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Abstract

In multiprocessor systems, processing nodes contain a processor, some cache and
a share of the system memory, and are connected through a scalable interconnect. The sys-
tem memory partitions may be shared (shared-memory systems) or disjoint (message-
passing systems). Within each class of systems many architectural variations are possible.
Comparisons among systems are difficult because of the lack of a common hardware plat-
form to implement the different architectures.

The U.S.C. Multiprocessor Testbed is a hardware emulator for the rapid prototyp-
ing of vastly different multiprocessor systems. In the testbed the hardware of the target
machine is emulated by reprogrammable controllers implemented with Field-Programma-
ble Gate Arrays (FPGAs). The processors, memories and interconnect are off-the-shelf
and their relative speed can be modified to emulate various component technologies. Ev-
ery emulation is an actual incarnation of the target machine and therefore all software
written for the target machine can run directly on it without modification.

In this paper, we will describe the architecture of the testbed, its performance and
the prototyping methodology, and we will compare the hardware emulation approach to
simulation and prototyping.

Keywords: Field-Programmable Gate Arrays (FPGAs), message-passing multicomputers,
shared-memory multiprocessors, design verification, performance evaluation, simulation.
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1. INTRODUCTION

Multiprocessor systems are becoming common place in the computing industry. The consensus
among machine designers is to favor asynchronous MIMD (Multiple Instructions Multiple Data
streams) systems, in which processors execute their own instructions and run on different clocks.
In these systems, processing elements contain a processor, some cache and a share of the system
memory, and are connected through a scalable interconnect which facilitates machine packaging,
such as a bus or a mesh (see Fig. 1). Whereas this physical model dominates, disagreement exists
as to the interprocessor communication mechanism. There are two dominant models. One is
based on disjoint memories and message-passing and the other is based on shared-memory. In a
message-passing system, processors communicate by exchanging explicit messages through send
and receive primitives. A received message is put into a local buffer, which is accessed by the
processor when it executes a receive. In the shared-memory model, processors communicate
through load and store instructions and some form of explicit synchronization among processors

is required at times to avoid data access races [5].

FIGURE 1. Physical Organization of Most MIMD Systems
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The shared-memory model facilitates fine grain (word level) communication but requires
a large number of instructions to transmit large chunks of data, whereas the message-passing
model can transmit large amounts of data in a single message. In terms of ease of programming,
the shared-memory model has been so far the favored transition path from uniprocessors to multi-
processors. On the other hand, message-passing systems are generally perceived as more scalable

than shared-memory systems. One concern in both kinds of systems is the growing disparity
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between the processor speed and the speed of communication. In message-passing systems, mes-
sages have traditionally suffered from a large software overhead, which explains the compara-
tively large latencies of sends and receives as compared to the latencies of loads and stores in
shared-memory machines. Ways to combat these large latencies are to implement light-weight,
hardware-based message primitives and to overlap message passing with computation. In shared-
memory systems, the large latencies of loads and stores on shared data is also a problem, which is

usually solved by complex shared-memory access mechanisms.

Some researchers advocate private caches [5, 11] with hardware- or software-based con-
sistency maintenance, such as in the Stanford DASH [8] prototype. The consistency protocol, the
constraints on the ordering of memory accesses [5], the cache parameters, as well as the intercon-
nect latency and bandwidth are all factors affecting the performance and programming ease of
multiprocessors. Machines such as the DASH have been called CC-NUMA (for Cache-Coherent
Non-Uniform Memory Access) architectures to differentiate them from COMAs (Cache-Only
Memory Architectures) exemplified by the Data Diffusion Machine (or DDM) [7]. A COMA has
the same architecture as in Fig. 1 and communication is through shared variables; however, no
main memory is present and, instead, the memory in each processor node implements a huge

cache called attraction memory.

There is a trend today towards integrating the message-passing and shared-memory para-
digms in order to draw from the strengths of both. The implementation of message-passing on top
of shared-memory is straighforward but special hardware is however needed for efficient imple-
mentations. Recently [9] it was shown that shared-memory can be implemented on top of a mes-
sage-passing system. It is widely expected that future multiprocessors will be hybrid systems,
supporting both the shared-memory and message-passing paradigms. To understand which form
such an integrated system should take comparisons among systems are required. Presently, com-
parisons are difficult to make and hard to validate because of the lack of a common hardware plat-

form to implement the different models.



Because multiprocessors are complex and powerful the correctness of a design and its
expected performance are very difficult to evaluate before the machine is built. Traditionally two
approaches have been taken to verify a design: breadboard prototyping and software simulation.
A prototype is costly, takes years to build and explores a single or a few design points. Discrete-
event simulation is very flexible but very slow if the design is simulated in details and it is subject
to validity problems because the target system must be considerably abstracted in order to keep
simulation times reasonable. In some industrial projects where a detailed and faithful simulation
of a target system has been done in software, the simulation runs at the speed of a few cycles of
the target system per second of simulation. The parallelization of discrete-event simulation is an
ad-hoc procedure and usually exhibits low speedup [6]. Most simulators [4, 10] rely on the direct
execution of each target instruction on the host and, because the code (either source or binary)
must be instrumented, it is difficult to simulate efficiently the execution of interesting workloads,

other than scientific programs.

The major objective of the U.S.C. Multiprocessor Testbed is to develop a common, con-
figurable hardware platform to emulate faithfully the different models of MIMD systems with up
to eight execution processors. Emulation is orders-of-magnitude faster than simulation and there-
fore an emulator can run problems with the real data set sizes' (the ones for which the target
machine is designed). Emulation is more faithful to the target implementation than simulation and
therefore more reliable performance evaluation and design verification can be done with emula-
tion. Finally, an emulator is a real computer with its own I/O and the code running on the emula-
tor is not instrumented. As a result, the emulator “looks” exactly like the target machine to the
programmer and runs any binary including binaries from production compilers, operating sys-
tems, and software utilities.

In the following, we first introduce the hardware emulation approach for multiprocessors;

then we describe the architecture of our testbed. In Sections 4 to 6 we explain the methodology to

keep track of simulated time, to measure performance, and to program the testbed. Finally, in Sec-



tions 7 and 8 we show the expected performance of the testbed and compare the emulation

approach to simulation and prototyping.

