Low Power State Assignment
Targeting Two- and Multi-level
Logic Implementations

Chi-Ying Tsui, Massoud Pedram
and Alvin M. Despain

CENG Technical Report 94-07

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213)740-4458

April 1994

Low Power State Assignment Targeting Two- and Multi-level Logic
Implementations

Chi-Ying Tsui, Massoud Pedram, Alvin M. Despain

Department of Electrical Engineering - Systems
University of Southern California Los Angeles, CA 90089

April 12, 1994

Abstract

To minimize power consumption in CMOS circuits, switching activities (weighted by load capaci-
tances) have to be reduced. In this report, we address the problem of minimizing weighted switching
activities during the state encoding of a finite state machine. We develop a new power cost model
for the encoding problem and then present encoding techniques to minimize the power cost target-
ing both two- and multi-level logic implementations. These techniques are compared with those
which minimize area or the switching activity at the present state bits. Experimental results show

significant improvements.

1 Introduction

In this era of portable electronics applications, power consumption has become an important cri-
terion for designing electromnic circuits. Recently optimization methods for low power have been
developed for different levels of design hierarchy ranging from technology selection, architectural

transformation, logic synthesis and physical design.

In this work, we address the problem of minimizing power consumption of a sequential machine.
Since the switching activity and hence the power consumption of a finite state machine (FSM) is
strongly dependent on the state transition behavior and thus the state encoding of the machine,
we are particularly interested in developing encoding algorithms which will ultimately give a low

power implementation after logic synthesis.

It is known that the state assignment of an FSM has a significant impact on the area of the
final implementation. Intensive research on minimizing area during the state assignment has been
conducted in the past ten years. The problem is NP-hard; indeed, the optimum assignment can
be found by exhaustively enumerating all the possible assignments, carrying out logic synthesis for
each assignment and then picking the one that has the least area. This method is computationally
too expensive. Approximate methods have therefore been developed which rely on approximate pre-
logic synthesis cost functions in order to avoid the expensive logic minimization step. DeMicheli
et al. [8] proposed an innovative paradigm in which one-hot codes are assigned to states and
a minimum symbolic (multi-valued) cover of the machine is then generated by output-disjoint
minimization. This symbolic cover defines a set of face embedding constraints which require that
certain states be given codes that lie on the same face of a hypercube of minimum (or given)
dimensionality. For two-level logic implementation, if these constraints are satisfied, then the
number of cubes in the minimum binary cover of the final implementation will be upper bounded
by that in the minimum symbolic cover. The minimum area state encoding problem for two-level
is then relaxed to the problem of finding the minimum number of encoding bits such that all
the constraints are satisfied. DeMicheli [7] used a heuristic row encoding technique to solve this
problem. Villa et al. [15] employed the notion of face-posets to tackle this problem. Yang et
al. [16] transformed the problem into a unate covering problem (covering seed dichotomies by a
minimum-cost set of prime dichotomies) and solved it using a heuristic technique. Devadas et al.

[3] proposed an exact method based on the concept of generalized prime implicants.

One variation of the state assignment problem is the bil-consirained state assignment problem where
an encoding is to be found that minimizes some objective function (e.g. area, power, or delay),
subject to the constraint that the number of encoding bits is no larger than a user given number.
This problem is again NP-hard and heuristic methods are used to obtain a solution. A common

approach is to use simulated annealing [5].

As in any implementation of simulated annealing, we need to specify the initial solution, the
move generation, the cost calculation, the cooling schedule, and the stopping criterion. For state
assignment, the initial solution is some random state encoding; moves are generated by randomly
flipping bits of the current encodings; the cost is calculated so as to mimic the cost after the logic
optimization targeting two- or multi-level logic realizations; the temperature is decreased according
to the simple rule T,y = aT where 0 < @ < 1. The search at a given temperature is terminated
after a fixed, known number of moves while the simulated annealing procedure is terminated if in
the last k steps (in our case k = 4), no improvement in the cost function was achieved. Among
the above, the most critical and computationally demanding procedure is the cost calculation
procedure. The quality of the solution depends on how good the cost function captures the final

objective function.

For two-level logic implementation, Nova [15] used the number of unsatisfied constraints weighted
by their occurrence frequency in the symbolic cover as the cost function. For multi-level logic
implementation, a cost function that reflects higher cube sharing is used. In particular, JEDI [6],
MUSTANG[2] and MUSE [4] assigned weights to pairs of states which reflect the number of literals
that can be saved if the pair of states is encoded with a specific Hamming distance. They then use

the sum of the weights over all pairs of states as the cost function.

In CMOS circuits, dynamic power consumption of a gate is given by:

2
0.5 V(MC load Eswitchiny

(1)

Puvy = T
cycle

where Teyele is the cycle time, Cloaq and Esyitching ave the load capacitance that the gate is driving
and the expected switching activity at the gate output, respectively. State encoding for low power
is harder than that for minimum area since it has to consider both area and switching activity at

the same time and the switching activity is not known until the encoding is determined.

