hierarchically. Since each level of hierarchy basically consists of a
sequence of basic blocks or meta blocks, the inter-block data dependency can be
analyzed using the techniques similar to the local data flow analysis discuss earlier
except that the granularity is at the block level instead of at the statement level.
The definition and use analysis within each meta block, however, is done in a
bottom up fashion. An if-then-else meta block /F consists of three subblocks, a

condition C, a then body T and an else body E. After we have analyzed these

34



three subblocks, the definition and use of I(IF) and O(IF) can be obtained by

the following rules:

L

2

The definition of each variable z € O(IF') is a 2-tuple (defr,defg). If
x € O(T), defr is from subblock T'; otherwise, defr is defined outside the
IF meta block and will be determined at next level of hierarchy. defg is

determined in a similar way for subblock E.

The use of each variable y € I(IF) denotes every subblock whose input set

contains y.

On the other hand, a while-loop meta block WL consists of two subblocks, a

condition C and a loop body L. Its data dependency is analyzed in the following

way:

1.

The definition of each variable z € O(W L) is a 2-tuple (defr, de finit), where
defr, is from subblock L and def;,; is the initial value of z defined outside

W L meta block.

The use of each variable of y € I(W L) denotes every subblock whose input

set contains y.

If a variable z in I(C') or I(L) is also in O(L), its definition becomes a 2-tuple
(defy, definit), where defy, is is the previous-iteration value from subblock L

and defini is the initial value defined outside W L.

Figure 3.8 shows the block hierarchy of the one-counter example and the result of

global data flow analysis. The definition/use table shown in this figure describes

the inter-block data dependency. For example, from this table we can find that

the definition of I in Block 3 comes from its parent block (Block 5), which in turns
from higher levels (Block 7 and Block 8) of the block hierarchy. From Block 8,

we know that the initial value of I comes from Block 1 and its previous-iteration

value is from Block 7.
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Block Input set Qutput set
NUM := 0; B1 val def use val def use
I == 03
T 1 NUM 8
i 1 8
while I < 8 loop| B2 2 I 8
N A 5
\ ) 5
if A(I) = ‘1 then|B3 4 NUM 5 NUM 5
5 A 7 3 | NUM| 45 7
\ 1 7 3
NUM 7 45
. B4 | NUM := NUM + 1;
iB5 6 1 7 I 7
Y / 7 A 8 5 I 6 8
1 8 56 | NUM 5 8
I :=1+ 1;| B6 :
B8 BT 1 NUM | 8 5
| TR AR Y 8 A 0 7 1 7.8
C <= NUM; | B9 1 1,7 2,78 | NUM | 7.8 9
NUM | 1,7 7
9 NUM 8 C 0

Figure 3.8: Global data flow analysis of the one-counter example
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3.1.2.4 Graph Generation

After the global data flow analysis, all the inter-block data dependencies are found
and the global DFG and CTG can be generated. Generalized DDS templates for
the if-then-else and while-loop structures are shown in Figures 3.9 and 3.10. In
each of the templates, two pseudo operations, D (distribute) and J (join), are
used to support conditional data dependencies. Each D operation is like a 2-to-1
demultiplexer which distributes the input value to one of its outputs according to
the predicate. Contrarily, a J operation is like a 1-to-2 multiplexer which merges
two possible input values and presents one at its output. The while-loop template
uses a pair of pseudo operations, LB (loop begin) and LI (loop iterate), to denote
an implicit value feedback from LI to LB so that the DFG can remain acyclic.
These pseudo operations do not necessarily correspond to actual hardware modules
after synthesis. Their presence is mainly for synthesis tools to detect mutual
exclusiveness and loop feedback in DFG.

In the CTGs of both templates, a pair of or-fork and or-join points are used to
represent conditional execution. Each outgoing range of an or-fork point is asso-
ciated with a condition. The flow of execution follows the range whose condition
is satisfied. The CTG of a while-loop structure begins at an « point and iterates
at an w point, at which time the flow of execution returns to the a point. Note
that the range between the w and or-join points will never be taken. Its presence
is mainly to make the CTG connected.

Figures 3.11 shows the DFG and CTG generated for the ones-counter example.
The implicit control and feedback edges are also shown in the DFG using grey

arrows.
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DFG:

else body
" .
} D : Distribute
Pred \J . JOtn

CTG:

condition

n : simple point

Y = Ol'-fo‘l’k pOIl‘lt else body
L : or-join point

Figure 3.9: The DDS template of an if-then-else structure
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DFG:

Pe————"
s T Srr i,

/ loop body LI
I /

while
— D

hile

D : Distribute
J :Join

LB: Loop begin
LI : Loop iterate

CTG:

(Pred = F)
: or-fork point

: or-join point
: alpha point
: omega point

e QF =

Figure 3.10: The DDS template of a while-loop structure
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DFG

Figure 3.11: The DFG and CTG of the ones-counter example

CTG
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3.1.2.5 Graph Optimization

Like traditional compilers for programming languages, there is plenty of oppor-
tunity to optimize the graphs during the VHDL to DDS translation. However,
some transformations, such as tree-height reduction and loop unfolding, do not
always result in a hardware design that is preferred by designers. For example,
tree-height reduction [NP91] can reduce the critical paths of data flow graphs, but
it can also introduce additional operations. We feel that these kinds of transforma-
tions should be performed separately and interactively by the designer. Here, we
focus on those transformations that are guaranteed to improve the final design®.
The flow graphs and the definition/use information are particularly useful in per-

forming these transformations.

Lemma 3.1 For any basic block By in a flow graph where k > 1, if By does not

have any incoming edges then it is dead code.

Proof: Since Bj does not have any incoming edge, there exists no path from B;
to Bi. Therefore, when the execution begins at By, there will be no way to reach
By, under any input. O
This lemma provides an easy way to eliminate the redundant parts of a behavioral
specification, but it does not guarantee to identify all of them. This is because
those basic blocks with incoming edges are also dead codes if their path conditions
can never be evaluated to true.

After the definition and use analysis, some values in the data flow graph may
not be used by any operations and they are not the primary outputs either. These
values are called dangling. The following rules can be used to eliminate the dangling

parts of a data flow graph:

4Some straightforward transformations like constant propagation and copy operation elimi-
nation will not be discussed here.
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1. If there is no entry in the use list of a value and it is not a primary output,

mark it dangling.

2. If the outputs of an operation are all dangling, remove it and all its output
values from the graph. Additionally, for each input of this operation, delete

it from all the use lists in which it appears.

Lemma 3.2 For any two operations Oy1(z1,...,%s) and Oz(y1,...,Yn), if Oy and
O, are of the same type and z; and y; are defined by the same value for all 1, then O,
and O, are common subexpressions. Therefore, one of them can be removed from
the graph and the definition and use information of its outputs can be redirected to

the other.

Proof: The proof is trivial. Since O; and O, perform the same function, they
should produce equivalent results under the same input condition. Furthermore,
if there is a commutative property, the order of inputs may not be important as
long as their correspondence can be established. O

By recursively applying this lemma to a data flow graph, many of the common

subexpressions can be eliminated.

Lemma 3.3 For any operation O(z1,...,z,) within a loop, if z; are defined out-
side the loop for all i, then O is a loop invariant operation which can be moved out

of the loop.

Proof: Since all the inputs of O are defined before the loop is entered, the input
condition of O will not change at any iteration of the loop. Consequently, its
outputs will remain the same at every iteration. Therefore, it is equivalent to
compute O once before entering the loop. O

However, care must be taken when performing this transformation. This is because
the loop may execute zero times. In this situation, moving O out of the loop will

cause an additional operation to be executed, which may produce an invalid result.
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Hence, each output of O may need to be merged with its previous value before the

loop if there is a subsequent use of it after the loop.

3.2 Array and Input/Output Modeling

Unlike scalar variables, input/output ports and arrays have to be handled in a
different way since they are associated with structural attributes. For example, we
cannot safely assume that a sequence of assignments to an output port is equivalent
to the last assignment to this port. This is because the designer may intend to
transfer a set of data via a single pair of input/output ports. In addition, when
an element of an array gets modified by an assignment statement, the subsequent
references to the array cannot be made parallel with the assignment unless we can

make sure that they refer to different elements in the array®.

3.2.1 Arrays

Arrays cannot be handled like scalar variables in a single-assignment data flow
graph, because an array is a composite object that consists of elements of the
same type. A sequence of assignments to the elements of an array cannot be
done in parallel when there is a possibility that two assignments may refer to the
same element. Even if two assignments can be guaranteed to refer to two different
elements of an array, they may still have to be sequentialized if the array is going
to be implemented in a single-port memory.

In our model, for each array type declared in VHDL, two additional opera-
tions, array read operations and array write, are implicitly defined as shown in
Figure 3.12. An array read operation takes the designated array and the associ-

ated indexes as inputs and provides the value of the referred element as the output.

3We parallelize array accesses in the event that the synthesis software has available multiport
memories.
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Array Index Array Index

i

Value of Array[Index] New Array
(with Array[Index] = Value)
(a) Amy Read (b) Array Write

Figure 3.12: The array read and write operations

On the other hand, an array write operation takes an additional input for the value
to be written to the referred element and produces an new instance of the array. If
an indezed name appear at the right (left) hand side of an assignment statement,
an array read (write) operation is created in the DFG.

A sequence of array read operations occurring before the array is modified
are made in parallel by VHDL2DDS. Hence, the subsequent synthesis tools can
selectively sequentialize them according to the number of read ports of the memory
module chosen to implement the array.

On the other hand, a sequence of writes to an array are explicitly sequentialized
according to the order of assignments appearing in VHDL. This sequentialization
is done by making the array input of a write operation refer to the instance of
the array produced by the previous write operation. The current implementation
of VHDL2DDS does not analyze the indexes of array write operations in order to
parallelize those array write operations which will refer to different elements in the

array.
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3.2.2 Input/Output and Inter-Process Communication

As we mentioned earlier, most hardware systems consists of a number of con-
current processes which may communicate with each other or the environment.
For instance, the VHDL example given in Figure 3.13 consists of two processes
which communicate with each other through the global variables start, finished
and p2temp. Additionally, process one is communicating externally through two

input ports datal and data2 as well as a output port result.

3.2.2.1 Types of Communication

In general, the communication is considered synchronous if the send action in one
process and the receive action in another refer to the same clock; otherwise, it
is asynchronous and must be done through explicit handshaking. Furthermore,
the communication can be either static or dynamic. Communication is static if the
exact time it takes place can be determined during synthesis. That is, the send and
receive operations are synchronized statically in time. This type of communication
requires little synchronization overhead, but it imposes a strict timing constraint
for synchronization on the schedules of the sending and receiving processes. We
define dynamic communication to be one whose time cannot be scheduled to a
fixed time; e.g., waiting for the assertion of an external signal. Obviously, dynamic
communication needs more synchronization overhead (such as handshaking signals
and the associated logic) than static communication does. It may also lead to
higher controller costs due to the busy waiting on both the sending and receiving
processes. The communication can be further classified into either buffered or
unbuffered. In buffered communication, the execution of the sender or receiver

does not have to be blocked (suspended) unless the buffer is full or empty.
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entity example is

port ( datal : in bit_vector (3 downto 0);
data2 : in bit_vector (3 downto 0);
result : out bit_vector (3 downto 0));

end example;

architecture example of example is
signal start, finished : bit;
signal p2temp : bit_vector (3 downto 0);
begin

pl : process

begin
gstart «= *17;
wait on finished until finished = '1°’;

sgtart <= '0*;

result <= p2temp;

walt on datal, dataZ2;
end process;

p2 : process
variable res : bit_vector (3 downto 0);

begin
finished <= ‘0*;
res := datal + data2;

p2temp <= res;
finished <= ‘17;
wait on start;
end process;
end example;

Figure 3.13: A VHDL example with two processes
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3.2.2.2 Modelling Communication in VHDL and DDS

In VHDL, inter-process communication is specified by the assignments or refer-
ences of the global signals which are shared by the processes. Similarly, inter-chip
communication is done via the input/output ports. Additionally, sensitivity lists
and wait statements provide the mechanism to specify blocking communication
events.

A reference to an input port or a global signal in a statement of a process
implies a read operation of a communication event is taking place. For instance,
the following statement from the VHDL example shown in Figure 3.13 consists of

two read operations from input ports data! and dataZ:
res := datal + data2;

Similarly, an assignment to an output port or a global signal becomes a write

operation of the corresponding communication event. For example, the statement
p2temp <= res;

implies a write operation of an inter-process communication event via the global
signal p2temp. A communication event consists of a write operation in one process
and a number of read operations in the others.

In this model, a sequence of references to an input port or a global signal not
only imply a number of read operations but also a sequential ordering among them
which must be obeyed by the implementation®. This is also applied to a sequence
of assignments to an output port or a global signal. A typical example of this
situation is to transfer a set of data via one pair of input/output ports.

A blocking communication event can be specified by using a wait statement or a
sensitivity list that contains the signal in question. Otherwise, the communication
event is intended to be implemented statically as a non-blocking one. For example,

the statements

®See McFarland’s model [MP83] for an early formalization of this.
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wait on x, y;

Z:=x+y;

imply that here the communication events for  and y are to be implemented as
blocking ones.

In DDS, the timing and sequencing of communication can be represented hierar-
chically by the process-level CTGs and a system-level CTG as shown in Figure 3.14.

A read or write operation in a process is represented by a binding (O, T, C), where

System Structure

Sender n Receiver
e, w b W

System CTG

Figure 3.14: The communication model in DDS

O is a read or write operation in the DFG of the process, T is a range in the
process’'s CTG, and C is a structural carrier which is either an input/output port
or an inter-process communication link. The ranges of a sequence of read (write)
operations from (to) an input/output port or a global signal are explicitly ordered
in the CTG.

Similarly, each event for inter-process or inter-chip communication can be rep-

resented by a range in the system-level CTG. This range for a communication
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Example | Description Line || Condition | Loop | Synthesized
arf.vhdl AR filter 79 no no yes
aft.vhdl arithmetic fourier transform | 145 no no yes
fir.vhdl FIR filter 37 no no yes
ellip.vhdl | elliptic wave filter 90 no no yes
robot.vhdl | robot arm controller 99 yes no yes
diffeq.vhdl | differential equation solver 94 yes no yes
dct.vhdl discrete cosine transform 71 no yes yes
oc.vhdl ones counter 29 yes yes no
sqt.vhdl square root function 25 yes yes no

Table 3.3: A partial list of examples translated by VHDL2DDS

event is a composite range that is composed by the ranges of a write action in one
process and the read actions in the others. If the communication event is a block-
ing one, the duration of the range is specified as unbounded. Otherwise, a fixed
delay, if known, can be given to the range to specify the communication time for
an unblocking event. The relationships and constraints among the event ranges in
the system-level CTG can be added by the designer to describe the system timing

requirements and the interaction to the external world.

3.3 Experiments

The VHDL2DDS program has been involved in many top-down chip design exper-
iments using the ADAM high-level synthesis system. Table 3.3 lists some of the
examples that were translated by VHDL2DDS. In this section, we will use three
examples to show the features of VHDL2DDS.

Figure 3.15 shows a simple VHDL description which illustrates the way that
VHDL2DDS handles conditional branches, loops and arrays. Basically, this module
performs a simple integer square root function. Though this description does little
computation, its control flow is a good test for global data flow analysis. The

data flow graph produced by VHDL2DDS is shown in Figure 3.16. In this graph,
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-- An simple integer square root function

entity SQT is
port (x : in integer;-- the input value
y : out integer);-- the result

end SQT;

architecture BEHAVIOR of SQT is

begin
process
variable a, b: integer;
begin
if x > 0 then
a :1= 1l;
b = xz
while abs(a - b) > 1 loop
a := (a +b) / 2;
b 2= X [ a;
end loop;
Yy <= a;
else
y <= X;
end if;

end process;
end BEHAVIOR;

Figure 3.15: The VHDL description of a square root function
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Figure 3.16: The data flow graph of the square root function
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two pairs of LB (loop begin) and LI (loop iterate) pseudo operations are used to
denote the implicit feedback values for a and b to be used in the next iteration of
the while loop. The pair of D (distribute) and J (join) pseudo operations at the
left hand side of the figure correspond to the if statement in the VHDL description
and the D/J pair at the right hand side is the loop-exit condition for the while
statement. The control edges (flags) and feedback edges are shown by grey arrows
in this graph.

The robot arm controller example given in Table 3.3 was originally written in
the C language. The C code was translated into a VHDL description in order to be
synthesized through the ADAM system. Figure 3.17 shows the VHDL statements
of this example. Though the VHDL description of this example contains four
sequential conditional branches, VHDL2DDS was able to retain only the essential
data dependencies and produced a highly parallelized data flow graph as shown in
Figure 3.18.

Recently, a JPEG image compression system was designed using the Unified
System Construction system [GCDBP94], which is an integration of several newer
system-level tools with the ADAM synthesis system. Figure 3.19 shows the VHDL
description of an 8x8 16-bit Discrete Cosine Transform module used in the com-
pression system. This module performs 8 point DCT row-wise over an 8x8 frame.
Figure 3.20 shows the data flow graph produced by VHDL2DDS. The feedback
edges are not shown here to make the graph easier to interpret. In this graph,
there are sixteen array read operations to InFrame in parallel, but the eight ar-
ray write operations to Out Frame in the lower right part of the figure have been
sequentialized by VHDL2DDS according to the order of the assignments in the
VHDL description.
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-- The VHDL statements of

evl := uvl - xvl;
ev2 := uvl - xXv2;
ul0d := kvl * evl;
u20 := kv2 * ev2;
eml := xvhli - xvl;
em2 := xvh2i - xv2;

if eml < Z1 then
tmpl := Z1 - eml;
else
tmpl := Z1 + eml;
end if;

if tmpl < evthresh then

eml := Z22;
else

eml := Z2+eml;
end if;

if em2 < Z3 then
tmpl := Z3 - em2;
else
tmpl := Z3 + emZ;
end if;

if tmpl < evthresh then
em2 := Z4;

else

em2 := Z4 + em2;

end if;

xvhlo<=ul0*T1l+xvl;
*xvh20<=u20*T14+xv2;

mh110:=kmll*eml*ulli+mhl1i;
mhl120:=kml2*eml*u2li+mhl2i;
mh210:=km21l*em2*ulli+mh21i;
mh220:=km22*em2*u21i+mh22i;

gl<=mh110*ul0+mh120*u20;
g2<=mh210*ul0*mh220*u20;

mhllo<=mh110;
mhl2o<=mhl120;
mh21lo<=mh210;
mh220<=mh220;
ullo<=ul0;
u2lo<=u20;

-- 1lst

-- 2nd

-- 3nd

-- 4nd

the robot arm controller example

conditional branch

conditional branch

conditional branch

conditional branch

Figure 3.17: The VHDL statements of the robot arm controller example
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Figure 3.18: The data flow graph of the robot arm controller
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-- dct.vhdl : an 8x8 16-bit DCT VHDL behavioral description
package dct_data is
type Frame is array(0 to 7, 0 to 7) of integer;
constant cl,c2,c3,c4,c5,c6,c9,cl12,cl14,¢cl15,¢clé :integer;
end dct_data;

use work.dct_data.all;
entity det is
port (InFrame :in Frame;
OutFrame :out Frame);
end dct;

use work.dct_data.all;

architecture behavior of dct is

begin process
variable t1,t2,t3,t4, ml,m2,m3,md: integer;
variable i: integer;

begin
for i in 0 to 7 loop
tl := InFrame(0,i)+InFrame(7,1i);
t2 := InFrame(3,i)+InFrame(4,1i);
t3 := InFrame(l,i)+InFrame(6,1i);
t4 := InFrame(2,i)+InFrame(5,1);
ml = t1+t2;
m2 := t3+t4;
m3 := tl-t2;

m4 := t£3-t4;

OutFrame(0,i) <= cl2* (ml+m2);
OutFrame(4,1i) <= cl2* (ml-m2);

tl := cl5* (m3+md);

OutFrame(2,1) <= cld4*m3 + tl;
OutFrame(6,1) <= clé6*md + tl;

ml := InFrame(0,1i)-InFrame(7,1):

m2 := InFrame(l,i)-InFrame(6,1);
m3 := InFrame(2,i)-InFrame(5,1);
m4 := InFrame(3,i)-InFrame(4,1i);
t2 := c6* (ml+m2+m3+m4);

t3 c3* (ml+md) ;

n

td := c9* (m24m3);
OutFrame(l,i) <= e¢l*ml + t3 + £2 + c2*m3;
OutFrame(3,1) <= c5*md + t2 + cl*m2 + t4;
OutFrame(5,1) <= c2*ml + t2 + td - c4*m3;
OutFrame(7,1i) <= t3 + cd*md + t2 + c5*m2;
end loop;

end process;

end behavior;

Figure 3.19: The VHDL description of DCT
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3.4 Summary

In this chapter, we have discussed the problem of translating design specifications
in behavioral VHDL into a flow-graph representation called DDS for synthesis.
The primary objective of this translation is to extract the parallelism from the
given sequential design specification by retaining only the essential data and con-
trol dependencies in the generated flow graphs. The techniques for control flow
analysis, local/global data flow analysis, and graph generation/optimization have
been presented. We also have described the modelling of arrays, input/output and
inter-process communication in VHDL as well as DDS.