2. THE HARDWARE EMULATION APPROACH

At the University of Southern California we have been experimenting for a year with a new
approach to the rapid prototyping of multiprocessor systems. The approach is based on hardware
emulation. Emulators have been used in the past to experiment with instruction sets. At the time
when most processors were microcoded, it was convenient to have a machine which could exe-
cute various instruction sets in order to run software developed for different machines. Moreover,
emulators were used in the development of new instruction sets in order to quickly obtain an
implementation, to verify the correctness of the instruction set and to start writing the software so
that both the machine and the software could be ready at the same time. No attempt has ever been

made to apply the emulation approach to the design and verification of multiprocessor systems.

Several technologies are currently converging, making it possible to build flexible, low
cost multiprocessor emulators in a short time. These technologies are FPGAs (Field-Programma-
ble Gate Arrays), open software and hardware standards, efficient Computer-Aided Design
(CAD) tools, and the existence of services for the rapid design and fabrication of printed-circuit

boards.

2.1. FPGAs (Field Programmable Gate Arrays)

Field-Programmable Gate Arrays (FPGAs) [12] are high-density, user configurable ASIC
devices. FPGAs are in-circuit programmable by software. They have evolved over the past 15
years from simple chips that could replace a small number of gates (300 gates in a 20-pin pack-
age) to complex arrays that can be used to implement large circuits of up to 20,000 gates in 232-
pin packages (Xilinx Inc. has announced the XC4025 with the equivalent of 25,000 gates for the
Fall of 1994.) Meanwhile maximum operating speeds have soared from 20 to over 100 MHz. The

current trend for FPGA technology is expected to continue unabated for some time to come. To



take advantage of this rapid technological improvement and to increase the lifetime of their
design, designers must engineer the rest of their board for the highest possible clock rate and take

advantage of the pin compatibility of new FPGA products to upgrade their design.

These recent advances in FPGA technology have turned hardware emulation into a more
practical design verification/analysis technique. Solutions for hardware emulation have been
made available by commercial companies in form of turnkey solutions. Turnkey solution vendors
such as Quickturn use generalized prototype boards where all programmable devices and inter-
connects are pre-placed in a fixed manner. Tightly integrated software takes care of logic map-
ping and partitioning of multiple FPGAs. Prototypes of new microprocessors such as the Intel
Pentium have been built and debugged with their actual software, using Quickturn Enterprise

Emulation Systems.

2.2. Open Standards

Open standards for instruction sets, software systems and interconnects make it possible to obtain
easily and inexpensively the key components making up a multiprocessor system. For example,
the processors in our testbed use the SPARC instruction set [2] for which we have the detailed
functional simulator from Sun Microsystems. The chip set from Newbridge implements the
Futurebus+ standard for the interconnection and relieves us from developing our own bus. In the
future, when we will port system code, we will use a standard for which we can acquire the source

code.

2.3. Efficient CAD Tools

The new generation of design automation tools allows designers to move to a higher level of
abstraction. Designers no longer need to directly deal with the gate-level design of digital circuits.
They can specify their design at the Register Transfer Level (RTL) using High-level Description
Languages (HDL) such as VHDL and Verilog. The availability of such tools allows designers to

complete more complex designs in a much shorter time frame. In particular, the programming of



FPGAs is greatly simplified. Testing and simulation tools also help designers to verify the func-
tionality of their design before it is implemented. Integrated tool sets that encapsulate all such
design automation technologies provide a fast and reliable methodology to implement and verify

a proposed design.

2.4. Services for the Rapid Design and Fabrication of Custom PC-boards:

We have been using the services of EZFAB at the Information Science Institute (ISI), which is
part of the ARPA-sponsored Systems Assembly Project. Our task was limited to providing a cor-
rect netlist. EZFAB designed the board layout and placement and produced all the specifications
needed by the board manufacturer in the form of a gerber format output. As a result, our involve-

ment in board design and fabrication was minimal.

2.5. Our Emulation Approach Using FPGAs

The U.S.C. multiprocessor testbed is built mostly from off-the-shelf components (including pro-
cessors, SRAMs, DRAMs, FIFOs, bus interface and drivers, and backplane), but the cache, mem-
ory, coherence and communication controllers are built with FPGAs. The emulation of a
particular machine model is done through the FPGAs and a part of the memory to which they are

attached.

The clock rate is 10MHz, which is about 10 times slower than the rate permitted by cur-
rent board and PLD technologies (estimated at 100MHz). This compromise on the emulation effi-
ciency results from two trade-offs. First, the design and fabrication of the PC-boards of the
emulator are greatly simplified, because the boards are at the mature end of the technology curve.
Second, the lower clock rate facilitates the configuration of the FPGAs. FPGAs are slower than
other programmable logic devices or custom circuits --especially when they are programmed with
VHDL synthesizers, which are often less than optimum but which greatly reduce the design time-
- and clocking them at low speed promotes the mapping of more complex designs. In order to

have better flexibility, to emulate complex mechanisms and to further simplify the design, each



processor clock (pclock) is emulated in several testbed clocks. (Currently one pclock is eight
clocks, but this number can be changed.) So, overall, the emulator currently runs 80 times slower
than the target system which could be built with the best current technology. This low processing
rate allows us to use a standard interconnection fabric and still be able to eliminate conflicts,

which can cause distortions in the collection of performance data (see Section 4).

3. TESTBED ARCHITECTURE

The testbed architecture has been geared towards the evaluation of multiprocessors with the gen-
eral architecture shown in Fig. 1. The interconnections of the possible targets are limited to FIFO
(First-In-First-Out) interconnections with uniform access latencies such as crossbars or busses;
however, other interconnections, such as rings, can be modeled approximately. A FIFO intercon-
nection is an interconnection such that messages sent between two nodes arrive at the destination

in the same order in which they were sent.

3.1. Hardware Organization

The testbed organization is shown in Fig. 2. It is made of nine SPARC processors (eight execution
processors and one 1/O processor) connected to a Futurebus+ backplane. The FutureBus+ is 64-
bit wide (data) and packet-switched. It supports data broadcasting and interprocessor interrupts.
The arbitration is distributed and takes between 200 and 600 nsec. The peak transfer rate is 20

Mwords/second or 80 Mbytes/second.

