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Abstract

When using Built-In Self Test (BIST) for testing VLSI circuits the circuit response to an
input test sequence, which may consist of thousands of bits, is compacted into a signature
which consists of only tens of bits. Usually a linear feedback shift register (LFSR) is
used to compact the response and the compaction function is polynomial division. The
compacting function is a many-to-one function and as a result some erroneous responses
may be mapped to the same signature as the good response. This is known as aliasing.

In this paper we deal with the selection of a feedback polynomial for the compacting
LFSR, given a set of modeled faults, such that an erroneous response resulting from any
modeled fault is mapped to a different signature than the good response. Such LFSRs are
zero-aliasing LFSRs.

In particular, for irreducible and primitive feedback polynomials we present (1) upper
bounds on the smallest degree zero-aliasing LFSR; (2) procedures for selecting a zero-
aliasing LFSR with the smallest degree; (3) procedures for determining whether a zero-
aliasing LFSR of a pre-specified degree exists, and if so, finding one; and (4) procedures
for fast selection of a zero-aliasing LFSR. We also show that for all practical applications,
a LFSR of degree less than or equal to 53 will always achieve zero-aliasing and we expect
that a LFSR of degree less than 21 can always be found.

We analyze the worst case as well as expected time complexity of all the proposed
procedures.

Experimental results are presented for practical problem sizes to demonstrate the ap-
plicability of the proposed procedures.
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1 Introduction

Built-In Self-Test (BIST) is the capability of a circuit to test itself. The idea behind BIST is to
create pattern generators (PGs) to generate test patterns for the circuit and response analyzers
(RAs) to compact the circuit response to the inputs that are applied. The circuit response,
which may consist of thousands of bits, is compacted into a signature which consists of only
tens of bits. The compacting function is a many-to-one function and as a result some erroneous
responses might be mapped to the same signature as the good response. This is known as
aliasing.

When all erroneous responses are mapped to a different signature than the good response,
we have zero-aliasing. There are two previous schemes to achieve zero-aliasing, that take into
account all possible error sequences. The first is by Gupta et al. [7] [14]. In this scheme the RA
is a linear feedback shift register (LFSR) and the compacting function is polynomial division of
the good response by the feedback polynomial. The scheme requires the quotient of the good
response to be periodic. This is achieved by proper selection of the LFSR feedback polynomial
once the good response is known. They give a bound of n/2 on the length of the required
register, for a test sequence of length n. The second scheme, due to Chakrabarty and Hayes [5],
uses non-linear logic to detect any error in the response. The number of memory cells in their

RA is [logn] but they have no bound on the extra logic required to implement their scheme.

The major difference between our scheme and the aforementioned zero-aliasing schemes
is that we target a specific set of possible faults and try to achieve zero-aliasing for the error
sequences resulting only from these faults. We do not try to recognize all possible error sequences,
mainly because most of them will never occur. The fault model lets us focus on the probable

error sequences. As a result, we use less hardware than the aforementioned schemes.

A previous method for finding zero-aliasing feedback polynomials for modeled faults was
presented by Pomeranz et al. [13]. Different heuristics for finding a zero-aliasing polynomial are
suggested, but these heuristics will not necessarily find an irreducible or primitive polynomial,
which is very important if the register is also to function as a PG. They do not give bounds on
the resulting or necessary degrees of their zero-aliasing polynomials, nor do they present results

on the complexity of their methods.

The PGs and RAs are usually implemented from existing registers. Some registers are

configured as PGs to generate tests for some bodies of logic and reconfigured as RAs to test other
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Figure 1: A MISR-based RA for a 4 output CUT. The feedback polynomial is f(z) =z +z+1.

bodies of logic. When the same design serves both purposes, the overhead of a reconfigurable
design is saved. In such a scheme a LFSR is used as a PG and a multiple input shift register
(MISR) is used as a RA. An example of a MISR-based RA is shown in Figure 1. The register is
configured as a shift register where the input to each cell is an XOR. function of the previous cell,
an output bit of the circuit under test (CUT) and, depending on the linear feedback function, a
feedback bit. Number the cells of a k stage MISR Dy, Dy,. .., Di_;, with the feedback coming
out of cell Di_;. The feedback function is represented as a polynomial f(z) = z* + Y5 fia!
and the feedback feeds cell D; iff f; = 1. The feedback polynomial of the MISR in Figure 1 is
f(z) = 2* + z + 1. The difference between a LFSR and a MISR are the extra inputs connected
to the outputs of the CUT. If both the PG (LFSR) and the RA (MISR) use the same feedback
polynomial, then the overhead of reconfigurable polynomials is saved. In a previous paper [11]
we showed how to select the feedback polynomial for a PG; in this paper we deal with selecting

the feedback polynomial for a RA.

The compacting function of a MISR is polynomial division over GF[2]. The effective output
polynomial is divided by the feedback polynomial. The signature is the remainder of the division.
If the CUT has k outputs, it has k output sequences. Denote these sequences by og, 01, . .., 01,
where o; feeds D;. If the input sequence is of length n, then each o; can be viewed as a polynomial
O = E}‘;ﬂl 0; ;2" 7177, where o; ; is the output value of the i-th output at time j. The effective
polynomial is then

k-1
0=} o',
1=0
Our objective is to select a feedback polynomial for the compacting MISR, given a set of

modeled faults, such that an erroneous response resulting from any modeled fault is mapped to



a different signature than the signature of the good response.

For a CUT with few outputs, the available register might be too short to achieve zero-aliasing.
In this case we need to lengthen the register by adding flip-flops. To keep the hardware overhead
at a minimum, we want to add as few flip-flops as possible, hence we are interested in a feedback
polynomial of smallest degree that achieves our objective. When a register is to serve both as
a PG and a RA, it is advantageous to have the feedback polynomial of the same degree as the
available register, hence we are interested in a feedback polynomial of a pre-specified degree. At
times, we might want to find a feedback polynomial fast, even if the resulting MISR requires

extra flip-flops over the optimum.

We assume the following test scenario. The input sequence to the CUT has been designed
so that the effective output polynomial due to any target fault is different from the effective
polynomial of the good response. Let r be the effective polynomial of the good response, then
the effective polynomial due to fault i can be represent as r + h;. By the linearity of the
remaindering operation, we get a different remainder for this erroneous polynomial iff k; is not
divisible by the feedback polynomial. We assume we are given the error polynomials for each of

the target faults.

The problem we deal with in this paper is the following: given a set of polynomials H =
{h1,hs,...,hg} find a polynomial that is relatively prime to all the polynomials of H. Such
a polynomial will be referred to as a non-factor of H. If a non-factor is used as the feedback
polynomial for the compacting MISR, zero-aliasing is achieved for the set of target faults. In
particular, for irreducible and primitive feedback polynomials we present (1) upper bounds on the
smallest degree zero-aliasing MISR; (2) procedures for selecting a zero-aliasing MISR with the
smallest degree; (3) procedures for determining whether a zero-aliasing LFSR of a pre-specified
degree exists, and if so, finding one; and (4) procedures for fast selection of a zero-aliasing MISR.

