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Abstract

A VLSI chip is made testable by modifying the functional circuitry and/or by adding
extra hardware to serve as sources (destinations) of test patterns (responses) in the
test mode of operation. On-chip hardware is needed to control the often com-
plex test activation sequences. Additional control hardware is required to establish
communication with the off-chip test support environment. With the increasing
demands on silicon area and shorter design cycles it is important to minimize the
logic and routing area of the test control hardware and to automate the controller
synthesis process. We have developed an integrated test controller synthesis sys-
tem, called CONSYST, that employs control schemes operating under a novel IEEE
1149.1 boundary scan standard compliant test control architecture. In this archi-
tecture controllers (decoders) for scannable registers are distributed while the test
controllers for data transport paths are merged together. This merged controller can
also be combined with the on-chip functional controller. Merging controllers is ac-
complished by using new and efficient FSM merging techniques that exploit certain
unique features of the test and functional controllers. Different bus schemes have
been devised to transmit control information from an Integrated Test Access Port
Controller (ITAPC) to the distributed decoders. These schemes lead to a trade-
off between the number of control lines routed and the implementation cost of the
ITAPC and distributed decoders. Algorithms have been developed to encode the
symbols transmitted on the bus with the objective of minimizing the implementa-
tion cost of the distributed decoders and/or the ITAPC. Various characteristics of a
testable design are represented in a Test Plan Description Language developed for
CONSYST. Using this description CONSYST automatically synthesizes the test con-
trol and test source (destination) hardware. CONSYST can handle a wide range of
scan and BIST methodologies that employ reconfigurable scan chains, complex data
transport paths, pipelined test application and multifunction and/or reconfigurable

test registers.
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Chapter 1

Introduction

The objective of this research is the development of an integrated system to synthe-
size on-chip hardware for controlling Design-for-Test (DFT) and /or Built-in Self-Test
(BIST) circuitry in a testable VLSI chip. Various mechanisms for controlling test
circuitry have been presented in the past, but minimizing the logic and routing area
of the control hardware and the task of efficiently controlling complex DFT/BIST

methodologies has remained an open problem.

1.1 Design for Testability and Built-in Self-Test

Designers use DFT and BIST techniques to simplify the problem of testing VLSI
chips. DFT/BIST techniques at the chip level (or at the die level in multi-chip
modules) also provide the capability of building easily maintainable and diagnosable
modules, boards, subsystems and systems. Examples of DT techniques are test
point insertion and global initialization capability [1]. However these are ad hoc
approaches and algorithmic techniques such as adding scan capability to all flip-flops
in a design (full scan) are usually preferred. DFT approaches add extra hardware
to the circuit under test (CUT) to improve its testability and require substantial
off-chip support (e.g., automatic test equipment) to provide test vectors and control
the test application process. State of the art application-specific integrated circuits
(ASICs) and instruction processor (IP) chips have over three million transistors.
The use of DFT techniques alone often leads to unacceptably large test application
time and significant test vector storage cost. Moreover, in scan based designs, test

patterns cannot be applied every clock cycle since they need to be shifted in through



a scan chain. Thus at-speed testing is not possible with scan based DI'T techniques.
This has led to the development of BIST techniques where on-chip hardware is used
to test parts/all of a chip. A common feature of BIST approaches is the addition
of on-chip test pattern generators (TPGs) and signature analyzers (SAs). Sufficient
test patterns have to be generated in the test mode to achieve a satisfactory fault
coverage. Though BIST techniques require less off-chip support, the area overhead
incurred in incorporating these techniques is in general higher than that incurred in
incorporating DFT techniques. Various parameters, such as test application time,
test generation time, area overhead, performance degradation and extra I/O pins,
are used to characterize the different DFT/BIST techniques. These techniques are
also referred to as Test Design Methodologies (TDMs).

1.2 Test Design Methodologies

There are two aspects of a TDM, the first is the structural aspect and the other is
the operational aspect. The structural aspect of a TDM is modeled by a template. A
template specifies the type of structure or kernel (e.g., combinational or sequential)
to which the TDM is applicable and the source (destination) of test (response)
vectors. A circuit is usually partitioned into kernels or sub-circuits to simplify the
testing process. To test a kernel using a TDM we need to determine how to apply
test vectors and capture the test responses. Usually on-chip hardware is either
modified or added to provide the source and destination of test vectors/responses
and transport paths are set up to apply (capture) the vectors (responses) to (from)
the kernel.

A commonly used BIST TDM is the BILBO (Built-in Logic-Block Observa-
tion) [2]. In this methodology, certain functional registers are modified into BILBO
registers. BILBO registers are linked by a scan chain. In addition, the inputs of a
kernel are driven by a BILBO register and the outputs drive another BILBO register.
A BILBO register usually has four functions, namely parallel load (normal mode of
operation), TPG (test pattern generation), SA (signature analysis) and shift (scan).
The functions performed by a BILBO register is selected by the values applied to
the control lines of the register. When the BILBO register is driven from the out-

put of a kernel it operates as a SA and compresses the responses, while the BIBLO
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register that drives a kernel operates as a PG. A BILBO register may not be needed
to operate in all four modes for testing a circuit. In this case a simpler version of
the BILBO register is used where either the SA or the PG mode is dropped.

A datapath often contains random logic blocks, as well as multiplexers and buses
that can be used a switching elements (or switches) to transport test (response)
vectors. A switch has a set of identity modes or I-modes (3], where each I-mode
is represented as a pair of input-output ports (£, P,) of the switch. Data can be
transferred unaltered from P; to P, in each I-mode by properly setting up values
on control lines of the switch. Other common circuit structures having I-modes
are registers, adders, multipliers, and ALUs. A data transfer path between the
output of a circuit structure and the input of another structure is called an identity-
transfer path or I-path [3] if data is transferred unaltered from source to destination.
Complementation of data is also allowed. To be part of an I-path intermediate circuit
structures must have I-modes. Test patterns and output responses can be transferred
to and from a kernel if I-paths exist between the kernel and its associated TPGs and
SAs. The methodology that enhances the basic BILBO TDM by employing I-paths
is called an extended BILBO or EXTBILBO [4].

Fig. 1.1(a) shows an example of kernel K being tested using the EXTBILBO
TDM. Registers R1 and R2 are functional registers which have been modified into
BILBO registers. These registers also have the hold function. The registers are con-
nected in a scan chain shown by the heavy broken line. An I-mode of the multiplexer
(Muz) is used to create an I-path from Rl to K. The kernel K along with registers
R1, R2 and the multiplexer constitute an embedding of the EXTBILBO TDM.

Definition 1.1 The set of circuit components that satisfy the requirements of a
TDM template constitute an embedding of the TDM.

1.3 Test Plans

In addition to the structural component of a TDM, there is an operational compo-

nent.
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Definition 1.2 A test plan for @ TDM embedding describes the control activation
sequence of the various components (modules) that are part of the embedding and

used to test a kernel.

In general, a test plan consists of three sections: a head, a body and a tail. The
head specifies a set of actions that need to take place (initialization) before a test
vector can be applied to a kernel. The body specifies a set of actions necessary for
applying one or more test vectors to the kernel and capturing the results. The tail
specifies closing actions.

Fig. 1.1(b) shows a test plan for the EXTBILBO TDM embedding. Since the
registers are m and n bits long the head specifies that the registers must be initialized
by performing a shift operation for m+n clock cycles. The initialization phase is
needed to place the registers in a known state. Assume that { test vectors are
needed for testing the kernel. The body specifies that register R1 (R2) should be
in the PG (SA) mode of operation and the multiplexer control line should be set at
a specific value (to set up an I-path from R1 to K) for ¢ clock cycles. Once ¢ clock
cycles (and therefore t test vectors) have been applied the tail specifies that the final
signature should be shifted out by setting R2 in the shift mode for n clock cycles.
This test plan specification is a high level description of the test application process.

Fig. 1.1(c) shows an implementation of 1 bit registers R1 and R2. The table
associated with the figure specifies the operation modes of the registers corresponding
to specific control line values. Once an implementation of the hardware is fixed, the
test plan can be written in a more specific manner. Fig. 1.2(d) shows the test plan
represented as a directed graph. SC and TC are shift and test completion signals,
respectively. The labels beside the nodes specify the values of the control signals
activated while in the corresponding state. The test plan specified in this form
is called a specific test plan and provides enough information to implement a test
controller to control the test of the kernel. In the rest of this thesis we will refer to
a test plan represented as a directed graph as simply a test plan.

Fig. 1.2(a) shows an example of a scan TDM embedding. The shift capability
has been added to the registers R1 and R2. Assume that ¢ test vectors are needed
to test kernel K. A test vector is shifted into R1 by setting it up in the shift mode of

operation for m clock cycles. Then one clock cycle is applied with register R2 in the



load mode. At the end of the clock period the results of the test vector are loaded into
R2. This response is then shifted out by setting R2 in the shift mode of operation
for n clock cycles. The processes of shift-in/shift-out are usually overlapped and
both registers need only be in the shift mode of operation for max(m,n) clock cycles.
An implementation of a 1-bit register with load, hold and shift functions is given
in Fig. 1.2(c) and a specific test plan for this embedding is shown in Fig. 1.2(d).
The labels SC and TC correspond to shift completion and test signals, respectively.
Note that for scan TDMs there is no explicit initialization, the shifting-in/out of test
vectors (results) is considered to be part of the test process and therefore included
in the body of the test plan as shown in Fig. 1.2(d).

Test plans can be single phase or multiple phase.

Definition 1.3 A single phase test plan has at most two nodes or states in its

body. If there are two states, then one must control the shift process.

Definition 1.4 A multiple phase test plan has two or more states in its body. If

there are two states then none should be involved in the shift process.

The test plans in Figs. 1.1(d) and 1.2(d) are examples of single phase tests. Note
that the (body of the) test plan in Fig. 1.1(d) has 2 states and one is involved with
the scan-in/out process. Some modules remain in the same mode of operation during
application of test vectors, whereas others switch modes. Scannable registers always

switch modes i.e., scan and/or hold and/or load.

Definition 1.5 If all modules other than scan registers controlled by a test plan
remain in the same mode during application of a test vector, then the test plan is

single valued.

Definition 1.6 If any module (other than a scan register) controlled by a test plan
changes modes during application of a test vector, then the test plan is multiple

valued.

1.4 Structural Classification of Controllers

Each TDM embedding needs an entity that controls the circuit components (i.e.,

enables certain control lines) in the test mode of operation. The test plans usually
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specify a sequence of control values that need to be asserted on control lines and
the test plans correspond directly to state transition graphs (STGs) of Finite State
Machines (FSMs). However, in certain instances a sequence of actions is not required
and only one set of control values is needed for the entire duration of a test plan.
In these cases the test controller can be purely combinational. Fig. 1.3 represents a
structural classification of controllers. This classification is applicable to both test
and functional controllers.

In Fig. 1.3, vacuous controllers correspond fo the case where hardware on a chip
is controlled directly from primary inputs. Examples of combinational controllers
are decoders. Sequential controllers can either be implemented using FSMs, Control
Memory or Register-decoder pairs. A well known example of Control Memory based
controllers are microprogrammed controllers [5]. In such controllers the control
values that need to be asserted on the control lines are usually stored in a read-
only memory (ROM) in an encoded (vertical) or unencoded (horizontal) format.
These memory locations are read out under the control of a counter (microprogram
counter) and used to control on-chip hardware. Register-decoder pairs are used in
data-stationary [6] controller designs. Data stationary controllers are widely used in
RISC processors to control instruction/data pipelines.

FSMs are classified as linear or non-linear depending on whether the next state
and output function is a linear or non-linear combination of the present states and
inputs. Linear FSMs have certain attractive properties, such as easy testability, a
simplified synthesis process and in some cases, a smaller implementation cost as
compared to non-linear FSMs. However, for a machine to be linearly realizable, its
state transition graph (STG) must possess certain properties 7, 8]. Most FSMs do
not posses these properties and hence are not linearly realizable. However circular
shift registers are examples of linear machines and can be used where the controller
for each test plan is implemented separately.

A Moore FSM is one where the outputs depend only on the present state, while
in a Mealy machine, the outputs depend on the present state as well as the inputs.

The shaded area in Fig. 1.3 refers to the controller styles that we will consider in

this thesis.
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Figure 1.3: Structural classification of controllers

1.5 The Test Control Problem

A circuit can have a large number of embeddings of TDMs of the same or different
types, each giving rise to a test plan. The nature of a TDM as well as the complexity
of the data transfer paths between source and destination influences the complexity
of the test plans. These transfer paths can be simple I-paths or other types of paths
such as S-paths, T-paths and F-paths [1]. To save test resource area, resources are
often shared between embeddings. Moreover a module that is in the I-path of one
kernel may also be in the I-path of another kernel. Since embeddings can share
data drivers, receivers and data transfer paths, the control of test plans leads to a
complex design problem.

The test controller adds area overhead and may add delays on critical control
paths in the chip. The area is contributed both by the logic gates needed to imple-
ment the test controller and also by the routing area of the control lines. A testable
chip also requires additional control hardware to establish communication with the

off-chip test support environment. This support is needed among others to shift in



(out) test data (results), to initiate the on-chip controller and to test chip to chip
interconnects on a loaded board. With the increasing demands on chip area and the
inexorable push towards high speed designs, it is important to implement the test

controller(s) with minimal area and minimal impact on chip performance.

1.6 Research Goals

The main goals and salient features of this research are as follows.

e Develop a structured test control architecture that is powerful enough to sup-

port the control requirements of various complex TDMs embedded in a circuit.

e Focus on implementing control hardware with minimal logic and routing area.
Employ existing combinational and sequential synthesis tools and where ap-
plicable develop new and innovative synthesis techniques to exploit specific

features of the test controller design problem.

o Conform to the IEEE 1149.1 boundary scan standard and support the set of

mandatory instructions.

e Incorporate all ideas in a software system that is able to automatically syn-

thesize and embed control circuitry in a testable design.

1.7 Organization of this Dissertation

In this chapter we have introduced the test control problem and outlined our research
goals. The remainder of this dissertation is organized as follows.

Chapter 2 provides the background for this research and summarizes past work
on various aspects of the test control problem. This chapter also describes the IEEE
1149.1 [9] boundary scan architecture.

Chapter 3 specifies the on-chip and off-chip partition of test control functions.
This chapter also introduces and explains our IEEE 1149.1 boundary scan standard
compliant partially distributed test control architecture. Various mechanisms for

controlling scan and BIST registers have also been presented.
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Chapter 4 presents implementational details of the local controllers associated
with scan and BIST registers as well as techniques for implementing test buses.

Chapter 5 integrates the concepts presented in Chapters 3 and 4 and describes
‘1 detail how various scan and BIST TDMS are controlled in a testable chip. Mech-
anisms for controlling these chips at the board level have been presented.

Chapter 6 focuses on the problem of implementing the test controllers for a
number of test plans corresponding to TDMs embedded in a testable chip. In this
chapter an efficient technique for merging these test controllers into one merged
controller has been presented.

Chapter 7 deals with the problem of efficiently merging a functional controller
with a merged test controller.

Chapter 8 proposes a new test control architecture and presents a technique for
merging a number of test controllers into a merged test controller where the merged
test controller has a 1-hot coded state assignment. This chapter shows that the
I-hot coded merged controller can also be incorporated in IEEE 1149.1 boundary
scan standard compliant architectures.

Chapter 9 presents a description of the test controller synthesis system CONSYST
including various subsystem modules. Examples of various circuits processed by the
controller synthesis system are also presented.

Chapter 10 concludes this dissertation with a summary and a list of future re-

search topics.
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Chapter 2

Background

2.1 Introduction

Research in designing testable chips using DFT/BIST techniques has been lopsided.
Researchers have either concentrated on devising efficient DFT/BIST techniques
without devoting much effort on efficient test control schemes, or have addressed
the test control problem for simplistic (and inefficient) DFT/BIST techniques. Our
test controller synthesis system on the other hand is geared towards efficiently (in
terms of controller logic and routing area) handling an entire spectrum of DFT/BIST
techniques. Past research on the synthesis of test controllers has been heavily biased
towards a modular and hierarchical approach. While this approach simplifies the
design problem, it ignores the global optimality of the test controller. We argue
that in an automated design environment, it is possible to move away from a fully
modular approach and design a test controller whose implementation is fine tuned

to the control requirements of each design.

2.2 Overview of the Test Control Process

A chip is the smallest component of a system. A system (e.g., a workstation) may
also be part of a larger distributed system (e.g., network of workstations). Since the
control of test hardware of a chip is initiated at higher levels of the system hierarchy

we will first present a top down view of the test control process.
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2.2.1 The Hierarchical Test Methodology

A hierarchy of test controllers is usually employed in a testable and maintainable
system. A model of such a hierarchical test system is presented in [10]. In such a
system, referred to as an Hierarchical Test and Maintainable (HTM) system, each
VLSI chip has an on-chip test and maintenance controller (CMC); each module (or
board) has a module test and maintenance controller (MMC); each subsystem has
a subsystem test and maintenance controller (SuMP); and finally each system has a
system test and maintenance controller (SMP). These controllers participate in all
system test and maintenance activities, and communicate via test buses.

Fig. 2.1 shows part of the test hierarchy for the four levels of system hierarchy.
Different buses may be used for communication at different levels. The SMP com-
municates with the SuMP through a Level-2 (L2) bus; a SuMP communicates with
the MMCs through a Level-1 (L1) bus; and an MMC communicates with CMCs
through a Level-0 (L0) bus. Bus interfaces are required for both the controlling
element (master) and the controlled elements (slaves). The master and slaves can
be FSMs that understand the protocol used by a bus at each level. If the SMP,
SuMP and MMCs are designed to be testable chips, then they themselves should
have CMCs and connection to L0 buses. In [10] the LO-master in the MMC is called
a Test Channel. The IEEE 1149.1 [9] boundary scan bus is used as the LO-bus
in 10, 11].

2.2.2 On-chip and Off-chip Distribution of Test Control

Hardware

The CMC represents all the test control hardware at the chip level and the TAP [9] is
an example of the L0-slave. The next question is how much of the control hardware
needs to be present on-chip (and hence be apart of a CMC) and how much can be
off chip (part of the MMC). In [11] a model of the possible partitions of the chip
test control hardware between the CMC and the MMC is given. These partitions
are shown in Fig. 2.2. In this model it is assumed that the DFT structure of an
application circuit consists of one or more scan chains. It is assumed that a new test

pattern is generated from the block labeled PG (pattern generator) and then shifted
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in to a register that feeds a kernel. A normal mode clock is applied and then the
results that are captured in register R2 are shifted out and compressed in the block
labeled SA (signature analyzer). A counter SC1 and a register SC2 are used to keep
track of the number of shifts required for each test vector. Test Counter (TC) is used
to keep track of the total number of vectors applied to each kernel. A register SCS
is used for scan chain selection and a FSM is used to control all these blocks (the
control lines from the FSM to the controlled elements are shown as dotted lines).

Partition 1 puts all the test resources in the CMC. Such a CMC is capable of
executing a test process on its own. Partition 2 incorporates the seeds, correct
signatures and the comparator into the MMC while leaving the rest of the resources
in the CMC. Partition 3 keeps the PG and the SA in the CMC while incorporating
the rest of the control circuitry in the MMC. All control signals for the on-chip
hardware must be derived from the LO-bus. Partition 4 puts all the test control
resources in the MMC and the CMC reduces to a L0-bus slave interface.

The control partition model presented in Fig. 2.2 provides a clear picture of the
various choices that exist in implementing the test control hardware. Choice of a

control partition affects the complexity of the on-chip test controller.

| mm— 5 me——=y |
Output Reg 1

Go/No Go
Application
: o Circuitry
: Comparator : :
i Partition 1 Partition 2 Partition 3 i Partition 4

partition boundaries

Figure 2.2: Partitioning chip test control hardware
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2.3 Chip-level Test Control

2.3.1 Test Control Architectures and Control Schemes

In this section we will present various issues and approaches addressed by past

researchers dealing with the on-chip test control hardware.

2.3.1.1 Test Control Architectures

[n [12] Riessen et al. present the design and implementation of a hierarchical testable
architecture using boundary scan. The design has a number of self testable macros.
Macros are blocks of logic that are self contained as far as testing is concerned, i.e.,
they have their own pattern generators and signature analyzers and test resources
are not shared between different blocks. The macros are isolated from one another in
the test mode by registers called Test Interface Elements (T1Es) that are transparent
in normal mode. Test processors (controllers) are present at the macro and at the
chip level. Standardized interfaces are used to communicate between the chip level
controller and the macro level controllers. For BIST testable macros, the TIks
consist of BILBO type registers and extra flip-flops that determine the mode of
operation of the register. These extra flip-flops are initialized before the start of a
macro test. The macro level test processor thus has inputs from the chip level test
processor and the mode control bits and controls the various control lines associated
with the BILBO type registers.

Beenker et al. [13] deal with the synthesis of a hierarchical test controller. The
design is also partitioned into self testable macros. Each macro has a local controller
called a test control block (TCB). A chip level test controller controls all macro
level TCBs. To keep the synthesis task simple, standard interfaces are used for
communication between the TCBs.

Haberl and Korpf [14] have built a system called HIST for automatically em-
bedding self-test hardware and control circuitry in hierarchically designed circuits.
Distributed self-test controllers are inserted in each functional module. These mod-
ules are called base modules and the self-test circuitry for base modules is not shared
with any other module. A compound module is composed of several base modules

and has a test controller controlling the base module test controllers. The controller
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for the compound module is controlled by the TAP controller. Standard interfaces
are used for communicating between the controllers.

In [15] Zorian presents a distributed BIST control scheme for VLSI devices. The
design 1s partitioned into self testable blocks of logic. A large number of these
blocks are memory elements such as RAMs, ROMs and register files. The test
operation of each self testable block is controlled by a BIST Resource Controller
(BRC). BRCs are implemented as FSMs and are customized to implement the test
process (similar to test plans) of each testable block. A BIST control network carries
control information from the TAP to the distributed BRCs. Interfaces between the
BRCs and the control network is done through Scheduled BIST Resource Interface
Controllers (SBRICs). An SBRIC is also implemented as a FSM.

A number of other papers also deal with the hierarchical self-test concept [16, 17].
The ideas presented in these papers are very similar to one another. All the above

techniques suffer from the following drawbacks.

e The self containment of the macros or base modules precludes the possibility
of sharing test resources between various modules. This leads to high area

overhead in terms of pattern generators and signature analyzers.

o Very few test methodologies are supported and the resource allocation mech-
anism for the modules are antiquated compared to currently available tech-

niques [18].

o The use of dedicated test controllers for each module does not allow logic
sharing between test controllers and the use of standard interfaces does not

allow optimization in terms of control line routing or logic area.

2.3.1.2 Test Control Line Distribution

The optimality of test control line distribution has been investigated by Beausang
and Albicki [19]. An algorithm has been presented which, given a set of BILBO
registers for testing a chip and the test sessions, determines the minimum number of
control lines that must be distributed throughout the chip. This approach ignores

the implementation cost of the test controller.
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2.3.1.3 Specialized Test Control Schemes

Breuer et al. [20] present control graphs for common built-in test (BIT) structures
and hardwired and microprogrammed implementation of these control graphs. De-
signs for activating multiple BIT structures are also presented. I-paths are not
considered and the area overhead is computed in terms of flip-flops. The controller
designs are “template” based rather than bottom-up, i.e., logic synthesis tools are
not used. Moreover, the problem of incorporating the BIT controllers in a boundary

scan environment is not addressed.

2.3.2 Merging Test Controllers

The problem of merging test controllers to reduce controller area overhead has been
discussed by Marinissen [21, 22]. A design is partitioned into self-testable macros.
The test application for each of these macros is controlled by a Moore type FSM
controller called the Test Control Block (TCB). The TCBs are merged into one
controller to reduce the area overhead incurred in implementing each of the TCBs
separately. The merging procedure starts with two states of two TCBs and checks
the compatibility of the outputs. If outputs are incompatible, then an attempt is
made to make them compatible by inserting dummy states in one of the TCBs.
The algorithm proceeds from those two starting states and forms a merge-tree of
compatible states (and dummies). When it fails to merge any more states it has
obtained a mazimal mergeable subgraph (merge-tree), and then starts with a new
pair of starting states and continues to build merge-trees. Costs are assigned to
each merge-tree in terms of dummies, “free arcs” and profits in terms of states
merged. A heuristic then finds the minimal set of merge trees that cover the original
pair of TCBs. All pairs of TCBs are merged and a greedy heuristic is used to merge
all the TCBs. The minimization algorithm is part of the SPHINX test tools in the
PYRAMID [13] silicon compiler. The main drawback of this approach is that it
only focuses on minimizing the number of states and completely ignores the impact
of a minimal realization on the eventual implementation cost, either for two-level
or multi-level logic implementation. Moreover, results are presented only for two

example circuits.
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Agrawal and Cheng [23] use a heuristic for merging a test machine with a func-
tional machine. The test machine is used for testing the functional machine. The
test machine has the same number of states as the functional machine and can be
set to any of its states and all outputs can be observed by short predetermined in-
put sequences. The machines are merged such that a minimal number of edges are
added to the functional machine. However, a procedure has not been presented for
the merge process nor has any justification been provided for using this heuristic.

Smith and Kohavi [24] describe a technique for synthesizing one machine from
two synchronous state machines with the same input I and outputs Z; and Z,. First
a composite machine M, is found from the two initial machines M; and M;. The
composite machine is next examined to determine the largest non-trivial common
factor machine. The existence of such a common factor machine was (in an earlier
paper) shown to depend on the existence of equivalent implication graphs having
disjoint node subsets. If the implication graphs have overlapping node subsets, then
a common machine can be found by node-splitting. Once a common factor machine
is found, it is factored out of each of the original machines and two smaller machines
are appended to the common factor machine. Each of these machines then produce
the required outputs Z; and Z, corresponding to the original machines. The main
disadvantage of this approach is that state-splitting might increase the total number
of states in the composite machine.

The classical approach to merging a number of FSMs is to obtain their Cartesian
product and then minimize the number of states in the product machine (state mini-
mization). Some results that deal with exact techniques for state minimization of in-
completely specified sequential machines can be found in [25, 26, 27]. STAMINA [28]
is one of the better known software packages that uses heuristic techniques for state
minimization. A number of state minimal machines with different implementation
costs exist for the same product machine, but current state minimization tools (e.g.,
STAMINA) are unable to automatically choose a machine with the minimal imple-

mentation cost.
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2.4 Testability Buses and Boundary Scan

Architectures

To achieve an acceptable degree of testability and diagnosability, a system must be
testable at every level of integration. The design of testable chips, boards, subsys-
tems and systems that can be connected to standard test buses has thus drawn much
attention. Three major standards and proposals exist for controlling and accessing
DFT/BIST hardware on chips, boards, subsystems or systems. One of these is
the IEEE Boundary Scan Standard (IEEE 1149.1) [9], also referred to as Minimum
Serial Digital Subset (MSDS). The other two are currently proposals and will prob-
ably be converted into standards in the near future. They are the Frtended Serial
Digital Subset (ESDS)(IEEE 1149.2) and the Standard Backplane Module Test and
Maintenance Bus Protocol (IEEE 1149.5).

2.4.1 The IEEE 1149.1 Boundary Scan Architecture

The IEEE 1149.1 boundary scan architecture of a chip is shown in Fig. 2.3(a).
The shaded area labeled app. circuit is a circuit which may have some DFT/BIST
hardware. The unshaded area is the Test Access Port (TAP). The TAP consists
of a TAP controller (TAPC), an instruction register (IR), a boundary scan register
(BSR), a one-bit bypass register (BYPR), an optional device identification register,
output buffer and multiplexers. The boundary scan register is made up of 1-bit
boundary scan cells. These cells may have different implementations depending
on whether they serve input, output or bidirectional pins. These cells may also
have additional functions to test application circuitry. Based on their functionality,
these boundary scan cells may be grouped together into registers, which in turn
constitute the boundary scan register. We refer to these constituent registers simply
as boundary scan registers or BSRs. The TAP has four pins, TCK (test clock input),
TMS (test mode select input), TDI (test data input), and TDO (test data output).
The TRST (test reset input) is optional.

The TAPC is a 16 state FSM that operates under the control of the TMS signal
(Fig. 2.3(b)). There are two outgoing edges from every state in the TAPC corre-
sponding to the 0 and 1 values for TMS. The test-logic reset (tlr) state is entered
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whenever the TAPC is reset, either synchronously (using TMS) or asynchronously
(using TRST). The run-test/idle (rti) state is entered when the chip is in the self-test
mode, or is in test mode with no ongoing test activity. In the TAPC, two major
branches are used to transmit instructions and data. When transmitting instruc-
tions, the number of activations of the state Shift/R equals the number of instruction
bits sent. A new instruction is loaded into the IR in the UpdatelR state. The IR
contents (instructions) together with the TAPC states determine various on-chip
test operations. One major function of an instruction in the IR is to select a data
register for scanning. When transmitting data, both the states Capture DR and Up-
dateDR are activated exactly once for each transmission. The number of activations
of the ShiftDR state equals the number of data bits sent to the selected data register
(DR).

By suitably controlling TMS, a board (module) level test controller (such as
the Module Maintenance Controller [10]) can send both instructions and data to
and receive results from a chip. Instructions EXTEST, SAMPLE and BYPASS are
mandatory. These instructions together with the boundary scan hardware allow
interconnects to be tested, signal values at the input/output pins to be sampled in
a functionally operational chip (on-line monitoring), and bypass the boundary scan

registers on one or more chips.

2.4.2 The IEEE 1149.2 Boundary Scan Proposal

The IEEE 1149.2 is also intended to be implemented at the chip level. This proposal
offers test features similar to the IEEE 1149.1 but has some significant differences.
First, unlike the IEEE 1149.1 standard where the boundary scan cells cannot be
shared with functional registers, the IEEE 1149.2 proposal allows boundary-scan
register cells to be shared with the functional logic of the chip and does not require
the cells to have separate serial-shift and parallel-update stages. The IEEE 1149.2
boundary scan registers are called the I/O registers. Second, the IEEE 1149.2 uses
a direct, parallel access method to enable different test operations. Thus the TAP
controller and the IR are not needed. This proposal mandates the use of a minimum

of two signals to specify the operation modes of a chip.
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The IEEE 1149.2 architecture has four major elements: the I/O register, Im-
plementation Detail Register (IDR), Bypass Register (BYPR), and the Scan Access
Port (SAP). The test bus consists of TDI, TDO, TCK and a minimum of two mode
control wires, STM0 and STM1. The IDR provides a mechanism for accessing some
of the implementation specific details. The IEEE 1149.2 has the following advantages
over the IEEE 1149.1. Test logic area overhead is reduced by (1) sharing functional
and boundary scan registers, and by (2) eliminating the TAP controller and the IR.
Additionally, (3) since the dedicated boundary scan registers are not used, inter-
connect testing can be performed at-speed. The drawbacks are (1) more pins are

required, and (2) on-line monitoring of signals at chip boundary is not possible.

2.4.3 Boundary Scan Bus Masters

The Test Channel implemented by Lien [29] is an example of a IEEE 1149.1 boundary

scan bus master. A bus master has also been developed by Jarwala and Yau [30].

2.5 Summary

In this chapter we first presented an overview of the hierarchical test methodology
and on-chip/off-chip distribution of test control hardware. Then past research on
various chip-level test control problems was summarized. Finally a brief description

of test buses and boundary scan architectures was provided.
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Chapter 3

Test Control Architecture

3.1 Introduction

In the previous two chapters we have provided an overview of the test control prob-
lem and past research in this area. However specifics of the hardware structures
and/or the test methodologies that need to be controlled or supported by a test con-
trol/support system have not been provided so far. In this chapter we first present
a detailed description of the TDMs and hardware structures that our test controller
synthesis system needs to support. Then we describe the test control functions that
we have decided to incorporate on a chip. Essentially a partition between on-chip
and off-chip test control functions has been made and we will present the underly-
ing motivation for such a partition. Next we will present our on-chip test control
architecture in which certain control functions are distributed throughout the chip,
and other functions are centralized. Finally we will describe various mechanisms for

controlling scan and BIST registers.

3.2 Functions of the On-chip Controller

The first step in solving the test control problem is to identify the nature of the on-
chip test hardware and/or methodologies that need support from test controller(s).

The following on-chip test hardware/methodologies need to be supported.
e TAP controller and boundary scan registers.
o The TDMs incorporated in a circuit by the scan system SIESTA [31].
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e The TDMs incorporated in a circuit by the BIST system BITS [18].

The IEEE 1149.1 boundary scan standard is being increasingly adopted by differ-
ent ASIC and custom processor vendors and is fast becoming an industry standard.
The simplicity of the interface (4 wires) makes it an attractive choice for the LO0-
bus. Therefore it is imperative that we also support this standard. Adopting this
standard implies that our L0-slave interface is fixed and will be handled by the TAP

controller.

3.2.1 Scan TDMs Requiring Support

SIESTA is an integrated scan design system that can incorporate various scan TDMs
in a circuit. Fig. 3.1 is a directed acyclic graph that represents a classification of
the scan based DFT techniques that are currently supported by SIESTA or will be
supported in future. This classification highlights the wide variation of choices that
are available for scan designs, e.g., full scan vs. partial scan. In this section we will
provide a brief overview of different scan TDMs.

Partial scan [32, 33, 34] is a DFT methodology in which only a subset of the
flip-flops in the design are converted to scan registers. Cheng and Agrawal [32]
represent a circuit as a graph where the flip-flops are the nodes of the graph and
interconnections between flip-flops (through combinational logic) are the edges. A
heuristic is used to select the minimal number of flops (nodes) to make the resulting
circuit graph acyclic. Self-loops, i.e., the case where the output of a flip-flop feeds
back to the input (possibly through combinational logic), are not broken. The
selected scan flops now become additional primary inputs (Pls) and primary outputs
(POs) during the scan mode of operation. Making a sequential circuit acyclic reduces
the complexity of the sequential test generation problem.

In the BALLAST [34] methodology, Gupta et al. add an extra constraint to the
partial scan approach. Scan flip-flops are selected such that not only should the
resulting circuit be acyclic but the circuit should also be balanced. In a balanced
circuit a pair of paths between two combinational logic blocks should go through
the same number of flip-flops (registers). SIESTA also has the option of only cre-
ating acyclic circuits without balancing them (ACYST methodology [35]) . These

are called unbalanced acyclic partial scan circuits. The CYCLIST methodology in
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SIESTA creates partial scan circuits where all loops are not broken and hence the
circuit is cyclic. The application of a test vector to a kernel may or may not take
advantage of switching structures such as multiplexers. Currently SIESTA does not
support the switch option.

Test application time is a major concern for scan based DFT techniques. In a scan
design all scannable flip-flops can either be connected together in one scan chain (sin-
gle chain) or configured as a number of scan chains (multiple chains, reconfigurable
chains). These correspond to different chain structures or chain configurations. The
multiple chains can either be loaded simultaneously (simultaneous shift) or one after
the other (sequential shift). The simultaneous shift option is only viable if multiple
shift data input (SDI) and shift data output (SDO) pins are available on the chip.
Since the IEEE 1149.1 standard does not support multiple SDIs and SDOs, we will
not consider the simultaneous shift option for multiple chains. However chains that
are shifted one after the other or reconfigured between shifts (reconfigurable chains)
will be supported.

A shift chain can either be shifted for a number of clock cycles equal to the
number of flip-flops in it (full flush) or may be shifted for only part of its length
(minimal shift). Details about the chain structures and the shift policy can be
found in [36]. Each path from the root to the leaves of the classification DAG in
Fig. 3.1 describes various aspects of a scan TDM embedding. The shaded region
corresponds to the various scan options that we have studied and will support.

SIESTA uses deterministic test generators to generate tests for combinational
and sequential kernels. Due to the large volume of test data for scan designs, it is
impractical to store test data on-chip. Therefore test vectors/expected responses are
stored off chip and mechanisms are provided to shift vectors into and results out of

a chip.

3.2.2 BIST TDMs Requiring Support

BITS is an integrated BIST system that supports a number of BILBO oriented
methodologies. Apart from BILBO and EXTBILBO, BITS supports concurrent
BILBO (CBILBO) [37], combined BILBO (COMBILBO) [38] and the balanced BILBO
(BIBS) [39]. The CBILBO TDM uses BILBO registers that consist of back-to-back
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registers, one acting as a PG and the other as a SA. This TDM is often used in
circuits with self-loops, where a self loop consists of combinational logic block that
feeds itself through a single register. In the COMBILBO TDM, a test register acts
as a SA for some kernel feeding it. The outputs of this register are used as test
patterns for another kernel. Analytical and experimental results presented in [38]
showed that after an initialization period, the characteristics of the SA register are
similar to a random pattern generator.

In [39] Lin et al. have proposed a low cost BIST methodology that employs
balanced BISTable structures as kernels. A kernel is balanced BISTable if (1) it does
not contain any cycles, (2) two paths between a pair of combinational logic blocks
go through the same number of registers, and (3) the registers feeding the inputs of
a kernel and the registers fed by the outputs of a kernel are distinct.

For all the BIST TDMs the PG and the SA need to be initialized to known states.
Usually the PG need only be initialized to a known non-zero state and the SA to a
known state. This can be accomplished by adding specific hardware features to the
PG and the SA. However we assume that the registers will be initialized by shifting
in seeds from off-chip.

The following is our rationale for storing seeds/expected responses off-chip.

e Dedicated ROMs are needed to store seeds and expected responses on-chip
and this may lead to an unacceptably high area overhead. If registers are
not provided with the shift capability then dedicated buses are needed to load
seeds to registers from a ROM. The on-chip comparator also adds to the area
overhead. To reduce the cost of an on-chip comparator, a serial comparator
may be employed. To use a serial comparator, all SAs need the shift capability
and should be part of a scan chain. For registers that have the PG capability,
the shift mode comes for free. Since a large percentage of BILBO registers
in a BIST design have the PG capability, there is little hardware overhead in
providing the shift capability to all BILBO registers. Signatures and seeds
then can be stored off-chip. This leads to significant savings in hardware for

seed [signature storage, distribution and collection.

e For random testing, Lempel et al., [40], propose a scheme whereby the test

vectors needed for a set of hard-to detect faults are automatically generated
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by a PG. They determine the smallest sequence generated by a PG that con-
tains all these test vectors. This entails initializing the PG to a non-trivial
initial seed. Moreover, to shorten test application time, the set of test vectors
may even be embedded in disjoint sequences of a PG requiring multiple-seeds.
Hardcoding multiple seeds into a PG or storing multiple seeds in a ROM will
result in a high area overhead. An easier solution is to store seeds off-chip and

shift them in as needed.

e Memory structures constitute a large percentage of modern VLSI chips. BIST
approaches to testing memory structures are gaining popularity. In most cases,
registers on the inputs/outputs of memory structures are modified into spe-
cialized PGs/SAs. Since the memory test algorithms have several stages, a
complex test controller is usually employed that loads PGs/SAs with specific
seeds (stored on-chip) and controls each phase of the test process. The seeds
can be stored off-chip and the memory test can be partitioned into several
sessions. This greatly simplifies the complexity of the test controller as well as

saves on the hardware required for storing multiple seeds on-chip.

e To reduce the aliasing problem SAs may need to be initialized to a non-trivial

seed. This initialization is easy if seeds are shifted in.

3.3 The On-chip Test Controller

Recall that in Chapter 2 a model was presented in Fig. 2.2 that illustrated various
partitions between the on-chip and the off-chip controller. Our control partition
is shown in Fig. 3.2. This partition shows that the seeds (test vectors) and the
expected signatures (responses) are stored off chip. The original FSM is partitioned
into two, one on-chip and the other off-chip. The on-chip FSM represents the TAP
controller (and additional decoding circuitry) while the off-chip FSM corresponds to

the test channel in a MMC.
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Figure 3.2: Our control partition

3.3.1 The Partially Distributed Test Control Architecture

One method of controlling all the on-chip circuitry is to control all the control lines
directly from the FSM shown in Fig. 3.2. We will show in the next chapter that this
control mechanism also referred to as Direct Control often leads to a large number
of control lines. In the worst case the number of control lines are directly related to
the number of scan chains for scan designs or the number of BIST registers in BIST
designs.

Fig. 3.3 shows the model of our partially distributed architecture. This is a
partially distributed architecture because while some control circuitry is distributed
throughout the design, other control circuitry that could have been implemented
separately is combined together. We assume that a chip is partitioned into datapath
and control sections. To comply with the IEEE 1149.1 boundary scan standard
boundary scan registers are inserted at the PIs and POs of the circuit. The datapath
and control partitions are processed separately by SIESTA or BITS and various
TDMs are embedded to make the circuit testable. As a result of these embeddings

a subset of the registers are converted into scan registers. Note that the boundary
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scan registers are always scannable. In Fig. 3.3, BSR1 and BSE2 are boundary
scan registers at the inputs and outputs of the datapath respectively. RI represents
a functional register in the datapath that is made scannable. Scannable registers
correspond to simple scan registers for scan TDMs or BILBO registers for BIST
TDMs. All scannable registers have local controllers.

Instead of individual control lines emanating from the FSM as shown in Fig. 3.2,
a test bus is routed to all test hardware. Examples of test resources are all scannable
registers. The scannable registers in turn have local controllers that decode infor-
mation from the internal test bus to control the registers. These controllers can be
combinational or sequential. Sequential controllers contain mode and/or configura-
tion flip-flops and combinational logic (decoders and possibly multiplexers). More
details about these flip-flops will be presented Section 3.3.2.

I-paths need to be set up in the datapath to apply (collect) test vectors (results)
to (from) kernels. The test data (results) are transported from (to) test registers.
Test registers can be simple scan registers or they can have PG and/or SA capability.
The test data/result transport paths are set up by controlling multiplexers, buses
and functional control units. The control for all these paths are combined together
into one merged test controller called the internal test controller. Test registers
that act as PGs (SAs) in test-mode may need to generate (compact) a new pattern
(result) every ¢ clock cycles and hold the previously generated (compacted) pattern
in between. In this case, the internal test controller has control lines to the local
controllers to hold registers ¢ clock cycles between each step of pattern generation
(signature compaction).