The number of clocks in each processor clock (pclock) is variable (it depends on the com-
plexity of the mechanisms to emulate) but is currently set at eight clocks, which gives the testbed
a peak emulation rate of 10 MIPS (i.e., eight processors at 1.25 MIPS each) of the target system or
1.25 million cycles of the target per second. An I/O processor whose configuration is identical to
the configuration of the execution processors is connected to a SUN SPARC Station II through a
SCSI interface [2]. This workstation serves as the console for the testbed and, additionally, exe-

cutes its I/O requests. The peak 1/0 bandwidth is 1.25 Mbytes per second, which is more than suf-



ficient for a 10 MIPS machine.

FIGURE 2. Overall Configuration of the Testbed
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The architecture of each processor board of the testbed is shown in Fig. 3. The nine pro-
cessors are LSI Logic L.64831 SPARC IU/FPU [2]. These single-chip processors can be clocked
at up to 25MHz and execute both integer and floating-point instructions. They have no on-chip

cache and therefore all instruction fetches and data accesses are visible on the pins of the chip.
There are three memories on each board, each controlled by a set of Xilinx FPGAs:

* MC1/RAM1: Each processor is attached to 2 Mbytes of static RAM (RAM1) controlled by two
Xilinx XC40132 (called MC1). The major function of MCI is to control the cycle-by-cycle
execution of the processor. At the beginning of each processor access, MC1 blocks the processor,

executes the sequence of steps needed to satisfy the access and unblocks the processor when the

2. Each XC4013 contains the equivalent of 13K gates. We plan to upgrade to the Xilinx XC4025 as soon as
it becomes available (this Fall). This will double the number of equivalent gates in each controller. The
XC4025 is pin-to-pin compatible with the XC4013.



access is completed. MC1 also manages RAMI1 as a cache and interacts with the second-level

memaory.
FIGURE 3. Block Diagram of the Testbed Processor Node
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« MC2/RAM2: An additional 8 Mbytes of static RAM (RAM2) controlled by three Xilinx XC4013
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called MC2 makes up the second-level memory. MC2 interfaces the processor to the rest of the

system and usually acts as a second-level cache controller.

« MC3/RAM3: System memory is emulated by 96 Mbytes of dynamic RAM (RAM3) controlled
by two Xilinx XC4013 and one Cypress CYM7232 DRAM controller (called MC3).

The internal bus is a synchronous bus with a protocol similar to Sun Microsystems MBUS
protocol [2]. Tt is a 32-bit wide packet-switched bus which transfers packets of sizes 16 to 128
bytes. Controllers MC2 and MC3 connect to the internal bus through very large, two-way FIFO
buffers, which are there to prevent deadlocks and relieve the controllers from managing the data

transfers. All on-board datapaths are 32-bit wide.



The Delay Unit (DU) is a programmable unit which emulates variable interconnection
delays. It is built with a FIFO controlled by one AMD MACH 210 chip. The FIFO (8 kbytes) con-
tains blocks and messages which are sent to the bus interface after a programmable delay depend-
ing on the target machine’s interconnect latencies and packet size. This delay is computed by the
formula:

Latency = T

.+ (# of words in packet) X T
start %

ord

The FutureBus+ interface is made of off-the-shelf chip sets from Newbridge and National
Semiconductors. It includes bus transceivers, plus the Newbridge LIFE chip and distributed arbi-
ter chip. The processing speed of the testbed is very low relative to the bandwidth available on the
FutureBus+ and the effect of conflicts is negligible. We have run simulations of the testbed con-
figured as a CC-NUMA architecture using the SPLASH benchmarks® with extremely small data
set sizes (and therefore a high communication-to-computation ratio) and the bus utilization is
lower than 10% even under the worst-case hypotheses. Therefore the testbed will yield accurate
performance readings for situations where the network has infinite bandwidth. Interconnection
traffic between any pair of processors can be measured in order to observe whether a particular
switch in the target system’s interconnect could be a hot spot. Note that the contention for the

caches, the internal bus and the memory inside each processor node is modeled in full detail.

3.2. Emulation of CC-NUMAs with Central Directory Protocol

The first emulator that we have developed is a system with hardware-enforced cache-coherence
under strong or weak ordering of memory accesses [5]. The protocol is directory-based and each
memory block has a home node where a directory records the presence and state of copies in
every cache [8, 11]. The memory and the cache directories have pending states so that transac-
tions for different blocks can be executed concurrently. In this emulator, MC1/RAMI is a first-

level write-through cache (containing both data and instructions), MC2/RAM2 is a second-level

3. The SPLASH benchmarks are scientific benchmarks commonly used to compare the effectiveness of
architectural features of multiprocessors [3]



write-back cache and MC3/RAM3 is the main memory.

Non-blocking loads are supported in the second-level cache. These non-blocking loads are
issued by the compiler to direct the second-level cache to prefetch cache blocks before the data is
needed. A virtually unlimited number of prefetches can be pending at any time in the second-level
cache. When a store is issued by the processor the store is always propagated to the second-level
cache. If the store misses in the first-level cache no block is allocated (no allocation on store
misses). Under strong ordering of memory accesses (enforcing sequential consistency), the first-
level cache and the processor block on a write access that misses or that requires coherence activ-
ity in the second-level cache. Under weak ordering of memory accesses there can be a write
buffer between the first- and second-level caches (first-level write buffer) and between the sec-
ond-level cache and the internal bus (second-level write buffer). The second-level write buffer
can be assisted by a write cache (WC), which is a small cache keeping track of partially modified
blocks [3]. The first protocol is a pure write invalidate protocol but we intend to implement write-
update and competitive-update protocols as well as hardware-based prefetching, described in [3].

FIGURE 4. The Processor and its First-Level Cache
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The emulation of each pclock is implemented by a combination of control in the FPGAs



and buffer space in the RAMs attached to them. This buffer space is used to emulate special mem-

ories, such as cache directories, TLB (Translation Lookaside Buffer), which is part of the hard-

ware for virtual-memory support [2], or special buffers such as write buffers between the first-

and the second-level caches and between the second-level cache and the internal bus. Additional

memory space (called count memory) is reserved for event counters (see Section 5).

The SRAM implementing the first-level cache (FLC) is divided into five parts (see Fig.

4): the data memory (up to | Mbyte), the cache directory, the Translation Lookaside Buffer

(TLB), the space for the emulation of prefetch and write buffers, and the space dedicated to the

collection of performance statistics. The controller is partitioned across two FPGAs: one for the

control unit and the other for the data unit. Currently the first-level cache is write-through and

direct-mapped with a block size of 16 bytes.