We analyze the worst case as well as expected time complexity of the proposed procedures.

A note on notation. When using logarithmic notation, In z will denote the natural logarithm
of z and log = will denote the base 2 logarithm of z. The polynomials {h;} represent the error
polynomials. The degree of h; is represented by d;. The product of the polynomials in H is
denoted by h, and the degree of h is di. For each h;, the product of the distinct, degree j,
irreducible factors of h; is denoted by g; ;, with d;; being the degree of g; ;. The product, over

all z, of the polynomials g;; is denoted by g;. The non-factor we seek will be referred to as a



with d, representing the degree of a.

The rest of this paper is organized as follows. In Section 2 we establish upper bounds on
the degree of a non-factor. In Section 3 we review polynomial operations over GF'[2] and their
complexities. Section 4 presents procedures for finding a non-factor of smallest degree for the
set H. Section 5 presents procedures for finding a non-factor of a pre-specified degree and for
finding a non-factor fast. We also discuss the effectiveness of conducting an exhaustive search for

a least degree non-factor. Section 6 presents some experimental data. We conclude in Section
7.

2 Bounds on the least degree non-factor of a set of poly-
nomials

Consider the following problem.

Problem 1: Let H be a set of |H| polynomials hy,...,hjy with deg(h;) = d; and for all
1<i<|H|, d <n. Let h = 1] hi. Then deg(h) = Y\l d; = dy < |H|n. Give an upper
bound s(dj) on the degree of an irreducible polynomial and an upper bound p(dy) on the degree
of a primitive polynomial that does not divide h, i.e. there exists an irreducible (primitive)

polynomial of degree at most s(dy) (p(ds)) that does not divide A. a

Similarly, let es(H) (ep(H)) be the ezpected degree of an irreducible (primitive) polynomial

that is a non-factor of H.

The bounds s(d) and p(d) will be referred to as the worst case bounds while the bounds
es(H) and ep(H) will be referred to as the ezpected bounds. We first establish the worst case
bounds and then proceed with the expected bounds.

2.1 The worst case bounds

For the bound on s(d) we follow [10]. Let I5(7) denote the number of irreducible polynomials
of degree j over GF[2]. The degree of the product of all irreducible polynomials of degree j is

7I2(7). Let s(d) denote the least integer such that ):;fl}jlg(j) > d. Let Q4 be the product of

all the irreducible polynomials of degree less than or equal to s(d). The degree of ()4(q) is greater
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than d. Replacing d with d, Qs(d,) has at least one root that is not a root of k, hence Q s(d)
has at least one irreducible factor that is not a factor of h. Thus, s(dy) is an upper bound on
the degree of an irreducible polynomial that is relatively prime to all the polynomials in the set

H. The following lemma provides a bound on s(dy).

Lemma 1: [10, Lemma 4, p.293]
s(d) < [log(d + 1)]
O

We turn to find the bound on p(d). The number of primitive polynomials of degree m over
GF[2] is

1 m
'7;9‘1’(2 =1)

where ¢(q) is the Euler function denoting the number of integers less than and relatively prime

to ¢ and ([12, p. 37])

¢(q) = ql_LIl(l —1/pi)
where the p;’s are all the distinct prime factors of g.
Lemma 2: [16, p. 173]

q
Inln g+

$(q) > e

S —
2¢YInlng
for all ¢ > 3 with the only exception being ¢ = 223,092,870 (the product of the first nine
primes), for which 2 is replaced by 2.50637. v = 0.577215665 ... is Euler’s constant. 0

For ¢ > 65 we have

q q
: 1
¢(a) > 3lnlng 3 2.08log log g 1)

To help us derive the bound on p(d) we introduce the value 7(t). Let 7(f) denote the least
integer such that the ratio between 7(t) times the number of primitive polynomials of degree
7(t) and ¢ times the number of irreducible polynomials of degree ¢ is greater than 1, i.e.

$(2r¥ —1)

1
L)



Lemma 3: (10, Lemma 3, p. 293] For t > 3

2t b)) £ 959,

Lemma 4: Fort > 6, 7(t) <t + [1 + loglog 2¢]

Proof: For g > 7, the function is an increasing function. Also,

e L—
2.08loglogg

q 5. g1 " q—1 5 a-1
2.08loglog g = 2.08log log g 2.08loglog(qg—1) =~ 2.08log log g

hence,

g—1 q
1> —21
2.081og log(q — 1) Shis 2.08log log ¢

Let 7'(t) be the least integer such that Wloi%m > 2!, Thus, using the above relation,

ARV |

2 1.
2.08loglog(27® —1) = =~ !

By Equation (1) we get
d27M 1) >2 -1

and due to Lemma 3

(270 — 1) > thy(2).

Thus, by the definition of 7(¢), we have that 7/(¢) > 7(¢). To bound 7(¢) from above, we solve
for 7'(t).

By definition, 7/(¢) must satisfy

97! (1)
2.08log 7'(t) > 2 =
gris)et > 2.08log 7'(t) =

() —t > log2.08 + loglog 7'(t)



By setting 7/(t) = ¢ + [1 + loglog 2t], we have
7'(t) —t = [1 + loglog(2t)]

and for ¢t > 6
[1 4 loglog(2t)] > log 2.08 + log log 7'(t)

|
Lemma 5: Let p(d) denote the least integer such that Z?f__dl) #(27 — 1) > d, then for d > 65
p(d) < [log(d + 1)] + [1 + log log(2[log(d + 1)])].
Proof: By the definition of 7(¢) and Lemma 4
j=[log(d+1)]+[1+loglog(2[log(d+1)])] j=[log(d+1)]
o2 -1)> 3 ih(j).
i=1 i=1
By Lemma 1 and the definition of s(d)
i=[log(d+1)] 3(d)
o ihL(3) =Y ih(j) > d.
i=1 i=1
£

Example 1: In Table 1 the values of ¢(2™ — 1) (the degree of the product of all the primitive
polynomials of degree m) and 37, #(2' — 1) (the degree of the product of all the primitive
polynomials of degree 2 < ¢ < m) are tabulated for 2 < m < 53. As long as d is less than the
maximum value in the table, p(d) can be read from the table, instead of using Lemma 5. For
example, if the number of modeled faults in the CUT is |[H| = 10* and the length of the test
sequence is n = 10°, then d, < 10'°. The degree of the product of all primitive polynomials
with degree less than or equal to 33 is the first which is greater than 10'°, hence p(dx) < 33.
Thus, a zero-aliasing LFSR with a primitive feedback polynomial, of degree at most 33, exists

for the CUT. On the other hand, using the bound of Lemma 5 we get p(d,) < 38. g

A closer look at Table 1 shows that the product of all the primitive polynomials of degree less
than or equal to 53 has degree D greater than 1.4 - 10'®. Thus, as long as the product of the
number of faults and the test sequence length is less than D (which is the case for all practical

test applications) a zero-aliasing MISR of degree less than or equal to 53 exists.
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m]| 42 1) [y, e 1) m J@ —1) T2 — 1)