The internal test controller is either implemented separately or merged (partially
or fully) with the functional controller. The FSM driving the test bus performs the
functions of the TAP controller. Different encoding schemes are used to broadcast
control information over the test bus. These encoding schemes minimize a two-
level implementation of the integrated TAP controller and/or the local decoders

(controllers).
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3.3.2 Control Models

Fig. 3.4(a) shows the relevant details of the distributed control architecture. In

this figure registers Regl, Reg?2,..., Regn represent n scannable registers in the

datapath. LCy, LC,,..., LC, represent the local controllers associated with these

registers. The internal test bus is an input to all these

local controllers. The infor-

mation transmitted on the internal bus is a function of the set of instructions (for a

particular design) and certain states of the FSM driving the bus. The exact nature

of the information transmitted on the bus will be described in detail in the next

chapter (Chapter 4).
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Figure 3.4: Simplified control model

Some of the local controllers have inputs from other sources as well. For example,

a register may operate as a load/hold register in the functional mode of operation.
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In that case, there is a load/hold control line to the local controller driven from a
functional controller. Note that the functional controller can be vacuous (i.e., control
lines driven directly from the Pls), combinational or sequential. The functional
controller also controls various modules such as multiplexers, ALUs and other logic
blocks in the datapath. In Fig. 3.4(a) a multiplexer in the datapath is shown being
controlled from the functional controller, represented by A. If this multiplexer is also
used to set up I-paths for testing datapath modules, then this control line also needs
to be controlled by a test controller (represented by B).

Consider Regn in Fig. 3.4(a) and assume that this register is part of a BIST
design and is employed as a PG in one session and as a SA in another. We need
some mechanism to control these modes of operation in different sessions. In our
test control architecture this is accomplished by using a flip-flop (mode flip-flop)
that resides inside the local controller and is part of the scan chain. This flip-flop is
initialized when the register is seeded and the value in this flip-flop now determines
the mode of operation of the register. The test plan for testing a kernel using this
register may be such that this register may need to hold for a number of clock cycles
between successive activations of the PG or SA mode. In that case an external signal
is provided to the local controller that is driven from the test controller. This signal
is called PG or SA/hold.

Fig. 3.4(b) models all the control sources to a register. A register can have at

most three control sources. These are
1. Global static control from the internal test bus.
2. Local static control from flip-flops.
3. Dynamic control from the test controller.

The control from the internal test bus is global because the test bus input is common
to all scannable registers. This control is also static because the bus state does not
change during a particular instruction and a particular TAP controller state. The
control from the flip-flops is local and static because the flip-flops are part of the
local controllers and their state does not change during the test mode of operation

(when there is an instruction corresponding to RUNBIST and the TAP controller
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is in the run-test/idle state). The PG or SA/hold signal from the test controller is
called dynamic because the control value changes during the test mode of operation.
Examples of various types of local controller for registers in scan or BIST designs

will be presented next.

3.3.3 Example Local Controllers
3.3.3.1 Scan Register Controller

Fig. 3.5(a) is an example of a circuit tested using the full scan TDM. The circuit
consists of registers Ry, R, and Rz and kernels k; and k;. The three registers are
configured into two scan chains, Chain 1 consists of all three registers and Chain
2 consists of Ry and Rs. The two scan chains are used to first apply a number of
test vectors to both the kernels and then Chain 2 is used to apply the remaining
set of vectors to kernel k;. Fig. 3.5(b) shows the local controller corresponding to
register Ry. R; has three functions, shift, hold and load. This register is completely
controlled by the internal test bus and a functional load/hold control line (if present).
The test bus transfers control to the functional load/hold line in the functional mode.
A chip is in the functional mode when BYPASS and SAMPLE are loaded in the IR.

The local controller for Ry is shown in Fig. 3.5(c). Note a multiplexer is used
to reconfigure the two scan chains. In our control approach we assume that the
reconfigurable multiplexers are part of the local controllers of certain registers. In
this case the 2-1 multiplexer is part of the local controller of R;. The decoder in the
local controller of R, controls the multiplexer select line based on the instruction
information transmitted over the test bus.

The simplified control model for both registers Ry and R is given in Fig. 3.5(d).
This model shows that for both the registers there is only global static control from

the internal test bus.

3.3.3.2 BIST Register Controllers

Fig. 3.6(a) is an example of a circuit tested using the BILBO TDM. In this example
registers R; and Rz act as PG and SA in the test mode, respectively. Register R

operates as a PG and as a SA in different sessions. k; and k; are the kernels tested.
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Figure 3.5: Examples of local controllers for scan designs
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The three registers Ry, R, and Rj are configured in a single scan chain. The local
controller for R, is shown in Fig. 3.6(b). This controller consists of a simple decoder
and a 2-1 multiplexer. The multiplexer is used to select between the scan chain
and the output of a set of Ex-or gates that implement the feedback polynomial for
the pattern generator. The Ex-or gates are fed by certain bits of R; (represented
by Q in the figure). The multiplexer select line is controlled by the decoder. The
internal test bus provides global static control. R; acts as a PG when an instruction
corresponding to RUNBIST [9] is loaded in the instruction register and when the
TAP controller is in the run-test/idle state. Control transfers to the functional
load /hold line (if present) in the the functional mode (SAMPLE or BYPASS loaded
in the instruction register).

Fig. 3.6(c) shows the local controller for R;. Since this register has functions
PG and SA, a mode flip-flop is needed in the local controller. This flip-flop is on
the same scan chain as the register. This flip-flop has two modes of operation, scan
and hold. These modes are controlled by the decoder associated the the Ry’s local
controller. Fig. 3.6(d) is the simplified control model for R;. Global static control
is provided by the test bus. Fig. 3.6(e) is the simplified control model for R, which
shows that in addition to global static control from the test bus this register also
has local static control from the mode flip-flop.

Fig. 3.7(a) shows an example circuit that uses the EXTBILBO TDM to test
the kernel k;. A test pattern is generated by Ry, driven on to the bus and applied
to k. The response is loaded in R;. The output of Rj is then driven on to the
bus and compacted in Ry. Since the bus is used in two clock periods, the minimal
latency of a pipelined test application for k; is 2. Both Ry and R hold on alternate
clock cycles. Registers Ry and R are configured in a scan chain. We will focus on
the local controller for register Ry (Fig. 3.7(b)). Since this register has PG and SA
modes of operation, a mode flip-flop is needed. In addition, a SA/hold signal (driven
from a test controller) is needed because R; needs to hold on alternate clock cycles
during signature compaction. A multiplexer is used to select between the scan chain
and the output of a set of Ex-or gates that implement the feedback polynomial for
PG/SA. We assume that both the PG and SA modes employ the same polynomial.
Fig. 3.7(c) is the simplified control model of Rz. This is an example where all three

control sources are needed.

37



Ex-or gates

Local Controller

1

Reg

ITB Tfunc load/hold

e

e
I D AR D e

for local static
control

. Local Controller

B

—p-

D T__. func. load/hold
(a) L W (c)

R EY RV ERTEEVERERER D) PR - ERXEREY IXREITE ot

S —b- Reg
Hecodery

Local static control

Reg |

B Req |

Global static control

Global static control

(d) (e)

Figure 3.6: Examples of local controllers for BIST registers

38



sdi

=
N

fATI T AT

AR RN

st frssanniseinn

ITB

L SA/Hold (from Internal Test
Controller
Ly (b) )

- for Dynamic Control

R B A B S S S L

Rt

&
saonis e

Local static control

Dynamic control [Rea 1|

Global static control

(c)

Figure 3.7: Example of a local controller for a BIST register having SA /hold control

39



[ig. 3.8(a) is a more complex example of a circuit tested using the EXTBILBO
TDM. In this example, registers Ry and R, are configured to operate as one PG for
testing kernel &, in one session. In the other session R; operates as a PG on its own
to test kernel k1. The feedback polynomials for the two cases are different. R; also
acts as a SA to test some other kernel that is not shown in the figure. Fig. 3.8(b)
shows the local controller for R;. Apart from one mode flip-flop, an additional flip-
flop is needed to select between the two different polynomials. This flip-flop is called
a configuration flip-flop. A SA/hold is also needed since R; acts as a SA and holds for
alternate clock cycles. The simplified control model for R, is shown in Fig. 3.8(d).

3.3.4 General Control Models

The general model of the local controller for scan registers in given in Fig. 3.9(a).
This figure shows that the local controller for a scannable register consists of a
decoder and a n-way multiplexer. This controller has inputs from the test bus and
(possibly) has a functional load/hold control line. The n-way multiplexer is used to
select the relevant serial data input for a certain scan chain configuration.

The general control model of a BIST register is given in Fig. 3.9(b). This model
shows the mode control and the configuration flip-flops. The decoder receives inputs
from the mode and configuration flip-flops and the ITB. The decoder controls the

data-select multiplexer and the BIST register. One or more of the following are the

inputs to the data-select multiplexer.
1. Outputs of sets of Ex-or gates that form the feedback polynomials.
2. Serial data outputs of different registers.

3. Outputs from mode or configuration flip-flops.

3.4 Summary

In this chapter we described various scan and BIST TDMs that require test control

support. Various reasons for storing seeds/test patterns/responses/signatures off
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chip were enumerated. We also presented our partially distributed test control archi-
tecture. Examples of specific local controllers as well as general controller models

for scan and BIST registers were provided.
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Chapter 4

Bus-based Control Schemes

4.1 Introduction

In Chapter 3 we introduced the partially distributed test control architecture. In this
architecture each scannable register has a local controller that decodes information
from an internal test bus (ITB). In this chapter we will describe in detail various
bus styles as well as the algorithms employed to encode the information transmitted
over the bus. These encoding algorithms are geared towards minimizing the imple-
mentation cost of the distributed decoders and/or the TAP controller. We will also
present the implementation procedure for the decoders that are associated with the
local controllers. An abridged version of this chapter is presented in [41].

This chapter is organized as follows. Section 4.2 presents a technique for inte-
grating boundary scan on a chip. Section 4.3 analyzes the complexity of controlling
on-chip test resources directly from the TAP controller. Different types of bus-based
control schemes are examined in Section 4.4. Section 4.5 presents various techniques
for encoding the symbols transmitted over a bus. Experimental results and a sum-

mary of this chapter are presented in Sections 4.6 and 4.7, respectively.

4.2 Integrating Boundary Scan on a Chip

In this section we first present our approach for implementing the TAP controller.
We then employ an example circuit to illustrate the control requirements of various

test resources in a boundary scan environment.
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4.2.1 The Integrated TAP Controller

Fig. 4.1(a) is a canonical representation of the control signal generation scheme
for on-chip test resources from the TAP Controller (TAPC) states and instruction
register (IR) contents. In this figure, blocks nsl, ol and cl refer to next-state, output
and control (decode) logic, respectively. Logic sharing among blocks is not possible
since each block is implemented separately. Fig. 4.1(b) shows the block diagram
of an Integrated TAP Controller (ITAPC) which consists of flip-flops (state) and
combinational logic Cy. C is responsible for generating the next state signals and
the control signals for test data registers and data scan chains. Test data registers
consist of the Boundary Scan Registers (BSRs) and functional registers that are
used in testing application circuitry. ITAPC and TAPC have the same set of states.
A state transition table (STT) [42] description of the ITAPC is created based on
the control requirements of all the test resources. This STT is provided as input to
sequential synthesis tools to perform state assignment and logic minimization [43].
The state assignment tool encodes the ITAPC states to minimize the implementation
cost of (.

Various logic blocks are associated with the TAP (see Section 2.4.1). These are
the Instruction Register (IR), the Bypass Register (BYPR), a multiplexer to select
between the instruction and the data chains, and clock selection circuitry. The clock
selection circuitry is used to control the functional and test clocks. The IR, BYPR,
output buffer, clock selector and the instruction/data chain selection multiplexer are
controlled by signals from logic block C3. The inputs of C are the outputs of the
state flip-flops of the ITAPC. The two blocks C} and C; are implemented separately
because the signals that C drives go all over the chip while the signals that Cj
drives are local to the TAP. Experimental results have shown that implementing
these blocks separately as opposed to combining them leads to smaller area for the
TAP controller.

4.2.2 Controlling an Example Datapath

Demo (Fig. 4.1(c)) is an example datapath with two combinational logic blocks K,
and K5, and two functional registers Ry and R3. Boundary scan registers ; and Ry

are added to the primary data inputs and outputs. R, and R each have a signal Id
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(load) which are primary control inputs and are tied to boundary scan register Rs.
The functional registers are in the load (hold) mode of operation when Id is a 1 (0).
An embedding of the full scan TDM adds shift capability to R, and Ra.

Let t; (t2) be the number of vectors required for testing K; (/). Assume that
ty >> t;. To reduce test application time, the test data registers are configured into

two chains:
1. Chain 1 - consists of R, Ry, R3 and Rjy.
2. Chain 2 - consists of Ry, R3 and R,.

Furthermore, to comply with the IEEE 1149.1 standards, R;, Rs and R4 must be
configured as a boundary scan chain (chain 0). Two 2-1 multiplexers M; and M,
are needed to configure the three chains. Two instructions FSCAN1 and FSCAN2
are added to the instruction set. The instruction set now consists of FSCANI,
FSCAN2, EXTEST, BYPASS and SAMPLE, where the last three instructions are
the mandatory boundary scan instructions. When FSCANI is loaded in IR, a test
vector is shifted into registers Ry, Ry, R3 and Ry in the shiftDR state and the result
captured in the captureDR state. t; test vectors are applied to both the kernels
K; and K,. Instruction FSCAN2 is then loaded into the IR to select chain 2 and

(1, — t1) vectors are applied to K.

4.2.2.1 Test Register Implementation

Implementation details of the input BSRs (e.g., Ry, Rs), output BSRs (e.g., R4),
scannable functional registers (e.g., Ra, R3) and the IR are shown in Figs. 4.2(a),(b),
(c) and (d), respectively. Types 1, 2or 3in Fig. 4.2 refer to the different types of basic
flip-flops shown in Figs. 4.3(a),(b) and (c). These flip-flop types support both scan
and BIST methodologies. In particular, Ry and Rs are composed of 1-bit register
cells as shown in Fig. 4.2(a), where the register is of Type 2. R4 is composed of
1-bit register cells, where the first flip-flop is also of Type 2. The functional registers
R, and R are composed of 1-bit register cells shown in Fig. 4.2(c). Three flip-flop
types have been specified. A Type 1 flip-flop has only load and hold functions. Type
2 augments the functions of Type 1 by adding a shift mode. Type 3 augments the
functions of Type 2 by adding the SA mode. Note that the PG mode comes for free
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in flip-flops that have the shift mode. In fact, for Type 1 the load mode can also be
called a shift mode if the load input is connected to a scan chain.

Note that the implementations of these registers differ from the suggested imple-
mentations in [9] where signals shiftDR(IR), clockDR(IR), update DR (IR) and mode
are generated by the TAPC and used to control various modes of operations of the
registers. The most significant difference in our implementations is that the clocks
to the test data registers (e.g., clockDR) are no longer generated by the TAPC;
instead an explicit hold mode is added to the flip-flops and the clock inputs are
driven by free running clock signal(s). For scan TDMs the TCK signal is applied
to the BSRs and the TCK / FCK (functional or system clock) signal is applied to
the functional registers with the help of a clock synchronization mechanism. Clock
switching is more complex for BIST designs where the boundary scan registers may
be modified to support pseudo-random pattern generation and signature compaction

capabilities.

4.2.2.2 Enumerating Control Line Values

The control line values for the various registers in the presence of all instructions
and certain ITAPC states are given in columns Ry, Rs, R4, B2 and Rz of Table 4.1.
This table enumerates the control line values for all test data registers and is called
a Control Table. It is not necessary to enumerate the control line values for all
states of the TAP controller. It is sufficient to examine only those states that are
responsible for shifting/loading data and ignore all states that are related to shift-
ing/loading the instruction register. Moreover, even among the set of states related
to shifting/loading data, there are a number of states in which no relevant test ac-
tivity occurs as far as the test data registers are concerned. Therefore states such as
pauseDR and ezit! DR in which no relevant test activity occurs are represented by
(mapped to) a pseudo-state dead. For this full scan example there are five “relevant”
TAP states namely, test-logic reset (), scanDR, updateDR, capture DR and dead.
[n the dead state all registers selected by the current instruction are in the hold

mode. For balanced partial scan designs, under certain conditions, the run-test/idle
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state may be removed from the set of “dead” states and added to the set of “rel-
evant” states. These conditions will be presented in Chapter 5. For BIST designs
this state will always be part of the “relevant” set of states.

We will now explain some of the entries in Table 4.1. Consider the lines so, s,
and s, for register Ry. In the presence of EXTEST and dead the control values are
001. A 00 on s and s; holds the flip-flop (in each of the 1-bit registers that comprise
R;) and the 1 on s; controls the output multiplexer such that the flip-flop drives
some of the inputs of the circuit connected to R;. In the presence of EXTEST and
captureDR, the values asserted on the control lines are -11, where - and 1 on sq and
s1, respectively, are used to load the flip-flop. Note that the output multiplexer for
register R; is always set to transmit the content of the register during EXTEST and
FSCAN1, while it transmits the (primary) input when SAMPLE or BYPASS are
selected (a 0 on 8y).

The boundary scan standard mandates that normal circuit function should be
unaffected when SAMPLE and BYPASS instructions are loaded into the IR. Since
R, and R are functional registers with load signals, the logic values of control
lines 8o and s; for instructions SAMPLE and BYPASS are functions of /d and are
represented in Table 4.1 by fo and fi, respectively. fois 0 (-) when Idis 0 (1) while
fi1is 0 (1) when Idis 0 (1). Thus control transfers to the Id signal and the registers
hold (load) when Id is 0 (1). The logic values for m; and m; (control lines for the
scan chain configuration multiplexers M; and M,) are also presented in the table.
Note that the multiplexer select lines need to have valid control values only during
the shift-in/shift-out process (i.e., when the TAP controller is in shiftDR). For all
TAP states other than shiftDR the multiplexer control lines are set to don’t cares.
The control signals listed under each register are generated by a local controller.

The local controllers for B, and R4 contain the scan reconfiguration multiplexers
in addition to decoders that generate the register and multiplexer control signals.
Since the BYPASS instruction is automatically loaded in the IR whenever the ITAPC
enters the tlr state, the control line values for all registers in the t/r state in presence
of all instructions except BYPASS are set to don’t cares. Furthermore, note that the
update flip-flop of the output BSRs should always be loaded with “safe” values (using
the SAMPLE operation) before starting the internal scan tests. This is because the

output lines may be controlling tristate buffers or memory enable lines. Appropriate
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logic values are applied to control lines s; and s3 of the output BSRs to ensure that
the output pins are always driven from the update flip-flops during internal scan
tests. Certain registers are not selected during FSCANI and FSCAN2. The values
of the control lines for these registers are therefore set to don’t cares. For example,
register Rs is not selected when FSCAN1 or FSCAN2 are loaded, therefore the
control lines s, 85 and sz are set to don’t cares in the table. Similarly, register R;
is not selected when FSCAN? is selected and the control lines sg, $; and s, are set

to don’t cares.

4.2.3 Two Control Strategies

Since the ITAPC, BYPR, IR, output buffer, clock selector and instruction/data
chain selection multiplexer can all be placed close to each other, routing area for
interconnect between these blocks does not constitute a major problem. However,
since the ITAPC acts as a central control point and the test data registers are
distributed throughout the chip, the control line routing area to these registers may
contribute a significant area overhead to the overall chip area. Two strategies for

controlling test registers from the ITAPC have been identified. These are
1. Direct control

2. Bus-based control

In the next section we will analyze the direct control scheme and in the rest of this

chapter we will concentrate on the bus-based approach.

4.3 The Direct Control Scheme

In direct control, control lines are routed directly to the test data registers from the
ITAPC. Since some test data registers may have identical control signals, certain
control lines from the ITAPC can be fanned out to multiple registers. To objec-
tively evaluate the cost of the direct control scheme, it is necessary to determine the

minimal number of control lines that are needed for a testable circuit.
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Inst. ITAPC Rl R5 R4 Rg Rg
state S0S182 | SpS1S2 | SpS15283 | M2 | SpS1 | My | Sosi
EXTEST dead 001 001 0010 - - - -~
EXTEST | captureDR || -11 -11 -110 - - - -
EXTEST | shiftDR 101 101 1010 0 -- --
EXTEST | updateDR | 001 001 0011 - -- - --
EXTEST tlr --- --- ---- - -- - -
SAMPLE dead 000 000 0000 -l foh| - | foh
SAMPLE | captureDR || -10 -10 -100 -] - | foh
SAMPLE | shiftDR 100 100 1000 0 | fofil - | fofr
SAMPLE | updateDR 000 000 0001 -\l - | fofi
SAMPLE tlr --- —--- - = - =
BYPASS dead -0 | --0 --0- fofi| - | foh
BYPASS | captureDR || --0 --0 --0- fofi| - | Johfr
BYPASS shift DR --0 --0 --0- fofi| - | foh
BYPASS | updateDR || --0 --0 --0- - | fofi| - | foha
BYPASS tlr --0 --0 --0- -1 fofi] - | fohfr
FSCANI1 dead 001 --- 0010 - 00 - 00
FSCAN1 | captureDR || -11 --- -110 - <] . -1
FSCANI1 shift DR 101 --- 1010 1 10 0 10
FSCANI1 | updateDR 001 -- 0010 - 00 - 00
FSCANI1 tlr --- ---- -- e
FSCAN2 dead - -- 0010 00 00
FSCAN2 | captureDR || --- --- -110 - -1 . -1
FSCAN2 shift DR --- --- 1010 1 10 1 10
FSCAN2 | updateDR . --- 0010 00 - 00
FSCAN2 tlr - --- ---- - i - “ =
Table 4.1: Controls asserted by the ITAPC
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Consider the control lines shown in Table 4.1. Let R;(s;) represent the control
line s; of register R;. The column vector consisting of 1’s, 0’s and don’t cares

corresponding to column s; in R; fully defines the control line R;(s;).

Definition 4.1 Two control lines R;(s;) and Ry (s;) are compatible if there are no
conflicting logic values in the same bit positions of the column veclors corresponding

to these two control lines.

Analyzing the compatibility between the control lines, we determine that they can

be mapped into 6 unique control lines ¢g, ¢y, ..., ¢s as follows.
1. co «—{Ra(s0), Ra(s0), Fis(s0)}
2. ¢1 — {Ra(s1), Ra(s1), Rs(s1)}
3. ¢z — {Ra(s2), Ra(s2), Rs(s2)}
4. e3 — Ry(s3)
5. ¢4 — Mgy

6. C; — My

In the above, ¢; « {S} implies that the set of control signals {5} are mapped to
control line ¢;. An additional control line cg is needed to distinguish BYPASS and
SAMPLE modes of operation from other modes such that the ld line can assume
control of Ry and Rs. After checking whether the control lines for Ry and Rz are

compatible with some control lines of other registers for all instructions other than
BYPASS and SAMPLE, the following equations are obtained.

R2(51) = R3(81) = C6.C1 + 'cEId (41)

Rg(So) = Rg(So) = Cg.Co + EE[CZ (42)

where ¢g = 0(1) for BYPASS and SAMPLE (FSCANI and FSCAN2). For this case,
the TAP controller outputs cannot be directly connected to s; and s;. Combinational
logic is needed to implement the above equations. Thus true “direct” control is not
possible. Fig. 4.1(c) shows Demo being controlled directly by the ITAPC. There are
7 control lines emanating from the ITAPC to control test registers. Cut line AB

represents the boundary between datapath and control partitions.
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4.3.1 Controlling Scan Designs

For scan designs the control lines in the direct control scheme control can be logically

grouped into three sets.

1. Control lines for the boundary scan registers (set A).
2. Control lines for functional registers modified as scan registers (set B).

3. Control lines for controlling the multiplexers for reconfigurable scan chains (set

c).

Some of the control lines in these sets are compatible and can be combined.

4.3.1.1 Bounds on the Number of Control Lines

Proposition 4.1 For designs that incorporate the test registers presented in Fig. 4.2

and have no scannable functional registers the minimum number of control lines in

A is 4.

Proof : A design needs at least one output and one input boundary scan register. An
output boundary scan register has 4 control lines and from the control values asserted
on these control lines (sufficient to consider only the values asserted for EXTEST
in Table 4.1) it can be seen that none of these control lines are compatible to one
another and therefore cannot be combined with one another. An input boundary
scan register can be designed with either one flip-flop or two flip-flops. Ifit is a double
flip-flop design, then there are four control lines which are compatible with the four
control lines of an output boundary scan register. If an input boundary scan register
has a single flip-flop then there are three control lines which are compatible to three
control lines of an output boundary scan register. This can easily be checked from
Table 4.1. Even though this table is specific to a particular example, the register
control line values asserted for EXTEST, BYPASS and SAMPLE are valid for any
design. The only difference for boundary scan register control values for different
designs is when the boundary scan registers are used as part of different scan chains.
If a boundary scan register is not used in a particular scan chain then don’t cares are
assigned to the control lines of the corresponding boundary scan register. Thus the

inclusion of different boundary scan registers in different chains makes no difference
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to the compatibility of the boundary scan control lines. Therefore for designs where

no internal register is made scannable, the minimum number of control lines is 4. O

Proposition 4.2 For designs that incorporate the test registers presented in Fig. 4.2
and have at least one scannable functional register the minimum number of control
lines in AU B 1s 5.

Proof : There are two cases to consider.

Case 1 - None of the scannable functional registers has a load/hold control line. In
this case a scannable functional register has only two control lines sy and s;. The
control line sq is compatible with one of the control lines for a boundary scan register.
A functional register needs to be in the normal (load) mode of operation for all TAP
states when SAMPLE and BYPASS are loaded in the IR. Therefore s; is set to 1
when these two instructions are loaded. This requirement makes s; incompatible
with any boundary scan register control line. Therefore a minimum of 5 control
lines are needed.

Case 2 - At least one scannable functional register has a functional load/hold
control line. When a functional load/hold control line exists, the control lines sq
and s, are functions of boundary scan control lines and an additional signal that
distinguishes the SAMPLE and BYPASS instructions from the other instructions
(Equations 4.1 and 4.2). Thus a minimum of 5 control lines are again needed. O

The number of control lines in C depends on the number and sizes (in terms of

the number of inputs) of the multiplexers used to reconfigure the scan chains.

Lemma 4.1 A lower bound of the number of control lines for multiplezers is [logz(N)]
and an upper bound is min(r_, [loga(I(M;))], 2V — 2), where My, My, ..., M} rep-
resent the k multiplexers used to configure N data chains and I(M;) is the number

of distinct selectable inputs to M;.

Proof : Upper bound: It is not possible to use more than Y5, [loga(I(M;))] control
lines to control the multiplexers and hence this is an upper bound. Consider the
case where all k muxes are 2 input muxes. This is a worst case scenario because
each multiplexer can only select between two inputs and requires one control line.

Let the control lines for these muxes be my,ms, ..., my. Consider a matrix where
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the columns correspond to the multiplexer control lines and different configurations
of the scan chains correspond to the rows. Each scan chain configuration defines
a k bit control vector (a row of the matrix), where each control line can be a 1, 0
or a don’t care. For N scan chains there are N such control vectors (rows). The
values that each control line m; is assigned over N reconfigurations defines a column
vector. Two control lines m; and m; are incompatible if the corresponding column
vectors differ in at least one non-don’t care bit position. There can be 2V distinct
column vectors corresponding to N reconfigurations. Column vectors with all 0’s
and all 1’s are not allowed because this implies that the corresponding multiplexers
are redundant. Thus there can be at most 2V — 2 distinct control lines. Therefore
the minimum of (5, [logs(I(M;))], 2V — 2) is an upper bound on the number of
control lines.
Lower bound: In the best case, a single N way multiplexer can be used to configure
N scan chains requiring [logs(/V)] control lines. O
Both the upper and lower bounds are achievable for certain scan chain configu-
rations. The use of a single N-way multiplexer to configure N chains is sufficient to
achieve the lower bound. The lower bound can also be achieved for other configu-
rations that use distributed multiplexers. For example, Fig. 4.4(a) shows a circuit
where two (2-1) multiplexers M; and M, are used to configure two chains. One
select line is enough to control both the multiplexers. Fig. 4.4(b) presents a case
where the upper bound on the number of multiplexers is reached. In this example
three (2-1) multiplexers are used to configure three scan chains and three distinct
control lines are needed. It is easy to show that for a set of 2m scannable registers,
if a 2-1 multiplexer is inserted between every pair of adjacent registers and used to
bypass the register immediately preceding it, then a set of m scan chains created by
bypassing exactly one register R; in chain 7 requires m distinct control lines, thereby

always achieving the upper bound.

Corollary 4.1 A lower bound on the number of control lines in the Direct Control
scheme is maz(C, [logaN] ), where C is a constant and is equal to 5 for designs that

incorporate the test register implementations presented in Fig. 4.2.

Proof : Follows from the lower bound computations presented in Proposition 4.2

and Lemma 4.1. 0
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Figure 4.4: (a) Only one control line needed for controlling two scan chains; (b)
Three control lines used to control three scan chains

4.3.2 Controlling BIST Designs

All BIST designs are assumed to have two scan chains, namely
1. a boundary scan chain, and
2. an internal test data chain.

All registers that participate in the BIST process are included in the internal test
data chain. Reconfigurable scan chains are not considered for BIST designs because
the time required for shifting in (out) test data (results) is insignificant as compared
to the test application time. The serial data outputs of both chains are routed to the
TAP block and the multiplexer selecting between these two chains is implemented
as part of the TAP. Therefore, unlike scan designs, there is no multiplexer control

line distribution problem.

4.3.2.1 Simplified BIST Model

In this section we focus on a simplified BIST model, where we consider only the

BILBO TDM and assume that there are no [-paths [1]. Some functional registers and

56



some boundary scan registers are modified to have PG and/or SA capability. Any
register that has PG and/or SA capability is called a BIST register. In the direct con-
trol approach, none of the BIST registers have mode (refer to Chapter 3) control flip-
flops. The control lines s; of the BIST register are controlled directly from the ITAPC
to set a BIST register in the load, hold, shift, PG or SA modes. There are (N+3)
instructions : EXTEST,BYPASS,SAMPLE and RBISTy, RBIST,,..., RBISTy.
When RBIST; is loaded into the IR and the ITAPC is in the run-test/idle state,
certain test registers operate as PGs and others as SAs.

Consider the embedding of BILBO TDMs in circuit Demo to test kernels K; and
K,. Assume that there are no functional load control lines, hence R5 does not exist.
R; has PG, R, has SA and R, and Rz have both PG and SA capability. The kernels

are tested in two sessions.

e In session 1 (RBIST)) K, is tested and the function of each of the registers is
as follows: Ry (PG), Rz (SA), Rs (SA) and R4 (don’t care).

e In session 2 (RBIST),) the functions are: Ry(don’t care),R; (PG),R3(PG) and
R4(SA).

The control line values corresponding to these two instructions are shown in Ta-
ble 4.2. Note that the run-test/idle state is explicitly specified. There are two scan

chains :
e Chain 0 (boundary scan chain) - Ry,R4
e Chain 1 - Rl,R.;, Rz,R;g.

[nspection of the table reveals that control lines Ri(so) for i=1,2,3,4 are compatible,
Ri(s,) for i=1,2 are compatible and Ry(s3) is not compatible with any control line. A

minimum column cover of R;(s;) for i=1,2,3,4 requires two additional control lines.

4.3.2.2 Bounds on the Number of Control Lines

The minimum number of control lines for BIST designs that conform to the simplified
model presented in this section is 3 + @, where Q is the number of columns in a
minimum column cover of R;(s;) for i = 1,2,...,n, and n is the number of BIST

registers.
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Inst. ITAPC Ry Ry Ry, | Rs
state 808182 | S0S15283 | SoS1 | SpS1
RBIST1 dead 001 0010 00 | 00
RBIST1 | captureDR | 001 0010 -1 -1
RBIST1 | shiftDR 101 1010 10 | 10
RBIST1 | updateDR | 001 0010 00 | 00
RBIST1 rti 101 --10 11 11
RBIST1 tlr --- ---- -- --
RBIST2 dead 001 0010 00 | 00
RBIST2 | captureDR | 001 0010 -1 -1
RBIST2 | shiftDR 101 1010 10 | 10
RBIST2 | updateDR | 001 0010 00 | 00
RBIST2 rti --- 1110 10 | 10
RBIST2 tlr - ---- -- --

Table 4.2: Controls asserted by the ITAPC for direct control of BILBO TDM em-
beddings for a modified version of Demo

Lemma 4.2 A lower bound of Q is 2 and the upper bound is min(n, 2V ), where n

and N are the number of BIST registers and the number of sessions, respectively.

Proof : Lower bound: In a test session at least one register R; (R;) must be in
the PG (SA) mode of operation. Therefore there will be at least one bit position
where R;(s;) will be a 0 and R;(s;) will be a 1. Therefore these two control lines
are incompatible and the size of a minimum column cover is 2.

Upper bound: Given n BIST registers an obvious upper bound is n. Note that
the compatibility of control lines R;(s1) is determined by logic values in bit positions
corresponding to the tlr state of the ITAPC. Therefore, construct a matrix C with n
columns and N rows. An entry C;; corresponds to the logic value assigned to R;(s1)
in session 7. A minimum column cover of Ri(s1) 1 = 1,2,...,n is therefore equivalent
to a minimum column cover of C. The maximum number of distinct column vectors
possible is 2V. Therefore if min(n,2") is an upper bound on the size of the column
cover. O

The lower or upper bounds are achievable for certain designs. For Demo, Q is
2, which is equal to the lower bound. Consider a design with n BIST registers that

are used to test a number of kernels in n test sessions. In session i, register R; acts
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as a SA and the other (n — 1) registers act as PGs. Thus @ equals n which is equal

to the upper bound.

4.4 The Bus-based Control Scheme

In this section we describe different types of buses, techniques for implementing
descriptions of the distributed decoders and mechanisms for reducing the number of

symbols transmitted over a bus.

4.4.1 Overview
4.4.1.1 Standard Bus

One bus scheme is the Standard bus (STB) , in which a set of control lines transmit
instructions and another set of control lines carry “relevant” or “useful” ITAPC
state information. The number of control lines in the Standard bus is proportional
to the logarithm of the number of instructions, while in direct control scan (BIST)
designs, the number of control lines may be directly proportional to the number of
scan chains (number of BIST registers). For example, a scan design with 8 scan
chains (including boundary scan) may need as many as 13 control lines from the
ITAPC (8 lines for 2-way muxes and 3 lines for register controls. On the other hand
a Standard bus only requires 7 control lines (4 lines for 10 instructions and 3 lines
for 5 useful ITAPC states).

4.4.1.2 Compact and Sub-compact Buses

To reduce the number of control lines in a bus-based design, we propose two other
bus schemes referred to as the Compact bus (CB) and the Sub-compact bus (SCB).
Instead of transmitting useful ITAPC states and instructions on separate sets of
control lines, this information is compressed and transmitted on one set of control
lines. The three buses, Standard, Compact and Sub-compact, provide tradeoffs
between the number of control lines and the implementation cost of the control
hardware. Fig. 4.5(a) and (b) show examples of the Standard and Compact (or

Sub-compact) buses, respectively, for the scan testable circuit Demo. Compared to
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the direct control scheme which requires 7 control lines, the Standard bus has 6
control lines (3 lines to transmit 5 instructions and 3 to transmit 5 useful ITAPC

states), while the Compact and Sub-compact buses both have 4 control lines.

A
IR | 3
TMS L
| C ‘,IA'"3 II
6
B
A
T
TMS ‘ /
— = C 1s
B

(b)

Figure 4.5: Bus-based control for scan testable Demo: (a) Standard bus; (b) Com-
pact or Sub-compact bus.

4.4.2 Formalizing the Bus-based Control Scheme

Let R = {R1,Ra,...,R.} (D = {d1,ds,...,dy}) denote a set of n test registers
(decoders). Decoder d; is associated with register R;. The registers include boundary
scan registers and functional registers that have been modified with test capabilities.
Each register has a local controller associated with it. The local controller contains
a decoder, and may additionally contain a k input multiplexer and configuration and

mode flip-flops. The multiplexer is used for configuring scan chains and the flip-flops
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are used in BIST designs to select the operational modes of the test registers. The

relevance of these flip-flops have been presented in the previous chapter (Chapter 3).

4.4.2.1 Creating Decoder Descriptions

The first step in implementing a test bus consists of creating an initial symbolic
description (symbolic cover) of each decoder. In this description, there are two
symbolic input variables, Z and &, and possibly zero or more binary valued in-
put variables, 21,%,...,%(,), where bi(d;) denotes the number of binary valued
inputs corresponding to decoder d;. The binary valued variables correspond to the
functional Id signal (for functional registers with load and hold capability) and the
outputs of the configuration and mode flip-flops (in BIST designs). The symbolic
variable T (S) represents the instructions (relevant tap states). | Z | (| S |) rep-
resents the number of symbols corresponding to variable Z (S) and corresponds to
the number of instructions (relevant tap states). Each decoder has binary outputs
01,03, . - -, Oho(d;), Where bo(d;) corresponds to the number of binary valued outputs of
decoder d;. The outputs of a decoder control the associated register, and if present,
the multiplexer and the configuration and mode flip-flops.

The number of implicants (rows) in the initial symbolic description of a decoder
depends on | Z |,| S | and the number of binary valued inputs. For decoders with no
binary valued inputs, the number of rows is | Z | * | § |. For decoders with binary
valued inputs, outputs corresponding to instructions for which the binary valued in-
puts are care inputs must be enumerated for all possible input values. For example,
the Id signal (if present) is a care input for SAMPLE and BYPASS, and decoders dy
and d3 for Demo have 35 rows in their initial symbolic descriptions (5 rows each for
EXTEST, FSCAN1, FSCAN2 and 10 rows each for SAMPLE, BYPASS). However,
decoders di, ds and ds have no binary valued inputs and symbolic descriptions of
these decoders each have 25 rows. Table 4.3 (a),(b),(c) and (d) shows the initial sym-
bolic covers Cy, Cs, Cy and C, of decoders dy,ds,ds and dz, respectively. The symbols
in 7 and S are represented in the positional cube notation. Thus symbols EX-
TEST,SAMPLE,BYPASS,FSCAN1,FSCAN2 (dead,capDR,shift DR,updateDR,tlr)
in Z (8) are represented by 10000,01000,. . .,00001 (10000,01000,. ..,00001), respec-
tively.
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4.4.2.2 Reducing Bus Symbols

It is possible to further reduce the number of control lines in a bus-based scheme by
treating the instructions and the TAP states as one symbolic variable E. Initially the
number of values (symbols) for this symbolic variable is | Z | | S |. Our objective
is to reduce the number of symbols in E. This can be done by first determining
the control values that need to be asserted for all the decoder outputs for each
symbol. The set of control line values for all decoders corresponding to each symbol
is represented compactly by a Control Vector (CV). A CV for a design with n
decoders d;, ds, .. .,d, has Y, bo(d;) bits, where each bit can be a 0, 1 or -. Two
symbols e; and e; for which the corresponding control vectors C'V; and CV; are
compatible can be replaced by one symbol. We discuss the compatibility of CV’s as

well as techniques for symbol minimization in the next subsection.

4.4.3 Determining the Minimal Number of Bus Symbols

In reducing the number of CVs (and hence the number of bus symbols), we can
either preserve the don’t cares (Compact bus) or convert don’t cares into 1’s or 0’s
(Sub-compact bus). Preserving don’t cares in the CVs also preserves the don’t cares
in the outputs of the decoders and thus allows synthesis tools to take advantage
of them during logic minimization. Converting don’t cares into 1's or 0’s leads to
fewer symbols that need to transmitted on the bus, but reduces don’t cares available
to the logic minimization tools. We therefore consider both of these approaches to

minimize the number of CVs.

4.4.3.1 Compact Bus

If none of the decoders has binary valued inputs then creating CVs and determining
the number of distinct CVs is straight forward. CV; for ¢; is created by simply
concatenating the outputs of all decoders corresponding to e;. For example 001 —
— ———0010—-001 is a CV obtained by concatenating the outputs 001, — — —, ——,
0010—, and 001 of the decoders for R;,R;,R3,R4 and Rs, respectively, corresponding
to EXTEST and dead (see Table 4.1). The distinct CVs are found as follows.

1. Perform a lexical sort (Time complexity O(plogp)).
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Table 4.4: Illustration of symbol minimization for Compact bus

2. Determine unique CVs (Time complexity O(p)).

In the above p =| T | * | S |. However, the presence of binary valued inputs (as in
Demo) complicates the situation.

Consider the covers of two simple decoders d; and dy shown in Table 4.4 (a)
and (b). The initial CVs are 1101, —101, 01 — 1 and 01 — 1 (Table 4.4(c)). It is
obvious that there are 3 unique CVs as shown in Table 4.4(d). The modified decoder
descriptions are given in Table 4.4 (e) and (f). However consider the case when d,

has a binary input asserting different outputs for symbol e; (Table 4.4(g)).

Definition 4.2 A supercube S(C) of a set of cubes C is defined as the smallest cube

that contains all the cubes in C.

To create the CV corresponding to es, the supercube —— of —0 and —1 (outputs for
ey in dy) is concatenated to 01 (the output for e; in dy), that is, the output bit that
depends on the binary valued inputs for a certain symbol is replaced by a don’t care
in the corresponding CV. From Table 4.4(h) we see that 4 symbols are now needed
instead of 3.

The following procedure is used to determine the symbols for the Compact bus
and to create appropriate decoder descriptions for scan based designs. Minor mod-
ifications need to be made to this procedure to handle BIST designs (discussed in
Section 4.5.2.4). In the following, the cover (description) of a decoder d; is repre-
sented by C;.

procedure Create_decoders_for-CB (C1,Cs, ..., Cu){
CV = construct_.CV_CB (Cy,Ca,...,Ch)
CV = lezical_sort (CV)
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CVcp = pick_unique_CVs(CV)
for each decoder d;

Ci=modify_decoder_descriptions(C;,CVcp) }

The procedure construct-CV_CB creates C'V; by concatenating the outputs of
the decoders for symbol e; as described above. The number of symbols in the
Compact bus is equal to the cardinality of the set CV¢gp. The procedure mod-
ify-decoder_descriptions updates the decoder descriptions. This is done by replacing
one or more input symbol pairs in a decoder cover by a new symbol. For example,
two symbol pairs such as (10000 10000) and (10000 0001) in two implicants of a
decoder may be replaced by 100000.

Lemma 4.3 For scan designs, procedure Create_decoders_for-CB generates valid
decoder descriptions, i.e., the ON-sets and the OFF-sets of the decoders are or-

thogonal.

