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Abstract

Switching activity estimation in combinational circuits is addressed from a
probabilistic point of view. The zero-delay hypothesis is considered and under
pseudorandom or biased input sequences, the activities at the primary outputs and
all internal nodes are estimated. Work by previous researchers is extended to
manage complex spatio-temporal correlations by using lag-one Markov Chains and
conditional probabilities. Evaluations of the model and a comparative analysis
presented for benchmark circuits demonstrates the accuracy and the practicality of
the method. The results presented in this paper are useful in power estimation and
low power design.



1. Introduction

In solving the complex problem of power estimation for digital circuits, knowledge about the average
switching activity in a circuit plays a significant part. Indeed, to compute the power dissipation, most of the
current models rely on the switching activity information about the circuit. The accuracy in making such
estimations has become an important objective by itself. The key issue is to account for various
dependencies, irrespective of the particular way in which the inputs and the target circuits are described.

Most of the existing work in pseudorandom testing and power estimation relies on probabilistic methods
and signal probability calculations. [1] presents one of the earliest work in computing the signal
probabilities in a combinational network. The authors associate variable names with each of the circuit
inputs representing the the signal probabilities of these inputs and then, for each internal circuit line, they
compute algebraic expressions involving these variables. These expressions represent the signal
probabilities for these lines. While the algorithm is simple and general, its worse case time complexity is
exponential.

For tree circuits which consists of simple gates, the exact signal probabilities can be computed during a
single post-order traversal of the network [2]. Alternatively, one may use a graph-based algorithm to
compute the exact values of signal probabilities using Shannon’s expansion [3]. This algorithm relies on
the notion of the supergate of a node and identifies the set of maximal supergates in order to calculate the
signal probabilities. In the worst-case, this algorithm becomes equivalent to an exhaustive true-value
simulation.

Common digital circuits exhibit a lot of dependencies; by far, the most known one is the dependency
due to reconvergent fan-out among different signal lines, but even structurally independent lines may have
dependencies (induced by the sequence of inputs applied to the circuit) which cannot be neglected.
Accounting for all kinds of dependencies is impossible even for small circuits; consequently, for real-size
circuits, only some of the dependencies have been considered and even then, only heuristics have been
proposed.The main reason behind this situation is the difficulty in managing complex data dependencies at
acceptable levels of computational work. [4] provides an extension to [2] called the weighted averaging
algorithm; this approach attempts to take into account the first order effects of reconvergent fanout stems in
the variable support of the node. It is linear in the product of the number of circuit inputs and the size of the
circuit. [5] gives an algorithm, known as the cutting algorithm, which computes lower and upper bounds
on the signal probability of reconvergent nodes by cutting the multiple-fanout reconvergent input lines and
assigning an appropriate probability range to the cut lines and then propagating the bounds to all the other
lines of the circuits by using propagation formulas for trees. The effectiveness of the cutting algorithm,
however, depends on the non deterministic choice of the cuts; well-chosen cuts lead to better estimates of
the signal probabilities while poorly chosen cuts result in poor estimates. The algorithm runs in polynomial
time in terms of the size of the circuits. Ercolani et al. presents [6] a procedure for propagating the signal
probabilities from the circuit inputs toward the circuit outputs using only pairwise correlations between
circuit lines and ignoring higher order correlations. The signal probability of a product term is estimated by
breaking down the implicant into a tree of 2-input AND gates, computing the correlation coefficients of the
internal nodes and hence the signal probability at the output. Similarly, the signal probability of a sum term



is estimated by breaking down the implicate into a tree of 2-input OR gates.

People working in power estimation area have also considered the issue of signal probability estimation.
[7] gives an exact procedure based on Ordered Binary-Decision Diagrams (OBDDs) [8] which is linear in
the size of the corresponding function graph (the size of the graph, of course, may be exponential in the
number of circuit inputs). Using an event-driven simulation-like technique, [7] describes a mechanism for
propagating a set of probability waveforms throughout the circuit. Unfortunately, this approach doesn't take
into account the correlations that might appear due to reconvergent fan-out among the internal nodes of the
circuit. [10] extends this approach to account for first-order spatial correlations among probabilistic
waveforms. [9] uses symbolic simulation to produce the exact boolean conditions for switching at a
particular node of the circuit. This approach is expensive in terms of computational cost (time and space
requirements).

None of the methods summarized above adequately capture temporal correlations between signal
probabilities for a given node in a circuit. Consequently, new techniques that partially account for these
correlations are emerging (e.g. [11]).

The approach proposed in this paper improves the state-of-the-art by a new analytical model which
accounts for spatio-temporal correlations. Its mathematical foundation is probabilistic in nature, and
consists of using lag-one Markov Chains to capture different kinds of depedencies in combinational circuits
under a zero-delay model. Temporal correlations for the values of some signal x in two successive clock
cycles are considered through a Markov Chain with only two states; first-order spatial correlations for pairs
of signals (x,y) are modelled by a four-state Markov Chain. For the first time to our knowledge, we have
considered in a systematic way different kinds of dependencies in large combinational modules for both
pseudorandom and biased input streams; in addition, we report here the results of a detailed analysis and our
experiences on benchmark circuits.

