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Abstract

This report presents an exact algorithm and two heuristics for solving the Bounded path
length Minimal Spanning Tree (BMST) problem. The exact algorithm which is based on
iterative negative-sum-exchange(s) has polynomial space complexity and is hence more
practical than the method presented by Gabow. The first heuristic method (BKRUS)
is based on the classical Kruskal MST construction. For any given value of parameter
¢, the algorithm constructs a routing tree with the longest interconnection path length
at most (1 + €) - R, and empirically with cost at most 1.35 - cost(BM ST™) where R
is the length of the direct path from the source to the farthest sink and BMST™ is
the optimal bounded path length MST. The second heuristic combines BKRUS and
negative-sum-exchange(s) of depth 2 to generate even better results (more stable local
minimum). Extension of these techniques to the construction of MSTs with lower and
upper bounded path lengths is presented as well. Empirical results demonstrate the
effectiveness of these algorithms on a large benchmark set.
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1 Introduction

In the design of high-performance VLSI systems, circuit speed and power consumption
are important considerations. Routing optimization plays an important role in achieving
optimal circuit speed and minimal power consumption. Indeed, critical path delay is a
function of maximum interconnection path length while power consumption is a function
of the total interconnection length.

A linear RC model (where interconnection delay between a source and a sink is propor-
tional to the wire length between the two terminals) is often used as a simple approxi-
mation for interconnection delay. In this report, we also use wire length to approximate
interconnection delay during the construction of routing trees. In practice, a subsequent
iterative improvement step, based on a more accurate RC delay model, may be used to
enhance the routing solution.

A routing tree used in a synchronous system has an input, called the driver or source,
that sends signals to each sink. Critical path delay is defined as the maximum delay
from the source to any sink. The critical path delay of the Shortest Path Tree (SPT)
is minimum?!, but SPT has excessive routing cost and power dissipation as the power
consumed by the driver has a linear relation with the routing capacitance. Minimal
Spanning Tree (MST) has minimal routing cost, but may contain a very long source-to-
sink path which degrades the performance.

In this report, we present algorithms for constructing a Bounded path length Minimal
Spanning Tree (BMST). The routing tree achieves bounded path length, that is, the
length of the path from the source to each terminal is bounded. Such a bounded path
length tree provides a good initial topology for designers to adjust for minimizing critical
paths using a more accurate RC delay model. Also, the tree has small routing cost which
is important from area and power consumption viewpoints.

Let R be the length of direct path from the source to the farthest sink and € be a non-
negative user-specified parameter. Our method constructs a spanning tree with radius
at most (1 4 €) - R by using an analogue of the classical Kruskal MST construction
(1]. Furthermore, the tree cost is empirically observed to be at most 1.35 of that of an
optimal BMST.

We next describe an exact algorithm due to Gabow [6] which produces an optimal BMST
with exponential time and space complexity. Then, we propose a new exact algorithm
which requires polynomial space. This method constructs an optimal tree by negative-
sum-exchange(s) on an initial feasible solution. We also propose another heuristic which
resolves the complexity problems of the exact algorithm and produces better average
results than the Kruskal based method. Finally, we show extension of these algorithms
to the case where the path lengths are bounded from both above and below (e.g. in

'In a SPT, each sink is connected to the source by the shortest possible path.



clock routing problem).

The key features of our algorithms are described as follows.

e The path length from the source to each terminal is bounded.
e The routing cost is small.

o A user-given parameter can trade-off the longest/shortest path length for the rout-
ing cost.

The remainder of this report is organized as follows. Section 2 formulates the BMST
problem and describes the previous work. Section 3 proposes a new bounded path length
algorithm which uses an analogue of the classical Kruskal MST construction. Section
4 describes an exact method for finding BMST based on a variation of the Gabow’s
algorithm. Section 5 presents another exact method and heuristic based on negative-
sum-exchange(s). Section 6 presents benchmark results and comparisons. Section 7
describes extension to the lower bounded path length constraints and Section 8 concludes
the report.

2 Background

On a Euclidean plane, let G = (V, E) (|[V| = N) be a network where V is a set of ran-
domly distributed terminal pins called sinks with a distinguished pin called the source(s),
and F is the set of edges connecting V. BMST seeks to connect all nodes of V' in G
by a set of edges in E of minimal total length with a bounded path length from the
source to any sink. This problem is known to be NP-complete [8]. We propose a novel
algorithm - that is, Bounded path length Kruskal (BKRUS) - for solving this problem
heuristically. A tree generated by our BKRUS method is called a Bounded path length
Kruskal minimal spanning Tree (BKT).

Cong et al. [2] proposed two heuristics for solving the BMST problem. In the first
method of Cong et al., i.e. the Bounded Prim (BPRIM) algorithm, even though the
empirical results are promising, the worst-case performance ratio is unbounded where
performance ratio is defined as cost(BPRIM)/cost(MST) (see Table 2, 4 and Figure 6).
In the second method of Cong et al., i.e. the Bounded Radius, Bounded Cost (BRBC)
algorithm, the worst-case performance ratio is bounded. However, BRBC method uses
minimum path (shortest path) from the source to sink whenever the source-to-sink path
length violates the length bound € - cost(S, sink) during the depth first tree traversal.
Hence, it may introduce unnecessary routing cost. Their benchmark results [2] show
about a worst-case performance ratio of 2.66 and an average performance ratio of 1.57.

3 Two Heuristics: BKRUS

Before describing our approach, we give some definitions. The sum of all edge weights of
T is the cost of the tree, cost(T"). The shortest path distance between u and v in graph



G is distg(u,v). The shortest path distance between u and v in tree T is disty(u,v).
The radius of node v € G is radiusg(v) (i.e. maz{disig(v,u)}, ¥ v € V). Similarly,
the radius of node v € T' is radiusy(v) (i.e. maz{distr(v,u)},V u € V). The partial
tree which contains node v is represented by t,. S denotes the source.

BKRUS algorithm solves the BMST problem by solving the following problem:

Given the routing graph G(V, E), find a minimal cost routing tree BKT
with radiusgrr(S) < (1 +¢€) - R.

The classical Kruskal algorithm adds an edge (u,v) in G to MST, or equivalently, merges
two partial trees ¢, and ¢, by the edge (u,v) if:

(1) (u,v) is the least weight edge among the available edges and
(2) i # Toe

For (1), all the edges are sorted in nondecreasing order. For (2), a disjoint set on V is
implemented. Three operations on the set are MAKE_SET, FIND_SET and UNION,
the meanings of which are self-explanatory. Merging two partial trees is done by the
UNION operation followed by the Merge routine to be discussed later, while condition
(2) is easily tested by the FIND_SET operation. BKRUS algorithm adds one more
condition as follows:

(3) the merged tree satisfies the path length bound (1+¢)- R from the source
to the farthest sink.

Let tpr be the merged tree, i.e., {yr =1, Ut, U (u,v). Two cases are possible:
(3-a) If ¢, contains the source, then the following condition should be satisfied:
disty, (S, u)+ distg(u,v) + radius,, (v) < (1+€)- R

Since nodes in ¢, already satisfy the upper bound constraint, this condition ensures that
nodes in %, will also satisfy the upper bound constraint after the merge. The case where
t, contains the source is similar.