Proof : A supercube of a set of cubes C' corresponding to a symbol e; has a don’t
care in all bit positions where the cubes differ from one another. C'V; can only be
combined with C'V; if they agree in all bit positions. Assume that C'V; corresponds
to a symbol for which a set of outputs of at least one decoder, di, depend on the
binary valued input and have been set to don’t cares. Suppose there exists another
C'V; which corresponds to a symbol for which no decoder outputs depend on the
binary valued inputs and C'V; is compatible to C'Vi. Therefore, the same symbol e;
is now assigned to at least three cubes, cubeg,cube, and cube., of di by procedure
modify_decoder_descriptions. cube, has don’t cares in bit positions where cube, and
cube, differ from each other. Since a don’t care in an output bit position has no
meaning during minimizing with Espresso with the .type fr option, cube, effectively
carries no information and does not influence the minimization. However consider
the case, where C'V; also corresponds to a symbol for which the outputs of di depend
on a binary valued input. If C'V; and CV; are compatible then the validity of the
resulting decoder description depends on the outputs asserted by different logic
values of the binary valued input. For scan designs, a decoder can have at most one

binary valued input corresponding to the functional Id signal. For the set of symbols



that Id is not a don’t care the same outputs are always asserted for 0 (1) values of

ld. Therefore the above procedure always results in valid decoder descriptions. O

4.4.3.2 Sub-compact Bus

The problem of assigning 1’s and 0’s to don’t cares to obtain a minimum cover of
CVs is NP-hard. (It can be reduced to the clique-cover problem which is NP-hard.)
We transform this problem to a logic minimization problem and use Espresso in the
exact (heuristic) mode to determine which CVs can be merged together to obtain a
minimum (minimal) set of CVs.

As in the previous procedure, an output that depends on binary valued inputs

is replaced by a don’t care.

Definition 4.3 A CV is constrained if at least one of its output bits has been set

to a don’t care.

Definition 4.4 Let k; denote the set of positions in a control vector C'V; where the
bits are set to don’t cares. CV; and CV; are compatible if the two vectors have

don’t cares for all bits in k; U k; and are bit-wise compatible for all other bits.

Consider the CVs in Table 4.4(h). 01 — — is a constrained CV because its last bit
depends on the binary valued input in decoder d;. 01 — — is incompatible with all
the other CVs because the last bit of 01 — — is incompatible with the corresponding
bit of the other vectors. A minimum cover of the CVs is given in Table 4.5(a). The
modified covers of the two decoders are shown in (b) and (c). Note that if we had
merged 01 — — with 0101 (Table 4.5(d)), we would obtain an incorrect cover of d;
as shown in Table 4.5(f) since cubes (— e; —1) and (0 e; —0) conflict.

The following procedure is used to determine the symbols for the Sub-compact
bus and create appropriate decoder descriptions.

procedure Create_decoders_for_.SCB (Cy,Cy,...,Cn){
CV = construct_.CV_SCB (C,,C,,...,Cy)

CV = lezical_sort (CV)

CV = pick_unique_-CVs (CV)

C = create_espresso_description (CV)

M = espresso (C)
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Table 4.5: Illustration of symbol minimization for Sub-compact bus

CVscp = create_Sub-compact_codes (M,CV);
for each decoder d;
C; = modify_decoder_descriptions (C;,CVscg); }

Procedure construct_CV_SCB creates the set CV of CVs for the Sub-compact bus
using the concept of compatibility in Definition 4.4. The procedure create_espresso_file
maps the CV compaction problem into a logic minimization problem and creates the
cover, C, of a logic function. This function has p input variables, wherep=|Z | % | S |,
corresponding to the p initial CVs. There are p minterms in the ON-SET of this
function and each minterm has exactly one bit position set to 1 and the others set
to 0. Each pair of incompatible CVs, C'V; and CV;, are represented by a minterm
in the OFF-SET of this function. This minterm has 1’s in bit positions 2 and
7 and 0’s in other positions. Espresso is then run to obtain the minimal cover
M of the logic function. Each row in this cover defines a maximal set of CVs
(maximal compatibles). An initial CV may be compatible with more than one
maximal compatible with different impacts on the eventual implementation cost of
the decoders. The procedure create_Sub-compact_codes assigns initial CVs to the
maximal compatibles such that a minimal number of don’t cares are converted to
0’s or 1's, and creates a set of compacted CVs. The following is an outline of this

procedure.

1. Start with the empty set of compacted CVs. Obtain a set of compacted CVs

from the set of CVs that can be uniquely assigned.
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2. Pick a CV, CV; from the set of unassigned CVs. Evaluate the cost assigning
CV: to each of the maximal compatibles in terms of the number of -’s that

need to be changed to 1’s or 0’s.

3. Assign C'V; to the maximal compatible which results in least cost and update

the set of compacted CVs.

4. Repeat this steps 2 and 3 until all CVs have been assigned.

Lemma 4.4 The procedure Create_decodersfor.SCB generates valid decoder de-

scriptions.

Proof : Similar to proof of Lemma 4.3. O

For Demo the number of CVs for the Compact (Sub-compact) bus is 16 (10).
Thus the width of the I'TB for both cases is 4. Table 4.6 presents the initial CVs and
compacted CVs for the Compact and Sub-compact buses and the caption explains
each of the columns in the table. Table 4.7 shows the modified decoder covers for

the Sub-compact bus. Note that the symbols have been represented as s; for clarity.

4.4.4 Comparison with the Hudson Control Scheme

Hudson et al. [44] have proposed a test control scheme for BIST designs. In this
approach all functional registers are implemented as BILBO registers, i.e, they have
the following modes of operation : load (normal), shift, PG and SA. Two control lines
TST0and TST1 are routed to all the registers and used to control the following three
modes : load, shift and PG/SA. The mode of operation of a specific BILBO register
in a test session is controlled by a BIST mode-control bit that is associated with each
BILBO register. All registers are configured in a single scan chain and the mode-bit
precedes each register in the scan chain. The mode-control bits are initialized along
with all BILBO registers by means of the scan chain. In this section we refer to this
control scheme as the Hudson approach. Fig. 4.6 is a model of this approach. This
figure shows the BILBO registers with the mode-control bit associated with each

register.
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10000 10000 0010010010------ 0010010010------ ey e; 0010010010-00-00 ey €4
10000 01000 -11-11-110------ -11-11-110------ ey ey -11-11-110--1--1 ey ey
10000 00100 10110110100----- 10110110100- - - - - es ez 10110110100----- ez €3
10000 00010 0010010011------ 0010010011------ eq e4 0010010011------ €4 €4
10000 00001 ---==-mncmvcronn comcccccaonm s es es 0000000000------ es €3
01000 10000 0000000000- ----- 000000 0000- - - - - - e¢ eg -10-10-100------ es €s
01000 01000 -10-10-100------ -10-10-100------ er e7 10010010000 ---- er €
01000 00100 10010010000----- 10010010000- - - - - es es 0000000001------ es €7
01000 00010 0000000001- ----- 0000000001------ eg €9 101---1010110010 ey e5
01000 00001 ---------------- -- 0--0--0------- E1g €5 ==2=== 1010110110 €10 €3
00100 10000 --0--0--0------- 001---0010-00-00 eq1 e1o es
00100 01000 --0--0--0------- -11----110--1--1 ey2 ey €s
00100 00100 --0--0--0------- 101---1010110010 e43 e10 €s
00100 00010 --0--0--0------- ------ 0010-00-00 eq4 €10 es
00100 00001 --0--0- -0 -------------- 110"-1”1 €15 €10 €s
00010 10000 001---0010-00-00 ------ 1010110110 eq6 €11 €,
00010 01000 -11----110--1--1 €12 €2
00010 00100 101---1010110010 €13 €y
00010 00010 001---0010-00-00 €11 €1
00010 00001 ------=emvcmuunnm es €3
00001 10000 ------ 0010-00-00 €14 €
00001 01000 ------- 110--1--1 €1s €2
00001 00100 ------ 1010110110 €16 €10
00001 00010 ------ 0010-00-00 €14 €
00001 00001 ---------------- es €3

(a) (b) (c) (d) (e) (f)

Table 4.6: Determining the CVs for Demo: (a) initial symbols represented in po-
sitional cube notation; (b) initial CVs; (c) compacted CVs where don’t cares have
been preserved; (d) correspondence between symbols for the Compact bus and initial
symbols in (a); (e) compacted CVs where 1’s and 0’s have been assigned to don’t
cares and; (f) correspondence between symbols for the Sub-compact and initial sym-

bols in (a).
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mode flip-flop

SDI
—_— BILBO Register
decoder
- BILBO Register
Control
lines scan chain
< ' SDO
i BILBO Register =
TST1
TSTO

Figure 4.6: The Hudson control scheme

70



€1 001 €1 001 €] 0010- - € 00- - €1 00
es -11 | ex-11 | ey -110- - eg -1- -eg-1
ez 101 | e3 101 | e3 10100 | -eg--- | - e3--
es 001 | e4 001 | e4 O011- | -
es 000 | es 000 | es 0000- | O

eg -10 | eg-10 | eg -100- les-1- | 1es-1
er 100 | er 100 | e7 10000 | O

€g 000 g 000 €g 0001- 1 Eg -1- 1 € -1
eg 101 | eg--- | e 10101 | O ez -0- | 0 e7 00
€10 --- | €lp---| €10 10101 1 €7 -1- 1 er -1

(a) (b) () (d) (e)

Table 4.7: Symbolic decoder covers for Sub-compact bus for Demo : (a) Cy; (b) Cs;
(¢) Cg; (d) C3; (e) Ca.

We will now show that our bus based scheme for BIST designs also needs two
control lines and at most a single mode control flip-flop under the following restric-

tions.
1. The IEEE 1149.1 boundary scan hardware is not present on the chip.
2. Reconfigurable registers are not considered.
3. A BIST register can have at most two functions in test mode : PG and SA.

The starting point of our bus-based scheme is the control table in Section 4.2.2.2. We
enumerate the logic values for register control lines for all pairs of relevant TAP states
and instructions. Each TAP state and instruction pair defines an “input condition”
for which certain actions occur in the registers. These actions are captured in the
form of register control line values. In the case where the TAP controller is absent
we have to define an exhaustive set of “input conditions”. These conditions are (1)
normal (mode), and (2) test (mode). The test mode is a “macro” condition which
represents the following : (1) shift, (2) hold, and (3) BIST operation. Therefore

the following constitute an exhaustive set of input conditions : (1) normal, (2)
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shift, (3) hold, and (4) BIST operation. Two control lines are needed to distinguish
between these conditions. The mode control bit is additionally used to distinguish
between the PG and SA modes in BIST operation. Therefore if the restrictions
enumerated above are met then our bus-based approach also requires two control
lines. However, our approach can also deal with functional load/hold, PG /hold
and SA/Hold signals since our decoder synthesis is geared to the requirements of
individual registers. Moreover we also support complex data transport paths and the
internal test controller. Thus though our scheme reduces to the Hudson approach
in terms of number of control lines in the bus and the single mode control flip-flop,
it is much more powerful in terms of supporting complex BIST TDMs. Note that
even if restrictions (2) and (3) were removed, our control scheme would still require
two control lines, while the Hudson approach does not even consider reconfiguration

and modes other than PG and SA.

4.5 The Internal Test Bus Encoding Problem

[nput (output) encoding is the process of assigning codes to symbolic input (output)
variables of a function such that a cost function measuring the optimality of a two-
level or multi-level implementation is minimized. Fig. 4.7(a) presents a model of our
encoding problem for scan designs. In this model, the ITAPC is represented by a
shell corresponding to its state transition table (STT). IR (instructions), and p_s
(present state) are symbolic input variables while tms (test mode select) is a binary
valued input variable. n_s (next state) and E are symbolic output variables. The
symbolic variable £ corresponds to the set of symbols that are transmitted over a
Compact or Sub-compact bus. Decoders are represented in this model by the shells
of their symbolic covers (truth tables).

Each decoder has the following inputs: (1) a symbolic variable E , corresponding
to the internal bus, and possibly (2) a binary valued variable ld. The internal test
bus is k bits wide and is an input to all n decoders. Fig. 4.7(b) models a design
with a Standard bus. Each decoder has two symbolic input variables / and S, which
represent the instructions and the relevant TAP states. The relevance of the block
[ R_code_translator is explained in Section 4.5.2.4. The only difference in this coding

model for BIST designs is the possible presence of additional input/output variables

72



1inputs outputs

E |id|reg & mux

E (bus) | controls

Y Decoder 1

IR tmg p_s|n_s| E .
(bus) Jinputs outputs

E |udfreg & mux
/k (bus] |controls

mmﬂuné Decoder 2
L’nputs outputs

E |ldfreg & mux
(bus] |controls

ITAP controller

(a) D_ecoder n

IR code 4 | Decoder1
<iranslator | 15 akeg & mux
IR | controls

Inputs ~ outputs

tmg p_s|n_s| S

‘L * Decoder 2

I |S |id|reg & mux
controls

inputs ~ outputs

R
| |Decodern

I S [1d|reg & mux
controls

ITAP controller

(b) inputs  outputs

Figure 4.7: (a) Model of the Compact or Sub-compact bus; (b) Model of the Stan-
dard bus
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for the decoders. Note that there is no longer an input from the IR to the ITAPC.
This is because the information of the IR is transmitted explicitly. Our objective is
to encode the symbols transmitted on the ITB such that the overall controller cost,
i.e., cost of the ITAPC as well as the distributed decoders, is minimized.

We have developed heuristic techniques to obtain “good” encodings for the ITB.

These include

1. Encoding the ITB to minimize the implementation cost of the distributed

decoders without considering the ITAPC (input encoding).

2. Encoding the ITB to minimize the implementation cost of the ITAPC without

considering the distributed decoders (output encoding).

3. Encoding the ITB to minimize the implementation cost of both the ITAPC
and the distributed decoders (input-output encoding).

In all these techniques, the objective is to minimize the number of product terms in

a two-level realization of the ITAPC and/or the decoders.

4.5.1 Background and Motivation

The input encoding problem for a decoder (or a logic function) with a symbolic in-
put variable, consists of assigning binary codes to the symbols of the input variable
to minimize the implementation cost of the decoder. For two-level implementation,
this problem has been solved efficiently by representing the input symbols in the po-
sitional cube notation and then by obtaining a minimal multiple-valued (MV) cover
of the decoder [42]. MV minimization groups together input symbols that assert the
same outputs. The resulting MV cover imposes certain constraints (face-constraints
or input constraints) on the codes of the symbols which, if satisfied, guarantee the
existence of a binary cover with the same cardinality as the MV cover. Techniques
for satisfying the face-constraints either use a graph-embedding approach [42, 43, 45]
or a dichotomy-based approach [46]. Heuristic encoding techniques try to satisfy as
many constraints as possible given a bound on the number of bits.

The input encoding techniques in [42, 43, 45, 46] encode input symbol(s) for a

single logic block. However, our input encoding problem is different because we are
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concerned with minimizing the implementation cost of multiple distributed decoders,
where logic sharing between the blocks is not possible.

In [42] the state assignment problem of FSMs with binary valued outputs, has
been formulated as an input encoding problem. This problem is solved by simultane-
ously minimizing the multiple-valued input functions related to each next state and
each of the binary outputs and then by satisfying the induced face constraints on the
present state symbols. In this approach, the encoding of the next state symbol (out-
put encoding) is not taken into account. [45] and [43] address the problem of encod-
ing the next state symbols. These approaches use the ON-SETs of some next state
symbols as the DON’T-CARE-SET of other symbols to reduce the cardinality of the
FSM symbolic cover. This leads to the creation of bit-wise dominance constraints
on the codes of the output symbols. The resulting encoding problem now consists
of simultaneously satisfying a set of face and dominance constraints. [47] introduces
additional types of constraints (disjunctive and nested dominance-disjunctive) be-
tween output symbols and presents an exact procedure for FSM encoding. In [46] a
dichotomy-based approach is used to satisfy a set of face, dominance and disjunctive
constraints.

Most of the research on output encoding has been confined to the case where the
primary outputs are binary valued. In our case, the primary outputs of the ITAPC
is a symbolic variable E and we are concerned with determining an efficient encoding
of E to minimize the cost of the ITAPC. Due to its exhaustive nature, the procedure
presented in [47] cannot be applied in practice. In [46] the entire output part (next
states and binary or symbolic primary outputs) of the FSM is treated as one symbolic
variable. Thus there may be as many as | S | * | £ | output symbols, for a STT
with a single symbolic primary output variable E and state variable S. Moreover an
exponential time procedure is used to extract an exhaustive set of dominance and
disjunctive constraints. Thus no fast and efficient heuristic techniques exist for our

output encoding problem.
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4.5.2 Encoding Algorithms
4.5.2.1 Input encoding - Minimizing Decoder Cost

Given a set of face constraints to be satisfied, efficient heuristic graph-embedding
techniques exist [43] for encoding a set of symbols. Therefore, we concentrate on
the problem of encapsulating the final cost of the distributed decoders in a set of
input constraints to be satisfied. Let IC; be the set of input constraints obtained for
decoder d; using Espresso [48, 49]. One option is to satisfy the constraints generated
for all the decoders, i.e., satisfy ZC = U™, IC;. The problem with this approach is
that all constraints are weighted equally. Suppose a constraint ic; is a member of
the constraint set of two decoders while z¢; occurs in the constraint set of only one
decoder. Then ZC does not reflect the fact that satisfying ¢¢; is more important than
satisfying 7c;. The logical solution to this problem is to weight each constraint in
ZC by its frequency of occurrence in the constraint set of different decoders. Thus
ic; is given a weight 2 while ic; is given a weight 1. The potential drawback of
this approach is that it evenly weights constraints for different decoders. Consider
a decoder with z outputs that has a constraint ic; and another with y outputs that
has a constraint ic;, where > y. In an encoding, ic; may be satisfied while ¢¢c; may
not. The unsatisfaction of i¢c; may lead to the addition of one (or more) product
term(s) for the first decoder (over a minimal cost implementation) and the resultant
increase in total cost may be more than that due to unsatisfaction of ic;. We have
formulated the following weight functions where w; is the weight of a constraint
1¢; € IC.,

wi=Y W;|W; =0 if ic; ¢ IC; else W; =1 (4.3)

j=1
wi=Y W; | W; =0 if ic; ¢ IC; else W; =2([logs | E []4bi(d;))+bo(d;) (4.4)
3=1
In Equation 4.3 each constraint in ZC is weighted by its frequency of occurrence in
the constraint set of different decoders. In Equation 4.4 each constraint is weighted

by the number of inputs and outputs of each decoder, where [log, | E || + bi(d;) is

the total number of inputs of decoder d;. The factor of 2 is used because the PLA
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area of a logic function is computed as (2xi+ 0)*p, where 4, o and p are the number
of inputs, outputs and product terms, respectively.
The input encoding scheme is summarized in the following procedure.
Procedure inp_enc_with_constraints (Cy,Ca, . .., Cy,E){
for each decoder d;
IC; = extract_input_constraints (C;,E)
IC = assign-weights (ICy,ICy,...,IC,,E)
E = encode_considering-weights (ZC,E)
return(E) }

The input constraints for each decoder is obtained by eztract_input_constraints.
The procedure assign_weights creates a set of distinct constraints obtained from
the various decoders and assigns weights according to one of the weighting func-
tions 4.3 or 4.4 given above. Finally, the symbols are encoded using the procedure
encode_considering_weights that prioritizes the satisfaction of constraints based on
their weights. This procedure calls a heuristic face-embedding algorithm used in
NOVA [43].

An example of the input encoding problem applied to Demo for the Sub-compact
bus is given in Table 4.8. In column (a), the multiple valued cover of each decoder
is given. Each row of a decoder that has more than one 1 in its input plane defines
an input constraint. In column (b) the input constraints for each decoder are given.
For example the row 0010001010 100 for d; results in the input constraint e, e7, eg.
The set of weighted constraints corresponding to the weighting function given in
Equation 4.3 is given in column (c). A set of encodings for the 10 symbols is given
in column (e) and in column (d) a Y (N) specifies whether the corresponding input
constraint is satisfied (unsatisfied). These codes are inserted into the descriptions
of the decoders and the final boolean cover for the different decoders is given in
column (f). Note that even though one constraint was unsatisfied, the size of the
final cover for each decoder still equals the size of the corresponding multiple-valued
cover. This can be explained as follows.

Consider one of the constraints that was unsatisfied. ea, e7, eg obtained form d,
is unsatisfied. But note that es,er, e, €1o is satisfied and there exists the following

implicant in the symbolic cover of dy (Table 4.7(a)) e;o — — —. If this implicant
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0010001010 100
0100010000 010
1111000010 001
&

0010001000 100
0100010000 010
1111000000 001
Cs

0010001011 10000
0100010000 01000
1111000000 00100
0001000100 00010
0000000011 00101
Ca

- 0000000010 100
1 0000111100 010
- 0100000000 010
- 0000000001 101
Cy

- 0000000011 10

- 0100000000 01

1 0000111100 01
Cs

{ (es, e, ¢9),
(€2, €6),

(61, €3, €3, €4, 69)}
I1Cy

{ (es,er),

(623 eﬁ)s

(€1, €z, €3,€4)}
1C5

{(63, €7, €y, 610),
(62? 65)1

(€1, €2, €3, €4),
(64, 58)1

(es, €10) }

1C,

{ (653 €6, €7, 63)}

1C,
{(69, 610),

(65: €6, €7, 68)}

I1C5

(e2,€q) 3
(e1,e2,€3,€4) 2
(es, €6, €7,€8) 2
(6 610)

(€3, er,e9) 1

e1, €2, €3, €4, €9) 1
(esseq) 1

(63, €7, €g, 810) 1
(eq,e8) 1

KRR Z

e; 0101
e2 0001
ez 0000
eq 0100
es 0111
€ 0011
e7 0010
€g 0]10
€g 1000
€10 1010

-0-- 100
-0-1 010
--0- 001
C

-0-- 100
-0-1 010
--0- 001
Cs

-0-- 10000
-0-1 01000
--0- 00100
1--- 00101
-1-0 00010
Ci

-1--- 100
10-1- 010
--001 010
---1- 001
Ca

-1--- 10
--001 01
10-1- 01
Cs

Table 4.8: Encoding the Sub-compact bus for Demo using only input constraints:
(a) multiple valued covers of the decoders; (b) input constraints for each decoder;
(c) weighted constraints; (d) constraints satisfied by the encoding in (e); (f) minimal
binary covers of the decoders.

is now considered as e;q 1 — —, then es, €7, €9, €10 is an input constraint instead of

es, €7, €g. During logic minimization Espresso is able to use this fact and the size of

the cover remains 3.

Lemma 4.5 The number of product terms in a minimal encoded cover of a decoder

d; may be equal to the number of product terms in a minimal symbolic cover even if

an initial constraint ic; € IC; is not satisfied by an encoding.

Proof : Follows from the preceding discussion.

78



4.5.2.2 Output encoding - Minimizing ITAPC Cost

In this section we present two heuristic output encoding procedures. The first is a
fast greedy heuristic that attempts to reduce the number of 1’s in the output of the
ITAPC. It is based on the premise that reducing the number of 1’s in the output
(the ON-SET) of a logic function leads to smaller implementation cost. The second
procedure considers only dominance constraints and is based on decomposing the
problem of encoding two symbolic output variables of a logic function into the prob-
lem of recursively encoding a logic function with one symbolic output variable. We
consider only dominance constraints because efficient procedures are not available

for obtaining other types of output constraints.

e Encoding based on output symbol frequencies

Procedure out_enc-with_freq (STT,E) {
F = determine_frequency_of_occurrence (STT,E)
E = sort_output_symbols (F,E)
E = assign_-weighted_codes (E)
return(E) }

Procedure determine_frequency_of-occurrence determines the number of rows (the
frequency) in which a particular symbol occurs in the STT of the ITAPC. The
procedure assign_weighted_codes processes the sorted symbols in E and assigns the
first symbol in E the all 0’s code. The other symbols in the list are then assigned
codes with progressively higher weights. The number of 1’s determines the weight
of a code. All codes of a particular weight are assigned before moving to a higher
weight code.

An example of codes assigned by this procedure in Demo for the Sub-compact
bus is given in Table 4.9. The symbols are sorted in non-increasing order of their
occurrences in the STT of the ITAPC (Table 4.9(a)). The frequency of occurrence
of the symbols in E and the codes assigned to them are given in Table 4.9(b) and (c),
respectively. The number of product terms in an encoded STT of the ITAPC has 32
product terms. As a comparison, the frequency of occurrences of the symbols in a

multiple valued cover Table 4.9(d) and the weighted codes are given in Table 4.9(e).
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e; || 76 0000 | 3 0001 [ 0101 1000
es || 56 0001 [ 2 0010 | 1001 0100
es || 10 0010 | 3 0000 | 1111 1110
es || 6 0100 |2 0100 | 1010 1011
ero || 2 1000 [ 1 1000 | 0010 0011
eg || 2 0011 [ 1 0011 | 1101 0000
eg || 2 0101 {1 0101 | 1000 1101
ez || 2 0110 (1 0110 | 0011 1010
es || 2 1001 ({1 1001|1110 0111
eq || 2 1010 (1 1010 | 0100 0001
a b c |d e f g

Table 4.9: Encoding based on frequency for Sub-compact bus in Demo: (a) symbols
sorted in non-increasing order; (b) frequency of occurrence in the STT ; (c) weighted
code; (d) frequency of occurrence of symbols in a MV cover of the STT; (e) weighted
codes for the frequency in (d); (f) and (g) codes assigned randomly.

This code results in 38 product terms in the encoded STT. This implies that com-
puting the frequency of occurrence of the symbols in the STT rather than in a MV
cover leads to better results. Two random encodings of the symbols are provided for
comparison in columns (f) and (g). The encoded covers both have 42 product terms.
Thus our encoding strategy produces FSMs with 24% less area product terms than

random encoding.

¢ Encoding based on output constraints

Procedure out_enc_with_constraints (STT,E) {
C = create_symbolic_cover (STT)

E = encode_using_dominance_constraints (C,E)
return(E)}

Procedure create_symbolic_cover creates a cover, C, by deleting the column corre-
sponding to the next state entry in the STT of the ITAPC. Thus C represents the
cover of only the output logic of the ITAPC. encode_using-dominance_constraints

calls procedures in NOVA to generate a set of dominance constraints and to encode
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e 0000
€y > e 1000
€3 > €5, €1 1101
eq > € 0100
€5 > €4, €32, €1 1100
(&1 > €3, €5, €1 1110
er > es, es, e | 1111
eg > €5, €1 0010
Eg > €7, €1 1010
€10 > €3, €1 0110
a b c

Table 4.10: Output encoding using constraints for Sub-compact bus in Demo: (a)
the set of symbols in the Sub-compact bus; (b) list of dominance constraints; (c) the
codes assigned.

E. The decoder and ITAPC STT descriptions are then modified with the encoded
symbols.

Table 4.10 shows the codes assigned to the symbols of the Sub-compact bus for
Demo. An encoded cover of the ITAPC has 32 product terms. Thus this approach
produces an ITAPC with 23.8% less product terms a random encoding. Table 4.10(b)
lists the dominance constraints extracted by the output encoding procedure. Each
pair of symbols defines a dominance constraint and there are 19 dominance con-
straints. The number of constraints satisfied by the encoding are 16. It is easy to

check that the constraints eg > es,eg > €7 and e;g > e3 are not satisfied.

4.5.2.3 Input-Output encoding - Minimizing Combined ITAPC and
Decoder Cost

¢ Encoding with input bias

Procedure io_enc_with_inp_bias (Cy, Cy, ..., Cy,STT,E) {
E = inp-enc_with_constraints (Cy,C,...,C})
e = symbol_with-max_freq (STT)
E = flip-bits (E,e)
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return(E) }

to_enc-with_input_bias is essentially a procedure oriented towards satisfying input
constraints. B is the encoding resulting from an encoding procedure satisfying input
constraints. The procedure symbol_with-maz_freq returns the symbol that occurs the
most in the STT of the ITAPC. The corresponding symbol in E is then assigned the
all 0’s code by flipping all 1’s in the initial encoding to 0’s. The corresponding bits in
the code for all other symbols are also flipped. This procedure does not compromise
on the input encoding procedure and at the same time attempts to reduce the size of

the ITAPC by reducing the number of 1’s in the most frequently occurring symbol.

e Encoding satisfying input-output constraints

Procedure io_enc_with_constraints (Cy,Cs, ..., Cy,STT,E){
for each decoder d;
IC; = extract_input_constraints (C;,E)
IC = assign_weights (ICy, ICs,...,IC,,E)
C = create_symbolic_cover (STT)
E = encode_using_io_constraints (ZC,C, E)
return(E) }

In this procedure, first a set of weighted constraints are obtained. Then the cover
of a logic function is created by deleting the next state column in the STT of the
[TAPC. Finally, the dominance constraints among the output symbols in the cover
C are extracted and a heuristic procedure (in NOVA) is used to satisfy the set of
dominance constraints and the weighted input constraints. The procedure gives
higher priority to satisfaction of input constraints over output constraints.

Table 4.11 shows the codes that are assigned by this procedure to the symbols of
the Compact bus for example Demo. The encoded STT has 36 product terms and the
costs of each of the decoders is equal to the 1-hot coded cost. The input constraints
are the same as a simple input encoding case and the dominance constraints are the
same as a output encoding case. An analysis of the codes reveals that 13 out of 14

input constraints and 15 out of 19 output constraints were satisfied.
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er | 0000
ey | 0100
ez | 0001
eq | 0101
€5 0010
s 0110
44 0011
es | 0111
eq | 1001
e1p | 1011
a b

Table 4.11: Encoding satisfying input-output constraints for Sub-compact bus in
Demo: (a) the symbols; (b) the code assigned to these symbols.

4.5.2.4 Encoding the Standard Bus

The encoding algorithms presented above encode symbols corresponding to one sym-
bolic variable. The extension to encoding two symbols for the Standard bus is simple.
For input encoding, symbolic minimization is performed once for each decoder and
the set of constraints for each of the symbolic variables can be obtained and assigned
weights. Then each variable is encoded separately to satisfy the corresponding set
of input constraints.

The boundary scan standard mandates that the EXTEST and BYPASS instruc-
tions be assigned the all 0’s and all 1’s code, respectively. However, an encoding
satisfying the input constraints may not assign these codes to EXTEST and BY-
PASS. A coding constraint for only one instruction can be easily satisfied by bit-
flipping, but satisfying the coding requirements for two instructions may not always
be possible. We solve this problem by using a code translator between the instruc-
tion register and the standard bus. EXTEST and BYPASS are assigned the all s
and all 1’s code and the remaining codes are assigned decimal code values start-
ing form 1. The code translator performs a one-to-one mapping between the codes
assigned to the instructions in the instruction register and the codes that need to

be transmitted on the bus. The cost of this translator is negligible as compared to
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the savings accrued by minimizing the cost of the decoders. A model of the code
translator labeled [R_code_translator is shown in Fig. 4.7(b).

QOutput (input-output) encoding for the standard bus can use either of the two
output (input-output) encoding procedures presented. Note that output and input-
output encoding algorithms are relevant only for encoding symbols in §. The sym-
bols in Z are always encoded using the procedure inp_enc_with_constraints. Recall
that the procedures for creating the Compact and Sub-compact buses created valid
decoders for scan designs. For BIST designs the same procedures can be used with
the restriction that the symbol e; corresponding to the RBIST instruction and the
run-test/idle state cannot be combined with any other symbol if any register has a
functional Id signal as well as mode and/or configuration flip-flops. In the absence of
this restriction there may be a conflict in the control line settings (leading to invalid
decoder descriptions) if e; is merged with a symbol e; for which the Id signal is a

care input.

4.6 Experimental Results

We have implemented prototype software for CONSYST which synthesizes the control
circuitry for various scan and BIST TDMs. In this chapter the results for various
scan designs have been presented. The results of running CONSYST on several BIST

designs will be reported later.

4.6.1 Characteristics of Example Circuits

CONSYST was run on several example datapaths. The characteristics of these ex-
amples are presented in Table 4.12. Entries Regs, BSRs, ld and Chains represent
the total number of scannable registers (including boundary scan), the number of
boundary scan registers, the number of functional registers with load control lines
and the number of scan chains in a design, respectively. Entry in (out) specifies the
number of input (output) boundary scan registers. Entry Muzes provides informa-
tion about the multiplexers that are used to reconfigure the scan chains. The entries
in this column are of the form z(y), where = refers to the number of 1-bit y input

multiplexers. Table 4.13 records the bit widths required by the different buses for
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Example Regs | Bsks | ld | Chains muxes

in | out
demo 5 211 |2 3 2(2)
case3 6 1|1 |2 5 2(2)
scanb 6 212 |2 9 1(2),2(3),1(4)
uscdpAs_10 || 10 [ 2 | 2 |3 4 2(2)
partscan 17 (1311 |2 6 4(2)
large 8 2 23] 9 [12.20).14)
uscdpfs 20 | 20 [10| 1 |5 7 5(2),2(3)

Table 4.12: Characteristics of example circuits

Example STB CB SCB
[ TT]]S]]bits [ [E]]bits [ [ £]] bits

demo 5 5 6 16 4 10 4
case3 7 5 6 22 5 9 4
scanb 11 5 fi 34 6 13 4
uscdp-fs_10 5 6 19 5 10 4
partscan 5 6 25 5 12 4
large 11 5 7 34 6 13 4
uscdpfs 20 || 9 5 il 28 5 14 4

Table 4.13: Number of symbols and bits required by different buses

each design. The entries STB, CB and SCB in Table 4.13 represent the number of
symbols (| / | and | § |, or | E |) and the number of bits (bits) required for the
Standard, Compact and Sub-compact buses, respectively. From the table we see
that the Sub-compact bus results in a large reduction of the number of symbols as

compared to the Compact bus.

4.6.2 Detailed Results for an Example Circuit

Tables 4.14 and 4.15 record the number of product terms (pt), PLA area (pla) and
standard cell layout area (area) for register decoders and the ITAPC in example

cased for the Sub-compact bus. The rows labeled dy,ds,...,ds correspond to the
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1-hot RND IC oW

pt | pla || pt I pla | area || pt | pla ] area || pt | pla | area
dq 3 | 5l 5 55 | 439 || 5| 55 | 2.74 || 6 | 66 | 4.80
dy 4 | 72 || 6 72 | 481 || 7| 8 | 400 || 8 | 96 | 6.02
ds 4 | 76 | 6 8 | 4.22 || 4 | 52 | 147 || 5 | 65 | 3.54
dy 3| 54 | 5 60 | 458 || 3 | 36 | 147 || 5 | 60 | 3.04
ds 3 | 5l 5 55 | 230 || 4 | 44 | 132 || 4 | 44 | 1.86
ds 2| 32 4 40 1.86 3 30 1.14 4 40 1.63
dtot 336 360 | 22.16 301 | 12.14 371 | 20.89
TAP 46 | 1104 | 57.57 || 36 | 864 | 56.54 || 37 | 888 | 46.92
Tot 1464 | 79.73 1165 | 68.68 1259 | 67.81
Yored na| na | na 20.4 | 13.8 14.0 | 14.9
CPU 0.83 2.07 2.13

Table 4.14: Results of 1C and ow algorithms for Sub-compact bus for example circuit
cased

ocC I1COZ ICOC
pt | pla | area || pt | pla | area || pt I pla | area
dq 6 | 66 3.25 || 5| 55 | 2.87 || 4 | 44 2.46
dy 7| 8 | 499 || 7| 84 | 473 || 5| 60 3.05
ds 4 [ 52 | 2.85 || 4 | 52 | L.71 || 4 52 2.06
dy 3 | 36 1.85 || 3| 36 | 1.55 || 3 36 1.39
d; 4 | 44 | 222 |[ 4 | 44 | 1.07 || 3 33 1.02
dg 3| 30 1.52 || 3 | 30 | 0.92 || 2 20 0.97
dtot 312 | 16.68 301 | 12.85 275 | 10.95
TAP || 32 | 768 | 43.49 || 38 | 912 | 50.85 || 33 | 792 | 46.98
Tot 1070 | 60.17 1213 | 63.7 1067 | 57.93
Yored 26.9 | 24.5 17.1 | 20.1 27.1 | 27.3

CPU 29.43 3.38 69.62

Table 4.15: Results of oc, 1coz and 1coc algorithms for Sub-compact bus for ex-
ample circuit cased
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4.6.3 Summary of Results for Example Circuits

Tables 4.16, 4.17 and 4.18 (Tables 4.19, 4.20 and 4.21) provide a short summary of
the results of applying the encoding schemes to the various examples for the Sub-
compact (Standard) bus. The columns have the same meaning as in Tables 4.14
and 4.15. As noted in the preceding subsection, the input and input-output oriented
algorithms (1¢,IC0Z and 1c0C) are effective in reducing both the PLA and gate layout
areas of the decoders. Similarly, the output and input-output oriented algorithms
(ow,0c,1c0z and 1c0C) are effective in reducing the cost of the ITAPC. For some
examples 1COC produces lower cost decoders than 1C. This is because the set of
codes assigned to the symbols are different in these two cases. The difference in
codes arises because 1COC also attempts to satisfy output constraints.

Decoder and ITAPC areas for the Compact bus were also obtained. In most cases
the results were inferior to the Sub-compact bus because of the large differences in the
number of symbols transmitted over these buses (see Table 4.13). Therefore we do
not consider the Compact bus as a viable scheme for scan testable designs. However,
a couple of experiments for BIST testable designs indicate that the difference between
the number of symbols in the two buses is small and the Compact bus may lead to
smaller implementation costs as compared to the Sub-compact bus. For the Standard
bus, the symbols corresponding to I are always encoded satisfying input constraints.

The results in Tables 4.19, 4.20 and 4.21 show that: (1) the PLA areas for the
decoders are the same for all encoding schemes, and (2) OW seems to produce much
better layout areas for the decoders than the input oriented encoding schemes such
as 1C. For 1C both I and S are encoded satisfying input constraints. An analysis of
the input constraints reveals that for all examples there are no input constraints for
S. Since there are no input constraints 1¢ randomly encodes the symbols of S. In
oW, I is assigned the same codes as in IC. Additionally, S is encoded with minimal
weight codes. This reduces the number of 1's in the inpul of the decoders. For
all examples [ is always encoded such that all constraints are satisfied. Thus the
number of product terms (and hence PLA) areas for decoders for all approaches are
the same. However, the number of gates (and therefore the layout area) depends on

the number of literals in the input cubes of a two-level minimal solution. The codes



assigned to S by OW result in less literals than a random encoding (assigned by IC),
thereby minimizing the layout area.

Table 4.22 records the average reductions in total decoder (%red-dec), ITAPC
(%red-TAP) and combined decoder and ITAPC (%red_tot) PLA and layout areas
for the different encoding schemes. These results are reported for the Sub-compact
(scB) and Standard (STB) buses. For the Sub-compact bus, 1COC is most effective
in reducing the area of the decoders and oC (OW) results in greatest reductions of
the PLA (layout) areas of the ITAPC. The overall reduction of area for an encoding
algorithm depends on the relative sizes of the decoders and the ITAPC. It is expected
that for a design with a large number of scannable registers, where the total decoder
area is larger than the ITAPC area, input oriented algorithms should perform better
than output oriented algorithms. For the Sub-compact bus the results show that
1coc produces control hardware that has on average 34% (24%) less layout (PLA)
area than random encoding. For the Standard bus ow (1c0Zz) results in the largest
reduction in decoder (ITAPC) area. An overall reduction of 26% (16%) is obtained
by ow (1coz) for layout (PLA) area.

