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1 Introduction

The major goal of this project is to assess the programmability and the performance of signal processing
applications on a SIMD machine, specifically, in the functional programming environment. In a pure
functional programming language [2], parallelism need not be expressed by the programmer since it is
implicit. Because a program written in a pure functional language is side-effect-free, the relative order of
the program statements is not as significant as in an imperative language. Each statement can be executed in
any order as long as the data dependencies are respected. Therefore, it is easier for the compiler to extract
parallelism out of a program written in a functional programming language. Moreover, programs can be
casily ported to other platforms since details about specific machines or operating systems can be hidden
from the programmer.

We chose a functional language, SISAL (Streams and Iterations in a Single Assignment Language) [14],
for the parallel implementation of our application. Besides the SISAL is a functional language it has already
been available on many shared memory multiprocessor systems as well as many sequential machines.
However, there is no SISAL compiler available for any SIMD machine. Our research is therefore mainly
focused on how a SISAL program can be effectively implemented on a data-parallel machine such as
MP-1/MP-2.

In this report, we present many issues of programming a signal processing application in the SISAL
programming environment. In the rest of this report, we will present the features of SISAL programming
environment and the parallel programming on MP-1 system. We will also describe our target application
and will show how it can be implemented on MP-1 coupled with SISAL programming environment. In the
last part of this report, the comparison of programming on two different types of parallel machines, MIMD
vs. SIMD, will be presented.

2 SISAL Programming Environment

In this section, we will describe the characteristics of SISAL and its intermediate code, IF1. We will
also describe the Optimizing SISAL Compiler (OSC), which has already been implemented on many other
shared-memory multiprocessor systems.

2.1 SISAL

SISAL has been proven highly effective in developing applications for multiprocessor systems [4). The
optimizing SISAL compiler (OSC) has been developed for various shared memory multiprocessor systems [3,
5,16]. Ithas also been shown that the performance of several representative SISAL programs is comparable to



(or better than) that of Fortran programs on multiprocessor systems and even on single processor systems. [4].

SISAL has the following characteristics:

o It is applicative: Each function call retumns one or more values. There is no global space for the
sharing of variables. Communication between the caller and the callee function is done only through
the input arguments and the returmned values.

e [tfollows the single assignment rule: Each variable can be assi gned a value only once within the same
scope (although it can of course be used many times in the life of the program). Duc to the single
assignment rule, there is no aliasing problem, which thus facilitates the detection of parallelism in a
program. !

e [Itisstrongly typed: Each value has a type. Thus, in the definition part of each function, every argument
is explicitly given a type.

There are six basic scalar types in SISAL: boolean, integer, real, double real, null and character. A data
structure in SISAL consists of arrays, streams, records and unions. Each basic data type has its associated
set of operations, while record, union, array and stream types are treated as mathematical sets of values just
as the basic scalar type. Interestingly, there is a special value called error. This value is associated with a
special operator iserror which is used to handle exceptions at run-time such as division by zero, erc.

Three types of control mechanisms are implemented in SISAL: the Jorall, the select, and the iteration
constructs. These constructs can be nested and are implemented by multilevel (hierarchical) graph structures
in the lower-level graph representation (IF1) . The forall construct is used to specify parallel loops enabling
the parallel execution of the loop body while the iteration only allows the sequential execution of the loop
body. Select corresponds to an if—then—else structure. Examples of SISAL programs are shown in figure 1.

22 TF1

The IF1 (Intermediate Form 1) graph is produced by the front-end of the SISAL compiler. The basic
components of an IF1 graph are graph, node, and edge (arc).

There are two types of IF1 nodes: the simple node and the compound node. While simple nodes
implement actual operations, compound nodes correspond to the control structure of the SISAL program.
Each compound node has one or more subgraphs according to the node type. For example, the forall
compound node has three subgraphs, generator, body, and returns. Each subgraph of a compound node
is controlled by predefined implicit data dependencies. In other words, no explicit arcs exist between
subgraphs. There are four types of compound nodes: forall, select, iteration?, and tagcase.

Each edge is associated with a type. This implies that each edge can carry cither a single value (scalar)
or a structured data (array or record) together with the source node (and port) and the destination node (and
port). When an edge also has immediate data, it is called a literal edge and has no source node.

'Consider conversely the common or the equivalent statements in Foriran. They allow reference to the same storage cell under
many different names.
2lteration is actually a combined construct of two types of sequential loops (loopA and loopB)



% Example of forall
function DotProd(n:integer;a,b:array[integer] returns integer)
for i in 1,n
s := al[i]*b[i]
returns
value of sum s
end for
end function

% Example of iteration
function factorial(n:integer returns integer)
for initial

£ := 1;
i 3= 03
while i < n
repeat
i :=0ld i + 1;
f := 0ld £ * i;
returns

value of f
end for
end function

% Example of select

function Max(a,b:real returns real)
if a > b then a else b end if

end function

Figure 1: Examples of SISAL program



As an example, the IF1 graph of the Dot Prod () function (the corresponding SISAL code is shown
in figure 1) which calculates the inner-product of two vectors is shown in figure 2.

Itu.nctlon DotProd (niintegerja,brarray(integer] returns integer) I

e S —

for i in 1,n

Hl & = apt)enri)

Figure 2: IF1 graph of dot-product function

In the figure, the dotted lines are not real edges in the IF1 graph. They are only defined by implicit
dependencies between the subgraphs of the forall compound node.

23 0OSC

OSC (Optimizing SISAL Compiler) has been developed as a part of the SISAL project [10). The objectives
of the project are to:

define a general-purpose applicative language,

define a language-independent intermediate form for data-flow graphs,

develop optimization techniques for high-performance parallel applicative computing,

develop a micro-tasking environment that supports data-flow on conventional computer systems,
achieve execution performance comparable to that of Fortran, and

validate the applicative style of programming for large-scale scientific applications.

oL kWL

OSC targets a wide variety of platforms including conventional single processor machines and shared
memory multiprocessor systems. The portability of OSC is due to the choice of C as a target object language.



Most of the compilation steps are therefoce the same on all the platforms. The machine dependent features
of each platform are implemented in the run-time library of OSC. The structure of OSC is shown in figure 3.

Sisal Sisal Sisal

e o9 ® o e
[ Parser |
| IF1LD ]

Include Filed—{ CLC | Libraries |

Figure 3: Structure of OSC

IF10PT performs the various machire-independent scalar optimizations such as loop invariant removal,
common subexpression elimination, deacd code elimination,erc.