Recently Roy et al. [12] addressed the problem of reducing switching activities during state assign-
ment. They assumed that the power consumption is proportional to the switching activities of the

state bit lines of the machine and hence use the following cost function:

Z tpi; H(si,55)

5{,5;E8

where ¢p;; is the global state transition probability from state s; to state s; and H(s;,s;) is the

Hamming distance between the encodings of the two states. !

The shortcoming of the above
approach is that it minimizes the switching on the present state bits without any consideration on
the loading of the state bits and the power consumption in the resulting two- or multi-level logic

realization of the next state and output parts of the FSM.

“in {12], the authors incorrectly used the conditional state transition probability pi; instead of tp2i; where pi; is
the conditional probability that the next state is s; given the present state is s;.

In an attempt to account for power consumption in the combinational part of the FSM, Olson et al.
[10] used a linear combination of switching activity and the number of literals as the cost function.
The drawback of this approach is that it considers the loading and switching activities separately
and hence does not directly address the problem of minimizing the weighted switching activities.
Also since the number of literals and switching activities are two quantities of very different nature,

a linear combination of the two may not work very well.

In this report, we target the bit-constrained state assignment problem for low power. Simulated
annealing is used as the global search strategy. We first present a power cost model for state as-
signment which considers both the capacitive loading and the switching activity at the same time.
We then propose accurate power cost functions for both two- and multi-level logic implementation.
For two-level logic using PLA implementation, the dichotomy-based approach is extended to cal-
culate the proposed power cost function. The impact of the PLA type on the power cost function
is also described. For multi-level logic implementation, a cost function that takes into account the
weighted switching activities at the inputs of the FSM is developed. As power consumption in the
combinational part of the FF'SM is very much dependent on the particular multi-level implementa-
tion used, we use the number of literals as a first-order approximation of this component of the
power consumption. We then modify the simulated annealing procedure to handle the multiple

cost function.

The remainder of the report is organized as follows. Section 2 gives our terminology. The power
cost model is described in Section 3. The low power state assignment algorithms for two-level logic
and multi-level logic using this power cost model are presented in Sections 4 and 5. Section 6 gives

our experimental results. We conclude in Section 7.

2 Terminology

A finite state machine (FSM) is characterized by a 5-tuple (X,Y, S, A,) where

X = {aii=1,nx} the set of primary inputs,

Y = {wili=1,ny} the set of primary outputs,

S = {sili=1,ns} the set of internal states,

A XxS—=Y the output function,

n: X x5—=58 the next state function (Mealy machine).

The encoding length is denoted by np(> [logy ns]). The FSM is represented by a state transition
table M = {m;|m; = (2, 8i,8, 1)1 = 1,...,np}, where st € S is the next state and y; is the
corresponding output. Each entry m; € M is a symbolic implicant (or a multi-valued cube) of the
FSM.

The FSM can be also viewed as a discrete-state discrete-transition Markov process. The state
probability Ps, of a state s;, which is defined as the probability that the state is visited in an arbi-
trarily long random sequence, can be obtained by solving the corresponding Chapman-kolomgorov

equations [11].

The global state transition probability tp;, s. between two states s; and s; is defined as the probability

that the transition from s; to s; occurs in an arbitrarily long sequence and is given by
tPsi,s; = Ps;Dij

where p;; denotes the conditional state transition probability. The notion of global state transition
probability can be generalized to transitions between two sets of states, S; C S and S; C § as
follows

TP(Si = S;)= D D (tPsis; + tPs;.5:)- (2)

s;ES.‘ SJESJ

The switching activities of the state bit lines depend on the state encoding and the state transition

probabilities. The switching activity Fy, of a state bit line b; is given by

Ey, = TP(States(b; = 1) « States(b; = 0)) (3)

where States(b; =),z = 0,1 denotes the subset of states whose ith bit assumes a value of z.

3 A Power Consumption Model for FSMs

Figure 1 shows a typical implementation of a finite state machine which consists of a combinational
circuit and a set of state registers. The sources of power consumption in this implementation are

highlited in the figure and explained below.

Py, is the power consumption at the state registers and is given by

Pr::g = Z C"rcg Eb.' (4)
by Estate_bits

where C,., is the effective capacitance of the state register and Ej, is the switching activity of state

bit line b; which is calculated from equation (3).

Pinputs is the power consumption required to drive the combinational inputs and the state bit inputs

of the combinational part of the machines. It depends on the switching activities of the state bit

Primary Outputs

Primary Inputs

(29

State Regist

= L]
: (* *\ “ State Bit Lines
/ l-)in putst Pcmuh \

Poulpuls

P

regs

Figure 1: Power model for finite state machines.

lines and the number of combinational input and state bit literals in the logic implementation and
is given by

Poputs = D miCurBy + Y n;Ciu B
by Estate bits JEPI

—_—
o
—

where n; and n; are the number of literals that input line b; and j are driving, Cy;; is the effective

capacitance due to each literal 2, and PI is the set of combinational inputs.

P.ymy is the power consumption in the combinational circuit itself and is given by

Pcomb = Z Cn En (ﬁ)
neENODES

where C,, is the effective capacitance that node n is driving.