(3-b) If neither ¢, nor ¢, contains the source, then there must be a node z € tys such
that:

distq(S,x) + radius;, (z) < (1+¢€)- R

This condition ensures that all the nodes in the merged tree tp; can be connected to the
source without violating the upper bound path length constraint by having at least a
direct path from the source to node 2. That is, the existence of such node z guarantees
that all nodes in ¢37 can satisfy the upper bound constraint. If no such node exists in ¢y,
then (u,v) should be rejected as there is no way to satisfy the upperbound constraint
for all the nodes in tp7. We can now give two important definitions.

5




Definition 3.1 A feasible node: If there exists a node © in ty; such that dislg(S,z) +
radiusy,, () < (1 + €) - R, then node z is a feasible node in tp;.

Definition 3.2 A feasible edge: If edge (u,v) salisfies conditions (2) and (3), then it
s a feasible edge.

Feasible edges can be safely added to the spanning tree under construction.

BKRUS maintains the radius of each node in the partial tree it belongs to, and the path
lengths between every pair of nodes within the partial tree they belong to. Let the array
D[V,V] contain information about the Euclidean distances between every pair of nodes,
i.e. D[z, y] = distg(z,y). This matrix is computed from the coordinates of nodes in the
Euclidean space. Let the array P[V,V] be the path length between every pair of nodes
in the routing tree, i.e. Plz,y] = disip(z,y). Also let the vector r[V] be the radii of
nodes in the tree they belong to. Initially, the array P and the vector r are initialized to
zero at the beginning of the tree construction process. As the tree grows, P and r are
updated by the Merge routine given below:?

/| Merge two subtrees t,, and ¢, by edge (u,v)
Algorithm Merge(u,v)

1 for each z € {, and y € {,, do

2 Plz,y] = Ply,2] = Plz,u] + D[u,v] + P[v,y]
3 end for

4 for each 2 € 1, do

5  r[z] = max(r[z], P[,i],V i € ty)

6 end for

7 for each y € t, do

8 [yl = max(ry], Pli,y], Vi € tu)

9 end for

Figure 1 shows an example of how Merge routine works. The vertex labels and edge
weights are shown in the figure. The two partial trees are merged by the edge (¢, e). The
lefthand side tree is 7, and the righthand side tree is t.. Before the merging takes place,
all of the non-zero elements (except the diagonal elements) in matrix P and the vector
r were computed from previous mergings. Note that elements of r are the maximum
of each row of P. The Merge routine leaves those non-zero elements unchanged and
updates P[z, y] only when 2 and y are in different partial trees. For example, Pla, f] can
be computed by Pla, f] = Pla,c] + Dle,e] + Ple, f]. Once the P matrix is updated by
line 1-3 in the algorithm, new radius r[2] can be found by taking the maximum among
the old radius (old r[z]) and the P[z,y]s for all y € t,. For example, new r[a] can be
found by taking the maximum among {old r[a], P[a, €], Pla, f1}, which is {9, 11, 13}.
So the new rfa] is 13. We can easily see that the time complexity of Merge is O(V?).

2P and r are already calculated for 1, and t,.
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Figure 1: Example of Merging Two Partial Trees

Since we need a new radius of a node z in the merged tree to test the feasibility of z, it
seems that a merging is needed before the feasibility test is performed. However, we can
find the new radius of any node without an actual merging. Using the same notation as
before, suppose = belongs to t,. Then it can be easily seen that

new radius of # = maz {rz], Pz, u] + D[u,v] + r[v]}

where r and P values are read from the arrays before the merge. The case where =
belongs to 2, is similar. With this, feasibility test for a node can be done in O(1). So
the condition (3-b) can be tested in O(V). We also note that condition (3-a) can be
tested in O(1). The complete BKRUS algorithm is summarized in the following:

Algorithm BKRUS(G)

1 for each vertex z € V do

2 MAKE_SET(z)

3 t{z] =0

4 end for

5 for every pair of vertices z,y € V do

6 Plz,y]=0

T end for

8 sort the edge set E in nondecreasing order of weights
9 for each edge (u,v) in the sorted edge list do
10 if FIND SET(u) # FIND SET(v) then




11 if either condition (3-a) or (3-b) is satisfied then

12 UNION(u, »)

13 Merge(u, v)

14 output the edge (u,v)
15 end if

16 end if

17 end for

The for loop in line 9 can be implemented to make an early exit when V — 1 UNION
is performed. Each node has a pointer to the next node in the same partial tree. Each
node also has a pointer to a randomly selected representative node, which also serves as
the name of the partial tree (hence the name of the set). With this implementation of
sets, FIND_SET(u) can be done in O(1) and UNION(u,v) can be done in O(V). Line
1-4 take O(V') while line 5-7 take O(V?2). Sorting in line 8 takes O(ElogFE). The loop
in line 9-17 goes O(F) iterations in the worst case. Line 10 can be done in O(1). Line
11 tests the condition (3-a) or (3-b) depending on the case and takes O(V') in the worst
case as discussed before. Line 12 takes O(V') while line 13 takes O(V?). Line 14 puts
(u,v) in the tree under construction. Since line 11 is executed E times and line 13 is
executed V — 1 times, the complexity of line 9-17 is bounded by O(EV + V - V?) =
O(V?). This dominates the whole complexity of BKRUS algorithm.

Here, we explain BKRUS algorithm with a simple example. Suppose we have a source
and three sinks as shown in (a) of Figure 2. If the upper bound path length is set to
(1+¢)- R = 8, BKRUS works in the order of (b), (¢), and (d) and produces a BKT
with total cost 8 which is optimal. The selected lightest edge b-c of (a) satisfies above
three conditions since b is the feasible node. So the edge b-c is a feasible edge. The
next lightest edge a-b of (b) satisfies above three conditions since a is the feasible node.
Finally, edge S-a is included since S is the feasible node.

During the BKRUS algorithm execution, once an edge is marked as infeasible and then
rejected, it will never be considered again. The following lemma proves that indeed
there is no need to reconsider such rejected edges.

Lemma 3.1 If an edge is rejected during the BKRUS algorithm, then that edge cannot
become feasible at a later time.

Proof If the rejected edge was a cycle edge (violation of condition (2)), the rejected
edge would again create a cycle when it is reconsidered for merging. If the rejected
edge (u,v) was an upper bound violation edge (violation of condition (3)), there
are two cases as follows: 1) If § € ¢, then the edge (u,v) was rejected because
dist; (S,u) + distg(u,v) + radius, (v) > upper_bound. On the left hand side of
the above inequality, the first two terms are fixed while the last term only increases
but never decreases during the growth of trees. Hence there is no way that the
edge (u,v) becomes feasible. The case S € ¢, can be similarly proved. 2) If S
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Figure 3: Example where BKRUS can not generate an optimal solution

¢ 1, or t,, then the edge (u,v) was rejected because for all z € t,, distg(S,z) +

dist; (z,u) + distg(u,v) + radius,, (v) > upper_bound (the case for = € ¢, can be
similarly stated). After the growth of trees, let’s assume without loss of generality
that a node y is introduced to f,, and y is feasible in the tree merged by (u, v) (Note
that z is still not feasible in the new merged tree). Then distg(S,y) + disty,(y,u)
+ distg(u,v) + radius;,(v) < upper-bound. Note that in the path from y to u,
there is an 2. So the above inequality can be rewritten as distg(S,y) + disty, (y,z)
+ disty (z,u) + distg(u,v) + radius, (v) < upper_bound. However, we have
dista(S,y) + dist,, (y,z) > distg(S,z) by the triangular inequality in Euclidean

space. If we insert this inequality into the previous inequality, then z is a feasible
node, which is a confradiction. O

BKRUS may not generate an optimal solution. Consider configuration (a) of Figure 3



with an upper bound of 8.3. BKRUS generates the tree in (b) in order a-b, S-c, S-a
and S-d with total cost 19.9 which is not optimal. However, if we rejected a-b, we could
generate the tree in (c) in order S-c, c-a, ¢-b, and S-d with total cost of 19.5 which is
optimal. In order for BKRUS to be an exact algorithm, we need a backtracking step
which removes existing tree edges and adds a new feasible edge. However, this will make
the algorithm an exponential one.

