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Abstract

Switching activity estimation in combinational circuits is addressed from a
probabilistic point of view. The zero-delay hypothesis is considered and under
pseudorandom or biased input sequences, the activities at the primary outputs and
all internal nodes are estimated. Work by previous researchers is extended to
manage complex spatio-temporal correlations by using lag-one Markov Chains and
conditional probabilities. Evaluations of the model and a comparative analysis
presentedfor benchmark circuits demonstrates the accuracy and the practicality of
the method. The results presented in this paper are useful inpower estimation and
low power design.



L Introduction

In solving the complex problem of power estimation for digital circuits, knowledge about the average

switching activity in a circuit plays a significant part. Indeed, to compute the power dissipation, most of the

current models rely on the switching activity information about the circuit. The accuracy in making such

estimations has become an important objective by itself. The key issue is to account for various

dependencies, irrespective of the particular way in which the inputs and the target circuits are described.

Most of the existing work in pseudorandom testing and power estimation relies on probabilistic methods

and signal probability calculations. [11 presents one of the earliest work in computing the signal

probabilities in a combinational network. The authors associate variable names with each of the circuit

inputs representing the the signal probabilities of these inputs and then, for each internal circuit line, they

compute algebraic expressions involving these variables. These expressions represent the signal

probabilities for these lines. Whilethe algorithm is simple and general, its worsecase timecomplexity is

exponential.

For tree circuits whichconsistsof simplegates, theexactsignal probabilities can be computedduring a

single post-order traversal of the network [2]. Alternatively, one may use a graph-based algorithm to
computethe exact values of signal probabilities using Shannon's expansion [3]. This algorithm relies on

the notion of the supergateof a node and identifies the set of maximal supergates in order to calculate the

signal probabilities. In the worst-case, this algorithm becomes equivalent to an exhaustive true-value

simulation.

Common digital circuits exhibit a lot of dependencies; by far, the most known one is the dependency
due to reconvergent fan-out among different signal lines, butevenstructurally independent lines may have
dependencies (induced by the sequence of inputs applied to the circuit) which cannot be neglected.
Accounting for all kinds of dependencies is impossible even for small circuits; consequently, for real-size
circuits, only some of the dependencies have been considered and even then, only heuristics have been
proposed.The main reason behind this situation is thedifficulty in managing complex datadependencies at
acceptable levels of computational work. [4] provides an extension to [2] called the weighted averaging
algorithm; thisapproach attempts to take into account the first order effects of reconvergent fanout stems in
thevariable support of thenode. It is linear in theproduct of thenumber ofcircuit inputs andthesizeof the
circuit. [5] gives an algorithm, known as the cutting algorithm, which computes lower and upper bounds
on thesignal probability of reconvergent nodes bycutting themultiple-fanout reconvergent input lines and
assigning an appropriate probability range to the cut lines and then propagating thebounds to all the other
lines of the circuits by using propagation formulas for trees. The effectiveness of the cutting algorithm,
however, depends on the non deterministic choice of the cuts; well-chosen cuts lead to better estimates of
the signal probabilities while poorly chosen cuts result inpoor estimates. The algorithm runs inpolynomial
time in terms of the size of the circuits. Ercolani et al. presents [6] a procedure for propagating die signal

probabilities from the circuit inputs toward the circuit outputs using only pairwise correlations between
circuit lines and ignoring higher order correlations. Thesignal probability of a product term is estimated by
breaking down theimplicant into a treeof2-input AND gates, computing thecorrelation coefficients of the
internal nodesand hence the signal probability at the output. Similarly, the signal probabilityof a sum term



is estimated by breaking down the implicate into a tree of 2-input OR gates.

People working in power estimation area have also consideredthe issue ofsignal probability estimation.

[7] gives an exact procedure based on Ordered Binary-Decision Diagrams (OBDDs) [8] which is linear in

the size of the corresponding function graph (the size of the graph, of course, may be exponential in the

number of circuit inputs). Using an event-driven simulation-like technique, [7] describes a mechanism for

propagating a set of probability waveforms throughout the circuit. Unfortunately, this approach doesn't take

into account the correlations that might appear due to reconvergent fan-out among the internal nodes of the

circuit. [10] extends this approach to account for first-order spatial correlations among probabilistic

waveforms. [9] uses symbolic simulation to produce the exact boolean conditions for switching at a

particular node of the circuit. This approach is expensive in terms of computational cost (time and space

requirements).

None of the methods summarized above adequately capture temporal correlations between signal

probabilities for a given node in a circuit. Consequently, new techniques that partially account for these

correlations are emerging (e.g. [11]).

