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Abstract

This paper describes a new technique for the design of BIST TPGs. The
TPG design technique identifies compatible circuit inputs that can be con-
nected to the same TPG stage. The key idea is that compatibility between the
circuit inputs is determined by analyzing the circuit logic. Unlike pseudo-
exhaustive testing, circuit inputs that fanout to the same output can be
compatible, provided that connecting them to the same TPG stage does
not cause any loss of fault coverage. Experimental results show that TPGs
designed with the proposed technique achieve 100% stuck-at fault coverage
in practical test length without adding extra hardware.

*This research was funded by NSF Research Initiation Award no. MIP-9210871



1 Introduction

Built-in self-test (BIST) is gaining acceptance in the VLSI industry as an alternative to con-
ventional scan-based design-for-testability (DFT) techniques because of its many advantages.
Test application under the conventional scan-based DFT techniques requires the use of an
automatic test equipment (ATE) to store the test stimuli and the circuit responses. ATEs
are expensive, require expertise to operate and maintain, and become outdated in short
time as the technology advances. Testing with this approach is inherently slow because test
stimuli are serially scanned in, and their responses serially scanned out. Conventional ATEs
are normally operated at slow speed because high speed ATEs are very expensive. BIST
eliminates the need for ATEs by building test circuitry on the chip. Test stimuli are gener-
ated by an on-chip test pattern generator (TPG). The circuit responses to the test stimuli
are captured and analyzed by an on-chip output response analyzer (ORA). A self-testable
chip can be easily tested by initializing the internal test circuitry (which then applies the
tests and compresses the responses) and waiting for the pass/fail signal. The testing can
be performed at-speed — tests are generated and applied using the operating clock — and
hence is very fast. Also, the test resources are available during the entire life time of the
chip. This significantly simplifies the diagnosis and maintenance of digital systems.

One major issue in BIST is the design of efficient TPGs. An efficient TPG must
generate a test sequence of practical length, that achieves high fault coverage with
minimal hardware overhead. Many TPG design techniques for stuck-at faults have been
proposed. These techniques make trade-offs between test time, fault coverage, and hardware

overhead.

Ezhaustive testing can achieve high fault coverage with minimal hardware overhead,
but the test time is impractically large for circuits with more than 30 inputs. In pseudo-
ezhaustive testing [5, 17], logic feeding each circuit output (referred as a structural cone or,
simply, a cone) is tested exhaustively. Many techniques [2, 17, 29, 30, 36, 37] exist to design
TPGs that can generate pseudo-exhaustive test sequences. However, the lower bound on
the test length for any pseudo-exhaustive approach is 2%, where k is the largest cone size
(the number of inputs in the largest cone). If k is larger than 30, then the circuit must be
partitioned into segments with fewer inputs to make pseudo-exhaustive testing possible. In
sensitized partitioning [18], suitable pattern are applied to some primary inputs to isolate
segments so that the inputs and outputs of the segment are fully controllable and observable.
TPG designs based on this approach require high area overhead because the outputs of some
TPG stages must be held constant, while other stages are required to generate exhaustive
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patterns for the segments. Besides the high area required for reconfiguring the BIST TPG,
complicated BIST control circuitry is required. In hardware partitioning [18, 32, 33], mul-
tiplexers or segmentation cells are inserted in the CUT to isolate the segments. Insertion

of these hardware components introduces significant area overhead and deteriorates circuit
performance.

Pseudorandom testing employs simple TPGs such as linear feedback shift registers
(LFSRs) to generate pseudorandom sequences. However, long test sequences are required to
achieve acceptable fault coverage for random-pattern resistant circuits (circuits with many
hard-to-detect faults). Use of multiple seeds or LFSRs with reconfigurable feedback poly-
nomials can increase fault coverage. But this results in complicated BIST control circuits.
In weighted random testing [19, 20, 38], a weight circuit biases the pseudorandom sequence
using precomputed weights. The hardware complexity is normally high due to the need for

multiple weights.