Poutputs is the power consumption at the combinational outputs of the circuits and is given by

Paut = Z CroEo (7)
oePO

where (), is the effective capacitance that output o is driving.
The total power consumption of the finite state machine is therefore equal to

Ptotal' = P’rcy + P:'uput.s + Pcomb i Poutputs- (S)

Under a zero delay model where glitches are neglected, £, only depends on the state transition
probabilities and is independent of the state encoding and the circuit implementation. In addition,

C, is fixed and independent of the implementation. Therefore P,,; is constant and independent

2To simplify exposition, we assume each literal has the same capacitive loading.

of the state encoding and can be dropped when comparing the power costs for different state

encodings. We therefore minimize Prcy + Pinputs + Peomb-

State encoding schemes which minimize the Hamming distance between state pairs with high tran-
sition probabilities tend to reduce minimize £, and hence P..,. On the other hand, these schemes
may increase the fanouts of state bit lines and the number of nodes in the combinational part, and
hence increase Pj,uis and Pregp which will in turn offset the reduction in Pr.,. As a result, these

methods do not in general produce power_optimal assignments.

On the other hand, state encoding schemes which minimize area tend to reduce the fanouts of state
bit lines and the number of nodes in the combinational part. They do not consider the switching

activities, and hence do not produce power_optimal assignments either.

4 Two Level logic Implementation
4.1 The Cost Function

For a two-level logic circuit, there is one level of AND and one level of OR gates. The power
consumption at the outputs of the OR gates that drive the state registers can be included in F,,.

Pinputs and Peyyyy can be lumped into a single term Payp and
Panp = > Ppgp (9)
Blelogic_cover

where BT is a binary implicant of the logic cover. Let the binray representation of BI consists of

combinational inputs # = 2y ...x, and state bit input by ...b,,, Pgy is given by

Pir = Pupstsny + Poombig, (10)
where . "
Pinputsgy = 3, CANDEz; + D Canp By, (11)
i=1 =1
and
Peombg; = norCorEsI (12)

where nopg is number of OR gates driven by the BI.
Therefore the total power cost function for a two-level logic circuit is equal to

P-r'e_q + Z Pgy. (l‘j)

Bleproduct _terms

oy

; v
?ZOR-plancg

egmermdbamer] e

A

Figure 2: A typical Dynamic PLA circuit.

phil

The type of PLA used for the implementation has a direct impact on the power cost calculation,
specifically, on the values of £}, and Epgy. Figure 2 shows a typical dynamic PLA circuit using
NOR-NOR structure which is commonly used for high performance controller in microprocessors.
For dynamic PLA, the output of the AND plane is driven by a dynamic NOR gate and is precharged
to 1 during the precharge period and is evaluated based on the input during the evaluation period.
It switches when the output is evaluated to 0. Hence Egj is equal to prob(B1 = 0). Using the same
reasoning, the switching activity at the output of the OR plane is equal to prob(out = 1). The
switching activity of the present state bit line is the same as that of the corresponding next state bit
line and hence Ey, is equal to prob(b; = 1). In addition, we have to include the power consumption
at the precharge and evaluation clocked transistors of each NOR gate which is a constant term and
is given by

P-:Iock = (Cprr;ch.m‘gc T Cf:uufurzze)Edock (14)

where Eqoer is 1. 2 Therefore the Pgy for two-level logic circuits implemented using dynamic PLA

is equal to

Pinputsg; + Pcambg; = Pclock- (15)

*A similar power cost Tunction can be derived for other types of PLA such as psendo-NMOS PLA.

4.2 The Cost Calculation Procedure

Given a symbolic cover, we want to quickly calculate the power cost of a given encoding. P, is
easy to compute since Ch., is fixed and Iy, can be computed from the encoding using equation
(3). However if we want to compute Pyyp exactly, we have to know the exact implementation
which requires logic minimization. Instead we use the power cost of the symbolic implicants to

approximately capture Piayp.

Let S = (z,s,s',y) be a symbolic implicant where C'I = ...z, is the combinational input
implicant. If S7 is realized by a single binary implicant B[, then the power cost of realization of
this symbolic cube is

Ps; = Ppr. (16)

If the state group of S/ is not satisfied by the encoding, it may require more than one binary
implicant to realize it. Let BIy...BI, be the set of binary implicants that realize S, then the

power cost of this realization is

q
Ps; =Y Pay, (17)
=1
Panp is then given by
Panp = X, Psr. (18)

Slesymbolic_cover

To find the minimum power cost realization of a symbolic implicant, we use the concept of dichotomy

which is also used in state assignment algorithis targeting minimum area [16].

4.2.1 Definitions and Notation

We use the example shown in Figure 3 to illustrate the definitions and notation.