The approach proposed in this paper improves the state-of-the-art by a new analytical model which

accounts for spatio-temporal correlations. Its mathematical foundation is probabilistic in nature, and
consistsof usinglag-one MarkovChains to capturedifferent kindsof depedencies in combinational circuits

under a zero-delay model. Temporal correlations for the values of some signal x in two successive clock

cycles are considered through a MarkovChainwithonly twostates; first-order spatial correlations for pairs

of signals (x,y) are modelled by a four-state Markov Chain. For the first time to our knowledge, we have

considered in a systematic way different kinds of dependencies in large combinational modules for both

pseudorandom andbiased inputstreams; in addition, wereport heretheresults of a detailed analysis andour
experiences on benchmark circuits.

The results presented in this paper are useful in power estimation and low power design; once the

system, architectural and technological decisions for power minimization are made, it is the switching
activity of the logic that determines the power consumption of a circuit. Our approach provides a sound

framework for efficiently and accurately estimating the effects of different transformations/optimizations

on the power consumption of the circuits under comlplex spatio-temoral correlations.

The paper is organized as follows. In section 2 we present in detail our model for switching activity

estimation and we provide a measureof its complexity. In section 3 we give some practicalconsiderations

andourexperiences on benchmarkcircuits. Finally,wesummarize our mainresultsand weindicatepossible

extentions.



2. An analytical model for dependencies

2.1. Temporal correlations

We treat the sequence that corresponds to different values of a signal line* as a discrete process where time

units 1,2, ...,n represent the time instances when the input vectors Vj,V2,..., V„ are applied to the circuit under

consideration. During the application of the input vectors, x may be 0 or 1, so that if we define its state at

time n by random variable xn, then the behavior of line x can be described as a lag-one Markov Chain

{xn}n>h over the state set S = {0,1}, through the transition matrix Q[12]:

[oifx =0
xn = I

Uifx=l;

Fig.l

Q =

X X

Po,oPi,o

P0, 1 Pi, 1

Every entry /?,•; in the Q matrix represents a conditional probability and may be viewed as the one-step
transition probability to state i at step n from state; at step n-1. The expressions for these conditional

probabilities are:

pUx{t) =0) a (x(f-5) =0))
p(x(t-b)=0)

p((x(t) =1) A(x(f-8) =0))
p(x(t-b) =0)

p((x(t) =0) A(*(f-8) =1))
p(x(t-b) =1)

P((x{t) =1) A (X(t-b) =1))
p(x(t-b) =1)

rf.0 =/>((*(') =0)|(*(*-8)=0)) =

Po,i =p((xM =D|(x(r-5)=0)) =

pio = pl(x(t) =0)| U(/-5) =1)) =

pxu =p((x(t) = 1)| (A'(/-5) =1)) =

In tiie Q matrix, every column adds to unity, i.e:

x , x ,

Po,o+Po,i = l
X , X ,

Pl,0+Pl,l = l

3

(2)



A lag-one Markov Chain has the property that one-step transition probabilities do not depend on the

'history', i.e they are Uie same irrespective of the number of previous steps. If the process [xn)n>j is

homogenous, then the probability distribution of the chain fP may be expressed as:

where JPnis the initial distribution vector.

If we assume the stationarity of the process {xn}n>\, then Uierelation (3) becomes [12]:

T = Q$ (5)

Proposition 1: The signal probabilities may be expressed in terms of conditional probabilities as follows:

p{x = 0) =
Pi,o

Pi,o+Po,i
P(x=l) = -

Po,\

P\,o+P'o,i

Proof: Relation (5) may be written explicitly as:

p(x = 0)

p(x=l)
Po,oPi,o

pxo, ipi i

P(x = 0)

p(x=l)

or

p{x =0) = p* ^(x = 0) +p{tfix =1) p{x = 1) = px0y lP(x = 0) +pxh lP(x = 1)

wherep(x = 1)represents tiie signal probability. But we have that p{x = 0)=1 -p(x= 1), respectively p(x
= 1) = 1 -p(x = 0) and then relations (6) follow immediately.

a
Definition 1: We define the transition probabilities as follows:

p(x0_>0) =p((x(t) =0)A(x(t-b)=0))

p{xQ^x) =p((x(t) = 1) a(x(/-5) =0))
(7)

Pfri-o) «*((*« =0) A(x(r-S)=l))

Pt*l-*d »jP((*W =1) a (x(/-S) =1))

Proposition 2: Transition probabilities may be expressed in terms of conditional probabilities as:

X X

Pi,qPq,q
p(*o-*o) =

Pi,o + Po,i
P(*0-4l) =

PXi,oPo,i
Pi,o + Po,i



P(*i-*o) =
P'loPoA

P(*l->l) =
pi iPo, i

P~i,o+P~o,i Pi,o+Po,i
Proof: Using the relation (2) and assuming Uie stationarity property for the process, we have:

P(Xi^j) = P(x =i)plj

for any values i, j - 0,1. From relation (6), Uie above formulas are straightforward.

a
Proposition 3: Conditional probabilities may be expressed in terms of transition probabilities as:

P(*o-»o)
P°' ° P(x0 _> 0) +P(x0 _> t) P°'l " P(x0 _+ 0) +P(x0 -> i)

x = Pix^p) x _ p{xx _> x)
Pl'° p(xl^0)+p(xl^l) PM /K*i-»o)+/>(*i->i)

Proof: It suffices to use Uie following two identities and Uie equations (8):

Pi.o
K*0-*0)+ P(%-»i) =

Pi,o + Po,i

p(*i_>o)+P(*i->i) =
Po,i

Pi, o+Po,i

P(*0-»l)

n
Relying on Propositions 1,2, and 3, Uie relationship between signal, conditional and transition probabilities
can be illustrated as below:

Fig.2

As we can see, to compute tiie signal probabilities we need less information, but the ability to derive



anything else is severely limited; on Uie other side, once we get eitiier conditional or transition probabilities

we have all we need for that particular signal.

Definition 2: For any given line x, the switching activity is:

SW(X) = p(.x0_^l)+p(xl_^0) = 2 PXi,oPo,i
x x

Pi,o + Po,i
(10)

2.2. Spatial correlations

This type of correlations has two important sources:

- Structural dependencies due to reconvergent fan-out (RFO);

- Pattern dependencies, that is, normally independent signal lines which become correlated due to a

particular sequence of inputs.

To take into account tiie exact correlations is practically impossible even for small circuits. To make this

problem more tractable, we allowed only pairwise correlated signals, which is undoubtedly an

approximation, but provides good results in practice. Consequently, we considered tiie correlations for all

16 possible transitions of a pair of signals (x,y) and modelled it as a lag-one Markov Chain witii 4 states

(states 0,1,2, 3 which stand for encodings 00,01,10,11 of (x.y)):

Fig.3

Definition 3: We define Uie conditional probability pa b as:

Pa,b = P(*W =kAy(t) =l\x{t-5) =iAy(t-S) =j)

where a, b~ 0,1,2,3, a being encoded as ij and b as kl.

(11)



Ercolani et al. consider in [6] structural dependencies between any two signals in a circuit, through Uie

signal correlation coefficients (SQ; Uiese coefficients can be expressed as:

Sq =r^^J^} (12)
y p(x = i)p(y=j)

where i, k = 0,1. Assuming that higher order correlations of two signals to a tiurd one can be neglected,

they use the following approximation:

p {x = i a y =j)p (x = i a z = k)p (y =j a z = k)
p(x = lAy=JAZ = K) = -. r—; r—~, rr

p(x = i)p(y =j)p(z = k)
Differently stated, tiie correlation coefficient among three signals was definea as:

vr*yz _ p(x =iAy=JAz =k)
V* p(x = i)p(y=j)p(z = k)

which is then equal to:

Our approach is more general; in order to capture Uie spatial correlations between signals, for each pair of

signals (pcy) and for all possible transitions for botii of them, we consider tiie transition correlation

coefficients (TQ.

Definition 4: We define tiie TC for two signals x, y as:

^y p{x{t-h) =iAx{t) =kAy{t-§) =JAy(t) =1)
U&* " p(x(t-&) =iAx(t) =k)p(y(t-b) =JAy(t) =[)

where/J, k, 1= 0, 1.

Proposition 1: For every pair of signals (x,y) and all possible values i, j,k,l = 0,l, tiie following holds:

sc*y _ y TCy P^^t±l (14)
3

Proof: Forthefour-state Markov Chain in fig. 1and relation (11) we have that £ pa b= i forevery value
of a; that means b=°

T p(x(t) =kAy(t) =l\x(t-§) =iAy(t-b) =j) = 1
k, / = 0, 1

But, according to the definition of conditional probabilities

p(x(t) =kAy(t) =l\x(t-b) =iAy(t-b) =j) =



" p(x(t-b) =iAy(t-b) =/)

and then

^ pix^^y^)
k,i =o,iP^x^~^ =i*y(t-&) =j)

Hence, from Uie above relation , applying (12) and (13) we get

y PJx^^piyj^jiTCjJ^ =i
M=o,ip(*(f-5) =i)p(y(t-Z) =])SC]]