4 Gabow’s Exact Method: BMST_G

Let us describe an optimal algorithm for the Bounded path length Minimal Spanning
Tree (BMST) problem. This optimal algorithm is adopted from [6], although our imple-
mentation is somewhat different. Besides, Lemma 4.1 to 4.3 which are used to reduce
the space and time complexities of Gabow’s method are new.

Gabow’s algorithm produces all spanning trees in order of increasing cost with time
complexity of O(K Elog(y4+p/vyV) and space complexity of O(K) where K is the total
number of spanning trees generated®. We briefly describe his algorithm, omitting many
details. Interested readers may refer to [6].

Let T be a spanning tree of G. A T-exchange is a pair of edges (e, f) where e € T', f
€ G—T and T— e U f is a spanning tree. The weight of exchange (e, f) is weight(f)
— weight(e). The edge pair (e, f) which achieves the minimum weight of exchange is
minimal T-exchange. Note that if T is a minimal spanning tree, there is no negative
weight T-exchange. If 7' is a minimal spanning tree and (e, f) is a minimal T-exchange,
then T— e U fis a spanning tree with the next smallest cost. This is the basis of the
algorithm.

We terminate Gabow’s algorithm when the generated spanning tree satisfies the upper
bound. The major shortcoming of Gabow’s algorithm is the space complexity. Total
number of spanning trees in a complete graph is V¥ ~2 [7]. This makes Gabow’s algo-
rithm impractical even for as few as 10 nodes. We have been able to somewhat reduce
the space and time complexities by the following rules.

Lemma 4.1 Let S, a and b be vertices of a iriangle. For every triangle including source,
if there are edge(S, a) and (S, b) and weight(a, b) > weight(S, a), weight(S, b), then
eliminate edge(a, b).

Lemma 4.2 Eliminate ¥V edge € E if edge cannot be fesible.
Lemma 4.3 Include edge(S, i) € E, for ¥i, if edge(S, i) is only possible.

The Lemma 4.1, 4.2 and 4.3 above can be reasoned from geometric considerations.
Lemma 4.1 means that there is no optimal solution that includes the edge (a, b).
Lemma 4.2 is self-explanatory. Lemma 4.3 means that there are sinks which should
be connected directly to the source because any indirect path to the sink will violate
the upperbound. Using these rules, we have used Gabow’s algorithm on trees with as
maiWedwlidysihlsis the right time complexity instead of Gabow’s O(K Ea(E,V)).
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5 Yet Another Exact Method and a Heuristic: BKEX
and BKH?2

Let us describe another optimal algorithm for the same problem. This optimal algorithm
is based on negative-sum-exchange(s) technique.

Bounded Kruskal EXchange (BKEX) is a post-processing algorithm that starts from
an initial feasible solution and reduces the routing cost toward the optimal. Let T
be a bounded path length tree such as SPT or BKT. If T is not an optimal solution,
BKEX will find edge exchange(s) such that routing cost will be reduced. We call such
exchange(s) negative-sum-exchange(s).

Definition 5.1 Negative-sum-exchange(s): A sequence of T-exchange(s) where the sum
of the weight(s) of exchange(s) is negative.

BKEX starts from any solution tree, finds negative-sum-exchange(s), converts the so-
lution tree to a new solution tree, and iterates until no more possible exchange(s) are
found.

Let’s call the search tree in Figure 4 7. Each node in 7 represents a spanning tree. The
root of 7 is the initial solution. A child node is generated by a T-exchange from its
parent node. The edges of 7 are labeled with the weight of T-exchange. BKEX searches
negative-sum-exchange(s) in a depth first search manner. Note that one can reach any
spanning tree including an optimal solution from the root by a series of at most V' — 1
T-exchanges. However, in most cases, BKEX finds an optimal solution in much smaller
depth.

BKEX keeps track of sum of T-exchange weights from the root to the current node
during the depth first search. If this sum is not negative, further search from this node
is stopped. Whenever a better solution is found during the search, this new tree is put
on the root of 7 and a new search begins. Below is the complete algorithm.

Algorithm DFS_EXCHANGE (T, weight_sum)
1 FA — make_father_array(T)
2 for each edge (x,y)in G — T do
U=, V=¥
while (u # v) do
if depth(u) > depth(v) then
swap u, v
diff = weight(x,y) — weight(v,FA[v])
if diff + weight_sum < 0 then
T « T — (v,FA[v]) U (x,y)
if T is feasible then
return TRUE

o= O -0 oW

= o
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Figure 4: BKDFS Negative-sum-Exchange Search Tree

12 else if DFS_ EXCHANGE(T, diff + weight_sum) then
13 return TRUE

14 else T — T — (x,y) U (v,FA[v])

15 end if

16 end if

17 Vv o— FA[V]

18 end while

19 end for

20 return FALSE

// main loop of BKEX //
Algorithm BKEX(G)

1 T — BKRUS(G)

2 while DFS_EXCHANGE(T,0) do

In the DFS_EXCHANGE algorithm, FA is the father array in spanning tree T (FA[v]
is the father node of the node v). This can be generated by depth first search on T
starting from S. At the same time, the depth level for each node is recorded (depth
of a node is the number of ancestors in the path from the source S to the node. In
particular, depth(S) = 0). Parameter weight_sum is the sum of weights of T-exchanges
so far. Initially, for each non-tree edge (z,), u, v are set to z, y respectively. Suppose
v has a higher depth than u (line 5-6 ensure that v has a higher depth). Then the new
exchange value is weight(z,y) — weight(v,FA[v]). If this value is added to weight_sum
and the sum is still negative, then the new spanning tree generated by adding (z,y)
and removing (v,FA[v]) has less cost than the root. If it is not negative, we replace v
by FA[v] (line 17) and continue the above procedure until u and v meet at a common

12



Figure 5: Example of finding T-exchanges

ancestor. When the new spanning tree has less cost than the root, we check if this new
tree is feasible. If it is, a new iteration begins (line 2 in BKEX). If not, we recursively
call DFS_EXCHANGE with the new spanning tree and the new weight_sum value (line
12). If subsequent calls to DFS_EXCHANGE still fails, we recover the original spanning
tree (line 14). The iteration in BKEX is terminated when there is no feasible exchange.

Figure 5 shows an example of how edge pairs for T-exchange are found. For each (z,y),
u, v start from z, y respectively and move toward the common ancestor (node ¢). In
Figure 5, v has a higher depth compared to u, so (v,FA[v]) and (z,y) are paired up as a
possible T-exchange. Suppose the exchange is rejected. Then the new v becomes FA[v].
This procedure alternates between u and v until they meet at node c.