A compiler called VHDL2DDS has been implemented and is fully operational
using the techniques described here. VHDL2DDS currently serves as the VHDL
front-end of the ADAM high-level synthesis system, accepting new designs to be
synthesized. It has been involved in numerous chip design experiments.

We believe the specific methodology presented here could also be applied to
translate other HDLs or high-level languages into a synthesizable format. In addi-
tion, it can also be used to generate parallel machine code from sequential programs

for highly parallel computers such as data-driven machines.
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Chapter 4

System-Level Partitioning of

Application-Specific Digital Systems

4,1 Introduction

The complexity of modern digital systems keeps increasing even as device sizes
shrink dramatically. As a result, many such systems cannot fit into a single in-
tegrated circuit using available chip packages while satisfying all the given design
constraints. Consequently, these system must be partitioned onto a number of
chips at some point during the design process.

System partitioning can be classified into either structural partitioning or be-
havioral partitioning. In structural partitioning, the system behavior is first con-
verted to structure, and then the structure is partitioned among chips. Structural
partitioning usually can provide a solution that satisfies physical constraints such
as area and pins. However, after the system structure is synthesized as a single-
chip design, it may not be possible to partition the design onto multiple chips while
satisfying the constraints (especially timing constraints). Alternatively, if the sys-
tem partitioning is performed before the behavioral synthesis, such partitioning
can heavily influence decisions made in subsequent synthesis tools and may there-

fore lead to higher performance designs and more efficient use of area and pins.
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A major difficulty with behavioral partitioning is that the feasibility and quality
of the partitioning is hard to measure. Generally speaking, with the help of new
prediction techniques [Kuc91], behavioral partitioning is advantageous.

There are essentially two levels of granularity at which behavioral partitioning
can be performed. Previous approaches to behavioral partitioning have mostly
focused on partitioning the design behavior, usually a control data flow graph
(CDFG), at the operation level onto a number of partitions which can be synthe-
sized into separate hardware modules or chips.

On the other hand, behavioral partitioning can be done at a higher level of
granularity, such as processes, procedures and memory blocks. Figure 4.1 shows the
system partitioning of an ASIC-based CCITT H.261 video decoder from Bellcore

Inc. In this figure, one can find that the system has already been divided into a

'1 \I’_Zr:\agtzllf Rec-Buffer

IDCT Ul M

0 Decoder il
A

Variable Delay Image Error

Frame Memory Reconstruction & Correction

Figure 4.1: An ASIC-based CCITT H.261 video decoder from Bellcore Inc.

number of well-defined functional entities by the designers. As chip capacities keep
increasing, each chip is likely to contain more than one functional entity. In this
context, we use the term process-level partitioning to denote the form of system
partitioning that preserves the functional boundaries specified by the designers.
There are several advantages to process-level partitioning. First, there are far

fewer objects at the process level than those at the operation level, which allows
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us to utilize more comprehensive partitioning techniques like mixed-integer linear
programming and to take into account more partitioning issues concurrently like
the chip count, chip packaging and performance constraints. Also, since process-
level partitioning preserves functional boundaries specified by the designer, the
objects grouped into a chip are familiar to the designers. Therefore, it becomes
much easier for the designers to test these chips functionally as compare to those
which are partitioned at the operation or lower levels and may consist of many
fragments of different system functions. In addition, if a process needs to be
changed in the future redesign of the system, only the chip where the process is
located is affected and the rest of the multi-chip system can remain intact.
Another important issue when partitioning a system with multiple processes
is that each process to be synthesized later may have a wide range of alternative
implementations with varying area and delay characteristics. The right combi-
nation of process implementations has to meet local/global design constraints as
well as chip-packaging constraints. For example, Figure 4.2 shows two process pl

and p2 assigned to a chip. If a performance constraint 7T is imposed on the signal

) y<T

el

area_capacity(K)

Figure 4.2: Selection of process implementations

path from pl to p2, the design points chosen for pl and p2 have fo satisfy both
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the performance and chip-area constraints as shown in the figure. At present, se-
lection of cost-performance characteristics for individual processes is mostly done
manually by designers. However, the quality of partitioning results is highly sen-
sitive to these design decisions and many tradeoffs are possible. By exploring the
design alternatives of the processes in the system during partitioning, design point
selection can be done not only to meet the given performance constraints but also
in consideration of effects on the partitioned system in terms of the cost, size,
reliability, and so on.

In this chapter, a process-level system partitioning approach will be presented.
The novel aspect of this approach is that the exploration of process design alterna-
tives is done concurrently with partitioning. In addition, the chip count and chip
capacities (area and pins) are not simply a number of given constraints to be satis-
fied; instead, they are traded off according to the available chip packaging options.
Prototype software, ProPart, based on this process-level partitioning approach has
been developed and used to experiment with several examples including a JPEG

image compression system.

4.2 Problem Approach

The problem which we are trying to solve here can be briefly described as

Partitioning a digital system with multiple processes into a number of
custom chips so that the design constraints are met and the cost of these

custom chips is minimized.

Figure 4.3 shows an overview of our partitioning approach.
In our approach, the system to be partitioned is defined by a hypergraph
G(P, E), where P is a set of processes and F represents the interconnections among

P. Each process in P is either an unrealized one to be synthesized later or an
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already-implemented chip or chip portion to be used “as is”.

For each process
to be synthesized, its behavior can be passed to behavioral area-delay estimation
tools like BEST [KP93] in order to predict a number of possible design points to
be chosen during partitioning. In contrast, each implemented macro is assumed
to have known area and delay parameters®. The hyperedges in E are multi-point
interconnections weighted by their bitwidths. Each such edge represents a commu-
nication link among the connected processes. Given such a hypergraph, the number
of pins needed for a partition (chip) is calculated as the sum of the weights of all
hyperedges which cross the partition boundary.

Other inputs of the problem include a package library and a number of design
constraints. The package library contains a set of available or preferred chip pack-
ages to be chosen for each chip. The area and pin capacities of these packages
as well as their costs are specified in the library. Designers are allowed to impose
constraints on performance and cost as well as on the chip count.

Our process-level partitioning approach involves in several interacting tradeoffs

and partitioning decisions. The decisions to be made during partitioning besides

assigning processes to chips are
o determining the number of chip partitions (chip count),
e selecting a suitable chip package for each chip partition from the library,

o selecting a feasible combination of design points for the processes in the

system.

These partitioning decisions are inter-dependent in a complicated way. The design

point selection and the process to chip assignment determines the sizes of chip

IThe selection of an already-implemented macro versus one to be designed has already been
made by higher-level tools.

2Programmable macros, of course, have unknown memory costs and delays. Characteristics
of such macros can be predicted using appropriate estimators [RP93].
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partitions and the required numbers of pins. Typically the dimensions of a chip
can range from 2 mm? to 25 mm?. The area and pin capacities of a chip depend on
the package chosen for the chip. For example, a Dual In-line Package (DIP) allows
around 64 pins while a Pin Grid Array (PGA) package may allow as many as 300
pins. The cost of a chip is usually proportional to its size, pin count and chosen
package. Hence, to reduce the cost of chips, small chip partitions are favored.
However, this may increase the chip count. On the other hand, since the off-
chip delay is much larger than the on-chip delay, large chip partitions can help in
reducing the off-chip delay and in satisfying the performance constraints. A small
chip count (large chip partitions) can also increase the reliability of the system,
but may suffer from low chip yields.

Therefore, the ideal techniques for our process-level system partitioning prob-
lem would be ones which can make the partitioning decisions and tradeoffs de-
scribed here concurrently. Two such partitioning techniques, an MILP method
and a genetic-search method, will be described in the following section and Sec-

tion 4.5.2 respectively.

4.3 An MILP Partitioning Method

In this section, we will present a mathematical programming method to solve the
process-level system partitioning problem described in the previous section. As
we have indicated earlier, the mathematical programming method is feasible since
there are relatively few objects at the process level and the method gives us the
ability to make the partitioning decisions and satisfy the constraints concurrently.
In addition, there exist techniques [Pra93, GE92] to improve the run time for solv-
ing ILP models by at least an order of magnitude. In fact, Prakash’s result [Pra93]
is particularly encouraging to us due to the similarity between his model and ours.

For instance, the levels of abstraction on which these two models are based are
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roughly equivalent though the application domains are completely different. Fur-
thermore, several analogies can be drawn between the decisions to be made during
Prakash’s synthesis and our partitioning.

Before describing the detailed formulation, we first give an overview of the
partitioning model that our formulation is based on. The notation and objective
function will be discussed next, followed by the detailed formulation. The lin-
earization of some non-linear constraints in the formulation will be discussed at

the end of this section.

4.3.1 Overview of the Partitioning Model

Figure 4.4 shows various partitioning parameters which will be taken into account
in our MILP formulation. First, the design point chosen for a process determines
the area consumed at the chip where the process is assigned and the delay added
to the signal path that the process involves.

If not all the processes connected by a hyperedge are assigned to the same chip
partition, the hyperedge becomes an inter-chip connection. If a hyperedge is an
inter-chip connection, it will introduce an off-chip delay to the signal path that
it involves and will add an off-chip connection cost to the overall system cost. In
addition, it will consume a number of pins (equal to its weight) at every chip which
it connects. On the other hand, if a hyperedge is an on-chip connection, it will only
introduce an on-chip delay to the signal path that it involves. In Section 4.5.1, we
will extend this partitioning model to trade off communication delay, cost and I/O
pins.

The package selected for a chip partition determines the area and pin capacities
of the chip and contributes a chip packaging cost to the overall system cost. The
number of pins required for a chip partition is the sum of the weights of all hyper-
edges which cross the chip partition boundary. Similarly, the area requirement of

a chip partition is determined by the processes assigned to the chip. Both the area
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and pin requirements of a chip partition must meet the capacities imposed by the
selected chip package.

Finally, if any performance constraint is imposed on a signal path, the delays
introduced by the processes and the hyperedges on this path must satisfy the

performance constraint.

4.3.2 Notation

o P ={p| pis a process in the system to be partitioned}. a, and d, denotes
the area and delay of process p. They are constants if p is an already-
implemented macro to be used “as is”; otherwise, they are real variables

that depends on the design point chosen for p.

o C = {c| cis one of the chip partitions}?. The number of elements in C' can
be determined either by the design constraint on the total chip count from
the designer or by a reasonable upper bound like the number of processes in

the system.

o K = {k | k is one of the available chip packages}. The area and pin ca-
pacities of k are denoted by AREA), and PIN respectively and its cost is
COST;.

o E ={e|eis ahyperedge in the system}. If e becomes an inter-chip connec-
tion, its cost and estimated delay are denoted by COST, and D%//. Other-
wise, its estimated on-chip delay is D" and it will not introduce an additional

cost to the system. The bitwidth of e is denoted by BW.,.

o P. = {p | every process p connected by the edge e}.

3Bach partition after system partitioning corresponds to a chip in the system. In the following
discussion, we will refer to a chip partition in C' by simply saying “a chip ¢ in C”.
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o z,.: A binary variable which denotes whether or not process p is assigned

to chip c.

3. : A binary variable which denotes whether or not to select package type

k for chip c.

e 3. A binary variable which indicates whether chip ¢ is needed (not empty)

or not.

e b.: A binary variable which indicates whether edge e becomes an inter-chip

or on-chip connection.

In summary, the partitioning variables described previously provide the follow-

ing information:

e The binary variables z, . and y. give us the process-to-chip assignment and

the chip package selection respectively.

e From the set of binary variables 3, we can determine and/or control the final

chip count.

e The set of binary variables b, are used to denote the inter-chip connections

as well as the pin requirement of each chip.

e The real variables a, and d, of process p, once determined by the selection
of a design point, become the area and performance constraints when syn-
thesizing p. «, can also be used to perform a process-level floorplan before
synthesizing the system structure. Thus, more accurate global wiring delays

can be available to the synthesis tools.

4.3.3 Objective Function

The objective function we try to optimize here is to minimize the overall cost after

system partitioning. It consists of the cost of the new custom chips and the cost
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of the inter-chip connections. This cost function F to be minimized can be stated

as follows:

3 5" COSTi X yer+ Y COST. x b, (4.1)

ceC keK ecE
Other objective functions can be used as well if necessary. For example, designers
may simply want to perform a N-way system partitioning while minimizing inter-

chip connections. This can be achieved by the following objective function:

> BW, x b,
eeEE

and the following constraint on the total chip count:

ZﬂczN

ceC

4.3.4 Constraints

The formulation for process-level system partitioning consists of 7 classes of con-

straints.

4.3.4.1 Process to Chip Assignment

In our partitioning model, each process must be assigned to one and only one chip.

This can be achieved by the following constraint using the binary variables z,:

dYoaye=1 VpeP (4.2)

ceC

Hence, one and only one of z, . will be 1 for each process p.

If there exist processes which cannot be assigned to a single chip using any
package in the library while meeting their design constraints, then no solution
will be found by this model. In such cases, these processes can be decomposed

by operation-level partitioning approaches into a number of smaller synchronous
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processes before partitioning the system. However, we believe such cases will

become less frequent as chip capacities continue to increase.

4.3.4.2 Chip Package Selection

Each chip cin C is needed (not empty) if and only if there are one or more processes

assigned to it. This can be stated as:

Be=1)& (D zpe>0) Veel (4.3)

pEP

The < symbol denotes the if-and-only-if relation. Hence, for each chip ¢, f.
becomes 1 if and only if there is at least one z,, which is equal to 1.

If a chip is needed, we must select a chip package for it from the library.
Therefore, for each chip ¢, one and only one of binary variable y.; must be 1 when

B. is equal to 1; otherwise, all y. must be 0. This is achieved by:
Y yp=B VeeC (4.4)
keK

Since the constraint on the total chip count, if given, is reflected in the number
of elements in C, the final number of chips that are needed will always be less than
or equal to the given constraint. If the designer insists on a particular number of

chips after partitioning, it can be achieved by adding the following constraint:

Zcﬁc = CHIPCOUNT (4.5)
cE

where CHIPCOUNT is the final chip count given by the designer.
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4.3.4.3 Inter-chip Connection

An hyperedge e will become an inter-chip connection if and only if not all the
processes connected by e are assigned to the same chip. This is reflected by the

following constraint:

b =1- ;:}é}gjmw Vee E (4.6)

Hence, b, will be 0 when the term Y .cc minyep, @, at the right hand side of this
equation becomes 1. Due to the function min, the only case that this term is
equal to 1 is when there is a chip ¢ such that z, . is 1 for every process p in P.*.
In such case, all the processes connected by e are assigned to chip ¢. Otherwise,
every min function will be 0, which means that not all the processes connected by
e are assigned to the same chip. Therefore, b, is equal to 1 and e is an inter-chip

connection.

4.3.4.4 Pin Capacity Constraints

Obviously, the I/O pins used at each chip cannot exceed the pin capacity of the
selected package for this chip. This can be enforced by

Z b. x BW, x MaX p,c < Z PINi Xy VeeC (4.7)
P e

eeE keK

The left hand side of this constraint represents the total bitwidth of the inter-chip
connections involving chip ¢. When an edge e is an inter-chip connection involving
chip ¢, both b. and max,ep, ©,. will be 1. The right hand side of this constraint is

simply the pin capacity of the package selected for chip c.

“There exists at most one such chip in any case; hence, Y cec Minyep, Tp o Will never be
greater than 1.
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4.3.4.5 Area Capacity Constraints

Like the I/O pin constraints, the area consumed by the processes assigned to a
chip cannot exceed the area capacity of the selected package for this chip. This

can be constrained by

E T K Oy S z AREAL Xy VeceC (4.8)
pEP keK

Here, a, is a constant if process p is an already-implemented macro to be used “as

is”; otherwise, it is a variable which depends on the design point chosen for p.

4.3.4.6 Timing Constraints

The designer may impose a number of timing constraints on the system. In our
model, each timing constraint is associated with a path in the system hypergraph.
Each such path is represented by a sequence po, €1, p1, €2, - - - , Pi—1, €, pt such that
p; € Pande; € E for all ¢ and p;—y,p; € P, fori =1,...,1. The timing constraint

over this path becomes
dpy +dey +dp, + ...+ de, +dp, < T} (4.9)

where
e T} is a constant that represents the upper bound delay over this path.

e d., denotes the delay of edge ¢; for i = 1,...,1. Since e; may become either
an on-chip or off-chip connection, d; is a variable. Let D2* and D2// be
the estimated on-chip and off-chip delays of e; respectively. We have the

following equation:

de; = DY x by, + (1 = be,) x DI (4.10)
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o dp, is the delay of process p; for 2 = 0,...,1. It is a constant if p; is an
already-implemented macro; otherwise, it is a variable which depends on the

design point chosen for p;.

4.3.4.7 Exploration of Design Alternatives

As we discussed earlier, each process may have many possible design alternatives
to be chosen during partitioning. For processes to be synthesized later, behavioral
area-delay estimation tools like BEST [KP93] can be used to predict a number of
possible design points from their behavioral specifications.

If local performance and area constraints are imposed on a process whose design
alternatives are to be explored during partitioning, the local constraints can be
used to trim the design space first. For example, in Figure 4.5, there are only 3
feasible design points left for process p after trimming its design space using the

local performance and area constraints.

A A,
o
{:‘\.
Lol
N LA L
-
P wd—ot D

Figure 4.5: Trimming the design space to be explored using local performance and
area constraints
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If the number of feasible design points for a process p is small, a set of binary
variables z;, is introduced to select one and only one of them. Let I, be the set of

design points for p. We have the following constraint.

Y zp=1 VYpeP (4.11)

i€l

In addition, the a, (area) and d, (delay) of process p become

ap = 3. z,x AREA;,

i€l
d, = Y z,xDELAY,,
i€l,
However, if the number of design points for a process is large, it will not be
feasible to use binary variables for selection. In such case, the design space is
approximated by a set of piece-wise linear equations [NW88] as shown in Fig-

ure 4.6. For example, let the design space of a process p contains four design

A A

Figure 4.6: Approximating the design space using piece-wise linear equations

points, {(A1, D1), (Az, D2), (A3, D3), (A4, D4)}. We introduce the following three

piece-wise linear constraints into the partitioning model:

ap—~A12%‘,Z—§§><(dp—Dl)
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Q'p—AgzﬁzL‘lX(d —Dz)

Cl’p—‘A;;ng:—gi'X(dp—Dg)

Since these piece-wise linear constraints involve only real variables, the run time
of solving MILP models will only be affected moderately by the number of these

constraints.