Equivalently, we get:

y TCf^jPix^^piyj^j) i
M=<U SC*} P(x =i)p(y=j)

and hence the required relation is satisfied:

iJ m3u iJ'uP(x =i)p(y=J)
n
Proposition 2: For every pair of signals (x,y) and all possible values i,j = 0,1, the following equations hold:

X Sq[p(y=j) = 1 V/ =0,1;
y' = o,i (15)

X SC*}p(x =i) = 1 V) =0,1.
i = 0, 1

Proof: From the definition of SC, we get

X SC*Jp(y=j) =-±-Tp({x =i) X &-/» =1
j = o, i ^ ~ ; y= o, i

The second equation follows in a similar manner.

•
Proposition 3: For every pair of signals (x,y) andall possible values /,j,k,l = 0,l tiie following equations

hold:

X rcgsffy.^.* 1 VU=0,1;
y./ = o, i (16)

I TC*Jiklp(x^k) = 1 V;,/ =0,l;
i, k = 0, 1

= 1



Proof: Similar to tiie proof for Proposition 2, but using the definition of TC.

0
We provide in Uiefollowing two useful results:

Proposition 4: The set of 4 equations and 4 unknowns SCJ®, i, j = 0, 1 in Proposition 2 is indeterminate.

Moreover, Uie matrix of the system has the rank < 3.

Proposition 5: The set of8equations and 16 unknowns TGtnj®, i, j,k,l =0,l isindeterminate; the matrix
of the system has the rank < 7.

The last two propositions are very important from a practical point of view. The set of equations involving

SCs may be solved knowing only SC]jxy for example, and that was Uie approach taken by Ercolani et al.

in [6] (although, no similar analysis appeared in tiie original paper). In the more complex case involving

TCs, we need to know at least 9 out of 16 coefficients in order to deduce all values.

2.3. Propagation mechanisms

In what follows we ignore higher order correlations, that is, the correlation between any number of signals

is expressedonlyin termsof pairwisecorrelationcoefficients; Uie sameassumption wasusedin [6],butonly

for signal correlation coefficients.

Definition 5: We define the TC among three signals as:

Pbt-*§*t-nA-ni
TCS!'*** p<xi^JMyi->m)ptek-»J

Neglecting higher order correlations, we therefore assume that the following holds for any signals x, y, zand
any values i, j, k, I, m, n = 0,1:

TCijk,lmn = TCij,lmTCjk,mnT(-ik,ln "^

Definition 5 and relation (17) may be easily extended to any number of signals. Based on the above

assumption, we use an OBDD-based procedure for computing Uie transition probabilities and for
propagating the TCsthrough the network. The main reason for using the OBDD representation for asignal
is that it is a canonical representation of a Boolean function and Uiat it offers a disjoint cover which is
essential for our purposes. Depending on Uie setofsignals with respect to wliich werepresent a node ofUie
boolean network, two approaches may be used:

- Theglobal approach - for each node, webuild Uie OBDD in terms of the primary inputs of thecircuit;
- The incremental approach - for each node, we build the OBDD in terms of its immediate fanin and

propagate Uie transition probabilities and tiie TCs through tiieboolean network .
The first approach is more accurate, but requires much more memory and running time; indeed, for

many large circuits, it is nearly impractical. The second one, offers accurate enough results whilst being



more efficient as far as memory requirement and running time are concerned,

a) Computation of the transition probabilities

Let/be a node in the boolean network represented in terms of n (immediate or primary input) variables xj,

x2,..., xn; it may be defined through the following two sets of OBDD patiis:

- fli - the set of all paths in the ON-set off

- flo - the set of all paths in the OFF-set off

Some of the approaches reported in the literature (e.g. [9]), use the XOR-OBDD of / at two consecutive

time steps to compute the transition probabilities. We consider instead only the OBDD off and through a

dynammic programming approach, we compute the transition probabilities more efficiently.

Based on Uie above representation, the event '/switching from value i to value/ (/,j = 0,1), may be written

as:

*-,- iznv, (18)
where /*, fa are the values ofvariable xk onUie path n and %' respectively (ih jk = 0,1,2, where 2 stands for
don't care values) for each k=\, 2,..., n. Thus, the probabilitythat/switches from i to; may be expressed as:

rtW-xS Xfl\J (19)7t g 11,71' g Yljk =i * *

Applying the property of disjoint events (which is satisfied by Uie collection of paths in the OBDD), the
above formula becomes:

*w-1 4*n*w (20)
However, since Uie variables xk may not bespatially independent ofone another, Uie probability of a path
to 'switch' from (ij, i2,..., in) to (/;»72>-> in) maY not De expressed as the product oftransition probabilities
for individual variables. Instead, we will use Uie following result which holds if we neglect higher order

correlations.