Another category of TPG designs are based on deterministic test set embedding. Even
for random-pattern resistant circuits, the number of tests in the complete deterministic test
sets is often small. Many techniques have been proposed to synthesize TPGs that can
generate short sequences that include these tests. In store and generate [1], the entire
test set is stored in a read only memory (ROM) and a counter is used to apply each test
pattern sequentially. Though high fault coverage can be obtained in short test time, the high
hardware overhead makes this approach impractical. Techniques to search LFSRs with the
best seeds and/or characteristic polynomials to cover a deterministic test set are proposed
in [11, 16, 21, 35]. These approaches require low area overhead since only LF5Rs are used,
but they can only be applied to circuits of small sizes or with regular structures because
of high computational complexity. Test set embedding by non-linear feedback shift register
(NLFSR) is proposed in [10, 34]. Due to the non-linear nature of the TPG, the area overhead
of this approach is high. The method presented in [3] converts a deterministic test set into
a linear group, which can then be implemented by a counter and an XOR array obtained by
solving linear equations. Though the number of XOR gates in the array can be minimized

with algebraic techniques, the area overhead is still high.

There is a fundamental problem associated with deterministic test set embedding.
The optimality of the TPGs designed by this approach relies heavily on the test set chosen.
Selecting the most suitable test set for a particular embedding scheme is difficult and is
seldom addressed. Most existing techniques simply use compact test sets [24, 31] (test sets
with minimal number of tests). However, the compact test sets are usually hard to embed
and the resulting TPG normally requires longer test length and/or more hardware than
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necessary.

In spite of all the BIST TPG design techniques, there is still a lack of a practical
solution which, at reasonable hardware overhead, can achieve 100% stuck-at fault coverage
in reasonable test time. In this paper, a new TPG design technique for stuck-at testing is
introduced. Unlike pseudo-exhaustive testing which only merges inputs that do not belong
to the same cone into a test signal, our technique explores the logic and determines more
compatible inputs that can be merged into test signals, even if the inputs belong to the same
cone. TPGs designed by the proposed technique guarantee the detection of all detectable
single stuck-at faults in the circuit. The proposed TPG designs are LFSRs with primitive
feedback polynomials. No segmentation cells are added to the circuit, thereby, keeping the
hardware overhead very low. Experimental results show that TPGs that guarantee 100%
stuck-at fault coverage in reasonable test length are obtained with the proposed technique.
Most importantly, our technique performs well on data path circuits, control circuits, and
even circuits that are random-pattern resistant. These circuits have very different charac-
teristics and differ significantly in their test requirements.

Experimental results reported in this paper are obtained by using an ATPG and a
fault simulator (FSIM) to verify compatibility of each pair of inputs. A greedy strategy is
used to merge compatible inputs. In practice, compatibility relations of many inputs can be
identified with efficient algorithms based on structural information, testability analysis, and
fast redundancy identification algorithms. These techniques can be used as filters to verify
most input compatibility before resorting to the computationally intensive ATPG/FSIM
approach. Some simple filters are described in this paper.

2 General Model of BIST TPGs

A general model of BIST TPGs is shown in Figure 1. The feedback network can be
linear or non-linear. A linear feedback network consists of only XOR gates. In general, a
TPG with a linear feedback network requires minimal area overhead, but long test time for
random-pattern resistant circuits. On the other hand, a TPG with a non-linear feedback
requires high area overhead, but may achieve high fault coverage with a short test sequence.

The interconnect network H is a set of logic functions that map the m TPG outputs
to the n CUT inputs in the test mode. An interconnect network H is said to be passive if
H consists of direct connections only. (A connection via an inverter is considered passive
because a TPG flip-flop has both inverted and non-inverted outputs.) The test signals in
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Figure 1: BIST TPG model

verification testing [17] are examples of passive interconnect networks. An interconnect
network H is active if H realizes some Boolean functions. Examples of active networks are
the XOR arrays in linear sums [2] and the weight circuits in weighted random testing [19,

20, 38).