4.6.4 Comments

The results presented in the various tables show that for different types of buses,
depending on the number and the complexity of the registers and scan chains, certain
encoding schemes produce better results than others. For the Sub-compact bus, 1cOC
appears to perform well for all the examples because it is able to reduce both the
cost of the decoders and the ITAPC. However, for large designs, the CPU time may
prove to be a bottleneck, specially since the controller synthesis system may have
to evaluate the controller costs for a large family of testable designs. In that case,
a faster encoding algorithm is needed. From the experimental results it is seen that
1c0Z performs reasonably well for a wide range of designs and is much faster than
1coc. Therefore 1c0Z may be used when a good and fast solution is needed. For
Standard bus, ow performs well for a wide range of designs and is also reasonably

fast.
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|Examp.| | pla | area | pla | area || pla | area |
RND 1C oW
dtot || 339 | 18.83 || 219 | 8.86 || 328 | 18.76
TAP || 936 | 52.05 || 768 | 49.47 || 792 | 45.00
Tot | 1275 | 70.88 | 987 | 58.33 || 1120 | 63.76
Y%red || n.a. n.a. 22.6 | 17.7 || 12.2 | 10.0
demo CPU 0.78 3.90 2.05
ocC 1COZ ICOC
dtot || 363 | 26.08 || 219 | 8.33 || 219 | 8.95
TAP || 768 | 50.62 || 864 | 38.06 || 864 | 42.95
Tot || 1131 | 76.71 | 1083 | 46.39 || 1083 | 51.9
%red || 11.3 | -8.2 15.1 | 34.6 || 15.1 | 26.8
CPU 27.56 4,75 81.37
RND IC ow
dtot || 360 | 22.16 | 301 | 12.14 || 371 | 20.89
TAP || 1104 | 57.57 || 864 | 56.54 || 888 | 46.92
Tot || 1464 | 79.73 | 1165 | 68.68 || 1259 | 67.81
%red | n.a n.a 20.4 | 13.8 || 14.0 | 14.9
case3 CPU 0.83 2.07 2.13
oC ICOZ ICoC
dtot 312 16.68 301 | 12.85 || 275 | 10.95
TAP || 768 | 43.49 || 912 | 50.85 || 792 | 46.98
Tot || 1070 | 60.17 || 1213 | 63.7 || 1067 | 57.93
Y%red || 26.9 | 24.5 17.1 | 20.1 || 27.1 | 27.3
CPU 29.43 3.38 69.62
RND 1C ow
dtot || 630 | 47.74 | 519 | 31.92 || 579 | 42.89
TAP || 1326 | 71.70 || 1248 | 64.13 || 1040 | 51.21
Tot || 1956 | 119.44 || 1767 | 96.05 || 1619 | 94.10
%red || n.a. n.a. 9.7 | 19.9 || 17.2 | 21.2
scanb CPU 1.25 28.62 6.98
ocC 1COZ ICOC
dtot || 605 | 41.57 || 519 | 31.26 || 401 | 20.24
TAP || 1014 | 58.20 || 910 | 56.00 || 858 | 49.21
Tot || 1619 | 99.77 | 1429 | 87.25 || 1259 | 69.45
Ored || 17.2 | 16.5 || 26.9 | 27.0 || 35.6 | 41.9
CPU 92.00 34.15 283.37

Table 4.16: PLA and layout areas for Sub-compact bus for examples demo, cased

and scan6
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[Examp. ] ” pla I area || pla | area | pla | area ]
RND 1C ow
dtot 679 | 37.89 604 | 37.95 679 | 43.98
TAP || 1032 | 66.67 || 1176 | 54.45 840 | 46.39
ot || 1711 | 105.56 || 1780 | 92.4 1519 | 90.37
Y%red || n.a. n.a 4.0 12.5 11.2 | 14.3
uscdp CPU 1.48 6.25 2.58
fs_10 ocC 1COZ ICOC
dtot || 619 | 32.19 612 | 40.63 407 | 15.39
TAP T44 | 43.57 792 | 48.62 912 | 52.26
Tot || 1363 | 75.76 || 1404 | 89.25 || 1319 | 67.55
Y%ored || 20.3 | 28.2 17.9 15.5 22.9 36.0
CPU 32.28 7.00 129.35
RND 1C oW
dtot || 1270 | 98.37 725 | 33.79 | 1189 | 86.04
TAP || 1008 | 55.57 816 | 58.16 864 | 45.60
Tot || 2278 | 153.94 || 1541 | 91.96 || 2053 | 131.64
Y%red | n.a. n.a. 324 | 40.2 9.9 14.5
partscan | CPU 2.60 22.67 4.17
ocC ICOZ 1COoC
dtot || 1074 | 84.24 725 | 34.48 725 | 35.41
TAP 912 | 56.76 792 | 46.84 864 | 60.41
Tot || 1986 | 141.02 || 1517 | 81.32 || 1589 | 95.83
Y%red || 12.8 8.4 33.4 | 47.2 28.0 37.8
CPU 61.00 23.75 231.17
RND IC oW
dtot || 1038 | 65.11 977 | 57.12 | 1067 | 64.7
TAP || 1326 | 73.52 | 1196 | 71.37 || 1040 | 49.27
Tot || 2364 | 138.63 || 2173 | 128.49 || 2107 | 113.97
%red || n.a n.a 8.08 | 7.31 | 10.87 | 17.79
large CPU 2.90 61.95 8.62
ocC ICOZ ICOC
dtot 983 | 55.81 977 | 57.85 756 | 37.41
TAP || 1014 | 58.22 936 | 59.68 | 1300 | 64.75
Tot || 1997 | 114.03 || 1913 | 117.53 || 2056 | 102.16
%red || 15.52 | 17.74 | 19.07 | 15.22 | 13.02 | 26.3
CPU 95.28 64.72 302.92

Table 4.17: PLA and layout areas for Sub-compact bus for examples uscdp_fs-10,
partscan and large
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Iﬁxamp. | " pla | area || pla | area || pla Larea.—l
RND IC ow
dtot || 1504 | 108.81 || 888 |[37.35 | 1728 | 127.36
TAP | 1222 | 56.84 | 1014 | 53.49 || 1014 | 54.60
Tot 2726 | 165.65 || 1902 | 90.84 || 2742 | 181.96
%red || n.a. | n.a. || 30.23 | 45.16 || -5.87 | -9.80
uscdp CPU 3.42 42.03 5.58
fs_20 ocC 1COZ ICOC
dtot || 1331 | 85.64 | 888 |[38.25 | 901 | 39.85
TAP || 936 | 56.81 | 1040 | 46.47 || 1040 | 55.06
Tot 2267 | 142.54 || 1928 | 84.72 || 1941 | 94.90
Y%red || 16.84 | 13.95 | 29.27 | 48.85 || 28.80 | 42.7
CPU 91.73 42.86 407.43

Table 4.18: PLA and layout areas for Sub-compact bus for example uscdp_fs_20

4.7 Summary

In this chapter we have described both direct and bus-based approaches for control-
ling on-chip test resources. We have focused specifically on the bus-based approach.
In particular, three different bus schemes have been proposed and we have analyti-
cally shown that a bus-based approach may result in a significant reduction in the
number of control lines as compared to a direct control approach. Five different
techniques for encoding the symbols transmitted over a bus have been formulated
and it has been experimentally shown that the standard cell and PLA layout areas
of the test control logic is reduced by 34% and 24% (26% and 16%), respectively,
for a Sub-compact (Standard) bus as compared to random encodings. We observe
that the efficacy of the different encoding schemes depend on the type of bus used

as well as the relative sizes of the decoders and the integrated TAP controller.
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Examp. | | pla | area || pla | area || pla | area |
RND IC oW
dtot || 325 | 9.11 || 291 | 9.09 | 291 | 6.59
TAP || 483 | 35.70 || 460 | 31.57 || 460 | 29.29
Tot 785 | 44.81 || 751 | 40.66 || 751 | 35.88
%red || n.a. | na. || 43 | 9.3 4.3 | 19.9
demo CPU 0.98 2.00 2.03
0cC ICOZ 1ICoC
dtot || 291 | 10.97 || 291 | 8.32 || 291 | 10.97
TAP || 460 | 28.36 || 414 | 29.20 || 437 | 28.66
Tot 751 | 39.33 || 705 | 37.52 || 728 | 39.63
Y%red || 4.3 | 12.2 || 10.2 | 16.3 73 | 11.6
CPU 2.58 2.08 7.48
RND 1C ow
dtot || 501 | 19.90 || 343 | 10.38 || 343 | 7.90
TAP || 506 | 31.29 || 437 | 33.40 || 460 | 29.36
Tot || 1007 | 51.19 || 780 | 43.78 || 803 | 37.26
%red | n.a | na || 22.5 | 14.5 || 20.2 | 27.2
case3 CPU 1.26 2.20 2.55
ocC ICOZ ICOC
dtot || 343 | 13.18 || 343 | 10.36 || 343 | 10.64
TAP || 437 | 29.76 || 414 | 28.25 || 437 | 32.54
Tot T80 | 42.94 || 757 | 38.61 || 780 | 43.18
Y%red || 22.5 | 16.1 || 24.8 | 24.5 || 22.5 | 15.6
CPU 10.02 3.15 17.17
RND IC ow
dtot || 704 | 25.65 | 569 | 13.03 || 569 | 11.37
TAP || 500 | 32.71 || 450 | 28.81 || 500 | 30.34
Tot || 1204 | 58.36 || 1019 | 41.84 || 1069 | 41.71
%red || n.a. | n.a. || 15.4 | 28.3 || 11.2 | 28.5
scanb CPU 1.95 6.22 T2
ocC ICOZ ICOC
dtot || 569 | 15.48 || 569 | 13.11 || 569 | 11.31
TAP || 475 | 28.50 || 450 | 29.78 || 500 | 29.71
Tot || 1044 | 43.98 || 1019 | 42.89 || 1069 | 41.02
%red || 13.3 | 24.6 || 15.4 | 26.5 || 11.2 | 29.7
CPU 17.62 7.6 28.12

Table 4.19: PLA and layout areas for Standard bus for examples demo, cased and
scanb
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|Examp. | “ pla [ area “ pla | area || pla | area |
RND IC ow
dtot || 655 | 25.37 || 543 | 17.08 || 543 | 12.85
TAP || 506 | 35.65 || 437 | 31.32 || 460 | 32.60
Tot || 1161 | 61.02 || 980 | 48.40 || 1003 | 45.45
%red || n.a. | n.a. || 15.6 | 20.7 || 13.6 | 25.5
uscdp CPU 2.07 3.01 3.45
fs_10 0oC ICOZ ICOC
dtot || 543 | 20.84 || 543 | 16.38 | 543 | 17.97
TAP || 437 | 31.90 || 414 | 28.96 || 437 | 32.32
Tot || 980 | 52.74 || 957 | 45.34 || 980 | 50.29
Y%red || 15.6 | 13.6 || 17.6 | 25.7 || 15.6 | 17.6
CPU 9.27 3.4 15.15
RND IC ow
dtot || 1229 | 37.06 || 1011 | 28.97 || 1011 | 25.14
TAP || 506 | 32.39 || 483 | 32.72 || 460 | 29.96
‘ot || 1735 | 69.45 || 1494 | 61.89 || 1471 | 55.10
%red || n.a. | n.a || 13.9 | 10.9 || 15.2 | 20.7
partscan | CPU 3.4 5.28 5.11
ocC ICOZ ICOC
dtot || 1011 | 41.46 || 1011 | 31.70 | 1011 | 27.73
TAP | 437 | 30.15 || 437 | 26.98 || 460 | 31.45
Tot || 1448 | 71.61 || 1448 | 58.67 || 1471 | 59.18
%red || 16.5 | -3.1 || 16.5 | 15.5 || 15.2 | 14.8
CPU 13.53 5.4 21.8
RND IC ow
dtot || 1248 | 37.23 || 1151 | 30.5 || 1151 | 23.46
TAP || 525 | 35.97 || 475 | 35.07 || 500 | 29.69
Tot || 1773 | 73.20 || 1626 | 65.57 || 1651 | 53.15
%red || n.a. | n.a. 83 | 104 || 6.9 | 274
large CPU 4.65 8.47 9.05
ocC 1CO7Z 1COC
dtot || 1151 | 37.62 || 1151 | 30.43 || 1151 | 31.10
TAP || 475 | 28.09 || 450 | 27.81 || 475 | 30.75
Tot || 1626 | 65.71 || 1601 | 58.24 || 1626 | 61.86
Y%red | 8.3 | 10.2 || 9.7 | 204 | 83 | 15.5
CPU 19.55 9.65 30.02

Table 4.20: PLA and layout areas for Standard bus for examples uscdp-fs-10,
partscan and large



[Exa,mp. I ” pla I area " pla | area || pla | area ]
RND IC oW
dtot || 1553 | 48.68 || 1260 | 32.95 || 1260 | 23.78
TAP || 550 | 35.82 | 475 |31.73 || 500 | 29.33
Tot || 2103 | 84.50 || 1735 | 64.68 || 1760 | 53.11
%red || n.a. | n.aa. || 17.5 | 23.4 |[ 16.3 | 37.1
uscdp CPU 4.23 11.08 11.50
fs-20 ocC 1C0Z ICOC
dtot || 1260 | 40.39 || 1260 | 32.12 || 1260 | 33.07
TAP || 475 | 28.70 || 450 | 27.83 || 475 | 33.05
Tot || 1735 | 69.10 || 1710 | 59.95 || 1735 | 66.09
%red || 17.5 | 18.2 | 18.69 | 29.1 17.5 | 21.79
CPU 11.83 12.15 11.98

Table 4.21: PLA and layout areas for Standard bus for example uscdp_fs_20

Bus IC ow ocC ICO%Z iIcoc
pla |area || pla | area || pla | area || pla |area || pla | area
%red_dec |[24.1]39.3|-0.3]-0.51 7.3 | 9.1 ||23.9]37.9 | 35.1]|55.7
scB | %red_TAP || 11.0 | 5.7 |[ 18.3]20.8 || 22.3 [14.2 /20.8 | 18.6 || 16.4 | 13.6
%red_tot |[18.1]22.3] 9.9 [11.9 || 17.3 | 14.4 || 22.6 | 29.7 || 24.4 | 34.1
Av_CcPu 23.14 4.19 56.2 24 .41 203.17
Y%red_dec || 17.5|28.8 || 17.5|44.8 || 17.5| 5.7 || 17.5|29.7 || 17.5 | 26.4
Y%red-TAP || 10.3| 4.3 || 7.9 | 11.8 | 10.8 [ 13.9 || 15.1 | 16.8 || 10.1 | 8.5
STB | %red_tot |[ 14.0 | 16.8 || 12.6 | 26.6 || 14.0 [ 13.1 || 16.1 | 22.6 || 13.9 | 18.1
Av_CPU 5.34 5.61 11.13 5.97 17.26

Table 4.22: Comparisons of the various encoding schemes for Sub-compact and
Standard buses




Chapter 5

Controlling ITEEE 1149.1 Compliant Scan and
BIST Designs

5.1 Introduction

[n Chapter 3 the test control architecture and control models for various scan and
BIST registers were presented. Implementational details of the local controllers
associated with these registers as well as techniques for implementing test buses and
the integrated test controller (ITAPC) were detailed in Chapter 4. In this chapter
we will describe in detail how various scan and BIST TDMs are controlled in a
testable chip. We will also show how these testable chips are controlled at the board
level. Essentially this chapter integrates the concepts presented in the preceding
two chapters and shows how they are applied in controlling specific scan and BIST
TDMs

5.2 Controlling Scan Designs

As mentioned in Section 3.2.1 of Chapter 3, scan TDMs are classified as full, balanced
partial and unbalanced (general) partial scan [35]. Any of these TDMs can be
incorporated in a circuit by the scan system SIESTA [35, 31]. To evaluate the
control requirements of each of these TDMs, a high level abstraction of the control
characteristics of these TDMs is necessary. This high level model is provided by

generic test plans.
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Definition 5.1 A generic test plan specifies the behavior (modes of operation) of
various modules of a design corresponding to a specific TDM without specifying in-

dwvidual control lines and their values.

Thus generic test plans can capture the control requirements of different TDMs
before these TDMs are actually embedded in a design. The modules are also specified
at a very high level, e.g., scan registers and non-scan registers. The test plans shown
in Figs. 5.1(b) 5.2(b) and 5.3(b) are generic plans for full scan, balanced partial scan

and unbalanced partial scan TDMs, respectively.

5.2.1 Controlling Full Scan TDM

Fig. 5.1(b) is the generic test plan for the full-scan circuit shown in Fig. 5.1(a). The
generic plan for a full scan design has two states, s1 and s2. In state sl all registers
are in the shift mode of operation and in state s2 all registers are in the load mode.
Scan registers in full scan designs are controlled from the ITAPC via the test bus and
the local decoders. A scan instruction (e.g., FSCANI) is first shifted into the IR,
then the ITAPC goes to the shift DR state (under the control of the MMC) to shift
in the first test vector. The ITAPC may occasionally transit to the pause DR state to
enable the MMC to replenish (read out) its serial data transmission (receive) buffer.
All scan registers are in the hold mode in the pauseDR state as it corresponds to a
“dead” state.

The MMC is responsible for counting the number of clock cycles that are needed
to shift-in/out a test vector/result from the chip. Thus there are no on-chip shift
counters. After shifting in a test vector the ITAPC moves through at least three in-
termediate states (ezit! DR, updateDR and selectDR) before entering the capture DR
state. The intermediate states are dead states and therefore the scan registers are
in the hold mode between the shift and capture phases. Fig. 5.1(c) shows the part
of the TAP STG that is used for shifting-in/out the scan vectors and for applying
the full scan tests. The arrows drawn with thicker lines show the sequence of states
traversed in applying full scan tests. The labels beside some of states specify the

mode of operation of the scan registers.
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Figure 5.1: (a) Full scan circuit; (b) generic test plan for full scan circuits; (c) TAP
controller activation sequence for controlling full scan circuits
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5.2.2 Controlling Balanced Partial Scan TDM

Fig. 5.2(b) is the generic test plan for a balanced partial scan circuit shown in
Fig. 5.2(a). In state sl all scannable registers are in the shift mode. Non-scan
registers that have load/hold control can be in any mode of operation. In state s2
all scan registers must be in the hold mode and all non-scan registers must be in the

load mode. Each balanced circuit is characterized by its sequential depth, d.

Definition 5.2 The sequential depth of a kernel (balanced or unbalanced) is the

mazimum number of registers in any path from input to output.

All non-scan registers must be in the load mode (scan registers in hold mode) for d
clock cycles to enable test vectors to propagate to the inputs of a scannable register
(primary output of the circuit). Finally, in state s3 the scan registers must be in the
load mode to capture the results. The non-scan registers can be in any mode (don’t
care).

From the test plan it is clear that the non-scan registers must be in the load
mode between the shift and capture phases. This requirement is easy to meet for
non-scan registers that have no load/hold control line - they are always in the load
mode of operation. The test control mechanism must enforce this requirement for
non-scan registers that have load/hold control lines. In normal mode these lines are
either controlled from primary inputs or from a functional controller on the chip.
Load/hold signals connected to primary inputs are controlled in test mode from a
boundary scan register.

For scan designs, signals from a functional controller are controlled in test mode
by a transparent register (has same logic as a boundary scan register) that is inserted
between the functional controller and the datapath. This scannable register is also
used to observe the functional controller outputs. The register(s) (boundary scan
or datapath-control interface register(s)) that control the load/hold control lines is
(are) part of every scan chain and at the end of the shift phase, the register(s)
contains the enabling value for all load/hold control lines. In effect, the non-scan
registers are in the load mode at all times during test application (states s2 and s3
of the test plan) and are in an indeterminate state during shift.

The 1-bit input boundary scan register shown in Fig. 4.2(a) has no update flip-

flop. However an update flip-flop is needed if this boundary scan register is used
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to control tri-state buffers where indeterminate values during shift may damage the
buffers. If none of the input boundary scan registers have a separate update flip-
flop, then the kernels can be tested by the ITAPC in the pauseDR state for one or
more clock cycles based on d, the sequential depth of the kernel(s) under test. If
d < 3 then the normal transitions of the ITAPC from the shiftDR to the capture DR
state (through exit1DR, updateDR and selectDR) will be sufficient to propagate the
results to the scan registers. Then the results are loaded into scan registers in the
captureDR state. Note that since the intermediate TAP states are “dead” states,
the non-scan functional registers with load/hold lines will be kept in the load mode
of operation. Fig. 5.2(c) shows the sequence of activation of the ITAPC states that
are used for applying these tests.

If any of the input boundary scan registers have an update flip-flop the control
values will not be valid until the update DR state. Thus applying multiple clocks in
the pauseDR is no longer a viable option. In this case, the ITAPC has to remain
in the run-test/idle state for d — 1 clock cycles. Since the ITAPC transits through
the selectDR state on its way to the captureDR state, an additional clock cycle is
obtained. This results in a total of d cycles being applied. Since the run-test/idle
(and selectDR) state is a “dead” state for scan designs, all scan registers will in the
hold mode and all non-scan registers will be the load mode. Fig. 5.2(d) shows the
states of the ITAPC that are activated in applying tests for the case where some of
control lines are not valid until update DR.

The number of clock cycles that the ITAPC spends in either the pause DR state or
the run-test/idle state is controlled by the MMC. Note that during the application
of these scan tests all registers are driven by the TCK signal. In an ideal scan
test scenario, FCK should be used to load test results so that some delay faults
can be detected. However since shiftDR and capture DR states are separated from
one another by at least three intermediate states, the one cycle normal mode clock

application is not possible.

5.2.3 Controlling Unbalanced Partial Scan TDM

Fig. 5.3(b) is the generic test plan for the unbalanced partial scan design shown in

Fig. 5.3(a). This is the most general form of partial scan. In state s1 of the test plan
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the non-scan registers are in hold mode while the scan registers are in shift mode. In
state s2 all registers are in load mode. For balanced partial scan TDMs the state of
non-scan registers during shift is immaterial, but for unbalanced partial scan TDMs
these registers must hold during shift mode.

Combinational logic is needed to control the load/hold control lines for non-
scan registers. Since the control lines are either PIs (hence are boundary scanned)
or are outputs of a functional controller (cut by a boundary scan type register)
we have a simple mechanism whereby the load/hold control line is controlled by
augmenting the 1-bit boundary scan register with an AND gate. Implementations
of augmented 1-bit boundary scan registers are presented in Figs. 5.4(a) and (b),
where an AND gate is inserted between the output of the scan (update) flip-flop
and the output multiplexer. A single flip-flop boundary scan register has only a
scan flip-flop whereas a double flip-flop boundary scan register has both a scan and
an update flip-flop. One input of the AND gate is connected to the output of the flip-
flop whereas the other input is connected to the control line s; of the local decoder.
51 is a 1 in captureDR and is a 0 otherwise. Thus when the ITAPC is in shiftDR
and the dead states, a 0 is asserted on the load/hold line of the non-scan registers.
This keeps these registers in the hold mode. At the end of the shift (for single
flip-flop boundary scan registers) or after update DR (for two flip-flop boundary scan
registers) we ensure that a 1 is present in the scan or update flip-flop. Since s; is a
1 in captureDR and a 1 is also present in the scan or update flip-flop, the non-scan
registers are set to the load mode. Note that a 0 may be also shifted in the scan or
update flip-flop and applied to the load/hold line to check for a stuck-at 1 on this
line.

The presence of dead states between shift DR and capture DR complicates the con-
trol problem. The hardware modification to the boundary scan registers described
above solves the control problem of the non-scan registers that have load/hold con-
trol. However the problem of controlling non-scan registers that have no load/hold
control needs to be addressed. First a hold mode is added to these registers. The
load /hold control for all such registers is driven by combinational logic which imple-

ments the following logic function:

f=SAMPLE + BY PASS + captureDR (5.1)
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Definition 5.3 A session test plan is composed of the test plans for a set of

kernels that can be tested concurrently.

A session boundary is characterized by shifting out (in) the results (seeds) for
the old (new) session. A kernel can have multiple test plans executing in different
sessions. For example, a memory structure (RAM/ROM/CAM) can be tested in
multiple test sessions, where each session corresponds to one of the steps in a memory
test algorithm. The shift-in/shift-out process at session boundaries not only carries
data to initialize registers but also control information to mode and configuration
flip-flops. Kernels can have unequal test lengths. The optimal scheduling of unequal
test length kernels have been addressed by various researchers. Tests for kernels
that have large test lengths may be split across multiple sessions. Thus when a shift
out is performed, the state of the PGs and SAs for kernels that have not completed
their test process is stored and then restored when registers for the next session are
initialized.

In BIST designs we may incorporate an on-chip test counter. In Section 5.4
we show that it is advantageous to incorporate this on-chip test counter for certain
configurations of chips on a board. This counter is on the scan chain and is initialized
at the beginning of a session. The counter starts down-counting in the run-test/idle
state and asserts a signal fest_complete on terminal count. The test_complete signal
is an input to the ITAPC and the run-test idle state is transmitted on the ITB when
test_complete is not true and “dead” is transmitted otherwise. All BIST registers
perform their appropriate functions when the RBIST instruction is loaded and the
run-test/idle state is transmitted on the internal test bus. When test complele is
asserted, all BIST registers go to the hold mode. The (test channel in the) MMC
services the chip after a certain interval. lest_complete can additionally be used to
interrupt the MMC to process the on-chip data. In the run-test/idle state, the test
counter, BIST registers and all other functional registers are driven by FCK. Fig. 5.6
illustrates an ITAPC with a test counter. Combinational logic is used to detect all
zeros and generate the test_complete signal. Cy generates the control signals for the

test counter.
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5.4 Overview of the Test Process for Multiple
Chips on a Board

We assume that a number of chips with boundary scan hardware will be present
on a board. These chips can be connected in a number of configurations to an on-
board MMC. In the simplest configuration all the chips are connected in a single
ring (i.e., daisy chained with the TDO of one chip connected to the TDI of the
other) and there is only one TMS and TCK signal connected to all the chips. This
case corresponds to the situation where the MMC has only one test channel. More
complex schemes are possible where the chips can be connected in two or more rings
with a TMS line servicing each of the rings. If the TDI is common to all the rings
then the resulting configuration can still be handled by the test channel described
in [10]. Separate TDI lines to each of the rings can only be accommodated when
multiple test channels are present in the MMC.

Figs. 5.7(a) and (b) show examples where a number of chips on a board are
connected in different configurations. Fig. 5.7(a) shows n chips connected in a single
ring. The TMS and TCK lines are common to all chips. Fig. 5.7(b) shows a number
of chips connected in a number of rings. All the chips in a ring are driven by different
TMS line. The test channel in [10] drives a number of TMS lines. However only one
TMS line can be actively driven by the FSM in the test channel at a time. All the
other TMS lines are held at specific values. We assume a single test channel in the

MMC. Thus the number of rings are limited by the number of TMS lines available
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from a test channel. The TDO of the test channel is fanned out to the TDI’s of the
first chip in each ring. The TDO’s of each of the rings are connected together and
provided as input to the TDI of the test channel. This is possible because the TDO
of a chip is driven by a tristate buffer which is active only when the chip is in the
shift mode (i.e, ITAPC in the shiftDR state). Thus chips in two rings cannot be
simultaneously in the shift mode. In the following we will first focus on the single
ring configuration and show how the chips are tested via the test channel. Then we

will briefly describe how chips are tested in the multiple ring configuration.

5.4.1 Chips Connected in a Single Ring
5.4.1.1 Mandatory Boundary Scan Instructions

In the normal mode of operation, all chips have the BYPASS instruction loaded in
their instruction registers. To test interconnect, the EXTEST instruction must be
loaded in all (some) of the chips. This is accomplished by controlling the TMS signal
such that the TAP controllers in all the chips move through the set of states related
to shifting in instructions. Note that the TAP controllers for all the chips transit
through exactly the same set of states at the same time. In the shiftIR TAP state
all the chips are connected in one long scan chain and the appropriate instructions
(EXTEST for some chips and BYPASS for others) are shifted in. Then the TMS
line is controlled to shift in the appropriate test vectors to all relevant (those that
have EXTEST loaded) chips. These vectors are used to test the interconnect and
possibly some glue logic that does not have boundary scan. The EXTEST operation
can be performed simultaneously on all chips.

To set one (or more) chips in the sample mode, the test channel controls the
TMS line such that the ITAPC of all chips transit through the set of states related
to shifting in instructions. Instructions are shifted in and at the end of the shift
process only those chips that need to be in the sample mode contain the SAMPLE

instruction and the other chips contain the BYPASS instruction.
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5.4.1.2 Controlling Scan Designs

If all chips have full scan capability then all chips can be tested simultaneously. By
“simultaneous” we mean that a single shift operation is used to shift-in/out test
vectors/results to/from all chips and the results of a test vector are captured in the
same clock cycle in all chips. An instruction such as FSCAN is first loaded in all
chips, then all chips are set in the shift mode such that test vectors are loaded in all
chips. Then all ITAPC’s move to the captureDR state such that one test vector is
applied to all the chips. This process is repeated. If all vectors have been applied to
a particular chip, then an instruction shift phase is entered, whereby the BYPASS
instruction is loaded in this particular chip and the testing process resumes for all
other chips.

Now consider the case where some of the chips have full scan capability and some
of the chips have embeddings of the balanced partial scan TDM. The test vectors for
all the chips can still be loaded in a single shift operation. The TMS line now has
to be controlled (by keeping the ITAPC in the pauseDR state or the run-test/idle
state) for sufficient clock cycles such that one test vector is applied to the chip with
the largest sequential depth. This automatically applies one test vector to kernels
of other chips with less sequential depth. Full scan designs can be viewed as special
cases of balanced partial designs where the sequential depth is reduced to 0.

In fact any combination of chips with (embeddings of) full / balanced partial
/ unbalanced partial scan TDMs can be tested in the above manner. Consider
two chips Chipl and Chip2 on a board. Chipl has an embedding of the balanced
partial scan TDM with a sequential depth d while Chip2 has an embedding of the
unbalanced partial scan TDM. After the shift phase is over a test vector is loaded in
Chipl and Chip2. TMS is controlled such that a test is applied to Chipl. Depending
on the value of d, for Chip2 the test process appears as if additional dead states have
been inserted between end of shift and the capture DR state. Thus the application of
a test vector to Chipl also results in the application of a test vector to Chip2. An
alternate approach is to test the chips sequentially - each chip is tested separately
while keeping the other chip in the bypass mode. It is easy to show that (ignoring
the time required to set each of the chips in the bypass mode) testing the two chips

together (simultaneous test application) until all tests have been applied to one of
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the chips will always be less expensive in terms of test time as compared to the case

where the two chips are tested sequentially.

5.4.1.3 Controlling BIST Designs

In this case we assume that all chips on the board have BIST capability.
Case 1 : None of the chips have a test counter
Consider two chips in a board, Chipl and Chip2. The test sessions of each of the
chips are shown in Figs. 5.8(a) and (b). The test times t;,%5,%3 and %4 represent
number of clock cycles. If Chipl is tested on its own then the test channel first shifts
in seeds to initialize the PG/SAs for kernels a and b. Then the ITAPC of Chipl
is set in the run-test/idle state for ¢; clocks. The Test Counter (TC) in the Test
Channel [10] is used to keep track of the ¢; clock cycles to be applied. At the end of
this period the complete signature for kernel b and a partial signature and state of
the pattern generator for kernel a is shifted out. A shift-in is then conducted that
restores the states of the PG/SAs for kernel a and initializes the PG/SAs for kernel
¢. Chipl is then set in the run-test/idle state for t; —t; clocks. Chip2 can be tested
in a similar manner. A complete description of the test channel can be found in [10].
However when the two chips are connected in a single ring on a board then there
are 5 shift boundaries instead of the 3 individually for each of the chips (see Fig. 5.8).
At each of the boundaries the signature for all kernels that have completed test are
shifted out. The state of each PG/SA for kernels whose test are not completed are
restored and seed data for PG/SAs for kernels whose test is to be started are shifted
in.
Case 2 All chips have a test counter
If there is only one chip on a board with a dedicated test channel driving it, then
the on-chip test counter is not necessary. This is because the test channel can keep
track of the number of test vectors applied and stop the test when all patterns have
been applied.
Again consider Chipl and Chip2 on a board and assume that both have test
counters. Since t3 < t1, (see Fig. 5.9) the test counter for Chip2 can be loaded with
the value t3. Both the chips are then set in the run-test/idle state and BIST tests

are applied. Chip2 holds after t3 cycles. The test channel however allows #; clocks
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to elapse (using its Test Counter) before servicing the chips. Then the test counter
for Chipl is loaded with the value (t; —¢1). Both the chips are again allowed to run
in the run-test/idle state. Chipl holds when its counter reaches its terminal count.
However the test channel only services the chips after the test for Chip2 is complete.
Figs. 5.9(a) and (b) show the modified session boundaries for Chipl and Chip2,
respectively. This example shows how the use of test counters enables the alignment
of session boundaries and therefore reduces the number of times shift-in/shift-out is
needed. There is a tradeoff between the number of shift-in/shift-outs required and
the test application time. Reducing the number of shift-in/shift-outs reduces the
amount of support needed from the test channel. This in turn reduces the amount

of support needed by the test channel from the MMC.
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Figure 5.9: Chips on a board with test counters (a) modified session boundary
for Chipl; (b) modified session boundary for Chip2; (c) combined shift-in/shift-out
boundaries for the two chips with test counters used to align boundaries
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5.4.2 Chips Connected in Multiple Rings
5.4.2.1 Controlling Scan Designs

The multiple ring model with a single test channel driving multiple TMS lines via
buffers has no advantages over the single ring model for scan designs. This is because
the TMS line needs full support from the test channel for scan testing. Therefore

even if there are multiple rings, the test channel can only service one ring at a time.

5.4.2.2 Controlling BIST Designs

The advantage of the multiple ring model of connecting chips has advantages for
the BIST case. The test channel can initiate the test for one ring by loading up the
seeds for all the chips and the test counters with appropriate values for each of their
sessions and sets all chips in the run-test/idle state. The test channel then starts
servicing another ring. The advantage of this approach over a single ring case is that
to service one chip in a ring, only the chips in that ring have to be disturbed. Chips

on other rings can continue their tests.

5.5 Summary

In this chapter we presented techniques for controlling specific on-chip scan and
BIST TDMs. These techniques operate within our test control framework. We also
described two board level configurations for controlling a set of testable chips and
showed how the on-chip test control mechanisms can be controlled from a module

maintenance controller.
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Chapter 6

Merging Test Plan Controllers

6.1 Introduction

In Section 5.3 of Chapter 5 we showed an example datapath with a number of TDMs
embedded in the circuitry. The test plans corresponding to these embeddings were
also given. Each of these test plans requires a test controller. In this chapter we
focus on an efficient approach to implementing these controllers.

Fig. 6.1(a) shows three test controllers that control the body of three session
test plans. As defined in Section 5.3, a session test plan describes the test control
activation sequence of a set of kernels that can be tested concurrently. In the rest of
this chapter we will refer to session test plans as simply test plans. The outputs of
the controllers in Fig. 6.1(a) are multiplexed and the select line of this multiplexer
(t-muz) is controlled by a session register. This session register is part of the scan
chain and is initialized with a binary string corresponding to the test session under
execution. A chip usually has a functional controller that controls various datapath
elements. Since the functional controller and the test controllers control a common
set of datapath elements, the outputs of {-muz is again multiplexed with the outputs
of the functional controller. The select line of this multiplexer ({f-muz) is controlled
by a test mode signal (TM). This signal hands over control of the datapath to the
functional controller in normal mode and to the test controllers in test mode. TM
is generated by a decoder that decodes information from the test bus and is able to
distinguish between test and normal modes from the information transmitted over

the bus.
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State transition graphs (STGs) of the various controllers are provided for illustra-
tive purposes only. The STGs of the test controllers have a very specific structure,
i.e., there is only one outgoing arc (edge or transition) from every state and only one
incoming arc into every state. Fig. 6.1(b) shows a test controller that is formed by
merging the three separate test controllers in Fig. 6.1(a). t-muz is no longer needed
to select among the different test controllers and the output of the session register
serves as the primary inputs to the merged test controller. Finally, Fig. 6.1(c) il-
lustrates the case where the merged test controller is combined with the functional
controller [53]. Note that now ¢f_muz is also eliminated. The merged functional and
test controller has two sets of inputs, one from the session register and the other set
is the primary inputs to the functional controller.

In this chapter we focus on the problem of efficiently merging a number of test
controllers. This problem is stated as follows. Given n FSMs, M, M?*, ..., M™,
controlling the body of n test plans, obtain a minimal state merged test controller,
M™, that (after performing state assignment and logic minimization) has minimal
implementation cost in terms of product terms. These controllers have the following

properties:
e Single fan-in into and single fan-out of every state.

e The machines are temporally disjoint, i.e., only one machine is active at a time.

We solve this merging problem by sequencing the test controllers in non-increasing
order of the number of their states and then optimally merging machines one at a
time to an intermediate merged machine. The intermediate merged machine, M™,
is built by the merger of the first j test controllers, where 1 < j < n. We have
developed an A* algorithm that merges the j + Ist test controller with M™ such
that the number of implicants (product-terms) in a two-level logic implementation
of M™i+! is minimal.

This chapter is divided into eight sections. Section 6.2 walks though a simple
example to show that current state minimization techniques are inadequate for the
test controller merging problem. Section 6.3 summarizes symbolic minimization
techniques. Section 6.4 presents lower and upper bounds on the implementation
cost of merged machines. Section 6.5 formally introduces our cost function and

outlines the merger technique. Section 6.6 provides a detailed description of the A

117



| Session Reg|

Datapath Control Lines

Test Controllers SRRSO SSSECRIRSSSEONy
R RS REE RS ERIEY Merged Test &
Controllers &5
i D
z - T
i ;| c
e @ ( Re)
5 = 2
E [4}]
1 M2 s n
T =
= Functional
. o
: C)‘—FO M3 O Controller -
- : O
s 3 =
° 8 o]
X ¢ £ & <«
= 3] F o2
- O kil €3
DR oE
c a 5
= o -
- c ™ &
Functional Controller == A
%) A‘?‘ﬁﬁ (b)
™ ® Merged Test and é;_gf”
5 Functional Controllers £
= e M
£ —>
5 Session Reg
O
= Func. Controller
S |- ¢ Inputs
8
[0
a (c)

Figure 6.1: Various mechanisms for controlling a testable datapath

118



quivalent struct .
(STG’} and a State Transit; ures, a State Transition Graph
ransition Tabl " , P

e (STT). Let I = {0,71,...,4p_1} and O =

00y01y+44y0p~ ' 1
{ 0y 01y veyOp 1} represent the set of primary inputs and outputs of n FSM test
controllers, M 1 M2,..., M. Thep > [logan] input lines (variables) are common to
| ‘ y \ ; t n input symbols
il the M, The input ines are assigned values 0 or I to represent n ot =
‘ ' ‘ represents the set of

. i states of machine

3 Sh’) S‘ = {Bb, 811, (N ,3“__1} be deﬁned
E M. In general, 2 FSM can

. ¢ the next state

| Ut 2 . machine ar
r 1lleb@f D[ Bt&tes y x .-)HS and A ]x.si;Pi ented separately
h@f gl ol e
' W @@gt“’ﬂ \mwﬂ“@ L
| / ‘L:-"\" ﬂ] | il p e 1
/| ‘ LL; N | J i ’ w gl
\ i







algorithm used to merge a pair of machines. Finally, Sections 6.7 and 6.8 present
results and a summary of this chapter, respectively. An abridged version of this

chapter appears in [54].

5.2 Motivation

A FSM can be represented by two equivalent structures, a State Transition Graph
(STG) and a State Transition Table (STT). Let I = {io,i1,...,%p-1} and O =
{00,01,...,0.—1} represent the set of primary inputs and outputs of n FSM test
controllers, M*, M?, ..., M™. The p > [logsn] input lines (variables) are common to
all the FSMs. The input lines are assigned values 0 or 1 to represent n input symbols
(one symbol per FSM). S* = {s{, si,...,s},_;} represents the set of states of machine
M, where [; is the number of states in machine M i, In general, a FSM can be defined
as a 5-tuple (I, S, O, §, A), where § : I x S — S and A : I x § — O are the next state
and output functions, respectively. If the test controllers are implemented separately
and their outputs multiplexed (Fig. 6.1(a)), then each machine is implemented as
an autonomous FSM, i.e., for any machine the next state transition depends only
on the present state. We assume that machines, MY, M?,..., M", are ordered such
that L, >, > ... 2 [,.

In general, the merger of n machines with ly,ls,..., [, states produces as many
as [y # [y * ... * [, states prior to state minimization. However, the FSMs that we
target for merger are orthogonal in the sense that only one machine is active at a
time and the input values are constant throughout the activation of a particular
machine. State minimization becomes trivial for this case, since any state of one
machine can be merged with any state of another machine using an input symbol to
condition any outputs that are incompatible and to specify the next state transition.
The number of states in the merged machine is thus equal to [y, which is the number
of states of the largest machine, M'. The merged test controller state flip-flops as
well as the session register are part of a scan chain. Making the controller flip-flops
scannable enables us to (1) initialize the controller to any state, and (2) provide an
effective solution to testing the controller itself [55]. A simple scheme for testing the

controller is the Staggered Self Observation technique [55], where controller outputs
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00 s} s! 010 01 s2 s2 100 10 s3 s3 101
00 s! s} 001 01 s? 52101 10 s} s 010
00 s} s} 100 01 s3 s3 010
00 s3 sg 101

M1 M2 M3

Table 6.1: Demo

are partitioned into a number of groups and the groups are observed one at a time
in the controller flip-flops and session register.

The merger of n orthogonal machines is the process of determining a mapping
vector F consisting of n-1 components fs, f3,..., fn. Each component f; defines a
mapping between states of machines M* and M'. Any mapping F will produce a
minimal state machine. However, the minimality of next state and output logic is
not guaranteed. Consider the example shown in Table 6.1 which shows the STTs of
three machines M, M? and M3. This trio of machines will be referred to as Demo
throughout this chapter. The inputs to all three machines are ig and ¢;, and the
outputs are 0p, 01 and 0;. Input symbol 00 (01, 10) is present in all rows of the STT
of MY(M?, M?). These STTs represent incompletely specified machines, because
transitions out of a state for some input symbols are left unspecified. Note that if
each of the machines is implemented separately, then it does not matter whether
the inputs of some machine M* are left unspecified (don’t cares) or set to (symbol)
i, because a boolean (or multiple-valued) cover of each of the machines obtained by
synthesis tools will set the input bits to don’t cares. In general, some of the outputs
can be don’t cares. The STGs of the three machines are shown in Figs. 6.2(a),
(b) and (c). Now consider the case where the three machines are merged into one
machine. Let F; and F, represent two mapping vectors which lead to two different

merged machines M and MJ*. F, maps states s3, s7, s3 to sg, s, s3 and states

33,53 to 83, s}. F, maps states s2, s?, s2 to sl, s}, s} and states 3, s3 to sl, sj.
These mappings are shown in Figs. 6.2(d) and (e). The STGs of the two merged
machines are shown in Figs. 6.2(f) and (g) and the corresponding STTs of the two

merged machines are given in Table 6.2(a) and (b).
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Figure 6.2: STGs of M, M%, M*® and some merged machines
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00 s sl 010 00 s} s1 010
01 s§ s 100 01 s s3 010
10 s} s1 101 10 s} s3 010
00 s! s1 001 00 s! s. 001
01 s} s} 101 00 s} s3 100
10 s} sy 010 01 sl s3 100
00 s3 s2 100 00 s3 sg 101
01 s} s 010 01 s} sf 101
00 sl sf 101 10 s} s 101
(a) M (b) M3

Table 6.2: Merged machines for Demo

00 s§ s} 010 00 s} si 010
00 si s} 001 01 s} st 100
00 s3 s3 100 10 s s 101
00 sl s 101 00 s! sl 001
01 s s? 100 01 s} s3 101
01 s3 s3 101 10 s} s4 010
01 s s3 010 00 s} s3 100
10 s3 s3 101 01 s} s3 010
10 s} s5 010 10 s3 sg 010

00 s} s3 101
01 s} sg 010
10 s3 sp 010
(a) Input to STAMINA  (b) Output of STAMINA

Table 6.3: (a) Machine descriptions provided to STAMINA; (b) merged machine
description obtained from STAMINA

Minimum cost two-level implementations of MJ* and MJ* using a l-hot coded
state assignment have 9 and 6 product terms, respectively. A state assignment with
minimum number of flip-flops [43] results in 9 and 5 product terms for M{* and
MJ*, respectively. NOVA [43] and Espresso [48, 49] are used for state assignment
and logic minimization, respectively. F; is therefore a better mapping.

The STT of a merged machine can also be obtained by using a state minimization
tool such as STAMINA [28]. Given a machine that does not have a minimum number
of states, STAMINA provides the option of using exact (heuristic) techniques for

obtaining a minimum (minimal) closed set of compatibles that covers all the states
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of the machine. STTs of M", M* and M* are concatenated together as shown in
Table 6.3(a) and provided as input to STAMINA. This description corresponds to
an incompletely specified state machine with 9 states. STAMINA produces a state
minimal machine with 4 states which is equal to the number of states of both M
and Mj3". An analysis of the merged machine produced by STAMINA, shown in
Table 6.3(b), reveals a close resemblance to M{*. We also observe that additional
transitions for states sj and s have been specified. For example, rows 10 s} s}
010, 01 s} s 010 and 10 si s} 010 are clearly unnecessary. The effect of specifying
additional transitions is to potentially increase the cost of the FSM synthesized by
STAMINA over the straightforward mapping 7. The number of product terms for 1-
hot encoding is 9 but the number of product terms using 2 flip-flops (minimum length
state assignment) is 10. Comparing the implementation costs of STAMINA with that
of MJ*, we see that STAMINA produces a merged machine with 50% and 100% more
product terms for a 1-hot coded and minimum length state assignment, respectively.

The implementation costs for merged machines is summarized in Figs. 6.3(a) and

(b). 10
) 9 9 9
E g
e o
5 J 5
7} 5
= =
8 g
e =
© 5
* 0 N ® 0
F; F, Stamina F; F, Stamina
(a) (b)

Figure 6.3: Implementation costs of merged machines obtained by different mappings
and by STAMINA (a) 1-hot code used for state assignment; (b) minimum number of
bits used for state assignment

We have seen that different mappings influence the implementation cost of the
merged test plan controllers. It has also been shown that an existing popular tool
is inadequate for the test plan controller merging problem. The number of possible
merged machine is [Tj_, 4!/(li — ;)!. It is impractical to exhaustively generate all

merged machines, synthesize them and then pick the best merger. In this chapter
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we present a technique to find a merged machine which leads to a minimal imple-
mentation cost.
In the next section, we review symbolic minimization techniques since these

techniques are used for state assignment and input encoding of FSMs.