T3
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FIGURE 5. Partial Flowchart and its VHDL Code for a Write Cycle in the First-level Cache

@ WHEN wrt_start_st =>
CASE (Time) IS

WHEN T2 =>

- Write Performance Cntr. back prep_tag_org(n_sclect_addr, n_fle_section, n_load_a_c_reg):
- Generate Tag Mcmory Address prep_r_w(WRITE,WORD,n_flc_mem_access, n_read_out, n_a_c_oe. n_size_out);
v WHEN T3 =>
prep_r_w(READ,WORD, n_flc_mem_access, n_read_oul, n_a_c_oc, n_size_out);
- Read Tag Memory IF (is_hit_org = HI) THEN
- Compare Tags n_hit <= HI; -- Normal write HIT!!
- Generate org. Address ELSE
n_state <= wrt_start_miss_vld; -- Normal write MISS!!
n_miss_req <= HI;
n_hit <= LOW:
END IF;

prep_org_addr(n_select_addr, n_fic_section, n_load_a_c_reg):
WHEN T4 =>
|[:’ass address o SLCC1 n_n_c_oe <= LOW;
n_a_cpfs_en <= HI; -- Pass Address to SLCC
WHEN T5 =>
NULL:
WHEN T6 =>

load_perf_addr <= HI;
Load Perf. Ctr Addr \VHEQIT‘? ;> ’

n_state <= wrt_start_a_vId;
WHEN others =>

NULL;
END CASE:

A typical data read cycle in the first-level cache consists of receiving an address from the

processor, translating the address in the TLB space, accessing the cache directory space, fetching
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the data from the cache data space, fetching the counter in count memory for that event, updating
the counter and returning the data to the processor (all this is done in eight cycles). Fig. S5shows a
partial flowchart for a write access in the first-level cache and its VHDL implementation. (This
sequence has no TLB access.) This sequence emulates one pclock in the processor write cycle. As
can be seen, the updates of event counters in count memory are implemented within the control
sequence and are pipelined. TO and T1 are missing in the flowchart because they are common to

all accesses.

The second-level cache (SLC) is implemented by MC2/RAM?2. The current configuration
is a two-way set-associative write-back cache and a block size of 16 bytes (see Fig. 6). Half of the
memory (up to 4 Mbytes) is for the second-level cache data memory. The other half is dedicated
to the cache directory, various buffers (second-level write buffer and write cache) and count
memory. The second-level cache controller is by far the most complex controller of the machine.
It is implemented by three FPGAs: the data unit is the datapath for the controller, the control unit
implements the basic cache control mechanisms and the consistency unit contains the control for

the mechanisms enforcing access ordering and for the write buffers and prefetching hardware [3].

FIGURE 6. The Second-Level Cache Architecture.
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The main memory is implemented in MC3/RAM3. 64 Mbytes are devoted to the data
memory (1 Mbyte for private data and 63 Mbytes for shared data and code), 16 Mbytes to the
directory (one 32-bit word per 16-byte block), 8 Mbytes for performance counters and 8 Mbytes
to support the emulation of various hardware mechanisms, including the virtual interleaving of

on-board memory (Fig. 7).

FIGURE 7. The Main Memory and its Controllers
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If current trends continue and the speed gap between processor and DRAM speeds keeps
widening, the conflicts at the memory modules will be so high that some form of on-board mem-
ory interleaving will be required (by interleaving we mean that several independent memory
banks with their own controller can process memory requests concurrently). In the testbed, this
interleaving effect can be obtained by multiplexing in time the memory controller. Virtual inter-
leaving of memory relies on the fact that a large number of cycles are available in the emulator to
emulate memory transactions and is supported by a set of eight interleaving registers (for up to
eight interleaved banks) and some buffer space in memory. Each interleaving register contains a
counter which is decremented at every pclock. When the register content is null the memory bank

is free; otherwise the register content indicates the number of pclocks until the bank is released. A

th



request to a busy bank is simply rejected by the controller.

A typical memory transaction has three phases: prelude, suspension and completion. Dur-
ing the prelude the packet is received and decoded and the directory is accessed to find the state of
the block. To suspend the request, a transaction completion record containing all the information
needed to resume and complete the request is stored in a memory location corresponding to the
memory bank and the interleaving register is filled with a value in pclocks corresponding to the
suspension time. While the request is suspended, a different (free) virtual memory bank can be
accessed. When the interleaving register reaches zero, the memory controller is interrupted; it
then fetches the transaction completion record in memory and completes the transaction by (pos-
sibly) sending some messages (completion phase). Virtual memory interleaving is further illus-

trated in Section 4.

Many parameters can be changed easily in the systems above, within limits. All cache and
TLB parameters can be changed. Latencies and bandwidths of various components can be
changed. We can explore latency tolerance techniques such as non-blocking second level cache
with write buffers and write caches as well as data prefetching hardware. We can experiment with
various directory structures [11]. We can change the protocols (write-invalidate, write-update,
competitive-update), or we can implement multiple protocols and apply different protocols on a

per-page basis.

3.3. FPGA Statistics

Table 1 gives the current statistics on the FPGAs (These statistics are for strong ordering
of memory accesses with no latency tolerance hardware except for prefetch support in the second-
level cache.) CLBs or Configuration Logic Blocks [12] are the logic building blocks in the Xilinx
X(C4013 FPGAs. Each block contains hardware to implement random logic. A CLB is packed
when all of its logic is used and it is simply occupied when any of its logic is used. The number of
block (CLB) levels is indicative of the delay through the chip. The delay through one CLB is vari-

able. Finally, the total number of pins in the XC4013 is 232. As can be seen, the CLB utilization

16



and the delays of a few FPGAs are dangerously close to their maximum.

Table I: FPGA Statistics

" - o L Occupied Packed Block #0of10
s Dlles FEGATme CLBs (%) | CLBs (%) | Levels | pins used
Control Unit 82 65 16 107
MC1
Data Unit 51 44 6 173
Control Unit 71 58 15 118
MC2 Consistency Unit || not used notused | notused | not used
Data Unit 64 56 11 171
Controllerl 88 78 9 124
MC3
Controller2 64 54 8 81

There are two ways to improve on this situation. The first one is to replace the Xilinx
XC4013 with Xilinx XC4025 as soon as they become available. This will double the capacity of
each FPGA. Higher capacity implies that more complex or faster designs can be mapped. The
second way is to upgrade the CAD tools to obtain more optimized mappings. Our current tools

are far from optimum for compiling and mapping VHDL designs.