4.3.5 Linearization

The formulation presented earlier contains some non-linear constraints which have
to be linearized in order to be solved by MILP solvers.
Constraint 4.3 contains an if-and-only-if relation. It can be replaced by the

following linear constraints:

Be
Z-’Ep,c 2 ﬁc

peP

IV

Tpe VPEP

Hence, if 3. is 0, then the first set of constraints will ensure that , . is 0 for all p.
If 3. is 1, the second constraint requires that at least one p in P such that z,. is
1

The right hand side of Constraint 4.6 contains the following non-linear terms:

minz,. VeceC
pEP:

Each of these terms can be replaced by a binary variable n.. subject to the fol-

lowing constraints:

TNec S Tp.c VP € Pe
Nee + (|[Pe| = 1) 2 z Tpe
pEP,
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The first set of constraints ensure that n.. is 0 if there exists a p in P, such that

2,18 0. If 2, is 1 for all p in P, the right hand side of the second constraint

becomes |P.|; hence, n.. must be 1.

Similarly, each maz function in Constraint 4.7 can be replaced by a binary

variable m, . used in the following constraints:

Mee 2 Zpe VDELF:
Mee < Emp,c
pEP,

The first set of constraints ensures that m, . is 1 if there exists a p in P, such that

Ty is 1. If 2, is 0 for all p in P, the second constraint will force m, . to be 0.
After replacing each max term by a binary variable as described above, the left

hand side of Constraint 4.7 will contain b, x m. . which can be further replaced by

another binary variable w, . subject to

IN

be

We,c

1

IN

We,c

Me,c

We,c + 1 _>_ be + Mec

Finally, each non-linear term z,. X a, in Constraint 4.8 can be replaced by a

real variable v, . confined by

W = 0

Vv

ap — (1 —z,) X BIG

Up,c

where BIG is a constant with a reasonable large value. In addition, the original

cost function F to be minimized is changed to

F + BIG X vy,
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As a result, if z, . is 1, v, will be set to a,; otherwise, v, . will be 0.

4.4 Experiments

A prototype software, ProPart, based on our process-level system partitioning
approach has been developed and used to experiment with several examples. It
consists of an MILP model generator, an MILP solver and a solution analyzer.
The MILP solver is a branch-and-bound program called Bozo, written by Hafer
[HH90], which invokes a commercial linear programming package, XLP, developed

by XMP Software, Inc.

4.4.1 A Mobile Phone System Example

e5
P2
digital ed voice e6

oderny/ — -\ _codec /—&

Figure 4.7: A multiple-process system to be partitioned

Figure 4.7 shows a multiple-process system derived from the digital cellular
mobile telephone system illustrated in the referenced article [BS92]. In this exam-
ple, there are four processes and seven edges Three processes, pl, p2 and p3, are
assumed to be synthesized later. Their approximated area-delay curves are given

in Figure 4.8. Process p4 is assumed to be an already-implemented macro whose
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Figure 4.8: The approximated area/delay curves of processes pl, p2 and p3
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(175, 2,500)
(250, 2,000)
(325, 1,750)
— = e
Delay P3 Delay

Edge Bitwidth | On-chip Delay | Off-chip Delay | Off-chip Cost
el,....eb 16 10 30 160
e’ 64 10 30 640

Table 4.1: Edge parameters for the mobile phone example

area is 950 and delay is 200. A performance constraint, 800, is imposed on the

path from pl to p2. The delay from p3 to the inputs of pl or p2 through edge e7

is limited to 300. Finally, the parameters of these edges are shown in Table 4.1.

The package library shown in Table 4.2 was first used to partition the system.

The MILP model produced by ProPart consists of 130 constraints and 64 variables

(47 binary variables). Bozo was able to find a minimal-cost solution in few sec-

onds on a Sun SPARCsystem 300. The solution is a single-chip partitioning using

Package || Area | Pins | Cost
k1 3000 | 80 | 800
k2 6000 | 100 | 1800
k3 9000 | 120 | 4000
k4 15000 | 140 | 6600

Table 4.2: Package Library 1
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Process | Area | Delay
pl 1400 300
p2 1040 490
p3 1866.7 | 290

Table 4.3: Design points chosen for processes pl, p2 and p3

Package || Area | Pins | Cost
k1 2000 | 128 | 800
k2 4000 | 140 | 1000
k3 5000 | 150 | 4000
k4 6000 | 160 | 6600

Table 4.4: Package Library 2

package k2. The design points chosen for processes pl, p2 and p3 are shown in
Table 4.3.

In order to show the tradeoff ability of our approach, we modified the package
library (shown in Table 4.4) as well as the timing constraints. Specifically, we
reduced the area capacities of each package but increased their pin capacities. In
addition, we lowered the costs of smaller packages so that multiple-chip solutions
could become competitive. We also tightened two timing constraints to 450 and
250 respectively so that processes pl, p2 and p3 would require design points with
less delays but larger areas. As we expected, Bozo found a minimal-cost two-chip

partitioning in a similar run time. The solution is shown in Figure 4.9.

4.4.2 A Powertrain Control System Example

Similar experiments were also performed on a system derived from the GM power-

train control application [Fuh91] as shown in Figure 4.10. This example contains
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Chip1 (K3: Area = 5000, Pins = 150)

Chip2 (K2: Area = 4000, Pins = 140)

Figure 4.9: A two-chip partitioning for the mobile phone example

10 processes and 17 edges. Five general processes pl,. .., p5 are assumed to be syn-
thesized later. ul,...,u4 are counters and f1 is a finite-state machine. Table 4.5
summarizes the parameters used in the experiments. Two experiments were per-
formed using two previous package libraries, Table 4.2 and 4.4, joined with two
sets of timing constraints as shown in Table 4.5. The MILP model generated by
ProPart consists of 405 constraints and 184 variables (155 binary variables). The
minimal-cost solution under package library 1 and the first set of timing constraints
was a single-chip partitioning using package k4. The design points chosen for pro-
cesses pl,...,p5 are shown in Table 4.6. When the package library 2 and the
second set of timing constraints were used, the minimal-cost solution found was
a three-chip partitioning as shown in Figure 4.11. In these experiments, feasible
solutions were found in few seconds; however, minimal-cost solutions took 6-12
hours on a Sun 4/200 system. We have not made any attempt to optimize the run

time of the MILP solver.
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Figure 4.10: An example derived {from the GM powertrain application
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Process Characteristics Edge Parameters

process area/delay points Edge | Bitwidth O];:élc:)j(p Olgfc;:f;p Cost
ul,...u4 | 500/20 (fixed)
o T el 24 10 30 240
pl | 2000/150 1400/300 1000/450 e L 10 30 230
p2 | 3000/200 1600/350 1000/500 ol 5 19 30 320
p3 | 2500/175 2000/250 1750/325 e 8 10 2D 80

p4 2500/175 1500/325 1100/475
p5 1900/125 1200/250 950/350

Timing Constraints

Path 1st Set | 2nd Set

tl | p2el0p3 900 680
t2 | p2el2 p4 850 705
t3 | ple3 p3 800 580
t4 | pSeld 300 280

Table 4.5: The parameters of the powertrain example

Process || Area | Delay
pl 1000 | 450
p2 1000 | 500
P3 1750 | 325
p3 | 1460 | 340
p3 1100 | 290

Table 4.6: Design points chosen for the single-chip partitioning of the powertrain
example
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Chip 2 (k2: Area= 4000, Pins= 140)

A:19333
P3 D: 270

Chip 1 (k2: Area= 4000, Pins= 140) Chip 3 (k2: Area= 4000, Pins= 140)

Figure 4.11: A three-chip partitioning of the powertrain example
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4.4.3 A JPEG Image Compression System Example

Our system partitioning methodology was applied to the design of a JPEG still-
image compression system [Wal91] using a number of the Unified System Con-
struction (USC) tools, including ProPart. The USC project at the University of
Southern California involves the production of an integrated set of system-level
tools for synthesizing multi-chip, heterogeneous application-specific systems which
meet cost, performance and power constraints.

Figure 4.12 shows the input JPEG system specification, the design flow and the
output of various tools. Four major synthesis tools were used in this experiment.
For data path synthesis, we used SMASH [GP94] (scheduling) and MABAL [KP89]
(allocation and binding). The ProPart tool that we discussed in this chapter was
used to partition the JPEG system. A multiprocessor synthesis tool called SOS
[Pra93] was used to study the architecture tradeoff of the 2D-DCT (Discrete Cosine
Transform) function. This experiment has been described in detail in another
article [GCDBP94]. We will only discuss the design activities related to the system
partitioning here.

In this experiment, we began with the synthesis of the DCT function. The
2D-DCT was first decomposed into repeated row-column 1D-DCTs prior to the
application of the synthesis tools (Figure 4.13). The 1D-DCT macro was synthe-
sized first and used to construct a 2D-DCT, clearly a bottom-up step. SMASH
was used to generate five schedules with varying cost and performance for a 1D-
DCT macro from a behavioral VHDL description of the 8-point DCT described
in the referenced article [FLSt92]. These 1D-DCT schedules were then processed
by MABAL to generate the RTL datapath netlists. The netlists were analyzed to
obtain the area characteristic of the datapaths as shown in Table 4.14. The areas

for functional units, multiplexers and registers were determined from the netlists,

84



FICATION R

ntropy
1 Encode

Decompose 2D-DCT
into two 1D-DCTs

1D- DCT
VDHL Description

Five 2D-DCT
! estimations ProPart
VHDL2DDS I r -
g."‘ %

(Partitioned 3 Chip Implementation of JPEG‘%
Chip 1 ;

SOLSANL

Choice 1 Choice 2

; Entropy |

2D- DCT Quantizer | Encoder [ |
............................... Chip 3 :
| Entropy |
| 2D- IDCT Dequant. +=—| Decoder [T

Chip 2

Layout Generation using ChipCrafter

Three 2D- DCT : —
( Multiprocessor Architectures ) ( 2D- DCT Layout (Chip 1) '

Figure 4.12: Design flow for the JPEG system example
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Figure 4.13: Decomposing a 2D-DCT into repeated row-column 1D-DCTs

and wiring area was estimated manually using a rule-of-thumb which we observed

in our earlier experiments ® [PGHI1].

Functional Interconnect area
Design area (106 pmz) Total area
Ll o’ ].unz) Mux + Registers Wiring (10° pnr’y
A B C=2(A+B)

1 29.35 3.74 66.18 99.27

2 19.68 3.87 47.09 70.63

3 17.20 4.05 42.50 63.74

4 9.92 3.67 27.18 40.77

5 5.12 4.12 18.48 27.73

Figure 4.14: 1D-DCT RTL designs from MABAL

Before partitioning the JPEG system using ProPart, we estimated the per-
formance and area of all the functions in the system. A 2D-DCT architecture
consisting of two 1D-DCT modules and an 8 x 8 frame buffer was selected as
described in the literature [FLST92]. The worst-case datapath delay was used to
calculate the performance for each design, assuming a two-phase non-overlapping

clocking scheme. The quantizer performance and area were estimated similarly,

5We did not use our wiring area estimation tools in this experiment due to lack of time.
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and the parameters estimated are comparable to those reported in the literature
[FLS*92]. We used the parameters of an existing implementation for the Huffman

coding [PP93].

(a) Process Characteristics (b) Package Library
Process Estimated Area/Delay points Package | Areca Pins | Cost
2d-det | 217096/480 159819/780 146024/900 k100 84174 | 260 | 1214
100106/1200 74004/1560

k209 175528 | 304 | 4240
k271 227306 | 344 6849
k464 380800 | 452 | 18923

quan 19036/89 (fixed)

enco 12200/100 (fixed)
deco 122007100 (fixed)
dequ 19036/89 (fixed) Note: 1. Area is 10> sq. microns.

2d-idet | 217096/480 159819/780 146024/900 g ggﬁ it '3]2232: Z‘;"a'}i;l p—
100106/1200 74004/1560 ’

capacities.

Figure 4.15: Parameters used by ProPart

After estimating the performance and area of all the functions in the JPEG
system, it was partitioned by ProPart. The data for each function in the system
is summarized in Table 4.15 (a). As we can see from the table, both the 2D-DCT
and IDCT functions consist of five possible design alternatives to be chosen during
partitioning. The package library® used in this experiment is shown in Table 4.15
(b). The MILP model generated by ProPart consists of 162 constraints and 83
variables (73 binary variables). The minimal-cost partitioning was found in less
than 1 minute on a Sun 4/200 system. The solution is a three-chip partitioning
as shown in Figure 4.16. The design point selected for 2D-DCT corresponds to
the second 1D-DCT design produced by SMASH and MABAL. Note that ProPart
placed the DCT and IDCT on separate chips, and lumped the remaining functions
onto a single chip. Finally, the layouts of the 1D-DCT macro and 2D-DCT chip

5The library data was derived from a commercial ASIC library (LSI LCA300K).
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Area: 1.6133x10% j.Lm2 (estimated), Delay:800 ns

Figure 4.16: A three-chip partitioning of the JPEG system

were generated using Cascade Design Automation’s ChipCrafter according to the
design point selected by ProPart.

From this experiment, we found that the overall system design flow was not
completely top-down. There were some portions where the tools were used in a
bottom-up fashion. For example, the use of macro synthesis, then the use of the
macro parameters in partitioning, and finally the incorporation of macros into chips
clearly show a cycling between chip-level and system-level design tasks. We believe
that this mixture of top-down and bottom-up design flows will be common in the
design of large digital systems. This is because the most suitable methodologies
to implement various system functions or to estimate their parameters are usually
different and also vary from one design situation to another. We found that our

system partitioning approach does provide this kind of flexibility.
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4.5 Extensions

In this section, two extensions to our system partitioning approach will be dis-
cussed. First, we will show how to extend our MILP partitioning method to trade
off communication delay, cost and I/O bandwidth. A genetic-search partitioning

method will also be described.

4.5.1 Tradeoffs of Communication Delay and Hardware

The system partitioning approach described previously assumes that when a hy-
peredge becomes an inter-chip connection, the number of pins required at each
chip connected the edge is fixed. For some data communication between pro-
cesses, there exist tradeoffs between the communication delays and hardware such
as 1/0O pins and buffers. For example, a 16-bit parallel data transfer between two
processes on separate chips could be converted to two 8-bit transfers in order to
reduce pins at the expense of a longer communication delay. In this section, we will
discuss a way to incorporate communication tradeoffs into our MILP formulation
for system partitioning.

Like the exploration of each process’s design alternatives as discussed in Sec-
tion 4.3.4.7, the communication tradeoffs can be achieved by selecting a suitable
communication alternative for each hyperedge in the system during partitioning.
For each hyperedge e, let I, be a set of communication alternatives for e. Each
point i in I, defines the off-chip communication delay D;’ /1 the bitwidth BW;,,
the buffer area BA;, and the cost COST;, for the hyperedge e when ¢ is selected.
The selection of the communication alternatives can be done by using a set of

binary variables z; . such that

Z Zze=1 Ve€kE (4.12)
i€l
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In our original MILP formulation, the BW, (bitwidth), D%// (off-chip delay) and

COST. are constants. They now become variables subject to

bwe = Z Zie X BVV;'E

1€l

el = Yz, x D!
i€l

cogt, = E % % COST;,
1€l

An additional variable ba, is introduced for each edge e to denote the buffer area

that will be consumed at each chip it connects.

ba =Y zi. x BAi,
i€l

Finally, the area-capacity constraint needs to be modified to reflect the buffer area

consumed by the inter-chip communications. Specifically, Constraint 4.8 becomes

Z Tpe X Qp+ Z b, x ba, X g%aﬁf By Z AREAL X yor. Vee C  (4.13)

peP eel keK

where the second term at the left hand side of this constraint represents the total
buffer area used by all the hyperedges which involve chip ¢ and become inter-chip
communications.

Of course, all enhancements and additions to this model increase MILP run

time, and so alternative partitioning methods have been explored.

4.5.2 A Genetic-Search Partitioning Method

In this section, we will discuss the application of Genetic Algorithms (GA) to
our system partitioning problem in order to find acceptable solutions in a more
manageable run time than the MILP method presented earlier. GA is a more suit-

able alternative partitioning method of our MILP method than group-migration
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techniques like the Kernighan-Lin algorithm. This is because the objects (pro-
cesses) to be partitioned may not have constant attributes such as area and delay
if they have several design alternatives to be explored; hence, it is not clear how
to measure the improvement resulted from the movement of such an object across
partitions in a group-migration approach. On the other hand, GA is a global op-
timization technique which can be applied to complex problems whose parameters

are inter-dependent and should be considered concurrently .

Overview of Genetic Algorithms

GAs use a computational model inspired by evolution. They encode a potential
solution to a specific problem on a simple chromosome-like data structure. GAs
are iterative procedures which maintain a population of candidate solutions. Each
structure in the population is usually represented by a fixed-length binary string
which represents a vector of parameters to the objective function. During each
iteration, the current population is evaluated, and, on the basis of that evaluation, a
new population of candidate solutions is formed using several genetic operators like
selection, crossover and mutation. The selection operator ensures that the expected
number of times that a solution is chosen for the next generation is proportional
to the “goodness” of the solution. The crossover and mutation operators are used
to introduce variation into the new population in order to search other points in
the search space. Under the crossover operator, two parent solutions exchange
portions of their binary representation to generate new sample points in the search
space. After crossover, each bit in the population undergoes mutation with some
low probability. The termination of a GA procedure may be triggered by finding
an acceptable approximate solution, by fixing the total number of iterations, or
some other application-dependent criterion. For an in-depth introduction of GA,

readers could examine additional references [Gol89, Whi93].
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Encoding of the System Partitioning Problem

Generally, there are only two major components of a GA that are problem depen-
dent; namely, the solution encoding and the evaluation function. In the view of
a GA, the problem to be solved is like a black box with a series of control dials
representing different parameters, and the output of the black box is only a value
returned by the evaluation function which indicates how well a particular combi-
nation of parameter settings solves the given problem. In what follows, we will
discuss how to encode our system partitioning problem as a genetic-search prob-
lem and demonstrate the idea using a task-independent GA system called GAucsd

[SG92).

Parameter Representation

GAs work on the coding of the problem parameters rather than the actual problem.

Hence, we need to determine

1. what are the essential parameters that can characterize a valid system par-

titioning, and

2. how to encode them in a way that the crossover and mutation operators will

still generate valid solutions.

In our system partitioning problem, there are two primary partitioning decisions:
the process-to-chip assignment and the design point selection. The chip package
selection is a secondary decision which can be determined using the best-fit strategy
once the primary decisions are made.

The process-to-chip assignment can be represented by a number of assignment
parameters. Each process in the system is associated with an assignment param-
eter whose value denotes the chip partition where the process is assigned. These

assignment parameters can be encoded by a sequence of fixed-length bit vectors.
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The length of these bit vectors corresponds to the upper bound of the final chip
count.

Similarly, the exploration of process’s design space can be done by using a
selection parameter whose value determines a specific design point from the set of
possible alternatives. However, encoding such a selection parameter into a fixed-
length bit vector may result in several unnecessary bit patterns. For example, if
the set of design alternatives of a process consists of 100 points, we need at least 7
bits to cover this range. This coding consists of 128 discrete values; therefore, there
are 28 additional bit patterns. One solution is to randomly duplicate the design
points in the set to fill out these unnecessary bit patterns; otherwise, they should
be evaluated by default to a worse possible point which will never be selected when
compared to others in the set.