2 2 2128 132,765,696 343,973,802
3 6 8 |29 533,826,432 877,800,234
4 8 16 | 30 534,600,000 1,412,400,234
5 30 46 | 31 2,147,483,646 3,559,883,880
6 36 82 | 32 2,147,483,648 5,707,367,528
7 126 208 | 33 6,963,536,448 12,670,903,976
8 128 336 | 34 11,452,896,600 24,123,800,576
9 432 768 | 35 32,524,320,000 56,648,432,576
10 600 1,368 | 36 26,121,388,032 82,769,820,608
11 1,936 3,304 | 37 136,822,635,072 219,592,455,680
12 1,728 5,032 | 38 183,250,539,864 402,842,995,544
13 8,190 13,222 | 39 465,193,834,560 868,036,830,104
14 10,584 23,806 | 40 473,702,400,000 1,341,739,230,104
15 27,000 50,806 | 41 2,198,858,730,832 3,540,597,960,936
16 32,768 83,574 | 42 2,427,720,325,632 5,968,318,286,568
17 131,070 214,644 | 43 8,774,777,333,880 14,743,095,620,448
18 139,968 354,612 | 44 8,834,232,287,232 93,577,327,907,680
19 524,286 878,808 | 45 |  28,548,223,200,000 52,125,551,107,680
20 480,000 1,358,808 | 46 |  45,914,084,232,320 98,039,635,340,000
21 | 1,778,112 3,137,010 | 47 | 140,646,443,289,600 |  238,686,078,629,600
22 | 2,640,704 5,777,714 | 48 | 109,586,090,557,440 |  348,272,169,187,040
23| 8,210,080 13,987,794 | 49 | 558,517,276,622,592 |  906,789,445,809,632
24| 6,635,520 20,623,314 | 50 | 656,100,000,000,000 | 1,562,889,445,809,632
25 | 32,400,000 53,023,314 | 51 | 1,910,296,842,179.040 | 3,473,186,287,988 672
% | 44,717,400 97,740,714 | 52 | 2,338,996,194,662,400 | 5,812,182,482,651,072
27 | 113,467,392 | 211,208,106 | 53 | 9,005,653,101,120,000 | 14,817,835,583,771,072

Table 1: Number of primitive elementsin GF[2™] and accumulated number of primitive elements

in GF[2?]...GF[2"]
2.2 The expected bounds

In deriving the expected bounds we assume that the polynomials {h;} are random polynomials.
Denote the product of the distinct irreducible factors of degree j of h; by g¢:j. Denote the

number of distinct irreducible factors of h;, of degree 7, by v. The value of v can range from 0

to min{|di/5], 2(5)}-

Lemma 6: For j > 2, the ezpected value of v (the number of irreducible factors of g; ;) is less

than or equal to %



Proof: Let IR,(5) = {p:}12) be the set of irreducible polynomials of degree j over GF[2]. For
a given polynomial g, of degree greater or equal to j, define the indicator function d(p:, q) to be
one if p; divides ¢ and zero otherwise. The probability that a polynomial of degree j divides a
random polynomial of degree greater or equal to j is 2=/, hence the probability that d(p;,q) =1

is equal to 277, Thus

IL(5)
El] = E [Z_j d(P.‘,Q)]
[2(

7)
2

A
.| =

O

The same type of analysis can be used to bound Var[v], the variance of v, and o,, the

standard deviation of v.

Lemma 7: For j > 2, the variance of the number of irreducible factors of g; ; is less than %

1
The standard deviation is less than (%) ’.

Proof: The variance of v is given by Var[v] = E[v?] — E[v]%

[ /53) <
ERp’] = E (‘; d(pf,q))]

L(7)

= B> dpng)*+2 3 dpi,q)d(pr,9)
=1 pi Pk EIR2())
L ek
I(7)
= Y E[dp,q’]+2 X E[dpiq)d(pe;q)]
=1 ik €L R ()
1<

I(3) + 215(5)*
2 2%



1 2
% —.+.—.2.
] J

For 7 > 2 we have
E[v?] < E
J
and,
2 2 2 _ 2 2)\*
Var[v] = E[v*] — E[v]* < E[v*] < 7 and o, < | =] .
J

a

Having computed the mean and variance of the number of irreducible factors of degree j per

polynomial, we can compute a confidence measure for these results.

Lemma 8: For 7 > 8, the expected number of polynomials g; ; with more than 5 (50) factors
is less than |H|/100 (|H|/10,000).

Proof: Using the Chebyshev inequality [8, p. 376]
Pr(|v — E[v]| > ¢co,) < 1/

for 7 > 8 the probability that v is greater than 5 is less than 0.01. Using this result we can
define a second random process in which the random variable z is 1 iff v is greater than 5 and
0 otherwise. This process is a Bernoulli ezperiment [6, Sec. 6.4]. The expected number of
g:,;’s with more than 5 factors is upper bounded by |H|/100, as is the variance. Similarly, the
probability that v is greater than 50 is less than 0.0001 and the expected number of g; ;’s with
more than 50 factors is bounded by |H|/10,000. a

Lemma 9: The expected degree of the smallest irreducible non-factor of the set of polynomials

H is bounded from above by [log |H|] + 1.

Proof: Denote the product of the polynomials g;;, 1 < i < |H|, by g;. By Lemma 6, the

expected number of (not necessarily distinct) factors of g; is less than |H|/j. The smallest j for

10



which I5(j) exceeds this value is an upper bound on the expected degree d, of a non-factor of

H. Thus, the upper bound §é on d, satisfies

H} _ 2%
l—g‘[ <5 <k = |H|< 251

and d, < [log [H|] + 1. O

By applying Lemma 4 on the result of Lemma 9, we have

Corollary 10: The expected degree of the smallest primitive non-factor of the set of polyno-
mials H is bounded from above by 2 + [log |H|] + [loglog(2 + 2[log [ H|])]. O

Example 2: Using the numbers of Example 1, let |[H| = 10* and n = 10%. The first 7 for which
$(27 — 1)/j exceeds |H|/j is j = 14 (Table 1), hence we expect to find a zero-aliasing MISR
with a primitive feedback polynomial of degree less than or equal to 14, as opposed to the worst

case of 33. Corollary 10 would give us an upper bound of 19. O

As the expected bound is a only a function the number of faults and not the length of the test
sequence, the expected degree of a zero-aliasing MISR will never exceed 53. In fact, as long as
the number of faults is less than 1 million, we expect to find a zero-aliasing MISR of degree less

than or equal to 21.

3 Polynomial operations in GF[2]

In search for a (least degree) non-factor of H we use procedures that sift the factors of the same

degree from a given polynomial. These procedures are based on the following lemma.

Lemma 11: [12, Lemma 2.13, p.48] 2?" — z is the product of all irreducible polynomials of

degree [, where [ is a divisor of m. O

Thus, a basic step in finding the distinct irreducible factors of a polynomial b(z) is the compu-

tation of

m

9(z) = ged(b(z),z*" - z).