The results presented in this paper are useful in power estimation and low power design; once the
system, architectural and technological decisions for power minimization are made, it is the switching
activity of the logic that determines the power consumption of a circuit. Our approach provides a sound
framework for efficiently and accurately estimating the effects of different transformations/optimizations
on the power consumption of the circuits under comlplex spatio-temoral correlations.

The paper is organized as follows. In section 2 we present in detail our model for switching activity
estimation and we provide a measure of its complexity . In section 3 we give some practical considerations
and our experiences on benchmark circuits. Finally, we summarize our main results and we indicate possible
extentions.



2. An analytical model for dependencies
2.1. Temporal correlations

We treat the sequence that corresponds to different values of a signal line x as a discrete process where time
units 7,2, ...,n represent the time instances when the input vectors V;, V,,..., V,, are applied to the circuit under
consideration. During the application of the input vectors, x may be 0 or 1, so that if we define its state at
time n by random variable x,,, then the behavior of line x can be described as a lag-one Markov Chain
{x,} 1>1, Over the state set S = {0,1}, through the transition matrix Q [12]:
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Every entry p;; in the Q matrix represents a conditional probability and may be viewed as the one-step
transition probability to state i at step n from state j at step n-1. The expressions for these conditional
probabilities are:

p((x(1) =0) A (x(r=8) =0))

Poo = P((x () =0)| (x(t-8) =0)) = e T
po,1 = P((x () = D] (x(¢-8) =0)) = "“"‘”p?()t’iéf‘iaf) - @
Pio=pP((x() =0)| (x(z-8) =1)) = ”‘“‘(’)ﬁff,’iéi“ilf) =
Piy = plx() = 1] =) =1y = LEO 2 DA UED =)

In the Q matrix, every column adds to unity, i.e:
Poo+Poy =1 )

X X
Protpyy =1



A lag-one Markov Chain has the property that one-step transition probabilities do not depend on the
‘history’, i.e they are the same irrespective of the number of previous steps. If the process {x,},.; is
homogenous, then the probability distribution of the chain P may be expressed as:

?= (0)"%, “@

where Zis the initial distribution vector.
If we assume the stationarity of the process {x,} -1, then the relation (3) becomes [12]:

P=QP (%)
Proposition I: The signal probabilities may be expressed in terms of conditional probabilities as follows:
px p.l‘
L0 0,1
px=0) = ———— px=1) = —— (6
P10 Po P10t Po, 1

Proof: Relation (5) may be written explicitly as:

[p(x=0)} _ PE,OPT,OE?(JC:O)}
p(x=1) pﬁ,lpf,l p(x=1)

or

px=0) = pg op(x=0)+p] oplx=1) px=1) = pg ;p(x=0)+pj] px=1)

where p(x =1) represents the signal probability. But we have that p(x =0) =1 - p(x = 1), respectively p(x
=1)=1 - p(x = 0) and then relations (6) follow immediately.

O
Definition 1: We define the transition probabilities as follows:

P(rg0) = p((x(1) =0) A (x(2-0) =0))

Plry1) =p((x(1) =1) A (x(¢-8) =0))

(7)
Py ) =p((x() =0) A (x(t-8) =1))
plx; ) =p((x() =1) A (x(t-8) =1))
Proposition 2: Transition probabilities may be expressed in terms of conditional probabilities as:
X X X X
_ Py,0P0,0 _ P1,0P0,1
Pos0) = 55— P = 55—
P10t Po1 P10t Po, 1
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Proof: Using the relation (2) and assuming the stationarity property for the process, we have:

p@x; ) = plx=i)pj ;

for any values i, j = 0, 1. From relation (6), the above formulas are straightforward.

a
Proposition 3: Conditional probabilities may be expressed in terms of transition probabilities as:

px = P(xO—-)o) Px _ P(xo_.) 1)
0,0 P(xg_50) +Plxg 1) 0,1 plxg o) +Pxo D

o = p(x; ) x pxy ) @
L4 p(xl_;o)""P(xl_”) P P(x1—>o) +P(x1..;1)

Proof: 1t suffices to use the following two identities and the equations (8):

X
P10

Pxo0) tP(o 1) = ———
P10t Po,1

X
Po,1
P&y 0 +p(x 59) = ~  x
P10t Po1

)

Relying on Propositions 1, 2, and 3, the relationship between signal, conditional and transition probabilities
can be illustrated as below:

Fig.2

As we can see, to compute the signal probabilities we need less information, but the ability to derive



anything else is severely limited; on the other side, once we get either conditional or transition probabilities
we have all we need for that particular signal.

Definition 2: For any given line x, the switching activity is:

X X
P1,0Po,1
X

. (10)
P10t Po,1

sw(x) = P(xo_;l)"'P(xl_;o) =2

2.2. Spatial correlations

This type of correlations has two important sources:

- Structural dependencies due to reconvergent fan-out (RFO);

- Pattern dependencies, that is, normally independent signal lines which become correlated due to a
particular sequence of inputs.