For example, the JPEG example given in Section 4.4.3 can be encoded by
six 2-bit assignment parameters, one for each function in the system, and two 3-
bit selection parameters for exploring the design alternatives of DCT and IDCT.
Figure 4.17 shows the representation of a JPEG partitioning solution under this

coding.

Assignment Parameters Selection Parameters

DCT Quantizer | Encoder | IDCT | Dequantizer | Decoder DCT IDCT
00 01 01 10 01 01 001 001

Figure 4.17: The parameter coding of the JPEG example

Since the parameters are encoded by a sequence of non-overlapping fixed-length

bit vectors, applying crossover and mutation operators to any position in such a
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coding structure will always produce bit strings which represent valid partition-
ing solutions. However, a valid partitioning solution is not necessarily a feasible
solution which meets the design constraints. The search for feasible partitioning

solutions has to be done through the evaluation function.

Evaluation Function

In a GA, the evaluation function provides a measure of performance (or cost) with
respect to a particular combination of parameters which represents a point in the
search space. In terms of our system partitioning problem, this evaluation function
not only has to reflect the partitioning cost as discussed in Section 4.3.3 but also
need to guide the genetic search away from the solutions which violate the design

constraints. Hence, we define this function F as follows:

F=3C0ST.+ Y. COST. + S W, x (EXCESS,)* (4.14)

ceC ecE teT

where

o COST. is the cost of packaging chip partition c,
e COST, is the cost when a hyperedge e becomes an inter-chip connection,

e EXCESS, is the amount of violation of a timing constraint { imposed on

the system, and

e W, is a constant weight which indicates the relative importance of violating

timing constraint %.

COST, and EXCESS, can be calculated directly from the coding structure
which encapsulates the parameters for the process-to-chip assignment and the de-
sign point selection. This is because for each particular combination of these pa-
rameters the set of hyperedges which cross chip partitions can be identified and the

delay of each element on a signal path with a timing constraint can be determined.
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COST,, however, depends on not only the process-to-chip assignment and the
design point selection but also the available chip package options specified in the
given library. This can be done by incorporating a best-fit chip-package selection
into the evaluation function. In other words, the available chip packages in the
library are sorted according to their costs. For each chip partition in a candidate
solution which is not empty, the chip package which meets the area and pin re-
quirements and costs the least is selected. If there is no chip package in the library
which can satisfy the area or pin requirements of a chip partition ¢, a large value
is given to COST. to make this solution unfavorable during the genetic search.

Since the amount of violation of timing constraints is reflected in the cost
function to be minimized, the solutions found will most likely be feasible. However,
the GA does not guarantee to find a feasible solution which will meets all the timing
constraints if the initial population is chosen completely at random. Hence, we
can either seed the initial population with some feasible solution found manually
or using an other heuristic technique. Alternatively, we can increase the size of
the population so that the initial solutions selected randomly will provide enough

variance to cover potential search paths toward feasible solutions.

Experiment

To validate the GA partitioning method described here, we experiment with
the JPEG system example given in Section 4.4.3 using GAucsd [SG92], a task-
independent GA system. In this experiment, the problem of partitioning the JPEG
system was encoded into a C-language evaluation function using the coding struc-
ture shown in Figure 4.17. We used a population size of 64, crossover rate of 43%,
mutation rate of 0.53% and 2040 generations. The same 3-chip partitioning solu-
tion given by our MILP method as shown in Figure 4.16 was produced by GAucsd
in less than 3 seconds on a HP 9000/720 workstation.
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Remarks

We found that the genetic algorithm is a promising optimization technique for the
system partitioning problem not only because it can provide acceptable solutions
in less run time than our MILP method but also because it will allow us to handle
issues like yield and power which are difficult to incorporate into the MILP formu-
lation due to their non-linearity. For example, to partition a system into an MCM
with an acceptable yield, the yield of the MCM is a non-linear function of the
yields of the attached dies, where the yield of a die is also an non-linear function
of the die size. This partitioning problem can be encoded into a genetic-search
problem whose evaluation function performs these non-linear calculations of MCM

and die yields.

4.6 Summary

In this chapter, we have presented a system-level partitioning approach to partition
a system at the process level, to explore each process’s design alternatives, to
determine proper chip count, and to consider chip packaging options concurrently.
An MILP partitioning method was given and implemented in a prototype tool
called ProPart. Several experiments including a JPEG image compression system
were performed to demonstrate the usefulness of this tool. Two extensions were
discussed including the communication tradeoffs during partitioning and a genetic-
search partitioning method.

We believe that system partitioning at a higher level of granularity such as
processes and procedures will become more and more advantageous and neces-
sary as both chip capacities and system complexity keep increasing. For future
development, our system partitioning approach should be extended in two direc-
tion: non-uniform technology and mixed packaging devices. The first issue deals

with mapping system functionalities onto a number of interconnected components,
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which may be ASICs, pre-designed parts or programmable devices. These com-
ponents in turn can be distributed among mixed packaging devices such as chips,
multi-chip modules (MCM) and boards in order to satisfy or optimize the con-

straints on cost, size, yield, power, and other design characteristics.
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Chapter 5

Synthesis of Systems with Unbounded-Delay

Operations and Communicating Processes

5.1 Introduction

Though high-level synthesis of digital hardware has received enormous attention
over the years, most approaches have focused on the synthesis of single-process
designs. Under these approaches, the design specification is usually represented
by a single graph which captures the essential data and control flow of the design
behavior, and synthesis tasks such as scheduling and module allocation/binding
are applied to the operations of this graph. Additionally, an important assumption
is often made in previous approaches is that all the operations in the graph have
fized execution delays.

In practice, we find that complex application-specific systems often consist of
multiple concurrent and interacting processes. For example, three GM production
designs illustrated in [Fuh91] contain from 4 to 10 concurrent processes. Synthesiz-
ing a system with multiple concurrent processes poses new challenges to synthesis
tools. First, the processes may need to interact with the external environment or
with each other. Due to the I/O and inter-process communication, the synthe-

sis of each process often involves detailed timing constraints as well as operations
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with unbounded delays; i.e., delays are unknown at the compile time. Second, the
synthesis tool has to concurrently solve all the timing constraints imposed by one
process on another in order to synchronize all the processes in the system. Also,
since the processes on a chip are competing for chip resources such as area and
pins and since the total resources on a chip are limited by the chip package, re-
source allocation for each process should be done by trading off the performance
and resource requirements of all the processes on the chip. Finally, if we synthesize
one process at a time, the decisions made previously may affect and constrain the
synthesis of other processes in the system, which may result in an inferior system
implementation.

Traditional approaches for designing multiple-process systems are to synthe-
size individual processes separately. The integration and synchronization of the
processes in the system are usually done manually by the designers. For exam-
ple, System Architect’s Workbench (SAW) [TLW*90], a single-process synthesis
system, was used in the design of three industrial applications as mentioned in
[Fuh91]. In these design experiments, each process was described in a separate
ISPS or Verilog file and synthesized individually. The synthesized netlists of the
processes were then manually interconnected. The I/O and inter-process commu-
nication was specified manually by the designers.

There is a class of work [TW93, Nes87, Hay90] which address the issue of I/O
and inter-process communication as a separate problem, known as interface synthe-
sts, from the data path synthesis. These techniques, however, are mostly applicable
to control-dominated designs with little or no data computation. For the synthe-
sis of more general designs, Ku introduced a technique called relative scheduling
[KM92] which can handle operations with unbounded delays under detailed tim-
ing constraints. In this approach, the start time of an operation is specified in
terms of offsets from a set of anchors (unbounded-delay operations). Since relative

scheduling requires module allocation/binding to be performed before scheduling,
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we found it not very suitable for the synthesis of multiple processes under global
resource constraints, e.g., the area capacity of a chip. In addition, the control
scheme used by this approach is quite complicated.

In this chapter, we will present an synthesis approach which is not only suit-
able for the synthesis of designs with unbounded-delay operations under detailed
timing constraints but also applicable to the synthesis of systems with multiple
communicating processes. Unlike Ku'’s relative scheduling, our approach allows us
to trade off between performance and resource requirements of the processes during
scheduling, to satisfy the timing constraints, and to synchronize the inter-process
communication, despite the presence of unbounded-delay operations. Furthermore,
the control overhead can be reduced in our approach.

In what follows, we first give an overview of Ku’s relative scheduling and dis-
cuss its limitations in Section 5.2. Then in Section 5.3 we present our approach for
synthesizing designs with unbounded-delay operations. Our approach is based on
the observation that each process generally corresponds to one thread of control
and there exists a sequential order among the unbounded-delay operations in the
process description. By preserving this order, scheduling of single-threaded pro-
cesses can still be done statically in terms of control steps despite the presence of
unbounded-delay operations. Consequently, many good synthesis techniques orig-
inally developed for designs with only fixed-delay operations can still be utilized in
our approach with some modifications. An ILP scheduling method as well as some
experimental results are also given in this section. In Section 5.4, we extend our
approach to handle systems with multiple communicating processes, where two
additional issues need to be addressed; namely, inter-process communication and
global resource allocation. Finally, in Section 5.5 we describe a heuristic approach

modified from freedom-based scheduling to meet our scheduling requirements.
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5.2 Overview of Relative Scheduling

As we have discussed earlier, traditional scheduling approaches assume fixed exe-
cution delays for the operations in the design behavior. These techniques are not
suitable for the synthesis of many real-time ASIC designs that involve detailed
timing constraints and operations with unbounded delays.

In [KM92], Ku presented a technique called relative scheduling that supports
operations with fixed and unbounded delays. In relative scheduling, the schedul-
ing problem is given in the form of a directed constraint graph G(V, E), where
the vertices V represents the operations and the edges E denotes represents the
dependencies. Each edge (v;,v;) is associated with a weight w; ; that defines either
the upper or lower bounds between the execution of v; and v;. In the following,
some notation and definitions used by Ku in his article [KM92] are given to briefly

illustrate relative scheduling.

Definition 5.1 The anchors A CV of a constraint graph G(V, E) are the source

vertez vo and all vertices with unbounded delay.

The anchors will serve as reference points for specifying the start time of operations

in relative scheduling.

Definition 5.2 The anchor set of a vertez v; is a subset of anchors A(v;) C A
such that a € A(v;) if there exists a path in the forward constraint graph G;' from

a to v; containing at least one edge with unbounded weight.

In other words, an anchor « is in the anchor set of a vertex if the vertex can begin
execution only after the completion of a. Furthermore, the anchor set of a vertex
represent the unknown factors that can affect the activation time of the vertex

(operation).

!G; is obtained by removing the backward edges (maximum timing constraints) from the
original constraint graph G.

101



Definition 5.3 The start time of a vertex v;, denoted by T(v;), is recursively
defined as follows:

Tlw) = max (T(a)+ 6(a) + oa(vi)}

where T'(a) is the start time of anchor a, &§(a) is the ezecution delay of a, and

oa(v;) is the offset of v; with respect to a.

The offset o,(v;) defines the amount of time that v; has to wait after the completion

of a.

Definition 5.4 A relative scheduling Q of a constraint graph G(V, E) is the set
of offsets of each vertex v; € V with respect to each anchor in its anchor set A(v;)

such that all the timing constraints can be satisfied.

The execution model of relative scheduling is illustrated in Figure 5.1. A vertex v
can begin execution only after all the anchors in its anchor set A(v) are completed.
When an anchor a € A(v) is completed, it sends a signal to an counter or shifter
which delays ¢,(v) amount of time before sending a completion signal to vertex v.
The vertex v is activated after it receives a completion signal from every anchor

that it depends on.

Remarks

An important assumption made in Ku’s relative scheduling technique is that
module allocation/binding have been performed prior to scheduling. Any con-
flict caused by the assignment of multiple operations to a single module must be
resolved in advance by adding proper sequencing dependencies among these op-
erations. Without scheduling information, these serialization decisions made for
module sharing may result in inefficient use of hardware resources or poor per-

formance. For the synthesis of multiple-process systems under global resource
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delays such as waiting for an event to occur

Figure 5.1: The execution model of relative scheduling
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constraints, techniques that combine scheduling with resource allocation are gen-
erally preferred so that the performance and resource requirements of each process
can be traded off.

Furthermore, the control scheme for the hardware architecture targeted by
relative scheduling is fairly complicated. This is because the control logic is im-
plemented as an interconnection of finite-state machines (FSM), one for each state
vertex? of the constraint graph [MK88]. These FSMs are called control elements.
A control element interacts with others via handshaking signals. Two handshaking
signals, enable and done, are defined to indicate when a control element is enabled
and when it has finished. The enable signal for an operation is logical conjunction
of the done signals generated by the completion of the anchors that the operation
depends on and delayed by appropriate amount of time (offsets) using counters or
shifters. For example, Figure 5.2 shows a counter-based approach for an operation
v that depends on two anchors a and b with offsets 2 and 3 respectively. This fine-
grain control is inevitable in relative scheduling due to the execution of operations
with respect to their anchor sets as described earlier.

The “processes” in Ku’s model are different from the traditional view of pro-
cesses. In his model, a process is defined by a constraint graph whose anchors
are only partially ordered. Therefore, there may be more than one anchor whose
completion time is unknown at any given time. This makes the execution times
of the associated operations undeterministic. That is a major reason that module
binding has to be done before scheduling in Ku’s approach and the control scheme

has to be so complicated.

2State vertices are those operations that require at least one cycle for execution.
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Figure 5.2: An example of the counter-based control in relative scheduling

5.3 Synthesis of Single-Threaded Processes

In this section, we will present a synthesis approach which allows us to trade
off performance and resource requirements during the synthesis of designs with

unbounded-delay operations while reducing the cost of control as well.

Observations

In general, each process described in a design specification corresponds to one
thread of control in designers’ minds as well as in simulation models. The execution
of a process proceeds from one waiting state (an anchor) to another in a sequential
order that is explicitly given in the process description. In addition, the execution
between two consecutive waiting states is deterministic. For example, Figure 5.3
shows a portion of VHDL specification of a decoder process in an error-correction

system. In this description, two wait statements are expected to and actually have

105



ait for incoming data

- signal start of process
£_ready <= '0';

whifle 1 < 16 loop
@ on strobe until strobe = ‘1°;
trpt_data (i) := decoder_in;
i = i 4+ 1;
end loop;

Figure 5.3: An example of anchor ordering in a process description

to be executed sequentially even though there is no data dependency between
them.

We found that both the scheduling of designs with unbounded-delay operations
and the required control scheme can be simplified if we preserve the anchor order
embedded in the process description. Briefly speaking, our idea is to schedule each
anchor to an exclusive control step in which the process execution will stay until
the anchor is completed. In addition, the order of these control steps matches
the anchor order given in the process description. The remaining operations are
scheduled to meet the performance requirement, the resource availability and the
timing constraints.

Although one may argue that a certain degree of parallelism may be undiscov-
ered when keeping the anchor order, we believe that the ability to trade off the
performance and resource requirements during scheduling is preferable to Ku'’s rel-
ative scheduling for the synthesis of multiple-process systems under global design

constraints.
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5.3.1 Scheduling Approach

Traditional scheduling approaches assume that operations with “fixed” delays are
assigned to a sequence of “equal-length” control steps. We call this kind of ap-
proach static scheduling. Numerous static scheduling techniques have been pro-
posed, including ILP-based, rule-based, and heuristic methods. They can be fur-
ther classified into scheduling under performance constraints, scheduling under
resource constraints and simultaneously scheduling and resource allocation. Un-
fortunately, these kind of scheduling approaches are not applicable to designs with
unbounded-delay operations.

In this section, we will introduce a scheduling approach based on the idea of
single-threaded processes. An advantage of this approach is that scheduling can
be done statically in terms of a sequence of “variable-length” control steps; hence,
most of the existing static scheduling techniques, under some modifications, will
become applicable to designs with unbounded-delay operations. In the following

discussion, we will try to use Ku’s notation as much as possible for consistency.

Definition 5.5 A constraint graph G(V, E) is single-threaded if its anchors A are
an ordered list {ao, a1, ...,ax}, where ag is the source vertex vy and there exists a

path from a;_ to a; in G fori:1... K.

In other words, the anchors of a single-threaded G are sequentialized by either
data dependencies or explicit sequencing edges among them according to the order
of their appearance in the process description. If there are anchors which can be
executed concurrently, this explicit sequentialization of the anchors could represent
some performance penalty as compared with the relative scheduling approach.

In our model, a schedule of a single-threaded G(V, E) is defined by a ordered
list of control steps, {Cy,Ci,...,Cn}, where length(C;), i : 0... N, denotes the
duration of control step C;. The execution of G proceeds sequentially and cyclically

from Cp to C. Note that the control steps may have different lengths.

107



Definition 5.6 A schedule of a single-threaded G(V, E) is an integer labelling
o:V = N such that o(v) is in the range of [0...N] for allv € V.

Obviously, for a schedule to be valid, all the dependencies and timing constraints
must be met.

Normally, the execution of a process stays in an unbounded-delay operation
when it is activated, and the process execution proceeds to other operations only
after the completion of the unbounded-delay operation. This is translated into the

following definition in our model:

Definition 5.7 For all anchors a of a single-threaded G(V, E), a is scheduled to
an exclusive control step Cy(a) such that length(Co(a)) is equal to delay(a) which
is unbounded. The schedule of the anchor set A of G is {Co(a)s Cotar)s - - - » Colar) }

such that o(ag) = 0 and o(ag) < o(a1) < ... < o(ag).

The scheduling of the anchor set A of a process actually divides the scheduling
space into K + 1 zones to which non-anchor vertices can be scheduled (see Fig-
ure 5.4). Formally, a zone is a range of control steps defined by the following

equation:
[C,(a‘.)+1, v Bl C,,(ﬂ'._l_l)_l] if0<i< K

zone(i) = '
[Cotary1s---» N] ifi=K

The duration of each zone is a variable which depends on the performance require-

ment, the resource availability, and the timing constraints among those operations.

For designs with conditional branching and loop constructs, the scheduling ap-
proach described in this section can be used as the basis for hierarchical scheduling.
In other words, scheduling is applied hierarchically in a bottom-up fashion, where
the body of a loop is another constraint graph of lower hierarchy and each branch

of a conditional construct is also a constraint graph.
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Figure 5.4: The scheduling of the anchor set of a single-threaded process
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5.3.2 Timing Constraints

A major complication when synthesizing designs with unbounded-delay operations
is to meet the timing constraints no matter how long these unbounded-delay op-
erations will actually take. Generally, timing constraints are used to define the
upper and lower bounds between the execution of two operations.

Since the delays of the anchors are unbounded, it is only meaningful to define
a timing constraint from the end time of the first operation to the start time of
the second one. In our model, the start time of a vertex v is defined as follows:

a(v)-1
Ts(v)= Y. length(C;)+ Y, delay(v;)
i=0 Vu;Epred(v)ac(v;)=c(v)

The first summation is the time when the control step Cy(,) starts, and the second
one denotes the total delay taken by v’s predecessors which are also scheduled to

Cs(v) (chaining). The end time of v can be stated as follows:
Te(v) = Ts(v) + delay(v)

Definition 5.8 A minimum timing constraint between two operations v; and v; is

defined by a lower bound l;; > 0 such that
Ts(v;) 2 Te(vi) + Li;

Similarly, @ maximum timing constraint is defined by a upper bound u;; > 0 such
that
Ts(v;) < Te(v;) + uij

If the given timing constraints are inconsistent, they may be not satisfiable under
any schedule. This is even more important in cases involving unbounded-delay

operations. For minimum timing constraints, their satisfiability is only affected by
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the lower-bound delays of the unbounded-delay operations. This is illustrated in

Figure 5.5. In this example, the lower-bound delay of anchor @ is 1 cycle; hence, the

Figure 5.5: A minimum timing constraint satisfied under an unbounded-delay
operation

separation between v; and v; in this schedule will be at least 2 cycles as required
by the minimum timing constraint [;;.
However, a maximum timing constraint u;; can be easily unsatisfiable if there

exists an anchor in the path from v; to v; as shown in Figure 5.6. This is because the

Figure 5.6: An unsatisfiable maximum timing constraint

separation between v; and v; depends on §(a), the delay of a, which is unbounded.