The 1najor overhead incurred durir:z the execution of a SISAL program (and any pure functional
program) is caused by copy operations of structured data because of its side-effecr-free principle (embedded
in the single assignment rule). OSC redusss this overhead by incorporating in-place operations (also called
AT operations) which are used to access structured data by reference rather than by their values while
preserving the overall data dependence. I figure 3, [IF2MEM and IF2UP extend the IF1 graph with these
in-place operations. The extended graph is called IF2 [17]. The main Jjob of IF2ZMEM is thus to preallocate
storage for new structures (build-in-place =nalysis) while IF2UP facilitates the modification of a single data
element inside the structure (update-in-piace anzlysis). Note that it may be necessary Lo serialize some
structure handling operations in order for e [F2 graph to work correctly after the update-in-place analysis.
However, it should also be noted that t=s loss of parallelism is compensated by the reduced overhead
that would be increased if whole new strusture were created/copied whenever any single components were
modified.

[F2PART is a parallelizing module designed to define the desired granularity of parallclism. The analysis
is based on the estimated execution time which is determined by various parameters such as computation
time, and spawning overhead. The currert implementation selects only forall compound nodes to slice the
loop into many pieces for parallel execution.

CGEN translates the optimized IF2 gaphs into equivalent C code. The generated C code together with
the machine-dependent run-time libraries zre then compiled to produce an executable.



3 Data-parallel Programming on MP-1

In this section, we describe the overall programming enviroament of the MP-1 system from both the hardware
and the software perspectives [12, 13].

3.1 Overview of the MP-1 System

The MasPar MP-1 massively parallel computer consists of a front-end host workstation and a back-end
data-parallel unit (DPU). The DPU has two components: an Array Control Unit (ACU) and an array of PEs
(Figure 4). Each component can be described as follows:

e Front End : The front end mainly handles the user interface, inputs/outputs, and the normal functions
which a conventional workstation would provide, such as compiling and network functions. The initial
data setup and the final collection of results can also be performed by the front end. Incidentally, it
should be noted that the front end of the MP-1 is a DECstarion running the Ultrix operating system.

o DPU : The DPU handles most of the computations. It can be viewed as a massively parailel machine
(PE Array) plus an Added Scalar Processor (ACU).

— ACU : The main job of the ACU is to decode znd broadcast instructions to all the PEs in the PE
array. The ACU also has a RISC processor thzt can operatz on scalar variables.

— PE Array : The Processor Element (PE) Arrzy forms the computational core of the MP-1
system and includes up to 16,384 PEs operating in parzliel. Each PE is a custom-designed
RISC processor with 64KB dedicated data-memory and 40 32-bit registers. The data in the PE
memory space is distributed, while each instruction from the ACU is executed on all the PEs
simultaneously.

The highly optimized communication between nei ghboring PEs is achieved by the Xner while a flexible
global communication is performed by the router. The communication primitives will be later described in
section 3.2.3.

3.2 Programming the MP-1 System

The MP-1 massively parallel computer provides the programming tools io support data-parallel programming
model. These include the MasPar Programming Language (MPL) as well as its own runtime libraries for
communication. In this section, we describe the concept of data-parallel programming and the programming
tools of the MP-1 system.



Data-Parallel Unit (DPU)

ACU

Front End e

PE Array

Figure 4: Overall structure of the MP-1 system

32.1 Data-parallel programming

Generally speaking, there are two basic programming models which programmers can employ to take
advantage of parallel systems:

1. Dzra-parallei
2. Coatrol-parallel

In the dara-parallel model, there is a large data set that needs to be processed, and each processor
executes the same set of instructions on the different data in the set (SIMD: Single Instruction Stream
Multiple Data Streams). The main feature of the architecture for data-parallel model is that it includes a
large number of rather simple processors. In order for a program to be executed efficiently in this model,
the synchronization between processors should occur in a very regular pattem. Thus, by highly optimizing
a certain type of communication pattem ( e.g between neighboring processors), the overall communication
overhead can be well-matched to the speed of the processor.

In the control-parallel model, each processor executes separate processes/functions to solve either
independznt problems or cooperate on the same problem (MIMD: Multiple Instruction Stream Multiple
Data Stream). This model is more flexible than the data-parallel model, and its applicability is wider than
the data-parallel model. However, the underl ying architecture for the model usually results in more complex
control and communication structures. Moreover, due to the complexity, itis not yet feasible to employ very
large numbers of processors in a single system as casily as in data-parallel architectures.

When using either the data-parallel or the control-parallel model, the algorithms need to be redesigned
to take advantage of the corresponding model. In the case of data-parallel programming, the algorithms
should be designed for large amounts of data, and it assumes that cach data clement is assigned to one
processor. Therefore, as we increase the data size, the usable parallelism increases accordingly and the
program can be scaled up easily to provide increased performance. For example, consider the following



expression:

Forti=0...N -1
Clz] = f(A[), B[i])

where f is an arbitrary function of two inputs which we need to evaluate. In the data-parallel programming
model, the above expression can be simply implemented as follows:

c= f(a,b)

assuming the elements of A and B are distributed among the PEs such that the value of @ on PE; is indeed
the value of A[7] (Figure 5).

PE N-1: C[N-1] = f (A[N-1},B[N-1])

| PE1:cuy=ramBip
PEO : C[0] = f (A[0],B[0])

Figure 5: The function f is evaluated in parallel for cach element of A and B across the PEs

3.2.2 Overview of MPL

The MasPar Programming Language (MPL) is used to program the DPU. MPL is based on ANSI C with the
added statements, keywords, and library functions to support data parallel programming.

The key features of MPL are its support of the following data types:

e The Plural data type is used to specify data storages in DPU, i.e. parallel data, while without plural
the storage is defined in the ACU.

* The Plural expressions can be defined by any arithmetic and addressing operations on the plural data
type. For example, ifk, i, j are plural types, the expression, k = 1 + j. is executed on all the active
PEs in the DPU.

e The semantics of the SIMD control statement are implemented by the concept of the active set. The
active set is the set of PEs that is enabled at any given time during the execution. This set is defined
by conditional tests in users program. For example, consider the code segment shown in Figure 6.

When the first statement is executed, the active PEs are those in which the condition, i > 7, is true,
and for the second statement the active set becomes complemented. At program startup, all PEs are
active and the active set varies depending on the program’s control structure.

10



plural int ijk;

if (i>])
k=i-j;

else
k=j-1i;

Figure 6: An example of activeness control in MPL.

Consider the following example once again:

Ford =04 .. —1
Cli] = f(A[i], B[i])

Now, assuming the number of elements is less than the number of PEs, we can write an MPL code as shown

in Figure 7:

p—

. float A[N],B[N],C[N];
. plural float a,b,c;

[Ne]

if (iproc< N) {
a= Aliproc], b = B[iproc];
c=1f(ab);

W

1

i
. for (i=0;i<N;i++)
C[i] = proc[i].c;

% N o L

\O

. plural float f (plural float a,plural float b)

Figure 7: An example of an MPL code for parallel evaluation of function I

In step 2, we define a, b, ¢ as a parallel data whose storage is defined in all the PEs. Steps 4 and 5 are
executed on those PEs whose number is less than N. Note that the function f is declared also as a parallel
function in order for each PE to be able to call the same function simultaneously (step 9). After the parallel
evaluation of f is done, the data is collected by C in steps 7 and 8. If there are any further computations on
the result of f, the data collection will be deferred until all the parallel computations have completed on all
PEs.