An active interconnect network normally requires high area overhead, but can achieve
high fault coverage with a short test sequence. A passive interconnect network is preferred
due to its low area overhead. However, existing techniques based on passive interconnection
networks normally require long test time for acceptable fault coverage. In the following, we
will show that 100% fault coverage can be achieved in reasonable test time by using passive

connections.

We will use c¢17, the simplest ISCAS85 benchmark circuit [7], to illustrate the pro-
posed approach. In all the TPG designs that follow, LFSRs with primitive feedback polyno-
mial are used to generate maximal length sequences (or M-sequences). If the all zero pattern
is required, then a complete LFSR (also called a de Bruijn counter [4]) can be used. A de
Bruijn counter coverts a M-sequence generated by an LFSR (of test length 2™ — 1) to a de
Bruijn sequence of length 2™ by inserting the all zero pattern between the pattern 00--- 01
and pattern 10--- 00.

Example 1 The circuit c17, shown in Figure 2, has 5 inputs and 2 outputs. The largest
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for c17 [3].
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Figure 5: 3-Weight Pseudo-Random TPG for c17

cone size is 4. The dependence matriz for ci7 is shown in Figure 3 (a). Application of
verification testing [17] leads to 4 test signals {x1,x5}, {22}, {23}, and {z4}. The TPG
design is shown in Figure 3 (b). The pseudo-ezhaustive test length for this TPG design is
91, Since c17 is a maximal test concurrent [17] circuit, this test length is also the lower
bound for any pseudo-exhaustive approach. With deterministic test set embedding, the test
length can be further reduced. In [3], the complete test set given in Figure 4 (a) is used to
synthesize a TPG design that uses XOR gates, shown in Figure 4 (b). The test length for
this design is 2> = 8. The same test set is used in [20] to calculate weights for a weighted
random TPG. The resulting circuit is shown in Figure 5. For this small circuit, the weighted
network is actually larger than the CUT. (In circuits of practical sizes, the weight circuits
are large but not larger than the CUT.)

Two complete test sets, test set-2 and test set-3 shown in Figure 6 (a) and 7 (a), are
given for c17. Compared to the test set in Figure 4 (a), the two test sets will be shown to
be “casier to generate”. In test set-2, column 1 is identical to column 4, and column 3 is
identical to column 5. This implies that the circuit can be tested with a 3-stage LFSR with
outputs {qi, g2, gz} together with the following passive connections: qi — {21, 24}, @2 = {22},
and g3 — {x3,z5}. The TPG design is shown in Figure 6 (b). The test length for this design
is 23 = 8. If inverted passive connections ave allowed, then test set-3 shown in Figure 7 (a)
can be used. In test set-3, column 2 and 3 are identical to column 4 and 5 respectively.
In addition, column I and column 2 are complements of each other. The circuit can be
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tested with a 2-stage complete LESR with oulputs {q1, ¢} together with the following passive
connections: q —+ {x1}, ¢ — {2, 24}, and g — {x3,25}. A complete LFSR is required for
this case because all 2™ patterns are included in the complete test set. The TPG design is
shown in Figure 7 (b). The test length is 2* = 4. Hence, by carefully selecting the complete
test set, a TPG with lower hardware overhead and shorter test length than all the previously
known schemes can be constructed for c17, using only passive connections.

3 Proposed TPG Design Technique

A complete test set, suitable for TPG designs based on passive interconnection networks,
has many identical columns and/or columns which are complemented. Two approaches are
proposed to derive such complete test sets which are easier to generate by TPGs. The first
approach uses repeated ATPG/FSIM to ensure that no redundancy is introduced if two
columns in a complete test set are made identical or complemented. Various techniques
can be used to determine compatibility relations of many inputs before resorting to the
computationally intensive ATPG/FSIM approach. The second approach uses a modified
ATPG to generate complete test sets suitable for TPG designs. This paper describes the
first approach.