Therefore, there exists a value of §(a), e.g. w;; + 1, to make T's(v;) larger than
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T'e(v;) + uij. The following lemma can be proved in a similar way for checking the

satisfiability of maximum timing constraints in a single-threaded process.

Lemma 5.1 For all mazimum timing constraints u;; of a single-threaded G(V, E),
u;; 1s feasible if and only if there is no path from v; to v; which goes through an

anchor other than v; and v; themselves.

Additionally, a maximum timing constraint u;; imposes restrictions on the
scheduling of v; and v;. This is illustrated in Figure 5.7, where v; is either the
anchor a, or a fixed-delay operation scheduled to zone(z). Since the separation
from T'e(v;) to T's(v;) cannot be larger than u;j, v; can not be scheduled later than

az41. Otherwise, the satisfiability of u;; will depend on the delay of a,4;.

Ay-1 Ay Ayl
g zone x-1 E zone x g_»
]
i |
Te(v;)
-

Ts( vj)
Figure 5.7: Scheduling restrictions imposed by w;;

These scheduling restrictions are formally described as follows:

Let £ : V — N be the function defined as follows:

k if v is an anchor a;
k(v) =
z if v is not an anchor and v is scheduled to zone(z)
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Theorem 5.2 For each feasible mazimum timing constraints w;; of a single-
threaded G(V, E), if v; is an anchor then k(v;) < k(v;) + 1; otherwise, £(v;) <
k(v;).

Proof: Let x(v;) = z and &(v;) = y.

Case I. v; is an anchor.
Hence, v; corresponds to a, in A. Assume y > x + 1. Then, C,_,, is
between zone(z) and C,,. Since k(v;) = z, v; is scheduled in either C,,
or zone(z). Therefore, the gap between T'e(v;) and T's(v;) depends
on the delay of a,y; which is unbounded. wu;; cannot be satisfied in

general. Therefore, y <z 4 1.

Case II. v; is not an anchor.
Hence, v; is scheduled to zone(y). Assumey > z. Then, C,, is between
zone(z) and zone(y), which means that the separation between T'e(v;)
and T's(v;) depends on the delay of anchor a,. u;; cannot be satisfied

in general. Therefore, y < z. O

5.3.3 Resource Allocation

In our scheduling approach, although the control steps to which the anchors are
scheduled have unbounded lengths, the order of control steps {Co,Ci,...,Cn}
being executed is deterministic. Hence, the life span of operations and values still
can be determined statically in terms of control steps. The life span of an operation
or value is defined by the control step where it starts (or is created) to the one
where it ends (or is no longer needed).

The ability to determine the life span of operations and values allows us to
determine or even control the resource requirements at each control step during
scheduling. For example, two operations of a scheduled single-threaded G(V, E)

can share a single module if there is no overlap between their life spans or they are
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mutual exclusive. Also, we can schedule less critical operations to those control
steps whose resources are under-utilized.

Since resource sharing can be done statically in terms of control steps in our
scheduling approach, we are able to trade off performance and resource require-
ments, despite the presence of unbounded-delay operations, by performing schedul-
ing under timing constraints while minimizing resources or by doing scheduling and

resource allocation simultaneously.

5.3.4 Control Scheme

The control scheme required to support the designs synthesized by our approach is
much simpler than the one employed in relative scheduling. As the word “single-
thread” implies, the control unit of a single-threaded process is a single finite-state
machine (FSM). This is because a single-threaded process will stay in one and only
one of the control steps {Cy, Ci,...,Cn} at any given time. Furthermore, the task
to be performed at each control step is fixed. Hence, most existing control synthesis
techniques for static scheduling are still applicable here with some modification.
For example, each non-anchor control step can be mapped to one or a sequence
of states of the FSM as usual according to its length and the clock cycle. A
simple anchor like waiting for the expected condition to be met can be done by a

busy-waiting state with a conditional state transition as shown in Figure 5.8.

5.3.5 An ILP Method

In this section, we will demonstrate our scheduling approach using a integer-linear
programming (ILP) method. Our formulation is based on Hsu’s work [HLH91];
however, we expect no major difficulty to apply more comprehensive formulations
like [GE92] to our scheduling approach. The problem which we are trying to solve

here can be defined as follows:
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ol

Figure 5.8: An implementation of a simple unbounded control step

Given a single-threaded control-data flow graph G(V,FE), find a

minimal-cost schedule that satisfies the given set of timing constraints.
The following notation will be used in the formulation:
o V ={vo,...,up}. vois the source vertex. : and j are used as vertex indexes.

e A={ao,...,ax} is the ordered list of anchors in G, where ag = vo. k is the

anchor index.

e C ={Cy,...,Cn} denotes the control steps to be scheduled, where N is an

upper bound of the total number of control steps. n is the control step index.

o There are M types of functional units. v; € F, if F, can perform operation

v;. The cost of F,, is CSy,.
For simplicity of illustration, we made the following assumptions:
e The lower-bound delay of each anchor is one cycle.
e Each non-anchor operation takes one cycle.

o Only the costs of functional units are considered.
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e All the maximum timing constraints have been checked to be feasible.

The techniques to model multi-cycle operations and chaining in ILP can be found
from several other formulations [GE92, WGB, Pra93] for static scheduling.

The following discussion begins with the detailed formulation. The lineariza-
tion of non-linear constraints will be described next. Finally, we will show some

experiment results using a public-domain ILP solver.

Formulation
Operation to Control Step Assignment

Let z;, be a binary variable such that z;,, = 1 if v; is scheduled to control step
Cy; otherwise, z; , = 0. Obviously, each operation, including the anchors, must be

assigned to one and only one control step.

N
Z zin=1 YueV (5.1)

n=0

However, the control step to which an anchor a; € A is scheduled must be exclu-

sively used by a;. Let aj correspond to v; € V.
(Zin=1)=> Y. oju=0 for0<n<N (5.2)
jeV—{vi}

Let o, be the index of the control step to which v; is scheduled. o, can be obtained
b
Y N
Ty = Z nkzi, VeV (5.3)

n=0
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Data Dependency

For each (v;,v;) € E, we know that v; must be scheduled after v;. This can be

ensured by the following constraint:

Gy — g = 1 (5.4)

In fact, each data dependency (v;,v;) is like a minimum timing constraint /; ; such

that l,"j =1.

Minimum Timing Constraints

Each minimum timing constraint /;; can be enforced easily by the following con-

straint:

Oy — Oy, > l{,j (55)

Since the lower-bound delay of each anchor scheduled between o, and o, is 1, the

minimum timing constraint /; ; will be satisfied as long as the above constraint is

met.

Maximum Timing Constraints

Unlike minimum timing constraints, maximum timing constraints need to be an-
alyzed carefully in order to guarantee their satisfaction in all circumstances. For

each maximum timing constraint u; ;, there are four possible cases:

Case I. Both v; and v; are anchors.
Let them correspond to a, and a, in A. From Theorem 5.2, we know
y < z+4+1 Ify =z+1, we add the following constraint to the
formulation:

< i

Oo;— Oy

Otherwise, u; ; is ignored since y < z implies o,; < 0.
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Case II. v; is an anchor but v; isn’t.
Let v; be a, in A. From Theorem 5.2, we know zone(v;) < z. This can
be enforced by

oy < Oayy, and

Uvj — Oy S Ui j

Case III. v; is not an anchor but v; is.
Let v; be a, in A. From Lemma 5.2, we know zone(v;) > y — 1. This

can be constrained by
Oy > 0ay_, and

Ty; = Oy S Ui

Case IV. Both v; and v; are not anchors.
From Theorem 5.2, we know zone(v;) < zone(v;). Assuming zone(v;)

is z, this maximum constraint can be enforced by
Oy; < Oayy,  and (5.6)

U'uj — Oy S Ui j

Unfortunately, z is not a constant because it depends on o,,. Alterna-
tively, Constraint 5.6 can be replaced by the following constraints to

ensure zone(v;) < zone(v;):

(0 < 0a,) = (00; < 0,,) Var€A (5.7)
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Resource Allocation

Let f,, denote the number of function units of type m used in the solution. Hence,
the number of operations of type m scheduled to each control step cannot exceed

fm. This is stated as follows:

Z Tin<fm for0<n<N (5.8)

vi€EFm

If we want to minimize the total resources, f, is a variable to be included in
the objective function. For scheduling under resource constraints, f,, becomes a

constant.

Objective Function

To find a minimal-cost schedule that satisfies the given timing constraints, the

objective function F to be minimized can be stated as follows:

M
3" CSm * fim (5.9)
m=1

We can also try to minimize the total number of control steps Cie, while meeting

the resource constraints by adding the following constraint to the formulation:
Citep = maz(oy;)  for all v; without successors. (5.10)

Finally, we can simply search for a feasible solution to meet both timing and

resource constraints without a objective function.

Linearization

Since there are some non-linear constraints in the formulation presented earlier,

they have to be linearized in order to be solved by ILP solvers.
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Constraint 5.2 can be easily linearized as follows:

(1 —m;'n)*B]GZ Z Tjin
JEV—{v;}

where BIG is a reasonable larger number; e.g., a number which is slightly larger
than [|V|| can be used here. Hence, if i is 1, ¥jev—(v} Tjn Will be 0 as required.
On the other hand, if z;, is 0, the above constraint will always be satisfied.

To linearize Constraint 5.7, it is first split into the following two constraints:
(00 < 0q,) & (bix=1) and (5.11)

(bix = 1) = (00, < ;) (5.12)

where b;; is a binary variable which is equal to 1 if and only if ¢y, < 0,,. Con-

strain 5.12 can be linearized by
Oap > Oy, — BIG * (1 — big)

Hence, if b; is 1, o, will be less than o,,. Constraint 5.11 can be replaced by the

following constraint:

Oq. — Oy; S BIG * b,‘)k

Hence, if 04, > 0, bix will be 1. However, this constraint does not guarantee b; i
to be 0 when o,, < o,,. This requirement can be enforced by adding the term

BIG # b; . to the cost function F to be minimized.

120



5.3.6 Experiments

A number of experiments were performed using a public-domain ILP solver, called
Ip_solve?, to validate our scheduling method. Figure 5.9 shows a single-threaded

constraint graph which was the running example used by Ku in his article [KM92].

4
O fixed-delay operations

0 anchors

— min. constraints or
data dependencies

-l
B SO max constraints

Figure 5.9: A single-threaded constraint graph

In this example, there are two anchors (v and v,g) and three maximum timing con-
straints. The ILP model produced for these experiments consists of 56 constraints
and 86 binary variables.

First, we scheduled this example with the objective of minimizing the number

of control steps. A 13-control-step schedule shown in Figure 5.10 was found in

3 p_solve is an efficient C program based on a sparse matrix dual simplex LP solver for solving
mixed-integer linear programming problems. It is written by Berkellar at Eindhoven University
of Technology, Design Automation Section, P.O. Box 513, NL-5600 MB Eindhoven, Netherlands.
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less than 2 seconds on a HP 9000/720 workstation. This solution is same as the

minimum schedule given in [KM92] using relative scheduling,.

Figure 5.10: A schedule with minimum number of control steps

Next, we tried to schedule this example while minimizing the total resources.
A schedule which also used 13 control steps was found as shown in Figure 5.11.
Compared to the previous schedule in Figure 5.10, this solution defers vs by one
control step to C7 while still satisfying all the timing constraints. Consequently, v
and vs can share a single module if there exists a functional unit that can perform
both of them. On the contrary, since Ku’s relative scheduling is similar to as-soon-
as-possible (ASAP) scheduling and does not consider resource utilization during

scheduling, the minimum schedule it produces will require at least two modules
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since both vs and vz are scheduled to Cs. This clearly shows the advantage of
our scheduling approach which allows us to trade off performance and resource

requirements during scheduling.

Figure 5.11: A schedule which requires minimum resources

5.4 Synthesis with Multiple Processes

In this section, we will apply our synthesis model to handle systems with multi-
ple communicating processes. There are two major issues to be considered when
synthesizing systems with multiple processes.

1. to synchronize processes which interact with each other, and
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2. to distribute the resources to each process on a chip according to its perfor-

mance and resource requirements.

In the following discussion, we will first review our communication model. The
problem of multiple-process synthesis which we are focusing on will be defined next.
We will then analyze the feasibility of a given set of communication events before
discussing the synchronization of both blocking and non-blocking communication
events. Finally, we will show how to modify the ILP scheduling method presented

earlier to handle systems with multiple processes.

5.4.1 Communication Model

Our inter-process communication model has been discussed in Section 3.2.2. In
short, the inter-process communication of a system is defined by a set of communi-
cation events. Each communication event is a point-to-point communication which
consists of a write operation in the sending process and a read operation in the

receiving process as shown in Figure 5.12. An event is called blocking if its syn-

eVk

Sender Receiver
G.

Figure 5.12: Modeling of a inter-process communication event

chronization has to be achieved dynamically via hand-shaking. On the other hand,
the write and read operations of a non-blocking event are synchronized statically
in time.
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Notation

In our synthesis model, each process is represented by a single-threaded constraint
graph G(V, E). A point-to-point communication event evy’ is defined by a tuple
(wi, 1), where w}, € Vi and v}, € V;. w}, is a write vertex (operation) in the sending
process G;. Similarly, 7. corresponds to a read vertex in the receiving process Gj.

If ev is a blocking event, the time for ev}” to complete is not deterministic
in both the sending and receiving processes. Therefore, wj, and rf,'; are anchors in
G; and G respectively. On the other hand, if evi.‘j is a non-blocking event, both
the sending and receiving processes are required to be synchronized in time when
evy’ occurs. In other words, wj and r! must be started at the same time when

scheduling G; and G;. They are represented by normal vertices with a fixed delay.

Problem statement
The problem to be solved here can be stated as follows:

Given a set of single-threaded processes PS = {Gy,...,G,} and a set
of communication events EV = {evy,..., vy}, schedule and allocate
each process in P.S such that the timing constraints associated with
each process are met, each event in EV is synchronized, and the total

cost (resource) constraint is minimized or met.

5.4.2 Communication Feasibility

Unfortunately, it is not always possible to synchronize every communication event
in EV due to potential occurrences of deadlock or lack of synchronization points* for
non-blocking events. Deadlocks occur when there are circular dependencies among

the blocking events. On the other hand, each non-blocking event is required to be

4Basically, a synchronization point between two processes is a point in time where their
execution will start becoming synchronous. We will formally define it later.
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scheduled to a period of time where the execution of both the sending and receiving
processes is synchronous. Hence, it is important to analyze the feasibility of the

given set of communication events before scheduling.

Definition 5.9 The dependency graph of a set of communication events EV is a
directed graph DG(V, E), where V = EV and (ev;,ev;) € E if 3 a process G, € PS

such that there ezists a path from ev; to evj in Gy.

In other words, DG represents a partial order among the communication events.

If ev; is a predecessor of ev; in DG, it implies that ev; must take place before ev;.

Theorem 5.3 A set of communication events EV is infeasible if its dependency

graph DG has a cycle.

Proof: Let ev; and ev; be two vertices on the cycle, and let T's and T'e denote the
start time and the end time of an event respectively. Since ev; is a predecessor as

well as a successor of ev;, we know

Te(ev;) < T's(ev;) (5.13)
Te(ev;) < T's(ev;) (5.14)

However, each event takes some time to complete, which means

Ts(ev;) < Te(ev;) (5.15)
T's(ev;) < Te(ev;) (5.16)

Combining Equations 5.13 with 5.15 and 5.14 with 5.16, we have

T's(ev;) < T's(ev;) (5.17)
Ts(ev;) < T's(ev;) (5.18)

Equation 5.17 contradicts 5.18; hence, EV is infeasible. O
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In short, an acyclic dependency graph ensures the communication to be

deadlock-free.

5.4.3 Synchronization of Blocking Events

Since a blocking communication event is synchronized dynamically via hand-
shaking, it will be accomplished as long as both the write and read operations
are executed by the sending and receiving processes eventually. The scheduling of
processes does not have a direct effect on the synchronization of blocking events. In
fact, if every event of an acyclic dependency graph DG is blocking, the inter-process
communication can be made valid by simply scheduling individual processes prop-
erly. This is because a valid scheduling of each process will not only satisfy the
timing constraints but also meet all its data and sequencing dependencies. Conse-
quently, if two vertices (blocking events here) are ordered in DG, then they cannot
be scheduled out of order in any valid schedule. Hence, each vertex in DG will

take place only after all its predecessors have completed.

5.4.4 Synchronization of Non-blocking Events

If a communication event is non-blocking, its sending and receiving processes can-
not be scheduled independently. A non-blocking event evp’ = (wi,r]) is synchro-
nized only if the scheduling of processes G; and G; can guarantee that the start
time of wi and r,’; are the same. Unfortunately, this synchronization cannot be
done by simply scheduling both w}, and ri to the same control step in G; and G;
like [HP92, Geb92] due to the occurrences of unbounded-delay operations. Instead,

we will introduce the notion of synchronization points and show how they can be

utilized to synchronize non-blocking events.
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Definition 5.10 A synchronization point of two processes G; and Gj; is a tuple
(CL,Ci) such that C; and Cj are the control steps of G; and G; respectively and

the ezecution of G; and G; always leave C and C’j simultaneously.

Some synchronization points of two interacting processes can be found even before
their scheduling has been done. For example, if two processes G; and G; have
a common starting state, (C’é,Cg) will be a synchronization point. Each block-
ing event evy’ = (wi,r]) will contribute a synchronization point (C;(wk), C'i(,,k))
between G; and Gj.

If there exists a synchronization point between two processes, their execution
will be synchronous for a period of time from the synchronization point to the
next control step with an unbounded length in either process. In fact, each non-
blocking event requires such a period of time in which its write and read actions
can be scheduled and synchronized. This is illustrated in Figure 5.13 and in the

following lemma.

process i
gt
el offset__ copw) Cy
[' ’ y
= .
.g \
) next unbounded control step
= 4
g |
i
| & | offset o) L&

-
Y | | l | |

Figure 5.13: The synchronization of a non-blocking communication event
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Lemma 5.4 Let (Ci,C}) be a synchronization point between processes G; and G;
and let Ci and C7 be the control steps with unbounded lengths which immediately
follow C and Ci. A non-blocking event evi? = (wi,rl) scheduled in the following

regions,

z < o(w) <u and (5.19)

y < o(rl) <, (5.20)

is synchronized if

of fset(Ci,wi) = of fset(Ci,rl)
where of fset(a,b) is the time from the end of a to the start of b.
Proof: From Equations 5.19 and 5.20, we know that there is no control step with
an unbounded length between C% and C},,, as well as between Cj and Ca ey
Therefore, of fset(C%,w}) and offset(C’j,ri:) are bounded and equal. Also, since

(Ci,Ci) is a synchronization point, the execution of G; and G; will leave C! and

C'I-j simultaneously; i.e., Te(Cl) = Te(C;j). Hence, we have

Te(CL) + of fset(CL,w}) = Te(C}) + offset(Cj,r{.)