Definition 4.1 A symbolic implicant is a J-tuple < z,s,s',y > corresponding to combinational
inputs, present states, next states and combinational oulputs of the FSM, respectively. After one-
hot encoding of states and symbolic minimization, we obtain a set of prime symbolic implicants
such that each represents the grouping of states that are mapped by some input combination into
the same nezt state and assert the same output. The s part of a symbolic implicant defines a set
of states and is represented by a string of ny 0’s and 1’s and is called a state group. The 1’s in
a state group identify the states that belong to the group. A group dichotomy corresponding to a
state group 1s a two-block partition of states such that those states having a 0 in the state group

are in the left block and those having a I are in the right block. A seed dichotomy is a dichotomy

0 5 s 1 SI; 0 10011 01000 1

0 s4 53 |1 —— SI; 1 01010 00100 1

0 55 s 1 SYMLOOE SI; 0 00010 10000 1

I s 55 1 implicants \ gl o 01000 00010 1

I sq s3 1 SIs 1 10000 10000 1

5

0 53 s 1 SI; 100100 00010 1

0 sy s4 1 SI; 1 00001 00001 1

1 51 S | /

1 sy sq 1 stale group

1 S5 S35 | .

a) a state diagram b syribiole cover
Sh Sy
state encoding: encoding dichotomies: (5253,51) (5283,84)(5253.,55) [(515385,52)(515355,54)
bybybs 1 2 3 1 2
$, 000 ed(by) = {553, 525455} [[1 | O 1 1 !
55110 ed(by) = (555, 535354} | [2 | O ! 0 : .
53010 ed(bs) = {s15253,5485) | [3 | O ! 1 0 1
s 111 ed(by) = [sps455. 5153} | | 4 | 1 0 0 0 0
ss 101 e(l(kﬁ:) = lSzS:;S;;. 5155} 5 1 0 1 0 0
- C([(hg) = [5455, 315253] 6 1 0 0 1 0
¢) an encoding and its encoding dichotomies
d)Two group dichotomies and their covering matrices

Figure 3: Example illustrating the definitions.

where the right block has exactly one element. If a state group has n 1’s, its corresponding group

dichotomy is split into n seed dichotomies.

Example. In Figure 3, there are 7 group dichotomies, one for each symbolic implicant. For S1; the
corresponding group dichotomy is (s2s3, $15485) and the three seed dichotomies are (s2s3, $1).(8253, 54)

and (s283, 85), respectively.

Definition 4.2 Given an encoding with k bits, each bit defines two encoding dichotomies: one
where all states whose i bit are zero go to the left block of the encoding dichotomy while the
remaining states go to the right block; the other where left and right blocks are exchanged. We use
the notation ed:-r(l,', r:) = edi(re, &)

Example. In Figure 3, the encoding dichotomies for by and by are (s183,$25455),(525455,5153) ,
for by and by are (8185, 825384) and (s28354,5155), and those for by and by are (s15253,5455) and

(8455, 515253)
Definition 4.3 The partial coverage pe;; of a seed dichotomy sd; = (l;,s;) by an encoding di-
chotomy ed; = (l;,r;) is defined as:

o Lnl; 4f sz €
PCji = b otherwise

In other words, pc;; is the subset of states in {; that can be distinguished from s; by ed;. Since all
seed dichotomies of a group dichotomy have the same [;, hence we use the notation pe; to represent

the partial cover of ed; for a given group dichotomy.

Example. The partial coverage of the seed dichotomy (s2s3,s4) by the encoding dichotomy

(s183,808485) 1s (s3).

Definition 4.4 A seed dichotomy sd; = (l;,s;) is fully covered by a set of encoding dicholomies
ED = {edy,...,ed,} if

U pe;i =y (19)

ed; EED

Example. Encoding dichotomies (s;s2,s384) and (s183,s984) fully cover the seed dichotomy

(3253, 3‘1).

Definition 4.5 A set of encoding dichotomies salisfies a state group constraint if there ewists a
subset ED of the encoding dichotomies which fully covers all the seed dichotomies of the group

dichotomy corresponding to the state group consiraint.

Example. Encoding dichotomy (s1s3, $28485) and (s135, $28384) fully covers the group dichotomies

of the symbolic implicant S1,.

4.2.2 Finding a Minimum Cost Implementation of Symbolic Implicants

Given a state encoding, we want to find the minimum power realization of every symbolic implicant
ST in the symbolic cover of the FSM. This problem is mapped to a rectangle covering problem
as follows. Let by,...,b0, and edy,...,eds, (where ed,;; = e(.i?‘) be the sets of state bits and
their corresponding encoding dichotomies. Let gd = (z,,0,) be the group dichotomy of S/ where
z, and o, denotes sets of states having 0’s and 1’s in the state group of S7. Furthermore let
SD = {sdy,...,sdy} be the set of m seed dichotomies of gd where sd; = (z,,s;) and s; is the Gt

states in o,.

A 2n x m covering matrix M is built where every row represents an encoding dichotomy and every
column denotes a seed dichotomy. If pej; # ¢ then M;; is 1, else it is 0. A rectangle (R,C) is

defined as
VieR:"\jE(,-'-ﬂ"‘[!’j = (20)

where R C 1,...,2n and C C 1,...,m. A valid rectangle (R,C) is a rectangle with
User pei = 24 (21)

10

A valid rectangle (R,C) implies that the seed dichotomies in C' can be realized by a single binary
cube consisting of the state bits in R. In other words, the state bits in R can distinguish the symbols
represented by the seed dichotomies in C' from z,. Figure 3d shows the covering matrix for ST,
and 51y, and illustrates the notion of a valid rectangle. ({1}, {2,3}) for S1; is not a valid rectangle
since z, = {s9,83} and pey = {s3} # z,. However rectangles ({1,3},{2,3}) and ({3}, {3}) are both
valid rectangles. In this example, the group dichotomy SI; cannot be covered by a single subset
of encoding dichotomies and hence cannot be realized by a single binary cube. In fact 57; has to
be realized by ibibs and iby. For SIy rectangle ({1,2},{1,2}) fully covers all the seed dichotomies

and hence §7; can be implemented by one single binary implicant ib;bs.