11



3.2.3 Communication

MPL provides a direct control over the PE-to-PE communication. There are two kinds of communication
mechanisms available: near-neighbor regular communication via the Xnet communication network, and
random communication via the global router.

Xnet

Xnet is faster than the global router. Itis therefore advantageous to use Xnet for inter-PE communication
whenever possible. Xnet connects each PE to its neighboring PEs in a 2-D mesh. The overall topology of
Xnet is the 8-way toroidal wrap-round, i.e., each PE is connected to 8 neighboring PEs (Figure 8). The Xner
library function is used to implement Xnet communication in MPL in the following form:

xnetDD(distance).variable

The above function designate the variable in the PE which is distance away in the DD direction. DD can be
oncof N, NE, E, SE, S, SW, W and NW, each corresponding to one of the eight directions.

PE
i1y

PE PE PE
L1 u Lje1

Figure 8: 8-way toroidal wrap around topology of Xnet.

As an example of using Xnet, we chose an image processing algorithm in which one is to average pixel
values with 8 neighbors for each pixel®. This can be achieved with the MPL code shown in figure 9.

Global Router

The global router allows PEs to directly access any other PE in the PE array. It is mainly used for the
communication pattemns that are not regular, especially when the communication pattem is computed at run
time. The format of the router statement is as follows:

3The pixel averaging is one of the popular and the simplest ways for anti-aliasing in computer image generation [6].

12



L. pixel = pixel + xnetW[1].pixel + xnetE[1 ].pixel;
2. pixel = pixel + xnetN[1].pixel + xnetS[ 1].pixel;
3. pixel = pixel/9;

Figure 9: An example of Xnet: Averaging pixels with 8 neighbors.
router{ PEnum].variable

The above function designates the variable in the PE PEnum.

There is one router channel for each set of 16 PEs. Hence there is a possibility of contention as the
router channel works on a first-come-first-served basis. Unlike Xnet, the communication time of the router
is not dependent on the distance of the two communicating PEs. In general, Xnet performs better for close
neighbors (whose distance is less than 32) than the router. However, the al gorithms requiring irregular or
complex communication patterns will be solved better by using the router.

4 SISAL Programming on MP-1

As mentioned earlier in this report, there is no SISAL compiler available for any data-parallel machine. We
therefore designed schemes to translate SISAL programs into MPL (a data-parallel version of C). The steps
of translating a SISAL program into the corresponding MPL code can be described as follows:

1. Compile the SISAL program into an IF1 graph — We use the front-end of OSC (Optimizing SISAL
Compiler) to generate the IF1 graph.

2. Perform traditional scalar optimization and structure optimizations. — The optimizer of OSC can be
used for this purpose. It performs data-dependent analysis and also optimizes the structure (array)
handling operations.

3. Transform the IF1 graph for the exploitation of data-parallelism. — In this step, parallel forall loops
are transformed for data-parallel execution. This part is indeed the major contribution of our work.
We propose a transformation scheme which will be discussed later in this report.

4. Generate MPL code. — Finally, we generate MPL code from the transformed data-flow graph.

The overview of the translation is also show in figure 10. In the figure, the shaded steps are already
implemented in OSC.

13



SISAL Program

IF1 Graph

Optimized IF1 Graph

Data-Parallel Transformation ]

;

Data-Parallel IFx Graph

|

L MPL Code Generation l

:

MPL code

i

Figure 10: The overview of the translation steps.

4.1 Data-Parallel Transformation of IF1 Graph

Inan IF1 graph, the main construct in which we can exploit data-parallelism is the forall loop. Moreover, on
data-parallel machines like MP-1/MP-2, a large data array must be allocated across the PE array due to the
limitation of memory space on the Array Control Unit (ACU). Therefore, even the array is to be implemented
for the sequential execution only, it is reasonable to assume that all the arrays are simply allocated on all
PEs across the PE array. In describing our transformation scheme, we also assume that all the input arrays
are already allocated over the PEs based on cut-and-stack mapping [12].

A Forall loop consists of three subgraphs, the generate graph, the body graph and the rerurn graph. For
example, the SISAL program shown in figure 11 is translated into the IF1 graph shown in figure 12.

Transforming MemAlloc and AGatherAT

MemAlloc is a special node of IF1 (IF2) used to specify the allocation of a memory block. In a shared
memory multiprocessor system, MemAlloc simply allocates a contiguous block of memory for an array.
However, in the data-parallel programming paradigm, when an array must be allocated across the PE array,
only a small portion of the array can be assigned to each PE. For this purpose, we thus introduce a new
construct called pMemAlloc (figure 13). The input to pMemAlloc is the total size of the array and the output
is the pointer to the newly allocated slot on each PE. The size of the space allocated on each PE is also
determined by the total number of processors (“nproc™).

The AGatherAT node is used to collect the result of the loop-body. We simply replace AGarherAT with

14



function foo (v:OneDim;n:integer returns OneDim)
for i in 0,n-1

r := f (vig(i)],v[h(i)]);
returns

array of r
end for

end function

Figure 11: A simple SISAL program with forall loop.

n-1
y
wge
( RangeGen )
y
1

e\ )
n

&) N
MemAlloc

"

v

( AGatherAT )

l

Figure 12: A simple IF1 graph with forall loop.



pAGatherAT in accordance with the output of pMemAlloc.

MemAlloc

"oproc”
(Lav) ]
—
*
T
MemA lloc

Figure 13: Transforming MemAlloc for array distribution across the PE array.

Transforming RangeGenerate

RangeGenerate initiates the parallel invocation of a loop body by generating iteration indices. Just as
in the case of MemAlloc, on each PE, only a small number of iterations are performed. This number is
based on the total number of iterations and the number of avzilable PEs (nproc). The RangeGenerate node
is replaced with two new constructs called SlashBounds and pRangeGenerate as shown in figure 14.

In most cases, the array index is used in the body of a forz!| loop. It is therefore necessary to retrieve the
original index out of the local index (of the sliced array on ez:h PE). Retrieval of the index can be efficiently
performed using a bit-wise shift operation only if the number: of processors is a power of two. For example,
if the number of processors is 2*, and the local index is i,, L1e original index ¢ can be obtained by shifting
ip k bits to the left and adding the current PE number. This transformation is shown in figure 15, where
“nshift” and “iproc” corresponds to k and PE number respectively.

Transforming ASelect

As we described earlier, an array must be sliced into manv small pieces and each sliced block is allocated
to one of the processors. Therefore, we need a mechanism 10 map an array index to the corresponding PE
number and the index of the local array on the designated PE. Accessing an element of the array involves
communication between processors (in most cases). The rew construct, pASelect is introduced for this
purpose. Indeed, pASelect performs the following two functions:

¢ To map an array index to the PE number and the index 1o the local array.

e Retrieve the data and copy to the local memory area.