= Ts(w}) = Ts(r})

In other words, the start time of wj and rl are the same. O

5.4.5 ILP modification

In what follows, the ILP formulation presented in Section 5.3.5 will be extended to
handle systems with multiple processes. Assuming the dependency graph DG of
the given set of communication events EV is acyclic, the original ILP formulation

except the objective function can be simply duplicated once for each process in
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PS. Since DG is acyclic, the blocking events will be synchronized by themselves
as long as each process is scheduled properly.

For each non-blocking event ev;” = (w},r]) in EV, the following constraint is
added to the formulation for each pair of a} and af such that both a} and ] are

anchors and (C, ,,C? is a synchronization point between G; and G;.
o(az) Yo(ay) y i

(o(al) < o(w)) < oaiy)) A (5.21)
(o(a}) < o(r]) < o(alsy))
> o(w}) - o(at) = o(r]) — o(a)) (5.22)

This constraint is basically a repetition of Lemma 5.4. If the left-hand side of this
constraint is true, wi, and 7, are to be synchronized with respect to (C;(az), C’g(ay))
using the same offsets.

Obviously, Constraint 5.21 needs to be linearized. First, it can be replaced by:

o(al) <o(w)) & bi=1 (5.23)
o(wy) < 0(thyy) & bp=1 (5.24)
olal)<o(r)) & bi=1 (5.25)
o(r) < o(aj) & bp=1 (5.26)
b, = bpAbLADLADb (5.27)

=1 = o(w})—o(a)=o(r}) —o(d)) (5.28)

Constraints 5.23 to 5.26 can be linearized in a similar way as we did for Con-

straint 5.7 in page 120. Constraint 5.27 is equivalent to

b, < b
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by > (bp+...+b;)—3

Hence, if any of b, ..., b} is 0, b3 will be 0. If all b, ..., b} are 1, b} becomes 1 as
well.

Finally, Constraint 5.28 can be replaced by:

IA

o(w}) — a(al) cr(rf;) — a(ai’;) + (1 = b}) * BIG

v

o(w}) — o(al) 2 o(rl) — o(af) — (1 — ) * BIG

Hence, if b is 1, o(w}) — o(al) will be equal to o(r}) — o(ad).
In order to distribute the resources to each process according to the performance
requirement, the objective function F can be replaced by one which represents the

total resources consumed by all the processes in PS.

> fj CSm * P (5.29)

peEPSm=1

Therefore, the solution found by the above formulation will be one which meets the
timing constraints associated with each process, synchronizes every communication

event and minimizes the total cost.
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5.4.6 Experiments

Figure 5.14 shows a two-process example derived from a network package decod-
ing/encoding system [KFJM92]. In this example, there are three communication
events (shown as dotted lines) between the decoder (G; and encoder G, processes.
One of them (V3, Ns) is a blocking event and the other two are non-blocking.
Furthermore, three maximum constraints are imposed on process G; and two are
imposed on G3. The ILP model produced for this example consists of 114 con-

straints and 211 variables (190 binary).

Process Py (decoder) Process P, (encoder)

Figure 5.14: A Two-Process Example
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First, we scheduled both processes in a minimum number of control steps while
satisfying all the timing constraints as well as synchronizing the three communi-
cation events. As a result, G; and G, are scheduled in 9 and 10 control steps
respectively as shown in Figure 5.15. In this schedule, two non-blocking events
(Vs, Ng) and (Vz, N7) are synchronized by scheduling them with respect to the

synchronization point (V3, N5) using offsets 2 and 5 respectively.

Ny
Ng Ny
,,,,,,, :4"_ R e Pmancnse
;
Ne Ny
I
nlr"[ I’
Ng N
g4
&
-5
Ny
Process Gj Process Ga

Figure 5.15: A schedule with a minimum number of control steps
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Next, we tried to schedule this example while minimizing the total resources.
Due to the tight timing constraints, the solution found as given in Figure 5.16 does
not show improvement over the previous solution in terms of resource allocation.

The total number of control steps, however, remains the same.

Process G4 Process Gy

Figure 5.16: The solution obtained by minimizing the total resources
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5.5 A Heuristic Approach for Multi-Process
Synthesis

In the earlier sections, we demonstrated our synthesis approach for designs with
unbounded-delay operations and communicating processes using an ILP method.
However, for large designs, the size of the ILP models may be too large to ob-
tain a solution within a reasonable run time. Fortunately, as we discussed earlier,
our synthesis approach is compatible with most existing static scheduling tech-
niques. Hence, a good heuristic approach can be obtained easily by modifying an
existing heuristic-search procedure. In this section, we will discuss how to mod-
ify the freedom-based scheduling technique [PPM86] to handle unbounded-delay
operations under timing constraints and communicating processes.

The basic idea behind freedom-based scheduling is to schedule the operations on
the critical path first. For the remaining off-critical-path operations, their freedoms
are calculated. The freedom of an operation is determined from the earliest time
the execution of the operation can start to the latest time at which the operation
has to be finished. The operations are assigned to a control step in the order of
increasing freedom.

Freedom-based scheduling can be modified in the following way to handle

unbounded-delay operations under detailed timing constraints.

1. All the operations with unbounded delays have to be scheduled to an exclu-
sive control step.
Since the critical path is the longest path in a process’s constraint graph,
the unbounded-delay operations of a single-threaded process should, by def-
inition, be all on the critical path. Hence, by scheduling the critical path

first, we can ensure that each unbounded-delay operation is assigned to an
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empty control step. In addition, when scheduling remaining fixed-delay op-
erations, the control steps occupied by the unbounded-delay operations can

be avoided.

. The calculation of freedom should take into account both minimum and max-
imum timing constraints.

When detailed timing constraints are present among the operations, the free-
dom of an operation not only depends on the data dependencies but also is

affected by the associated timing constraints.

Basically, the freedom of an operation v is determined by an execution in-
terval [el(v),(t(v)], where el(v) is the earliest time that v can be scheduled
and [t(v) the latest time. Since each minimum timing constraint /;; can be
represented by an edge (v;,v;) weighted by [;; in the constraint graph, el(v;)
of an operation v; can be recursively defined as:

el(v;) = max {el(v;) + wij}

vi Etm_preds(v;)
el(v;) = 0 if im_preds(v;) =0

el(v;) = o(v;) if v; has been scheduled to o(v;)

where im_preds(v;) is the set of immediate predecessors of v; and w;; is
either the delay of v; or a minimum timing constraint /;;. Similarly, the
latest execution time [¢(v;) of an operation v; can be defined as:
lt(v,-) = min {lt(vj) — w,-j}
u,'eim_succs(u,-)
lt(v;) = N if im_suces(v;) =0

lt(v;) = o(v;) if v; has been scheduled to o(v;)
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where im_suces(v;) are the set of immediate successors of v;, N is the schedule
length, and w;; is either the delay of v; or a maximum timing constraint u;;

between v; and v;.

For systems with multiple communication processes, if we schedule individual
processes one at a time and then propagate the synchronization constraints from
one process to another, feasible solutions may not be found. Hence, a better
approach would be the one that can ensure the synchronization of all the inter-
process communication events. The basic principle of freedom-based scheduling
can still be applied here; i.e., the operations with higher scheduling difficulties
should be scheduled first.

As we have discussed in Section 5.4.3, the scheduling of processes does not
have a direct effect on the synchronization of blocking events. In addition, the
scheduling of a non-blocking event requires a synchronization point, e.g. a block-
ing event, between the sending and receiving processes. Therefore, we can begin
with scheduling the critical path including the unbounded-delay operations of each
process. Once all the unbounded-delay operations are scheduled, the synchroniza-
tion points among the processes can be identified. Therefore, each non-blocking
communication event can be scheduled simultaneously at both the sending and re-
ceiving processes according to the available synchronization points between them.
Finally, the remaining operations can be scheduled according to their freedoms as

usual. This approach is outlined as follows:

multi-process-fbs (PS, EV)
/* PS is a set of processes */
/* EV is a set of communication events among PS */
for (each process G; € PS) do
schedule the critical path of Gy;

/* All the anchors in G; should have been scheduled now */
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calculate the freedoms of all non-critical-path operations in Gj;
endfor;
while (3 non-blocking events in EV that have not been scheduled) do
select the event ev}’ = (w},r}) with the smallest freedom;
schedule wi, and r in G; and G; respectively using the same offset
with respect to a synchronization point between G; and Gj;
update the freedoms of the affected operations;
endwhile;
for (each process G; € PS) do
while (3 operations in G; that have not been scheduled) do
schedule the operation with the smallest freedom;
update the freedoms of the affected operations;
endwhile;

endfor;

5.6 Summary

In this chapter, we presented an approach for synthesis of designs with unbounded-
delay operations under timing constraints and with multiple communicating pro-
cesses. Compared to relative scheduling, this approach allows us to trade off be-
tween performance and resource requirements during scheduling as well as to re-
duce the control overhead. Our approach is based on the observation that each
process generally corresponds to one thread of control and there exists a sequen-
tial order among the unbounded-delay operations in the process description. By
preserving this order, scheduling of single-threaded processes can still be done
statically in terms of control steps despite the presence of unbounded-delay op-
erations. Consequently, many good synthesis techniques originally developed for

designs with only fixed-delay operations can still be utilized in our approach with
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some modifications. In this chapter, we demonstrated our scheduling method us-
ing an ILP formulation and also discussed how to modify an existing heuristic

technique, freedom-based scheduling, to meet our scheduling requirements.
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Chapter 6

Verification of Synthesized RTL Designs

Due to the cost of engineering and fabrication and the critical marketing time,
design errors of digital systems should be eliminated at all costs. Although one may
argue that the synthesized designs should be correct by construction, in reality there
is no such guarantee unless the whole synthesis process, including techniques and
programs, can be formally validated. However, to validate a large software system
like a high-level synthesis system formally is still impractical, if not impossible, for
current formal verification techniques [McF93]. A more practical alternative is to
verify the synthesized designs with respect to their specifications.

Although designs can be verified at various levels of abstraction, it is desirable
to find any design problem as early as possible. In addition, a high-level synthesis
system may produce many designs for a given set of constraints; without proper
verification, there is a lack of sense of correctness while the designs are being
evaluated or compared. On the other hand, pure functional validation is not
enough because many design errors are also related to the control and timing of
the design. Hence, we believe that there is a strong need for an automatic tool
which can check both the functionality and timing of synthesized designs efficiently,
to be integrated in a high-level synthesis system.

In this chapter, we will present an efficient approach for checking the RTL de-
signs produced by the USC ADAM high-level synthesis system. This methodology
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is also applicable to other synthesis systems incorporating a similar design flow.
Our approach is motivated by the observation that the structural designs are de-
rived in a well-defined manner from the behavioral specifications [MPC88] in the
ADAM system. These RTL designs possess several common properties so that
symbolic simulation can be effectively utilized to perform the checking task. Using
this approach, we are able to not only verify the design functionality formally but
also take into account the interaction between the data path and the controller as
well as the timing issues, such as delays and the clocking scheme.

This chapter is organized as follows. First, we describe the problem of verifying
synthesized RTL designs in Section 6.1, and analyze a generic high-level synthesis
model in order to identify properties of automatically synthesized designs. In
Section 6.2, we give an overview of our approach for checking synthesized RTL
designs. The hybrid symbolic/numeric simulation model used in our approach will
be described in Section 6.3. In Section 6.4 we will show that there is an isomorphic
property between the behavioral specifications and the extracted behaviors of the
corresponding implementations. A behavior-comparison procedure based on this
property will then be given. Finally, we will present some experiment results and

summarize this chapter.

6.1 Problem Statement

In Figure 6.1, we show a generic model of high-level synthesis. The problem which

we are solving here can be briefly described as follows:

Show whether or not the RTL implementation I will perform the re-
quired computation specified in the design behavioral specification S for

every execulion instance.
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Figure 6.1: A high-level synthesis model

The design specification S here is an control data flow graph C DFG's which defines
the required computations to be done for every execution instance. The implemen-
tation I itself is a static structure which consists of a data path and a controller.
We are asked in this problem to obtain the dynamic relationship between sequences
of inputs and outputs while I is physically operated under the specified clocking
scheme and input/output protocol. However, even if we can faithfully obtain this
dynamic behavior of I, it is still very difficult to prove the correctness if I and
S are regarded as two independent entities. This is because the problem is simi-
lar to showing whether or not two arbitrary behaviors are functionally equivalent,
which is believed to be undecidable. In Section 6.6, we will apply the computation
theory to demonstrate this undecidability of solving the general RTL verification
problem, where S and I are considered independent. Even a simpler problem like

determining the equivalence of two finite-precision algebraic expressions cannot be

done in either P or NP time if NP # co-NP'.

nformally, co-NP (complement of NP) defines a set of problems whose complement problems
are in NP. Currently, it is not known yet whether NP is closed under complementation, although
it is generally doubted.
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Lemma 6.1 Showing the equivalence of two finite-precision algebraic expressions

is a co-NP problem which cannot be done in either P or NP time if NP # co-NP.

Proof: The proof is straightforward. First, we know that the not tautology
problem? is an NP-complete problem and its complement, the tautology prob-
lem, is a co-NP problem which cannot be solved in P nor NP time if NP # co-NP
[GJT79].

The tautology problem can be easily reduced in polynomial time to the problem
of showing the equivalence of two Boolean expressions since each instance of this
problem is the same as showing whether or not the Boolean expression in question
is equivalent to constant 1. The later problem in turn can be easily reduced to
one which determines the equivalence of two finite-precision algebraic expressions
since Boolean expressions are a subset of finite-precision algebraic expressions.
Therefore, the latter problems are both co-NP problems which cannot be done in
P nor NP time if NP # co-NP. O

In high-level synthesis, the synthesis system actually derives the structural
design from the behavioral specification in a well-defined manner [MPC88]. Con-
sequently, the specification S and the implementation I are not independent. In
fact, there are links between S and I. These links can be utilized in verifying their
correspondence. In the following section, we will describe the links between S and
I in terms of a number of common properties of the synthesized RTL implemen-

tations.

6.1.1 Properties of the Synthesized RTL Designs

In high-level synthesis, the RTL implementation [ is the result of a mapping from

CDFGgs. The major tasks of this mapping involve assigning the operations to

2A tautology is a Boolean expression that has the value 1 for all assignments of values to
its variables. The not tautology problem is to return 1 if a given Boolean expression is not a
tautology and return 0 otherwise.
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control steps (scheduling), assigning the operations and values to hardware (data
path allocation/binding), and generating a controller to deliver the required con-
trol signals (control synthesis) [MPC88]. Consequently, the implementation I, if

mapped correctly, will have the following properties:

Property 6.1 For each operation op in C DF (g, there exists a functional unit u
in [ such that u is designated perform op and op is achieved by directing all the

input values of op to the corresponding input ports of w.

For example, Figure 6.2 shows a CDFG and a possible RTL implementation. The
Adder in [ is designated to perform both additions +; and +; in CDFGs. +;
is achieved by directing a and b to the input ports of Adder through Muxl and
Mux2. Similarly, the multiplication * in C DF G is bound to the Multiplier in 1.

Property 6.2 For each data dependence (op;,op;) in CDFGg, there exists an
interconnect path in I between the functional units u; and u; which are designated
to perform op; and op;. The interconnect path is set up by using buses and/or
switching devices. If the output of u; is not consumed by u; within a cycle, a storage
element is needed in the interconnect path to store the value before sending it to

the input port of u;.

In Figure 6.2, the data dependency between +; and * is done through the inter-
connect path, Adder — Regl — Multiplier. Similarly, the dependency between
+, and * is achieved by the path, Adder - Mux3 — Reg2 — Multiplier.

Property 6.3 CDFGs defines the required computations which have to be done

in [ for every execution instance.

For example, after applying four input values a, b, ¢ and d to the RTL design [
in Figure 6.2, I is expected to perform two additions and one multiplication and

produce an output which is equal to (a + b) * (¢ + d) after three cycles.
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Figure 6.2: An example of the links between C DFGg and its synthesized RTL
design [
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We will show in Sections 6.3 and 6.4 how these properties can be effectively
utilized to verify synthesized designs. In fact, the information regarding these
properties is generally available after the synthesis process. For example, this
information is represented explicitly in the Design Data Structure (DDS) of the
ADAM high-level synthesis system by means of bindings [KP85]. This information
is particularly useful in diagnosing design errors because these bindings represent
the design decisions made during the synthesis process and the events that should
occur while the design is operating. If errors are found, the implementation bind-
ings which are generated during the simulation can be traced to determine the

cause.

6.2 Approach Overview

From the previous section, we find that the correctness of a synthesized RTL
design is really determined by whether or not it will perform the required data
operations and data transfers as specified in the given CDFG. Hence, we developed
an approach which combines symbolic simulation at the RT level with a behavior-
comparison procedure based on the properties described in Section 6.1.1.

The motivations to apply symbolic simulation in our approach are twofold.
First, it provides formal results because the simulator operates over a symbolic
domain, and at the same time we are able to take into account design timing in
terms of the clocking scheme, delays, and input/output protocols. Second, the
symbolic simulation results are ready for comparison with the design specification
for high-level synthesis since they both can be represented in a similar form such
as a data flow graph.

Figure 6.3 shows a flow chart which briefly illustrates our approach. First,
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Figure 6.3: An overview of our approach for checking synthesized RTL designs.
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the inputs to our approach includes the behavioral specification C DFG's, the syn-
thesized RTL data path, the state-transition graph of the controller, and the in-
put/output protocol. The control flow of the design is analyzed to produce a list of
all possible execution paths. For each execution path, the associated path condition
will be used to drive the subsequent simulation.

The hybrid symbolic/numeric simulation performed next proceeds from one
execution path to another. It is a hybrid model because the data path is evaluated
symbolically but the controller is simulated numerically so that all the control
signals will be either 1, 0 or unknown throughout the simulation. The result of
the simulation is represented by a data flow graph which describes the actual data
operations and data transfers occurring in the synthesized data path.

Finally, the simulation result is compared graphically with the given CDF G5
under the same path condition. If the comparison procedure finds any difference
between these two graphs, there exist design errors and the current simulation
result is diagnosed to find the possible causes. The whole process is repeated
until no more execution paths are left. If the data flow graph obtained from the
simulation matches with the given CDFGs for every execution path, the given

RTL design is considered to be synthesized correctly.

6.3 Hybrid Symbolic/Numeric Simulation

As we have discussed earlier, what is most important for a synthesized RTL de-
sign is whether or not it performs the required data operations and the correct
sequencing of data transfers for each execution instance. Also, many design errors
are related to the control and timing of the design. Hence, we need to be able
to extract the circuit behavior in terms of the symbolic data operations and data

transfers that occur in the data path and at the same time to emphasize exercising
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R2=Db

R1 mux sel R3=c
Control Signals:

sel=1
+ en=1
Result:
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Figure 6.4: An example of symbolic simulation

the control and modeling the timing. The hybrid symbolic/numeric simulation to
be described here performs exactly this task.

The idea behind symbolic simulation is similar to extending arithmetic over
numbers to symbolic algebraic operations over symbols and numbers. For example,
Figure 6.4 shows an RTL circuit with an adder, a two-to-one multiplexer and four
registers. Let the symbolic values @, b and ¢ represent the initial register values
stored in R1, R2 and R3 respectively. Suppose both the control signals sel and en
are 1. After simulating the circuit symbolically, a new symbolic value d is produced
by the adder and stored in R4, and d is equivalent to @ 4 ¢. In this way, we have
the response to all possible initial conditions of R1, R2 and R3 in one simulation
run.