The minimum power realization problem can then be stated as finding a valid rectangle cover

{(R1,Cy)y...,(Rg, Cp)} such that the power cost is minimized. The power cost is defined as

Psr = 3 P(BI(g,c,)) (22)
(Ri,CE{(R1,C1)y (Ri,Ci) }

where BI(p, ¢,y is the corresponding binary implicant of (R;, C;).

A reduced form of rectangle covering problem is used in the kernelization step of multi-level logic
optimization and is shown to be NP-hard [13]. To solve the valid rectangle covering problem, we

therefore resort to a heuristic method.

However we first show a lemma that helps in pruning the search space.

Lemma 4.1 Let SDy be a set of seed dichotomies covered by the rectangle (Ry,Ch). Given a
set of rectangles {(Ra,C2),...,(Rk,Ck)} that cover sets of seed dichotomies SDy,....SDy. If
SDy = U,'Ez‘””k.S'D,', then IJB](R],C” < Zie?.....k ILJB](R“L._.J.

From Lemma 1, if a group dichotomy is implemented by a single cube, then the power cost is
minimum. Therefore for each group dichotomy, we first check whether it can be covered by a single
cube. If that is not possible, we then use the following greedy approach to obtain a minimal power

implementation.

We construct one valid rectangle at a time until all seed dichotomies are covered. In constructing

the valid rectangle, we pick one encoding dichotomy at a time until the rectangle is valid.

For every rectangle used, there is some fixed power cost which is the power consumption at the
combinational primary inputs. Therefore one goal is to minimize the number of rectangles in the
cover. The wider the rectangle, the higher the chance of having a rectangle cover with smaller
cardinality. Also the cost of a rectangle depends on the number and the switching activities of the

encoding dichotomies used in the rectangle. Thus the larger the size of the partial cover pej; of

11

an encoding dichotomy ed;, the higher the chance of using fewer encoding dichotomies to form a

rectangle. Therefore, we assign the following cost for each encoding dichotomy

Eedi
seed_coverage(ed;)zeroblock_coverage(ed;)

cost(ed;) = (23)

where Ey, is simply the switching activity of state bit ¢, seed_coverage(ed;) is the ratio of the
number of seed dichotomies covered by ed; and the total number of the seed dichotomies, and

zero_block_coverage(ed;) is the ratio of the number of states in z, which are covered by ed; and

Ey y
- :
D Ge6L0E" If either

seed_coverage(ed;) or group_coverage(ed;) is zero, then d; does not distinguish any states from z,

the total number of states in z,. In Figure 3d, the cost for edy, for S57; is thus

and hence is redundant. Therefore its cost is set to infinity.

The encoding dichotomy with the least cost is chosen first. If the rectangle is not a valid one, we
have to continue the process of selecting more encoding dichotomies. Once an encoding dichotomy
is chosen, it sets an upperbound on the width of the final valid rectangle and also reduces the
number of uncovered seed dichotomies in z,. The costs of the remaining dichotomies are updated

dynamically to reflect these changes.

4.2.3 A Heuristic Cost Function

The procedure to find a minimum power realization of the symbolic cover is invoked at every step
in the inner loop of the simulated annealing. This procedure involves solving constrained rectangle
covering problem and is expensive. One way to speed up the simulated annealing procedure is that
instead of solving the rectangle covering problem to calculate Pgy, we use the sum of the static

costs for each encoding dichotomy, i.e.,
Psp =) cost(ed;) (24)
where cost(ed;) is calculated using equation (23). It is shown that this approximate cost function

for Ps; in equation (18) produces very good results while speeding up the state assignment by an

order of magnitude.

5 Multi-Level logic Implementation

5.1 The Cost Function

For area minimization, the objective of the state assignment is to minimize the number of literals

in the multi-level logic implementation. The literal saving cost function has been well studied

12

in [6] [2]. In these approaches, the present state weights are calculated by grouping the implicants

M = (X,5,5,Y) in a state transition table into the following subsets:

Cz.:,- = {m; € M|sj = s, (y;)i = 1}
Cf: = {m; € M|s;

Sk S:{ = Si}

Y 5! :
|C ;] (ICE;]) represents the occurrence frequency of state s in the output (next state) functions.

Let ng be the number of state bits used for encoding. If the encodings of states s; and s; have
a Hamming distance of dj;, then a common cube B with ng — d literals can be extracted from

them.