3.4. Emulation of Other Architectures

Given its generic board architecture, the testbed is capable of emulating in full detail very
complex target multiprocessors with vastly different architectures, provided they fit the generic

block diagram of Fig.l. Examples are:

* CC-NUMAs with Linked-List Directories: Instead of a centralized directory located at the
home memory, the directory is distributed by linking caches containing a copy of the block through
a set of hardware pointers in each cache entry. This organization is adopted in the Scalable
Coherent Interface (SCI) standard [11].

» COMAs (Cache-Only Memory Architectures): This is the architecture of machines such as DDM
[7]. In this case there is no system memory and MC3/RAM3 acts as a huge cache (also called

attraction memory) and the DRAM directory is replaced by the attraction memory state. In this



configuration, MC1/RAM1 and/or MC2/RAM2 may be configured as caches.

* MPS (Message-Passing Systems): In this configuration MC3/RAM3 acts as the local (private)
memory of the processor, MC2/RAM?2 acts as a Message Passing Controller (MPC), and MC1/
RAMI acts as the processor cache. The functions of the MPC are to buffer messages sent or
received by the processor, to format out-going packets according to the protocol in the target, to
decode the messages received, and to interrupt the processor when messages are received. This
message-passing architecture can also include hardware primitives to support virtual shared
memory efficiently [9].

» Mixed Shared-memory and Message Passing Systems: All the shared-memory organizations

can be augmented with a message-passing facility for bulk transfers of data among processors.

4. KEEPING TRACK OF TIME: TIME SCALING

Since the speeds of the emulator and the testbed are different, timings measured on the emulator
must be related to the timings in the target machine. Rather than keeping track of simulated time
through event-driven mechanisms and timestamping (as is done in software simulators [6]), time
is scaled. Time scaling preserves the relative timing of components in the emulator and in the tar-
get, and absolute times in the target are derived from executions on the host by simple scaling
arguments. For example, it is intuitively obvious that the processor utilization in a system with
processors running at 100 MHz and with average memory latencies of 100 nanoseconds is equal
to the processor utilization in a system with the same architecture but with processors running at 1
MHz and with average memory latencies of 10 microseconds. All performance metrics can be
scaled this way, and therefore we do not have to build the system with the most up-to-date and
fastest technology provided we scale memory, interconnection and processor speeds appropri-

ately.

Any component is characterized by two fundamental performance measures: latency and
bandwidth. These two measures can be independent. For example, two networks can have the

same latency but one may have more bandwidth because it has more links; similarly, the band-
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width of a memory can be increased (while its latency remains the same) by interleaving it.
Another important factor is the width of the data paths. In the testbed, all data paths on board are
32-bit wide and the system bus (FutureBus+) is 64-bit wide. We can emulate one cycle of a data

path with 64, 128 or even 256 bits by 2, 4, or 8 cycles of a 32-bit testbed data path.

A convenient unit for all timings is the pclock-- the clock period of the processor. If the
latencies of all components are expressed in terms of pclocks and if all component bandwidths are
expressed in terms of bytes per pclock, then systems with components of equal latencies and

bandwidths are equivalent.

In the testbed, a pelock is currently eight cycles. This gives the emulator eight cycles to
simulate all the activities occurring in one pclock in the target system. To simulate variable laten-
cies, we delay requests, To simulate variable bandwidth of a given resource, we must vary the
number of cycles that each request keeps the resource busy. For example, the latency of local
memory can be increased by delaying the requests; its bandwidth can be decreased by inserting
dummy cycles in the control sequence of the memory controller or it can be increased through

memory interleaving.

The Delay Unit (DU) simulates variable latencies in the interconnection (emulated by the
FutureBus+). We do not attempt to simulate variable interconnection bandwidths; rather, the
pclock and the interconnect speed of the testbed are such that conflicts in the interconnect are neg-
ligible. Therefore, for all practical purposes the bandwidth can be considered infinite. The accu-
racy of measurements requires that the FutureBus+ traffic is monitored so that excessive traffic

leading to significant conflicts and delays at the bus are detected.

To illustrate time scaling and virtual memory interleaving, consider the simple case where
a miss occurs in the second-level cache, the block address maps to the local on-board memory
(local miss), and the block is uncached elsewhere. In the target system, T, is the latency of the
miss and the memory is n-way interleaved so that the memory can deliver n blocks every 7,

pclock. The testbed has a monolithic memory controller, which must emulate the operations of
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the n parallel memory controllers of the target system. Therefore the memory transaction must
keep the controller busy for 7,,/n pclocks by idling the controller before suspending the miss
request (see Section 3.3). On the other hand, the total latency of the miss in the testbed must be 7,
pclocks, the same as in the target system. Let T,,, T}, T and T, be respectively the prelude time,
the idle time, the suspension time, and the completion time of the miss request in the testbed. (All

times are in pclocks.) 7), and 7. are known from the testbed implementation. To find 7; and 7 we

have the following constraints:
Tu=T,+Ti+ L+ T, and (1)
Tofn=T,+ T+, 2)

(1) enforces the same latency in the testbed and in the target whereas (2) enforces the same utili-

zation of the controllers in both systems.
Unknown 7; and T are then given by:

Ti=Ty/m-T,-T, and T =T, (n-1)n (3)

C

The target system has the timing characteristics shown in Figure 8 (left column). This
example uses reasonable parameter values. Designs using such parameters have been simulated
with the SPLASH benchmarks and work well. In this example, the memory is assumed to work in
page mode: the access time to a 64-bit word takes 100nsec and the access time to a 128-bit block
takes 140nsec in the target. Because the target pclock is 5 nsec and the testbed pclock is 800 nsec,
a 140nsec block access time in the target translates into 140/5 pclocks or 28x8 = 224 clocks in the
testbed. This is a huge number of cycles and therefore the memory controller of the testbed can
emulate very complex directory mechanisms during this time. The timing is tighter in the second
level cache because it is built with SRAMs. In the example, the second-level cache has 6 pclocks
or 48 clocks to emulate a block transfer between second- and first-level caches. As the block size

increases, the number of extra cycles available for emulation also increases.
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FIGURE 8. Simple Example Illustrating Time Scaling

Target System: Testbed Configuration:

« 200 MHz PROCESSORS: | PCLOCK = 10 NSEC « FLC INSTRUCTION FETCH: 8 CLOCKS

« INSTRUCTION FETCH: | PCLOCK « FLC DATA FETCH: 8 CLOCKS

+ LOAD: 2 PCLOCKS « 28 PCLOCKS OR 224 CLOCKS IN MEMORY PER MISS
« 100 NSEC (20 PCLOCKS) PER WORD ACCESS IN MEMORY « 6 PCLOCKS OR 48 CLOCKS AVAILABLE TO SLC

« 64-BITS DATA PATHS TO TRANSFER BLOCK TO FLC.