11



The result of this operation is the product of all the irreducible factors of degree I, where {|m, of

b(z). For most polynomials b(z) of interest to us, 2™ >> deg(b(z)). Therefore, we first compute
r(z) = (2¥" - z) mod b(z)

and then
9(z) = ged(b(z), r(z)).
We first discuss the complexity of polynomial operations in GF[2] and then review a well known

approach to reduce z?” modulo b(z).

3.1 Polynomial multiplication, division and gcd

The complexity of a polynomial ged operation is O(M(s)log s) [1, pp. 300-308], where s is the
degree of the larger polynomial operand and M(s) is the complexity of polynomial multiplication,
where the product has degree s. The complexity of polynomial division is also O(M(s)) [1, Ch.

8]. Hence, it is crucial to find an efficient multiplication algorithm.

We consider two multiplication algorithms. Both algorithms are based on F'FT techniques
[1, Ch. 7], [6, Ch. 32]. For these algorithms to work they need a root of unity whose order has
small prime factors. In most cases, when the product polynomial has degree s, a root of order

2™ > s is used. This poses a problem, since fields of characteristic 2 do not contain such roots.

The first algorithm is due to Schonhage [17]. It uses roots of order 3™*! to multiply polyno-
mials of degree s < 3™. Its complexity is O(slog sloglog s).

The second algorithm is suggested by Cormen et al. [6, p. 799]. To multiply polynomials
of degree s/2 < 2™~ ! they suggest working in the field GF[p] where p is a prime of the form
B-2™ 4+ 1. The multiplication is done over GF[p] and the coefficients of the product are reduced
modulo 2 to give the correct result over GF|[2]. The question that naturally arises is how big is
p. The best provable bound on the size of p is that it is less than 25-*™ [9]. It is widely believed
that 8 = O(m?) [16, p. 221]. The complexity, per multiplication, of the Cormen algorithm is
O(slog s) operations in GF[p]. If the word size of a machine is greater than log p, then word
operations can be performed in O(1) machine instructions. To further cut down on time, we
construct logarithmic tables relative to a primitive element, o, of GF[p] for multiplication and

addition. With these tables, multiplication modulo p is addition modulo p of the logarithms.

12



m Pl a|l w|m p|l a|l w| m Pl | w
6 193 | 5| 11| 11 (12289 | 11| 7| 16 65537 | 3| 3
7 257 | 3| 9| 12| 12289 | 11 |41 || 17| 786433 | 10| 8
8 257 | 3| 3| 1340961 | 3|12 18| 786433 |10 | 5
9| 7681 | 17 |62 | 14 [ 65537 | 3|15 || 19 | 5767169 | 3 | 12

10 | 12289 | 11 | 49 |[ 15 | 65537 | 3| 9[ 20 [ 7340033 | 3| 5

Table 2: Least prime p, of the form §2™ + 1, with smallest generator o and 2™-th root of unity
w.

The addition table stores the Jacobi logarithm Z(1) [12, p. 69), i.e. Z(i) = log, (o + 1) where
log,(0) is defined as co. Thus, adding o*+a”, for u < v, is actually the multiplication operation
a*(1+ a”*) and the logarithm of the result equals i + Z(v — p).

Table 2 shows the smallest p for m = 6,7,...,20, along with the smallest primitive element

a and the smallest 2™ — th root of unity w.

In the sequel we shall use the notation O(M(s)) for the complexity of polynomial multipli-
cation. Whenever possible it will mean slogs, otherwise it should be taken as slog sloglogs.

Similary the notation L(s) will denote either log s or log s log log s, as appropriate.

3.2 z?" modulo b(z) and z! modulo b(z)

We review a well known approach [3] [15] to find the remainder of z2” when divided by b(z)

without actually carrying out the division.

Let s = deg(b(z)) and let R9(z) = T32} R¥z' = 2% mod b(z). Then
RY(z) = (2%)? mod b(z) = %" mod b(z) = RV (z).

Squaring over GF[2] is easy (r(z)? = r(z?)), thus by repeatedly squaring and reducing modulo
b(z), in time O(mM(s)) we can compute R(™(z). Note that the maximum degree RUY)(z) can
have is 2(s — 1). Once we have R(™)(z), we can compute g(z) = ged(b(z), R™(z) — z) in time
O(M(s)log s). Overall time needed to compute g(z) is O(mM (s) + M (s)log s).

Let ¢ = 7., ¢;27. To compute r(z) = z' mod b(z) we compute R(™)(z) as described above.

This costs O(mM(s)). We initialize r(z) to equal 1. As we compute R(™)(z), for each inter-

13



mediate value RU)(z) for which tj = 1, we set r(z) to the product r(z)RY)(z) mod b(z). Each
such computation costs O(M(s)), hence the cost of computing ! mod b(z) is O(mM(s)).

4 Finding a non-factor of smallest degree for a given set
of polynomials

After establishing the bounds on the least degree non-factor of H in Section 2, this section

addresses the question of finding a least degree non-factor for H.

Problem 2: Given a set of polynomials H = {hl(z),hg(m), . hIHI(x)} with deg(h;) = d; < n,
let

|H| |H|

h(z) =[] hi(z) , deg(h) = > di = dy. (2)
i=1 i=l1
Find an irreducible (primitive) polynomial a(z), with deg(a) = d,, such that

1. Forall 1 <1< |H|, h; # 0 mod a (equivalently, A # 0 mod a).

2. For all irreducible (primitive) polynomials b(z), with deg(b) < d,, h = 0 mod b (or equiv-

alently, there exists an ¢ for which h; = 0 mod b).

O

One way of solving the problem is by factoring the polynomials of H. This would require
too much work, since we do not need to know all the factors in order to find a non-factor. We

only need to know the “small” factors.

In this section we present algorithms for solving Problem 2 and analyze their complexity.
The complexity is given in two forms. The first is with worst case complezity bounds, referred
to as the worst case complezity. The second is with ezpected complezity bounds, referred to as
the ezpected complerity. The expected complexity is a refinement of the worst case complexity

based on the erpected size of the results from our procedures.

By Lemmas 1 and 5 (Section 2), we have an upper bound u = s(ds) or u = p(dy) on d,,
depending on whether we are looking for an irreducible or a primitive non-factor. Using this

bound, we begin our search process, which is made up of three phases.
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1. For all h; € H, find g; ;(z), the product of all distinct irreducible (primitive) factors of h;,
of degree j.

2. Having found the polynomials g; ;, determine whether all irreducible (primitive) polyno-

mials of degree j are factors of H.

3. If not all irreducible (primitive) polynomials of degree j are factors of H, find one that is

not.

The worst case complexities of the three phases for the irreducible case are O(|H|u?M(n)),
O(|H|?M(n)logn) and O(|H|>n*u®M(u)). The dominant term is O(|H|*n*u*M(v)). The
worst case complexities of the three phases for the primitive case are O(|H|u*M(n)), O(|H|? -
M(n)log n) and O(|H[*n*u®M(u)loglogu). The dominant term is O(|H|*n*u®M (u)log log u).

The expected complexity of the first two phases are O(|H|u?M(n)) and O(|H|log |H|u? -
L(n)logn). The expected complexity for the third phase is O(|H|log |H|d, M (d,)) to find an
irreducible non-factor and O(|H|log |H|d? loglog d,M(d,)) to find a primitive non-factor. The
dominant term is O(|H|[u*M (n)).