6.3 Symbolic Minimization

In FSM synthesis, logic minimization is usually performed both before and after
state assignment. Before state assignment, logic minimization is performed on a
symbolic (code independent) representation of the combinational component of the
FSM : the symbolic cover. The concept of a symbolic cover is a generalization of the
logic cover representation of combinational logic functions. A symbolic cover rep-
resents a symbolic function. In general, symbolic functions are switching functions
whose variables take a finite set of values. Each value is represented by a word (or
mnemonic). A symbolic cover consists of a set of symbolic implicants and a STT
for a FSM is a collection of symbolic implicants, each of which can be represented
as a 4-tuple (o7 ops ons 00), Where each element is a string of characters. (o; Fps)
represent the symbolic implicant input part and (o,s 0o) represent the symbolic
implicant output part. o; can either represent the values of binary valued primary
input variables or a symbolic primary input variable. If the FSM has p binary valued
inputs, then o; has p components, each component o7;,¢ =0,1,...,p—1, takes val-
ues from the set {0,1, —}. If the FSM has one n-valued symbolic input variable then
o; C V, where V represents (in terms of strings of characters) the set of n values
for the symbolic input variable. oo represents the values of binary valued primary
output variables. o5, ons € S represent the present and next states, respectively,
where S represents the states of a FSM in symbolic form.

In general, a symbolic implicant can represent a transition from one or more states
to a next-state under some input conditions. Therefore, there exist several symbolic
cover representations that are equivalent to each other. A minimum symbolic cover
is one of minimum cardinality. Symbolic minimization consists of finding such a
minimum symbolic cover, i.e., it is equivalent to determining a minimum sum-of-
product representation which is independent of the encoding of the symbolic strings.

The symbolic cover representation is related to a multiple-valued logic representation,
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001 1000 0100 010
010 1000 0100 100
100 1000 0100 101
001 0100 0010 001
010 0100 0010 101
100 0100 1000 010
001 0010 0001 100
010 0010 1000 010
100 0001 1000 101

001 1000 0100 010
010 1000 0100 100
100 1000 0100 101
011 0100 0010 001
010 0100 0000 100
100 0100 1000 010
001 0010 0001 100
010 0010 1000 010
111 0001 1000 101

(a) M7 (b) Minimum cover for M{"

Table 6.4: Initial and minimized multiple valued covers of M"

of choosing the binary encodings, we will use symbols (represented by a positional
cube notation) in the input field (o) of each symbolic implicant and perform input
encoding after multiple-valued minimization. Thus we perform multiple-valued min-
imization on a FSM cover where both the inputs and states are represented by the
positional cube notation (1-hot coded). Tables 6.4 and 6.5 present the STTs of M["
and MJ", respectively, along with their minimum multiple-valued covers (obtained
by Espresso in exact mode). Note that some of the symbolic implicants in a multiple
valued cover may have a null entry in the next state field (¢,s). For example, the
implicant 010 0100 0000 100 in Table 6.4(b) has a null entry (0000) in the next state
field.

In the next section, we present upper and lower bounds on the implementation

cost of a merged machine.

6.4 Bounds on Implementation Cost

Let M™ be the merged machine obtained by merging the first j test controllers.
Merging M?*' with M™ consists of determining a mapping fj41 of states of M7+!
to states of M™ such that the cost of implementing M™+! | in terms of the number
of implicants in its multiple-valued cover, is minimal. Since states of the merged
machine are the same as the states of M, the domain of mapping f;4+ is comprised

of the I;;1 states in M7*! and the range is comprised of l; states. Merging M7+
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001 1000 0100 010
010 1000 0010 010
100 1000 0001 010
001 0100 0010 001
001 0010 0001 100
010 0010 0001 100

001 1000 0100 010
010 1000 0010 010
100 1000 0001 010
111 0100 0010 001
111 0010 0001 100
111 0001 1000 101

001 0001 1000 101

010 0001 1000 101

100 0001 1000 101
(a) My

(b) Minimum cover for MJ*

Table 6.5: Initial and minimized multiple valued covers of Mj"

to M™ consists of replacing a state, sit! in the implicants of M’*! by f(sit!)
where f(s3t1) represents the state of M™ to which si*! is mapped. The modified
implicants are added to the STT of M™ to create M™i+1. Thus a STT of M™i+
has Y201 I; implicants. Note that the subscript for f has been dropped for the sake
of simplicity.

In the following discussion, M™ represents a machine formed by the merger of
some j controllers, where 1 < j < n. The STT of M™ can be represented by a
set of implicants P. The symbolic strings representing states in M™ are also the
same as those representing states in M. Therefore, for an implicant of M™, 0,5 and
Tns € {58,51,...,5}_1}. P can be split into I; slices or sets P;,i =0,1,..., (L —1).
Every implicant in slice P; has the same entry in the present state field, i.e., for
every implicant o, = s;}.

The following two theorems provide lower (upper) bounds on the number of im-
plicants in a minimal (minimum) multiple valued cover of a specific merged machine,

i.e., after a mapping vector F has been determined for merging the n test controllers.

Theorem 6.1 Given a merged machine M™, a lower bound on the number of impli-
cants in a multiple-valued cover of M™ is Yol ki, where k; is the number of distinct

next state symbols in P;.

Proof : A paradigm for obtaining the minimum number of implicants that cover a
logic function (exact minimization) consists of first determining all prime implicants

of the function and then choosing a minimum set of these prime implicants to cover
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the function. Consider a particular slice P; with k; distinct next state symbols.
This slice represents a symbolic function with the same number of input variables
and binary valued output variables as the symbolic function representing the entire
machine M™. Additionally, this slice has k; output variables representing the k;
distinct next state symbols. The number of implicants in this slice may be greater
than k;. This implies that there are some implicants with the same next state
symbol. All implicants that have the same next state symbol have different input
symbols, the same present state symbol and may or may not have the same values
for the binary output variables. We determine all prime implicants of the function
defined by P;. The input space corresponding to all present state symbols other
than the current one is assumed to be in the OFF-set of the function. For each of
the next state variables, there exists a prime implicant that covers its input cubes.
These prime implicants may additionally cover part or all of the (input cubes of
the) boolean output variables. Thus a cover for P; can be represented by a set of
k; +y prime implicants, k; of which cover the k; distinct output state variables and
y implicants have a null entry in the next state field and cover the boolean output
variables that are not covered by the k; implicants.

For the general problem of multiple-valued minimization it is possible to cover
two implicants in different slices that have the same next state symbol by the same
implicant. This happens when there exist transitions from different states to the
same next state under the same inputs. However, in merged machines created by
merging test controllers, there will never exist two transitions that go to the same
next state under the same input. That is, a prime implicant of a slice P; that covers
an output state variable s} is also a prime implicant of the entire machine and will
cover all input cubes of s} which have s; as present state entries. Thus Talk s
a lower bound on the number of implicants in a multiple valued cover of a machine
M™. This is a lower bound because Y75" k; implicants may not be sufficient to
cover all the boolean outputs. 0

If 05! ki implicants cover all the binary valued output and next state variables
of a merged machine then this lower bound is achievable. For example, for MJ",

3, ki=6 (see Table 6.4(a)) and the number of implicants in a minimum cover of
M3 is equal to this lower bound. Thus $holk; is a good lower bound on the

implementation cost of a merged machine. Fig. 6.4(a) shows the slices of MJ" as
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well as the values of k; for 1=0,1,2 and 3. Fig. 6.4(b) shows the slices of MJ* and

values of k;.

Theorem 6.2 Given a merged machine M™, an upper bound on the number of
implicants in a minimum multiple-valued cover of a merged machine M™ is ¥ 23" q;,

where g; is the number of implicants in a minimum multiple-valued cover' of P;.

Proof : Minimizing the slices individually precludes the possibility of reducing the
number of implicants that cover only boolean valued outputs. Consider the minimum
covers, M; and M, of two slices P; and P;, respectively. These slices may each have
an implicant with the same primary output part, a null entry in the next state field
and the same input (or input combination) in the primary input field. However, if
the merged machine is considered as a whole, these two implicants may be covered
by a single implicant. This implicant will have the same primary outputs and inputs
as the two implicants being covered. Additionally, the present state field will contain
the symbols of the present states corresponding to the two slices. Thus T la s
an upper bound on the number of implicants in a multiple-valued cover of M™. O

For a merged machine, it may not be possible to cover the input cubes of binary
valued outputs that have different entries in their present state field by one (or more)
implicants. In this case the minimum implementation cost of a merged machine
equals 05" ¢;. For example, for M{", Yi_o ;=9 and for M3", 3 0,q = 6 (see
Figs. 6.4(a) and (b)). Minimum multiple-valued covers of M{" and M;* also have 9
and 6 implicants, respectively (see Tables 6.4(b) and 6.5(b)). Experimental results
indicate this to be also true for a number of other examples. Therefore yhlgisa
good upper bound on the implementation cost of a merged machine.

In the next section we formally introduce our cost function.

6.5 Formulation of the Merging Problem

In merging M7t! to M™ and obtaining a merged machine M™+, we define the

following as our objective: Determine a mapping [ which minimizes e

'A minimum multiple-valued cover of slice P; is obtained by minimizing P; independently of
the other slices using Espresso in the exact mode. The input space corresponding to all present
state symbols other than s! is assumed to be in the OFF-set of the function represented by P;.
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001 1000 0100 010 |

010 1000 0010 010 } B, kp=3 Jo=3
100 1000 0001 010

001 0100 0010 001} P, kq=1 qq =1
001 0010 0001 100

010 0010 0001 100,
001 0001 1000 101}
010 0001 1000 101 | P, kg=1 g3 =1
100 0001 1000 101 _ T

slices

001 1000 0100 010}

010 1000 0100 100§ @, ko=1  qgp=3
100 1000 0100 101

001 0100 0010 001
010 0100 0010 101 | P, ky=2 gy =3
100 0100 1000 010
001 0010 0001 1007
ko = =2
010 0010 1000 010, B ke e
100 0001 1000 1013 Py kg=1 gz =1

(b)

ko

Figure 6.4: The number of implicants in minimal multiple valued covers and number
of distinct next states in slices of merged machine (a) MJ* (b) M{"
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T?i.J

g ") where ¢;"

+1 7

and ¢, are the number of implicants in minimum multiple valued
covers of slices P;7*" and P}, respectively. Note that since M™+! is formed by
adding implicants of M3*! to M™ and $1' ¢ is a constant, the above objective
is also equivalent to minimizing S0! ¢+,

Suppose the state si*! is mapped to s! under a mapping f. Let NS be the
set of distinct next states in (the implicants of) P and | N'S;” |= k. The slice
P is formed by concatenating the single implicant p, belonging to the cover of
M7+1 0 P™. Present (next) state si*! (sJ*1) in p, is replaced by s} ( f(s}*")). The
following two propositions quantify the effects of different mappings on the minimum

cover of a slice.

Proposition 6.1 If f(sit!) ¢ NS¥ then ¢;"*' — ¢;” =1.

Proof : First we will prove that ¢/"*' — ¢/ > 0. In the cover of P;”*', one
implicant will always be needed to cover the output variable representing the state
i (siﬁ‘l ). In minimizing P, the input space corresponding to primary input symbols
i+ 1,7 42,...,n and present state s} is appended to the don’t care set. The
appended implicant p, specifies that some of the boolean output functions are ON
or OFF (instead of don’t care) for the point in the input space corresponding to
input symbol j + 1 and state s}. The net effect of the addition of the new implicant
for the boolean valued outputs is a reduction in the don’t care points available for
minimizing P;”*'. Therefore the number of implicants to cover the binary valued
outputs and the outputs corresponding to 'S} next states (in minimizing P
can never be less than ¢/’. In addition, one implicant will be needed to cover
the output variable representing the state f(si*!) (since f(si*') ¢ A'S;” ). Thus
g —q >0

The additional implicant needed for covering f (si‘“) also covers any boolean
output that is ON for the input j + 1 and the state s}. The ¢ implicants in a cover
of PI™ can still be used to cover the N'S;"” next states and the rest of the ON-set of
the boolean outputs. This is possible because the inputs are represented using the
positional cube notation and any implicant which used input j + 1 as a don’t care

point for a boolean output that is now OFF for j + 1 need only drop a 1 from the
j 4+ 1 th bit position in its input field, o. Therefore ¢; ' — ¢;"7 =1. ]
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Note that if the primary inputs were not 1-hot coded, then the difference between
¢;”*" and ¢/ may be greater than 1. This is because P;" is minimized with the
binary code corresponding to the input j + 1 in the don’t care set. When j + 1
becomes part of the OFF or ON set for some of the binary outputs then the input
cubes have to be made smaller and the number of additional implicants needed may

be greater than 1.

Proposition 6.2 If f(sit) € N&" then ¢;"* — ¢/ = 0 or 1.

Proof : Follows from the proof of Proposition 6.1. 0

The basic idea behind our algorithm for optimally merging a pair of machines
M™ and M7*! is as follows. Consider a pair of states si*! and s} to be merged.
Obtain k' minimum covers of P; **' by setting o, in p, (the implicant contributed
by M3t1) to each of the states in N'S;”. Suppose ¢; "' —¢;? = 0 for a subset S;,
of NS8T. This implies that the cost of the slice P;”*' is minimized only if the
next state s7*! of s2*! is merged with one of the states in S;;. The pair ¢,z in the
subscript of § denotes that the elements of S are determined by the implicants to
which the state pair belong. If ¢/"*' — ¢/’ = 1 for all the k.7 covers, then it does
not matter how 5{,”1 is merged. Thus the merger of a pair of states imposes certain
restrictions on the merger of the next states. All pairs of states belonging to the
two merging machines are evaluated and the results are recorded. An A* procedure
is then used to determine the optimal mapping for a pair of machines. Once the
optimal mapping is found, the present and next state fields in the implicants of Mt
are modified to reflect the mapping and the implicants are added to the STT of M™
to construct M™s+1. The pairwise merge procedure is continued until all machines
are merged.

An example of how the merger of the next state influences the cost of a slice in
the merged machine is shown in Figs. 6.5(a), (b) and (c). Fig. 6.5(a) shows M™
which is formed by the merger of the first two machine in Demo. Now we want to
merge M? to this intermediate merged machine. Assume that sj is merged with
sl of M™2. Since s} belongs to slice P3, we will evaluate the cost of the resulting
slice P53 of M™ when s (the next state of sj) merges with sj and when it merges

with some other state. Fig. 6.5(b) corresponds to the first case when s} merges
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with sj. The slice P3 of M™ (shown shaded in Fig. 6.5(a)) is now augmented with
one additional implicant due to the merger of slice containing the single implicant
of M3. This slice is shown in Fig. 6.5(b). Note that in the additional implicant
added state sj is replaced by sj and the state s} is replaced by sj. This slice can
be minimized to only one implicant, i.e., g3 = 1. However consider another case
where s} does not merge with s} but merges with another state s}. The resulting
slice 1s given in Fig. 6.5(c). Multiple valued minimization of this slice results in two
implicants as shown. This example therefore illustrates the fact that knowledge of
merge information of both the present and the next states of a slice is necessary to

determine the cost of merger.

001 sp s} 010 001 s} sb 101

010 sh sb 010 Case 1 P3¢ 010 sk s} 101

001 s} sb 001 F 100 s} s} 101
001 sh sh 100 b

sh sk 111 0001 1000 101 gg =1
(b)

001 sy s} 101

Case 2 P31 010 s} s} 101

53— s} 100 s s} 101

|

011 0001 1000 101 g, =2
100 0001 0100 101

(a) (c)

Figure 6.5: Example showing how the merger of the next state influences the imple-
mentation cost of the merged machine

From Theorem 6.2 we see that by minimizing the sum of the number of implicants
in slices of the merged machine we are guaranteeing an upper bound on the number
of implicants in a multiple valued cover of the entire merged machine. This premise
is similar to state assignment programs that consider only input constraints [42]
and guarantee that the number of implicants in a boolean cover of a state encoded
machine is upper bounded by the number of implicants in a multiple-valued cover
of the machine. Our results indicate that our cost function does indeed have a very

strong correlation to the actual implementation cost. In almost all cases the number
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of implicants in minimum multiple valued covers of the merged machines equals the
sum of the number of implicants in minimum multiple-valued covers of the slices.
In the following section, we will present in detail the A* algorithm that we use

to optimally merge a pair of machines.

6.6 The Merge Procedure

We have developed cOMPOSER (COMPact cOntroller SynthesizER), a program that
merges a number of test controllers to create the STT of a merged test controller
with the minimal number of product terms in its multiple-valued cover. The core
of COMPOSER is an A" algorithm called MERGE that optimally merges a pair of
controllers. MERGE is called n — 1 times by COMPOSER to merge n test controllers.

6.6.1 Preprocessing

Prior to a call to MERGE to merge M’*! and M™, a preprocessing phase is exe-
cuted. In this phase COMPOSER calls Espresso repeatedly to create the sets S;.,1 =

0,1,...,4—1,z=0,1,...,l41—1, and a matrix A. A has /; rows and ;41 columns,

where rows represent the states of M™ and columns represent the states of M7+,

Entry A;. = 0 if Si, # @, otherwise it is 1. The following pseudocode provides a

clearer picture of this preprocessing phase.

Algorithm : Preprocess

For merging machine M’*! to M™

{ For each slice P, of Mit!
{ For each slice P; of M™
{ For each distinct next state in P;
{ Merge P, with P;
to create new slice;
Minimize newly created slice;
Record in &;, the set of next states

of P; that lead to zero cost mappings;
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6.6.2 Basics of the Merge Procedure

In the following z and f(z) denote states si*' and f(si*!), respectively. MERGE
finds a mapping f such that 22_:{1}_1(/1!(3)‘1- + bf(z),z) is minimized, where b is a
boolean variable which is 1 if Ay, = 0 and the next state of si*! is not merged
with any state in Sy(g)«, otherwise it is 0. Note that a 0 entry in A is “optimistic”
because it “hopes” that the next state of s*! will be merged with some state in
Sf(z)s- The variable b is used to adjust this “optimistic” entry based on actual
merger information?.

MERGE creates a tree of nodes. Each node, N, (except the root) represents the
merger of a pair of states from the two machines, M™ and M7*!. Excluding the
root, the tree has l;;; levels corresponding to the number of states in M’*1. The
root node is at level 0. A node represents a partial or complete merger. The merger
information can be obtained by retracing a path from N to the root. Each node
has the following attributes: sI, s2, g, h, ¢, chklist. sl is a state of M™ s2 is
a state of M7*1 ¢ is the cost for the current node N, h is an optimistic estimate
of the cost to the goal, and ¢ = ¢ + h, is the evaluation function for the node.
This evaluation function is used to prune the search space. The subscript from
the symbolic state names are actually assigned to s1, s2. Thus if s merges with
s3, then s2=2 and s1=3 and chklist=S,; s2. A list, open, contains the nodes to be
processed (expanded). low_b is a global variable that keeps track of the cost of the
best merger. The notation, N.x refers to the attribute « of node N. Entries in the
A matrix are used to compute N.h. Suppose N is not a leaf node and represents
a partial merger, where states 3!, ..., s7*! have been assigned to a set of states
of M™. Then N.h = Y2*71 min(A

the cost of merging two machines without considering next states, and since the

i,z Vils! isan unassigned stute) . Since A l'CpI'CSCIlt-S

computation of N.h uses the least cost “unassigned” entry in each column of A,

N.h < N.h*, where N.h* is the actual cost from N to the goal.

*This is required in order to guarantee that the A* algorithm will find the optimum solution.
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6.6.3 Example Merger

The operation of MERGE can be best explained with the help of an example. Consider
the optimal merger of M! and M? in Demo. Figure 6.6 shows the A matrix and the
nodes that are created. Initially open={Noo}, where Nyp is the root node. This node
is expanded. The first child is Nyp. This node corresponds to a merger of s2 with
s5- The various attributes of Nyg are : s1=0, $2=0, h=Y2_, min(Aiq,_, ,,)=As1 +
Az =1, g=App=1, ¢=2 and chklist={®}. chklist records the fact that the value
of Nyp.g is independent of where the next state s? merges. Nodes Ny1,Nip and Nyg
are then created one after the other. After each node is created, it is inserted into
open. The insertion is done such that the nodes in open are always sorted in non-
decreasing order of their evaluation function, ¢c. Thus open={Nyz, N11, N1, N1o}.
A node, N, is pruned if N.c > low.b. N,y is expanded next to create Njg, Na
and Nag. For Ny, s1=3, s2=1, h=mi1](A,‘.2|.=0.1)=0, g=N12.9 + A31=0, ¢=0 and
chklist={0}. Since Njj.chklist = {3}, and the assignment of states in Nj, satisfies
this constraint, Ns;.¢g needs no adjustment. However, consider the computation of
N3o.g. This node represents the merger of s} with sj. Aoy = 1, and the constraint
imposed by Ny,.chklist is not satisfied. Therefore Nyg.g = 2, and since Nyg.h = 1,
Nog.c = 3.

After all the children of Ny; have been created, open={Na2, N11, Na1, Ni3, Nio,
Nyo}. The next node expanded is N and the first child is N3p with s1=0, s2=2,
and c=1. This is a leaf node and low_b=1. The second child is N3; with sl=1,
s2=2, and ¢=2. c¢=2 because firstly the chklist entry for N is not satisfied and
Aj 2=1. Since N3;.c > low_b, this node is deleted. Furthermore, we look at the first
element in open. The first element in open is N;; and since Nyp.c > low_b, all nodes
in open can be deleted and the search stopped. Retracing a path from N3 to the
root provides all the information about a complete merger and the STT of M™2 is
obtained from this information. M?® can now be merged with M™ using the same

procedure.

6.6.4 Discussion

The worst case time complexity of MERGE is exponential. However, since it is an A*

algorithm, it is guaranteed to return an optimum solution whenever a solution exists
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Figure 6.6: (a) The A matrix; (b) Search tree for merging M? to M in Demo
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and it is consistently better than other equally informed search strategies in that it
always explores the least number of nodes [56]. Furthermore, since test controllers
are of restricted size in terms of states, the run time of MERGE can be expected to
be quite small and this has been observed to be the case for our example circuits.
Once all of the controllers have been merged, COMPOSER calls NOVA [43] to encode
the inputs and/or perform state assignment.

We now summarize the significance of the various theorems and propositions.
The upper bound on the implementation cost of a merged machine derived in The-
orem 6.2 is used as our objective function. The results derived in Propositions 6.1
and 6.2 are used to check the validity of the slice minimization technique. The lower
bound on the implementation cost of a merged machine derived in Theorem 6.1
can be used in conjunction with the optimistic cost estimator currently employed in

MERGE to prune the search space.

6.7 Experimental Results

COMPOSER was run on several examples. Each example consists of a group of test
controllers to be merged. The characteristics of these example controllers are pre-
sented in Table 6.6. The entries controllers, states and outputs represent the number
of controllers being merged, the number of states in each of the machines, and the
number of binary valued outputs, respectively. Ckt! is a set of controllers for the
testable datapath in [57]. Ckt2 and Ckt3 are controllers for other testable datapaths.
Small, Bzl and Ez2 are sets of FSMs where the outputs are arbitrarily assigned val-
ues 0, 1 and -. Note that none of the standard benchmark circuits have the special

characteristics of our test controllers.

6.7.1 1-hot Coded Primary Inputs and States

Table 6.7 shows characteristics of the merged machines produced by STAMINA and
COMPOSER where the primary inputs and states are 1-hot encoded. COMPOSER
produces the STT of a merged machine, which is then provided to Espresso to
perform both exact and heuristic multiple-valued minimization. Since STAMINA

does not accept symbolic inputs, each input symbol was assigned a binary encoding.
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[ Ex ” controllers l states I outputs ]
Small 2 6,6 3
Demo 3 4,3,2 3
Cktl 3 5,3,2 10
Ckt2 4 6,5,4,3 12
Ex1 5 7,4,4,2,1 3
Ckt3 6 6,5,4,3,2,1 15
Ex2 8 10,8,6,4,3,2,2,1 5

Table 6.6: Characteristics of example circuits

STAMINA COMPOSER

Ex | pe| ph [[1b[ub|pe]ph|%ph | cpu
Small || 11 | 11 6 | 8 |7 |7 36 2.9
Demo || 9 9 6|6 6|6 | 33 |23
Cktl 8 8 TVT|T|T 13 4.3
Ckt2 || 10 | 10 91919129 10 | 124
Exl 16 | 16 1111|1111 | 31 9.4
Ckt3 || 14 | 14 11 12 |12 | 14 | 23.7
Ex2 || 37| 41 1912212222 | 46 | 80.8

Table 6.7: 1-hot coded primary inputs and states
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STAMINA COMPOSER

Ex i,s| p| a i,s| p|%p]| a | %a
Small [ 1,3 |11 1791 || 1,3 | 7 | 36 |12.62 | 30
Demo [[2,3| 9 | 14.63 || 2,2 | 6 | 33 | 6.49 | 56
Cktl ||2,3] 8 |21.16 | 2,3 | 7 | 13 | 16.80 | 21
Ckt2 (3,310 |21.77 (13,3 9 | 10 |21.39| 2
Exl | 4,4]13[33.23 (3,3 9 | 31 |22.66 | 32
Ckt3 || 3,4 |14 | 3290 || 4,3 |12 | 14 | 28.83 | 12
Ex2 | NOVA timed out || 4,4 | 22 | n.a | 58.67 | n.a

Table 6.8: Optimum state and input encoding using NOVA (satisfying all input
constraints)

The FSMs were then concatenated and passed to STAMINA as one large FSM. A
state minimal machine was obtained from STAMINA and the binary encodings were
replaced by a 1-hot encoding. Each example was run through STAMINA four times,
each time with a different map (-m) option. All runs produced identical STTs of
the state-minimal machine. The STT description was then provided to Ispresso
to perform both exact and heuristic multiple-valued minimization. In the table, pe
(ph) represents the number of implicants in a minimum (minimal) multiple-valued
cover of the machines produced by Espresso. Entry lb represents the lower bound
of the implementation cost of a merged machine (i.e., S5 k;). ub represents the
upper bound of the implementation cost of a merged machine (i.e., Yl g:), and
is the cost minimized by COMPOSER. %ph is the percentage reduction obtained by
COMPOSER in the number of product terms over STAMINA. cpu refers to the CPU
time in seconds taken by COMPOSER to merge all machines on a Sun SPARCstation
1. From these results we see that COMPOSER produces better results than STAMINA
for all examples. Savings in implicants is on average 26% and ranges from 10%
(Ckt2) to 46% (FEz2). Except for Small the entries in ub, pe and ph are identical.
This indicates that our cost function (based on minimizing slices of a FSM STT)
has a strong correlation with the actual implementation cost (based on minimizing
the entire machine STT). The merged machine produced by COMPOSER for Demo

is the same as MJ* in Table 6.5(a).
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6.7.2 Optimum Encoding of Inputs and States

Table 6.8 shows the number of product terms and layout area of merged machines
produced by STAMINA and COMPOSER using NOVA to encode the inputs and per-
form state assignment. The iezact algorithm of NOVA was run on the STTs of the
merged machines to obtain an encoding of the inputs and the states. This is an
exact algorithm that finds an encoding of symbolic variables satisfying all input
constraints and minimizing the encoding length. In some cases, the number of bits
required for the inputs and states to satisfy all constraints may be greater than the
minimum number of bits required to encode all input (state) symbols. The number
of implicants in a minimal boolean cover is in some cases less than the number of
implicants in a minimal multiple-valued cover because the dominance [45] and dis-
junctive [47] relationships between bits representing the next states are not taken
into account. The encoded and two-level minimized merged machines are mapped
into the msu.genlib and msu.genlib_latch gate libraries using the map function in
SIS [50]. Layouts were obtained using TimberWolf [58] and YACR [52]. Since Tim-
berWolf uses simulated annealing, three runs were made with each example and the
average area (gate area and routing) has been reported. In the table, i (s) represents
the number of bits required for optimally encoding the inputs (states). Entries p
and a represent the number of implicants in a minimal cover of the encoded FSM
and the layout area, respectively. The unit for area is 10* um?. %p (%a) denotes the
percentage reduction obtained by COMPOSER in product terms (area) as compared

to STAMINA.

6.7.3 Inputs and States Encoded Using Minimum Number
of Bits

Table 6.9 shows the number of product terms and layout area of the merged machines
where both the inputs and states are coded with the minimum number of bits. Thus
merged machines produced by STAMINA and COMPOSER for a set of controllers
have the same number of input, state and output bits. In this mode of operation,

NOVA uses a heuristic procedure to satisfy as many input constraints as possible.
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The savings in implicants and area for COMPOSER as compared to STAMINA is on

average 33% and 24% , respectively.

6.7.4 General Comments

Note that COMPOSER’s performance over STAMINA in terms of product-terms im-
proves for input and state encoded machines as compared to 1-hot coded machines.
The layout areas for some of the merged machines produced by COMPOSER and
STAMINA also differ substantially. Since most controllers are now implemented as
standard cells rather than PLAs, the layout area figures for the merged machines
produced by COMPOSER provide a very strong case for our merge procedure. We
conjecture that the number and/or the complexity of input constraints to be satis-
fied for machines produced by COMPOSER is less than that for machines produced
by STAMINA.

Fig. 6.7 summarizes the synthesis procedure used to merge the test controllers.
In this figure, the input is the STGs of the n test controllers M*, M?, ..., M" that
are to be merged. The bold arrow depicts the sequence of steps in our synthesis
procedure, whereas the lighter arrows represent the synthesis path taken by a tra-
ditional approach to this problem. In our synthesis procedure COMPOSER creates
the STG of the merged machine. COMPOSER can be thought of performing state
minimization. Then standard synthesis tools are used for the rest of the sequential
synthesis steps. The double arrows between composer and Espresso represent the
fact that COMPOSER calls Espresso repeatedly during the preprocessing steps (for

merging a pair of machines) to perform slice minimization.

6.7.5 Sensitivity of the Results to Machine Ordering

In our procedure the machines were ordered in non-increasing order of the number
of states and then merged. Experiments were conducted to determine the sensitivity
of the results produced by COMPOSER on the ordering of the machines. For each
example (except Fz2), all machines except the largest were ordered in all possible
ways ((n-1)! orders) and COMPOSER was run on each order. For Ez2 25 random
orderings were used. The results of these experiments are given in Table 6.10.

Entries permutations, Cp and distribution refer to the number of orderings, the
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Figure 6.7: The synthesis process

STAMINA COMPOSER

Ex P | a p [ %p ’ a ] %a
Small || 11 | 17.79 || 6 | 45 | 12.73 | 28
Demo || 9 | 15.35 6 | 33 | 6.94 | 55
Cktl || 9 | 23.18 || 7 | 22 [ 16.23 | 30
Ckt2 || 13| 27.33 || 10| 23 | 25.90 | &
Ex1 15 | 25.69 9 | 40 | 23.12 | 10
Ckt3 || 16 | 37.23 || 13 | 19 | 3537 | &
Ex2 | 47 |102.85 || 23 | 51 | 65.78 | 36

Table 6.9: Minimum bit length input and state encoding using NOVA
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1-hot coded
Ex | permutations || Cp | distribution
Small H 7 7
Demo 2 6 62
Ckt1 2 7 T2
Ckt2 6 9 9%
Ex1 24 11 1144
Ckt3 120 12 12120
Ez2* 25 22 | 2211,235,24¢

Table 6.10: Effect of machine ordering on merged machine cost

implementation cost of merged machines produced by COMPOSER for our fixed order,
and the distribution of the implementation cost of merged machines produced by
CcOMPOSER for different orderings, respectively. The subscripts in distribution specify
the number of merged machines that result in the associated number of implicants.
These experiments were performed for 1-hot (1-hot coded) encodings. Fz2 is starred
to indicate that a subset of all possible orderings were explored. From the results
we conclude that (1) for 1-hot coded encodings, there is practically no variation
in the quality of the results as a function of the order in which the machines are
processed, and (2) in the case where there is a variation, sequencing the machines
in non-increasing order of the number of states and then processing them leads to

the optimal solution.

6.8 Summary

We have presented a technique for merging a set of test controllers. The test con-
trollers are orthogonal FSMs with a single transition out of (into) any state. The
controllers are ordered in non-increasing order of the number of states and then
merged one at a time to form an intermediate merged machine. Tight upper and
lower bounds on the cost of merged machines have been derived. A cost function
based on minimizing the multiple-valued covers of slices of the merged machine has
been proposed for optimally merging a test controller to an intermediate merged

machine. We show that this cost function has a very strong correlation with the
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implementation cost of a merged machine obtained by minimizing a multiple-valued
cover of the entire machine. These ideas have been implemented in C and incorpo-
rated in a program called COMPOSER. Experimental results indicate that COMPOSER
outperforms an existing state minimizer STAMINA by a wide margin. We observe
that the effect of minimizing the number of implicants in a multiple-valued cover of a
merged machine (our cost function) percolates through all the subsequent sequential

synthesis steps.
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merged controller while in this chapter the test and functional controllers are

general FSMs whose states can have multiple fanin and/or fanout edges.

We use NOVA [43] (JEDI [59]) to perform state assignment for two-level (multi-level)
implementation. We have compared our results with STAMINA, and found that our
merging technique produces designs that have about 20% less literals in the factored

form and gate area after technology mapping.

7.2 Motivation

7.2.1 Preliminaries

A FSM can be represented by two equivalent structures, (1) a State Transition Graph
(STG) and, (2) a State Transition Table (STT). We refer interchangeably to rows

in the STT as transitions or edges.

Definition 7.1 A completely specified machine has both next state and outputs

for all input symbols from every state completely defined.

Definition 7.2 An incompletely specified machine has the nezxt state and/or

some outputs for an input symbol from some state not specified.

M? and M? are two FSMs where [#={i} .. .. ,if]jl_l}, Si={sh sl .. ,sfsjt_l} and
P=dal.0ls : » 0‘{0,]_1} represent the set of inputs, states and outputs of machine M,
i=1,2. | S' |= pand | §? |= ¢, where p > ¢. I' and I? are disjoint since M' and M*
correspond to a pair of test and functional controllers. If the number of states in
the functional controller is larger than or equal to the number of states in the test
controller, then M?! is the functional controller and M? is the test controller, else

M" and M? are the test and functional controllers, respectively.

7.2.2 The Merging Process

In general, the merger of two machines with p and ¢ states produces as many as
p.q states prior to state minimization. However, the FSMs we target for merger

are temporally disjoint and also input disjoint. State minimization becomes trivial
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0 sy s5 00 1s3sh1l
1s3s100 0s3sill
-slsll- -s2ad--
-shsl-- -s2s200
1 s3 s3 00
0 s} s3 00

M? M?

Table 7.1: Mrgex

for this case, since any state of one machine can be merged with any state of the
other machine using the mode control signal T to condition any outputs that are
incompatible. The number of states in the merged machine is thus equal to the
number of states in M*.

The merger of two orthogonal machines is the process of determining an injective
mapping F that maps (merges) the states of M? to the states of M'. Any mapping
will produce a state minimal machine. However, the minimality of next state and
present state logic is not guaranteed. Consider the example shown in Table 7.1 which
depicts the STTs of a pair of machines M! and M?. This pair of machines will be
referred to as Mrgez throughout this chapter. The inputs to M? and M? are ij and
12, respectively. Each machine has two outputs that drive two datapath control lines
co and ¢; through a multiplexer.

Consider the three mappings, Fi, Fa2, and Fs, where F; maps states s2,s7, s2
to states s3,sl, s3; F, maps s2,s%, s to sl,s}, si; and F3 maps 3, 51, s3 to s3, s3,
s}. Table 7.2 shows the STTs of the three merged machines M{", MJ* and M3
obtained by Fy, F; and F3, respectively. The inputs of the merged machines are
ig, T, 13 and the outputs are cp, ¢;. In general, a merged machine has [ outputs,
where | = maz(| 07 |), j=1,2. The output cubes of the machine with the smaller
number of outputs are padded with don’t cares. Figs. 7.2(a) through (e) show the
STGs of M', M? and the merged machines. Fig. 7.2(f) shows state mappings used
for different merged machines.

Suppose M?! and M? are implemented separately and the output lines are multi-
plexed. A gate level implementation of M', M? and the multiplexer has 28, 27 and

8 units of area, respectively, leading to a total of 63. In comparison, a gate level
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Table 7.2: Merged machines for different mappings

implementation of MJ* has 40 units of area. Merging the machines thus reduces the
gate area by 37%.

Two-level implementations of M{*, MJ* and MJ*, obtained by running NOVA,
have 6, 6 and 8 product terms respectively. A multi-level implementation using JEDI
to assign states and SIS to perform logic minimization yields 17, 14 and 22 factored
form literals for the three merged machines. There are 24 different mappings which
merge the three states of M? to the four states of M', each mapping corresponds
to a different merged machine. Two-level and multi-level synthesis of all 24 merged
machines were performed. M7 with 22 literals is the worst and Mj* with 13 literals
is the best among all merged machines. M}* (mapping F4) corresponds to the merger
of 52,52, s% to si, 53, s3. The number of product terms for two-level implementations
varies between 6 and 8 for different mergers. Fig. 7.3 graphically represents the costs
associated with the different mappings. Mapping F; corresponds to the merged
machine produced by STAMINA (discussed in the following paragraph).

A merged machine can also be obtained by using a state minimization tool such
as STAMINA. The STTs of M' and M? are concatenated together as shown in
Table 7.3 and provided as input to STAMINA. Note that the second input, T, is
used to distinguish between the two machines. This description corresponds to an
incompletely specified machine with 7 states. STAMINA produces a state minimal

machine with 4 states. A multi-level implementation of this machine has 20 literals.
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Figure 7.2: STGs of M, M* and some merged machines
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Table 7.3: Concatenated STTs of M! and M?

Analyzing the merged machine produced by STAMINA we see that the states s3, s,
s% are simply merged with s}, si, s3, i.e., STAMINA picks the first possible merger.
We have seen that different mappings influence the implementation cost of the
merged machine. For Mrgez, the worst merged machine has 70% more literals or
33% more product terms than the best merged machine. It has also been shown
that an existing popular tool is inadequate for the merger problem. The number
of possible merged machines is [[%Zg(p — 1), which is O(p!). It is impractical to
exhaustively generate all merged machines, synthesize them and then pick the best
merger. In this chapter we present efficient techniques to find merger(s) which lead

to machines with minimal or near minimal implementation cost.

7.3 The Objective Functions

The optimization of the combinational component of the FSM depends heavily on
the state encoding. The cost function that estimates the optimality of an encoding
depends on the target implementation: two-level or multi-level. Two-level imple-
mentations minimize the number of product terms or the area of a PLA. Multi-level
implementations minimize the number of literals of a factored form representation
of the logic. Good state assignment tools for two-level implementations exist. This
is not the case for multi-level implementation, since it is considerably more difficult

to quantify the number of literals before actually performing logic minimization.
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Figure 7.3: Statistics for various mappings : (a) number of edges; (b) number of
product terms in two-level implementation; (¢) number of literals in multi-level im-
plementation; Comparison with STAMINA : (d) product terms; (e) literals

Most multi-level state assignment tools, such as MUSTANG [60] and JEDI, estimate
the ease of sharing literals for different assignments. The assumption is that there
is a correlation between the degree of literal sharing and the number of literals after
state assignment and logic minimization.

In contrast to the state assignment problem, where the state transition table
does not change, in our problem the state transition table itself changes when states
of one machine are merged to different states of another machine. Thus our problem
of predicting which merger will produce a machine with the least cost is as difficult
as the optimal state assignment problem which is NP-hard. To choose between

different merged machines, we propose the following cost functions:

1. Minimization of the number of edges (in the STG) of M™ (edge-minimal),

b

Minimization of the number of factored form literals in a multi-level imple-
mentation of the merged machine by considering pairs of states (state-pairs)

from M and M? (literal-minimal).



The edge-minimal criterion is used for two-level implementation and the literal-

minimal criterion is used for multi-level logic implementation.

7.4 Edge Minimization

Merging M? to M?! adds a certain number of edges to M'. An edge minimal merger

thus adds a minimal number of edges to M.

7.4.1 Mechanism for Merging Edges

Let e, and ez represent the number of fanout edges from states s. and s2, respec-
T v y

tively.

Definition 7.3 A single fanout edge refers to a fanout edge of a state s such that

s = 1.

Definition 7.4 A multiple fanout edge refers to a fanout edge of a state s such
that e, > 1.

Suppose M? is merged with M’ under a mapping F, where F(s2) = s, or
%y = S» denotes that state s} is merged with state s;. We assume that each of
the machines M! and M? have next states specified for all input symbols. Thus a
single edge such as “l s} s! -” out of state s} is not allowed. Such a single edge
means that the transition out of s} for input value 0 has been left unspecified. We
also assume that all transitions out a state are represented by a minimal number of
fanout edges. Thus two edges such as “1 s} s} 1”7 and “0 s s} -” are represented as
“- s 51 17. The following theorem states conditions under which fanout edges of a
state in M? are either added to M* or merged with existing edges.

Theorem 7.1 Due to the mapping F(s2) = s) no edges are added to M' if (1)

ez = 1 and ey =1, (2) the edges are output compatible, and (3) the neat state of

33 is also mapped to the next state of s&, otherwise €s2 edges are added.

Proof : ez > 1 implies that a non empty set of variables in [ are 1’s or 0’s in

the input cubes of all the fanout edges of 33. However, in the merged machine,
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all variables in [, are don’t cares in the input cubes of the edges corresponding
to M'. Similarly, all variables in I; are don’t cares in the input cubes of edges
corresponding to M?. Therefore es2 edges have to be added. If ez =1and ey =1,
then all variables in the input cubes of the fanout edges of s? and s, are don’t cares.
However, if the outputs asserted by these states are incompatible, then an additional
edge will have to be added to distinguish between the outputs asserted by the two
machines. If the outputs are compatible and if the next state of s} is also mapped to
the next state of s., then an additional edge is not needed. The original edge in M
is sufficient for both the machines. The outputs will have to be suitably modified,
i.e., don’t cares have to be changed to 1’s or 0’s as needed. a

Fig. 7.4 illustrates Theorem 7.1 by showing how an edge of M? is either added to
M?" or merged with an existing edge of M!. Consider the case shown in Fig. 7.4(b)
(M) where s merges with s}, ez =1land ey =1, the outputs are compatible, but

the next state of s? is not merged with the next state of s}. Therefore, the edge “- s}

52 --” cannot be merged with “- s} s} --” and is added as an extra edge. However,

2 ”

i@ 2 .
- §7 85 --" can be merged

in Fig. 7.4(c) (M), since s3 merges with s3, the edge

1 n

«“ 1
-=- 89 S3-- .

with “ sl s! --” and the composite edge is

7.4.2 Analysis of Edge Minimization

Our ultimate goal is to obtain a merged machine that has minimal implementation
cost in terms of number of product terms. In Section 6.3 of Chapter 6 we have
presented a detailed description of general FSM synthesis techniques. In this section
we will therefore summarize some of the relevant concepts.