If the columns corresponding to inputs z; and x; are identical in a test set 1" for an
n-input circuit, then an (n— 1)-stage TPG (capable of generating an M-sequence), obtained
by connecting z; and z; to the same TPG stage, can generate a test sequence that includes
every test in T'. If T' is a complete test set, then the TPG can generate a test sequence that
guarantees 100% fault coverage in half the test length compared to an n-stage TPG. Input
connected to the same TPG stage are physically shorted in the test mode. If there exists
a complete test set 7' with identical columns corresponding to the two inputs z; and z;,
then all detectable faults in the original circuit should remain detectable in the the circuit
obtained by shorting inputs z; and z; together. An important observation follows.

Observation 1 If two circuit inputs can be shorted together without introducing redundancy
into the circuit, then the two inputs can be merged into a test signal [17] and connected to
the same TPG stage.

Definition 1 Two inputs x; and x; that can be shorted together without introducing any
redundant stuck-at fault are said to be compatible.



Note that compatible inputs defined here may belong to the same cone. Hence, the definition
of compatibility is more general than the one used in pseudo-exhaustive testing [2, 17, 29,
30, 36]. Sometimes x; and z; cannot be connected to the same TPG output yx. However,
while x; is connected to yi, #; can be connected to ¥, without any loss of fault coverage.
Such connections are called inverted connections and considered passive because both y;
and g; are available for all TPG stages.

Definition 2 Two inpuls that can be shortered via an inverter without introducing any
redundant single stuck-at fault are said to be inversely compatible.

Compatibility of two inputs x; and z; (with or without an inverter) can be checked
by actually shorting z; and z; and use various techniques to check if any redundancy is
introduced. If all detectable faults in the original circuit remain detectable in the new
circuit after merging x; and x;, then 2; and z; are compatible and can be combined into
a test signal. The proposed technique is called input reduction. Starting with completely
separate inputs, the compatibilities of each pair of inputs are checked in topological order.
Compatible inputs are merged into test signals (hence reducing the number of inputs) until
no more compatible inputs exist.

One simple approach to determine whether inputs z; and @; are compatible is to use
ATPG/FSIM to check if any redundancy is introduced in the circuit after merging z; and ;.
However, direct application of ATPG/FSIM to determine compatible inputs by generating
a test for every detectable fault in the original circuit is expensive. Various techniques can
be used to reduce the computational effort required to determine compatibility of circuit
inputs. For example, a modified version of the complete test set for the original circuit can
be used to perform fault simulation on the modified circuit. Since only one pair of inputs are
merged in each pass, most faults in the circuit can still be detected by the modified test set.
ATPG needs to be performed only on a small subset of faults in each pass. Modern ATPG
algorithms use improved implication procedures [9, 12, 13, 14, 26, 25] and can identify circuit
redundancies in very short time. These techniques can be used to reduce computation time
of ATPG.

2 _ n possible pairwise connections. In the

For an n-input circuit, there are 2(’;) =N
worst case, ATPG/FSIM must be used for each pair of inputs to check if they are compatible.
This approach is computationally intensive even with efficient redundancy identification
algorithms. In practice, compatibility (or incompatibility) of some inputs can be determined
in polynomial time. Such polynomial time filters can dramatically reduce ATPG effort

required for the TPG design.
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3.1 Compatibility and Incompatibility Filters

Each input reduction step can change the compatibility relations among the remaining
inputs. Hence, the procedures to identify compatibility must be repeated for all pairs of
inputs or incrementally for the inputs that may no longer be compatible. Therefore, an
efficient implementation of input reduction must use powerful filtering techniques. There
are two types of filters:

1. Compatibility filters: determine if two inputs are compatible.

2. Incompatibility filters: determine if two inputs are incompatible.

A simple filter that can be used is the compatibility filters derived from pseudo-
exhaustive testing. In verification testing [17], inputs that do not fanout to the same cones
are both compatible and inversely compatible. These compatible inputs can be found in
polynomial time by using the structural information. The passive connections derived by
techniques based on pseudo-exhaustive testing can be used to construct an initial circuit for
further input reduction. This filtering technique can significantly decrease the computation
time for circuits with small cones. However, deriving the optimal test signals in pseudo-
exhaustive testing is itself NP-complete. Also, cases can be found that starting with a
initial circuit with optimal connections calculated by verification testing often does not lead
to an optimal TPG based on passive input substitution. For example, if modified version of
the circuit c17 obtained by applying these techniques is used, a 3-stage LF'SR is required
(instead of a 2-stage LF'SR shown in Figure 7).