For an output function y;, if we assume an unminimized, 1-level, 1-hot encoded representation
A s ' . - . .
of the FSM, there are]C'Em-] and [C?,i| fanins from s and s;, respectively. The literal saving of

extracting a common cube B from s, and s; for this output function is thus equal to
(1Bl = 1)pere i
where py g = |CF ;| + |CY;]. Similarly, the literal saving for a next state function s; is equal to
(1Bl = 1)Ai Yk,

where ;i = |C'f;| + |C,S:] and A; is the number of 1’s in state s;. The cost of implementing the
extracted cube is | B|. Therefore, the total literal saving of extracting a common cube C' from states

s and s; is
Ty ng

At = {3 prgi + D Ay }(IBl = 1) = | Bl (25)
=1 i=1

This is the cost function used in JEDI [6] except that the last term in Eq. 25 is removed. MUSTANG
[2] approximates A; by ng/2, and uses multiplication instead of addition to calculate the weight

function.

For low power applications, we have to minimize Prey, Pinputs and Peomp. We first look at Pinputs-
For power conscious state assignment, state transitions with high probability should be assigned
higher weights. But the occurrence frequency of cach state must be considered as well because
this frequency determines the number of fanouts from the state bits (which also affects the power
consumption). So instead of counting the number of literals saved, we calculate a literal saving

factor (weighted by the switching activity of the literals).

Consider two states s; and s; with a common cube B. The two state are encoded as follows.

S = b]‘bg - .b[\;| b[{+1 biee b“-‘i
B B;

13

$ s — { ! f
S5 = b]bz . -bh lbI\"-z—l bnc:
B B
7]

The common cube B can be extracted from s; and s; as

S + 85 = B(B, + BJ) = b]b'g o .b}{(bh’+] v .bﬂs + bi}\’-{-l e .bl

ns)

Let the set Sp denote the set of states whose corresponding bits have the same binary values as
those in B and Sg = S — Sg. The notation S, is an abbreviation of Sgy.

The power saving of extracting B from the present states s; and s; is equal to the number of literals
saved weighted by the switching activities of the state bits in C. Thus the literal power saving in
Pirput is given by

ng K
Af = {Zuuz +Z Yk L) }{ZTP(% =8),) = TP(Sp=5p)} = 3 TP(5,-5,,). (20)
i=1 i=j
T P(5s, HF;,‘) is simply £y, where as TP(Sp ~Sp) is calculated by identifying Sp and applying
equation (2) on Sg.

Unlike area minimization where the initial literal count is fixed, (i.e. it does not depend on the
actual encoding) and hence literal saving can be used as a metric for overall area saving, initial
literal power consumption does depend on the encoding and hence the above literal power saving
alone does not reflect the actual literal power cost. We have to calculate the initial power cost P

and then subtract the literal power saving to get the actual power cost. Therefore,

JPi:n‘puts = Linit — Psauing (27)
where e
m,zi = Z ﬂ*s,cht z L‘bf (28)
S:E“
sumuq = Z z AL 1(Ix£ (29)
SLES 5|ES

where S is the set of all state, j,, is the occurrence frequency of s which is given by

ny ns

o, = 2 1CHAl + 2 NICES . (30)
=1 =1

Py is equal to
ng

Prcg = C'rcg Z Ebj- (31)

i=1

It is very difficult to estimate P.,,; during the state encoding as it varies drastically with the
actual multi-level logic implementation. We thus use equation (25) as a first order approximation

for P.omb.

5.2 Multiple Objective Function Optimization by Simulated Annealing

The power cost functions measure the weighted switching activities of the circuit and the area cost
function measures the number of literals (or product terms), it is difficult to find a good combining
function. Using combined function like Power + fArea is not appropriate since determining /3 is
difficult. To include both measures, we propose a modification to the simulate annealing procedure

such that two separate cost functions are used to control the moves. Let

Pl = Pregs + Piuputs (32)

and
Py = Z Z At (33)

SLES sES

for the case of multi-level implementation. An initial encoding and its corresponding P; and P, are
obtained. Two states are randomly chosen for conditional swapping. If both P, and P, decrease, the
codes for the two states are swapped. However, if either cost increases, the two codes are swapped
with some probabilities calculated from the cost differences and the annealing temperature. The

procedure is repeated until both power costs do not change for three consecutive temperatures.

6 Experimental Results

In this section we present experimental results of the low power state assignments algorithm for two
level and multi-level implementation. Experiments were done using the MCNC-91 FSM benchmark

sets.

The first experiment is to compare low power state assignment for two level implementation with
NOVA which is a state assignment program targeting minimum area and with the minimum
weighted Hamming distance encoding (MWHD) procedure of [12]. In this experiment, we used
Creg = 20Canp and Cynyp = Cogr. For the low power state assignment algorithm, results are
generated using two different options. The first option RC uses the cost of the valid rectangle cover
as the cost function for Ps; while the second option Heur uses the heuristic cost function (equation
(24)). The encoded machines were synthesized using espresso-ezact and the power consumption

was measured using a sequential machine power estimator [14] [9]. Table 1 summarizes the results.

From Table 1, it is seen that in most of the benchmarks the low power state assignment produces
better results than NOVA and MWHD encoding. Using valid rectangle covering cost function on

results in an average 8.6% reduction in power compared to NOVA. If the heuristic cost function is
used, the power consumption is reduced by 8.5%. It is worthwhile to point out that the minimum
weighted Hamming code does worse than NOVA in terms of power consumption. The power

consumption increases by an average 7.5 %.