To take into account the exact correlations is practically impossible even for small circuits. To make this
problem more tractable, we allowed only pairwise correlated signals, which is undoubtedly an
approximation, but provides good results in practice. Consequently, we considered the correlations for all
16 possible transitions of a pair of signals (x,y) and modelled it as a lag-one Markov Chain with 4 states
(states 0, 1, 2, 3 which stand for encodings 00, 01, 10, 11 of (x,y)):

P22 P33

Fig.3
Definition 3: We define the conditional probability Pa, b 2S:

Pa,b = p(x(t) =kAy(f) =l[x(t—~5) =i/\)’(t*8) =_]) (11)

where a, b=0, 1, 2, 3, a being encoded as ij and b as kl.



Ercolani et al. consider in [6] structural dependencies between any two signals in a circuit, through the
signal correlation coefficients (SC); these coefficients can be expressed as:

y _plx=iAy=j)
SCY = =ty =7

where i, k= 0,1. Assuming that higher order correlations of two signals to a third one can be neglected,

(12)

they use the following approximation:

p(x=iny=jpx=inz=kpy=jrz=k)

px=iny=jaz=k) =
= | 2=k
Differently stated, the correlation coefficient among three s:gngls was ?g}ned’ ag )2 )

Yz _ p(xzi/\y=j/\z=k)
SCe = o= teb=pe=1

which is then equal to:
z _ xy Z o V2
SCi = SCFSCySCy

Our approach is more general; in order to capture the spatial correlations between signals, for each pair of
signals (x,y) and for all possible transitions for both of them, we consider the transition correlation
coefficients (TC).

Definition 4: We define the TC for two signals x, y as:

y _ px(t=08) =iax(t) =kay(t-98) =jay(t) =1

UK pe(£=8) =inx(t) =kpGy(t=38) =jry(t) =1 -

where i,j, k, =0, 1.

Proposition 1: For every pair of signals (x,y) and all possible values i, j, k, [ =0, 1, the following holds:

P(x,' e k)P(y )
SCY = 4 o (14)
‘ k, ,[Zg. j M p(x=ip(y = j)
3
Proof: For the four-state Markov Chain in fig.1 and relation (11) we have that " p, , = 1 for every value

of a; that means -

Y px() =kay(®) =lx(t=8) =iny(t=8) =)) =
k=01

But, according to the definition of conditional probabilities

pa () =kay(f) =[|x(t-8) =iny(t-8) =j) =



p(xl-—)k/\yj—)l)
T Ppx(=0) =iny(t-0) =))

and then

p(x:—>kAy1->I)
&4, 1P (x(t-9) =iny(t-29) 'j)

Hence, from the above relation , applying (12) and (1 3) we get
t—)k)p(y_]—ﬂ)T i, kl
ki=0,1p(x (t—8) =ip(y(t—29) -—j)Sny

Equivalently, we get:

TCI uP(ka)P()’;az)
k1=0,1 SC? px=ply=j)

and hence the required relation is satisfied:

y — P(x,_;L)P(y_,_)[)
SCE k, 1;0‘ 1Tcgkl px=10ply =)

0
Proposition 2: For every pair of signals (v,y) and all possible values i, j =0, 1, the following equations hold:

Y, SCipy=j) =1 Yi=0,1;
j=0,1 (15)
h Snyp(x—z) = 1 Vj=0,1.

i=0,1

Proof: From the definition of SC, we get

SCpo =)) = ——=p((x=1i) (y=§) =

j=20",l ! p(x_’) j=20,1

The second equation follows in a similar manner.

)

Proposition 3: For every pair of signals (x,y) and all possible values i, j, k [ =0, 1 the following equations
hold:

2 TC?:klp(yj_)l) =1 Vik=0,1;
jI=0, (16)

2 klp(x,_,k) =1 ¥jil=01;



Proof: Similar to the proof for Proposition 2, but using the definition of TC.
)

We provide in the following two useful results:

Proposition 4: The set of 4 equations and 4 unknowns SC,-J-"J’ , &, j=0, 1 in Proposition 2 is indeterminate.
Moreover, the matrix of the system has the rank < 3.

Proposition 5: The set of 8 equations and 16 unknowns TC,-j,kfy, i, j, k, 1= 0, 1is indeterminate; the matrix
of the system has the rank < 7.

The last two propositions are very important from a practical point of view. The set of equations involving
SC’s may be solved knowing only SC;;* for example, and that was the approach taken by Ercolani et al.
in [6] (although, no similar analysis appeared in the original paper). In the more complex case involving
TC’s, we need to know at least 9 out of 16 coefficients in order to deduce all values.

2.3. Propagation mechanisms

In what follows we ignore higher order correlations, that is, the correlation between any number of signals
is expressed only in terms of pairwise correlation coefficients; the same assumption was used in [6], but only
for signal correlation coefficients.