16



Figure 14: Transforming RangeGenerate for a data-parallel forall loop.

nl n2

SlashBounds

W

Qpngchncrate )

3

3

e
<_pRetrievelndeJ: )
v

Forall loop-body

Figure 15: Retrieving the original index from the sliced index at the beginning of the loop-body.
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All the ASelect nodes in the forall 1oop-body are replaced with pASelect constructs. The implementation of
pASelect is shown in figure 16.

In a way similar to how we implemented the pRetorelndex node, pASelect can also be cfficiently
implemented using bit-wise shift and and operations. Assuming again that the number of PEs is a power of
2, “nmask™ simply becomes “nproc” — 1. As can be implied by the name, the RouterGer construct retrieves
a data clement from the designated PE using router communication of MP-1 [12, 13]. The cost of executing
the RouterGet thus depends on the communication pattern. If more PEs are involved in the random array
access, the overall cost of communication becomes si gnificantly larger.

array i

ASelect

: nl
array.p o (beginning index)

——= (_ pASdect

Figure 16: Accessing an array element across the PEs
An Example
By applying the scheme described above, the IF1 graph in figure 12 is transformed as shown in figure 17.

In the figure, “v_p” is the sliced array of “v”, which is assumed to be already stored in the local memory on
each PE.

4.2 Generating MPL code
Generating MPL code from the transformed IF1 graph consists of the following steps:

¢ Generating the type declaration for each type of IF1 graph.

e Identifying edges which are to be implemented as plural data — In a simplistic way, all the edges in the
forall body can be marked as plural data.

18



n-1

"0"

"0{SlashBounds

n

( pMemAlloc )
‘
¥

( EAGalherAT )

Figure 17: An example of transformed IF1 graph for data-parallel execution.
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¢ Traverse the transformed IF1 graph and generate the appropriate sequence of MPL statements

Besides implementing the above steps, we also need the following for the compilation of the generated
MPL code:

o Definitions of the IF1 constructs including the extended ones for data-parallelism in MPL. — This can
be accomplished by macros and/or functions.

* Run-time library for the execution of the compiled program. — Thisimplements the memory allocation,
input/output, and the machine specific features.

Since the actual implementation of the MPL code generation is beyond the scope of this project, we
hand-coded an FFT program based on the proposed translation scheme for the validation of our work. The
results are shown in the following section.

5 Implementation of the Target Application

5.1 Description of the Application — Split-Step Algorithm

Most signal processing applications are highly computation-intensive, and in many cases, real-time perfor-
mance is needed. While the algorithms for solving such applications are well known and understood, their
execution is still one or two orders of magnitude slower than what is needed for real-time processing. Our
target application is the kemnel of electro-magnetic wave propagation modeling [8]. The numerical solution
of this application is centered around the split-step algorithm in which both forward and backward Fourier
transforms are invoked repeatedly.

The split-step algorithm which is based on the following two equations is used to compute u(z, z), the
power gains (or losses) at (x,z), where x is the horizontal range and z is the vertical range from the source
(e.g., an antenna). Forward and backward Fourier transforms are denoted F and F-! respectively.

U(z,p) = Flu(z, 2)]
u(z & 5$,z) — ei{k/Z)(n"—l)é: F-I[U(z,p)e—i(pzézfl’k)]
where:

p = ksiné
¢ = The angle from the horizontal

k= wy/pe(a,0)

€(a,0) = The permittivity just above the earth’s surface
a = Radius of the earth

20



The split-step algorithm is applied along the horizontal range. Therefore, the dependence between each
step of computation is as follows: the label (F or F=1) on the arrow shows the Fourier transform involved
at each step.

w(0,2) £ U(0,p) I w(bz, 2) £ U(62,p) £ w(262,2) Lo -

To begin calculations, we have to find the initial value(s), U (0,p). U(0, p) is obtained by resolving the
following equations:

U(0,p) = U.(0,p)+ Us(0,p)

Ue(0,p) = 2F[f(z)cosp.z]cospzy — 2iF,[f(z)sin p.z]sin pz,

Uo(0,p) = 2F,[f(z)sinp.z]cospzy — 2iF.[f(z) cosp.z]sin pz,
/) = F(F(p)

Where Fy(p)is the antenna pattern and F, and F, are cosine and sine transforms. The initial function U/ (0,p)
is obtained by proper modeling of the source which is given by Fy4(p) in the above equations. A detailed
description of source modeling can be found in [8]. The application kemnel and the recursive FFT [9, 15] are
described in algorithmic form in figure 18 and figure 19, respectively.

The split-step algorithm performs O(n) Fourier transforms. The FFT itself has a time complexity
O(nlogn) when it is executed sequentially. Therefore the splir-step algorithm takes O(mnlogn) to
complete its computation on a sequential machine, where m is the number of steps and 7 is the number
of sampled points. The Split-step algorithm is based on iterating over each horizontal range step. In other
words, each step is dependent on the result of the previous step. Therefore, the parallelism of the split-step
algorithm is limited only by the parallelism which is achieved by the Fourier transform at each step. Thus,
even if we increase the problem size with the number of range steps, parallelism does not increase. In other
words, speed-up with a large number of processors can be obtained only if we have enough sampled points
for the Fourier transform. Therefore, as predicted by Amdahl’s law [1], the execution time of the algorithm
is dominated by the iteration over each range step which is the sequential part of the algorithm. Assuming
an infinite number of processors, the split-step algorithm takes O(m log ) time.

5.2 Analysis of the Application using SISAL Tools

Several steps are involved in developing an application in a parallel programming environment. First of
all, we have to select (or design) an algorithm which is suitable for parallel implementation. The selected
algorithm is then coded in a target language. The next step is to debug and optimize the program using
parallel programming tools. These steps are indeed the same which are needed during the development of
an application on a sequential machine. However, the appropriateness of the algorithm for parallel execution
is mainly determined by the potential parallelism of the algorithm. If the algorithm itself does not have
any parallelism, we cannot expect any speedup no matter the number of available processing elements. In
this section, we present the simulated performance measures of the algorithm which are obtained using the
SISAL programming tools.
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Algorithm split-step
Input:
Fy(p) : Sampled values which represent the antenna pattern.
n: Number of steps over the horizontal range.
6z : Incremental value for each range step.
k: wy/pe(a,0) as described above.
n’: Refractive index.
Oma- : Maximum angle for which the antenna pattemn is sampled.
n, : Number of sampled points.
Output:
u(z, z) : The power gains (or losses) at (x,z)
Begin
1. Find the initial condition U (0, p) from Fy(p).
u(0, z) — inversefft (U(0, p)).
¢) — eik/D(n=1)sz
0,71
While j < n Repeat
51, CE(P) - e-—-i(p’ér/Zk)
5-2. u(z + 6z, 2) « ¢, inverse fft (U(z,p)ca(p))
5-3. U(z + éz,p) « fit (u(z + bz, 2))
54, ze—z+b6z,j—j+1

B b

n

End

Figure 18: The split-step algorithm.
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Algorithm ffr

Input:

[ : array of N complex numbers, where N is a power of 2.
Output:

F': array of N complex numbers which is the Fourier transform of s
Begin

1. Let f* be the array of even components of f.
Let f° be the array of odd components of f.

2. Find F* = fft (f*) and F° = fft (f°).

3. Let W be e?=i/N
Fork =0,...,N/2,let L, = Ff + W*F?.
Fork =0,...,N/2,let U, = Ff — W*Fy.

4. Fork=0,...,2/N,let F, = L, and Fyyny2 = Uy. In other words, F is the concatenation of
Land U.

End

Figure 19: The recursive FFT algorithm.