The second experiment compares low power state assignment for multilevel implementation with
JEDI which is a state assignment program targeting minimum area and with the MWHD en-

coding. Results were generated using two different options: the first one uses only Py in equation
(32) as the cost functions and the second one use both P; and P, in equation (33) during the
simulated annealing. The encoded machines were synthesized using the mis rugged.script. Table

2 summaries the results.

From Table 2, it is seen that in general the low power state assignment produces better results
than JEDI and the MWHD encoding. Using only P; results in an average of 13.1% reduction
in power compared to JEDI. Using both Py and P, gives an average 16.7% reduction in power
consumption. For the MWHD encoding, the result is no better than JEDI. An average of 1.14%

increase in power consumption is obtained.

We also counted the number of literals in the final implementation for each encoding. Although
the literal counts for the low power state assignment algorithms are generally larger than that of
JEDI (7.3% and 2.7% respectively), power consumption is lower since JEDI does not consider

the switching activities. The minimum weighted Hamming distance code, however, has an average
17.5% more literals than that obtained from JEDI. This, and the fact that the capacitive loading
of the state bits are ignored, explain why the MWHD encoding does not produce good low power

state assignment.

7 Concluding Remarks

We presented a power cost model for the state assignment problem targeting both two- and multi-
level logic implementation. We then formulated the problem of calculating the power cost for the
symbolic implicant for two-level as a rectangle covering problem and proposed a greedy algorithm
to solve it. The impact of of PLA type was also discussed. In particular, we derived the power cost
function for dynamic PLA. For pseudo-NMOS static PLA we need to consider the direct current
drawn through the NOR gate when the output of the gate is zero and the corresponding power
dissipation has to be included in the model. For multi-level logic implementation, we proposed a
power cost function which captures the weighted switching activities at the inputs of the circuit and
approximated the weighted switching activities inside the combination circuit by the literal counts
function. We then described a modified simulated annealing procedure which handles multiple

objective function.

Espresso 1] is used to generate the final implementation for the two-level logic. This two-level
logic minimization algorithm targets for minimum area and does not exploit the switching activity
information. Future work will therefore focus on developing two-level logic minimization algorithm

for low power. The problem of bit-constrained state encoding problem was addressed in this

16

circuits NOVA | Hamming | % red. RC | % red. Heur. | Y%red
bbara 403.01 301.87 2,76 | 381.08 5.44 | 372.68 7.53
bbsse 656.41 514.40 21.63 519.18 20.91 470.30 | 28.35
bbtas 238.62 195.40 | 18.11 | 202.72 | 15.04 | 170.56 | 28.52
beecount 328.67 221.89 [3249 | 216.24 | 34.21 | 204.71 | 37.72
cse 736.58 833.65 | -13.18 | 687.40 6.68 | 748.26 | -1.59
dk14 H24.11 665.56 | -26.99 | 5006.38 3.38 538.73 | -2.79
dk16 1121.00 1296.41 | -15.65 | 1010.00 9.90 | 1211.60 | -8.08
dk17 335.83 381.24 | -13.52 | 350.63 | -4.41 | 344.16 | -2.48
dk27 180.14 213.57 | -18.56 169.70 5.80 166.27 7.70
dk512 372.90 438.45 | -17.58 | 370.54 0.63 364.05 2.37
donfile 1160.78 931.95 19.71 646.32 44.32 602.70 | 48.08
exl 1253.08 1373.42 -9.60 | 924.90 26.19 | 995.43 | 20.56
ex0 580.03 698.52 | -20.43 | 606.66 | -4.59 | 557.05 3.96
kirk 1312.09 1533.15 | -16.85 | 1252.93 4,51 | 1506.55 | -14.82
keyb 1116.63 1858.54 | -66.44 | 965.59 | 13.53 | 910.31 | 18.48
lion9 200.38 225.20 | -12.39 199.01 0.68 209.98 | -4.79
planet 2778.56 2901.43 | -4.42 | 2539.74 8.60 | 2836.69 | -2.09
pma 896.70 920.70 | -2.68 | 860.98 3.98 | 920.50 | -2.65
sl 1842.00 2029.30 | -10.17 | 1818.40 1.28 | 2053.20 | -11.47
s27 267.46 22441 | 16.10 | 223.95 | 16.27 | 211.80 | 20.81
s208 271.12 439.59 | -62.14 | 398.52 | -46.99 | 31253 | -15.27
sand 2519.30 2723.20 | -8.09 | 2229.80 | 11.49 | 2359.00 6.36
sse 656.41 514.40 | 21.63 | 519.18 | 20.91 | 470.30 | 28.35
styr 1949.23 2090.51 -7.25 | 1666.00 14.53 | 1770.36 9.18
tma 806.49 695.13 13.81 724.12 10.21 666.08 | 17.41
trainll 237.60 275.84 | -16.09 | 234.50 1.30 | 233.13 1.88
average