Since the number of possible T-exchanges in a tree T is O(EV), a node in T has O(EV)
children. So 7 has O(E™V") nodes where n is the depth of 7. For each node in 7,
BKEX needs to check if the current spanning tree is feasible, which takes O(V). So
the time complexity of BKEX is O( E"V"™t!). This is a higher time complexity than
Gabow’s, but space complexity is only O(E). The initial solution significantly affects
the performance of BKEX. When BKEX starts from a very good initial solution (such
as BKT), the actual search space is much smaller than E"V™. Indeed our experimental
results in Table 2 show that BKEX is much faster than Gabow’s method. Besides,
BKEX finds the solution when Gabow’s algorithm fails for larger benchmarks due to its
exponential space complexity.

We tested BKEX with 2,750 randomly generated benchmarks. The number of sinks of
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these benchmarks are between 5 and 15. The € value has a range from 0.0 to 1.0. BKEX
reaches optimal solutions of 96.945%, 97.309% and 99.709% with depth two, three and

four respectively. Only one benchmark was left unoptimal with depth five and it was
solved by depth six.

We implemented another heuristic method BKH2 which limits the depth of the search
tree 7 by two. BKH2 does one or two negative-sum-exchange(s) in the breadth first
search manner and checks if the resultant tree is a solution. This procedure is repeated
until there is no improvement.

BKT is a local optimum with respect to a single T-exchange. To obtain a better local
optimum than BKT, at least double T-exchanges are needed. Thus BKH2 is proposed
to find a deep local optimum with respect to two T-exchanges. BKH2 may not get an

optimal solution because we may need three or more exchanges to improve the solution.
The complexity of BKH2 is O(E?V?).

6 Experimental Results

We implemented BKRUS, BMST_G, BKEX, and BKH2 algorithms in C on HPPA and
SUN workstations in the UNIX environment. We used four sets of benchmarks: (1)
the sink placements for the four benchmarks pl-p4 generated specially to test extreme
results; and (2) the sink placements for MCNC Primaryl and Primary2 benchmarks
used in [3] and [4], and originally provided by the authors of [3]; and (3) the sink
placements for the five benchmarks rl-r5 used in [5]; and (4) five sets of 5 to 15 sinks
and 50 random test cases for each set. Benchmark pl and p2 have the same configuration
as that of Figure 11, but p2 has one more sink between the source and the group of
sinks. Benchmark p3 has the same configuration as that of Figure 6. Benchmark p4 has
the same configuration as that of Figure 11, but sinks are scattered around a circle of
diameter 20. Without loss of generality, we add one more node as the source to the r*
and primary* benchmarks because they did not come with a source. Description of all
the benchmarks is given in Table 1.

BPRIM generates 4.2 - cost(M ST) and 3.3 - cost(BKT) for benchmark p3 as shown in
Figure 6.

A comparison of BMST_G, BKEX, BKRUS, BKH2 and BPRIM over MST is given in
Table 2 and Table 3 for benchmarks (1), (2), (3)*. The results show that the performance
ratio of BKT over MST is at most 1.66 except in pl and p2 which have a very special
configuration. In the case of p2 with ¢ = 0.2, BPRIM generates poor performance

ratio compared to our methods. In the case of p4 with € = 0.3, the cost reductions
are 23%, 22% and 20% over BPRIM for BKEX, BKH2 and BKRUS respectively. For

4The runtime for BPRIM was surprisingly worse than that for BKRUS despite its better time com-
plexity. This is likely due to the difference in our implementation style and data structures and so we
decided not to include their runtimes here.
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[ bench | # of pts. [ # of edges | R | r |
Pl 6 15 204 | 200
P2 8 28 304 | 10.0
p3 17 136 16.0 6.1
pi 31 65 10.4 58
prl 270 36315 384.0 19.4
pr2 604 182106 693.7 14.3
rl 268 35778 | 41774.1 914.7
r2 599 179101 | 61247.4 | 1182.8
rd 863 371953 | 60725.3 | 1067.9
r4 1904 1811656 | 87933.8 227.2
&3] 3102 4809651 | 97843.0 491.1

R: length of the shortest path from source to the farthest sink in G
r: length of the shortest path from source to the nearest sink in G

Table 1: Characteristics of Benchmarks

MST and BKT BKT
=ien =025
Cost =3098 Cost =38.57

Figure 6: Example where the performance ratio of BRPIM is not bounded for any ¢
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Figure 7: Tradeoff Curve

(4) benchmarks, the comparison of BPRIM, BRBC, BKRUS, BKH2 and BMST.G in
terms of routing cost is shown in Table 4. The benchmark results show about worst-
case performance ratios of 2.711, 2.219, 2.056 and 2.056 and average performance ratios
of 1.705, 1.517, 1.455 and 1.452 for BPRIM, BKRUS, BKH2 and BMST respectively.
In the case of 15 points with ¢ = 0.2, the average cost reductions are 21%, 20% and
17% over BPRIM for BMST_G (BKEX), BKH2 and BKRUS respectively. Also, the
longest path length comparison of them is shown in Table 5. BKRUS method offers a
continuous, smooth trade-off between the competing requirements of longest path length
and total wire length in terms of ¢ as shown in Figure 7.

In Figure 8, we show ratios of cost(BK RUS)/cost(MST), cost(BKEX)/cost(MST),
cost(BKRUS)/cost(BKEX) and cost(BKH2)/cost(BKEX). The reason why we
compare BKEX, BKRUS and BKH2 with MST is to show that our methods gener-
ate a low cost routing tree compared to MST whatever the € value is. The effectiveness of
BKRUS and BKH2 is shown by cost(BK RUS)/cost(BIK EX )and cost(BK H2)/cost(BKEX)
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Figure 8: Ratio Curve

respectively.

Trom these results, the various BMST methods can be ordered by their routing costs as
shown in Figure 9. This chart shows the average relative position.

7 Results of Lower and Upper Bounded Path Length
MST

In the clock routing, there are two important parameters - clock skew and routing cost -
so that we would like to simultaneously control both the longest /shortest interconnection
path and routing cost.

A routing tree can be constructed with shortest interconnection path length at least ¢
- R, longest interconnection path length at most (1 + €2) - R for any given values of
parameters ¢; and €.