Another filtering technique that provide incompatibility criterion is based on the

following lemma.

Lemma 1 If primary inputs ; and x; are connected to the same gate G, whose inpul faults
are all detectable, then z; and x; are both incompatible and inversely incompatible.

Proof:

Assume that G is a 2-input AND gate. A complete test for a 2-input AND gate must
contain the three patterns: 11, 10, and 01. Since all input faults of G are detectable, the
three patterns must appear at the two inputs @; and z; in order to achieve complete fault
coverage. If the inputs z; and z; are merged, then the two patterns 10 and 01 can not

be applied to the inputs z; and x;. If x; and z; are merged via an inverter, then the
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pattern 11 can not be applied to z; and z;. In both cases, at least one stuck-at fault at the
inputs of (7 can not be detected by the TPG design. Hence, the two inputs z; and z; are
both incompatible and inversely incompatible. The same argument holds for other types of
primitive gates with arbitrary number of inputs. O

Therefore, primary inputs connected to the same gate can not be merged into a test
signals. Lemma 1 can dramatically reduce computation time for circuits which have many
inputs that are connected to the same gates. Note that circuit inputs connected to the same
gate G may still be compatible, if ¢ has redundant input faults in the original circuit.

Filters based on pseudo-exhaustive testing and Lemma 1 are derived from structural
information. These filters can identify many compatible/incompatible inputs in large cir-
cuits. More complicated filters based on fast redundancy identification algorithms that vary
in efficiency and accuracy are being designed to speedup our technique. However, the prob-
lem of redundancy identification is NP-complete. Therefore, no procedure can guarantee
the identification of all redundant faults in polynomial time. ATPG/FSIM must be applied
to identify compatible inputs if all filters fail.

3.2 Procedure for Input Reduction

The proposed input_reduction procedure is shown in Figure 8. First, a complete
test set T' for the CUT C' is generated. Aborted and redundant faults are removed from the
fault list and not considered further. No attempt is made to distinguish between aborted and
redundant faults during the ATPG phase. The procedure designs a TPG that guarantees
the detection of all detectable faults F. (Modern ATPGs [9, 12, 26, 28] can generate a test
set with 100% fault coverage with a small number of backtracks. Aborted faults can always
be eliminated by increasing the backtrack limit of the ATPGs.) Next, two candidate Pls z;
and z; are selected. Various filters are applied to determine compatibility /incompatibility
of z; and z;. If the filtering is not successful, ATPG/FSIM must be performed to determine
the compatibility of the inputs. Assume that the connection is #; — z;. Let C' be the
circuit corresponding to C' with inputs z; and z; shorted. Note that C' has one less input
than C'. Let 7" be the reduced test set obtained by removing the column corresponding to
the input z;. Fault simulation is then performed for the circuit C” using the test set 7".
Since only z; and z; are merged, most detectable faults in C remains detectable in C’ by
the tests in the reduced test set T". Let F’ be the remaining faults in C' that can not be
detected by any test in 7'. The ATPG program is then used to generate new tests for the
faults in F”. If any fault f € F" in the circuit C' is aborted or proven redundant, inputs z;
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INPUT_REDUCTION( C)
# C': input circuit
F + {list of testable faults in C}
T + {complete test for F}
for every input a;
free(z;) + true
for each pair of CUT inputs (2;,2;) where ¢ < 7 and free(x;) is true
compatible(x;,x;) + false
C" 4+ Clz; + x;) # short the two inputs
if FILTER(x;, ;) is not successful then
T" + T with j column removed
if REDUNDANCY _CHECKING(C', T", F) is false then
compatible(x;, x;) + true
else
C’« C(z; < T;) # short the two inputs via an interter
if REDUNDANCY _CHECKING (C', T", F') is false then
compatible(x;, xj) + true
if compatible(z;, ;) is true then
C ('
T+T
free(z;) + false
end