The worst case complexity is a function of |H|*n? multiplied by terms that are logarithmic
in |H| and n whereas the expected complexity is a function of |H|n multiplied by terms that

are logarithmic in |H| and n.

4.1 The product of all distinct factors of the same degree for a

given polynomial

Given the polynomial h;(z) and the upper bound u, we wish to compute g; ;, the product of all
distinct factors of h; of degree 7, for 1 < j < u. The procedure for computing the polynomials
gi; is given in Figure 2. The polynomials g; ; are computed in three steps. First, for u/2 < 7 < u,
compute g;; = ged(hi(z),z?¥ — z). Each g;; is a product of all the distinct irreducible factors
of h;(z) of degree j and of degree [, where l|j.

When j is less than or equal to u/2, we have 2j < u. By Theorem 11, g;,; contains the

product of all irreducible factors of degree [, where |7, of h;. Since the degree of g;»; is (much)

less than the degree of h;, it is more efficient to compute g;; from g;2; than from h;. Thus, in

Step 2, for 1 < j < u/2 compute g;; = gcd(g.-_gj,mzj —z).
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Procedure 1: distinct_factors(h;)
L For(j=u;j>u/2;j—-)
(2) gi; = ged(hi(z),e* — z)

2. For (j = |u/2];7>0;5—-)
(2) gij = ged(gizj, ¥ — z)
3. For (j =27 <w;7++)
(a) For all l|5
I gij = 9i;/9:

Figure 2: Procedure distinct_factors(h;). Computes the product of all distinct factors of degree
J, for 1 € 5 < u, of the polynomial k.

At the end of Step 2, each g;; contains all the factors of degree [[j of h;. To sift out the
factors of degree less than j from g;;, we need to divide g;; by g:;, where [ ranges over the set

of divisors of j. This is carried out in Step 3.

Procedure distinct_factors() is not enough when we are looking for a primitive non-factor.
At the end of the procedure, each g;; is the product of all distinct irreducible polynomials of
degree j, that are factors of ;. From g;; we need te sift out the non-primitive factors. Before

describing this aspect, we introduce the notion of mazimal divisors.

Definition 1: Let ¢ = [Ti_, pi*, with py,...,p, being the distinct prime factors of ¢. The set

of mazimal divisor of ¢ is the set md(q) = {m:}._, where m; = q/p;. 0

For example, 20 = 22 - 5, hence md(20) = {10,4}. 16 = 2*, therefore md(16) = {8}. Since 7 has
only one prime factor, md(7) = {1}.

A polynomial over GF[q] of degree m is irreducible iff it divides 29" ~! — 1 and does not

divide z9"~! — 1 for all divisors k of m. It is primitive of degree m iff it is irreducible and does
not divide z' — 1 for all / in md(g™ — 1) [12, Ch. 3]. Procedure distinct_primitives(), shown in

Figure 3, sifts out the non-primitive factors of g; ;.

Lemma 12:
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Procedure 2: distinct_primitive(g; ;)
/* sifts out the non-primitive factors of g; ; */

1. For all / in md(2’ — 1)
(a) @ = ged(gij,z' — 1)
(b) gi; = gijla

Figure 3: Procedure distinct_primitive(g; ;). Sifts out the non-primitive factors of g; ;.

1. The complexity of Procedure distinct_factors() is O(u?M(n)).
2. The complexity of Procedure distinct_primitive() is O(u®*M(n)).

3. The complexity of the first phase is O(|H|u? M (n)) for the irreducible case and O(|H|u® -

M(n)) for the primitive case.

In the above expressions u = s(d},) for the irreducible case and v = p(d},) for the primitive case.

Proof:

1. The worst case complexity of Procedure distinct_factors() is as follows. In Step 1, the
procedure performs u/2 ged computations involving h;. The complexity of each ged com-
putation is O(jM(d;) + M(d;) log d;). Thus the total work for the first stage is

u

S O(GM(di) + M(d:)log di) = O (g-M(d,-) (3—;‘- +log d,-)) = O(u*M(n)).
=l

In Step 2 the procedure carries out u/2 ged operations. The work required for this step is

(u/2]
Y O(3M(di2;) + M(di2;)log digj) = O(u*M(n)).

i=1

In Step 3, for every element of the sets of divisors, the procedure performs a division

operation. The cost expression is

S Y 0(M(dy)) < 3 0(GM(di ) = O(u>M(n)).

j=1 1j j=1
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2. The complexity of Procedure distinct_primitive() is as follows. Each iteration of Pro-
cedure distinct_primitives() reduces (z* — 1) modulo g;; and performs one ged and one
division operation. The cost of each iteration is O(jM(d;;) + M(d;;)log(d;;)). There
are md(2’ — 1) iterations, with md(2/ — 1) < j < u, and we run the procedure u times.

Therefore, the additional work for the primitive case is bounded by O(u®M(d;)).

In most cases, the values d;; will be (much) less than n, hence the actual work will

be much less then O(u?M(n)) and the dominant factor will be Step 1 of Procedure
distinct_factors().

3. Over the set H, based on 1 and 2, the complexity of the first phase is (|H|u?M (n)) for the
irreducible case and (|H|u®M(n)) for the primitive case. The value of u is either s(d}) or

p(dy) corresponding to either the irreducible or primitive case.

O

Lemma 13: The expected complexity of the first phase is O(|H|u?M(n))) with u equal to
either es(H) or ep(H).

Proof: The expected complexity of Procedure distinct_factors() is dominated by the com-
plexity of Step 1, which is O(u*M(n)). The difference in the complexity of the other steps,
over the worst case, comes from using the expected size of the d;;s, instead of their worst
case size, which is equal to n. The expected complexity of the procedure (including Procedure
distinct_primitive()), over the set H is, thus, O(|H|u?*M(n)), with u equal to either es(H) or
ep(H). O

4.2 The number of all distinct factors, of the same degree, for a

set of polynomials

After the first phase, for all degrees 1 < j < u, we have |H| polynomials g; j, each a product
of the distinct irreducible (primitive) factors of degree j of h;. Some of the g;;’s might equal 1
while some pairs might have factors in common. Our goal is to find a least degree non-factor of

H. The first thing we must determine is whether all irreducible polynomials of degree j appear

in g; = i3 gi,;- This is the second of our three phases (page 15). A simple test is to compare
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ﬂ:}gﬁ = Z‘M with I,(5). If dig}‘—’-’l < I,(7) then there is a non-factor of degree j. For the
primitive case we compare with ﬂ@

If de—gff’ﬂ > I>(j), the only way to determine whether all irreducible (primitive) polynomials

of degree j are factors of g; is to find those factors that appear in more than one of the g;;’s

and to eliminate all their appearances except for one.

We considered two methods for removing repeated factors. The first is referred to as the lem
method and the second is referred to as the ged method. The lcm method will be shown to be

faster, but it also requires more space, which might not be available.