The potential parallelism obtained by the simulation of a splir-step with 16 sampled points over 16
range steps is shown in Figure 20. As we discussed in the earlier section, the split-step executes the loop
body sequentially over each range step. Thus, as can be seen in Figure 20, there is little parallelism during
the execution of the whole program. However, if we look closely at the graph, we find 27 repeated pattemns,
where 7 is the number of range steps over which we apply the splir-step algorithm. Parallel execution of
the program, indeed, can reduce the interval between steps, since there is potential parallelism at each step,
depending on the number of sampled points for which the Fourier transform is performed. The potential
parallelism of a 512 point FFT is shown in Figure 21. The first graph shows the maximum potential
parallelism with an infinite number of processors while the second part shows the clipped parallelism with
32 processors.

Running the split-step program for various data sizes, 64 x 32, 64 x 64, 128 x 32 and 128 x 64, where
m X nmeans m sample points over n split-steps with 1 to 256 processors results in the theoretical speedups
shown in Table 1 and Figure 22.

This simulation results confirm that a significant speedup can be obtained by employing a large number
of processors only if we have enough sampled points. The fact that the number of steps over the horizontal
range cannot increase the potential parallelism is rather disappointing. However, we can still benefit by
employing multiple processors, if there are a large number of sampled points compared to the number of
available processors. For example, as can be seen in Figure 22, we can achieve a nearly lincar speedup up
to 32 processors when we have 128 sampled points in an ideal case.
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Figure 20: Potential parallelism of the split-step algorithm. The histogram shown on the right is the magnified
view of the first three steps.
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Figure 21: Potential parallelism of FFT

| [[64x32]64x64]128x32] 128 x 64 |

4 3.7 3.7 3.8 3.8

8 7.0 7.0 7.2 72
16 123 12.3 13.3 13.3
32 20.2 20.2 22.8 22.8
64 31.6 31.6 36.6 36.6
128 36.6 36.6 533 53.2
256 36.7 36.7 61.3 61.2

Table 1: Speedup of split-step.
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Figure 22: Speedup of splir-step
5.3 Implementation of of the Application on MP-1

As has been noted in the previous section, most of the parallelism is proportional the number of input
points to the FFT function. However, the FFT algorithm in its simplest form which is recursively described
(section 5.1) cannot be eifectively implemented in parallel in a data-parallel programming paradigm. Hence,
we used a different parallel FFT algorithm without any recursion.

Algorithm Description

The algorithm is based on the work shown in [11]. In the algorithm, the array index is calculated 1o
find the correct data-dependency between the iterations of FFT. Let g(!, i) be the i, element of g which is
an intermediate result after [, iteration, and let f(7) be the ., clement of input array of size N = 27, then
g(l,17) can be computed as follows:

o~

9(0,7) =

f(3)
gl +1,i) = {z aP§+w§=g(1,q) if0<i<2/N

(
(t,p) - who(l,q) if2/N <i< N

where
ko= | ]
L:.J: - e—Zkrl'/n
p = k%—#moa’(i,%)
¢ = pt+7=

The final results are g(D,i),0< i < N.

Note that, in the above equation, the computations of g(!, 7) foreach ¢ = 0... N — 1 are independent of
each other, and can therefore be computed in parallel. Hence, if we have enough PEs, the time complexity
of the algorithm based on the above equation becomes O( D), i.e., O(log N).

25



Data Mapping

The data mapping (or data partitioning) is one of the key issues conceming the performance of the
program, especially in a data-parallel programming model. When mapping data into the PE array, the goals
are to:

1. minimize communications
2. balance the load for greater utilization of PEs
3. keep the algorithm simple.

The first and the second issues are more performance oriented while the last one is oriented toward higher
programmability. Obviously, all of the above goals cannot be simultaneously achieved (they are somewhat
conflicting). Hence, we may have to give different weight to each goals when designing a data mapping
strategy.

For our implementation, we chose to have the simplest data mapping scheme called 1D cut-and-stack
data mapping [12] which makes the algorithm simple. In this mapping scheme, we distribute the element
of a data array over the PE array. If the number of data elements are greater than the actual size of the PE
array (number of PEs), multiple data elements can be found on the same PE. The main advantage of this
mapping scheme is that we can maximize the utilization of the PE array since all thie data elements are evenly
distributed over the PEs for greater load balancing. The actual mapping of a data element (an index in the
data array) to the PEnum (iproc in MPL) can vary from application to application. In our implementation,
we simply map i, element of a data array to PE;. Let N be the size of data array A, and z be the local array
on each PE which holds a segment of the input array. Also let nproc be the number of PEs and iproc is the
PE number. We first have to find out the size of local array z.

zs = [N [nproc|

Then for each PE,
z[i] = A[i X nproc + iproc]

Conversely,
Al[t] = proc[mod(i, nproc)).z(|i/nproc|]

Assuming that the data array is partitioned as described above and the input array is already allocated
accordingly, the final data-parallel algorithm of FFT is as shown in Figure 23. On each PE, after the algorithm
has been successfully executed, the results will still be stored in the same position as the input data element
was stored.

The transformation of the above algorithm for data-parallel execution (step 3 in figure 10) and the MPL
code generation (step 4 in figure 10) have been manually done for our experimentation. The SISAL code of
FFT and the corresponding IF1 graph arc shown in the appendix. The manually coded corresponding MPL
program is also shown in the appendix.