Figure 8: Pseudo-code for input reduction based on repeated ATPG/FSIM

REDUNDANCY_CHECKING(C, T, F)
F'" « FAULT SIMULATE(C, T)
T' + ATPG(C, F-I)
T+« TUT
if Vf € F — F' is testable return false
else return true
end

Figure 9: Redundancy Checking by ATPG/I'SIM
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and z; are incompatible. Consequently, the connection z; — x; is not valid. A new pair of
Pls is selected and the program continues with the original test set 7. On the other hand, if
all faults are detected, the circuit is updated by shorting z; and x; and the original test set
1" is replaced by the new test set 7. In the procedure, inputs are checked for compatibility
in topological order. Compatible inputs are merged greedily. This may affect optimality of
the resulting TPGs. But from the experimental results as will be shown in Section 4, this
greedy strategy works well for most of the benchmark circuits.

There are several features that reduce the run time of this approach. In early itera-
tions, there exist many inputs that can be merged without introducing redundancy. Hence,
the effort to find a pair of compatible inputs is low. At this stage, less time is spent on
ATPG, which is computationally expensive because there are many inputs. As more inputs
are combined, it becomes more difficult to find compatible inputs. However, since many in-
puts are already combined into test signals at this stage, ATPG becomes easier because the
circuit has fewer inputs and a smaller space is searched. Typically, the number of faults in
F" is relatively small. ATPG only needs to be performed on a small fraction of the faults in
each pass. Also, the objective is to design a TPG with 100% fault coverage for all detectable
faults. If any fault is proven redundant (or aborted), then the two inputs are incompatible.
A new iteration is started with a new pair of inputs. Heuristic techniques to identify the
faults that are likely to become redundant by merging two inputs are being developed. The
ATPG can first target at these faults. If z; and 2; are indeed incompatible, then the ATPG

can be terminated in early stage

4 Experimental Results

Procedure 1 was implemented and applied to a large number of benchmark circuits. The
program is implemented inside SIS [27], the Berkeley synthesis and optimization tool. We
also adopt the ATPG program inside SIS as our basic ATPG tool. The ATPG program (28]
inside SIS is an efficient implementation of [15], a method based on the Boolean differences.

The program was used to design TPG for all ISCAS85 [7] and smaller ISCAS89 [6]
benchmark circuits. The experimental results are shown in Table 1 and 2. Column 1 gives
the circuit name. Column 2 and 3 are the number of Pls and POs respectively. Column
4 gives the largest cone size k. Note that the minimal test length for pseudo-exhaustive
exhaustive is greater than or equal to 2¥. Column 5 gives the number of TPG stages to
achieve 100% fault coverage with input reduction. Column 6 gives the number of inverted
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Table 1: Experimental Results for ISCAS85 Benchmark Circuits

No. of | No. of | Largest No. of No. of
Ckt inputs | outputs | cone size || TPG stages | inverters
cLy ] 2 4 2 1
c432 36 7 36 12 1
c499 41 32 41 9 0
c880 60 26 45 13 7
cl355 41 32 41 11 0
c1908 33 25 33 13 1
c2670 233 140 122 22 7
3540 50 22 50 17 1
c5315 || 178 123 67 13 18
c6288 32 31 32 6 7
c7552 || 207 108 194 28 23

connections (i.e. connections to @ of D flip-flops). For example, c7552 has 207 inputs, 103
outputs, and the largest cone size 194. Note that the lower bound on the number of TPG
stages for any pseudo-exhaustive approach is 194. However, with the proposed technique,
the number of TPG stages is 28 with 23 inverted connections. Hence, the proposed TPG
design guarantees the detection of all detectable single stuck-at faults with a test sequence

that has 228 or fewer tests.