In the lem method we first sort the g; js according to their degrees and then place them in
the sets si, where g;; € s iff 2571 < deg(g:;) < 2*. The sets {s;} are ordered according to
their index, in increasing order. We then begin computing lcms of two polynomials taken from
the first set. If this set has only one polynomial we take the second polynomial from the next
set. The resulting lem polynomial is placed in the set corresponding to its degree. This process

ends when we are left with one polynomial, representing the lcm of all the polynomials g; ;.

In the ged method the polynomials g;; are sorted by their degrees. In each iteration the
polynomial with the highest degree is taken out of the set and and all pairwise geds between
itself and the other polynomials are taken. If the ged is greater than 1, the other polynomial is
divided by this ged. At the end of the iteration none of the remaining polynomials in the set
has a factor in common with the polynomial that was taken out. Thus, when the procedure

ends, no factor appears in more than one of the g; ;s.

Lemma 14:

1. The complexity of the second phase is O(|H|*M (n) log n).

2. The expected complexity of the second phase is O(|H|log® |H|L(n) log(|H|n)).

Proof:

1. We can bound the work required for the lem method as follows. First assume |H| and d; ;
are powers of 2 (if they are not, for bounding purposes increase them to the nearest power

of 2). Also, assume the polynomials are leaves of a binary tree. All the polynomials in the
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same level have the same degree (each level corresponds to a different set si). Assume that
in every lcm step, the degree of the lem is the sum of the degrees of its two operands (i.e.
the operands are relatively prime). The maximum degree the final l[cm can have is | H|n and
computing this lem costs O(M(|H|n)log(|H|n)). Computing the two lem’s of the next to
last level costs at most O(2- M(|H|n/2)-log(|H|n/2)). In each lower level there are at most
twice as many lem’s being computed but each costs less than half the cost of the level above
it, hence the total cost is bounded by O(log(|H|n)M(|H|n)log(|H|n)) < O(u*M(|H|n)).

To use the lem method we need enough memory to store the final lem. If we do not have

the required memory, we use the ged method. The work required is O(|H|?M(n)logn).

. When taking into account the expected size of the polynomials g; ;, factorization becomes
practical. The factoring algorithm used is that of Cantor and Zassenhaus [4]. The com-
plexity for factoring a product of r distinct irreducible polynomials of the degree j is given
by O(rM(rj)(j + log(rj)). By Lemma 8, the expected number of polynomials g;; that
have more than 5-10* factors is less than |H|/10%*2. If we take the number of polynomials
with 5 - 10* factors to be 1%95&1% (i.e. all polynomials with at most 5 factors are assumed
to have 5, all polynomials with 6...50 factors are assumed to have 50, etc.), then the

expected work required to factor all the polynomials is bounded by

Z 10Q2k+2

k=0

%losm |H|-1
0 ( I 5 104 M5 109 + log(55 - 10*))) -

By using the fact that 55 - 10F < n and by writing M(57 - 10%) as 55 - 10% - L(n), we can
bound the sum by

3 logyo [H|-1
0 ( >, 25|H|L(n)( +10gn)) = O(|H|log [H| - j - L(n)(j + logn)). (3)

k=0

When the factorization is completed, all the irreducible factors can be sorted in time

O(|H| -log |H|) and the unique factors can be counted.
Summing over 7 = 1...u(= es(H)) we get O(|H|log |H|u*L(n)(u + logn)). Since u =
log |H|, the expression becomes O(|H|log® |H|L(n) log(| H|n)).
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4.3 Finding a non-factor

We are now at the third phase, where we know the smallest degree d, for which there exists
a non-factor for h. We also have, m < |H| polynomials g¢; 4, that are products of distinct
irreducible (primitive) factors of h, all g; 4,’s are pairwise relatively prime and every irreducible
(primitive) factor of degree d, of h is a factor of one of these polynomials. We want to find an

irreducible (primitive) polynomial of degree d, that is a non-factor of H.

One approach is to divide the product of all irreducible (primitive) polynomials of degree d,
by the product of all m polynomials and find a factor of the result. This might pose a problem
if we do not have the product at hand, i.e. only the polynomials g; 4., or if the product is too

large to handle as one polynomial.

Another way is to randomly select irreducible (primitive) polynomials and check whether
they are factors or non-factors. The only way to check is by doing the actual division. This
division, however, will be regular long division, and not F'F'T division, whenever the divisor
has very small degree compared to the degree of the dividend. If an irreducible (primitive)
polynomial is relatively prime to all of the g; 4,’s, it is a non-factor. If it divides at least one of
the polynomials, we can keep the result of the division and reduce our work in upcoming trials.

This reduction requires that polynomials do not repeat in the selection process.

Lemma 15:

1. The complexity of finding a non-factor once d, is known is O(|H|*n*d2M(d,)) for the
irreducible case and O(|H|*n%d2M(d,)loglog d,) for the primitive case.

2. The expected complexity is O(|H|log |H|d.M(d,)) for the irreducible case and O(|H] -

log |H| - &2 loglog d, M(d,)) for the primitive case.

Proof:

1. The procedure generates random polynomials, checks them for irreducibility (primitivity)
and whether they are factors or not. The expected number of random polynomials that
are tested for irreducibility (primitivity) before an irreducible (primitive) polynomial of

degree d, is found is d,/2 (% loglogd,) [15]. The work required to test each polynomial
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for irreducibility is O(d, M(d,)) (O(d2M(d,))) [15]. The sum of the d;;’s cannot exceed
| H|n, therefore after at most l%_lf irreducible polynomials are tried, a non-factor is found.
The work involved with each try is |H|n - d, (long division). Thus, the expected work
required to find a non-factor is O(|H|*n? - &2M(d,)). For the primitive case the work is
O(|H|*n*d3M (d,)loglog d,).

2. If the polynomials g; ; were factored (see proof of Lemma 14,(2)), once d, is known, we draw
irreducible (primitive) polynomials until a non-factor is found. We expect no more than
|H|/d, factors. When an irreducible (primitive) polynomial is drawn, it takes O(log |H|)
to check whether it is a factor or not. Hence, the expected work required to find a non-
factor, once d, is known, is bounded by O(|H|log |H|d,M(d,)) for the irreducible case and
O(|H|log |H|d? M (d,) - loglog d,) for the primitive case.

5 Practical scenarios

In this section we discuss some practical scenarios for finding zero-aliasing polynomials. First,
when we want a non-factor of a pre-specified degree. Second, when we want to find a non-factor
fast. Third, we compare our algorithm for finding a least degree non-factor with an exhaustive
search over all irreducible (primitive) polynomials in ascending degrees. In some cases, this type

of search will be faster.

5.1 Finding a non-factor of a pre-specified degree

In cases where the register is required to function as both a RA and a PG, a non-factor of a

pre-specified degree is needed. Thus

Problem 3: Given a set of polynomials H = {hy,ha,..., g}, with deg(h;) < n, find an

irreducible (primitive) non-factor of degree t for H. O

This problem is exactly the same as finding the least degree non-factor, except that we only
need to consider the case of 7 = t, instead of iterating over all 1 < 7 < u. We first compute the

polynomials g;, then determine whether a non-factor of degree ¢ exists, and if so find one.
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Lemma 16:

1. The complexity of finding a non-factor of degree t is O(|H|?*n%t2M(t)) for the irreducible
case and O(|H|*n*t®M (t) log logt) for the primitive case.