The simulation model we use is event-driven. Figure 6.5 shows a typical flow of
event-driven simulation [ABF90]. The main difference between our model and the
traditional ones is that the evaluation of activated elements and the representation
of signal values are symbolic in our model. In addition, a transport delay model

can be used to reflect the circuit operation more accurately.
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Figure 6.5: Typical flow of event-driven simulation
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Figure 6.6: Execution paths of a state-transition graph

For designs with conditional branches, the state-transition graphs of their con-

trollers will consists of several possible execution paths.

Definition 6.1 An ezecution path is a direct path from an initial state to an end

state in the state-transition graph of a finite-state machine (FSM) controller.

Definition 6.2 A path condition is an assignment to a set of Boolean variables

which together determine alternative paths through the state-transition graph.

For example, the state-transition graph shown in Figure 6.6 contains three possible
execution paths, each of which is associated with a path condition that represents

the assumptions made along the path during the control flow analysis.
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Figure 6.7: A four-function ALU behavioral model

6.3.1 Element Evaluation

The evaluation of an element is done to compute its output values according to its

current input values.

6.3.1.1 Data Path

The evaluation of a datapath module depends on its behavior model. For example,
in ADAM’s DDS, this information is available from the behavioral model of the
component used to implement the module. Currently, we represent this informa-
tion in the form of function tables. The function table of a data path module
defines the manipulation of symbolic data for each possible condition on the con-
trol lines. For example, the behavioral model for a simple four-function ALU is

shown in Figure 6.7. There are three kinds of datapath modules:

e Functional Units. These modules are used to perform the operations given
in a specification (CDFG). When a functional unit is evaluated, a new sym-
bolic operation is performed. In general, its control inputs, if any, are used

for function selection. Then, one or more new symbolic values are produced
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at its output ports after a specified delay time. The input/output symbolic

values are related by the symbolic operation being performed.

e Switching Devices. The result of evaluating a switching device is that
symbolic values are transferred from its input ports to its output ports. The
current values of its control lines determine the paths on which the transfers
take place. Similarly, the output change is separated from the input change
by a propagation delay. No new symbolic value is produced in the evaluation

of a switching device.

e Storage Elements. Symbolic values can be written into or read from stor-
age elements via their data input/output ports. Both registers and on-chip
memory are allowed in our simulation model. A storage element is evalu-
ated whenever its clock or enable signals change. The memory addresses are

regarded as control signals; therefore, they are numeric.

If the input condition of a module being evaluated is invalid, its outputs and data
storage, if any, are set to unknown.

The datapath carriers (nets) are used for propagating the symbolic values. A
carrier connecting more than one output port requires those outputs to be tristate.
Normally, at most one tristate output is enabled at any time. A walue collision
occurs if two or more output ports drive a carrier at the same time [KW89]. This

type of design error can be easily detected by the simulator.

6.3.1.2 Controller

The controller is evaluated when there is a change on its clock signal. If the clock
change results in a state transition, the outputs are computed and the controller
moves to the next state in the current execution path. The path condition of
the current execution path is updated, if necessary, at each state transition. For

example, if the state transition requires the inputs ¢; and 2, to be 1 and 0 and
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if the symbolic values currently appearing at #; and i are a and b respectively,
then @ = 1 and b = 0 will be added to the path condition. If there is a conflict
between the assumptions made in the state transition and the path condition to
be updated, the current execution path is a false path which will never occur. The
simulation will proceed to the next execution path immediately if a false path is
found. On the other hand, if a required input for the state transition contains
an unknown value, the simulator aborts the current execution path and reports a

data-dependency violation.

6.3.2 Representation of Symbolic Data

The symbolic values and operations which occur during the simulation are the
actual events exhibited by the RTL design. These values and operations constitute
the actual datapath behavior of the structural implementation to be compared with
the design specification. Hence, it is very important to represent these symbolic
data in a way that is suitable for comparison with the specification.

In our simulation model, the symbolic values and operations produced during
the simulation are used to build a bipartite data flow graph, which is similar to
the representation used for the design specification. A vertex is created in the
data flow graph whenever a new symbolic value or operation is produced during
the simulation. If a symbolic value is the result of an operation performed by
a functional unit, the operation becomes its direct predecessor. Similarly, the
symbolic values which appear at the input ports of a functional unit become the
direct predecessors of the operation being performed.

Our model is different from the early works [Dar79, Cor81] on symbolic simu-

lation at the RT level in the following ways:
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1. The overhead to propagate the algebraic expressions is eliminated since we
focus on merely collecting the actual data operations and data transfers that

occur in the data path.

2. A powerful algebraic manipulator is not required since we do not try to
simplify the expressions during the simulation. Instead, the data flow graph
representing the simulation result is compared with the specification using

the graph-isomorphism property.

These differences are the reason that symbolic simulation can be effectively applied
to solve our problem.

Besides the data flow graph which represents the computations performed by
the design, the simulator can also check the bindings between the specification and
the implementation. This is because the occurrence of a symbolic value or opera-
tion, the structural component in which it take place, and the current simulation
time constitute a binding which represents what is actually happening during the
simulation. By collecting the actual operation and value bindings from the simula-
tion and comparing them with those specified in the DDS, we are able to determine

which design decisions are causing the problem if the design fails.

6.3.3 Examples

In this section, we will use a single-path example and a multiple-path example to
illustrate our hybrid symbolic/numeric simulation.

A simple RTL data path and its controller’s state-transition graph without
conditional branches are shown in Figure 6.8. Initially, the contents of Regl and
Reg2 are unknown. Four symbolic values a, b, ¢ and d are applied to the input
ports of the data path before simulation. At the first cycle, since the enable signals
of Mux1 and Mux2 are 0, the left input of Mux1 and Mux2 are selected and a and

b propagate to the inputs of Adder. Hence, an addition operation on a and b is
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Figure 6.8: An example of a synthesized RTL design without conditional branches
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performed by the data path, and a new symbolic value ¢1 which is the result of
the addition operation is created at the output of Adder. Since the write signal of
Regl is 1, t1 is stored in Regl at the end of the cycle. Figure 6.9 summaries the

simulation result of this single-path example. As we described in Section 6.3.2, the

Initial: Regl =u
Reg2 =u

Cycle 1: Regl =t1, wheretl=a+b
Reg2 =u

Cycle 2: Regl =11
Reg2 =12, wheret2=c +d

Cycle 3: Regl =11
Reg2 =13, where t3 =11 * 12

Final: Output =13

Figure 6.9: The simulation result of the single-path example

symbolic values and operations produced during the simulation are represented by
a data flow graph as shown in the bottom half of Figure 6.9.

Figures 6.10 shows a synthesized RTL design with two possible execution paths,
1—2—4—5and 1 —2—3—5. For each execution path, a symbolic value ¢1 which
is the result of a comparison (>) operation on p and ¢ is produced and stored in
Regl at the end of the first cycle. At the second cycle, since Regl now contains ¢1,
the path condition is set to t1 = 1 for the execution path 1—2—4—5 and ¢1 = 0 for
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Figure 6.10: An example of a synthesized RTL design with conditional branches
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1—2—3—5. The simulation result of this multiple-path example is summarized in

Figure 6.11. The data flow graph obtained from the simulation for each execution

Execution path (1 - 2 - 4 - 5), Path condition (Reg1 =11 = 1)

Execution path (1 - 2 -3 - 5), Path condition (Reg1 =t1 =0)

e
B

N
b ,®B~®—> output

t3

Figure 6.11: The simulation result of the multiple-path example

path will be compared separately with the given design specification CDFGs
under the same path condition. This comparison procedure will be discussed in

the following section.

6.4 Graph-Based Behavior Comparison

In our approach, the behavior comparison is based on the data flow graph model.
Since the design specification is already represented in a CDFG which is a super-
set of this model, only the behavior of the structural implementation has to be

translated into this model. The hybrid symbolic/numeric simulation described in
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Section 6.3 performs the translation task for us. Therefore, the verification of the
RTL implementation I becomes the problem of comparing two CDFGs, CDFGs
derived from the input specification and C'DF G derived during the simulation.
CDFGj, however, is actually a set of data flow graphs (DFG), each of which
corresponds to the result of simulating / for one of its execution paths.

Because the design [ is the result of a mapping from CDFGsg, there exists a
strong relationship between CDFGg and C DF G (see Section 6.1.1). In fact, we
will show that there is an isomorphic property between the two. Consequently, a
graph-matching procedure based on this property has been developed to compare

them efficiently.

6.4.1 The Isomorphic Property

From Section 6.1.1, we know that the RTL implementation /, if mapped correctly,
will have several properties. In summary, I will perform the required computations
specified by CDFGyg for every execution instance. The computations are done
by making sure the input values of each required operation are available at the
corresponding input ports of the designated functional unit which is configured
properly.

Let DFG; be the result of simulating I for one execution instance under the
path condition pe. If the specification C DF G5 is interpreted symbolically under
the same path condition pe, the result is a data flow graph DFGs such that the
predicate of each operation in DFGg is evaluated to true under pc. For example,
Figure 6.12 shows a CDFGgs with conditional branches. Two DF(Gs extracted
from CDFGg under t1 = 1 and t1 = 0 are shown in the right hand side of this

figure.
Before we show the isomorphic property between DFGg and DFGyp, we will

first establish the correspondence for all their primary input/output values. This
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Figure 6.12: An example of extracting DF'Ggs from a CDFGs
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correspondence is important because it provides the starting point to compare

these two graphs.

Lemma 6.2 There exists an one-to-one correspondence between DFGg and

DFG for the primary input/output values.

Proof: The primary input values are applied to I according to the input protocol.
For each primary input value ins of DFGg, there exists an input port iport of [
and some period of time [t,, t.] such that a symbolic value iny, which corresponds
to ing, is created and applied to iport externally from ¢, to t. during the simulation.
Therefore, iny is in DF Gy as a primary input value and it is assumed to correspond
to ing by the input protocol.

Similarly, for each primary output value outg of DF Gg, there exists an output
port oport of I and some time ¢ such that a symbolic value out; is read from oport
at timet. Hence, the symbolic value out; is in DF' Gy and is assumed by the output
protocol to correspond to outg. O

Intuitively, the isomorphic property between DFGg and DF G| exists because
I is synthesized in such a way that each required operation in DFGs will be per-
formed by a designated functional unit at some time and every data dependency
will be preserved by establishing a proper interconnection. Hence, if I is synthe-
sized correctly, each corresponding primary output of DFGs and DF Gy should

have similar geometric properties, which is explained by the following theorem.

Theorem 6.3 For each pair of the corresponding primary output values (outs,

outy) of DFGs and DFGY, the cones® of outs and outy are isomorphic.

3A cone of a vertex v in a graph G = (V, E) is a subgraph C' = (V', E) such that
e V' ={ v} U predecessors(v)

o for all vy, vy in V', if edge (v, v2) in E then (v, vs) is also in E'.
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Proof: From Properties 6.1 and 6.2, we know that for each operation oprg in
DF (g, there exists a functional unit u of the design I and some time ¢ such that
u is configured to perform the operation type of oprg; otherwise, a synthesis error
occurs.

Hence, if oprs is a required computation, a list of symbolic values in DF Gy
which corresponds to the input values of oprs in DFGg, must appear at the
respective input ports of u at time ¢ so that an operation opry which is equivalent
to oprg is performed. Consequently, a list of new symbolic values which corresponds
to the output values of oprs in DFGs will be produced in DFG.

In other words, there exists a one-to-one mapping® from DFGgs to DFGy for
all the operations and values in DFGg.

Let Cs and C; be the cones of outs and out; respectively. We claim that there
exists a one-to-one and onto relation between Cs and C;. This relation is one-to-
one as we have discussed earlier. If this relation were not onto, there would exist

either a vertex or a edge in Cj which did not have a counterpart in Cs.

Case 1. Let vy be the vertex that has no correspondence.
Since vy, is a predecessor of out, there exists a path in Cj from vy,
to out;. In this path, there must be an edge (v12,vr3) such that vys
corresponds to vss in Cs but vy, does not have a counterpart in Cs
as shown in Figure 6.13. Hence, (v12,v73) is an incident edge of vy
which does not correspond to any of vgs. However, the correspondence
between v 3 and vgs implies that there is a one-to-one correspondence

for all their incident edges. Therefore, we have a contradiction.

Case II. Let (vr1,vr2) be the edge in C; that does not have a counterpart
in Cg.

From Case 1, we know that every vertex in Cy must have a counterpart

41t is not necessary an onto mapping,.
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W out

Figure 6.13: A vertex in C has no correspondence in Cs

in Cs. Let vsg be the vertex in DF Gy that corresponds to vy2. Then,
vy 2 has an incident edge (vy,1,v12) which does not correspond to any

of vg2. Therefore, this edge do not exist.

Thus, there exists a one-to-one and onto relation between Cs and Cj for all the
vertices and edges; i.e., Cs and C are isomorphic. O

The isomorphic property between Cs and C; not only implies that there is a
one-to-one correspondence between their vertices and edges such that the incidence
relationship is preserved, but also requires that each pair of corresponding vertices
are compatible. In other words, if the corresponding vertices are operations, they
must be of the same type. If they are values, they have same bitwidths.

Figure 6.14 shows the DFGg and DFG| obtained (under the path condition
t1 = 1) respectively from the specification and simulation of the multiple-path

example given earlier. The isomorphic property between the cones of the outputs

of DFGs and DF@Gy can be seen easily.
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Figure 6.14: An example to show the isomorphic property between the cones of
two corresponding outputs of DFGg and DFGy

6.4.2 A Graph Matching Procedure

Knowing that there is an isomorphic property between CDFGg and CDFGy, it
becomes straightforward to develop a method for behavior comparison. In fact, all
we need to do is to check whether or not the cones of their corresponding output
values are isomorphic for all the execution paths.

Unlike the general isomorphism problem in graph theory, which is still an im-
portant unsolved problem, it is much easier to check the isomorphic property be-

tween the cones of the corresponding output values because the following reasons:

1. The correspondences of the primary input and output values of the cones are

known in advance.

2. The correspondences of two operations can be established as soon as they are

determined to be of the same type and all their input values are equivalent.
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The first reason gives us the starting point to compare the cones. The second
one enables us to perform the comparison in an iterative-improvement way which
establishes the correspondences between the cones incrementally from the primary
inputs to the outputs. For example, Figure 6.15 shows two small cones to be
compared. Once we know that a and b are equivalent to = and y respectively, the
correspondences of two addition operations and their outputs can be established

as shown by arrows 3 and 4 in the figure.

Figure 6.15: An example of matching operations and values between two cones

In what follows, we will present a polynomial-time procedure for checking the
isomorphic property between the cones of two corresponding output values. Let
outs and out; of DFGg and DFG be a pair of corresponding output values and
let C's and C; be their respective cones to be checked. The following procedure
will return true if Cs and C7 are equivalent; otherwise, false is returned.

cones_equiv_check(Cs, Cr)

1. Create an attribute for each vertex in Cs and C; and initialize it to nzl.

2. For each pair of corresponding primary input values of Cs and Cf, give their

attributes a unique identifier.

3. Find all operations in Cs or C} such that
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e their attribute is still nil; and

o the attributes of all their input values are not nzl.
Insert these operations into a ready list Lyeady-
4. Find all the operations in L,¢qqy such that

o they are of the same type; and

e all of their corresponding input values have the same attributes.
If found then

(a) Remove these operations from L,cqdy-
(b) Give the attributes of these operations a unique identifier.

(c) For each set of the corresponding output values of these operations, give

their attributes a unique identifier as well.
5. Repeat step 3 until no change can be made.

6. If there exists a vertex in Cs or C; whose attribute is still nil, return false.

Otherwise, return true.

The worse-case time complexity of this procedure is O(n?), where n is the
number of operations in a cone. The average complexity, however, is much lower
because the number of operations in the ready list is usually only a small fraction
of the total operations in the cones and a separate ready list can be created for
each function type to further reduce the number of operations to be matched.

The number of possible execution paths of a design to be verified, however,
is 0(2°), where c is the number of conditional branching constructs in the design
behavior. Although the number of execution paths is exponential with respect to
¢, ¢ is relative small and manageable as compared to the total operations in the

design behavior.
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6.5 Experiments

In order to show the effectiveness of our approach, we performed a number of
experiments with the designs synthesized from the USC ADAM system. In fact,
our preliminary experiments immediately identified that the controllers generated
for these designs by the early version of the ADAM control signal generator (CSG)
[WP92] were incorrect. CSG was then revised using the FINESSE system from
Cascade Design Automation as the back-end FSM synthesis tool.

Shortly after CSG was revised, we experimented with a non-pipelined AR fil-
ter. MAHA [PPM86] was used for scheduling and MABAL [KP89] for datapath

allocation and binding. This design is characterized as follows:
e It has 4 time steps.

e There are 26 input ports and 2 output ports and both the input and output

values are not latched.

e The data path consists of 6 multipliers, 4 adders, 6 registers, 14 3-to-1 and

5 2-to-1 multiplexors.
o A two-phase non-overlapping clocking scheme is used.

The analysis of the controller generated by CSG resulted in only one execution
path with four states. The experiment was carried out by holding the input values
(symbolic) at the input ports during the execution and obtaining two output values
from the output ports at the end of the 4th clock cycle. The cones of these two
output values, as shown in Figure 6.16, were extracted from the data flow graph
built during the simulation. These two cones were compared correctly with the
original data flow graph shown in Figure 6.17.

We also experimented with a robot arm controller whose control flow is much

more complex than the previous one. The control data flow graph of the robot-arm

168



Figure 6.16: The cones of two output values obtained from the hybrid simulation
of a non-pipelined AR filter
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Figure 6.17: The data flow graph of the AR filter example
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controller can be found in Figure 3.18. The design was synthesized in a similar
way except we required the inputs values to be latched. The RTL implementation
has 12 time steps, 16 possible execution paths, 25 input and 14 output ports. The
controller was generated by CSG using 2 status registers. The verification of this
RTL implementation was done by comparing 14 pairs of cones for each execution

path. From this experiment, some design inefficiencies were found:

o All the constant values were required to be supplied externally, which results

in inefficient use of input ports.
e Conditional values were unnecessarily routed to the output ports.

e Some of the input values were not latched as specified.

6.6 Analysis of the General RT-Level Design
Verification Problem

As we have seen from previous sections, the design specification and its synthesized
RTL implementation are not independent. Utilizing the links between the two, the
problem of verifying synthesized RTL designs become tractable. In this section, we
will study the difficulty of the general RTL design verification problem, where the
specification and its implementation are considered to be two independent entities.

The RTL verification problem, in the most general form, can be described as

follows:
Given:

e a behavioral design specification S.

e an RTL implementation /.
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Goal:
show the behaviors Bg and By of S and I respectively are functionally

equivalent.

The specification S specifies what the system should do, and it is usually described
functionally in some HDL (Hardware Description Language). On the other hand,
the implementation I, typically described by a netlist, models the system struc-
turally as an interconnection of RTL components. The verification task is to show
that, for all feasible inputs, the outputs produced by I (Bj) are equivalent to the
outputs computed by S (Bs) [McF93]. The behaviors Bs and By are regarded as
the way the system or its components interact with their environment, i.e., the
mapping from inputs to outputs [MPC88]. However, if the system possesses se-
quential behavior®, Bg and B; describe the mapping from “sequences” of inputs to
“sequences” of outputs. Therefore, the definition of equivalence of two behaviors
has to be modified accordingly.

Since S and I are given in different languages, it is necessary to translate both
of them into a model in which their behaviors can be compared. For example, we
can simulate both S and I using their respective simulators for all feasible inputs,
in theory, to get Bs and B and verify their output correspondence. Alternatively,
we can describe both S and I in a formalism in which a theorem-prover can be
used, hopefully, to prove that Bs and Bj are equivalent. Whichever way we use,
a “reasonable” verification model representing the behaviors must be capable of
expressing every design in the functional model of S and in the RTL model of
I. Figure 6.18 shows the relationships between the verification model and the

associated functional and RTL models.