Most ISCASS85 benchmark circuits are data path circuits, while most ISCAS89 bench-
mark circuits are control circuits. These two kinds of circuits have very different character-
istics, but our program performs equally well on both sets of benchmark circuits. Among
the ISCASS5 circuits, the two circuit c2670 and c¢7552 are known to be random-pattern
resistant. Table 1 shows great improvement on the number of TPG stages for both circuits.
For c2670, a 22-stage LI'SR TPG is designed by our approach, though the largest cone size
is 122. Note that our technique shows great improvements on circuits with large cone size.

We also applied our procedure on selected MCNC logic synthesis benchmark circuits.
The circuits are synthesized in SIS with two scripts: one is the standard script rugged; the
other is a script based on the fast extraction algorithm fx [22, 23]. It is observed that these
synthesized circuits are random-pattern resistant compared to manually-designed circuits 8].
The results are shown in Table 3 and 4. Except for the circuit rckl, the proposed procedure

obtains improvements on these random-pattern resistant circuits as well.
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Table 2: Experimental Results for ISCAS89 Benchmark Circuits

No. of | No. of | Largest No. of No. of

Ckt inputs | outputs | cone size | TPG stages | inverters
827 7 4 6 3 2
$208 19 10 18 11 f
s298 17 20 8 7 1
s344 24 26 13 7 3
$349 24 26 13 7 3
$382 24 2 14 7 |
$386 13 13 12 11 1
s400 24 27 14 7 2
8420 35 18 34 19 1
sd44 24 27 14 8 2
s510 25 13 20 8 0
526 24 27 14 13 0
s526n 24 27 14 13 0
s641 54 42 27 15 3
sT13 54 42 27 15 3
820 23 24 21 13 0
s832 23 24 21 13 0
s838 67 34 66 35 1
s953 45 52 18 16 0
51196 32 32 23 15 4
51238 32 32 23 15 4
51423 91 79 59 13 7
$1488 14 25 14 12 0
$1494 14 25 14 12 0
$5378 199 213 60 16 10
s9234 247 250 83 30 15
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Table 3: Experimental Results for Circuits Synthesized with Script £x

No. of | No. of | Largest No. of No. of
Ckt || inputs | outputs | cone size || TPG stages | inverters
b4 33 23 17 14 4
b10 15 11 15 13 2
chkn 29 7 26 22 |
gary 15 11 15 13 0
in2 19 10 19 13 i
ind 32 20 31 19 2
nd 24 14 21 14 1
in6 33 23 17 14 4
in7 26 10 21 17 0
misg 506 23 15 14 0
rckl 32 7 32 32 0
vg2 25 8 25 17 2
xldn 27 6 27 15 bl

Table 4: Experimental Results for Circuits Synthesized with Script rugged

No. of | No. of | Largest No. of No. of
Ckt || inputs | outputs | cone size | TPG stages | inverters
b4 33 23 17 15 0
b10 15 Ifi} 15 13 0
chkn 29 7 26 20 2
gary 15 11 15 13 0
in2 19 10 19 13 1
ind 32 20 31 12 7
ind 24 14 21 13 2
in6 33 23 17 15 0
in7 26 10 21 14 0
misg 56 23 15 10 4
rckl 32 7 32 32 0
ve2 | 25 g % 12 5
xldn 27 6 27 14 3
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4.1 Discussion

The proposed technique combines compatible inputs into test signals in a manner similar to
verification testing. The TPGs designed by this approach have the advantage of minimal
area overhead. However, our definition of compatible inputs is more general than the one in
verification testing. In verification testing, inputs in the same cone can never be combined
into a test signal. This restriction introduces the lower bound on the test length to be 2*,
where k is the largest cone size. In practical circuits, k is normally large. Partitioning
techniques are resorted to reduce k. This introduces significant area overhead and may
deteriorate circuit performance. In our definition, two input are compatible as long as
combining them into a test signal does not make any fault in the circuit redundant. With
this relaxation, many inputs become compatible. Practical test length can be achieved by
simply combining compatible inputs.