2. The expected complexity is O(|H|M(n)(t + logn)).
Proof:

1. Computing the polynomials g;; involves computing g;; = gcd(h;,z* — z) and for each
! € md(t) computing f; = ged(gis, 2% — z) and giy = gis/fi. The cost of the first ged
computation is O(tM(d;) + M(d;)logd;). The cost of the |md(t)| subsequent ged and
divisions is bounded by O(log¢(tM(d;.) + M(d;;)logd;.)). Substituting n for d; and d;,
we get O(logt - M(n)(t + logn)).

Once we have the polynomials g; 4, we need to sift out multiple instances of the same irre-
ducible polynomial. When using the ged method, this has a worst case cost of O(| H|[*M(n)-
log n).

At this stage, we know whether a non-factor of degree ¢ exists or not. If one exists, we
carry out phase 3. This has a worst case complexity of O(|H|*n*t2M (t)). This is the
dominant term for the whole process. The analysis is the same for the primitive case,

hence the worst case complexity of finding an irreducible (primitive) non-factor of a given

degree t for a set of polynomials H is O(|H|*n?t*M(t)) (O(|H|*n?t*M (t) log log t)).

2. We turn to analyze the expected complexity. For each h;, we compute g;; = ged(h;,z*' —
z). This costs O(|H|M(n)(t + logn)). The cost of sifting out the factors of degree less
than ¢ from the g;,’s, based on the expected number of factors for each degree, will be
insignificant. Factoring and sorting the polynomials in the second phase has expected cost
of O(|H|log |H|t - L(n)(t + logn)) (Eq. (3)). The expected number of distinct irreducible
factors of degree t of H is bounded by |H|/t. Thus, the cost of finding a non-factor at this
stage which consists of drawing at most ]%[ irreducible (primitive) polynomials, each at
an expected cost of O(5tM(t)) (O(% loglogt - t*M(t))), and checking it against the list of
factors, is bounded by O(J%l%tM(t) log(|H|/t)) for the irreducible case and O(|H|(log |H |-
log £)t?M (t) log log t) for the primitive case. Hence, the expected complexity of finding a
non-factor of degree ¢ for H is bounded by O(|H|M(n)(t + logn)).
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5.2 Finding a non-factor fast

Problem 4: Given a set of polynomials H = {hy,hs,...,hjy}, with deg(h;) = d; < n,

EIHI d; = dj, find an irreducible (primitive) non-factor of H in less than 2° tries. O

=1

The sum of the degrees of all irreducible (primitive) polynomials of degree less than or equal

to s(dy) (p(dn)) is greater than dy. If we look at u = s(zfildh) (u =p(23—_c_1df.)) then

E'f:le?(j)_dh _ L B2 —1)—dy
2 c

m > w > 2‘“) and if we draw uniformly from all irreducible (prim-

itive) polynomials of degree u, after 2° drawings we expect to find a non-factor. The expected
work cost for this case is O(2° - (u?M(u) + u|H|n)) = O(2°u|H|n) which is the cost of 2¢ itera-
tions of drawing a polynomial and testing for irreducibility, and once one is found dividing all
|H| polynomials by this candidate non-factor, using long division. For the primitive case this

becomes O(2° - (u*M (u) loglog u + u|H|n)) = O(2°u|H|n).

Example 3: Using the numbers in Example 1 again, say we want to find a non-factor in no
more than 8 tries. We compute the bound p (%1010) and draw from all the primitive polynomials

up to the computed bound. If we use Table 1, we see that instead of looking at the polynomials
of degree less than or equal to 33, we need to consider all primitive polynomials of degree up to
34. In general, -2-3_—1 < 2, hence by Lemma 5, we only have to consider polynomials of degree

greater by at most 2 than for the case when we want the minimum degree non-factor. O

We can also use the expected bounds es(d) and ep(d) to lower the degrees of the candidate

non-factors.

5.3 Exhaustive search
In this subsection, we compare our algorithms with an exhaustive search for a least degree

non-factor. We will look at the irreducible case.

Assume the least degree irreducible non-factor has degree d,. Also, assume we have a list of

all irreducible polynomials in ascending order. The number of irreducible roots of degree j is
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less than 27. We can bound the work required to find the non-factor, by an exhaustive search,
by O(|H|n2%*!). Using the expected bound on d, (d, = O(log |H|)), we can bound the work by
O(|H|*n). The expected work required to find the least degree non-factor, by our algorithms,
is O(|H|u?M (n)), which becomes O(|H|log®|H| - nlogn) when we substitute in the value of .

Not taking into account any of the constants involved with these two results, their ratio is

|H|
log? |H|logn

Assuming |H| = 1024, this ratio is less than 1 for n > 1210. Assuming |H| = 2048, the ratio is
less than 1 for n > 124,500. For |H| = 4096, the ratio is less than 1 for n > 365,284, 284. This
suggests that depending on the number of target faults and the length of the test sequence, an
exhaustive search might be more effective. Assuming the number of faults is less than 4096,
based on the expected bound on the degree of a non-factor, we would need to store all the

irreducible polynomials of degree at most 13. The number of these polynomials is 1389.

6 Experimental results

The following experiments were conducted to verify our results. The experiments were conducted

on a HP-700 workstation.

6.1 Random selections based on the absolute bounds

An experiment was set up as follows. We generated a set of 1000 random polynomials of degree
at most 200, 000. This corresponds to a CUT with 1000 faults, i.e. |H| = 1000, and a test length
of 200, 000, i.e. n = 200,000. The degree of the product of these polynomials (dj) was less than
or equal to 200,000,000. We wanted a probability greater than 1/2 of finding a non-factor
with just one drawing of a primitive polynomial. By looking at Table 1, we can achieve this
by selecting from the set of all primitive polynomials of degree less than or equal to 29. The
polynomials were drawn in a 2 step process. The first step selected the degree of the primitive
candidate, the second selected the candidate. In the first step we selected a 32 bit number and
took its value modulo the number of primitive roots in the fields GF[2] through GF[2*°]. The
result was used to determine the degree of the primitive candidate, by looking at the first field

GF[2% such that the number of primitive roots in the fields GF[2] through GF[29] is greater
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than the result. The selection of the actual polynomial was done by setting the coefficients
of z,2%,...,2%! by a LFSR with a primitive feedback polynomial of degree d — 1 that was
initialized to a random state. This guarantees that no candidate will be selected twice and all
candidates will have a chance at being considered. The candidates were tested for primitivity
and if they were primitive, they were tested for being non-factors. If at some point they were

found to be factors, the search continued from the current state of the degree d — 1 LFSR.

We ran 200 such experiments. In all 200 ezperiments the first primitive candidate turned
out to be a non-factor. Of the non-factors that were found, 1 was of degree 21, 2 were of degree
22, 3 of degree 23, 2 of degree 24, 7 of degree 25, 13 of degree 26, 32 of degree 27, 35 of degree
28 and 105 were of degree 29.