BMST_G BKEX BKRUS BKH2 BPRIM
path | perl. path | perf. path | perf. path | perf. path | perf.
bench € || ratio | ratio cpu || ratio | ratio cpu || ratio | ratio | cpu || ratio | ratio | cpu || ratio | ratio
pl 00 1.18 1.00 0.30 1.18 1.00 0.03 1.18 1.00 | 0.03 1.18 1.00 | 0.03 1.28 1.00
1.5 1.18 1.00 0.30 1.18 1.00 0.03 1.18 1.00 | 0.01 1.18 1.00 | 0.02 1.28 1.00
1.0 1.18 1.00 0.30 1.18 1.00 0.01 1.18 1.00 | 0.01 1.18 1.00 | 0.03 1.28 1.00
0.5 1.18 1.00 0.30 1.18 1.00 0.03 1.18 1.00 | 0.01 1.18 1.00 | 0.03 1.28 1.00
0.4 1.18 1.00 0.31 1.18 1.00 0.01 1.18 1.00 | 0.02 1.18 1.00 | 0.01 1.28 1.00
0.3 1.18 1.00 0.30 1.18 1.00 0.02 1.18 1.00 | 0.01 1.18 1.00 | 0.02 1.28 1.00
0.2 1.18 1.00 0.31 1.18 1.00 0.01 1.18 1.00 | 0.02 1.18 1.00 | 0.02 1.18 1.74
0.1 1.08 1.70 0.29 1.08 1.70 0.02 1.08 1.70 | 0.02 1.08 1.70 | 0.03 1.08 1.70
0.0 1.00 3.88 0.29 1.00 3.88 0.02 1.00 3.88 | 0.02 1.00 3.88 | 0.03 1.00 3.88
p2 0 1.38 1.00 0.29 1.38 1.00 0.01 1.38 1.00 | 0.02 1.38 1.00 | 0.03 1.38 1.00
1.5 1.38 1.00 0.29 1.38 1.00 0.04 1.38 1.00 | 0.01 1.38 1.00 | 0.01 1.38 1.00
1.0 1.38 1.00 0.29 1.38 1.00 0.02 1.38 1.00 | 0.01 1.38 1.00 | 0.01 1.38 1.00
0.5 1.38 1.00 0.30 1.38 1.00 0.03 1.38 1.00 | 0.01 1.38 1.00 | 0.01 1.38 1.00
0.4 1.38 1.00 0.29 1.38 1.00 0.04 1.38 1.00 | 0.02 1.38 1.00 | 0.02 1.38 1.00
0.3 1.29 1.13 0.33 1.29 1.13 0.04 1.19 1.17 | 0.01 1.29 1.13 | 0.01 1,29 1.16
0.2 1.19 1.17 0.35 1.19 1.17 0.03 1.19 1.17 | 0.01 1.19 1.17 | 0.03 1.19 1.95
0.1 1.10 1.30 0.32 1.10 1.30 0.03 1.10 1.32 | 0.01 1.10 1.30 | 0.02 1.08 1.35
0.0 1.00 2.69 0.29 1.00 2.69 0.03 1.00 2.69 | 0.01 1.00 2.69 | 0.01 1.00 2.69
p3 oo 1.81 1.00 0.30 1.81 1.00 0.02 1.81 1.00 | 0.02 1.81 1.00 | 0.03 1.74 1.00
1.5 1.81 1.00 0.31 1.81 1.00 0.02 1.81 1.00 | 0.01 1.81 1.00 | 6.03 1.74 1.00
1.0 1.81 1.00 0.29 1.81 1.00 0.03 1.81 1.00 | 0.03 1.81 1.00 | 0.03 1.74 1.00
0.5 1.43 1.01 0.31 1.50 1.01 0.02 1.49 1.16 | 0.01 1.50 1.01 | 0.04 1.45 1.14
0.4 1.40 1.03 0.56 1.40 1.03 0.14 1.34 1.18 | 0.02 1.40 1.03 | 0.05 1.39 1.37
0.3 1.23 1.07 34.37 1.23 1.07 0.48 1.30 1.25 | 0.01 1.23 1.07 | 0.05 1.28 1.26
0.2 1.19 1.09 | 113.61 1.19 1.09 1.80 1.16 1.44 | 0.03 1.19 1.09 | 0.08 1.19 1.23
0.1 1.02 1.11 | 564.82 1.02 1.11 2.92 1.10 1.44 | 0.01 1.02 1.11 | 0.23 1.10 1.27
0.0 - - - 1.00 1.17 3.55 1.00 1.29 | 0.02 1.00 1.17 | 0.08 1.00 1.89
p4 oo 5.21 1.00 0.32 5.21 1.00 0.02 5.21 1.00 | 0.02 5.21 1.00 | 0.04 * X
1.5 - - - 2.40 1.06 | 20.09 2.45 1.07 | 0.03 2.40 1.06 | 0.19 2.38 1.49
1.0 - - - 1.89 1.11 | 25.79 1.89 1.11 | 0.02 1.89 1.11 | 0.23 2.00 1.47
0.5 - - - 1.47 1.17 | 27.66 1.47 1.22 | 0.02 1.47 1.17 | 0.55 1.50 1.50
0.4 - - - 1.39 1.20 | 44.72 1.40 1.27 | 0.02 1.39 1.23 | 0.41 1.39 1.55
0.3 - - - 1.30 1.26 | 27.91 1.30 1.32 | 0.02 1.30 1.28 | 0.44 1.29 1.64
0.2 - - - 1.20 1.34 | 33.34 1.18 1.46 | 0.02 1.20 1.38 | 0.25 117 1.89
0.1 - - - 1.10 1.45 | 10.03 1.10 1.61 | 0.02 1.10 1.45 | 0.12 1.10 1.88
0.0 1.00 1.60 25.06 1.00 1.60 0.12 1.00 1.66 | 0.02 1.00 1.60 | 0.04 1.00 2.04

perf. ratio (Tree) = cost(Tree) / cost(MST)
path ratio (Tree) = longest_path(Tree) / longest path(SPT)
CPU time is measured in seconds.
-1 memory overflow
*: can not get MST even with ¢ = 2.0