Yoreduciton -7.53 8.61 8.51

Table 1: Power consumption for 2-level targeting dynamic PLA

circuits JEDI | Pl | % red. | P1 and P2 | % red. | Hamming | % red.
bbara 254.60 | 249.80 1.89 228.40 | 10.29 302.60 | -18.85
bbsse 847.20 570.10 32.71 513.40 39.40 685.30 19.11
bbtas 96.10 75.00 21.96 79.98 16.77 75.71 21.22
beecount 227.16 | 238.10 -4.82 240.77 -5.99 233.66 -2.806
cse 983.45 | 961.79 2.20 936.45 4.78 1159.05 | -17.86
dk14 741.18 | 672.99 9.20 901.38 | -21.61 1036.63 | -39.86
dk16 4435.06 | 3532.06 | 20.36 3731.65 | 15.86 3909.95 | 11.84
dk17 474.73 | 429.49 9.53 38G.52 | 18.58 489.90 | -3.20
dk27 248.15 210.41 15.21 211.19 14.89 195.71 21.13
dk512 638.22 | 545.79 | 14.48 568.61 | 10.91 499.79 | 21.69
donfile 958.12 | 1147.00 | -19.71 1177.96 | -22.94 1390.83 | -45.16
exl 1623.95 | 1220.41 | 24.30 1050.23 | 35.33 173046 | -G6.56
exl 522.91 | 638.94 | -22.19 661.32 | -26.47 66G4.55 | -27.09
kirk 2681.13 | 2737.48 -2.10 2216.64 17.32 3000.00 | -11.89
keyb 2251.09 | 1370.67 39.11 1972.37 12.38 3033.52 | -34.76
lion9 142.83 | 141.93 0.63 103.90 | 27.26 185.42 | -29.82
planet 10320.10 | 6111.28 | 40.78 5796.22 | 43.84 6388.06 | 38.10
pma 2570.60 | 2769.74 | -7.75 1907.97 | 25.78 1743.49 | 32.18
sl 2432.03 | 2509.41 -3.18 1106.83 54.49 2488.23 -2.31
5208 491.29 451.86 8.03 363.46 26.02 521.24 -6.10
s27 127.30 112.82 11.37 106.03 16.71 175.27 | -37.68
sand (6592.30 | H788.88 12.19 T433.67 | -12.76 6370.60 3.36
styr 4813.60 | 382847 | 2047 4502.16 6.47 4439.93 7.76
sse 847.16 | 570.01 | 32.72 513.43 | 39.39 685.00 | 19.14
tma 1968.74 | 1488.14 24.41 1006.82 48.86 1438.31 26.94
trainll 176.89 69.97 | 60.44 107.16 | 39.42 120.62 | 31.81
average ‘

Yoreduction 13.16 16.73 -1.14

Table 2: Power consumption for multi-level

18

report. Future work will address the general state assignment problem without any constraints on
the number of state bits.

References

[1] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Minimiza-

tion Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, Massachusetts,
1984.

[2] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG: State
assignment of finite state machines targeting multi-level logic implementations. In I/EEE Trans-
actions on Computer-Aided Design of Integrated Circuils and Systems, volume 7, pages 1290~
1300, December 1988.

[3] S. Devadas and A. R. Newton. Exact algorithms for output encoding, state assignment and
four-level Boolean minimization. In Proceedings of the Twenty Third Hawaii International

Conference on the System Sciences, volume [, pages 387-396, January 1990.

[4] X. Du et al. MUSE: A MUltilevel Symbolic encoding algorithm for state assignment. In JEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages 28-38,

January 1991.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P.Vecchi. Optimization by simulated annealing. Science,
220(4598):671-680, May 1983.

[6] B. Lin and A. R. Newton. Synthesis of multiple-level logic from symbolic high-level description
languages. In IFIP International Conference on Very Large Scale Integration, pages 187-196,
August 1989.

[7] G. De Micheli. Symbolic design of combinational and sequential logic circuits implemented by
two-level macros. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, volume 5, pages 597-616, September 1986.

[8] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment of
finite state machines. In IEFE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, volume 4, pages 269-285, July 1985.

[9] J. Monteiro, S. Devadas, and A. Ghosh. Estimation of switching activity in sequential logic
circuits with applications to synthesis for low power. In Proceedings of the 31th Design Au-

tomation Conference, page , June 1994.

[10] E. Olson and S. M. Kang. Low-power state assignment for finite state machines search. In

International Workshop on Low Power Design, April 1994.

19

[11] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-Hill, 1984,

[12] K. Roy and S. Prasad. SYCLOP: Synthesis of CMOS logic for low power application. In
Proceedings of the Internalional Conference on Computer Design, pages 464-467, October
1992.

[13] R. Rudell. Logic Synthesis for VLSI Design. PhD thesis, University of California, Berkeley,
1989.

[14] C-Y. Tsui, M. Pedram, and A. M. Despain. Exact and approximate methods for calculating
signal and transition probabilities in fsms. In Proceedings of the 31th Design Automation

Conference, page , June 1994,

[15] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment of finite state machines for
optimal two-level logic implementations. In [EEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, volume 9, pages 905-924, September 1990.

[16] S. Yang and M. Ciesielski. On the relationship between input encoding and logic minimization.
In Proceedings of the Twenty Third Hawaii International Conference on the System Sciences,

volume I, pages 377-386, January 1990.

20