5The output at any point depends on the current state which in turns relies on the past history
of inputs [McF].
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Functional Model RTL Model

Translation

Verification Model

Figure 6.18: The verification model and its relationships with the functional and
RTL models.

Definition 6.3 A verification model is called complete if for each element ¢ in the
functional and RTL models there exists a counterpart element 1 in the verification

model such that ¢ and 1 are functionally equivalent.

Definition 6.4 A complete verification model is feasible if we can find a transla-
tion function to map each ¢ in the functional and RTL models to its counterpart

Y in the verification model.

In other word, a complete verification model is at least as powerful as the functional
and RTL models in terms of the expressive capability, and the model is feasible
(useful) only if we can effectively translate all the designs into it.

If we do not consider the fact that I is derived from S, Bs and Bj simply

correspond to two independent points in a complete verification model. Let Qv be
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the complete verification model. Solving the general RTL verification problem is

then equivalent to finding a decision function f such that for all v;,v; € Qv

faqy=q L TV 6.1)
0 otherwise

In what follows, we will show that it is not possible to find such a decision
function no matter which complete verification model we use. However, some
background computation theory needs to be introduced first.

Informally, a function is a partial recursive function (prf) if it is effectively
“computable” [MY78]. In other words, given a definition of a partial recursive
function we can produce an algorithm, e.g. write a C program, to compute it. A
programming system is a list of programs ¢y, ¢1, ... which includes all of the prfs.
A programming system PS is an acceptable programming system (APS) if and only

if the following conditions are met.

e For all prf f, there exists an index i such that ¢; = f. That is, there is at

least a program in PS for each prf.
e For all index 1, ¢; is a prf. In other words, every program in PS is a prf.

e There exists a universal program ¢, such that for all 7 and = ¢,(7, ) = ¢i(z),

where z is an function argument over N (natural numbers).

e There exists a total recursive function ¢ such that ¢ j) = ¢i o ¢; for all ¢

and 7, where o denotes function composition.

APSs are used in computation theory to model the common characteristics of
“reasonable” programming systems mathematically. Hence, any results applied
to APSs also hold for all “reasonable” programming systems, and certainly for
all existing general purpose programming languages like C, PASCAL, and VHDL
[MYT78].
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Now, we can introduce the notion of undecidable (algorithmically unsolvable)

problems concerning APSs. Let N be the set of natural numbers.

Definition 6.5 For all ' C N, the function Cr : N — {0,1} is called the charac-
teristic function of I' if and only if

1 ifiel

0 otherwise

Cr(s) =

Definition 6.6 For allT' C N, I' is decidable if and only if Cr is a prf.

The following lemma describes an important undecidable set which will be used to

show the undecidability of the general RTL verification problem.
Lemma 6.4 For all APS {¢}, the set V = {< 1,7 >| ¢: = ¢;}° is undecidable.

The proof of this lemma can be found in [MY78]. Basically, Lemma 6.4 says that
there is no algorithm for deciding whether or not two arbitrary programs in any
APS are equivalent.

Finally, we can establish the main result of this section with the following

theorem.

Theorem 6.5 The general RTL verification problem is algorithmically unsolvable

for all complete verification models.

Outline of proof: Recalling earlier discussion, we know that solving the general
RTL verification problem is equivalent to finding a decision function f to determine
whether or not two behaviors in a verification model are equivalent as defined
in Equation 6.1. Let Qy be a complete verification model. The general RTL

verification problem can be represented by the following set:

V = {< i,j >| 1,[),' = "¢’j for all ‘t,b,'.,l,bj n Qv}

6<,> is any pairing function which can establish an effective one-to-one correspondence be-
tween the 2-tuples in N x N and the numbers in N. For example, f(z,y) = 2*(2y+1) — 1.
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Hence, the decision function f is actually the characteristic function of the set V.

From Lemma 6.4, we know that V is undecidable for all APSs. Therefore, if
Qy is an APS, f is not a partial recursive function. In other words, there exists no
such a program (f) which can decide whether two arbitrary behaviors in {ly are
equivalent or not. Here we argue that any complete verification model Qy should
satisfy the definition of an APS7 since its associated functional model for design
specifications is based on some hardware description language such as VHDL or C
which certainly qualifies as a “reasonable” programming system. Hence, the gen-
eral verification problem is algorithmically unsolvable for all complete verification

models. O

6.7 Summary

In this chapter, we have identified several properties of automatically synthesized
RTL designs. From these properties, we found that the correctness of a synthe-
sized RTL design is really determined by whether or not the data operations and
transfers occurring in the data path will conform to the given design specification
(a control data flow graph). Consequently, a hybrid symbolic/numeric simulation
was introduced in this chapter to extract the behaviors of synthesized RTL designs
into data flow graphs which can be compared directly with their specifications. We
have also shown that there exists an isomorphic property between the data flow
graphs obtained from the specification and the hybrid simulation respectively. A
polynomial time procedure based on this isomorphic property was presented for
behavior comparison.

The experiments we have conducted show that the correctness of synthesized

designs cannot be taken for granted, especially when the synthesis tools are in their

7A formal proof will need to show this argument mathematically. However, we feel that this
enormous work will lead us out of focus of this research.
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early releases. Hence, we believe that the verification methodology presented in
this chapter is valuable not only for obtaining confidence on the correctness of the
synthesized RTL designs but also for identifying unforeseen problems in synthesis
tools.

In the future development, techniques to handle loops which are not unrolled are
needed, in which case the controller’s state-transition graph becomes cyclic. When
there are cycles in a state-transition graph, our definition of possible execution
paths has to be changed. One solution is to traverse each cycle only once; therefore,
the number of possible execution paths will not be affected by the actual iterations
taken by the loops. This approach avoids the problem of determining the conditions
under which a loop would terminate during the symbolic simulation. Additionally,
we need a method to check that the values produced by the loop body are fed back

correctly for subsequent iterations.
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Chapter 7

Conclusion

As we have mentioned earlier, most high-level synthesis systems address the task
of transforming a behavioral description of a design into an equivalent register-
transfer level structure, where the design behavior is often assumed to contain
a single process and the structure is to be implemented on a single chip. This
thesis has attempted to address many design issues associated with the synthe-
sis of multiple-chip systems with multiple concurrent processes. A system-level
synthesis methodology is proposed in this thesis using system-level partitioning,
multiple-process scheduling/allocation and RTL design verification to reduce the
design time required for finding good quality system designs. Below we summarize
the contributions of the research presented in this thesis and discuss some future

research topics in each of these areas.

7.1 System Partitioning

In this thesis, a new approach for the system partitioning problem is presented. An
important aspect of this approach is that partitioning is performed at the process
level where the number of objects to be considered are far fewer than those at
the operation level and the functional boundaries specified by the designers are

preserved. Furthermore, the exploration of process design alternatives is done
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concurrently with partitioning, and the chip count and the chip capacities (area
and pins) are not simply a number of given constraints to be satisfied; instead,
they are traded off according to the available chip packaging options. We believe
that system partitioning at a higher level of granularity such as processes and
procedures will become more and more advantageous and necessary as both chip
capacities and system complexity keep increasing.

Two partitioning methods were described in this thesis. First, an MILP for-
mulation was presented and implemented in a prototype tool called ProPart. Sev-
eral experiments including a JPEG image compression system were performed to
demonstrate the usefulness of this tool. A genetic-search technique was also de-
scribed to find acceptable solutions in a more manageable run time. The genetic-
search technique was found to be a promising optimization technique for system
partitioning to handle complex issues like yield and power.

In the future, the communication tradeoffs need to be done more thoroughly,
considering pin sharing among different data transfers and considering different
pin/buffer requirements at the sender and the receivers. Non-uniform technology
should also be taken into account. In other words, the processes could be parti-
tioned onto a number of mized components, which may be ASICs, pre-designed
parts or programmable devices. These components in turns could be distributed
among various packaging devices such as chips, multi-chip modules (MCM) and
boards in order to satisfy or optimize the constraints on cost, size, yield, power,

and other design characteristics.

7.2 Multiple-Process Synthesis

In Chapter 5, we presented a new approach for synthesis of designs with
unbounded-delay operations under timing constraints and with multiple communi-

cating processes. Compared to relative scheduling, this approach allows us to trade
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off between performance and resource requirements during scheduling as well as
to reduce the control overhead.

Our synthesis approach is based on a notion of single-threaded processes. In
other words, each process corresponds to one thread of control and there exists
a sequential order among the unbounded-delay operations in the process descrip-
tion. We found that scheduling of a single-threaded process can be done statically
in terms of control steps by preserving the sequential order of unbounded-delay
operations embedded in the process description. Two important issues were also
addressed; namely, how to satisfy detailed timing constraints when unbounded-
delay operations are present and how to synchronize inter-process communication.

An advantage of our approach is that it is compatible with many good synthesis
techniques originally developed for designs with only fixed-delay operations. In
Chapter 5, we demonstrated our scheduling method using an ILP formulation and
also proposed a heuristic procedure modified from freedom-based scheduling.

There is still much work to be done here. Though our approach can be used
as the basis for hierarchical scheduling to handle design with conditional branches
and loops, timing constraints can only be applied on the operations within the
same level of hierarchy. A thorough analysis method will be needed to distribute
the constraints across the hierarchy or a non-hierarchical approach should be de-
veloped. The handling of inter-process communication needs to be extended to
allow one-to-many and buffered communication events. Furthermore, the inter-
process communication scheme given by the designers may be too conservative
and may contain some blocking communication events that can be converted to
non-blocking ones. Techniques to automatically determine a minimal-cost inter-
process communication scheme during synthesis or as a separate step should be

investigated.
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7.3 RTL Design Verification

In the research on design verification, we have identified several important prop-
erties of synthesized RTL designs. As a result, we found that the correctness
of a synthesized RTL design is mainly determined by whether or not the data
operations and transfers occurring in the data path conform to the given design
specification (a control data flow graph). Therefore, we presented a hybrid sym-
bolic/numeric simulation to extract the behaviors of synthesized RTL designs into
data flow graphs which can then be compared directly with their specifications.
We have also shown that there exists an isomorphic property between the data
flow graphs obtained from the specification and the hybrid simulation respectively.
A polynomial time procedure based on this isomorphic property was given for
behavior comparison.

The advantage of this verification approach is that it not only can formally
verify the synthesized data path but also can faithfully exercise the control path,
which is also a major source of design errors. The value of this approach was shown
by its ability to identify problems with the early CSG tool in the ADAM system.
This also proves that the correctness of synthesized designs cannot be guaranteed,
especially when the synthesis tools are in their early releases.

In the future, better handling of loops is definitely needed. When there are
loops which are not fully unrolled, the controller’s state-transition graph becomes
cyclic. Therefore, our definition of possible execution paths has to be changed.
More research should be done on diagnosis of design errors in order to trace the
possible causes automatically. Finally, modification of our verification methodol-

ogy to handle multiple-process designs is also needed.
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7.4 Other Contributions

In Chapter 3, we have formulated the behavioral VHDL compilation problem in
detail. The techniques for control flow analysis, local /global data flow analysis, and
graph generation/optimization were presented. We also discussed the modeling of
arrays, input/output and inter-process communication in VHDL as well as in the
DDS representation. A prototype software called VHDL2DDS based on these
techniques has been developed and is fully operational. VHDL2DDS currently
serves as the VHDL front-end of the ADAM high-level synthesis system, and has
been used in numerous chip design experiments.

One work done during the course of this research but not discussed in this
thesis is on integrating synthesis and test in the USC ADAM project. The goal
is to combine tradeoffs in cost, performance and testability during the high-level
synthesis process. An EDIF interface! [Che91] was developed to serve as the bridge
between the ADAM synthesis system and the built-in test system, and to export
ADAM’s synthesized designs via the standard EDIF format [Eng87]. Hence, a
fully automated design path from VHDL behavioral specifications to testable chip
layouts was created.

A number of experiments were also performed via the EDIF interface to study
the tradeoffs among the performance, cost and testability and to assess what fea-
tures of the synthesized design have an impact on the design testability. Five
example designs were synthesized and made testable. Four of them are the AR fil-
ter with different design characteristics and the other one is a robot arm controller.
Two AR filter testable designs were laid out using the Seattle Silicon Compiler.

From these experiments, a great deal of insight about the synthesis techniques

!The EDIF interface is a multi-way design translation system involving three design repre-
sentations: MABAL [KP89], EDIF [Eng87] and CBASE [GCG*89].
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which support testability and the area overhead for making design testable was

obtained. The details of these experiments can be found in [NCPB91].
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Appendix A

The VHDL Subset of the ADAM System

The VHDL used in the ADAM system and in the early USC system is a subset of
the IEEE Standard VHDL[Ins88] since we are only concerned with representing be-
havioral specifications in VHDL. This subset was carefully defined to avoid features
incompatible with the notion of behavioral description or unable to be represented
in DDS, while still giving sufficient expressive power for most applications.

The allowed VHDL constructs are limited to the following:

1. Design Entities

The primary hardware abstraction in VHDL is the design entity. A design
entity is defined by an entity declaration together with a corresponding ar-

chitecture body.

e FEntity Declarations
The entity declaration basically defines the inputs and outputs of the
design entity. A given entity declaration is restricted to be used by only
one design entity; that is, it cannot be shared in this VHDL subset. The
restrictions described in Item 5 (Declarations) are applied accordingly

to the entity header and the entity declarative part of a given entity
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declaration'. The entity statement part must be empty in each design
entity; in other words, the behavior of a design entity must only be

specified in the corresponding architecture body.

e Architecture Bodies
There are three general styles of descriptions possible within an ar-
chitecture body: structural, dataflow and behavioral. However, only
the behavioral one is supported in ADAM/USC. Behavioral descrip-
tions specify data transforms in terms of algorithms for computing out-
put responses to input changes. The feature of multiple asynchronous
processes is not yet supported in the current version of VHDL2DDS;
therefore, each architecture body is required to have one and only one

concurrent statement in the archilecture statement part.

2. Subprograms

Since the configuration is not included in the VHDL subset, subprograms
serve as the major mechanism for building the desired design hierarchy?.
The definition of a subprogram can be given in two parts: a subprogram
declaration and a subprogram body. Subprograms without subprogram bodies
are usually used as the leaf nodes in the design hierarchy and the interfaces to
the modules in the system library. Both proceduresand functions are allowed.
Subprogram overloading is not supported, and the operator overloading is

limited to once for each scope of declarations.

3. Packages

n fact, this rule is applied to all declarative parts in this VHDL subset. It will not be stated
explicitly in the rest of the VHDL subset definition unless additional restrictions are required.

2In fact, this limitation makes the design entity unsuitable for describing internal blocks
because there is no way to bind a collection of design entities into a design hierarchy without
using a configuration declaration.
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Packages provide a means of defining declarations which can be shared by
different design units. One of the major usages of packages in ADAM is to
define the interfaces of some implementation-dependent module libraries. In
such a case, the package declaration has no corresponding package body. No

special restrictions except those in Item 5 are imposed on packages.

. Types

In VHDL, a type is characterized by a set of values and a set of operations.
All implicitly declared operations for a given type declaration are supported
and will be translated automatically by VHDL2DDS. However, they are not
recommended to be used in the VHDL descriptions because there may be
no corresponding modules in the module libraries. As a result, the explicitly
declared subprograms for a type are more appropriate in terms of module
bindings. Two classes of types are allowed with restrictions; namely, scalar

types and composite types.

e Scalar Types
Scalar types are limited to the predefined types BIT, BOOLEAN, and
INTEGER only. Currently, users can not define their own scalar types.
The INTEGER type is assumed to be a 32-bit implementation.

o Composite Types
The composite type is the only user-definable type class in this VHDL
subset. It is further limited to array types only. An array object is a
composite object consisting of elements that have the same type. Its
primary usages are to model different bit-width values and memories.
The maximal dimensionality of an array type is limited to 2. Both
unconstrained array types and constrained array types are allowed. The

indez definition of an unconstrained array type must be INTEGER,
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and the indez constraint of a constrained array type must be ranges.
BIT_VECTOR is the predefined array type supported by VHDL2DDS.
Since subtypes are not supported, there are several limitations on the
uses of array types. First, a constrained array type is not defined as
an unconstrained array type plus a subtype of this unconstrained array
type. It itself is a data type. Also, defining a constrained array type
from an existed unconstrained array is not allowed. This makes the
unconstrained array types of little use.

For each array type, two additional operations are implicitly defined
by this VHDL subset. They are array read operations and array write
operations. If an indezred name appear at the right (left) hand side of
an assignment statement, an array read (write) operation will be used.
This feature is well suited for modeling memories; however, it cannot

model the extraction of a subvalue from a multi-bit value.

5. Declarations

In addition to design entities, subprograms, packages and types, the other
kinds of declarations allowed are object declarations and interface declara-

tions.

e (bject Declarations
All three classes of objects are allowed; namely, constants, signals, and
variables. An object declaration declares an object of a specified type.
The feature of deferred constants is not supported. Signals will be
treated as variables; that is, only the syntactical aspect of signals is
preserved, but their semantics will be identical to variables in terms of
the VHDL to DDS translation. Therefore, a signal declaration is not

allowed to have a resolution function, guards, or the signal kind.
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e Interface Declarations

Interfaces objects also include constants, signals, and variables. The
restrictions described above are applied accordingly. In addition, the

mode of an interface object is limited to either in or out.

6. Names

All forms of names except attribute names and slice names are allowed. The
identifier for an entity, a package, a subprogram, or an interface object has
only the first 5 characters significant after translation. An index name is
considered to be an array read (write) operation instead of simply denoting

an element of an array.

7. Ezpressions

An expression is a formula that defines the computation of a value. It con-
sists of a set of operators and their operands. Though all VHDL predefined
operators are supported by VHDL2DDS, VHDL2DDS does not assume any
specific implementation to a predefined operator, nor is it aware of the avail-
ability of any library module for binding. Care must be taken not to use any
predefined operator unless the user can make sure there exists some corre-
sponding module in the library or the operator in question will somehow be
implemented. In ADAM, a more appropriate approach is to define a package
for each available module library using function declarations or overloaded
operators and use these functions or operators in expressions instead of pre-

defined ones.

The allowed operands in an expression include names, literals, and function
calls. In addition, an expression enclosed in parentheses may be an operand
in an expression. A literal is either a integer literal, a Boolean literal, a bit

literal, or a bit string literal.
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8. Sequential Statements

Sequential statements shall be the major means for describing the behavior
of the component under design. The allowed sequential statements are

e Signal assignment statement.

e Variable assignment statement.

e Procedure call statement.

e [fstatement.

e (Case statement.

e Loop statement.

e Next statement.

o [zit statement.

e Return statement.

e Null statement.
Statement labels can be used whenever necessary. A signal assignment state-
ment is considered like a variable assignment statement. Hence, transport
delay is not supported and the waveform at the right hand side can only
consist of one element. In addition, a waveform element is not allowed to

have an after clause. The iteration scheme of a for loop must be a range of

type INTEGER.

9. Concurrent Statements

The process statement is the only form of concurrent statement allowed in

this VHDL subset®. A process statement defines an independent sequential

3Gince the feature of multiple concurrent processes is not supported, the inclusion of the
process statement in this VHDL subset is merely for syntactical reasons.
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process representing the behavior of the design. The execution of a process

statement is modeled by the endlessly repetitive execution (an implicit loop)

of its sequence of statements. Hence, a process statement is not allowed to

have a sensitivity list.
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