Definition 5: We define the 7C among three signals as:

p(xf—) ij—> mzk-én)

TCA n =
ijk, Imn p(x‘_),)p(yj,,, ,,,)P(Zk—;n)

Neglecting higher order correlations, we therefore assume that the following holds for any signalsx, y, zand
any values i, j, k, , m,n=0, 1:
TC:'J)E Imn = TCE'),'Im TC;E, mnTc?Ff, In (17
Definition 5 and relation (17) may be easily extended to any number of signals. Based on the above
assumption, we use an OBDD-based procedure for computing the transition probabilities and for
propagating the 7C’s through the network. The main reason for using the OBDD representation for a signal
is that it is a canonical representation of a Boolean function and that it offers a disjoint cover which is
essential for our purposes. Depending on the set of signals with respect to which we represent a node of the
boolean network, two approaches may be used:
- The global approach - for each node, we build the OBDD in terms of the primary inputs of the circuit;
- The incremental approach - for each node, we build the OBDD in terms of its immediate fanin and
propagate the transition probabilities and the TC'’s through the boolean network .
The first approach is more accurate, but requires much more memory and running time; indeed, for
many large circuits, it is nearly impractical. The second one, offers accurate enough results whilst being



more efficient as far as memory requirement and running time are concerned.

a) Computation of the transition probabilities

Let fbe a node in the boolean network represented in terms of n (immediate or primary input) variables x;,
X3, ..., X, it may be defined through the following two sets of OBDD paths:

- I1; - the set of all paths in the ON-set of f
- [1p - the set of all paths in the OFF-set of f

Some of the approaches reported in the literature (e.g. [9]), use the XOR-OBDD of f at two consecutive
time steps to compute the transition probabilities. We consider instead only the OBDD of f and through a
dynammic programming approach, we compute the transition probabilities more efficiently.

Based on the above representation, the event ‘f switching from value i to valuej° (i, j = 0, 1), may be written
as:

n
fing= 2, X ka,k_,jt (18)

nelln'elr=1

where iy, j are the values of variable x; on the path m and 7’ respectively (i, jr = 0, 1, 2, where 2 stands for
don’t care values) for each k = 1, 2,..., n. Thus, the probability that fswitches from i to j may be expressed as:

pis) =p( Y % TIx ) (19)

nelln ellr=
Applying the property of disjoint events (which is satisfied by the collection of paths in the OBDD), the
above formula becomes:

pis) = 2 X (I ) (20)

nelln' e l'lJ. k=1
However, since the variables x; may not be spatially independent of one another, the probability of a path
to ‘switch’ from (i, iz,..., iy) 10 (jj, j2-.., Jn) May not be expressed as the product of transition probabilities
for individual variables. Instead, we will use the following result which holds if we neglect higher order
correlations.
Proposition 6: If relation (17) is true for any three signals from the set {xj, x;,..., X}, then:

n n
— VX
p(kU1 Xk‘k *’ft) - kU1 (p(xk‘a -”'t) k -:11 n Tciti:, j.yjr) @0

Proof: Follows directly from relation (17) by induction on the number of variables.

0
According to this result, the transition probability of the signal f for any values i, j = 0, 1 satisfies the
following:

10



Proposition 7 The transition probability of a signal f from state i to state j (i, j= 0, 1) is:

i) = 2, 2 H (P, )H TCH' ) 22)

nelln' e ;=

Proof: Follows immediately applying Proposition 6.
O

Though this expression seems to be very complicated, its complexity is within reasonable bounds. We
will show that it is not necessary to enumerate all pairs of paths in the OBDD (which would provide a
quadratic complexity in the number of paths in the OBDD), but for a fixed path in Il; the computation may
be done in linear time in terms of the OBDD-nodes.

For the incremental approach, we need a mechanism not only for computing the transition probabilities,
but also for propagating the 7C’s through the boolean network. For a given node in the circuit, it is only
necessary to propagate the TC of the output with respect to the signals on which the inputs depend. The
dependency between an input and another signal may have as a cause either a RFO or a propagated primary
input dependency.

b) Propagation of the transition correlation coefficients

Let fbe a node with immediate inputs x;, xp, ..., X, and x a signal on which at least one of the inputs x;,
Xp,..., X, depends. According to the definition of the TC, for every i, j, p, ¢ =0, 1 possible values of f and x
respectively, we have:

rofe = PUisipsd
e = p(f,, P, )

Since the transition probabilities for f and x are already computed at this point, the only problem is to
compute the probability of both f and x switching from i to j and from p to g respectively. We get the
following important result:

(23)

Proposition 8 The TC between signals f and x, for any values i, j, p, ¢ =0, 1 may be expressed as:

2 2 H (TC, kPqup(xkik ) H Tc??‘-?fnji)

TCF | = rrel'InEnk—l Tk 1<k<izn

Proof: Using the representation of the event ‘f switches from i to j* given in (18), we obtain the following
for the event ’f switches from i to j and x switches from p to g simultaneously’:

fi—-ajxp—)q: (}(2 2 fo'q_.,)P—”I

el ellr=

(24)

and:

P(fi—ﬂxpaq) = P(Mzh 2 {xP—”IH k‘g‘*-‘t

nel‘[

11



Applying the disjointness property of the paths, we get:

p(fi—)jxp—)q = Z Z P(P‘Qqnxktk—uk

nelln el k=1

Since the variables x; may not be independent and, furthermore, at least one of them depends on x, we need
to apply the result provided by proposition 1 for the set of n+1 variables {x;, x,..., X, x}:

p(fi—pr—m 2 Ep(p—w)H(T Jqp(xk )H C*x:fljm

ne [ln' eIl R

Thus, the TC between f and x follows 1mmed1ate1y.
0

¢) Complexity issues

In order to assess the complexity claimed above, let us define the following notation:

f'n:—)j = Z ka, SR (25)

e llr=1
where 7 is a fixed path in IT;. Thus, using the disjointness property, the corresponding probability is:

CANES 1 W

nell, k=

Since the path = is fixed, the above probability may be computed on the OBDD in the same way as a signal
probability. The idea is that, using Shannon decomposition, the signal probability (and hence the above
probability) may be computed in linear time in the number of the OBDD-nodes [8]. Thus, may be
decomposed as follows:

_ %
f“"f - xkjk—mfn'k"f-i_xki —n‘fn_U (26)
where fnxi, jr fnx_"_, j are the cofactors with respect to x; and xg, respectively. Based on this recursive
decomposition, we may also write a similar relation for the corresponding probabilities, taking also into
account the possible existing correlations:

p(fn —>j) = p(xkik_,o)p(fnxﬁj) o ;c[:[[ Cx* rOJr, p(xk )P(fn —);) H 'k' 1], @7
Having computed this probability for each path m, we immediately get the corresponding transition
probabilities and hence the switching activity.Thus, for a fixed path 7, the complexity is O(n’N) where n is
the number of variables and N is the number of nodes in the OBDD. The n? factor comes from the necessity
of taking into account the correlations: besides the transition probabilities, we also have to keep track of the
TC’s involved on each path. There is a number of ( ; ] factors in the product, thus the complexity is
quadratic in the number of variables.

Hence, overall, for all the paths in IT;, the time complexity is O(nZNP) where P is the number of paths

12



in the OBDD. In the incremental approach, this is within reasonable limits since n does not exceed 3 or 4
variables in the immediate fanin of the node.

Example: Let’s consider the following function: f = x; @ x, @ x5 and its OBDD representation from
fig.4. Suppose i =0, j=1and ©= (0 1 1) (a fixed path in the OFF-set of f, I;). We compute the probability
given in (27) by using a bottom-up parsing of the OBDD from the leaf labelled 1 to the root. We adopt a
dynamic programming approach in which at each level we use the results computed at lower levels. For each
node, the partial results are shown in fig. 4. The same operations are performed for any other path in Iy,
thus allowing us to compute in the same manner all the transition probabilitics and hence the switching
activity, based on relation (10). A similar approach is used to propagate the TC between f and some other
signal x

X X

p(fn —}j) = p(xlo"o)P(leHi)p(x31_,O)TCJ;ZI‘T;IOTCEII,;OOTCSILBI 4
:\.x X X X
p(xln-ao)P(le—uo)p(x3l-.|)T 121,301T OII.SOITC;]I,ZOO'}'

X,X. X x
P(x1n_* l).15'(121 ﬂo)p(x3| _’o) TCIZ].BOTC;LBIOTCSII’ZIU +

1%2

X X X
P(xlo_,[)P(le_,l)P(xa,_,l)TCﬁ,guTC;'l,JnTCm, T

Lo X3

) = P&y, IP(s,  )TCP oo+

X
P(le - i)p(x31 - |)T(-:’{:‘i'311

2%3

P ) = Py, PGy, ITCI 0+

X.
p(le—:o)p(x31 - 1)TC;21-301

_ 1 1

P = plf ) = pla ) (

XXy XX,

pvnaj) =P n—>j) = p(x3|_”)

1

Fig.4
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3. Practical considerati ] imental resul

All experiments were performed in the SIS environment [14] on a SPARC IT workstation with 64Mbytes of
memory; the working procedure is shown below:

Gput sequence gmema

Input sequence analysis

. . Binary logic simulati
(input correlations) T SESEENESER

Y Y

Switching activity

Response analysis
estimation

Comparison

Fig.5

To generate pseudorandom (PR) inputs we have used as input generator a maximal-length linear feed-back
shift register (LFSR) modified to include the all-zero pattern [13]; these registers are based on primitive
polynomials that is, they randomly generate all distinct patterns that correspond to a given degree before
repeating the sequence. Purely random generators do not exist, therefore the primitive polynomials used,
give us multiple correlations among primary inputs.The length of the input register was set equal to the
number of inputs of the circuit under analysis, thereby creating a pseudorandom source; when the length of
this register became huge, we tried to keep the time/space requirements at a reasonable level and hence, for
these cases we generated only a significant part of the exhaustive sequence (up to ats input patterns).