A symbolic cover is a code independent (symbolic) representation of the combi-
national component of the FSM and consists of a set of primitive elements called
symbolic implicants. For example, consider the STT of M?* in Table 7.1. The row “0
s} s} 00” in the STT is a symbolic implicant. There are 6 rows in the STT, each row
is a symbolic implicant and these implicants taken together form a symbolic cover of
M. Usually the symbols of a variable are assigned different values and the result-
ing symbolic cover is referred to as a multiple-valued cover. Symbolic minimization
is usually performed by simultaneously minimizing the multiple-valued input func-

tions related to each next state and each of the binary outputs. This is called output
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Figure 7.4: Illustration of theorem

disjoint multiple valued minimization because each of the next states is considered
to be a different component of the original symbolic function. We refer to output
disjoint minimization simply as multiple valued (MV) minimization.

Suppose the states, s}, sl, s} and s} of M' in Mrgez are assigned codes 1000,
0100, 0010 and 0001, respectively. States s2, s} and s3 of M? are assigned codes 100,
010 and 001, respectively. The minimum MV covers of M' and M? are shown in
Table 7.4. The implicant “0 1001 1000 00” implies that when the input is 0, states
s} and s} both assert outputs 00 and go to the same next state sy. The pair of states
s) and s} is an input constraint. The implicants “— 0010 0001 —=" and “1 0001
0001 00” cannot be combined together into “1 0011 0001 00” because this does not
cover “0 0010 0001 ——". They cannot also be combined in any other manner. The
implicant “0 1001 1000 00” can also be represented as “0 (s}, s3) sg 00”.

In order to analyze edge minimization we introduce the concept of symbolic prime
implicants (SPIs).
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Table 7.4: Minimum MV covers for M! and M?

Definition 7.5 A SPI represents a mazimal group of fanout edges (of a set of states)
that go the same next state and assert compatible binary valued outpuls under some

inputs.

Thus “0 (s3,s3) s§ 00” is a SPI and it covers the implicants (edges) “0 sg sg 00”
and “0 s} s} 00”. The edge “1 s§ s; 00” can only be covered by itself and is a SPI.
Note that in the definition of an SPI we assume that the binary valued outputs of
a symbolic implicant are processed as a group and not as individual outputs as is
done by some MV minimizers [49]. An exact solution to the minimum MV cover
problem where the binary valued outputs of each symbolic implicant are processed
as a group therefore requires the identification of all SPIs of a FSM, and then the
selection of a minimum subset of SPIs that cover the FSM. For M, the set of all 5

SPIs are needed for the minimum cover, shown in Table 7.4(a).

Lemma 7.1 Let SPZ,y represent the set of all SPIs of @ machine. SPZ,y can be
partitioned into two sets SPL, and SPI, such that SPI, (SPI;) covers all and
only all the single fanout edges (multiple fanout edges) of the machine.

Proof : All single fanout edges have don’t cares in all bit positions in their input
cubes. Multiple fanout edges however have at least one bit in their input cubes that is
not a don’t care. Therefore there cannot exist an SPI that covers a single fanout edge
and also a multiple fanout edge. All the SPIs obtained by considering only the single
fanout edges constitute SPZ,. Similarly all SPIs obtained by considering only the
multiple fanout state edges constitute SPZ;. Since there is no edge that is covered by
a member of both SPZ, and SPIy, SPLI.NSPI, = @ and SPL.y = SPL,USPL,.
O



For example, for M', SPZ,={- s} sl 1-, - s} s} --} and SPZ,={0 (s5, s3) sg 00,
L s s1 00,1 s3 s3 00}.

Let C¢ and C} denote the cardinalities of the minimum covers of single and
multiple fanout edges of M*, obtained by using members of sets SPZ. and SPI;,
respectively, for i=1,2. Let C™ be the cardinality of the minimum cover of a merged
machine M™, E? the number of single fanout edges of machine M?, and E' the total
number of edges in M'. We present bounds on C™ in terms of the cardinalities of

the minimum covers of the single and multiple fanout edges of the two machines.
Lemma 7.2 C™ > maz(C},C?) + C} + C?.

Proof : A merged machine is obtained by adding edges of M? to M'. In the
merged machine the input cubes of all multiple fanout edges of (contributed by) M?
are qualified by a 1 (if M? is the test controller) or by a 0 (if M? is the functional
controller) in bit position i, corresponding to the input T. The input cubes of all
edges of M?' are qualified either by a 0 (1) or a don’t care in the corresponding bit
position i. The set of SPIs of M™ that cover the multiple fanout edges of M? thus
cannot cover any edge of M!. The cardinality of the minimum cover of this set of
SPIs is C{.

Suppose state 33 merges with a state s; with e;1 > 1, then the input cubes of all
fanout edges of sl are changed in the ith bit position, corresponding to T, from a
don’t care to a 0 (1). Suppose a SPI P, covered one fanout edge each from states s,
and s!. After state merger, P can no longer cover these edges, unless another state
from M? merges with s!, in which case the fanout edge of s! under consideration
will also have a don’t care in bit position i changed to a 0. Therefore C} is a lower
bound on the number of SPIs needed to cover the multiple fanout edges of M*.

Consider the case C! > C2?. In the best case all single fanout edges of M?*
are merged with the single fanout edges of M'. Therefore C} is a lower bound on
the number of SPIs needed to cover the single fanout edges of both the merging
machines. The cardinality of the minimum cover of the merged machine is thus
lower bounded by C! + C} + C? and this bound is achievable. The case C? > C},
can be proved in a similar manner. O

Among all merged machines, M{" in Table 7.2 has the least number of implicants
(C™=8) in its minimum MV cover. For M{*, max(C},C?)=2, C}=3 and C?=2.
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Lemma 7.3 C™ < E' + C} + E2.

Proof : All the multiple fanout edges of M? can be covered by C? SPIs. The
merging may occur in a manner such that no SPI can cover two edges of M, thus
requiring E' SPIs to cover all edges of M. E? is a loose upper bound on the SPIs
needed to cover the single fanout edges of M?2. O

M3 is one of the machines which has the largest number of implicants (C™=10)
in its minimum MV cover. For MJ*, E'=6, C#=2 and E?=2.

We will show that under certain conditions there is a correlation between mini-
mizing edges in a merged machine and the size of a minimal MV cover where each of
the next states are considered to be a different component of the original symbolic
function and the binary valued outputs of each implicant are processed together.

We will refer to such a cover as strictly output disjoint.

Lemma 7.4 If all fanout edges of M' and all single fanout edges of M* are SPIs
(when merging M? into M'), then a merged machine has a strictly output disjoint

MYV cover of minimum cardinality if and only if it has a minimum number of edges.

Proof : In any M™, E' SPIs are needed to cover the edges corresponding to M*!
and O} SPIs are needed to cover the multiple fanout edges corresponding to M2,
Edge minimization results in merging a maximum number, k, of single fanout edges
of M? to the single fanout edges of M'. Therefore, a minimum number, E? — k,
of SPIs are needed to cover the unmerged single fanout edges of M?. Thus edge
minimization leads to a minimum MV cover. The necessity follows from the fact
that a minimum MV cover implies that a minimum number, C™ — E* — CZ, of SPIs
need to cover the unmerged single fanout edges of M?, where C™ is the cardinality
of a minimum MV cover of M™. This implies that a maximum number of single
fanout edges on M? have been merged with single fanout edges on M?* which in turn
implies that edge minimization has been done. a

From Lemma 7.3 we see that edge minimization attempts to reduce the upper
bound on C™ and this cost function is most effective when conditions given in
Lemma 7.4 are met. The size of a cover obtained by strictly output disjoint MV
minimization is an upper bound on the size of a binary cover of the FSM that

is obtained by replacing the present and next states by a binary encoding (which
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satisfies all input of face constraints) and running a multiple-output binary valued

minimizer such as Espresso.
Consider M' and M? of Table 7.1. All single fanout edges of M? are SPIs,

whereas some edges of M! are not SPIs. However, M{" is the only merged machine
with the least number of edges (8 edges) and the minimum MV cover (8 implicants)
and one of the five machines with the least number of product terms (6 terms). This
example shows that edge minimization is an efficient cost function even when the

conditions in Lemma 7.4 are not met.

7.4.3 Computing the Number of Added Edges for

State-pairs

Let A be a matrix with p rows and ¢ columns, where rows represent states of M’
and columns represent states of M?. An entry A., denotes the number of edges

added to M' when s? is merged with s}:
o Azy=eg if (e, =1 and ez > 1) or (e > 1 and ez > 1),
o Agy=1lifey = ez =1 and the edges are output incompatible,

o Ayy=0if ey = ez =1 and the edges are output compatible.

Note that in the above formulations, the cost of merging s2 with s ignores how
the other states are merged. This leads to no problems for the first two cases. But
setting Az, = 0 for the third case is an “optimistic” assumption. Let C.4yes Tepresent

the cost in terms of additional edges for a mapping 7. Then

g—1

Codges = I _(Azyyn + briujy) (7.1)
y=0

where b is a boolean variable which is 1 if A(,),=0 and next states of s and sz,
are not merged, otherwise it is 0. This variable is used to adjust the “optimistic”
entry. Thus edge minimization corresponds to determining F such that Ceyges 1s
minimal.

The A matrix for Mrgez is given in Table 7.5. Only the mapping corresponding
to F, (entries shown in bold face in A) minimizes the number of added edges (
Ccdgcs=2)-
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Table 7.5: The A matrix corresponding to Mrgezx for minimizing edges

7.5 Literal Minimization

A merger that produces a minimal two-level implementation may not lead to a
minimal multi-level implementation. For example, in Section 7.2.2 it was shown
that F; leads to a minimal two-level implementation while F; leads to a minimal
multi-level implementation. The outputs and next state of some state s. can be
expressed in terms of the inputs and sl itself. s} is considered as a symbolic literal.

“ sl sl 17. We express next state sy and output co

in terms of the present state s! as follows: s} = s} and ¢o = s}. Merging a state

For example, consider edge

s2 with s} may add fanout edges and/or alter the input and output cubes of the
original fanout edges of s1. This may lead to an increase in the literal count for
implementing the fanout edges of sl after the merger.

Suppose “- s! s} 0” and “- s? 52 17 are two fanout edges in M' and M?, and s3,
s2 are merged with s!, s}. The fanout edges of s} after merger are “-0- s} s 07 and
“1- sl s} 17. The next state s} and output ¢y are expressed in terms of s; and T as
follows: si=s! and ¢o = T's}. Thus three literals are required. However, the original
fanout edge of s} only required one literal, i.e., s3 = s{. Merger of different states of
M?* to s} may add different number of literals.

In general, we can extract common cubes and express the outputs and next states
in factored form expressions and determine the number of literals added for mergers
of various pairs of states from M' and M?®. For state-pairs with single fanout edges,
sometimes the merger information of the next states is also needed. We estimate the
number of literals added when merging various state-pairs based upon properties
such as the number of fanout edges, the output cubes of the edges, and their next

states. A mapping is then found that minimizes the sum of the added literals. In
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this chapter, we focus on Moore type machines, where the output is only a function
of the present states, not the inputs. This is not a shortcoming since any Mealy

machine can be converted to an equivalent Moore machine.

7.5.1 Estimation of the Number of Added Literals for

State-pairs

A is a matrix with p rows and ¢ columns. The entry A, represents the estimated

2

number of literals added when s;

is merged with sl. Let ¢} and ¢}, represent the
ith output bit of states sl and 53 respectively. Recall that a merged machine has
[ output bits, where I = maz(| O |), j=1,2, and the output cubes of the machine
with the smaller number of outputs are padded with don’t cares. my, is an integer

variable that depends on the outputs of the merged states as follows:

-1
may = |3 0(c, &) (1.2)

1=0
where
o C(ch,,ck)=2ifc, =0and ¢}, =1,

o Ofel,d)=1H¢e =1andc =0,

Ti? "W

o Clch,c2)=05ifc;, =—andc =1,

o C(ck, i) =0 for all other combinations.

For example, we have seen that when the state s? with fanout edge “- s} s3
1” merges with the state s} with fanout edge “- si sy 07, two additional literals
are needed. However, if the edges were “- s? s2 0” and “- s] s} 17, then only one
additional literal would be needed.

Consider the merger of “- s? s2 1”7 with “- s} s} -”, one additional literal is needed.
But there is a possibility that the don’t care in the output of sj will be changed to a
1 during multi-level synthesis. Therefore we penalize this case less than when ¢ =1
and ¢z = 0. Now consider the case where s3 is not merged with s, but with some

other state s}. Then the state s} has the following fanout edges after merger: “-0-
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Table 7.6: The A matrix corresponding to Mrgez for minimizing literals

sl s) 17, “1- s! sl 0”. Define a cube k = s}T. Thus si=k, o = k and s} = s]T.
Six literals are need as opposed to two in the unmerged case.

Therefore, in some cases, the next state merger also influences the literal count
for a pair of states. A constant, w, represents the influence of the next states in the
matrix A and the cost function.

The entries in A are as follows:
o Ayy=mgyif ey > 1 and esz > 1,
o Apy=myytwiley >1and ez =1,
o Azy =mgy if e =1 and e = 1.
Let Ci;is represent the cost in terms of additional literals of a mapping F. Then
g-1
Ciits = D _(Ar(y + brwp-w) (7.3)

y=0

where b is a boolean variable that is 1 if ez=1 and €l =1 and the next states of
s> and s}(y) are not merged together, otherwise it is 0. w = 3 is used to ensure that
Chits 1s influenced by the next state mergers. The objective is to find a mapping F
that minimizes Cls.

The A matrix for Mrgez is given in Table 7.6. Only the mapping corresponding

to F (entries shown in bold face), leads to the minimum of Cy;s=3.
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7.6 Merge Procedure

We have developed OMEN (Optimal MErged machiNe synthesis), a program that
merges a functional (test) controller with a test (functional) controller. OMEN has

two phases.

o Phase 1 is a preprocessing phase in which the A matrix for either of the cost

functions is computed.

Procedure Preprocess
{ For each state s. in M’
{ For each state s in M*
Compute A;, using the expressions in
Section 7.4.3 for minimizing edges

or Section 7.5.1 for minimizing literals;

}

e Phase 2 is a minimization process that minimizes either Ceyges (Equation 7.1)
or Clits (Equation 7.3) using an A* algorithm. The STTs of k merged machines
with the least cost are created. kis a user defined parameter. A switch setting
chooses between the two cost functions, Cegges and Ciigs. All of the k machines
are synthesized and the one with the least number of product terms in the
encoded cover (two-level) or factored form literals (multi-level) is selected.
There may be a number of merged machines with the same minimum cost in
terms of Cliys or Cegges, but different implementation cost, i.e., actual cost after
state assignment and logic minimization. Therefore, instead of picking just one
machine with minimum cost, it is prudent to look at a number of least cost
machines. The A* algorithm used in this phase is very similar to the MERGE
procedure described in Section 6.6.2 of Chapter 6 and therefore is not being

explained here.

The A matrix for either of the cost functions is computed in O(p.q) time. The
worst case time complexity of the search procedure in OMEN is O(p!). However,

since it is an A™ algorithm, it is consistently better than other equally informed
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[ Example [| states | inputs | outputs |
Mrgex 4.3 1,1 2,2
Small 55 2,3 16,16

Newtrap 7,5 3.2 13,8
2comp 9,5 3,3 12,16

Ex3 9,9 3,3 16,16

Mark.1 15,9 5,3 16,16

Planet.1 | 489 | 83 | 19,16

Table 7.7: Characteristics of the example circuits

search strategies in that it always explores the least number of partial or complete

solutions in the search space.

7.7 Experimental Results

OMEN was run on seven pairs of example FSMs. The characteristics of these example
circuits are given in Table 7.7, where the first and second entries in each column refer
to M' and M? respectively. Newtrap and 2comp are each a pair of functional and
test controllers that control hardware for the Newton-Raphson algorithm and 2’s
complement multiplication, respectively. The machines in Small (Ez3) are similar
to M? (M) in Newtrap and 2comp. M* for the last two examples have been chosen
from the MCNC FSM benchmarks and M? for these examples are the same as M*
in 2comp.

Our experimental results indicate that different mergers lead to machines with
different implementation costs. Let “best” (“worst”) refer to the minimum (max-
imum) implementation cost for merging a pair of machines. In most cases, there
is a significant difference between “best” and “worst”. For the first three exam-
ples, we obtain “best” and “worst” by exhaustively generating and synthesizing all
merged machines. For larger examples it is not possible to generate and synthesize
all merged machines. Therefore we generated 100 random mergers, synthesized each
merged machine, and obtained “best” and “worst”. We found that, setting k=1 for

two-level and k=5 for multi-level implementations produced merged machines with
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| Example [ e

mv Len | pla | opu [ est yon
Mrgex | § E= 8 Ton 1 —"

mm 14 ;

| Newtrap |17 [ 17 | 16 | 0.7 ]

| 2comp |51 21 [ 19| 0.3
128 ] 28 |25 (1000 [ 4

1000 | 1040

7
37 | 34 [ 1496 | 3.1 | 1496 | 1628

Table 7.8: Results for two-level implementation

implementation cost equal to or very close to the “best” cost (see Section 7.6 for
details of k).

Table 7.8 shows the characteristics of the merged machines produced by OMEN
for two-level implementation with k=1. The entries refer to the number of edges
(€), the cardinality of the minimum MV cover (muv), the cardinality of the minimum
encoded cover (en), and the area of a PLA implementation of the merged machine
produced by OMEN (pla). NOVA is used in its default mode for state assignment.
cpu refers to the CPU time in seconds taken by OMEN on a Sun SPARCstationl.
An asterisk after entries in the best and worst columns refers to the fact that these
values have been obtained by exhaustively generating all merged machines. OMEN
generated the optimal solution for all but one case.

Table 7.9 shows the characteristics of the merged machines produced by OMEN for
multi-level implementation with £=5. The five least cost merged machines produced
by OMEN are synthesized using JEDI and SIS, and the machine with the least number
of factored form literals is selected. The entries refer to the number of factored form
literals of the merged machine chosen (/it), the CPU time taken by OMEN to produce
the STTs of the five merged machines (cpu 0), the CPU time for synthesizing these
machines using JEDI and SIS (cpu J+Sis), and the total CPU time (epu total). For
Mrgez, synthesizing only one machine with the least cost (k=1) would produce a
machine with 14 literals. However, by synthesizing more than one machine with
least cost (k=5), we are able to pick the best machine with 13 literals. The runtime
of OMEN is sublinear in k. However, the synthesis time using JEDI and SIS increases

linearly as a function of k. Therefore, k should be as small as possible.
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Example | lit | best | worst | cpu | cpu cpu
O | J+Sis | total

Mrgex 13 | 13* | 22* [ 0.1 [ 20.5 | 20.6
Small 38 | 34* | 52* [ 0.1 | 33.5 | 33.6
Newtrap || 38 | 36* | 64* | 0.1 32 32:1
2comp 59 | 55 96 0.2 | 53.5 | 53.7
Ex3 108 | 96 147 | 0.7 81 81.7
Mark.1 || 153 | 150 | 237 | 0.8 | 127 | 127.8
Planet.1 || 503 | 503 | 625 | 148 | 1701 | 1849

Table 7.9: Results for multi-level implementation

Table 7.10 compares the results of STAMINA with OMEN for multi-level imple-
mentation. For each of the examples, the number of states in the state minimized
machines produced by STAMINA is equal to the number of states in M'. O lit (S
lit) and O area (S area) refer to the number of factored form literals and logic area,
respectively, of the merged machine produced by OMEN (STAMINA). Entries O-syn
cpu and S_syn cpu refer to the time taken by OMEN, JEDI, SIS to synthesize the
five machines and the time taken by STAMINA, JEDI, SIS to synthesize one machine,
respectively. Only one machine needs to be synthesized in the latter case because
STAMINA only produces one state minimal machine. The gate area has been ob-
tained by performing technology mapping (in the area mode) using the menc.genlib
and menc_latch.genlib libraries. The results show that the machines produced by
OMEN have on average about 20% less factored form literals and gate area than
those produced by STAMINA.

Finally, Table 7.11 illustrates the advantages of merging machines as opposed to
implementing them separately. The entries represent the gate areas of M 1. M? and
the multiplexer (muz) needed on the common control lines. total reflects the total
area for separate implementation of the machines and M™ the area of the merged
machine produced by OMEN. In all cases, the merged machines are significantly

smaller than the machines implemented separately.
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Example | O | S 0 S | Osyn | Ssyn
lit | lit | area | area | cpu cpu
Mrgex 13 | 20 | 40 | 49 | 20.6 5.5
Small 38 | 42 | 83 91 33.6 8
Newtrap || 38 | 52 | 87 | 109 | 32.1 8.1
2comp 59 | 83 | 130 | 161 | 53.7 | 13.3
Ex3 108 [ 125 | 199 | 240 | 81.7 | 20.8
Mark.1 || 153 | 201 | 264 | 336 | 127.8 | 66.6
Planet.1 503 IEDI could not process STAMINA output

Table 7.10: Comparison with STAMINA

[ Example [ M* [ M? | mux | total | M™ | ratio |

Mrgex || 28 | 27 | 8 63 | 40 | 0.63
Small 55 | 50 | 64 | 169 | 83 | 0.49
Newtrap || 80 | 60 | 32 | 172 | 87 | 0.51
2comp || 104 | 47 | 48 | 199 | 130 | 0.65
Ex3 124 | 106 | 64 | 294 | 199 | 0.68
Mark.1 || 160 | 130 | 64 | 354 | 264 | 0.75
Planet.1 || 669 | 133 | 64 | 866 | 785 | 0.91

Table 7.11: Merged versus separate implementation
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7.8 Summary

We have shown that merging two orthogonal machines, as opposed to implementing
them separately, provides significant savings in area. For two-level implementation,
a cost function based on minimizing the number of edges in the merged machine
has been proposed. If all the fanout edges of M' and all single fanout edges of
M? are SPIs (refer to Section 7.4.2), then the proposed cost function is exact and
is completely equivalent to minimizing the cardinality of a strictly output disjoint
MV cover. Otherwise, the cost function is a heuristic measure, which according
to our experience, reflects a good match between our predicted cost and the final
implementation cost. For the multi-level case, a cost function based on minimizing
the number of literals by considering all state pair mergers has been proposed. Even
though this cost function is heuristic in nature, experimental results show a strong
correlation between this cost function and the final implementation cost. These ideas
have been incorporated in a program called OMEN. The run time for the examples
is quite small. Even for the largest example with a search space of 10® mergers, the

run time for OMEN is less than three minutes.
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Chapter 8

Synthesis of 1-hot Coded Test Controller

8.1 Introduction

In this chapter we first present (in Section 8.2) a test control architecture that is
based on Partition 2 shown in Fig. 2.2 in Chapter 2. This is a different partition be-
tween the off-chip and the on-chip test control circuitry as compared to the partition
proposed in Chapter 3 and adopted throughout this dissertation. The architecture
presented in this chapter incorporates a shift counter on the chip and assumes that
the chip does not support the IEEE 1149.1 boundary scan architecture. In Sec-
tion 8.2.1 we present the model of a number of test controllers controlling test plans
in this architecture. In other sections of this chapter we present an approach to com-
bining these test controllers into a merged controller, where the merged controller
has a 1-hot coded state assignment. We show that a 1-hot encoding provides certain
tangible benefits and may be an attractive alternative to a merged test controller
implemented with a minimum number of flip-flops (Section 8.2.3). The benefits
manifest themselves in smaller area, easy testability and ability to distribute ele-
ments of the controller near the controlled elements. The architecture presented in
Section 8.2 is meant to provide an alternative to the bus-based IEEE 1149.1 compli-
ant test control approach. However in Section 8.9 we show that the 1-hot coded test
controller can be integrated with both the bus-based and the non bus-based IEEE

1149.1 compliant test control architectures.
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8.2 Test Control Model

Our primary objective is to implement the test control circuitry for a number of test
plans corresponding to various TDM embeddings in a circuit. The following are the

salient features of the test control model.

e There are n test plans to be controlled and the number of states (phases) in

test plan ¢ is ¢;.
o There are three counters on the chip. These are :

1. A scannable test counter (TCNTR). A value specifying the number of
test vectors to be applied in plan 7 is scanned in this counter prior to the
execution of the plan. TCNTR has an input DEC-TC that decrements
the counter. TCNTR asserts a signal TC when it counts down to 0.

2. A non-scannable shift counter (SCNTR). It is reset by a signal RST-
SC at the start of execution of a test plan and has an input INC-SC
that increments the counter. Qutput SC is generated when the counter

reaches a value equal to the length of the shift chain.

3. A non-scannable test plan counter (TPCNTR) that specifies the test plan
being executed. This counter is reset by a signal RST-TPC and incre-
mented by a signal INC-TPC. When TPCNTR reaches the value n it
generates a signal TPC which indicates that all test plans have been exe-

cuted. The output of this counter is fully decoded and generates n control

signals tpy,ipa,. .., tpa.

o A Test-Mode (TM) signal is provided from off-chip that is 0 in normal mode

and is 1 in test mode.

o Test data is stored off chip and shifted on-chip via a SDI (Shift-Data Input)
pin. Test responses are shifted off-chip via a SDO (Shift-Data Output) pin

and compared with stored valid response vectors.

Fig. 8.1 is a model of the test control environment.
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Figure 8.1: The control model

8.2.1 State Diagram of Overall Test Controller

The state diagram of the overall test controller (corresponding to the block Test
Controller in .Fig. 8.1) that sets up the test environment and executes each of n test
plans is shown in Fig. 8.2. It is modeled as a Moore machine, M, represented by the
5-tuple (1,0, 5,68,A). Lis the set of input lines, O the set of output lines, S the set

of states, § the state transition function and A is the output function.

o [={TC,SC,TPC,TM,tp1,tpa, ..., tps}, where tp; is activated for test plan i.

O={e1, ¢z, €3, ..., ¢, INC-SC,DEC-TC,INC-TPC,RST-SC,RST-TPC,SHIF T}
where ¢;, ¢, 3, ..., ¢ are the set of control lines controlling the circuit under

test.

n K
o B yvees B

S={Idles,Idley, Head, Tail, Sq, $py S1, .0y Spy5 875410 S5

RS R P

® §: Iy xS — S| L set of all input values in the space spanned by I

A:S — Ouar | Opar set of all output values in the space spanned by O
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Figure 8.2: The overall test controller state diagram
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In normal mode, when TM=0, M stays in state /dle;. When TM=1, M goes
to s, enabling RST-TPC and RST-SC to reset TPCNTR and SCNTR. Then M
remains in state Head until shift in(out) is completed. On completion of initial shift
(SC=1) M goes to the state s} corresponding to state I of test plan 1. M moves
through the states of test plan 1 and in the last state (s; ) makes a decision either
to loop back to sj or go to the Tail. This decision is based on the value of TC. If M
is in Tail, and if all the test plans have not been executed (TPC=0), then M goes
back to Head and shifts in the new seed for test plan 2 and shifts out the result
for test plan 1. If TPC=1 and M is in Tail, then it moves to s, and shifts out the
results of the last test plan. Then M moves to Idle; and finally goes to Idle; when
TM=0. Note that throughout this chapter the notation ~ z is used to represent the
negation of z in the figures.

This machine can be decomposed into two parts. One part consisting of states
Idle,, Idle;, Head, Tail, s, and s;, deals with the set up process and is common to
all test plans. The second part deals with the actual execution of the test plans. We
can therefore model the overall controller as interacting submachines M¢ (a common
machine) and M*;i=1,2,...,n, where M* executes test plan 7. Qur primary focus will

be on merging the submachines M* into one machine, M™.

8.2.2 Implementation Details of Submachines

M¢ can be implemented using any classical technique. In addition to the Head and
Tail states, M* has ¢; states. These states will be implemented using the 1-hot
encoded state assignment, (one of the many choices in state assignment) and thus
¢: flip-flops are required. From the examples used in this research, we have observed
that the output logic for a 1-hot coded controller is trivial. Each control line is
either driven directly by a flip-flop or at most by an OR(NOR) gate. We have thus
restricted the output logic such that each output is driven at most by one OR/NOR
gate. This restriction helps to prune the search space of candidate merged machines

and from the examples we have looked at, this restriction is quite realistic.

8.2.2.1 Definitions

Following are some definitions of transitions (arcs) and states of a submachine M J
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Definition 8.1 8enry is an entry transition (arc) where Sentry : (SC A tp;,Head)
— 8. Each (a,b) represents an ordered pair where a is a function of inputs and b

is the present state.

Definition 8.2 s! is called the start state of M* and is reached from Head via the

entry transition.
Definition 8.3 .. is an exit transition (arc) of M* where 8.4 : (TC,S:.“) — Tail.

Definition 8.4 s}, is called the end state of M* and Tail is reached from this state

via a ezit transition.

Definition 8.5 §fcedpack 15 called a feedback transition of M where Sfeedback *
TT,si) - si.

8.2.3 Advantages of 1-hot Encoding

Some advantages of a 1-hot code over an assignment using a minimum number of

flip-flops are as follows.

e The complexity of the next state and output logic is reduced as compared to

a FSM encoded with minimum number of bits.

e The flip-flops in the controller can be distributed throughout the circuitry
to reduce control wire routing overhead. In a test plan with multiple states
controlling switch based scan or non-pipelined BIST TDMs, test data and
results move from one register to another in each of the states. Each of these
registers need to be controlled. Moreover data selectors such as multiplexers
and sometimes complex combinational logic between sets of registers also need
to be controlled. Functional registers can be increased in length by one or
more bits and these extra bits can be used as the states of the 1-hot controller.
The test control lines are thus generated very close to the modules that are

being controlled.

e All cycles in the controller can be broken by appropriately controlling the

primary inputs. This simplifies the sequential test generation problem.
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e Output logic, if any, is fully tested during the execution of the test plans.
The controller generates a walking 1 pattern in test mode. This constitutes a

complete test set for output logic synthesized with OR/NOR gates.

It has been shown in [61] that there exists a close relationship between the syn-
thesis approach chosen for an FSM and its testability. Appropriate state assignments
enhanced the testability of some benchmark FSMs and resulted in a hardware over-
head of 0%-30%. In [62] a new test algorithm for FSMs synthesized using the 1-hot
code state assignment has been presented. The paper presents area, delay and
test coverage data for a set of MCNC benchmark FSMs that are synthesized using
the 1-hot code assignment and also synthesized using minimum number of flipflops.
MUSTANG [60] is used in the latter case. All flip-flops in the minimum flip-flop FSMs
have been made scannable. The FSMs have been placed and routed. It is interesting
to note that, with the exception of one example, all the 1-hot coded FSMs have less

area and delay than the minimum flip-flop ones.

8.3 Example Circuit

The control signals routed to BIST registers are shown in Fig 8.3. This figure shows
a BILBO TDM embedding. Three control lines shift, PG (SA), TM and possibly a
load/hold signal Id are the inputs to the register acting as a PG (SA) in test mode.
Note that in this control scheme there is no test bus and mode or configuration flip-
flops are not associated with a register. Extra control lines are needed to reconfigure
registers or provide different modes of operation. These control lines are driven
from the test controller for the test architecture defined in Section 8.2. The truth
table in Fig. 8.3 defines the functional relationship between the various signals. For
example, when TM is 0, the Id signal has control over the registers. When T'M is
1, a precedence relationship is present between the shift and the PG/SA signals. In
this example the control line controlling the PG/SA mode also provides hold. If the
hold mode is not needed then this control line can control a register having both the
PG and SA modes. Even though there is no test bus local decoding is needed for
every test register to control the actual control lines of the 1-bit cells constituting

each register.
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PG(pat_gen) pf
R1 | Register
shift + }
Data transfer path
TM (Generic Self
Test signal) Kemel
Data transfer path
1d
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R2 [ Register
shift +
Truth table for test register
™ 1d PG/SA shift Register Function
0 1 X X load
0 0 X X hold
1 X X 1 shift
1 X 1 0 pat gen/sig analyze
1 X 0 0 hold

Figure 8.3: The BILBO TDM structure
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Fig. 8.4 shows an example circuit. The circuit has three combinational blocks
(kernels) L1,L2 and L3 to be tested. PG1l, PG2 and PG3 are pattern generators
and SAl is a signature analyzer. The Id signal of each register and multiplexer
select lines are activated by the functional controller in normal mode and by the
test controller(s) in test mode. Test plans 1, 2 and 3, corresponding to the three
embeddings of the BILBO TDM, are shown in Fig. 8.5. In Test Plan 1, the transition
from Head to phase (state) 1 occurs when all registers have been initialized. At this
time SC is set to 1 for one clock period.

In state 1 of the test plan PG1 is activated by ¢; and SA1 is in the hold mode
(ci0 = 0). In state 2 the test vector z;,, generated by PG1 is loaded into R1. In
state 3, the response vector ., from L1 is loaded in R1 through MUXI1. In state
4, Toue is loaded in R2 from RI through MUX3. In state 5, SA1 captures z,, from
R2 through MUX4. The test plan sequences through the 5 states & times, where &
is the test length. Test length of a test plan is the number of test vectors applied to
a kernel. A signal TC is set to 1 when all tests have been applied. Test plans 2 and
3 operate in a similar way.

The test controllers associated with the test plans do not perform the set up task
for the test environment e.g., initialize the BILBO registers or scan out the final
signature. The test controller for a kernel will therefore not only have to execute the
actual test plan shown, but will also have to set up the test environment. Since set-
up is a common feature of all test plans, we can have a master or common controller
(M*®) that performs all the housekeeping functions and hands over control to simpler
controllers to execute different test plans.

In this chapter we focus on the problem of merging test controllers controlling
test plans for BILBO TDMs and assume that test plans are executed serially, i.e. one
after the other. Each test plan is assumed to be non-pipelined. The methodology is
applicable to other TDMs (such as the SCAN TDM) and to test plans that operate

in a pipelined manner.

8.4 Problem Formulation

The sequencing and activation of the submachines depends on the value of the

test plan counter. Intuitively it appears that, instead of implementing each of the
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(c7,c10=1)
D (c1=0)

Test Plan 1 Test Plan 2 Test Plan 3
for L1 for L2 forL3

Figure 8.5: Test plans 1,2, and 3 for Ckt 1

submachines as individual entities, we may save logic by sharing logic among the
submachines. This sharing, which can be done via a merging process. The degree of
sharing will depend on the degree of interaction between the control lines activated
by the submachines.
We address the following merging problem.

Given n submachines controlling n test plans, obtain one machine M™ thal has, (1)
Head and Tail as its entry and exit states, (2) controls each of the test plans in turn
in accordance to the inpul from the test plan counter, and (3) has a I-hot coded

implementation with minimal next state and output logic.

Before Merger

Figure 8.6: An example of an unoptimized merger
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The portion of the state diagram in Region A of Fig. 8.2 satisfies conditions
(1) and (2) of the merging problem. In our running example, Fig. 8.6 represents
the state transition graph of M™. The number of states in this merged machine
is Y%, ¢; = 10, where n = 3. Each of these states activate some control lines. If
all the states of a test plan are compatible with all the states of other test plans,
then Fig. 8.7 is an example of a M™ which satisfies conditions (1) and (2) and has

minimal next state logic.

8.5 Solution Approach

Since satisfying the first two conditions in the merging problem is trivial, we will
focus our attention on satisfying the third condition. The merged machine M™ of
Fig. 8.6 will be used as a starting point. The state transition table of this machine
is shown in Table 8.1. The unspecified outputs appear as -’s (don’t cares) in the
table. Note that the states have been simply represented by numbers.

We will use the pair chart technique to find all pairs of compatible states. Some

observations are helpful.
e The states of any one M* are mutually incompatible.

e It is not necessary to make multiple passes over the pair chart as is required
for general machines. This is because for a pair of output compatible states s;
and s; (from two different submachines), an input tp, specifies the next state

only for s; or s; but not both.

~TC
TC
tpl \ o B 1)
61 tp2 {2/ .{J {;1/

3

Figure 8.7: An example of a best case merger
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Figure 8.8: The pair chart
inputs states outputs
tpl tp2 tp3 || ps ms|fcl c2 3 4 ¢ cb6 c7 c8 9 cll
| 0 0 1 241 - - - - - - 0
1 0 0 2 340 - 1 1 - - - - 0
| 0 0 3 440 - 0 1 - - - = = 0
1 0 0 4 5|0 - -1 1 - - - 0
1 0 0 5 140 - - - - - - - - 1
0 1 0 6 7- 1 - - - = - = = 0
0 1 0 7T 84- 0 - - 0 1 - 0 - 0
0 1 0 8 6- 0 - - -1 - - 1
0 0 1 9 10¢Yf- - - - - - -1 0
0 0 1 m 9{4- 1r - - - - - - 0 1

Table 8.1: The transition table for Ckt 1
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Iig. 8.8 is the pair chart where only the entries in the polygon are of interest.
The other entries denote compatibility between states in the same test plan and as
mentioned above, states in the same plan are mutually incompatible. In the pair
chart Y stands for a compatibility and X denotes an incompatibility.

From the pair chart the mazimum compatibles (MCs) and the prime compatibles
(PCs) can be found [63]. The PCs for this problem are the same as the MCs because
the class sets [63] of the MCs are null sets. Fig. 8.9 shows the 2-compatibles, 3-
compatibles and the PCs.

In a classical state minimization technique the next step would be to find one
minimal PC cover for the set of states in the state transition table [63]. Then state,
input and output encodings are determined so as to minimize the resulting logic
implementation [48, 42, 60, 59]. Herein lies the major difference between classical
techniques and ours. We have already decided to use the 1-hot code. To find the
simplest hardware realization, it is necessary to consider all the minimal PC covers
for this machine. We shall show later that the actual search space in most cases is,

in fact, larger than the space of all minimal PC covers.

2 compatibles :
1-6, 2-6, 3-6, 4-6, 5-8 6-9, 7-9
1.7, 2-7, 3-7, 4-9
1-9 2-9 3-9

3-compatibles :
1-6-9, 1-7-9, 2-6,-9, 2-7-9, 3-6-9, 3-7-9, 4-6-9 ,

PC’s :: 1-6-9, 1-7-9, 2-6-9, 2-7-9, 3-6-9, 3-7-9, 4-6-9, 5-8, 10

Figure 8.9: The compatibles and prime compatibles

To illustrate how the choice of a minimal covers affects the implementation of
our merged 1-hot coded controller, consider the six possible combinations of PCs
shown in Fig. 8.10, all of which give a minimal cover. Figs. 8.11(a) and (b) are
the state transition graphs of the merged controller corresponding to two different
choices of minimal covers. Hardware implementation of the two graphs shows that
the implementation of the state transition graph of Fig. 8.11(a) has less logic than
the one for Fig. 8.11(b). The output logic is the same in both cases. Counting the

edges(arcs) of the state transition graphs shows that Fig. 8.11(a) has less arcs then
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Fig. 8.11(b). In the next section we compute bounds on states, arcs, next state and
output logic of a merged machine. In Section 8.7 we present a branch and bound

procedure that builds a state transition graph of the minimal cost merged machine.

X X
(369) (379) 3-6.9 (3719) (369 3.7-9
1 2 3 4 3 6

Figure 8.10: All possible minimum PC covers

8.6 Bounds on Implementation Cost

Recall that M* for i=1,2,...,n has ¢; states. Two cases need to be considered.

1. Each of the ¢; are distinct and can be ordered in a strictly decreasing manner,
i.e.

1> q2>43> .- > (n (8.1)

2. The ¢; are not distinct and the states can be ordered in a non-increasing
manner, e.g.

B =0 v St it = Qg2 = oo = D o 3 el S Qe = = s (8:2)

The M® with equal number of states are grouped together. In case 2, there

are S such state groups. For case 1, S=n.

[ig. 8.12 illustrates the concept of state groups. The STG’s of six submachines are
shown in Figs. 8.12(a),(b),...,(f). The number of states of each of the machines are

given in the figures and they are partitioned into four state groups, i.e., S=4.
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Figure 8.12: Ilustration of state groups
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8.6.1 Computing Implementation Cost

We can think of transition arcs between two states being broken up into two parts,
the outgoing arc (from a state) and the incoming arc (to a state). The existence
of a single outgoing transition arc from a state implies that no logic is needed for
the implementation of that outgoing arc. However when a state has more than
one outgoing transition arc, then each transition is a function of some subset of
{tp1,...,tp.}, and a lower bound of the logic needed to “implement” each outgoing
arc is a single 2 input AND gate. Such a gate implements the conjunction (product)
of two literals. We will assign a cost of 1 to the conjunction of 2 literals (e.g., 2
input AND gate). So each outgoing arc has a cost of at least 1. The conjunction
of k literals (e.g., k input AND gate) has cost £ — 1. To implement two incoming
transition arcs to a state we need the disjunction of 2 literals (2 input OR gate).
Assign a cost of k — 1 to the disjunction of k literals. Thus the cost of implementing
k incoming arcs to a state is k — 1. The negation operation is implemented by an

inverter with a cost of 1.

8.6.1.1 Next State Logic

Fig. 8.13(a) represents the STG of a merged machine. This is a merged machine
corresponding to four submachines partitioned into four state groups and activated
by tpy,tps,tps and tpy. Fig. 8.13(b) is a gate level implementation of the merged
machine. The flip-flops in this figure are provided the same labels as the states
in the merged machine. We focus on state 2 and see how the outgoing arcs are
implemented. Each outgoing arc is implemented by a 2 input AND gate with inputs
as shown in the figure. Each 2 input AND gate contributes 1 unit towards the total
cost of 3. Fig. 8.13(c) is another implementation of the three outgoing arcs. In this
implementation the arc from state 2 to state 3 is implemented as (state 2)*tp; * tps,
where fp; represents the complement of tp;. We assume that complements of all
inputs are available. Since the cost of this implementation is 4 we prefer the previous
implementation (Fig. 8.13(b)).

Fig. 8.14(a) is a partial STG of a merged machine where the eleven submachines
are partitioned into four state groups. The arcs that distinguish between the various

state groups emanate from state 2 as shown. Figs. 8.14(b) and (c) show two methods
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of implementing the outgoing arcs from state 2. In the first method (Fig. 8.14(a)),
each outgoing arc for all state groups except the largest is implemented as the
conjunction (AND) of state 2 with the disjunction (OR) of all the test plan inputs
that correspond to that particular state group. The arc corresponding to the largest
state group is implemented as the conjunction of state 2 and the negation of the
disjunctions of sets of test plans that correspond to each of the other state groups.
Fig. 8.14(c) is a straightforward implementation of the outgoing arcs. The cost
associated with these two alternate approaches are shown in the figures and for this
example the first approach leads to a smaller implementation cost. In implementing
the outgoing arcs of every state of a machine we will evaluate both these approaches

and use the one leading to a smaller implementation cost.