« 16-BYTE BLOCKS « PRELUDE TIME: 30 CLOCKS

« MEMORY AND 2-ND LEVEL CACHE ARE 64-BIT WIDE « COMPLETION TIME: 30 CLOCKS

« 6 PCLOCKS PER MISS FROM SLC TO FLC « IDLE TIME: 112 - 30 - 30 = 52 CLOCKS

« 28 PCLOCKS PER BLOCK FETCH IN MEMORY « SUSPENSION TIME: 224/2 = 112 CLOCKS

* MEMORY IS TWO-WAY INTERLEAVED
* MAX MEMORY BANDWIDTH: | BLOCK PER 14 PCLOCK

The scaling of 1/O is very natural in the testbed. The I/O bandwidth is 1.25 Mbytes per
second. This bandwidth matches the I/0 requirements of the testbed, which has a peak processing
rate of 10 MIPS. Note that when we simulate target systems with faster processors, we do not
have to adjust I/0 bandwidth because the testbed runs at 10 MIPS peak whatever the target sys-
tem speed is. So, I/O bandwidth scales automatically. The other issue is I/O latency, which must
be scaled. The service of 1/0O requests issued by the testbed must be delayed as faster target pro-

cessors are emulated. This scaling of I/0 latency should be done in software.

5. COLLECTING PERFORMANCE DATA

The primary mechanism to collect performance data involves event counters stored in a special
area of each memory called count memory. In each of the three on-board memories, a set of
counters keeping track of the occurrence of mutually exclusive events are updated every time a
transaction is completed in the controller. These events are mutually exclusive, so that only one
counter is updated at a time in each memory. Thousands of counters are present in each memory,
meaning that thousands of different events can be counted. At the end of the emulation run, the
counters are uploaded and post-processed (basically they are added together) to obtain the
required performance data. This counting mechanism can be started and stopped under software

control.



FIGURE 9. Generation of Addresses for Event Counting in the First-Level Cache’s Count Memory

Counter || Private/ Regd/ H:Iif Basic Event

Address || Shared | Write | Miss
0 0 0 0 Shared-Write-Miss
1 0 0 | Shared-Write-Hit
2 0 I 0 Shared-Read-Miss
3 0 I 1 Shared-Read-Hit
4 | 0 0 Private-Write-Miss
5 | 0 I Private-Write-Hit
6 1 | 0 Private-Read-Miss
7 1 1 I Private-Read-Hit

Fig. 9 illustrates how the addresses in count memory are generated for mutually exclusive
events in the first-level cache. In this simple example, three signals --programmed in MC1-- cor-
respond each to one property of an access in the first-level cache. One signal indicates whether
the access is to private or to shared data. The second line is the read/write signal from the proces-
sor and the third signal is high when the access hits and low when the access misses in the first-
level cache. The combination of these signals forms a three-bit address, which can be used to
address a counter in the area of RAMI allocated to count memory. In this example there are only
eight addresses, but in a practical situation up to 20 signals can be defined in each controller. For
instance one signal may also distinguish between instructions and data, and, in the case of instruc-
tions, the opcode could also be a field of the address of the performance counters. (In this case,
instruction types are histogrammed and, at the end of the program execution, we can obtain a
dynamic instruction mix of the program by summing together the counters with addresses in the

count memory having the same opcode field.)

6. PROGRAMMING THE TESTBED

In the testbed, seven FPGAs implement the controllers for the caches and the main mem-
ory. The testbed behavior is dictated by the protocols that these controllers execute. Therefore the

testbed can be programmed by mapping the controllers for the target design into the FPGAs.

Currently, the data path and the RTL description of each controller are specified in

I~
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VHDL. The netlist for each controller is then generated by synthesizing the VHDL description
using ViewLogic’s ViewSynthesis tool. The netlists are then mapped into the FPGAs using the

Xilinx mapping tools.

Design parameters such as block sizes, cache sizes, latencies and bandwidth are specified
as constants in the VHDL descriptions. Therefore the target machine parameters can easily be
changed by modifying these constants in the designs and then recompiling the VHDL codes. This
approach requires that each design is recompiled for each parametric change. An alternative
approach would be to design the controllers such that the machine parameters are stored in regis-
ters inside the FPGAs. Changing parameters would only require that the content of these registers
be changed. This approach would lead to slower and more complex designs, but would save time

in recompiling the design for parametric changes.

In order to change the functionality of the target machine, controllers that implement dif-
ferent protocols have to be mapped into the FPGAs. Using the current approach, modifications to
the functionality of each FPGA require the design and specification of the RTL description of
each controller in VHDL. In reality, however, a large number of common functions are shared by
all the possible designs for a given FPGA. Nevertheless, the task of re-programming the FPGAs is
error-prone and increases the turnaround time for emulating different machines on the testbed. In
the future, we expect that the turnaround time for this design stage will be reduced as behavioral
compilers become more widely available. A behavioral compiler is a high-level synthesis tool
which accepts an algorithmic description of a circuit to create the hardware. This algorithmic
description could be derived directly from the high-level description of each protocol. In the short
term we will develop libraries of parameterized designs for every possible configuration of each

FPGA.

7. EXPECTED PERFORMANCE OF THE TESTBED

Table 2 shows the slowdown factor (which is the processing speed ratio between the target

system and the emulator) for various uniprocessor technologies in the target systems. These slow-
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down factors can be predicted accurately in our emulation approach and they are independent of

the number of processors (from 2 to 8) since the number of processors in the testbed and in the

target is the same.