As the standard measure for power estimation, we have used the average switching activity at each node
of the circuit calculated as in (1 1. In our experiments, we were mainly interested, to measure the accuracy
of the model in estimating the switching activity locally (at each internal node of interest) and globally (for
the entire circuit), given a set of inputs with spatiotemporal correlations. The analysis part of the experiment
may be skipped if the user specifies directly the characteristics of the input stream (transition probabilities
and correlation coefficienys).

To illustrate the main concepts of our approach, we consider in fig.6 the ISCAS circuit C17, fed by the
sequence generated with the primitive polynomial p(x) = le xe@ +. Due to the deterministic way in which

1. To caleulate average power consumption of a gate in a synchronous CMOS circuit, one can use the well-known formula Py =05
(Vi /Teyete) CroaasW(x) where Vyyis the supply voltage, T, is the clock cycle period, Cloaqis the load capacitance and x is the output
of the gate.

14



we generate the input sequence, independent lines become correlated as is the case withinputs 1 & 2,2 &
3,3 & 6, 6 & 7; moreover, the fan-out points on the input lines add in turn additional correlations. For an
accurate analysis of the switching activity, we have to account for all these dependencies. In Table 1 we list
the transition probability coefficients for this particular input sequence; we mention that in this case, all
signal correlation coefficients are equal to 1. In Table 2 we present the estimated and exact values of the
switching activity per clock cycle. In fig.6, the color code is used to reflect the switching activity at the
output of the gates, i.e. darker gates are more active.
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Table 1: C17 - TC for PR inputs

ikt 1&2 2&3 3&6 6&7 Table 2: C17 - sw_act for PR inputs
00,00 2.0000 2.0000 2.0000 17143
Node Estimated sw_nct Exact sw_act

00,01 0.0000 0.0000 0.0000 0.4444

1 0.5000 0.5000
00,10 2.0000 20000 2.0000 17778

2 0.5000 0.5000
00,11 0.0000 0.0000 0.0000 0.0000

3 0.5000 0.5000
01,00 2.0000 2,0000 2.0000 2.2857

6 0.5000 0.5000
01,01 0.0000 0.0000 0.0000 0.0000

7 0.5625 0.5625
01,10 2.0000 2.0000 2.0000 17718

10 03750 0.3907
oLl 0.0000 0.0000 0.0000 0.0000

1 0.2500 0.2649
10,00 0.0000 0.0000 0.0000 0.0000

16 0.5000 0.5236
10,01 2.0000 2.0000 2.0000 17778

19 0.5687 0.5236
10,10 0.0000 0.0000 0.0000 04444

2 0.2978 03125
10,11 2.0000 2.0000 2.0000 17143

2 0.6006 0.5625
11,00 0.0000 0.0000 0.0000 0.0000
11,01 2.0000 2.0000 2.0000 17778
1,10 0.0000 0.0000 0.0000 0.0000
1,1 2.0000 2.0000 2.0000 22857

To bound the error during the propagation procedure, we used two mechanisms:
- One is based on the paradigm in fig.2 (We calculate the signal probabilities independently and use these
values as a more reliable measure for correcting the values of transition probabilities that fall out of range
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[0, 1]; more precisely, we normalize conditional probabilities such that relations (6) hold at each step);
- The other is based on limiting the 7C values (We normalize the values of coefficients using the set of
equations (16)).

It should be pointed out that the actual values for all coefficients in Table 1 represent the characteristics
of the input stream, so for example, if we select another primitive polynomial to generate the inputs, we may
obtain a completely different set of transition correlation coefficients. This dependency is even more salient
if we consider ‘biased inputs’(i.e. the switching activity is not 0.5). To generate such sequences, we used a
simple functional generator based on the ‘random’ function in C language. We set up a specific threshold
te[0,1] and generated a set of random numbers in [0,1]. If these numbers exceeded 1, then the output of
the generator was set to 1; otherwise the output was 0. We give in Tables 3 and 4, the values obtained for
two such sequences, and in fig.7 the new distribution of switching activity among the internal nodes of the
circuit. We note that in these cases we have spatial dependencies practically among all primary inputs.