8.6.2 Lower Bound of States, Arcs and Next State Logic

Proposition 8.1 The greatest lower bound or inf of the number of states in M™ s

max (g;) which, in terms of the ordered sequences in Equations 8.1 and 8.2, is q;.

We next state a theorem that gives the greatest lower bound of the number of
arcs in (the state transition graph of) M™. We will then establish a relationship
between the number of arcs and the implementation complexity of the next state

logic of M™.

Theorem 8.1 The inf of the number of arcs in the state transition graph of M™ 1is

q1+S+1, where q; is max(q;) and S is the number of state groups.

Proof : The proof is by induction. Without loss of generality we can assume that
the submachines have been ordered in a non-increasing sequence with respect to the
number of states and subscripted as 1,2,...,n.

Let n=1. Then S=1. There are ¢; — 1 arcs on the path connecting s; to s;].
There is one arc from the Head to s}, one from s, to Tail and the last one is the
feedback arc connecting s} to sj. Since n=1, M' and M™ are the same. Thus the
total number of arcs is ¢14+2 = ¢;+5S+1.

For n=2, S could be either 1 or 2. S=1 implies that both M and M? have the

same number of states. Assuming that there are no incompatibility between any pair

of states in M? and M?, both submachines can be represented by the same state

188



tp1 ,tpatpsstPg ,tP10,tP11

- tps L
cost =3 4 i
tps D_ to ff#5 total cost = 10
tps D
tp7 E%_to ff#4
tpg
| ) toff#3
Y cost = 1
(b)
t cost =6
p1 stp25tp3 !
— to ff#6
tpg:tp10 :tp11.: =

total cost = 11

Figure 8.14: Example implementation of next state logic for S less than n
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transition graph, in which case the total number of arcs is q;+5+41. The situation
S5=2 is interesting because the two submachines to be merged have unequal number
of states. By our ordering principle, 1 > g2. Now ¢14+2 = ¢1+S arcs are required
for M. When we merge M? to M* we will have to add at least one additional arc
over and above the arcs already used for M'. This arc is necessary to distinguish
between the longer and the shorter test plans. Thus the lower bound on the number
of arcs is ¢;+S+1.

Assume that the bound holds for some n = k — 1. We will show that the same
bound holds when we add another submachine. There are two cases. If g, equals
qx—1 then no additional arcs need be added, and since the lower bound for n = k-1
was ¢1+S+1, and S has not changed, the lower bound for n = k is correct. If
qk > qr_1, then we need to add at least one arc to the merged machine built up so
far. Thus the lower bound is ¢;+S+1 where the arc to be added is reflected in the
value of S.

This proves that ¢; + S + 1 is a lower bound. Given a set of machines M,
i=1,2,...,n, we can construct a merged machine M™ having q; + S + 1 arcs. Thus

g1+ S + 1 is the inf. O

Corollary 8.1 Merging start states si to form s and merging end states s, to
form s for i=1,2,...,n is a necessary condition for achieving the inf of arcs in M™,

where sT' represents a state of M™.

Proof : Only the outline of the proof is given. Without loss of generality consider
the case n=2 and ¢; > ¢u. If the start and end states are not merged together, then
three cases need to be considered. (1) Start states are not merged but end states are
merged, (2) end states are not merged but start states are merged and (3) both start
and end states are not merged. Recall the proof of Theorem 8.1 and note that case
| requires at least two additional (entry and feedback for tp,) arcs, case 2 requires
at least two additional arcs (feedback and exit for ¢p;) and case 3 requires at least
three additional arcs (entry, exit and feedback for ¢p,). O

Fig. 8.15 illustrates the concept of start and end states. In the figure, the STGs
of five submachines have been shown. The start and end states have been shown

shaded in vertical lines and crosshatched, respectively. The merged machine shown

190



in the figure has been implemented with all the start states and the end states of

the submachines merged into the start and end states of the merged machine.

start state
end state

q 4='2 Q5=2

Figure 8.15: Illustration of start and end states

Theorem 8.2 When merging a number of submachines into a merged machine M™,
the cost of the next state logic when all the arcs that distinguish different state groups
emerge from the same state s™ is less than or at most equal to the cost of the next

state logic when the arcs emerge from different states.

Proof : Let K, K,,..., K represent sets of test plans (submachines) in each of the
S state groups. k; is the number of test plans in set K;. Let ky > ky > ... > ks. 7 is
the number of groups with only one member if S < n, else if S =n then r =n — 1.
Consider first the case when all the outgoing transition arcs emerge from the same

state. Let Lgume be the total cost of implementing the outgoing arcs. Then
s
j p—— min(n,Zk; +2(S-1)—r) (8.3)
1=2

This formulation is derived easily from Section 8.6.1.1.

Now assume that the S groups have outgoing arcs from some t (¢ > 1) states in
M™. Thus the groups are divided into ¢ sets, Vi, V4, ..., V;. Let p; be the number of
groups assigned to V; and r; be the number of groups in V; having only one test plan

each. Thus 0 < r; < p;,i=1,..,t. VNV, = 0,1 # j.
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Note that the set V; will contain exactly one group i with k; test plans. Thus
the state s which corresponds to the set V;, has only one outgoing arc and this arc
does not need any logic for its implementation. Also if s7* corresponds to the set
mo«

comes before” s}"‘.

The total logic needed to implement all these outgoing arcs is
Lairy = min{n, Ti,evy ki +2p1 —ri} + min{(n — Tiien, ki), Erievs ki +2p2 — 2} +
min{(n — Lk,evauvs ki)s Liievs ki +2p3 —ra} + ..

+ min{(n — Tk,enu..uvis ki Liievio, Fi + 2p-1 — Tt—l}

If (n < Xk ev, ki +2p1 —71) then Lyigp >n 2 Lsame because Lggme 1s at most n,
else if (n > Tk.ev, ki + 201 — 1) A ((n — Txien, ki) € Tkiev, ki +2p2 — 12)) then
Laizs > 1 2 Lgavies
else if ((n > Cx.ev, ki +2p1 — 1) A (0 — Trien ki) > Triev, ki +2p2 —r)A((n—
Y kieviov, ki) € Ticievs ki + 2pa — 13)) then Laiss > n 2 Lsame,

Vi1, then s7

else if (7 > Li.ev, ki + 21 — 1) A ((n = Tievs ki) > Triens ki +2p2 —72) Ao A
((n = Tkieviv..oves ki) € Trieviey ki + 2pi—1 — re-1)) then Laisp > 1 2 Lsame
else Laifj= L.eviu..uvio, ki + 2y — T e

Lets look at the last case in more detail and try to minimize Laizs. MaxyiZ; ri =
S — 1 and min(Tg.eviu..uvi_, ki) occurs when K is allocated to V;. Now Y421 pi =
S — 1. Therefore Lais; in this case is Y5, ki + (S — 1)-

Consider two cases. Case (1) S=n. Then Lsame = min(n, T3, ki42(n—1)—(n—

1)). Since $1, ki=n — 1, Lgame = min(n, (2n — 2)). Laisy = 2n — 2. If2n—2<n

then Lsame = Ld,-”, else Lsame < Ldigg. But 2n —2 < n implies that n < 2 which is
the case when the outgoing arcs will always emerge from the same state and there
is no meaning of Lgiss. Therefore for S=n Liigs > Lsame. Case (2) S < n. The
minimum value of the term Zfﬂ ki+2(S—1) =7 in Lgame Occurs whenr =S5—-1(r
cannot be equal to S since that means S=n). Thus Lsame = min(n, Y5, kit (S—1)).
Comparing Lgame and Lgiss we conclude that Laiit 2 Lingorer

The cost of implementing the incoming arcs is the same in both cases. Thus the

complexity of next state logic when all the arcs that distinguish different groups of
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test plans emerge from the same state is less than or at most equal to the complexity
of arcs emerging from different states. O

Figs. 8.16(a) and (b) show two merged machines with the same number of arcs.
In Fig. 8.16(a) there are two outgoing arcs that emanate from the same state (the
start state) whereas in Fig. 8.16(b) the outgoing arcs emanate from two different
states (states 1 and 2). By the preceding theorem the machine in (b) has more

implementation cost than the machine in (a).

(b)

Figure 8.16: Machine with outgoing arcs emanating from different states

Lemma 8.1 The following two conditions are sufficient for achieving the minimum
cost next state logic in a merged machine M™: (1) the number of arcs in M™ equals
the inf of arcs, and (2) all the outgoing transition arcs that distinguish various state

m
groups emerge from the same state si*.

Proof : In any merged machine the number of arcs has to at least equal the inf
of arcs. From Theorem 8.2 we know that the implementation cost of the outgoing
arcs for a machine M™ where all arcs emerge from one state is less than or equal
to the implementation cost of the outgoing arcs for another machine M™ with the
same number of arcs but which do not all emerge from the same state. Consider the

following two cases.
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e Case 1. Let the number of arcs in machine M™ equal the inf of arcs and all
arcs emerge from the same state. Let M™ be another machine with arcs also
emerging from the same state but the number of arcs is greater than the inf of
arcs. We will show that the cost of next state logic cpm of M™ is less than the
cost of the next state logic cpym of M™. The cost of M™ ignoring the entry,

exit and feedback arcs is

s
cym = min(n, Y ki +2(5—1) —r) + (S —1) (8.4)
1=2
where the last term (S-1) represents the cost of the incoming arcs (OR gate

cost). The cost of M™ is given by

cpm = man(n ZL’+2 1) =)+ (5 1) (8.5)
i=2

where S’ represents the number of modified state groups, r' is the number of
such state groups having one test plan each and k! is the number of test plans
in the ith modified state group. Modified state groups reflect the fact that the
original state groups have been split, i.e., instead of one arc representing an
entire state group, more than one arc is used in M™. It is obvious that 5’ > S.
We will now show that (S5, ki 4+ 2(5"' — 1) — ') > (Tl ki +2(5 — 1) —7)
or equivalently, (S5, k!l + &' + (S —'))>(Tiy ki + S + (S —r)). Note that
Y5, k; is equal to n minus the number of test plans in the largest state group.
For M™ the number of test plans in the largest (modified) state group cannot
be greater than that for M™ because this would lead to an illegal machine.

Therefore Y5, ki > Yi, ki.

We will show that &' =+ > S —7o0r 8’ =5 > ' —r. M™ has more arcs
than M™ because state groups are split. In the extreme case all the S’ —
extra arcs represent single test plans which results in 5’ — S = " —r. Else

S'— 8 > —r. Since §' > 5, we have shown that

Zk’+2 ' 1) =+) = }:L +2(5=1)—r) (8.6)

1=2
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Using Equation 8.6 and the fact that S’ > S, we prove that cpym < cpm.

o Case 2. Let M™ be the same machine as defined in Case 1, and let M™ be
another machine which has more arcs than the inf of arcs and these arcs do
not emerge from the same state in M™. We will show that cyrm < cpm for

this case also.

Let M™' be another merged machine with the same number of arcs as that
in M™ but the arcs of M™ emerge from the same state in M™. From
Theorem 8.2 we can show that cym < cpm. But eym < cpme by Case 1 of

this proof. Therefore cyym < cpqm.

The proof of the lemma therefore follows from Cases 1 and 2 and Theorem 8.2. O

Corollary 8.2 Let ky, ks, ..., ks be the number of test plans in the S state groups,
where these groups are ordered such that ky > ks > ... > ks. Let r be the number of
groups which have only one test plan each if S < n else r = n—1. Then the minimal
cost of the next state logic, denoted by Cpa of a machine with number of arcs equal

to the inf, is given by the following formula.

s
Crst = min{n,> ki+2(S—1)—r}+S5+3 (8.7)

=2
Proof : From Equation 8.3 the cost of implementing the outgoing arcs excluding
entry, exit and feedback arcs is min(n, Y, ki + 2(S — 1) — ). The cost of imple-
menting the incoming arcs for the S groups is S-1. The cost of implementing the

three arcs mentioned above is 4. a

Lemma 8.2 If the number of state groups S is equal to n, then a lower bound on
the cost of next state logic of @ machine M™ having p arcs more than the inf is given

by the following formula.

Cup=2n+3+2p. (8.8)

Proof : Consider the case when the number of arcs of M™ equals the inf of arcs.
Then the minimum cost of next state logic is obtained by substituting S = n in

Equation 8.7 and is equal to min(n,(n-1) + 2(n-1) - (n-1)) + n+3. Simplifying the
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equation we get min(n,2n-2)+n+3 which equals 2n+3 since min(n,2n-2) = n (since
n > 2). Every arc beyond the absolute minimum necessary for implementing M™
(i.e., the inf of arcs) requires at least one AND gate with cost of 1 (outgoing arc)
and an OR gate with a cost of 1 (incoming arc). Therefore Cijy=2n + 3 + 2p and the

lower bound is a monotonically increasing function of p. O

Lemma 8.3 [f the number of state groups S is less than n, then a lower bound on
the cost of the next state logic of a machine M™ having p arcs more than the inf is

given by the formula

S+p
Cup=min{n,> ki+2(S+p—-1)—r}+(S+p)+3 (8.9)

1=2
where 1 is the total number of arcs that represent single test plans.

Proof : The total number of arcs distinguishing the machines constituting M™ is
(S+p). Since the cost of outgoing arcs from the same state is less than or equal to
the cost of the arcs emanating from different states (Theorem 8.2), we substitute
(S+p) in place of S in Equation 8.7. Cy increases monotonically with p (Case 1
Lemma 8.1). 0

The lower bound computations in Equations 8.8 and 8.9 assume that the number
of states (flip-flops) in the merged machine is equal to the infof states. But this may
not be the case since the merged machine is a Moore machine and the number of
states in the merged machine may be larger than the infof states. A correction factor
¢ (a negative number) has to be added to the above equations to account for the
extra states. This correction factor is needed for the following reasons. (1) A single
incoming arc entering a flip-flip corresponding to an extra state does not need an OR
gate. (2) In the worst case this flip-flop may correspond to an end state of a machine.
End states have feedback and exit arcs in our test control model and therefore need
an AND gate each (outgoing arc). Additionally, the exit arc requires an OR gate at
Tail. To offset the cost of the extra flip-flops, in our synthesis procedure we attempt
to merge the outgoing arcs from these flip-flops using a multi-level minimization
approach. Merging the outgoing arcs often leads to reduced implementation cost
for these arcs and this is incorporated in the correction factor. In the best case,

the exit arc can be merged with the feedback arc. Case (1) contributes a 1 to the
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correction factor while Case (2) contributes a 3 to the correction factor. Therefore
¢ = —4 and the lower bounds for the implementation cost when the number of states
of the merged machine is greater than the inf of states are given by the (following)

Equations 8.10 and 8.11 for the cases S = n and S < n, respectively.

Ch=2n+3+2p+c (8.10)
S+p
Co=min{n, Y ki+2(S+p—-1)—r'}+(S+p)+3+c (8.11)
1=2

8.6.3 Lower Bound of Output Logic

The state transition table of the machines M*, i=1,2....,n, shows the values of the
output lines ¢; corresponding to the present state for every machine. Consider the
part of the transition table corresponding to only one machine M*. Let ¢;, j=1,2,...,p,
be the set of output lines corresponding to this machine. ¢; corresponds to a column
vector with ¢; entries. If there is one or less 1 entries (the rest may be 0’s or x’s) or
one or less 0 entries ( the rest may be 1’s or x’s) in the column vector corresponding
to ¢;, then ¢; comes directly from a flip-flop or a fixed logic level and needs no output
logic. However if there are more than one 1 entries and more than one 0 entries in
any column, then the corresponding control line has to be driven by either an OR
gate or a NOR gate. Let a be the number of 1’s and b be the number of 0’s in ¢;,
where a,b > 1. If @ > b then a b input NOR gate is needed, and if b > a, then an
a input OR gate is needed. If the cost of a 2 input OR/NOR gate is 1, then the
cost of gates in the two cases above is b— 1 or @ — 1. When more than one c; has
a,b > 1, then sharing of gates between them may be necessary to get a minimal
implementation.

As stated earlier, we have restricted our output logic to one level of OR/NOR
gate implementation. This restriction is realistic because all the examples that we
have looked at have trivial output logic (for the 1-hot code implementation) and do
not warrant using general 2-level or multiple level logic minimization algorithms.

Let OL be a ¢ x p matrix where the columns correspond to the p control lines
and rows to the ¢ states. All columns where @ < 1 or b < 1 are deleted. OL is

now reduced to a ¢ x p’ matrix. A pair chart technique is used to find compatible
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columns. Each of the compatibles has a cost. We solve a covering problem to find

a set of compatibles that covers all columns and has minimum cost.

Proposition 8.2 Let Ly, be the minimum cost output logic for 1-hot coded subma-
chines M*, i=1,2,...,n. Then the greatest lower bound on the output logic for M™ is
Lot,,=maz {Ly; | 1=1,2,...,n}.

Proof : Suppose a control line ¢;, is driven by only one machine. Then another
machine is merged with this machine and ¢; is now driven by a merged machine.
The process of merging states between two state machines has either no effect on
the the original number of 1s and 0s in a column vector representation of ¢;, or
adds 1s and/or 0s. The cost of implementing the control line ¢; thus can never
be less than when there was no merger. This is also true when sharing of logic
between outputs is considered. In a merged machine, all submachines must retain
their functionalities. Thus the lower bound of output logic in the merged machine
is maz{Ly, |1 =1,2,...,n}.

It is conceivable that the merger of machines does not affect the 1 and/or 0 count
of the outputs of machine M*, where Ly, = max{L;, | j = 1,2,..., n}. Lo, is a valid

output logic complexity of M™. Thus it is the greatest lower bound. O

8.7 Synthesis Procedure

We have developed an implicit enumeration procedure SOHOT (Synthesis of Optimal
1-HOT controllers) that incrementally builds the transition graph of a state minimal
merged machine with minimal next state and output logic. The basic data structure
of SOHOT is a n-ary tree called Search_tree. Each node N; in Search-tree has some
properties attached to it. One of these properties is a directed graph DG. DG=(V,E)
represents the state transition graph (partial or complete) of a M™. We will present
the basic concepts of SOHOT by illustrating how an optimal M™ is built for the
example circuit given in Fig. 8.4. Pseudocode for this procedure can be found in
[64].

The Search-tree along with the DGs for every node in this tree are shown in

Figs. 8.17 and 8.18. Node_list is a list of nodes in Search-tree. Initially Node-list={N1}.
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Figure 8.17: The search tree for Ckt 1 (continued in next figure)
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Figure 8.18: The search tree for Ckt 1

Freq_list is a list of states in M*i=1,2,3, sorted in nondecreasing order of their oc-
currences in the PCs shown in Fig. 8.9. States 4,5,8,10 have a frequency of 1. Thus
the three PCs (4,6,9),(5,8) and (10) which cover these states must be used to build
M™ and are selected first. These PCs are attached to the three new vertices, A,B
and C created in the DG of N;. Since the states 4,5,8,10 will not appear again, we
assign them to the vertices A,B and C and mark this assignment by starring them.
States 6 and 9 are not starred because they occur in other PCs. It is not known
at this point if assigning 6 and 9 to vertex A will yield an optimal M™. However,
states 4,5,6,8,9 and 10 are deleted from Freqlist. Since a transition exists between
states 4 and 5 in M!, an edge is added between A and B. Similarly edges (B,T) and
(C,T) are added to the DG of N; because transitions (5,Tail),(8,Tail) and (10,Tail)
exist in all three submachines.

The information from the DG of N is used to compute metrics that establish
a lower bound on the number of states (lbs), number of arcs (lba) and output logic
(I1bo) of the M™ whose partial transition graph is DG. Theoretically, the inf of arcs
is 9 (Theorem 8.1). To achieve this result it is necessary to merge all the end states
5,8,10 (Corollary 8.1). However, in the DG of Ny, states (5,8) and 10 are assigned
to two different vertices and there are two edges instead of one going to T. Thus the
new lower bound, lba, is 10 (9+1). From Proposition 8.1, the inf of the number of

states is 5. The DG of N has 3 vertices if H and T are excluded. However, 3 states
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from M! and 1 state from M? have not been accounted for. Assignment of the 3
states of M! will require at least 3 additional vertices in DG. Hence lbs is 6. An
output matrix OL is created having three rows corresponding to the three vertices
A,B and C in DG. The columns correspond to the control lines activated by the
states 4,5,8 and 10 assigned to these vertices (4 to A, 5 and 8 to B, 10 to C). No gate
is required to implement the output logic. So lbo is 0. These metrics are properties
of N;. Freq.list and OL are also properties of Nj.

State 1, the first element of the modified Freq-list with a frequency of 2, needs
to be assigned to a vertex. Since PCs (1,6,9) and (1,7,9) both cover state 1, N is
expanded to create children N, and N3. These nodes inherit all the properties of Nj.
Vertex D is added to the DGs of both nodes. PCs (1,6,9) and (1,7,9) are attached
to the vertex D in the DGs of N, and Nj respectively. State 1 is starred for both
nodes. The edges of the DG of N, is updated next. Since 1 is a start state in M?,
an edge (H,D) is added. Since merging the start states 1,6,9 is a necessary condition
for achieving the inf of arcs in M™, and since 6 and 9 appear in vertex D along with
state 1, we assign 6 and 9 to D even though they appear in other PCs (and vertices).
So 6 and 9 are starred. Edges (D,C),(B,D) and (C,D) are then added. The metrics
lba,lbs and lbo need to be computed for this node. This DG has edges (B,D) and
(C,D) corresponding to two feedback arcs instead of one required to achieve the inf
of arcs. So lba is incremented by 1 and becomes 11. [lbs of this node is 6, since 2
states in M have yet to be accounted for. An additional row is added to the OL of
N, to reflect vertex D and the entries in this row are the control lines activated by
the states 1,6,9. Control line ¢;o requires a two input OR(NOR) gate, so lho=1. For
Na, state 9 is starred and edges (H,D), (B,D),(C,D) and (D,C) are added to its DG.
Similar to the DG of N,, the DG of N3 has two feedback arcs. In addition only two
out of three start states are assigned to D, thus another arc will be needed to cover
the (Head,6) transition in M?. Thus lba is incremented by 2 and becomes 12. Ibs is
6 and lbo is 1.

The node N is deleted from Node_list and Ny and N3 are added. N; is the next
candidate for expansion since lba of N, is less than the lba of N3. Note that lba
can be used directly as a measure of the predicted next state logic cost since for
both nodes Ibs is greater than the inf of states (Equation 8.10), else the actual lower

bound needs computation using Equations 8.8 and 8.10. The Freg_list of N; only has
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states 2,3 and 7 since the other states have been deleted. State 2 has a frequency of
2, hence N, is expanded to create two children Ny and N5. PCs (2,6,9) and (2,7,9)
are attached to vertex E in the DGs of nodes Ny and Ns. State 2 is starred in both
cases. Edges (D,E) are added to both. The metrics for both the nodes are 6,11 and
1 for lbs, lba and lbo respectively.

Node_list={ N4, N5, N3}. Expansion of Ny creates two nodes Ng and N7 corre-
sponding to the two choices of PCs for state 3. Node Ng is deleted because its
Freq_list still contains state 7 whereas the Freq_list of N7 is empty. Now all states
are found to be starred in the DG of N7 implying that all states have been assigned
to vertices and this DG represents a complete transition graph of a M™.

The next state logic, output logic, the number of states and the number of arcs
used by the M™ corresponding to the DG of N7 is determined. Sharing of logic
(if any) between next state and output logic is taken into account and assigned
to a local variable shareio. The shared logic, shareio, is subtracted from the sum
of the logic needed to implement the next state and output logic and assigned to
another local variable Total_logic. Global variables Vbstates, Vbares, Vblogic, Vbol
and Vbshareio are assigned values for the states, arcs, total logic, output logic and
shared logic respectively for the best DG found at any point in SOHOT. Since the
DG of Ny is the first complete transition graph found so far, Vbstates=6, Vbarcs=12,
Vblogic=12, Vbol=1, Vbshareio=1 and Best-Node=N7.

Node_list={Ns, N3}. The metrics of N5 are compared against the best found so
far and Nj is expanded to produce Ng and Ny corresponding to the two PC choices
for state 3. The DG of Ng is updated and it is observed that it is also a complete
transition graph of a M™. This DG has less arcs and logic than the best found so far.
So Best_node=Ng, Vbstates=6, Vbarcs=11, Vblogic=10, Vbol=1 and Vbshareio=1.
After the DG of Ny is updated, it is found that state 7 has not been starred even
though it appears in vertices E and F. This implies that we have to evaluate the
impact of the assignment of state 7 to each of these vertices. This makes the search
space larger than the space of all minimal PC covers. lba is no longer a good metric
for nodes such as Ng which have unassigned states. Another metric [ba” is calculated
instead. This is a heuristic and is a lower bound on the number of arcs. It is more
optimistic (gives smaller numbers) than lba but helps to order nodes in Node-list if

more than one node similar to Ny exists. Assume that E and F are lumped together
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to form a new vertex EF. Then the transition (6,7) is covered by edge (D,EF) but
no edge exists from EF to B to cover (7,8). The DG has 10 edges and at least 1
additional edge will be required. So [ba" is 11. lbs is 6 and lbo is 1.

Node_list={ Ny, N3}, Ny is inserted before N3 because Ilbs for both the nodes
are equal and [ba"” of Ny is less than the lba of N3. Expansion of Ny is different
from the expansions encountered so far. Here two nodes Ng; and Ngy are created
corresponding to the two vertices E and F to which state 7 can be assigned. Node
Ng, is deleted because total-logic equals Vblogic (we do not keep track of more than
one solution with the best cost) and node Ny, is deleted because total_logic is greater
than Vblogic.

Node_list={N3}. Lets assume that the best implementation of a M™ built up
from the DG of N3 has 12 arcs and shares 1 unit of logic between input and output.
Using Equation 8.10 the lower bound on implementation cost is (2%*343+42%*3-4),
which equals 11. However, the best M™ found so far has Vblogic=10, Vbol=1 and
Vbshareio=1. Thus expanding N3 will never give a better result. So N3 is deleted
and the hardware realization of the best M™, corresponding to Ns, is shown in
Fig. 8.19.

The procedure will terminate if at any leaf node it finds a DG whose next state
and output logic equals the infs of the next state and output logic equals the minimal
logic cost given in Equation 8.7. This is a very powerful feature of SOHOT because

it does not need to explore the solution space any further.

8.8 Experimental Results

Some results using SOHOT are presented in Fig. 8.20. The entry Total states in the
table corresponds to 3%, ¢;, where n is the number of test plans for a particular
circuit. The inf of states, arcs, next state logic (nsl) and output logic (ol) are also
tabulated. It is important to note that the search space is not simply the space of
all minimal PC covers. A state may occur in more than one PC in the minimal
cover and an optimal assignment of this state to a PC increases the search space.
For example, Ckt 1 has 6 PC covers, but the entire search space has 18 leaf nodes.
Entries states, arcs, b nsl, nsl, ol and share on the right side of the table represent

the total number of states, arcs, lower bound on next state logic, the actual next
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Figure 8.19: Hardware implementation of the minimal merged machine for Ckt 1

204



state logic, output logic and the logic shared between next state and output logic,
respectively. As seen from the table, M™ for Ckt 1 has 11 arcs, 6 states, and 10
2-input gates, and the procedure only examined 4 leaf nodes out of a possible 18.
Ckt 2 (3 machines with 6, 5 and 4 states) is interesting because the next state logic
and output logic of M™ at one of the leaf nodes is equal to the inf of the next state
logic and output logic, respectively, and the procedure terminated without searching
any further. In this case, only 2 out of a possible 18 nodes were examined. For Ckt
3 (3 machines with 5, 4 and 3 states), the procedure examined only 2 leaf nodes
out of 10. Ckt 4 (3 machines with 5, 4 and 4 states) has only 1 answer. Except
for an OR gate driving a control line in Ckt 1 and Ckt 3, all other control lines of
the circuits are driven directly from the flip-flops of their merged machines. Note
that the lower bound (Ib nsl) computation provides very close estimates of the final

implementation cost (nsl). These circuits are detailed in [64].

Optimal Merged Machine
Total Leaf
Ckt Total | Inf |Inf | Inf |Inf Ib Total
: Leal | states | arcs nsl |ol |share 4 1 nodes
Name | states | states |arcs | nsl | ol aodes nsl logic | gepn.
Ckt 1 10 5 9 19 |0 18 6 |11 |9 |10 1 1 10 4
Ckt 2 15 6 1019 [0 18 6 |10 (9 |9 0 0 9 2
Ckt3 | 12 5 {99 0] 10 6 |12 |11 | 13| 1 1 13 2
Ckt4 | 13 5 8 [7 | O 1 5 9 |9 (10] 0O 0 10 1

Figure 8.20: Results for example circuits

We have run our examples through a set of standard synthesis tools. For state
minimization we used STAMINA [28]. JEDI [59] is used for state assignment, and
s1s [50], has been used for logic minimization. STAMINA, however, produces a mini-
mal state Mealy machine. Since we use the Moore model, in some cases the cardinal-
ity of the minimum state cover produced by STAMINA is smaller than that produced
by soHoT. However, this is the only state minimization tool that is integrated with

s1s. For each of the example circuits we carried out state assignment using both
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the 1-hot code and the minimum number of flip-flops. Then logic minimization is
performed using a standard script file. Fig. 8.21 shows the results. The descriptions
given to the synthesis tools did not have the Head and Tuil states. Therefore when
we obtained the literal counts for the designs implemented by soHoT, we did not
count the literals contributed by the transitions to/from the Head and Tail states.
From Fig. 8.21, we can see that the literal counts for designs obtained using SOHOT
are much smaller than those obtained by standard synthesis tools. The entries lits
sop and lits fac represent the number of literals in the sum of product form and

[actored form respectively.

SOHOT STAMINA -> JEDI -> SIS
Circuit | Total # 1-hot encoding | min-code encoding
name | states - . =
min lits | min | #of | lits | Iits | #of| lits ]thS
states(ffs) states| ffs | sop | fac | ffs | sop | '@
Ckt 1 10 6 11 5 5 17 16 3 28 27
Ckt 2 15 6 8 6 6 16 | 14 3] 31 30
Ckt 3 12 6 14 5 5 18| 16 3 23 22
Ckt 4 13 5 9 515 21| 21| 3| 24 | 24

Figure 8.21: Comparison with standard synthesis tools

8.9 Interfacing with IEEE 1149.1 Boundary

Scan Architecture

In Section 8.2 we presented a control model that assumes that the TAP controller
is not present on-chip and there is no test bus. In this section we will show how
the 1-hot coded controller can be integrated with the IEEE 1149.1 boundary scan
architecture and also be compatible with the bus-based architecture proposed in

Chapter 4. The basic objective of proposing the control model in Section 8.2 is
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to provide the designer with the option of choosing an alternate test control strat-

egy when compatibility with the IEEE 1149.1 boundary scan architecture is not a

requirement.

8.9.1 Direct Control
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Figure 8.22: The control model for direct control

This subsection presents the control model and the overall model of the test
controller for incorporating the TAP controller on the chip and controlling the test
resources by routing control lines from the TAP controller and the 1-hot coded
controller (test controller). Fig. 8.22 is a model of this architecture. This model
shows the TAP controller interacting with the test controller. The TAP controller
controls the shift/capture/update functions of the boundary scan registers as well
as the shift/load operations of the scannable functional registers. Control transfers
to the test controller when the TAP controller is in the run-test/idle state and the
RUNBIST instruction is loaded in the IR. The exact mechanism is presented in
Fig. 8.23. Since the TAP controller controls the processes of scan-in/scan-out of

the data/results, the shift counter (SCNTR - in Fig. 8.1) is not needed. Moreover
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the test plan counter (TPCNTR) is made scannable and is initialized with a binary

string corresponding to the current test plan (session) under execution.

A N O P P PP R P RPN P H RS E PRIy

TAP TAP Region B

Controller

\ Inteifrrupt
c —»
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€ i 1[40
Cz ............ J1ee

RUNBISTALp,

RUNBISTAtp,

Figure 8.23: The overall test controller in direct control

The state diagram of the overall test controller is shown in Fig. 8.23. In this figure
Region B corresponds to the TAP. The run-test/idle state of the TAP controller
serves as the Head for the test controller. Individual machines in the test controller
are activated when the TAP controller is in the run-test/idle state and the RUNBIST
instruction is loaded in the IR. The Tail is replaced by logic block C which generates

an interrupt to the test channel signifying end of test application for a particular
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test plan (session). The control lines activated by the test controller correspond to
control lines for various data transport paths and the mode control (PG/SA) for
the test registers. An example truth table for a test register that has PG or SA
capability is given in Fig 8.3. If a register has both PG and SA capabilities then an

extra control line can be added.

8.9.2 Bus-based Control

The 1-hot coded test controller can also be used in the bus-based approach. The
control model of the bus-based approach is given in Fig. 8.24. This model shows
the TAP controller (the ITAPC) driving an internal test bus. This bus is an input
to both the functional and the test controllers as well as the datapath. The test
counter and the test plan counter also have inputs from the bus since they are both
scannable. The multiplexer selecting between the outputs of the functional and the
test controller is controlled by a decoder that decodes off the test bus. The exact
nature of the interaction between the test controller and the test bus is shown in
Fig. 8.25. A decoder in the test controller decodes the code corresponding to the
run-test/idle state of the ITAPC and the RUNBIST (RBIST) instruction. This
decoder activates one of the constituent machines in the test controller depending
on the test plan to be executed.

In the bus-based model the test controller controls the elements in the data
transport paths and if necessary the PG/hold or SA/hold signals for the registers.
The models for the registers is the same as that presented in Chapter 3 and the
bus schemes as well as the encoding techniques are the same as that presented in

Chapter 4.

8.10 Summary

Contemporary state machine synthesis techniques perform state minimization first
and then do state, input and output encoding. However, in this chapter we have
shown that for some specific problems, such as the test controller synthesis problem,
it is possible to use certain properties specific to the nature of the controllers and

come up with an implicit enumeration technique to achieve a optimal synthesized
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Figure 8.24: The control model for bus-based control

Internal Test Bus

-

=

Decodel]

ALt et ALt e

wmmwm-mw
=
=)
=

Decodes
RUNBISTAnun-test/idle

on,

+ Inferrupt

Figure 8.25: The overall test controller for bus-based control

210



machine. Some of the subproblems by themselves are NP-complete or NP-hard.
FFor example, state minimization is a NP-hard problem. Determining the minimum
output logic, even when it is restricted to one level, is an NP-complete problem. Since
the problems in the test controller domain are of restricted size, in this chapter we
have assumed that we will solve these subproblems exactly. We could have an option
of using heuristic techniques for obtaining the PCs or use existing logic minimizers
to obtain the output logic. However, using the 1-hot code makes the output logic
trivial and consequently the output logic problem size is small enough to make exact
techniques feasible. Also note that the size of a PC in our problem is upper bounded
by the number of machines, n, to be merged, and the complexity of finding all the
PCs is O((2%, ¢)*"). The complexity is exponential in the number of machines
being merged and not in the number of states.

We mentioned in Section 8.2.3 that one of the main advantages of using a 1-
hot coded controller is the flexibility of distributing the flip-flops in the controller
throughout the design such that control wire routing overhead is reduced. The flip-
flops of the merged controllers for the four circuits given in the result can indeed be
distributed throughout the circuits. Also, the single OR gate in the output logic of
Ckt 1 and Ckt 3 is fully tested by the walking 1 pattern that is generated in the
controller during the test mode.

We show that the 1-hot coded controller can be used in conjunction with a wide
range of architectures. The architecture presented in Section 8.2 assumes that a chip
does not support the boundary scan architecture. In Section 8.9.1 we showed how
the 1-hot coded controller can be integrated with the boundary scan architecture
using the direct control scheme. Finally in Section 8.9.2 we presented a scheme where

the bus-based control scheme is used in conjunction with a 1-hot coded controller.
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Chapter 9

System Description

9.1 Introduction

This chapter focuses on the implementational details of CONSYST (Controller Synth-
esis System for Test). Section 9.2 provides an overview of CONSYST by describing its
major subsystems. In Section 9.3 the grammar for a language that specifies various
attributes of a testable circuit is presented along with example testable scan and
BIST designs. Flowcharts of CONSYST are provided in Section 9.5. Examples of
circuits synthesized by CONSYST are shown in Section 9.6. Section 9.7 illustrates

some graphical menus developed for the system.

9.2 System Overview

A circuit to be made testable is processed by SIESTA or BITS. These systems generate
a family of testable designs with different attributes in terms of test time, area
overhead of the test hardware and fault coverage. Various characteristics of a testable
design such as scan chains and test plans are specified in a high level test description
language developed for CONSYST. Using this description, CONSYST synthesizes the
test control logic and provides control area overhead information for each design. A
selection system such as SAESS [65] can be used to help the designer make a choice
between different designs. Once a decision is made to implement a particular testable
design, CONSYST automatically incorporates all test control hardware as well as test
resource hardware (such as pattern generators and signature compactors) into the

circuit.
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Circuits are represented in the Cbase (an object-oriented database developed by
the USC test group [66]) format. Circuits in Chase are hierarchical in nature and
are either captured schematically by a designer using the Cbase graphical user in-
terface (GUI), imported from other schematic capture tools using hierarchical EDIF,
translated from a structural VHDL description or generated by a high-level synthesis
system such as ADAM [67]. CONSYST is written in C and C++ (approximately 30,000
lines of code) and incorporates a GUI for interacting with the designer. Currently

CONSYST is compiled under SunOs Release 4.1.3.

9.2.1 Major Subsystems

An overview of CONSYST is shown in Fig. 9.1. The major subsystems that constitute

CONSYST or help in its functioning are briefly explained below.

e OCTTOOLS : This is a set of logic synthesis and layout tools developed
mainly at the University of California, Berkeley [68]. CONSYST uses some of
the sequential and combinational logic synthesis tools in OCTTOOLS. Specifi-
cally, STAMINA [28] is used for state minimization and NOVA [43] and JEDI [59]
are used for state assignment targeted for two-level and multi-level logic imple-
mentation, respectively. Espresso [48] and SIS [50] are used for two-level and
multi-level logic minimization, respectively. TimberWolf [51] and YACR [52] are

used for standard cell placement and layouts of the control logic, respectively.

e Merged Test Controller Synthesizer : Given the STTs of individual test
plan controllers this module obtains the STT of a merged test controller that
has minimal two-level implementation cost. This module is called COMPOSER
and is described in detail in Chapter 6.

e Functional and Test Controller Merger Module : This module opti-
mally merges a test controller that controls a number of test plans with the
on-chip functional controller. This module is called OMEN and can target ei-
ther a two-level or multi-level implementation of the merged controller. It is

presented in detail in Chapter 7.

e ITAPC and Distributed Decoder Synthesizer : This module synthe-
sizes the Integrated TAP Controller (ITAPC) and the decoders necessary for
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controlling various scan and BIST registers. This module can minimize bus
symbols as well as encode them to minimize the implementation cost of the
distributed decoders and/or the ITAPC. More details about the techniques
used by this module can be found in Chapter 4.

e Test Register Synthesizer : This module creates hierarchical gate level
descriptions of the registers that are involved in testing a circuit. This in-
cludes implementing the components of the local controllers. Gate level netlists
of decoders generated by the preceding module are incorporated in the local
controllers. Furthermore data selection multiplexers, mode and configuration

flip-flops and ex-or gates for PG/SA polynomials are also implemented.

o CTD Synthesizer : The BOLD [11] system developed at USC defines the
architecture of hierarchical off-chip test and maintenance controllers. BOLD
also has compilers that convert high level chip (module) test logic and test ap-
plication descriptions into code that is executable by the off-chip controller(s).
The ¢TD (Chip Test Description) synthesizer module creates a description of
the testable chip and the test plans using the Chip Test Language (cTL) [11].
CTL has strong similarities to BSDL [69)].

e Netlist / FSM Translators :

— BLIF2Cbase Translator : This module takes a circuit described in
BLIF ( Berkeley Logic Interchange Format) and incorporates it into Chbase.
CONSYST uses synthesis tools that produce a logic description of the test

control hardware in BLIF.

— Finesse2sTT Translator : In ADAM, a program called cSG [70] creates
a behavioral description of the functional controller which is provided as
input to a FSM synthesis program (FINESSE) in the CONCORDE design
tools. The Finesse2STT translator is used to convert a functional con-
troller specification generated by ¢sG to the STT format recognized by
CONSYST.

e System Manager : The System Manager invokes other modules and con-

trols the flow of execution of CONSYST.
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9.3 Test Plan Description Language

Systems such as SIESTA or BITS are test analysis tools, in that they determine at-
tributes necessary to make a chip testable. However CONSYST performs the actual
task of implementing the test control and resource hardware. Therefore a consistent
mechanism is needed to transfer information from the test analysis process to CON-
SYST. Since test analysis can even be performed by a test engineer, it is important
to describe the test features of a chip in a consistent and unambiguous manner. This
is accomplished by the Test Plan Description Language (TPDL). The attributes of a
testable chip such as scan chains, characteristics of test registers and the test plans
are described in a Test Plan File (TPF) using TPDL. A grammar for this language
has been specified and is presented in the following subsection.

A compiler is needed to translate the information in a TPF into a format rec-
ognizable by CONSYST. There are two major parts of any compiler : (1) a lexical
analyzer, and (2) a parser. The lexical analyzer reads the source file and passes to-
kens or terminal symbols to the parser which checks if the string of tokens are valid
according to rules of the grammar for the language in which the source file is writ-
ten. Yacc (yet another compiler-compiler) [71] is a parser generator that simplifies
the process of implementing a parser for a language. The context-free grammar for
TPDL is written in the input format of Yacc and then Yacc is run to create a parser
for TPDL in C. In the grammar presented in the following subsection, the words in
capital letters are the terminal symbols while the words in lower case letters are the
non-terminal symbols. In the rest of this chapter we use the term keyword to denote
terminal symbols. Lex [72] is a tool used for simplifying the process of writing a
lexical analyzer for a grammar. A specification of a lexical analyzer for the TPDL
grammar is written in the Lex language, and then Lex is run on this specification to
create a lexical analyzer for TPDL in C. Refer to [73] for more details of context-free

grammars, lexical analysis and parsing.