Table 2: Slowdown Factors Between Target and Testbed

Target Uniprocessor Speed

50 MIPS

100 MIPS

200 MIPS

500 MIPS

1 GIPS

Slowdown

40

80

160

400

800

Testbed Time per Second
of Target Execution

40 seconds

| minute and
20 seconds

2 minutes and
40 seconds

6 minutes and
40 seconds

13 minutes and
20 seconds

Testbed Time per Minute

40 minutes

I hour and
20 minutes

3 hours and
40 minutes

6 hours and
40 minutes

13 hours and
30 minutes

of Target Execution

Table 2 also shows the testbed time needed for different execution times of the target.
Clearly we can reasonably expect to obtain experimental points for serious workloads for systems
with processors of up to | GIPS. Some of these experiments would take months to run on a cur-
rent software simulator. Currently it is difficult to simulate more than a fraction of a second of tar-
get execution time on a software simulator. These simulations must be very simplified and
abstracted even to reach one second of target execution. On the other hand the testbed emulates
the target system in all its details. It is an actual implementation of the target and it demonstrates
the feasibility and hardware complexity of the target. The numbers in Table 2 also show that the

testbed can provide valuable information for systems built until the end of this decade.

8. COMPARISON WITH OTHER APPROACHES

The methodologies for evaluating multiprocessor systems have slowly evolved in the past. Ini-
tially, analytical models or trace-driven simulations were used. These approaches evaluate hard-
ware systems at a coarse level of detail. Recent breakthroughs in simulation methodology have

opened the possibility of efficient, detailed and flexible evaluations.

8.1. Software Simulation

Event-driven simulators need some mechanism to schedule events, which include instruction exe-




cution and memory system operations. In an execution-driven simulator such as Tango [4], or the
Wisconsin Wind Tunnel (W.W.T.) [10] each instruction is run directly on the host machine. The
processors and the components of the memory systems are simulated as processes or threads, and
each event requires a context switch. The source or the binary codes are instrumented to avoid
scheduling an event at every instruction execution. Instrumentation code is added at basic block
boundaries and at each “sensitive” data access (usually shared-data accesses). This code reduces
the frequency of context switches. By contrast, program-driven simulators such as Cache-Mire
[1] interpret each instruction in software. Cache-Mire also relies on activity scanning (rather than
an event list) for scheduling activities from processors and memory. The pay-offs are that 1) the
whole simulation runs in the same context, saving expensive context switches, and 2) instrumen-
tation of the code is not required. The performance impact of interpreting target instructions in
software depends on the complexity of the memory model. If the memory system is complex, our
experience with Cache-Mire shows that instruction interpretation represents less than 10% of the

total simulation time.

Software simulation, whether it is execution- or program-driven, is slow. A simulator such
as Tango or Cache-Mire can execute in the order of 10,000 instructions of a target multiprocessor
with a complex memory model per second on a current 50 MIPS workstation. This low perfor-

mance is due to multiple factors:

» the overhead due to event scheduling (e.g., context switching and event list management or
activity scanning);

» the code expansion due to code instrumentation to keep track of target instruction execution times
in execution-driven simulators (which was reported to be between 2 and 3 in [4]) or the overhead
of decoding and executing instructions in program-driven simulations;

« the management of timestamps associated with events;

* the collection of performance data;

» the semantic gap between hardware mechanisms and their execution on the simulator (the fact



that each basic activity which takes one cycle in the hardware of the target takes several
instructions to simulate on the host); and
* the speedup of the target multiprocessor.

To keep simulation times reasonable, the data set sizes of the workload must be drastically
reduced. Observations made on the small data set sizes must then be extrapolated to the workload
with the actual data set size, a difficult task which has never really been validated. Nonetheless,
because this is the only possible approach with current simulation technology, the research com-

munity has embraced the results from such studies.

A common drawback of all simulations is that they abstract the behavior of the target mul-
tiprocessor. Many effects are ignored or approximated, on the premise that they are negligible. In
some cases some key hardware components and physical events are totally removed from the
simulation. For example, it is not uncommon that a simulator avoids simulating the caches and the
data transfers among them. The validity of these simplifications is usually not verified and relies
on the experience and judgement of the evaluator. Overall, simulators can give a good idea of the
qualitative differences among various software or hardware mechanisms and are suitable for
exploratory investigation of the design space, but they are less reliable for evaluating a particular
design quantitatively and for verifying the design. Besides performance, design verification is a
critical issue in these complex systems; simulation and formal techniques can help but they are so
abstracted that they cannot detect all design errors. Furthermore, simulators often yield little

insight in the complexity of the actual implementation.

8.2. Parallel Software Simulation

A classical way to speed up simulation is to try to parallelize it. However, the paralleliza-
tion of discrete-event simulation is a notoriously hard problem [6, 10]. The key problem is the
reception of a message by a simulation process with a higher timestamp than the timestamp of the
message. Approaches to solving this fundamental problem are classified into conservative and

optimistic approaches. Conservative approaches synchronize processors to avoid the reception of
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messages with lower timestamps. Optimistic approaches allow the reception of such messages by
keeping track of the simulation events generated by the process and by rolling back the execution.
In the case of the simulation of multiprocessor systems, a natural decomposition consists of allo-
cating one processor of the host to one or multiple processors of the target, as was done in the
Wisconsin Wind Tunnel (W.W.T.) [10], which adopts a conservative approach to parallel simula-

tion. Added overheads of W.W.T. over sequential simulation include:

* barrier synchronization among processors every 100 (or so) cycles of the target and

» the processing of messages and their timestamps.

8.3. Comparison Between the Testbed and Software Simulation

Trying to compare the efficiency of the testbed with existing simulators is a hazardous task at
best. However, we have used two state-of-the-art software simulators, Cache-Mire [1] and
TangoLite (an optimized multithreaded version of Tango [4mai]) to try to quantify the relative

performance of the two approaches.

We have run Cache-Mire simulations of some SPLASH benchmarks on a Sun Sparc Sta-
tion 10 Model 30 with 128 Mbytes of main memory and no off-chip cache. This machine is rated
at about 40 SPEC MIPS (36 MHz CPU). The benchmarks we have run are: MP3D with 10K mol-
ecules, for 10 iterations, Water with 64 molecules, and Cholesky with matrix besstk14. In each
case we have simulated an 8-processor system with a complex memory system. The network in
the simulation has constant latency and infinite bandwidth; the memory accesses are weakly
ordered [5] and there are write buffers with multiple outstanding requests in both the first-level
and the second-level caches [3]. The simulation rate of Cache-Mire is the number of cycles of the

target system simulated per second. These numbers are shown in Table 3.