At the current state of this work, array access to other PE is implemented by using router®. The router
implementation is the simplest way of fetching an array element from other PE, and the performance is also

*In our implementation, rfetch routine is indeed used instead of router statement. — Since the array index is computed in all
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fori=0...D—-1do

forzi=0...zs— 1do
t «— zi X nproc + iproc
b | i
p — kI +mod(i, 5 )
g —p+ g0
first — router[mod(p, nproc)].z[|p/nproc|)
second « router[mod(q, nproc)).z[| q/nproc|]
if 2 < N/2 then
z[zi] — first + wk x second
else
2(zi] — first — wk x second
endif
end for

end for

Figure 23: A data-parallel algorithm for computing FFT.

good when we have rather smaller size of input data. However, as the data-size gets larger, the contention on
the router becomes significant and the performance is thus degraded. Further optimization may be possible
in both algorithm and in translation phase. However, as shown in table 2 and in figure 24, the performance
is scalable in terms of both data-size and the number of PEs.

| #PE [| 128pts | 512pts | 2048pts | 8192pts | 32768pts | 131072pts |
16 0.049 | 0.219 1.031 4811 — —
32 || 0.028 | 0.116 0.526 2438 11.146 —
64 0.021 | 0.062 0.270 1.236 5.634 —
128 0.017 | 0.042 0.174 0.786 3.560 15.970
256 0.017 | 0.032 0.126 0.560 2.522 11.277
1024 0.017 | 0.030 0.044 0.174 0.748 3.275
4096 || 0.017 | 0.030 0.037 0.071 0.280 1.173

Table 2: Execution time of FFT on MP-1

The execution time of the split-step algorithm based on the above FFT implementation is shown in
table 3. In figure 25 and figure 26, we compared the execution time of split-step algorithm for various data
size. The SISAL code and its hand-translated MPL code are shown in the appendix.

the PEs at the same time, the router statement fetches the array element whose index has actually been computed remotely. For
example, in the statement, router[p].a[t], 1 is a remote value in processor p. Therefore, using the router statement, we cannol
access the correct remote array element whose index must be computed locally. On the contrary, rfetch, which is a variation of the
router statement, uses a local array index to fetch a remote array element. An example of using rfetch is shown in the appendix
(MPL code of FFT).
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Figure 24: Execution time of FFT on MP-1

[ #PE J[ 256x64 [ 256x 128 | 102464 | 1024x128 | 4096x64 | 4096x 123 |

128 2.176 4314 10.147 20.165 46.719 92.864
256 1.783 3.535 8.050 16.004 36.874 73.350
512 2.627 5.216 5.525 10.984 24366 48.480

1024 2.627 5.216 2.944 5.846 12.634 25.132
2048 3.023 6.004 3.841 7.634 7.398 14.712
4096 4.183 8.315 4.842 9.628 5.871 11.677

Table 3: Execution time of Split-Step on MP-1. (On each column X x Y means Y iterations on X input
points.)
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Since all the function calls are side-effect-free in SISAL, we can simply replace the function without
modifying the rest of the program. There is a set of FFT functions provided by the MasPar’s Math Library
(MPML.). These routines are hi ghly optimized specifically for MP-1 systems. We therefore replaced the FFT
(and inverse FFT) function calls with these MPML routines, and showed the execution time in table 4. This
demonstrates that any big application can be highly modularized in the SISAL programming eavironment,
and we can indeed reduce the overall development cost.

L_#PE [ 256x64 | 256128 | 102464 | 1024128 | 409664 | 4096x138 |
(4096 [ 0292] 0S514] 0337] 0604] 0417]  0.765 |

Table 4: Execution time of Split-Step using MPML FFT library. (Oneach column X x ¥ means V iterations
on X input points.)

6 Discussion: SIMD vs MIMD

In the previous section, we have shown how a SISAL program can be implemented on the MP-1 (SIMD).
Also in the our previous work [ 18], we presented the result of the parallel implementation of the recursive FFT
algorithm on the Sequent Balance (MIMD). In this section, we thus discuss various issuss of programming
these two types of multiprocessor systems based on our previous work.

The most important advantage of programming in an SIMD machine is that we can exploit massive
parallelism without paying too much control overhead. This is achieved by the synchronous execution
of each instruction in SIMD model. Due to the synchronous execution, debugging can be similarly done
as in a sequential machine. However, in the SIMD model, all kinds of sources of parallelism cannot be
properly implemented. For example, implicit parallelism, such as double-recursion which is the core of
divide-and-conquer style algorithm [7], cannot be effectively exploited.

On the other hand, in the MIMD model, exploitation of parallelism is not limited to the synchronous
parallel execution of instructions. It is therefore possible to exploit any type of perallelism including
the asynchronous parallel constructs which can enable non-strictness of a functional program. However,
implementation of general parallelism is achieved at the cost of synchronization overhead. In MIMD
model, programmers have to take care of synchronization between parallel tasks to obtain the correct results.
Implementation of this synchronization may become exponentially complex even when the parallelism
increases only linearly. Hence, massive parallelism cannot be effectively handled in zn MIMD machine
compared to an SIMD machine.

When an application (algorithm) has highly parallel forall loops in its kemel and the array access pattem
is regular, an SIMD machine would outperform an MIMD machine. Most signal procsssing applications
belong to this type. On the contrary, if the algorithm mainly relies on implicit and/or dynamic parallelism,
an MIMD machine could be the only choice for the parallel implementation.

There are also different issues of programming in an SIMD machine and an MIMD machine. For an
SIMD machine, the main concem about parallelization is how to distribute array clements over PEs to take
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advantage of the regularity of an algorithm. However for an MIMD machine, programmers must pay a great
deal of attention to the implementation of synchronization to obtain the correct results and also to reduce the
latencies incurred by the synchronization.

A machine-independent higher level language can hide these issues by embedding them in its lower
level implementation of the compiler. And the program written such a higher level language can be more
portable and the development cycle can thus be reduced. For example, our application language, SISAL,
proved to be the right candidate for the parallel development of various types of applications, because:

e There is no machine-dependent notation for parallel execution in the language definition.
e SISAL has already been implemented on many shared memory MIMD machines.

¢ In this work, we have demonstrated that a SISAL program can be also implemented on the MP-1
(SIMD machine).

The above conditions together with the general side-effect-free nature of functional languages support the
SISAL as a strong candidate for the parallel implementation of computation intensive applications.

In table 5 and table 6, we presented the execution time of two different implementations of FFT. The
results shown in table 5 are obtained by running recursive FFT algorithm on the Sequent Balance shared
multiprocessor system. In table 2, we showed the execution time of data-parallel version of FFT algorithm
described in section 5.3 on the MP-1. In both implementations, we coded the algorithm in SISAL and the
the SISAL code has been translated (manually) for the C-compiler of the target machine. As can be seen on
the table, we can exploit reasonable speed up on the MP-1 even when the large number of PEs are employed.
However, the recursive FFT algorithm could have not been implemented effectively on the MP-1.