Table 2: BMST_G, BKEX, BKRUS, BKH2 and BPRIM results for special benchmarks
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BKRUS BKH2 perf. reduction
path perl. | path perf.
bench [ ratio ratio cpu ratio ratio I cpu %
prl -] 2.39 1.000 0.98 2.39 1.000 0.96 0.0
1.50 2.29 1.000 0.95 2.39 1.000 0.96 0.0
1.00 1.99 1.012 0.96 1.97 1.001 1.63 1.1
0.50 1.50 1.057 1.10 1.47 1.006 221.91 4.8
0.40 1.40 1.085 1.03 1.40 1.010 682.49 6.9
0.30 1.30 1.098 0.97 1.30 1.009 1436.233 8.1
0.20 1.20 1.135 0.98 1.19 1.023 3714.85 9.9
0.10 1.10 1.183 0.97 1.10 1.045 11068.07 12.4
0.00 1.00 1.404 0.9 1.00 1.147 25243.41 18.3
pr2 o0 2.76 1.000 5.54 2.76 1.000 5.84 0.0
1.50 2.47 1.007 5.51 2.49 1.000 6.79 0.7
1.00 1.99 1.036 5.58 1.97 1.000 283.78 3.5
0.50 1.50 1.066 5.59 1.49 1.012 55388.49 5.0
0.40 1.40 1.064 5.60 1.40 1.034 45091.41 2.8
0.30 1.30 1.085 5.63 1.30 1.044 52022.80 3.8
0.20 1.20 1.130 6.00 1.20 1.079 45023.72 4.5
0.10 1.10 1.176 5.89 1.10 1.135 47421.23 3.5
0.00 1.00 1.431 5.80 1.00 1.385 45255.12 3.2
rl =S 2.13 1.000 1.16 2.13 1.000 1.20 0.0
1.50 2.13 1.000 1.15 2.13 1.000 117 0.0
1.00 1.90 1.001 1.14 1.90 1.001 1.21 0.0
0.50 1.50 1.060 1.14 1.50 1.006 102.80 5.1
0.40 1.40 1.086 1.15 1.40 1.023 2456.76 5.8
0.30 1.29 1.080 1.15 1.20 1.028 755.76 5.7
0.20 1.19 1.162 1.18 1.20 1.031 3714.26 11.3
0.10 1.10 1.235 1.24 1.10 1.088 17543.58 11.9
0.00 1.00 1.557 1.18 1.00 1.243 44812.95 20.2
r2 00 2.21 1.000 7.09 2.21 1.000 T.44 0.0
1.50 2.21 1.000 7.10 2.21 1.000 7.46 0.0
1.00 1.99 1.003 712 1.98 1.000 11.85 0.3
0.50 1.50 1.034 T.24 1.50 1.006 6B69.85 2.7
0.40 1.40 1.050 7.74 1.39 1.009 18979.52 3.9
0.30 1.30 1.075 T.87 1.30 1.071 47554.84 0.4
0.20 1.20 1.101 7.20 1.20 1.052 45385.07 4.5
0.10 1.10 1.159 7.63 1.10 1.104 45701.29 4.7
0.00 1.00 1.272 7.53 1.00 1.264 47675.82 0.6
T3 o 2.82 1.000 15.97 2.81 1.000 16.37 0.0
1.50 2.20 1.000 15.93 2.20 1.000 17.46 0.0
1.00 2.00 1.001 15,99 1.94 1.000 22.41 0.1
0.50 1.49 1.029 16.06 1.50 1.004 6120.54 2.4
0.40 1.40 1.048 15.96 1.40 1.033 46523.45 1.4
0.30 1.30 1.067 16.01 1.30 1.040 45079.06 2.5
0.20 1.20 1.082 15.87 1.20 1.088 46200.38 0.4
0.10 1.10 1.170 15,97 1.10 1.170 44926.20 0.0
0.00 1.00 1.376 15.97 1.00 1.375 47149.83 0.1
r4 =S) 3.84 1.000 97.85 3.84 1.000 105.53 0.0
1.50 2.50 1.011 97.91 2.50 1.000 1577.44 1.1
1.00 2,00 1.007 97.69 1.99 1.001 16349.30 0.6
0.50 1.50 1.027 104.84 1.50 1.027 43380.01 0.0
0.40 1.40 1.036 107.60 1.40 1.036 43407.99 0.0
0.30 1.30 1.040 108.03 1.30 1.040 48007.32 0.0
0.20 1.20 1.082 115.45 1.20 1.082 49435.97 0.0
0.10 1.10 1.124 113.85 1.10 1,123 46073.56 0.1
0.00 1.00 1.223 105.78 1.00 1.223 45045.10 0.0
15 o0 3.14 1.000 257,96 3.14 1.000 261.72 0.0
1.50 2.45 1.000 257.78 2.45 1.000 285.45 0.0
1.00 2.00 1.008 257.59 2.00 1.008 46185.97 0.0
0.50 1.50 1.024 297.83 1.50 1.024 46070.31 0.0
0.40 1.40 1.043 306.85 1.40 1.042 47657.18 0.0
0.30 1.30 1.048 336.82 1.20 1.048 44185.97 0.0
0.20 1.20 1.071 320.63 1.20 1.071 46412.70 0.0
0.10 1.10 1.108 320.13 1.10 1.108 43207.40 0.0
0.00 1.00 1.257 306.86 1.00 1.257 48552.52 0.0

perf. reducttion

perf. ratio (Tree) = cost{Tree) / cost(MST)
path ratio (Tree) = longest.path(Tree) [ longest_path(SPT)
(1 — BKH2/BKRUS) 100
CPU time is measured in seconds.
BKH2 limits CPU time to about 12 hours.

GABOW, BKEX and BPRIM are impractical to generate outputs.

Table 3: BKRUS and BKH2 results for large benchmarks

19




net

HPHRTM

n R GRENES
Lk - min AvVe max min Ave max mmm Ave max l']'l‘l |ITF\ AvVE
N oo 1.000 1.348 1.945 1000 .34 1.ATS 1.000 1.340 1.R70 1.000 1.340
B 0. 1.000 1.189 1.845 1.000 1164 1,534 1.000 1606 1.5034 1.000 1.166
13 0.2 1.000 1.11R 1.512 1.000 1.089 1401 1.000 1.082 149 1.000 1.083
1) 0.3 1.000 1,070 1.491 1.000 1.008 1.22h 1.000 1.001 1.a2h n.0s4 1.000 1.0581