Proposition 6: If relation (17) is true for any three signals from tiie set {xj, x2,...> xn}> Uien:

*n%j=n <*wtn Td$u) (2i)
k=l k=l k<l<,n

Proof: Follows directly from relation (17)by induction on the number of variables.

a

According to this result, the transition probability of the signal / for any values i, j = 0, 1 satisfies the
following:

10



Proposition 7 The transition probability of a signal/from state i to state; (/, j = 0, 1) is:

n

pgu; = i x n o*k ^, n *%*# ™
71 G11,71' g n.fc= i k Jk k<l<n

Proof: Follows immediately applying Proposition 6.

a

Though this expression seems to be very complicated, its complexity is within reasonable bounds. We

will show that it is not necessary to enumerate all pairs of paths in Uie OBDD (which would provide a

quadratic complexity in Uie number of paths in the OBDD), but for a fixed path in 11/ the computation may

be done in linear time in terms of tiie OBDD-nodes.

For the incremental approach, we need a mechanism not only for computing Uietransition probabilities,

but also for propagating the TCs Uirough the boolean network. For a given node in the circuit, it is only

necessary to propagate tiie TC of the output with respect to Uie signals on which Uie inputs depend. The

dependency between an input and another signal may have as a cause either a RFO or a propagated primary

input dependency.

b) Propagation of the transition correlation coefficients

Let/be a node with immediate inputs*;, x2,..., xn and x a signal on wliich at least one of tiie inputsxlt
x2,..„ xn depends. According to Uie definition of theTC, for every i, j, p, q= 0, 1 possible values offandx
respectively, we have:

Trfx _ Pvi -^jxp -> v (23)

Since Uie transition probabilities for / and x are already computed at tius point, the only problem is to

compute the probability of both/ and x switching from i to j and from p to q respectively. We get the

following important result:

Proposition 8 TheTC between signals f andx, for anyvalues i,j, p, q= 0,1 may be expressed as:

~,„fr ne n,7t' g U.ir= 1 * k l£k<l£n „„
TU- • = • ^^ — (24)

*W* Pifi^j)
Proof: Using therepresentation of theevent /switches from i to/ given in (18), weobtain the following
for the event '/switches from i to; andx switches from/? to q simultaneously':

v. I".

and:

W„->,= X X EK
Givc'en.^! **%

n

p(fi^jx„_>,)=P( x x w^»n\., >>
7ig n.7t'en. jt = i

n



Applying Uie disjointness property of tiie paUis, we get:

11

p(fi^jXp^q)= y lp(xP^gYl\J
71 G 11,71' G I!. fc»l

Since Uie variables^ may not be independent and, furthermore, at least one of them dependsonx, we need

to apply the result provided by proposition 1 for tiie set of /i+l variables {xj, x2,..., xn, x):

7tG 11,71* Gn. jt= i * * k<l<n

Thus, Uie TC between/and x follows immediately.

•
c) Complexity issues

In order to assess the complexity claimed above, let us define tiie following notation:

W= \tl\<* (25)7t'Gn.^=1 * Jk

where jc is a fixed paUi in fl,-. Thus, using the disjointness property, tiiecorresponding probability is:

Since thepath tt is fixed, Uie above probability may becomputed on Uie OBDD in Uie same wayas a signal
probability. The idea is that, using Shannon decomposition, tiie signal probability (and hence Uie above
probability) may becomputed in linear time in Uie number of Uie OBDD-nodes [8]. Thus, may be

decomposed as follows:

f~i =\jh+\J«% (26)
where //* -./j^,- are the cofactors witii respect to xk and xk, respectively. Based on this recursive
decomposition, we may also write a similar relation for Uie corresponding probabilities, taking also into
account the possible existing correlations:

p(f^p =P(xki jP(fn%p n T^;oj+p\jp<f^? n tc%;.* *»
* ].<£</<« k k<l<n

Having computed this probability for each paUi n, we immediately get Uie corresponding transition
probabilities and hence tiie switching activity.Thus, for afixed path n, the complexity is 0(n2N) where nis
Uie number ofvariables and Nis the number of nodes in the OBDD. The n2 factor comes from the necessity
oftaking into account Uie correlations: besides tiie transition probabilities, we also have to keep track ofUie
TCs involved on each path. There is anumber of f"Jfactors in the product, thus the complexity is
quadratic in the number of variables.

Hence, overall, for all the paths in Uh the time complexity is 0(n2NP) where Pis the number ofpaths

12


