[ #PE ][ 4096pts [ 16384pts | 32768pts |

1 40.0 214.0 501.3
2 204 97.0 2156
3 14.6 66.5 142.6
4 12.6 54.7 115.8
5 10.4 515 102.7
6 9.9 42.9 86.7
7 8.7 427 82.8
8 8.5 37.1 76.6
9 8.6 339 73.9
10 8.0 335 70.4
11 8.1 32.7 70.1
12 7.6 30.3 65.7
13 7.6 30.1 65.5
14 7.5 29.4 62.2
15 73 29.0 62.5
16 84 323 58.7

Table 5: Execution time of the recursive FFT on the Sequent Balance.
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|_#PE [ 128pts | 512pts | 2048pts | 8192pts | 3276pts | 131072pts |
16 || 0.049 [ 0219 1.031 4811 — —
32 || 0.028 | 0.116 0.526 2438 | 11.146 —
64 || 0.021 | 0.062 0.270 1.236 5.634 —
128 || 0.017 | 0.042 0.174 0.786 3.560 15.970
256 || 0.017 [ 0.032 0.126 0.560 2.522 11.277
1024 || 0.017 | 0.030 0.044 0.174 0.748 3.275
4096 || 0.017 | 0.030 0.037 0.071 0.280 1.173

Table 6: Execution time of the data-parallel FFT on the MP-1.
7 Conclusion

The major part of this work has been centered around the demonstration of the feasibility of employing data-
parallel programming paradigm for the implementation of a signal processing application in the functional
programming environment. We specifically selected SISAL as our application language mainly due to its
flexibility and availability on many other shared memory multiprocessor systems. The experimental results
we have obtained on the MP-1 SIMD machine have been presented together with the results on the Sequent
Balance MIMD machine for the comparison between an SIMD and an MIMD machine in terms of both
programmability and the performance. The summary of the work we have done in this project is as follows:

¢ Development of a scheme to translate a SISAL program into MPL.

¢ Implementation of the split-step algorithm and the FFT algorithm on the MP-1 based on the proposed
translation scheme.

e Comparative analysis of SIMD and MIMD machine in terms of both programmability and performance.
As has been noted earlier, the implementation of the translator from SISAL to MPL is beyond the scope
of this project. Therefore, we manually applied the proposed translation scheme to implement our application
on the MP-1. The implementation of the translator is thus planned for the future work as summarized in the
following:
¢ Extend the translation scheme:

— Support more SISAL constructs.

— Improve remote array element access by analysis of the access pattern.
e Implement the translation scheme into the SISAL compiler.

¢ Perform more benchmarks written in SISAL on both SIMD and MIMD machines.

32



References

(1] G. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities.
In Proc. AFIPS Spring Joint Computer Conf., pages 483-485, Atlantic City, N.J., April 1967.

[2] J. Backus. Can programming be liberated from the von Neumann style? Communications of the ACM.
21(8):613-641, 1978.

[3] D. Cann. Compilation techniques for high performance applicative computation. Technical Repon
CS-89-108, Colorado State University, 1989.

[4] D. Cann and J. Feo. Sisal versus FORTRAN: a comparison using the Livermore loops. Technical
Report (Unpublished), Lawrence Livermore National Laboratory, 1990.

(5] D. Cann and R. Oldehoeft. A guide to the optimizing Sisal compiler. Technical Report UCRL-MA-
108369, Lawrence Livermore National Laboratory, Sep. 1991.

[6] U. Claussen. Parallel subpixel scanconversion. In Proceedings of the Second Eurographics Workshop
on Graphics Hardware, Amsterdam, Spring 1988.

(7] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, Cambridge.
Massachusetts, 1990.

(8] G. Dockery. Modeling electromagnetic wave propagation in the troposphere using the parabolic
equation. /EEE Transactions on Antennas and Propagation, 36(10):1464—1470, October 1988.

[9] D. Elliott and K. Ramamohan Rao. Fast transforms: Algorithms, Analyses, Applications. Academic
Press, 1982.

(10] J. Feo and D. Cann. A report on the Sisal language project. Journal of Parallel and Distributec
Computing, pages 349-366, 1990.

(11] T. Freeman and C. Phillips. Parallel Numerical Algorithms. Prentice Hall, 1992,
[12] MasPar Computer Corporation. Data-parallel Programming Guide, 1991.

(13] MasPar Computer Corporation. MasPar Programming Language (ANSI C compatible MPL) User
Guide, 1992.

[14] J. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J. Glauert, I. Dobes, and P. Hohensec.
SISAL : Streams and Iteration in a Single Assignment Language — language reference manual version
1.2. Technical Report TR M-146, Lawrence Livermore Laborartory, March 1985.

(15] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cambridge University
Press, 1986.

33



(16] V. Sarkar and D. Cann. POSC — a partitioning and optimizing Sisal compiler. Technical report,
Lawrence Livermore National Lab., 1990.

(17] M. Welcome, S. Skedzielewski, R. Yates, and J. Ranelleti. IF2: An applicative language intermediate
form with explicit memory management. University of Califomia Lawrence Livermore National
Laboratory, Manual M-195, November 1986.

(18] D-K. Yoon and J-L. Gaudiot. Programming and evaluating the performance of signal processing appli-
cations in the sisal programming environment. In Proceedings of the Second Sisal Users’ Conference,
pages 67-82. Lawrence Livermore National Laboratory, 1992.

34



APPENDIX

A SISAL code of Split-Step

$Sentry=SplitStep
define SplitStep

%
% FAST FOURIER TRANSFORM (Recursive)
%
type complex = record [r, i:double_real];
type complexOneDim = array [complex];
% Index ranges from 0 to N
%
%
% Implementation of Split-Step algorithm in SISAL.
%
% In this implementation, U(0,p) is given as an initial value. U (0,p)
% is actually obtained by the apperture function. Apperture function is
% again obtained by the antenna pattern. 1In the following function, we
% start from this U (0,p) and calculate u(x,z) by iteration.
%
% The solution of this function covers the horizontal range from 0 to
£ n x dx. Other parameters, k and nprime, are just assummed to be a constant
% values in this implementation.
%

function SplitStep (
Uzero:complexOneDim; % Initial solution

n:integer; % Number of iterations.
dx:double_real; % incremental range step
k:double_real; %
nprime:double_real; % refractive index
thetamax:double_real; % Maximum angle for which antenna pattern is sampled
nsample:integer % number of sampled points
returns

array [complexOneDim])

let
dtheta := thetamax / double_real (nsample - 1);

% prange is the array of p over which the antenna pattern is sampled

prange := for i in 0,nsample-1
theta := dtheta * double_real (i):
P := k * sin (theta);
returns
array of p
end for;

35



€l := (k/2.0d)*(nprime*nprime -1.0d) *dx;

coefl := record complex [r:cos(tl): i:sin(tl)];
in
for initial
i s= 1
bigU := Uzero;
u := ifft (bigyu);
while i <= n
repeat
t2 := for j in 0,nsample-1
returns
array of prange(j]*prange(j]*dx / (k*2.04)
end for;
coef2 := for j in 0, nsample-1
returns
array of record complex [r:cos(t2[j]); i:
end for;
newU := for j in 0, nsample-1
returns
array of mulc(old bigU [j],coef2(j])
end for;
tu := 1fft (newl);
u := for j in 0,nsample-1
returns
array of mulc (coefl,tu(j])
end for;
bigU := fft (u);
it=old 4 4 1;
returns
array of u
end for
end let

end function

B MPL code of Split-Step

finclude “common.h*

void SplitStep (bigU, u, zs, n_iter, dx, k, nprime, thetamax,

n_points)

plural complex_t *bigu; /* Input complex numbers: initial solution */

plural complex_t *u; /* The solution x.