We have also experimented with TangoLite and the results were quite similar to the ones
obtained using Cache-Mire. The TangoLite simulations were executed on a SGI Indigo worksta-

tion which is about twice as fast as the SparcStation 10 used for the Cache-Mire simulations (75



MHz MIPS 4400, | MByte secondary cache). Moreover, the memory model used in these simula-
tions was considerably simpler than the one used in the Cache-Mire simulations. These simplifi-
cations included no simulation of instruction fetches, no simulation of the memory/directory
modules or the local busses, strong (instead of weak) ordering of memory accesses (which practi-
cally means no write buffers), and very little gathering of performance data. The simulation rate
figures for TangoLite and MP3D were 7877 cyc/sec for eight processors, 3495 cyc/sec for sixteen
processors and 1186 cyc/sec for thirty two processors. That makes it about a factor of two faster
than the numbers for Cache-Mire in Tables 3 and 4, on a machine twice as fast.

Table 3: Comparison Between the Testbed and Software Simulation

Benchmark Number of Simulation Rate Simulation Rate Speedup

(Number of References (Cache-Mire) (Testbed) (Testbed/Cache-

Processors) (Inst + Data) (cycles/sec) (cycles/sec) Mire)
MP3D (8) 18.5M 3,786 1.25M 330
Water (8) 136.5M 3,960 1.25M 315
Cholesky (8) 79.5M 3426 1.25M 365

Of course all these simulations are much more abstracted and simplified than the emula-
tion (for instance, in the simulation, data movements are not simulated.) The level of implementa-
tion details in the testbed is actually closer to a cycle-by-cycle, register-transfer level simulation.
In practical cases, such simulations run at the rate of a few cycles per second and the speed up of

the testbed over these detailed simulators is around one million.

8.4. Prototypes

Multiprocessor testbeds were developed for research purposes in the 70’s. However, at that time,
the goal was to experiment with parallel software and the hardware was not configurable. There-

fore, the experimental evidence obtained with them was valid only for the particular hardware.

Breadboard prototypes are also extensively used in industry to validate a new architecture
and in academic research projects to explore architectures not pursued by industry. One basic

problem with breadboard prototypes is their cost and the relatively low amount of research infor-
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mation they provide besides proving one point. For example, recently, one such prototype, the
Stanford DASH [8] was built to demonstrate the feasibility of cluster-oriented, directory-based
CC-NUMAs. DASH was one of the rare successful academic building projects and it succeeded
by making many compromises in order to use existing hardware as much as possible. Besides
forming students and keeping some sanity checks on the simulation experiments, little was

learned by actually building the prototype.

8.5. The Hardware Emulation Approach

The approach advocated in this project and demonstrated by the testbed is intermediate between
software simulation and prototyping. It does not replace these approaches but it complements
them. Emulation is faster, more reliable and more faithful to the target system than software sim-
ulation. An emulator is a possible hardware implementation of the architecture. It is a fully func-
tional machine on which any workload of the target machine can run. An emulator is also more
flexible and easier to build than a prototype and, in terms of research, we can expect to learn more

from building an emulator.

The limitations of the current emulator are the small number of processors and the rela-
tively low pclock rate. We were somewhat conservative in our design because of our limited
experience with FPGAs and with FPGA CAD tools. With current CAD tools and FPGA technol-
ogies the clock rate could easily be raised to 20MHz, and it is obvious from past trends that this
clock rate will increase rapidly every year. Moreover the number of clocks in each pclock could
also be cut in half if we used a processor with an on-chip instruction cache so that we do not have
to emulate instruction fetches. Such an emulator would emulate 5 Millions cycles of the target per
second. Large speedups can be expected for bigger machines, with 128 or 256 processors. Table 4
shows the expected speed up over simulation for a 16- and a 32-processor emulator. As can be
seen from the table, the speedup over simulation is superlinear. This happens because of two main
factors: (1) as the number of processors increases, so does the number of caches, memory mod-

ules and other resources in the system that have to be checked at every global event; (2) as the size
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of the target system grows the effect of contention for global resources is higher and adds to the

overhead of both activity scanning and event-list simulation mechanisms.

Table 4: Performance of an Emulator clocked at 20MHz and with 4 clocks per pclock

Benchmark Number of Simulation Rate Simulation Rate Speedup

(Number of References (Cache-Mire) (Emulator) (Emulator/Cache-

processors) (Inst + Data) (cycles/sec) (cycles/sec) Mire)
MP3D (16) 18.5M 1,856 5M 2,694
Water (16) 136.6M 1,868 5M 2,677
Cholesky (16) 113.8M 1,635 5M 3.058
MP3D (32) 18.7M 525 M 9,524
Water (32) 136.6M 411 5M 12,165
Cholesky (32) 197M 402 SM 12,438

With respect to flexibility, emulations with the testbed is limited to machines with the
overall organization of Fig. 1. However, in the future, programmable interconnect technology
may be used to increase the flexibility of emulators. Like the crossbar switches used for years in
communication and test systems, Field Programmable Interconnect Components (FPICs) at the
chip level allow multiple input signals to be directed to multiple output pins. In the future it will
be possible to build emulators with FPGAs and FPICs; these emulators will have greater flexibil-

ity to be configured for different target systems.

9. CONCLUSION

The first goal of the U.S.C. multiprocessor testbed is to develop, demonstrate, and exploit a novel
approach for the rapid prototyping of multiprocessor systems. The approach is based on hardware
emulation. It relies on emerging technologies such as Field Programmable Gate Arrays (FPGAs)
and advanced CAD tools (e.g., VHDL and its hardware synthesizers). The second goal is to pro-
vide a vehicle for the verification of complex multiprocessor systems. The third goal is to explore
various multiprocessor models on the same, configurable hardware platform for processor speeds

up to 1 GIPS (i.e., for processors which will be available during this decade).
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To this end a processor emulator system with eight processors has been built. The proces-
sors are SPARC processors clocked at 1.25 MHz, which means that the testbed can emulate com-
plex systems in full detail at the speed of 1.25 million cycles per second for systems of up to 8
processors. The testbed can be configured into various multiprocessor systems, including CC-
NUMA (Cache-Coherent Non-Uniform Memory Access) architectures, COMAs (Cache-Only
Memory Architectures), Message-Passing Systems, and Virtual Shared Memory Systems. Among
these configurations many different hardware mechanisms can be implemented. The testbed will
be the first hardware platform on which we can compare the effectiveness of the different archi-
tectures and their variants for realistic workloads such as operating system kernels, database sys-
tems, and multitasked scientific workloads with the real data set sizes for which the target

machine is built.
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