In input reduction, we start with completely separate inputs and merge compatible
inputs until no more compatible inputs exist. This is a more natural approach. However,
the proposed technique can be applied from the other extreme. We can assume that all
inputs are compatible and then separate incompatible inputs until complete fault coverage
is achieved. This approach is called input exzpansion. For circuits which can be tested
with very few test signals, it may be more beneficial to apply input expansion than input
reduction. Consider ¢7552 in Table 1. The 207 inputs are “reduced” to 28 test signals.
However, it may be faster to “expand” a single test single to 28. This alternative approach
is under investigation.

Techniques based on Observation 1 use only passive connections, where a passive
interconnect network H is constructed between TPG outputs and CUT inputs. By using
Procedure 1, tremendous improvements in test time have already been obtained for most
benchmark circuits. If the test length is still not acceptable, then an active interconnect
network can be adopted. A new TPG design technique, referred to as input substitution,
can be developed based on the following generalization of Observation 1.

Observation 2 If a circuit input @ can be represented as a Boolean function f of the re-
maining inputs without introducing redundancy into the circuit, then x can be connected to

a Boolean network that realizes f.

The function [ is called a substituting function for the the input x. Here, we substitute

a circuit input with a Boolean function of the TPG outputs, and hence the name “input
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Figure 10: Compatibility matrix for ¢17

substitution”. Observation 1 is a special case of input substitution where the function f is
either an identify or an inversion function. Selection of suitable substituting functions are
being studied.

The compatibility relation of an n-input circuit can be specified by an n x n com-
patibility matriz. For example, the compatibility matrix for ¢17 is shown in Figure 10. The
upper triangular matrix is used to represent the compatibility relations, while the lower
triangular matrix to represent the inverse compatibility relations. The entry (¢,7) is 1 (0)
if inputs 7 and j are (inversely) compatible. A “-” in the entry (z,7) indicates that inputs 1
and j are incompatible. Various filtering techniques can be used to determine most of the
compatibility relations. The remaining entries can be determined by repeated application
of ATPG/FSIM. The bold-faced entries in Figure 10 represent compatible inputs as defined
by verification testing. More entries in the compatibility matrix imply that more inputs can
be combined into test signals.

Our current implementation is based on repeated application of ATPG/FSIM to
determine compatible inputs in topological order. The first pair of inputs found to be
compatible are merged. Though very encouraging results were obtained with this greedy
approach, we believe better solutions can be obtained in shorter time with more systematic
approaches. Deriving the optimal passive connections is closely related to the compatibility
theory which is at the heart of many applications such as logic minimization, state mini-
mization, state assignment, etc. The objective of compatibility theory is to find a minimal
number of compatibility classes. In our terminology, the objective of input reduction is to
find minimal number of test signals, each consisting of compatible inputs. However, there are
several issues that make our problem more difficult. In input reduction, each pair of inputs
may be compatible and/or inversely compatible. Compatibility theory must be modified to
consider both types of compatibility. In verification testing, the compatibility matrix M is
constructed from the input/output dependency. Two columns in M which has no conflicting
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“1” on every row are compatible and can be merged. Merging two compatible columns does
not change values in other columns. In input reduction, inputs belonging to the same cone
can still be compatible. However, merging two compatible inputs may make other com-
patible inputs incompatible. The compatibility matrix must be updated after merging two
compatible inputs. Properties of these dynamically-updated compatibility matrices must be
carefully explored to obtain more efficient TPG designs. These issues are currently under
investigation.

5 Conclusion

A new TPG design technique for testing of stuck-at faults is proposed. Unlike pseudo-
exhaustive testing which only merges inputs that do not belong to the same cone into a test
signal, our technique explores the circuit logic and determines more compatible inputs that
can be merged into test signals, even if the inputs belong to the same cone. A procedure
based on repeated ATPG/FSIM to determine compatible inputs is given. Experimental re-
sults show that TPGs with 100% fault coverage, low area overhead, and practical test
time can be constructed by only passive connections. The proposed technique can be used
to construct efficient TPGs for data path circuits, control circuits, and synthesized circuits
which are random-pattern resistant. Various speedup techniques can be used to reduce the
computational time for TPG design. Design of more efficient filters, selection of substituting
functions, and systematic approaches to obtain optimal TPGs using compatibility theory
will be reported in the future.
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