9.3.1 Grammar for TPDL

test_procedure : _BEGIN_CHAIN_DEF chains _END_CHAIN_DEF
_BEGIN_REG_GROUP_DEF reg_groups _END_REG_GROUP_DEF
_BEGIN_CONTROL_LINE_DEF control_lines _END_CONTROL_LINE_DEF
_BEGIN_FUNC_REG_DEF func_regs _END_FUNC_REG_DEF
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chains

chain

chain_type

all_reg

reg_defs

reg_def

reg_groups

reg_group

regs

reg

bs_io

functions

function

polydescriptor :

feed_forwards

feed_forward

chain

chains chain

: _CHAIN _INT_NUM _SEMICOLON
_CHAIN_TYPE _EQ chain_type _SEMICOLON all_reg

: _BOUNDARY_SCAN
_GENERAL

: reg_def
reg_defs reg_def

_BEGIN_SESSION_DEF sessions _END_SESSION_DEF

: _BEGIN_CHAIN reg_defs _END_CHAIN

: _REG_NAME _EQ _STRING _COMMA _REG_ID _EQ _INT_NUM _COMMA

_LENGTH _EQ _INT_NUM _SEMICOLON

_REG_NAME _EQ _STRING _COMMA _REG_ID _EQ _INT_NUM _COMMA
_LENGTH _EQ _INT_NUM _COMMA _TEST_ONLY _SEMICOLON
_REG_NAME _EQ _STRING _COMMA _REG_ID _EQ _INT_NUM _COMMA
_LENGTH _EQ _INT_NUM _COMMA _HAS_FUNC_HOLD _SEMICOLON
_REG_NAME _EQ _STRING _COMMA _REG_ID _EQ _INT_NUM _COMMA
_LENGTH _EQ _INT_NUM _COMMA bs_io _SEMICOLON

: reg_group
reg_groups reg_group

: _REG_NAME _EQ _STRING _COMMA _CONSTITUENTS _EQ regs _COMMA

_FUNC _EQ functions _SEMICOLON

_NULL

! reg

regs reg

: _STRING

: _INPUTBS

_OUTPUTBS

: function
functions function

: _PG _L_BRAC polydescriptor

_R_BRAC

_SA _L_BRAC polydescriptor _R_BRAC

_LOAD
_HOLD

_STRING _COLON _POLY _EQ _STRING

_STRING _COLON _POLY _EQ _STRING feed_forwards

: feed_forward
feed_forwards feed_forward

: _FEEDF _EQ _STRING
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control_lines

control_line

func_regs

func_reg

sessions

session
session_def

session_body

H
initializations:
|
H

initialization :

application

phases

phase

vals

val

reg_vals

reg_val

session_func

I
I

control_line
control_lines control_line;

: _LINE_NAME _EQ _STRING _COMMA _LINE_ID _EQ _INT_NUM _COMMA

_LINE_WIDTH _EQ _INT_NUM _SEMICOLON
_NULL

func_reg
func_regs func_reg

_REG_NAME _EQ _STRING _COMMA _REG_ID _EQ _INT_NUM _SEMICOLON
_NULL

: session

sessions session

_SESSION _INT_NUM _SEMICOLON session_def

: _TDM _EQ _STRING _SEMICOLON session_body

: _BEGIN_INITIALIZE initializations _END_INITIALIZE

_BEGIN_APPLICATION application  _END_APPLICATION

initialization
initializations initialization
_CHAIN _EQ _INT_NUM _COMMA _INT_VEC _EQ _STRING _COMMA

_RES_VEC _EQ _STRING _COMMA _SHIFT_CYCLES _EQ _INT_NUM
_SEMICOLON

phases _APPLY_CYCLES _EQ _INT_NUM _SEMICOLON

phase
phases phase

: _PHASE _EQ _INT_NUM _COMMA _CONTROL_LINE_VAL _EQ vals _COMMA

_REG_VAL _EQ reg_vals _SEMICOLON
_NULL

: val

vals val
_STRING _COLON _INT_NUM

reg_val
reg_vals reg_val

_STRING _COLON session_func

_PG _L_BRAC _STRING _R_BRAC
_SA _L_BRAC _STRING _R_BRAC
_LOAD
_HOLD
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Figure 9.2: Scan_Ckt

END_CHAIN

CHAIN 2;
CHAIN_TYPE = GENERAL;
BEGIN_CHAIN

REG_NAME = R2, REG_ID = 97, LENGTH
REG_NAME = R3, REG_ID = 112, LENGTH
REG_NAME = R4, REG_ID = 135, LENGTH

END_CHAIN
END_CHAIN_DEF
BEGIN_REG_GROUP_DEF NULL END_REG_GROUP_DEF
BEGIN_CONTROL_LINE_DEF NULL END_CONTROL_LINE_DEF
BEGIN_FUNC_REG_DEF NULL END_FUNC_REG_DEF
BEGIN_SESSION_DEF

SESSION 0; /* Test Kernels K1 and K2 */
TDM = F_SCAN;
BEGIN_INITIALIZE

CHAIN = 1, INT_VEC = vector_file0, RES_VEC = result_vector_fileO,

SHIFT_CYCLES = 8;
END_INITIALIZE
BEGIN_APPLICATION

NULL
APPLY_CYCLES = 1;
END_APPLICATION
SESSION 1; /* Test Kernel K2 */
TDM = F_SCAN;
BEGIN_INITIALIZE

um n u

B RN
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CHAIN = 2, INT_VEC = vector_filel, RES_VEC = result_vector_filel,

SHIFT_CYCLES = 4;
END_INITIALIZE
BEGIN_APPLICATION
NULL
APPLY_CYCLES = 1;
END_APPLICATION
END_SESSION_DEF

9.3.2.2 Discussion

The scan chains are defined first in a TPF. The scan chains are specified either
as BOUNDARY_SCAN or GENERAL. In each scan chain the constituent registers are
specified in the order of their appearance in the chain. The name (a string that
follows keyword REG_NAME), Cbase identification number (an integer that follows
keyword REG_ID), number of bits (an integer that follows keyword LENGTH) and a

possible extra attribute are specified for every register. This extra attribute can be

one of the following.
e INPUTBS - Specifies that the register is an input boundary scan register.
® OUTPUTBS - Specifies that the register is an output boundary scan register.

® TEST_ONLY - Specifies that the register is not part of the functional design
and is added to the design for test purposes. The corresponding REG_ID can
be any integer. Such registers are needed by PET [74] for pseudo-exhaustive

testing.

e HAS_FUNC_HOLD - Specifies that the register has a functional load/hold control

line.

Boundary scan registers for bidirectional or tristate input/output pins are not sup-
ported. Note that all the cells in a register are assumed to be homogeneous, i.e., all
cells have the same functions.

Since this is a full scan design no control signals need to be specified and therefore
the NULL keyword is inserted between the keywords BEGIN_CONTROL_LINE_DEF and
END_CONTROL_LINE_DEF. For unbalanced partial scan designs, all control lines to
non-scan registers need to be defined so that the boundary scan cell driving the

corresponding control line can be modified as described in Chapter 5.
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BEGIN_CHAIN_DEF

CHAIN 0;
CHAIN_TYP
BEGIN_CHA

REG_NAM
REG_NAM
REG_NAM
END_CHAIN

CHAIN 1;
CHAIN_TYP
BEGIN_CHA

REG_NAME
REG_NAME
REG_NAME
REG_NAME

END_CHAIN

E =
IN
E
E
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E
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END_CHAIN_DEF
BEGIN_REG_GROUP_DEF
BSR1, CONSTITUENTS
CONSTITUENTS

REG_NAME
REG_NAME

]

REG_NAME
REG_NAME

wn

LINE_NAME = R1_1d,

R1,

RG1,

BOUNDARY_SCAN;

BSR1, REG_ID
BSR2, REG_ID
BSR3, REG_ID

GENERAL;

BSR1, REG_ID
BSR2, REG_ID
BSR3, REG_ID
R1, REG_ID

CONSTITUENTS
BSR3, CONSTITUENTS
END_REG_GROUP_DEF

BEGIN_CONTROL_LINE_DEF

BSR3 <

57, LENGTH = 4,
80, LENGTH = 4,
115, LENGTH = 4,
57, LENGTH = 4,
80, LENGTH = 4,
115, LENGTH = 4,
150, LENGTH = 4,
= BSR1,  FUNC
= Ri, FUNC

BSR3,

R1 BSR2, FUNC
FUNC

Figure 9.3: Bist_Ckt_1
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LINE_NAME = mux_sel, LINE_ID = 725, LINE_WIDTH = 1;
END_CONTROL_LINE_DEF
BEGIN_FUNC_REG_DEF NULL END_FUNC_REG_DEF
BEGIN_SESSION_DEF
SESSION 0; /* Test K1 */
TDM = BILBO;
BEGIN_INITIALIZE
CHAIN = 1, INT_VEC = bbbbxxxxxxxxbbbb,RES_VEC = xxxxxxxxxxxxbbbb,
SHIFT_CYCLES = 16;
END_INITIALIZE
BEGIN_APPLICATION
PHASE = 0,
CONTROL_LINE_VAL = mux_sel:2,
REG_VAL = BSR1:PG(PG1) R1:SA(SA1);
APPLY_CYCLES = 16;
END_APPLICATION
SESSION 1; /* Test K2 */
TDM = BILBO;
BEGIN_INITIALIZE
CHAIN = 1, INT_VEC = xxxxxxxxbbbbbbbb,RES_VEC = xxxxxxxxbbbbxxxx,
SHIFT_CYCLES = 16;
END_INITIALIZE
BEGIN_APPLICATION
PHASE = 0,
CONTROL_LINE_VAL = mux_sel:0,
REG_VAL = R1:PG(PG1) BSR3:SA (SA1);
APPLY_CYCLES = 16;
END_APPLICATION
SESSION 2; /* Test K3 */
TDM = BILBO;
BEGIN_INITIALIZE
CHAIN = 1, INT_VEC = xxxxbbbbbbbbbbbb,RES_VEC = xxxxxxxxbbbbxxxx,
SHIFT_CYCLES = 16;
END_INITIALIZE
BEGIN_APPLICATION
PHASE = 0,
CONTROL_LINE_VAL = mux_sel:1,
REG_VAL = RG1:PG(PG1) BSR3:SA (SA1);
APPLY_CYCLES = 256;
END_APPLICATION
END_SESSION_DEF

9.3.3.2 Discussion

Register grouping information is necessary for BIST designs because different log-
ical registers may be formed by concatenating physical registers in different test
sessions (refer to Chapter 3). Each logical register is defined within the keywords
BEGIN_REG_GROUP_DEF and END_REG_-GROUP_DEF. The following information is

required.
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o A string specifying the name of a logical register (follows keyword REG_NAME).
If a register is never combined with another register then this name may be
the same as the register itself (as specified in the shift chain information), else
a unique name should be assigned. For example the logical register comprised

of R1 and BSR2 is assigned a unique name RG1.

o A set of strings specifying the names of registers that constitute a logical

register (follow keyword CONSTITUENTS).

o A set of function (mode) specifications. Each function specification is of
the form < keywordl > (polydescriptor) or simply < keyword2 >, where
keywordl is one of PG, SA and keyword?2 is one of LOAD,HOLD. polydescrip-
tor completely defines a polynomial used for pattern generation or signature

analysis and is written as follows.

— A string specifying the name (a reference) of a particular polynomial.

— A string that specifies the feedback taps (follows the keyword POLY). For
example the string f1<3+44, specifies that the third and fourth bits of a

logical register are ex-ored and fed to the first bit of the register.

— Often PGs are implemented as LFSR/SRs. These PGs are used by the
PET subsystem and sometimes by the BIBS TDM in BITS. These PGs
often require feedforwards in addition to the feedback inputs. Feedfor-
wards are described by a string that follows the keyword FEEDF. For
example the string f5<2+3 states that the fifth bit of a logical register is
fed by the ex-or of bits 2 and 3. A string such as {f5<0+2 specifies that
the feedback input into the first bit of the logical register is ex-ored with
bit 2 and then fed to bit 5. An example of a logical register implemented
with three functional registers is shown in Fig. 9.4(a). This logical regis-
ter is a pattern generator and has feedforwards. The numbers inside each
of the register cells specify the order within a particular register, while
the numbers above a register specify the order of the cells in the logical

register. The thick lines correspond to the scan chain. The definition of
this logical register (named RG1) in a TPF is shown in Fig. 9.4(b).
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Figure 9.4: (a) A logical register with feedforwards; (b) description of the register

using TPDL
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All functional single/multi-bit control lines (carriers in Cbase terminology) in a
BIST design are described between the keywords BEGIN_.CONTROL_LINE_DEF and
END_CONTROL_DEF. Fach control line (carrier) is specified by the following at-

tributes.

o A string specifying the name of the control line (follows keyword LINE_NAME).
e The Cbase identifier (follows LINE_ID).

e Aninteger specifying the number of nets in the control line (follows the keyword

LINE_-WIDTH).

In BIST designs a functional register R without a load/hold control may need to
hold for one or more clock periods to insert delays in a pipelined test application to
achieve the minimal average latency of the pipeline. Since only scannable registers
are referenced in the chain definition, a reference to R must be provided separately in
the TPF. This is done by specifying the name and Cbase identification of R between
the keywords BEGIN_FUNC_REG_DEF and END_FUNC_REG_DEF. An example of such
a register is provided in Section 9.4.1.1.

The session definitions for BIST designs differ from scan designs in a few aspects.
As noted earlier, for BIST designs the string following the keywords INT_VEC or
RES_VEC represents a single initialization vector and is not a test vector file name.
In this string, a z represents a don’t care and a b represents a care bit which can
be either 1 or 0. The string following the keyword TDM for BIST designs is either
BILBO, EBILBO (extended BILBO) or BBILBO (balanced BILBO). The TDM type is
only used to determine if a circuit is a scan design or a BIST design and all BILBO
based TDMs can simply be specified as BILBO.

Multiple phases can be specified in the session description. A phase is specified

as follows.

e Control lines that need to be set to specific values are represented by
< line_name >:< value >, where line_name references a control line defined
earlier. value is 0, 1 or 2 (don’t care). A set of such declarations follow the

keyword CONTROL_LINE_VAL.

e The mode of logical registers are represented by

< register_name >:< function_name > or
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< register_name >:< function-name >(< polynomial name >). For ex-
ample in Phase 0 of Session 0 the register modes are defined by BSR1 :
PG(PG1) and R1 : SA(SA1). A register that simply holds is represented by
< regqister_-name >: HOLD.

e The number of clock cycles for a session is specified by an integer that follows

the keyword APPLY_CYCLES.

9.4 Processing Control Lines

The information for controlling each test session is provided by explicit control line
and value declarations as well as by specifying the mode of logical registers in each
phase. The following summarizes the control line processing actions performed by

cONSYST for BIST designs.

e First determine if an internal test controller is needed. Check the number
of phases for each session - if any session has more than one phase then an

internal controller is needed.

o The second step is to determine if PG/hold or SA/Hold control lines need to be
added to PGs or SAs. This is done by checking if a logical register is specified
to be in the PG (SA) mode in one phase of a session and in the hold mode
in another phase of the same session. If this register already has a load/hold
control line then an extra control line is not needed. Note that if the logical
register is comprised of multiple physical registers then a PG/hold or SA/Hold

control line is needed for every constituent register.

o Create a table (initial control table) with the columns representing all control
lines including the load/hold control lines (if any). Load/hold lines include
both PG /hold(SA/hold) and load/hold lines for functional registers described
within the keywords BEGIN_FUNC_REG_DEF and END_FUNC_REG_-DEF. The
number of rows in this table is ¥, p;, where n is the number of test sessions

and p; denotes the number of phases in session .

e Determine control lines that can be driven directly from a boundary scan

register (BR-C). This is done by scanning individual columns of the initial
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control table. If a control line has values 1 (0) in phase 7 and 0 (1) in phase j
of any multi-phase session k, then this control line cannot be controlled from

BR_C and must be handled by the internal test controller.

e Create a reduced control table by deleting columns in the initial control table

that correspond to control lines controlled directly from BR_C.

e Create the STTs of n FSMs from the reduced control table. These FSMs are
provided as input to COMPOSER.

9.4.1 Example BIST Circuit - Bist_Ckt_2

Consider an example BIST circuit (Bist-Ckt_2) tested using the BIBS TDM. This
circuit is shown in Fig. 9.5. This circuit is referred to as Ezl in [18]. The TPF
(generated by BITS) corresponding to a minimal area solution is presented in the
following subsection. The initial control table is given in Table 9.2. Note that the
composite register RG6 is constituted of registers BSR1 and R9. This register also
holds for every alternate clock cycle and therefore a SA/hold control line is needed
for both BSR1 and R9. Moreover R1 also holds on alternate clock cycles while
generating test patterns. Therefore it needs a PG/hold line. Register RG1 (refers to
R6 in the design) is a functional register that needs to hold for a clock period while
testing B1 and B2, therefore it also needs a load/hold control line.

The initial control table has 10 columns, the first 6 correspond to the control
lines defined in the test plan file and the last four correspond to load/hold lines that
will be added to various registers. In Table 9.2 entries S and P correspond to the
session and phase numbers, respectively. The PG /hold, SA /hold or load/hold control
line associated with register R is represented by R-H and a 1 (0) on this line makes
the register generate/compact/load patterns (hold).

The reduced control table corresponding to the initial control table is given in
Table 9.3. The first four control lines in Table 9.2 can be driven directly from BR.C
and hence do not appear in the reduced table. The FSMs created from the reduced
control table are given in Table 9.4. Note that since COMPOSER merges machines
from the largest to the smallest (in terms of the number of states) the FSMs in

Table 9.4 also ordered accordingly. The letter e is a keyword denoting the end of
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a FSM description. The primary inputs are 1-hot coded. Both the inputs and the
states are encoded by COMPOSER which returns a merged gate level internal test
controller. For this example a 2 bit wide session register is used while a single flip-
flop suffices for the state element. Both the session register and the state flip-flops
are inserted in the scan chain (chain 1). COMPOSER returns the corresponding codes
for the inputs and states and the state merger information so that the session and

state registers can be properly initialized for a specific test session.

9.4.1.1 Test Plan File for Bist_Ckt_2

BEGIN_CHAIN_DEF
CHAIN 0; /* boundary scan chain #/
CHAIN_TYPE = BOUNDARY_SCAN;
BEGIN_CHAIN

REG_NAME = R1, REG_ID = 42609, LENGTH = 12, INPUTBS;
REG_NAME = RS, REG_ID = 42827, LENGTH = 12, OUTPUTBS;
REG_NAME = BSR1, REG_ID = 44211, LENGTH = 8, OUTPUTBS;
END_CHAIN
CHAIN 1;

CHAIN_TYPE = GENERAL;
BEGIN_CHAIN
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REG_NAME = R1, REG_ID =

REG_NAME = R9, REG_ID =

REG_NAME = BSR1, REG_ID =
END_CHAIN

END_CHAIN_DEF
BEGIN_REG_GROUP_DEF
REG_NAME = RG3, CONSTITUENTS
REG_NAME = RG6, CONSTITUENTS
END_REG_GROUP_DEF
BEGIN_CONTROL_LINE_DEF

LINE_NAME = M1_C1, LINE_ID =
LINE_NAME = M2_C1i, LINE_ID =
LINE_NAME = B2_C1, LINE_ID =
LINE_NAME = R8_C1, LINE_ID =
LINE_NAME = BUS_C1, LINE_ID =

END_CONTROL_LINE_DEF
BEGIN_FUNC_REG_DEF

42609, LENGTH = 12;
42827, LENGTH = 12;
44211, LENGTH = 8;

= R1, FUNC = PG (PG1:

= BSR1 R9, FUNC = SA

9203,
9315,
50197,
44191,
40258,

LINE_WIDTH
LINE_WIDTH
LINE_WIDTH
LINE_WIDTH
LINE_WIDTH

i on

non
) = = e

1]

POLY = £1<12+7+4+3);
(SA1: POLY = £1<20+3);

REG_NAME = RG1, REG_ID = 43874; /* RG1 refers to R6 via the ng_id*/

END_FUNC_REG_DEF
BEGIN_SESSION_DEF
SESSION 0; /+* Test C5 %/
TDM = BILBO;
BEGIN_INITIALIZE
CHAIN = 1, INT_VEC
RES_VEC
SHIFT_CYCLES = 32;
END_INITIALIZE
BEGIN_APPLICATION
PHASE = 0,

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb,
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb,

CONTROL_LINE_VAL = BUS_C1:1 M2_C1:1 R8_C1:1,

REG_VAL = RG3:PG(PG1)
APPLY_CYCLES = 256;
END_APPLICATION

SESSION 1; /* Test
TDM = BILBO;
BEGIN_INITIALIZE
CHAIN = 1, INT_VEC
RES_VEC
SHIFT_CYCLES = 32;
END_INITIALIZE
BEGIN_APPLICATION
PHASE = 0,
CONTROL_LINE_VAL =
REG_VAL = RG3:PG(PG1)
PHASE = 1,

B1 */

RG6:SA (SA1);

BUS_C1:1 M1_C1:0,

RG6:HOLD RG1:HOLD;

CONTROL_LINE_VAL = BUS_C1:0 M1_C1:0,

REG_VAL = RG3:HOLD RG
APPLY_CYCLES = 256;
END_APPLICATION
SESSION 2; /* Test B2 */
TDM = BILBO;
BEGIN_INITIALIZE
CHAIN = 1, INT_VEC
RES_VEC
SHIFT_CYCLES = 32;

1]

1

6:SA(SA1) RG1:LOAD;

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb,
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb,

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb,
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb,
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END_INITIALIZE
BEGIN_APPLICATION
PHASE = 0,
CONTROL_LINE_VAL = B2_C1:1 BUS_C1:1 M1_C1:1,
REG_VAL = RG3:PG(PG1) RG6:HOLD RG1:HOLD;
PHASE = 1,
CONTROL_LINE_VAL = B2_C1:1 BUS_C1:0 Mi_Ci:1,
REG_VAL = RG3:HOLD RG6:SA(SA1) RG1:LOAD;
APPLY_CYCLES = 256;
END_APPLICATION
END_SESSION_DEF

9.4.2 Compacting the Reduced Control Table

The rows of the reduced control table correspond to both single and multiple phase
sessions. In the initial control table, the rows corresponding to all single phase tests
are incompatible (because sessions by definition are created by incompatibilities in
control line values). However once some of the columns are deleted, rows correspond-
ing to single phase sessions may become compatible and can be merged. Therefore

we can either:

1. extract FSM descriptions from the reduced control table and hand the descrip-

tions over to COMPOSER, or

2. compact the rows corresponding to single phase sessions, extract the FSM

descriptions and then provide the descriptions to COMPOSER.

The advantage of approach (2) is that the number of bits in the session register may
be reduced. Consider a reduced control table that represents 5 single phase sessions
and 4 multi-phase sessions. The session register requires 4 bits to distinguish between
the 9 sessions. However, even if two rows corresponding to the single phase sessions
are merged, the number of bits in the session register is reduced to 3. The advantage
of approach (1) is that since CONSYST takes a global view in merging FSMs, it will do
a better job of minimizing the total number of product terms if rows corresponding
to single phase sessions are not merged apriori (as in (2)). However the number of
bits in the session register will be log,(#tofsessions). Currently CONSYST has both
options. Rows are merged using a technique similar to that used for compacting

control vectors for the Sub-compact bus (see Chapter 4).
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S|P Control Line Values
Ml.cl M2cl B2.cl R8cl BUS.Cl R1H RY9H BSRI.H RGlH
a b
010 - 1 - 1 0 1 1 1 1 1
110 0 - - 0 1 1 0 0 0
1} 0 - 0 0 0 1 1 1
210 1 1 - 0 1 1 0 0 0
211 1 - 1 - 0 0 0 1 1 1
Table 9.2: Initial Control Table
S|P Control Line Values
BUsS.cl R1H RO9_.H BSR1.H RGl.H
b
00 1 1 1 1 1
110 1 1 0 0 0
11 0 0 1 1 1
210 1 1 0 0 0
211 0 0 1 1 1

Table 9.3: Reduced Control Table

inputs p.s n.s outputs
010 1 11000
010 1 0 00111
e
001 0 1 11000
001 1 0 00111
e
100 0 0 11111
e

Table 9.4: Input to COMPOSER
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9.5 System Flowcharts

In Section 9.2 we have described the important subsystems of CONSYST. In this
section we will show how CONSYST uses these subsystems to synthesize and insert

all test control and resource hardware into a testable chip.

Test Plan Files

Circuitin Cbase |

&

® Synthesize Registers |
@ Internal Test Controller {
e Entire TAP ‘

arse Test Plan File
@ Initialize database
@ Create STTs

® Synthesize Gate - level }:
Implementation @ ¥

@ Create symbolic TAP
and decoders

® Minimize CVs

@ Update TAP and
decoder description

® Encode Test Bus

® Update decoder and}
TAP descriptionsg?

Figure 9.6: Simplified flowchart of CONSYST

Fig. 9.6 is a simplified flow chart of cONSYST. The inputs to the system is a set
of TPFs that correspond to various testable designs. In the block labeled 1 a TPF

is parsed to allocate memory and initialize the internal database of cONSYST. The
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Cbase circuit description is also checked for the presence of boundary scan registers
on all chip primary inputs/outputs. Currently BITS does not insert the control
boundary scan register BR_C so this register is inserted into Cbase at this stage. If
the circuit is a BIST design then the phase information from the session and the
control line database is used to determine if an internal test controller is needed. If
an internal test controller is needed then the STTs of the various test plan controllers
are created.

Block 2 is bypassed for scan designs and for BIST designs where an internal test
controller is not needed. Otherwise COMPOSER is used to optimally merged the test
plan controllers to synthesize a gate level description of the internal test controller.
Block 3 deals with the problem of determining the number of bus symbols and
creating descriptions of the decoders and the ITAPC. The user specifies the type of
bus to be used. Control Vectors (CVs) are minimized and decoder descriptions are
updated if either the Compact or the Sub-compact bus is chosen.

The bus symbols are encoded in block 4 using one of the encoding schemes de-
scribed in Chapter 4. The encoding scheme to be used is a user defined parameter.
Once the symbols are encoded, all decoder descriptions and the ITAPC description
are updated. 2-level (PLA) and gate level descriptions of the decoders and the
ITAPC are obtained in blocks 5 and 6, respectively. The user has the option of
viewing the costs and exploring other bus schemes or encoding strategies. If multi-
ple TPFs are present (a family of testable designs available) then the whole process
is repeated for each TPF. Once the user is satisfied with the costs then CONSYST
proceeds to block 7. In this block all the test registers are synthesized. This involves
implementing gate level descriptions of the flip-flops comprising each register and
the local controller. The local controller synthesis involves implementing the de-
coder, data selection multiplexers, the configuration and/or mode flipflops and the
feedback polynomials. The components of the local controller conform to the local
controller models presented in Fig. 3.9 in Chapter 3. The internal test controller (if
present) is also inserted in Chase. Moreover the session register and the multiplexer
(and associated controls) used to cut the functional and test control lines are also
implemented. The scan chains are connected. The entire TAP (components other
than ITAPC) is synthesized, the TAP port created and relevant control lines are

connected.
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Fig. 9.7 is a detailed flowchart of the system. In this flowchart the oval blocks
represent menu options while the rectangular blocks represent actions performed
by coNsysT. The options such as IC or OC in the flowchart refer to encoding
algorithms presented in Chapter 4. There is an option for selecting the number of
bits to be used in encoding the bus symbols. There are three options (1) minimum,
(2) as required, and (3) user. Option (2) can only be used in conjunction with
input oriented algorithms. If this option is chosen, the encoding algorithm will
increment the number of bits one at a time until all input constraints are satisfied.
Option (3) asks the user to specify the number of bits to be used. After gate level
implementations have been obtained the user has the option of graphically viewing
the decoder netlists. This option uses a graphical display package linked to SIS.
Once the test control and resource hardware have been synthesized, the user can

view various components of the circuit such as scan chains and the internal test bus.

9.6 Examples Circuits Processed by CONSYST

In this section we present screendumps of the Chase user interface to show the test

control and resource logic incorporated in example circuits.

9.6.1 Scan Circuit - Scan_Ckt

The non-testable (original) version of the circuit is shown in Fig. 9.8. Fig. 9.9 shows
a view of the top level of Scan_Ckt after processing through CONSYST using the TPF
presented in Section 9.3.2.1. The internal test bus (Standard bus) is highlighted in
Fig. 9.10. Scan chains 0, 1 and 2 and the registers associated with these chains are
highlighted in Figs. 9.11, 9.12 and 9.13. Note that since the highlighting option in

Cbase highlights entire carriers the figures may initially appear confusing.

9.6.1.1 Hierarchical View of a Register in Scan_Ckt

A view of the lower levels of the hierarchy of register K, is shown in Fig 9.14. In
this figure, the labels in bold face have been manually added. Fig 9.14(a) shows
the local controller (Lcontroller) and the register flip-flops (reg_2bit). Fig 9.14(b)

provides a lower level view of the local controller. This controller has a decoder and
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a 2-way multiplexer that selects between scan chains 1 and 2. The ITB which is
6 bits wide is shown connected to 4 input ports on the decoder. This implies that
R2’s decoder only uses a subset of the inputs from the internal test bus. CONSYST
recognizes don’t care inputs to logic blocks after logic minimization and drops them
from consideration. Figs 9.14(c),(d) and (e) show implementations of the 2 bit

register, decoder and the multiplexer, respectively.

9.6.1.2 Implementation of the TAP block

Screendump of the TAP block for Scan-Ckt is shown in Fig 9.15. Fig 9.16 is a
cleaner representation of the TAP. The lower levels of the hierarchy have not been
shown. Since the Standard bus is used, the IR_code_translator (see Chapter 4)
is implemented. This logic block has input from the IR and the output drives
part of the internal test bus. The number of bits in the IR and the number of
inputs of the multiplexer (and the implementation of the mux select block Cy) in
muaz_block vary from design to design depending on the number of instructions and
the number of data scan chains, respectively. The implementation of the ITAPC
and the TAP_decoder depends on the bus scheme and the bus encoding used for a

particular design.
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9.6.2 BIST Circuit - Bist_Ckt_1

The non-testable (original) version of the circuit Bist_Ckt.-1 is shown in Fig. 9.17.
Fig. 9.18 shows a view of the top level of Bist_Ckt_1 after processing through CON-
sYST using the TPF presented in Section 9.3.3.1. The internal test bus (Sub-compact
bus) is highlighted in Fig. 9.19. Scan chains 0 and 1 and the registers associated
with these chains are highlighted in Figs. 9.20 and 9.21.

malnront

Figure 9.17: Bist_Ckt_1

9.6.2.1 Hierarchical View of a Register in Bist_Ckt_1

A view of the lower levels of the hierarchy of register Ry is shown in Fig 9.22. In
this figure, the labels in bold face have been manually added. Fig 9.22(a) shows the
local controller (I_controller) and the register flip-flops (reg_4bit). The input poly_inp
is the output of an ex-or gate in BSR2. Fig 9.22(b) provides a lower level view
of the local controller. This controller has a decoder, a 3-way multiplexer, a block

(reg-2bit) containing one mode and one configuration flip-flop and a block (poly-cell)
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containing ex-or gates that implement the PG/SA polynomials. The multiplexer

selects between the scan chain (chain 1) and outputs of ex-or gates. The I'TB which

is 4 bits wide is shown connected to 3 input ports on the decoder. Fig 9.23 shows

two ex-or gates implementing feedback polynomials.
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Figure 9.22: Hierarchical view of register R1 and the local controller

247



Figure 9.23: Ex-or gates implementing the feedback polynomials

9.6.3 BIST Circuit - Bist_Ckt_2

The non-testable (original) version of the circuit Bist_Ckt_2 is shown in Fig. 9.24.
Figs. 9.25 and 9.26 show top level views of Bist_Ckt_2 after processing through con-
sysT using the TPF presented in Section 9.4.1.1. The internal test bus (Sub-compact
bus) is highlighted in Fig. 9.27. The internal test controller (labeled int_controller)
is also shown. Details of the internal controller for this example are provided in
Section 9.4.1. A careful inspection of Fig. 9.26 also reveals that certain control lines
are driven directly from the boundary scan register BR_C, while others are driven
from the internal test controller. The multiplexer that cuts the least significant bit
of the bus control line is inside the block int_controller. The session register is also
inside this block. The session register and the single flip-flop constituting the in-
ternal controller are appended to the data scan chain (Chain 1). Both the session
register and the internal controller have local decoders and therefore the internal

test bus is an input to int_controller (Fig. 9.27).
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Ckt2

Figure 9.27: The Internal Test Bus in Bist
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9.7 Incorporating a Graphical User Interface

To simplify user interaction with the various subsystems and options provided by
CONSYST we have developed graphical menu driven user interfaces. Various GUI
building tools were evaluated and the Tcl/Tk/XF packages were chosen. XF [75] is
an integrated programming environment that accelerates the development of GUIs.
XF uses Tk [76], a Motif-like widget set that is accessible through Tcl [77, 76], which
is a very efficient interpreted programming language. Tcl and Tk were developed at
the University of California, Berkeley. We use XF to graphically create the layouts
of the user interfaces used in CONSYST. The layout descriptions are saved as T¢cl/Tk
code. Additional Tcl/Tk code is then added to these descriptions to customize the
interfaces for coNsYST. The Tcl command interpreter is called directly from the
C/C++ code in CONSYST.

Examples of menus developed for CONSYST are given in Figs 9.28 and 9.29 [78].
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9.8 Summary

In this chapter we described the high level structure of the test controller synthe-
sis system. Examples were presented to highlight various aspects of the Test Plan
Description Language. The hardware incorporated into testable designs after pro-

cessing through CONSYST was also shown.
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Chapter 10

Conclusions

In this thesis we have addressed the problem of efficiently designing the test control
circuitry for a testable chip. We have developed a novel test controller synthesis
system that automatically synthesizes and incorporates test control and resource
hardware into a circuit. This system is unique in its global outlook at the test control
problem and in its approach to tightly coupling the processes of logic synthesis and
testable circuit design. Some of the synthesis techniques presented in this thesis also
have applications beyond the test domain. In the following subsections we summarize
the contributions of the research presented in this thesis and discuss future research

problems.

10.1 Summary of Contributions

10.1.1 Test Control Architecture

e We have justified the adoption of a specific on-chip/off-chip partition of test
hardware, where the test vectors/results are stored off chip while pattern-
generators/signature compactors and all test control hardware is incorporated

on-chip.

e A partially distributed test control architecture has been developed. In this
scheme all scannable registers have local controllers while the controllers for
data transport paths have been centralized into one controller called the inter-
nal test controller. A test bus transmits control information to the distributed

decoders and the internal test controller.
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e Models of local controllers for scan and BIST registers have been developed.
These models are general enough to represent multifunction and/or reconfig-

urable BIST registers.

10.1.2 Bus-based Control Schemes

e A different view of the traditional TAP controller has been incorporated in the
form of an Integrated TAP Controller (ITAPC).

e We have analyzed the complexity of controlling test resources on a chip directly
from the ITAPC by computing bounds on the number of control lines in scan
and BIST designs. It has been shown that the direct control scheme is not a

viable approach for large and complex designs.

e Three bus schemes have been proposed that tradeoff the number of lines in the
bus with the implementation cost of the distributed decoders and the ITAPC.
The Standard bus transmits information pertaining to relevant TAP states and

instructions in the IR separately.

o The number of bus symbols are reduced by first determining Control Vectors
(CVs) and then compacting them either by preserving the don’t cares (leading
to the Compact bus) or by optimally assigning 1’s and 0’s to don’t cares
(leading to the Sub-compact bus). Preserving the don’t cares in the CVs
preserves don’t cares in the outputs of the decoders thereby aiding the task of
synthesis tools, while converting don’t cares to 1’s and 0’s usually leads to a
reduced number of bus symbols. We have developed procedures to minimize
the CV’s for both these approaches. The significance of these procedures is
in their ability to handle binary valued inputs. Proofs of the validity of these

minimization techniques have been presented.

e We have addressed the problem of encoding the bus symbols to (1) minimize
the implementation cost of the distributed decoders without considering the
cost of the ITAPC (input encoding), (2) minimize the implementation cost of
the ITAPC without considering the cost of the decoders (output encoding), and

(3) minimize the implementation cost of both the distributed decoders and the
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ITAPC (input-output encoding). We have developed a number of experimen-
tally verified good heuristic techniques to solve the input, output and input-
output encoding problems. For input encoding we have developed weighting
functions that weight each input constraint (in the set of input constraints of
all decoders) based on its occurrence in the constraint set of different decoders
and the number of inputs and outputs of the corresponding decoders. For
output encoding we have developed two algorithms. The first assigns codes to
symbols with weights based on the frequency of occurrence of these symbols in
the primary (symbolic) output of the ITAPC STT. The second satisfies dom-
inance constraints and is based on decomposing the problem of encoding two
symbolic output variables of a logic function into the problem of recursively
encoding a logic function with one symbolic output variable. Two algorithms
have also been developed for input-output encoding. The first employs the
input encoding algorithm to obtain an initial encoding of the symbols and
then assigns the all 0’s code to the symbol that occurs most frequently in the
output of the ITAPC STT. The second algorithm satisfies a set of weighted

input constraints and dominance constraints.

e We have experimentally shown that our encoding algorithms reduce the stan-
dard cell and PLA areas of the test control logic by 34% and 24% (26% and
16%) for a Sub-compact bus (Standard bus), respectively, as compared to

random encodings.

10.1.3 Controlling IEEE 1149.1 Compliant Scan and BIST

Designs

e We have presented generic test plans for full, balanced partial and unbalanced
partial scan designs as well as techniques for controlling the test hardware
of these designs from the TAP controller. Hardware modifications of input
boundary scan registers to control load/hold lines of registers in unbalanced

partial scan designs have been proposed.

e We show how a test counter is incorporated in BIST designs and describe the

impact of the presence or absence of this counter on the test sessions and test
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activation process of chips. This analysis is performed for different board level

configurations.

10.1.4 Merging Test Plan Controllers

e We have presented a technique for merging a set of test plan controllers. The
test controllers are orthogonal FSMs with a single transition out of (into)
each state. The controllers are ordered in non-increasing order of the number
of states and then merged one at a time to form an intermediate merged
machine. Tight upper and lower bounds on the cost of the merged controller
have been derived. A cost function based on minimizing the multiple-valued
covers of slices of the merged machine has been proposed for optimally merging
a test controller with an intermediate merged machine. We show that the cost
function has a very strong correlation with the implementation cost of a merged

machine obtained by minimizing a multiple-valued cover of the entire machine.

e Experimental results have shown that our merging procedure produces merged
machines that, after state and input encoding using minimum number of bits,
have on average 33% and 24% less product terms and area, respectively, than

machines produced using an existing state minimizer.

e We have observed that the effect of minimizing the number of implicants in
a multiple-valued cover of a merged machine (our cost function) percolates

through all subsequent sequential synthesis steps.

e We have also experimentally shown that our merge procedure is relatively

insensitive to the order in which the machines are merged.

10.1.5 Merging Test and Functional Controllers

e An efficient technique has been developed to merge a FSM that controls a
number of test plans with the on-chip functional controller. The two machines
operate in disjoint time frames and have disjoint sets of inputs. Our technique
targets either two-level or multilevel implementation. For two-level implemen-

tation, a cost function based on minimizing the number of edges in the merged
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machine has been formulated. It has been shown that under certain conditions
edge-minimization is equivalent to minimizing the cardinality of a strictly out-
put disjoint multiple-valued cover. For multi-level minimization a cost function
based on minimizing the number of literals by considering all state pairs has

been developed.

e Experimental results show a strong correlation between our cost functions and
the final implementation cost. For multi-level implementation our technique
produces merged machines that have on average 20% less factored form literals
than machines produced by an existing state minimizer. It has also been shown
that merging the controllers, as opposed to implementing them separately and
accessing the datapath control lines through a multiplexer, leads to significant

savings in area.

10.1.6 Synthesis of 1-hot Coded Test Controller

e An implicit enumeration procedure has been developed to merge a number
of test plan controllers where the merged machine has a 1-hot code state as-
signment. Bounds on the number of states, arcs, next state logic and output
logic of the merged machine have been derived. Sufficient conditions have been

developed for obtaining the minimum cost next state logic.

e Experimental results show that the literal count of designs synthesized by our
approach is 20% to 50% less than designs synthesized using standard synthesis

tools.

10.1.7 CONSYST System

e The grammar for a test plan description language has been defined. This
language is powerful enough to handle the descriptions of reconfigurable scan

chains, reconfigurable/multifunctional registers, registers that are implemented

as LFSR/SRs and a spectrum of scan and BIST TDMs.

e The system employs a wide range of synthesis tools and completely automates

the process of incorporating test control and resource hardware in a chip.
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10.2 Future Research and Development

10.2.1 Bus-based Control

e The problem of efficiently encoding multiple symbolic outputs of a FSM is
an open problem. An efficient solution to this problem will also result in an
efficient solution to the problem of encoding the bus to minimize the implemen-
tation cost of the ITAPC. The ITAPC has two symbolic outputs, one being the
test bus and the other the next state. The first step in solving this problem is
to develop techniques to obtain a set of “good” dominance constraints. Then
a weighted compatibility graph may be used to extract a set of compatible

constraints that result in a maximal reduction in the size of the FSM cover.

e A number of encoding algorithms have been proposed in this thesis, but it is
difficult to predict which encoding scheme will produce the best results, i.e.,
minimize the cost of the decoders and the ITAPC. Therefore efficient estima-
tors need to be developed to predict the efficacy of the encoding algorithms
for a particular design. The estimation can also be extended to take into ac-
count the routing area of the test bus, thereby solving the problem of selecting

between one of the three different bus schemes.

e Currently each scannable register has its own local controller. Test control logic
area may be reduced by sharing local controllers between registers that have
the same functions and are placed close to each other. This can be handled
by adding a post processor to CONSYST that merges local controllers based on

information about register functions and predicted placement.

10.2.2 Controller Merging

e The procedure for merging test controllers optimally merges a pair of machines
at a time. This procedure needs to be extended to consider the simultaneous

merger of all the machines.

e The problem of efficiently merging two (or more) arbitrary FSMs is still open.

Current state minimizers are unable to explore the space of all state minimal
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machines and pick the one that leads to a minimal implementation cost. The
first step in solving this problem is to extend the procedure for merging test
and functional controllers to handle non-disjoint sets of primary inputs. This
will lead to a procedure for efficiently merging two controllers that operate
in disjoint time frames and even though this is not the most general case,
applications can be found in real designs. For example, a bus master that
switches between two protocols depending upon an input condition can use

such a procedure to merge the two FSMs that handle each of the protocols.

Microprogrammed controllers are used in many large chip designs. Test mi-
crocode is needed to make such a design testable. Currently test microcode is
usually appended to the functional microcode and it may be advantageous to
develop efficient techniques to merge test and functional microcode. Specifi-
cally the problem is as follows : given individually compacted horizontal func-
tional microprograms, merge the test microprograms with the functional mi-

croprogram to minimize the total number of microinstructions.
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