The number of polynomials that were tested for primitivity before one was found ranged
from 1 to 160. The average number was 16. The time it took to find a primitive polynomial
ranged from 0.01 seconds to 0.79 seconds. The average time was 0.104 seconds. It took between

153.25 and 166.68 seconds to find a non-factor, with the average being 160.50 seconds.

These experiments show that given the error sequences for each of the faults of interest, it

is very easy to find a zero-aliasing polynomial for a circuit.

6.2 Random selections based on the expected bounds

Based on our expected bounds, Corollary 10, we should be able to find a non-factor of degree at
most 14. We ran 100 experiment as above, only this time, we selected only primitive polynomials
of degree 11 (the expected bound based on Table 1). The first primitive candidate that was
selected was a non-factor in 66 of the 100 experiments. 19 experiments found the non-factor
with the second candidate, 11 with the third, 2 with the fourth, 1 with the fifth and 1 with the
sixth. We ran 100 experiments selecting only primitive candidates of degree 9. The number of
primitive candidates that were tried before a non-factor was found ranged from 1 to 28. The

average number of candidates was 7.5.

To test the tightness of our expected bound, we ran 126 experiments. In which 1024 random
polynomials of degree at most 200,000 were generated and an exhaustive search, in increasing
order of degrees, was conducted to find the least degree non-factor. By our expected bound,
this least degree should be less than 14. In one experiment, the least degree was 7. In 35 it was

8 and in the remaining 90 experiments, the least degree was 9.
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From these experiments we conclude that when the error polynomials are in fact random
polynomials, the expected bounds, based on the analysis of the expected number of factors of a
certain degree for a random polynomial, are in fact upper bounds on the least degree non-factor

for a set of polynomials. As expected, the bounds read from Table 1 are tighter than those from

Corollary 10.

6.3 Experiments on benchmark circuits

We tried our worst case and expected bounds on error sequences of two circuits from the Berkeley
synthesis benchmarks [2]. The first circuit was inJ, the second was in7. We used a fault simulator
that did not take into account any fault collapsing, hence the number of faults was twice the

number of lines in the circuit (for stuck-at-0 and stuck-at-1 faults on each line).

For circuit in5 there were 1092 faults, six of which were redundant, hence there were 1086
detectable faults. The circuit had 14 primary outputs. We used a test sequence of length 6530
that detects all the non-redundant faults and computed the effective output polynomials of all the
faults. All were non-zero, hence there were no cancellation of errors from one output by errors of
another output. Thus we had 1086 error polynomials of degree at most 6543. From Table 1, the
worst case bound on the degree of a primitive non-factor is 23. To draw a primitive non-factor
with probability greater than § we need to consider all primitive polynomials of degree 24 or
less. We conducted 20 experiments of drawing zero-aliasing primitive polynomials, based on our
worst case bounds. In all experiments, the first candidate was a non-factor. We then conducted
another 20 experiments, this time drawing primitive polynomials of degree 14, the size of the
register available at the circuit outputs. In all experiments the first candidate was a non-factor.
Based on our expected bounds (Table 1), we should find a non-factor of degree 11 or less. We
tried finding non-factor of degree 11, 9 and 7. For the degree 11 experiments, in 17 of 20 cases,
the first primitive candidate was a non-factor. Two experiments found the non-factor with the
second try, one with the third. We conducted 15 degree 9 experiments before considering all 48
primitive polynomials of degree 9. Of the 48 primitive polynomials of degree 9, 33 were factors,

and 15 were non-factors. The average number of candidates tried before a non-factor was found

was 33. All 18 primitive polynomials of degree 7 were factors.

For circuit in7 there were 568 faults, 567 of which were non-redundant. The circuit has 10

primary outputs and we used a test sequence of length 9280. Using the worst case bounds,
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to ensure selection of a primitive non-factor with probability greater than 3, we considered all
primitive polynomials of degree 24 or less. All 20 experiments found a non-factor with the first
candidate. The expected bound (Table 1) for the degree of a primitive non-factor was 10. We
tried to find non-factors of degree 11 and 10 (the size of the register available at the outputs). All
20 degree 11 experiments found a non-factor with the first try. Of the 20 degree 10 experiments,
13 found a non-factor with the first try, 6 with the second and one with the third.

For both circuits we tried to find the least degree non-factor using an exhaustive search.
Since the fault extractor we used did not do any fault collapsing, some of the error polynomials
were identical. By summing the values of all non-zero erroneous output words for each simulated
fault, we found at least 292 different error polynomials in in7 and at least 566 different error
polynomials in ind. This would make our expected bounds (Table 1) to be 9 for in7 and 10 for
in5. For both circuits the least degree non-factor had degree 8. It took 11 CPU minutes to find

each of these polynomials.

The experiments on the two benchmark circuits show that the assumption that the error
polynomials behave as random polynomials does not invalidate our analysis and results. The
expected bounds, as was the case for the random experiments, were upper bounds on the least

degree non-factor.

7 Conclusions

In this paper we presented procedures for selecting zero-aliasing feedback polynomials for MISR-
based RAs. When both PGs and RAs are designed as LFSRs/MISRs, our scheme, combined
with algorithms for selecting efficient feedback polynomials for pattern generation [11], enables
the selection of one feedback polynomial that serves both tasks, thus reducing the overhead of

reconfigurable registers.

We presented upper bounds on the least degree irreducible and primitive zero-aliasing poly-
nomial for a set of modeled faults. We showed that in all practical test applications such a
polynomial will always be of degree less than 53. In fact, by our expected bounds, when the
number of faults is less than 10°, this degree will be at most 21. In the experiments that were

conducted, a zero-aliasing polynomial of degree less than the expected bound was always found.

We also presented procedures for finding a zero-aliasing polynomial, when the objective is to
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worst case
irreducible primitive
bounds () (@) = [og([ATn T 1T | 2() = 5(da) + [1 + log log(Zs(d))]
smallest non-factor | H|*n*u® M (u) |H|*n?u® M (u) log log u
degree t non-factor |H|[*n?t* M(t) |H|*n?t3M(t) log log ¢
expected
irreducible primitive
bounds (u) es(H) = [log |H|] ep(H) = 1+ es(H) + [loglog(2es(H))]
smallest non-factor |H|M (n)u? | H|M(n)u?
degree t non-factor |H|M(n)(t + logn) |H|M(n)(t + logn)

Table 3: Summary of Results

minimize the degree, to have a specific degree or speed. We analyzed the computational effort
that is required both under worst case conditions and expected conditions. A (partial) summary
of the results is presented in Table 3. For both the worst case analysis and expected analysis,
Table 3 shows the upper bounds on the smallest non-factor, the computational complexity of

finding a smallest non-factor and the complexity of finding a factor of a given degree.

Based on our analysis and on our experiments, it is our conclusion that when the error
polynomials of the modeled target faults are available, zero-aliasing is an easily achievable goal.
Thus, to ensure high quality tests, a premium should be put on fault modeling, automated test
pattern generator design and fault simulation. With these tools available, zero-aliasing is not a

problem.
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