10

Table 3: C17 - sw_act for biased inputs Table 4: C17 - sw_act for biased inputs
Naxde Estimated sw_act Exact sw_act Node Eslimated sw_act Exact sw_act

1 0.5625 OE 1 0.0625 0.0625
2 03750 03750 2 0.1250 0.1250
3 03125 03125 3 0.2500 0.2500
6 0.5625 0.5625 6 0.5000 0.5000
7 0.5000 0.5000 T 1.0000 1.0000
10 03125 03125 10 0.1250 0.1250
1 03125 03125 1 0.2500 0.2500
16 0.4569 0.5000 16 0.1295 0.1250
19 03367 03125 19 0.7262 0.7500

0.4960 0.5000 2 0.2040 0.1250

04527 04375 23 0.4597 0.5000

To assess the impact of spatio-temporal correlations on switching activity estimations, we considered
three different benchmark circuits, namely C17, f51m , 5xpl and performed the following set of
experiments:

- a PR experiment where the inputs were generated with the polynomials p(x) = 1®@x%®x° for C17, p(x)
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= 10x*@x®x%@x” for 5xpl and p(x) = 1OxDx?@x"®2® for £51m;

- a biased experiment where the switching activities of the inputs were sw(i) = 0.25,1i = 1, 2..,, n-1
respectively sw(n) = 0.375, where n = 5 for C17, n =7 for 5xpl and n = 8 for f51m (these values were
obtained by AND-ing pairwise the normal outputs of LFSRs which correspond to degrees 5, 7 and 8).

To compare our model with different other approaches reported in the literature, we analyzed exhaustively
these circuits for the switching activity at primary outputs and all internal nodes. Comparing our estimations
with the exact binary simulation results, we reported in Tables 5 + 10, the usual measures for accuracy:

maximum error (MAX), mean error (MEAN), root-mean square (RMS) and standard deviation (STD).
Table 5: C17 - PR inputs

Glabal approach Incremental approach
With spatial correlations Without spatial corelations With spatial correlations Without spatial correlations
Error With temporal Without tempo- With temporal Without tempo- With temporal Without tempo- With temporal Withont tempo-
correlations ral correlations correlations ral correlations correlations ral correlations correlations ral correlations
MAX 0.0391 0.1797 0.1797 0.1797 0.0565 0.1817 0.1855 0.1855
MEAN 0.0156 0.0627 0.0516 0.0627 0.0275 0.0625 0.0664 0.0664
RMS 0.0207 0.0893 0.0892 0.0893 0.0316 0.0899 0.0917 0.0917
STD 0.0149 0.0696 0.0707 0.06%6 0.0170 0.0708 0.0693 0.0693
TIME 1.8s 185 1.8s 1.8s l4s lds 03s 03s
Table 6: C17 - biased inputs
Global approach Incremental approach
With spatial correlations Without spatial correlaticns With spatial correlations Without spatial correlations
Error With temporal Without tempo- With temporal Without lempo- With temporal Without lempo- With temporal Withoul tempo-
correlations ral correlations lati ral correlali correlali ral lations correlati ral correlations
MAX 0.0431 0.1144 0.0435 0.1577 0.0248 0.0869 0.0431 0.1551
MEAN 0.0180 0.0641 0.0331 0.0775 0.0088 0.0479 0.0331 0.0773
RMS 0.0251 0.0730 0.0345 0.0916 00118 0.0547 0.0344 00011
STD 0.0191 0.0335 0.0103 0.0534 0.0086 0.0289 0.0103 0.0528
TIME 1.9s 1.9s 1.8s 1.8s lds 14s 03s 03s
Table 7: 5xpl - PR inputs
Global approach Incremental approach
With spatial correlations Without spatial comrelations With spatial correlations Without spatial correlations
Entor With temporal Withoul tempo- With temporal Wilhout lempo- With temporal Without lempo- With temporal Without tempo-
correlations ral correlations lations ral correlati correlali 1al correlations correlations ral correlations
MAX 0.0234 0.1289 0.1527 0.1527 0.1323 0.1289 0.1363 0.1355
MEAN 0.0055 0.0372 0.0465 0.0498 0.0217 0.0483 0.0434 0.0433
RMS 0.0086 0.0636 0.0733 0.0758 0.0376 0.0696 0.0656 0.0654
STD 0.0069 0.0531 0.0583 0.0587 0.0315 0.0515 0.0506 0.0505
TIME 693s 693 618s 6785 20058 2005s 33s 33s
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Table 8: 5xp1 - biased inputs