o 0.4 1.000 1.041 1.302 1.000 1.034 1210 1.000 1,028 1.176 040 1.000 1.02R
n 0.5 1.000 1.033 1.315 1.000 1.020 11760 1.000 1.018 1176 0033 1.0600 1.01R
5 0.6 1.000 1.021 1.3140 1.000 1.015 1176 1.000 1.015% 1176 0037 1.000 1.015
5| o7 || 1.000 | 1028 1oa0 | 1011 | 1120 1oao | 1.010 1.000 | 1.010
o 0.A 1.000 1.024 1.000 1.008 1.120 1.000 1.008 1.000 1.60R
5 0.9 1.000 1.000 1.000 1.002 1.0R5 1.000 1.002 1.000 1.002
Id 1.0 1.000 1.003 1.000 1.002 1.0R5 1.000 1.001 1.000 1.0601
R 0.0 1.100 1.4606 1,105 1.436 2.066 1100 1.42R 1.105 1.428
& | 01 || 1000 | 1320 1.000 | 1.207 | 1.818 1.000 | 1.1A7 1.000 | 1.181
R 0.2 1.000 1.220 1.000 1.127 1483 1.000 1.088 1.000 1.088
R 0.8 1.000 1141 1.000 1.0R5 1.400 1.000 1.0606 1.000 1.064
A 0.4 1.000 1.1 1.000 1.006 1.821 1.000 1.040 1.000 1.040
A | ox || 1000 | 1091 | 1 1000 | 1083 | 1.244 oo | 1023 1.000 | 1.022
A o6 1.000 1.069 2,023 1.000 1.022 1.244 1.000 1.014 1.000 1.014
R 0.7 1.000 1.006 1.RR} 1.000 1.018 1.1RR 1.000 1.000 1.000 1.010
R 0.8 1.000 1.041 1.832 1.000 1.010 1.171 1.000 1.008 1.000 1.00R
R 0.9 1.000 1.052 1.932 1.000 1.008 1.171 1.000 1.0058 1.000 1.005
A | 1.0 |l 1000 | 1014 | 1202 1000 | toos | 12 : 1.006 | 1.004 1.000 | 1.004
10 n.o 1.083 2711 1106 1.457 2.006 0.040 1106 1.483 1106 1.432
1n a1 1.000 2,335 1.000 1.192 1.870 0.036 1.000 1.104 1.000 1.153
1n 0.2 1.a00 2300 1.000 1.119 1.508 0n.034 1.000 1.092 1.000 1.0R3
10 na 1.000 1.887 k 1.0060 1.066 1.292 0.034 1.000 1.0450 1.000 1.050
0 0.4 1.000 G 1.766 1. 1.000 1.049 1.28R 0.087 1.000 1.051 1.000 1.030
10 onn 1.000 1.080 1.522 1.793 1.000 1.040 1.402 0.028 1.000 1.018 1.000 1,015
10 0.6 1.000 1 1. 1.000 1.022 1.262 0.033 1.000 1.013 1.000 1.013
1w | a7 || 1.000 1. 1. 1oon | 1o1s | 262 | ooan || veoo | reer | 1 1.000 | 1.007
10 0.8 1.000 1. 1.65 1.000 1.014 1176 N.033 1.000 1.006 1. 1.060 1.006
10 0.9 1.000 1. 5 1.000 1.007 1.081 0.033 1.000 1.004 1. 1.000 1.004
10 1.0 1.000 1 1.000 1.004 1.063 0.035 1.000 1.003 1. 1.000 1.002 1.063
12 .0 1.1m 2. 1.0 1.516 2.054 0.037 1.1M 14405 1. 1157 1.44h2 1.910
12 0.1 1.000 1. 1.000 1470 n.n40 1.000 1.140 ¥ 1.000 1127 1.403
12 0.2 1.000 1 1.000 1.460 f.oaz 1.000 1.070 1 1.000 1.067 1.294
12 | o || 1000 1. 1.000 1254 | 0032 || rooa | 10m | 1 rooo | 1oea2 | 1ane
12 0.4 1.000 1 1.000 1.202 mo42 1.000 1.022 1. B 1.000 1.021 1.117
12 0.5 1.000 1. 1.000 1.147 0,032 1.000 1.016 1.112 0.038 1.000 1.015 1.112
12 0.6 1.600 1 1.000 1.125 0037 1.000 1.010 1.067 0,040 1.000 1.010 1.067 0.221
12 0.7 1.000 2 1.000 1.122 0.030 1.000 1.006 1.009 0.040 1.000 1.006 1.059 0.316
12 0.8 1.000 T 1.000 1.073 0.020 1.000 1.004 1.058 0.038 1.000 1.003 1.058 0.an
12 0.9 1.000 1.0600 1.047 o038 1.000 1.001 1.070 0.038 1.000 1.601 1.030 0.209
12 | 1.0 || 1.000 1.000 1.047 | noar || 1000 | 1001 | 1022 | oear || vooo | voot | roze | 6aid
" 0.0 1128 1,154 1.7 2.219 0n.039 1.120 1.437 1.797 0.005 1.120 1.420 1.787 AG.LR4
1 a1 1.000 1.000 1.223 1.495 n.0a6 1.000 1.144 1.26R 0.052 1.000 1.135 1.36R 24.208
1 0.2 1.000 1.000 1.1 1.47R nOo33 1.000 1.0R3 1.267 n.an0 1.000 1.078 1.236
1 0.3 1.000 1.000 1.0R7 1.290 0.0308 1.000 1.000 1.145 N.04R 1.000 1.048 11450
1 | 0.4 || 1.000 1.000 | v.oae | 1aea | ooan || 1000 | 1ea0 | 164 | ooss || 1ooo | 102 | 1oko
1 0.5 1.000 1.000 1.031 1165 0030 1.000 1.016 1.087 0043 1.000 1.0%5 1.0650
1 0.6 1.000 1.000 1.018 1.138 0030 1.000 1.011 1.0650 0.03R 1.000 1.011 1.065 G.3R2
1 0.7 1.000 1.000 1.8 1186 0.030 1.000 1.00R 1.056 0042 1.000 1.008 1006 0,338
15 0.8 1.000 o 1.000 1.013 1.1a7 0,087 1.000 1.006 1.006G 0.038 1.000 1.006 1.0460 0317
14 0.9 1.000 1.044 1.404 1.6450 1.000 1.000 1.1a7 0.03R 1.000 1.0050 1.006 n.o4a6 1.000 1.005 0.316
10 1.0 1.000 1.031 1.442 1.600 1.000 1.007 1.112 0.038 1.000 1.004 1.006 0,043 1.000 1,004 0.314