Global approach Incremental approach
With spatial correlations Without spatial correlations With spatial correlations Without spatial correlations
Esror With temporal Without lempo- With temporal Without tempo- With temporal Without tempo- ‘With lemporal Without tempo-
correlations ral correlations correlations ral correlations correlations ral correlations corrclations ral correlations
MAX 0.1080 0.2188 0.1250 02422 0.0879 0.2188 0.1143 0.2422
MEAN 0.0271 0.0549 0.0421 0.0677 0.0270 0.0659 0.0399 0.0824
RMS 0.0439 0.0773 0.0574 0.0911 0.0366 0.0856 0.0545 0.1012
STD 0.0355 0.0560 0.0402 0.0627 0.0255 0.0563 0.0383 0.0605
TIME 71228 71228 683.85 683858 20545 2054 s 3.5s 35s
Table 9: f51m - PR inputs
Global approach Incremental approach
With spatial correlations Without spatial correlations ‘With spatial correlations Without spatial correlations
Error With temporal Withoul lempo- With temporal Without tempo- With temporal Without tempo- With temporal Without tempo-
correlalions ral correlations correlations ral correlations correlations ral correlations lations ral correlations
MAX 0.0039 0.2720 0.27171 0.2770 0.2574 0.2167 0.2589 0.2589
MEAN 0.0008 0.0321 0.0314 0.0321 0.0224 0.0354 0.0367 0.0376
RMS 0.0015 0.0797 0.079 0.0797 0.0659 0.0807 0.0772 0.0774
STD 0.0013 0.0754 0.0755 0.0754 0.0640 0.0749 0.0701 0.0699
TIME 28655 286.5s 27132s 2732s 3565 35.6s 1.8s 1.8s
Table 10: f51m - biased inputs
Global approach Incremental approach
With spatial correlations ‘Without spatial correlations ‘Wilh spatial correlations Wilhiout spatial correlations
Emor With temporal Without tempo- With temporal Without tempo- With temporal Without lempo- With temporal Without tempo-
correlations ral correlations correlations ral correlations correlations 1l correfations correlations ral correlations
MAX 0.0463 0.2020 0.2421 0.2178 0.0696 0.1927 0.3289 04174
MEAN 0.0115 0.0591 0.0658 0.0969 0.0280 0.0781 0.0607 0.1041
RMS 0.0185 0.0767 0.0722 0.1103 0.0393 0.0915 0.1032 0.1401
STD 0.0149 0.0505 0.0960 0.0544 0.0285 0.0492 0.0862 0.0968
TIME 290.1s 290.1s 216s 2168 6565 6568 1.8s 1.8s

The global approach refers to doing the switching activity calculation on the global OBDD representing
the node function in terms of the circuit inputs, while incremental approach refers to the propagation
mechanism using the network structure and the local OBDD representation (in terms of immediate inputs
of the node).

As we can see, for PR inputs, global approaches with spatio-temporal correlations are overall 5 to 50
times more accurate than any other global approach which doesn’t account for these dependencies.
Incremental approaches which consider both types of correlations, are on average 1.5 to 3 times more
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accurate than the ones which neglect any of these; the price we have to pay in terms of accuracy is justified
by a significant computational speed-up of incremental method vs. the global one. It is worth to note that,
taking into account any of these correlations by itself, improves the accuracy of all estimations made. Thus,
if our main interest is the accuracy, it’s worth to include spatio-temporal correlations in a global style, if
possible; otherwise, the incremental approach should be used.

For biased inputs, the global approach using both spatial and temporal correlations is 2 to 4 times more
accurate; on the other hand, the incremental approach provides a gain in accuracy of 4 to 6 times. Whilst, in
terms of accuracy, incremental approaches with spatio-temporal correlations provide roughly the same gain
in accuracy as the global ones, the running time is clearly shorter.

These observations were proved to be consistent in all our experiments on benchmark circuits; in the
following, we give the error values only for PR inputs, using the incremental approach. In reporting the
error, we compared our switching activity estimates with the results of binary logic simulation at every
internal node or primary output. The running time ranged from 1.3 s (for C17) to 50 min. (for C6288). These
values include the time needed by the analysis module to process the input data stream in order to derive
input statistics (transition probabilities and transition correlation coefficients).

Circuit MAXIMUM ERROR MEAN ERROR ROOT_MEAN_SQUARE STANDARD DEVIATION
Ci7 0.0565 0.0275 00316 0.0170
432 0.0678 0.0131 0.0221 0.0179
499 0.0668 0.0039 0.0084 0.0075
880 0.1143 0.0175 0.0331 0.0283
C1355 0.0512 0.0021 0.0057 0.0053
C1908 0.0669 0.0061 0.0115 0.0098
C3540 0.1153 0.0155 0.0280 0.0233
C6288 0.1595 0.0187 0.0359 0.0310
alud 0.1754 0.0271 0.0469 0.0386
z4ml 0.0750 0.0125 0.0211 0.0172
duke2 03199 0.0272 0.0657 0.0609

To conclude, two important observations should be made. First, Markov Chains are useful in modelling
input correlations (this is proved by the accuracy of global approaches). Second, the degree in which any
type of correlation affects the overall quality of estimations, depends on the internal structure of the circuit
and the correlations among the primary inputs. The best way to use this framework in practice would be to
consider both approaches in a hierarchical manner: large combinational modules may be partitioned until
they become manageable in a global fashion. If there is room to improve the technique which account for
spatio-temporal correlations, the assumption of neglecting higher order correlations between signals should
be the first to start with.
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4. Conclusions

We have proposed an original approach for estimation of the switching activity in combinational logic
modules under pseudorandom or biased inputs. Using the zero-delay hypothesis, we have derived a
probabilistic model based on lag-one Markov Chains and conditional probabilities. The main feature of our
approach is the systematic way in which we can deal with complex dependencies that may appear in
practice; more precisely, our model supports spatio-temporal correlations among the primary inputs or
internal lines of the circuit under consideration. A comparative analysis and benchmark evaluations
emphasize the superiority of our approach over the current existing techniques and show its practicality on
large combinational modules. Our future work will concentrate on general delay models and on extensions
of this approach beyond the logic level.
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