50 random test cases were generated for each point

CPU time in the average of 50 random test cases measured in seconds.

BRAC is shown only with maximum values since minimum and average values of ARBC are always worse than those of BPRIM.

Table 4: The Ratio of the Routing Cost over MST
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net BPRIM BKRUS BIKH2 BMST_G

size € min ave max min ave max min ave max min ave max
5| 0.0 || 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000
5 [ 01 1.000 | 1.020 | 1.100 || 1.000 | 1.023 | 1.093 || 1.000 | 1.021 | 1.082 1.000 | 1.022 | 1.082
5 0.2 1.000 | 1.068 | 1.195 1.000 | 1.078 | 1.196 1.000 | 1.078 | 1.199 1.000 | 1.078 | 1.199
5 0.3 1.000 | 1.130 | 1.296 1.000 | 1.140 | 1.298 1.000 | 1.136 | 1.298 1.000 | 1.136 | 1.298
5| 0.4 1.000 | 1.178 | 1.399 || 1.000 | 1.195 | 1.400 || 1.000 | 1.197 | 1.400 1.000 | 1.197 | 1.400
5 0.5 1.000 | 1.218 | 1.483 1.000 | 1.225 | 1.483 1.000 | 1.225 1.483 1.000 | 1.225 | 1.483
5 0.6 1.000 | 1.248 | 1.563 1.000 | 1.235 | 1.536 1.000 | 1.235 1.536 1.000 | 1.235 1.536
5 | 0.7 ]| 1.000 | 1.266 | 1.647 || 1.000 | 1.251 | 1.698 || 1.000 | 1.259 | 1.698 1.000 | 1.259 | 1.698
5| 0.8 || 1.000 | 1.296 | 1.798 || 1.000 | 1.263 | 1.799 || 1.000 | 1.271 | 1.799 1.000 | 1.271 | 1.799
5 0.9 1.000 | 1.311 1.898 1.000 | 1.301 1.887 1.000 | 1.310 | 1.887 1.000 | 1.310 | 1.887
5 1.0 || 1.000 | 1.312 | 1.919 || 1.000 | 1.303 | 1.921 1.000 | 1.312 | 1.921 1.000 | 1.312 | 1.921
8 0.0 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000
8 | 0.1 1.000 | 1.044 1.100 1.000 | 1.046 | 1.099 1.000 | 1.048 | 1.099 1.000 | 1.046 | 1.099
8 | 0.2 1.000 | 1.125 1.198 1.000 | 1.116 | 1.199 1.000 | 1.115 1.199 1.000 | 1.115 1.199
8103 1.000 | 1.201 1.299 1.000 | 1.178 | 1.300 1.000 | 1.180 | 1.300 1.000 | 1.182 1.300
8] 0.4 1.003 1.273 | 1.399 1.000 | 1.237 | 1.397 1.000 | 1.256 | 1.397 1.000 | 1.258 | 1.397
8 | 0.5 1.003 1.334 1.497 1.003 | 1.329 | 1.495 1.003 | 1.336 | 1.495 1.003 | 1.337 | 1.495
8 | 0.6 || 1.003 | 1.373 | 1.587 || 1.003 | 1.351 | 1.584 1.003 | 1.358 | 1.585 1.003 | 1.360 | 1.585
8 | 0.7 1.003 | 1.408 | 1.700 1.003 | 1.397 | 1.697 1.003 | 1.381 1.697 1.003 | 1.382 1.697
8 | 0.8 1.003 | 1.437 | 1.772 || 1.003 | 1.416 | 1.760 || 1.003 | 1.412 | 1.776 1.003 | 1.414 | 1.776
8 | 0.9 1.003 | 1.445 | 1.876 || 1.003 | 1.425 | 1.878 || 1.003 | 1.422 | 1.878 1.003 | 1.424 | 1.878
8 1.0 1.003 | 1.456 | 1.974 1.003 | 1.448 | 1.965 1.003 | 1.456 | 1.965 1.003 | 1.458 | 1.965
10 | 0.0 || 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000
10 | 0.1 1.000 | 1.059 | 1.099 || 1.000 | 1.063 | 1.097 || 1.000 | 1.064 | 1.098 1.000 | 1.064 | 1.099
10 | 0.2 1.000 | 1.148 | 1.200 1.000 | 1.142 | 1.200 1.000 | 1.146 | 1.200 1.000 | 1.151 1.200
10 | 0.3 || 1.000 | 1.219 | 1.297 || 1.000 | 1.218 | 1.299 || 1.000 | 1.213 | 1.299 1.000 | 1.215 | 1.299
10 | 0.4 1.067 | 1.297 | 1.399 1.067 | 1.275 | 1.397 1.067 | 1.285 1.400 1.067 | 1.286 | 1.400
10 0.5 1.067 1.354 1.497 1.067 | 1.327 | 1.498 1.067 1.339 1.493 1.067 1.339 | 1.494
10 | 0.6 1.067 | 1.394 | 1.594 || 1.067 | 1.365 | 1.593 || 1.067 | 1.372 | 1.593 1.067 | 1.372 | 1.593
10 | 0.7 1.067 | 1.442 1.698 1.067 | 1.409 | 1.700 1.067 | 1.418 1.695 1.067 | 1.418 | 1.695
10 | 0.8 1.067 | 1.461 1.795 1.067 | 1.434 1.796 1.067 | 1.429 1.760 1.067 | 1.429 | 1.760
10 | 0.9 1.067 1.490 1.899 1.067 | 1.461 1.899 1.067 | 1.454 | 1.899 1.067 | 1.454 | 1.899
10 1.0 1.067 | 1.497 | 1.988 1.067 | 1.476 | 1.946 1.067 | 1.486 | 1.993 1.067 | 1.486 | 1.993
12 | 0.0 || 1.000 | 1.000 | 1.000 |[ 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000
12 | 0.1 1.000 | 1.065 | 1.100 1.000 | 1.071 1.100 1.023 | 1.070 | 1.100 1.023 | 1.067 | 1.100
12 | 0.2 1.000 | 1.157 | 1.200 1.023 | 1.142 1.199 1.023 1.144 1.199 1.023 | 1.146 | 1.199
12 | 0.3 1.076 | 1.243 | 1.299 1.023 | 1.221 1.298 1.023 | 1.217 1.296 1.023 | 1.215 1.296
12 | 0.4 1.076 | 1.318 | 1.397 1.054 | 1.267 | 1.394 1.072 1.270 | 1.394 1.072 1.268 1.394
12 | 0.5 1.076 | 1.371 1.498 1.078 | 1.328 | 1.498 1.078 | 1.337 | 1.498 1.078 | 1.338 | 1.498
12 | 0.6 1.076 | 1.427 | 1.598 || 1.078 | 1.394 | 1.595 (| 1.078 | 1.385 | 1.595 1.078 | 1.393 | 1.595
12 | 0.7 1.076 | 1.462 1.700 1.078 | 1.430 | 1.693 1.078 | 1.426 | 1.682 1.078 | 1.431 1.678
12 | 0.8 1.076 | 1.479 1.800 1.078 | 1.451 1.786 1.078 | 1.454 1.786 1.078 | 1.470 | 1.786
12 | 0.9 1.076 | 1.506 | 1.900 1.078 | 1.483 | 1.871 1.078 | 1.500 1.871 1.078 | 1.508 | 1.871
12 1.0 1.076 | 1.512 1.995 1.078 | 1.490 | 1.925 1.078 | 1.506 | 1.979 1.078 | 1.514 1.979
15 | 0.0 1.000 | 1.000 | 1.000 || 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000
15 | 0.1 1.000 | 1.075 | 1.099 || 1.000 | 1.072 | 1.099 || 1.011 | 1.071 | 1.099 1.011 | 1.070 | 1.099
15 0.2 1.047 | 1.173 | 1.200 1.049 | 1.162 1.198 1.049 | 1.162 1.198 1.049 | 1.165 1.198
15 | 0.3 1.047 1.260 | 1.299 1.049 | 1.245 | 1.300 1.049 | 1.243 1.299 1.049 1.241 1.299
15 0.4 1.047 1.338 | 1.398 1.049 | 1.312 | 1.396 1.049 | 1.320 1.399 1.049 1.321 1.399
15 | 0.5 1.047 | 1.403 | 1.498 1.049 | 1.372 | 1.500 1.049 | 1.379 1.500 1.049 | 1.369 | 1.496
15 | 0.6 || 1.047 | 1.480 | 1.600 |[ 1.049 | 1.436 | 1.599 1.049 | 1.440 | 1.599 || 1.049 | 1.438 | 1.599
15 | 0.7 1.047 1.520 | 1.700 1.049 | 1.480 | 1.686 1.049 1.479 1.692 1.049 | 1.475 1.692
15 | 0.8 || 1.047 | 1.551 | 1.799 1.049 | 1.506 | 1.765 || 1.049 | 1.528 | 1.793 (| 1.049 | 1.521 | 1.793
15 0.9 1.047 1.586 | 1.896 1.049 | 1.523 | 1.868 1.049 | 1.543 | 1.897 1.049 | 1.539 | 1.897
15 1.0 1.047 1.603 1.990 1.049 | 1.567 | 1.989 1.049 1.577 1.977 1.049 1.573 1.977

50 random test cases were generated for each point

Table 5: The Ratio of the Longest Path Length over the Longest Geometric Distance
from Source to any Sink (R)
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Figure 10: The ratio of Longest Path Length over Shortest Path Length and the ratio
of Routing Cost over MST

BKRUS, BMST_G, BKEX, and BKH2 algorithms can be applied to the lower and upper
bounded path length MST problem with the inclusion of Lemma 7.1. The inclusion of
Lemma 7.1 eliminates an edge (S, i) < ¢ - R,V i such that the resultant tree does not
violate the lower bound.

Lemma 7.1 Eliminate edge (S, i) € E, for Yi, if weight(S, i) < ¢, - R.

We tested BKRUS method for (1), (2), (3) benchmarks as shown in Table 6. BKRUS
uses 3.9 times routing cost of MST to generate an exact zero skew tree. Note that
many values of €; and €; lead to infeasible solutions since BKRUS uses node-branching
technique. Path-branching and Steiner-branching are more desirable. In Figure 10, we
show a typical trade-off between routing cost and clock skew.

8 Conclusion

We have presented bounded path length minimal spanning tree schemes which can
control longest /shortest path length and routing cost. With upper bound, our method
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infeasible confignrations
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%: the vatio of longeat path length over shortest path length {(zero clock skew: s = 1.0)
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Figure 11: Example where cost(BKT)/cost(MST) can be N where N is number of
sinks

achieves smaller cost than that of BPRIM and BRBC. However, by the nature of the
problem, our methods can generate almost N - cost(M ST) where N is the number
of sinks in Figure 11 (pl case). This is not because of the method but the nature of
problem. By a user-specified parameter, design favors are satisfied. Future research
includes capturing real delay model, extending the scope to Rectilinear Stenier Tree and
preserving planarity.
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