int zs; /* Size of bigU[] and u[] */
int n_iter; /* Number of iterations */

int n_points; /* Number of sampled points */
real dx; /* Incremental range step */
real k; 1> *f

real nprime; /* Refractive index */
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real thetamax; /* Maximum angle for which antenna patter is sampled =/

- int depth; /* log(n_points) */
plural int *=*51; /* List of jl1 values. size is zs*depth */
plural int **j2; /* List of j2 values */
plural complex_t **zomega; /* List of omega values */

/* Misc. scratch arrays and variables ./
int i;

real t1;

plural real p_t2;

plural complex_t *workl:

plural complex_t *work2;:

plural int p_i,p_idx;

/* constants which computed once in the beginning of the function */
plural real *prange;

real dtheta;

complex_t coefl;

/***l’**********ft*****fﬁ****/

/* Allocate scratch arrays */

/***t****w***t*tvr*r'I'k*****/

prange = (plural rezl *) p_malloc (sizeof (real)*zs);
workl (plural complex_t =) p_malloc (sizeof (complex_t)*zs);
work?2 (plural complex_t *) p_malloc (sizeof (complex_t) *zs);

]

/*tttt**tt*rtt*rvt**wt*fn-*t**ttw*****t/

/* Allocate various tables for FFT *%

/"***!***f*****'fl‘****R‘t**‘***********l’/

depth = ilog2(n_points);

j1 (plural int **) p_malloc (sizeof (int =)=*zs); /* Index lookup tbl 1 */
j2 (plural int **) p_malloc (sizeof(int *)*zs); /* Index lookup tbl 2 */
zomega = (plural complex_t =**)

p_malloc (sizesof (complex_t *)*zs); /* Table of roots on unity */

1]

for (p_i=0;p_i<zs;p_i++) {
jllp_i] = (plural int * plural) p_malloc (sizeof (int) *depth) ;
j2[(p_i] = (plural int * plural) p_malloc (sizeof (int) *depth) ;
zomega[p_i] = (plural complex_t * plural)
p_malloc (sizeof (complex_t) *depth);

/* Calculate the intervals over which data are sampled */
dtheta = thetamax / ((real) (n_points - L))

for (p_i=0; p_i<zs;p_i++) {
plural real p_theta;
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p_idx = (p_i<<MemShift) + iproc;
p_theta = dtheta * (plural real) p_idx;
prange[p_i] = k * fp_sin (p_theta);

)

£l = (k/2.0)*(nprime*nprime - 1.0) *dx;

makec (f_cos(tl), f_sin(tl), coefl);

/* Prepare for the FFTs */
fft_init (j1.32, zomega, zs, depth, n_points) ;

/* perform initial fft (inverse fft ) */

for (p_i=0;p_i < 2s ; p_i++) (
copyc (bigU[p_i], ulp_i]);:
}

/* The actual solution of SplitStep() is the *array* of *u*, i.e., */

/* the solution is two dimensional array which contains all the values *
/* over the iteration steps. For the sake of simplicity and the memory */
/* consideration, we only returns the last element of array of *u“. */
ifft (u,workl,jl,j2,zomega,zs,depth.n_points); /* the first solution */

/***************t****\h*****?*t**t/

/* Now we begin the main 1loop */
/********2**************tt*****tt/

for (i=0;i<n_iter;i++) {

for (p_i=0;p_i<zs;p_i++) {
pP_t2 = prange(p_i] * prange(p_i] * dx / (k*2.0);
makec (fp_cos (p_t2), -fp_sin (p_t2), workl(p_il);:
mulec (bigU(p_1i], workl(p_i], work2([p_i]);

)

LEEE (work2,work1,j1,j2,zomega,ZS,depth,n_points);
for (P_i=0;p_i<zs;p_i++) (
mulc (coefl, work2(p_i], ulp_il};
b)
for (P_i=0;p_i<zs;p_i++) {
copyc (u[p_il, bigU[p_i]);
}

fft (bigU,workl,jl,jZ,zomega,zs,depth,n_points);
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C SISAL code of FFT

$Sentry=fft

define fft

%

% FAST FOURIER TRANSFORM (Non-Recursive Version)
%

type complex = record [r, i:double_real];

type complexOneDim = array [complex];

% Index ranges from 0 to N

global sin(x : double_real returns double_real)
global cos(x : double_real returns double_real)

function addc(a, b:complex returns complex)
record complex [ r:a.r+b.r ; i:a.i+b.i ]
end function % addc

function subc(a, b:complex returns complex)
record complex [ r:a.r-b.r ; i:a.i-b.i ]
end function % subc

function mulec(a, b:complex returns complex)
record complex [ r:a.r*b.r-a.i*b.i ; i:a.i*b.rsa.r*b.i ]
end function % mule

function makec (a, b:double_real returns complex)
record complex [r:a; i:b)
end function

function ilog2 (n:integer returns integer)
for initial

X = =13
k := n;
while k > 0
repeat
k :=0ld k / 2;
X :=old x + 1;
returns
value of x
end for

end function

oe

% fft : non-recursive fast fourier transform.
%

% input

% v : Array of Complex values

%

% output

% fft of v

%

39



function fft(v : complexOneDim returns complexOneDim)

let
PI := 3.1415926536D;
twoPI := 2.0D*PI;
n := array_size (v);
half_n := n/2;
depth := ilog2 (n);
in
for initial
res := v;
1 = 03
nl e 2;
nZ2 := n/2;
n3 := n;
while 1 < depth
repeat
theta := twoPI / double_real (old nl);
res := for j3 in 0,n-1
t3 := if j3 < half_n then j3 else j3 - half n end if;
k := t3 / old n2;
i := mod (t3, old n2);
jl := k * old n3 + i;
j2 := 31 + old n2;
theta_k := theta * double_real (%) ;
omega := makec (cos (theta_k),-sin (theta_k));
omega_f := mulc (omega, old res(j2]);
myres := if j3 < half_n then
addc (old res[jl], omega_f)
else
subc (old res([jl], omega_f)
end if
returns
array of myres
end for;
nl := old nl1 * 2;
n2 := old n2 / 2;
n3 := old n3 / 2;
l := old 1.4 1;
returns
value of res
end for
end let

end function
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D IF1 Graph of FFT
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Figure 27: IF1 graph of LoopB.
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Figure 28: IF1 graph of LoopB-body.
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E MPL code of FFT

main ()

{

nmask = NumPEs-1;
nshift = ilog2 (NumPEs) ;

/* Prepare input on all the PEs LW 4
zs = (int) ceil ((double) Asize / (double) NumPEs) ;
z = (plural complex_t *) p_malloc (sizeof (complex_t)*zs); /*Input*/
newz = (plural complex_t *) p_malloc (sizeof(complex_t)*zs);/*Output*/
for (P_i=0;p_i<zs;p_i++) {

plural int p_idx;

p_idx = (p_i<<nshift) + iproc;

if (p_idx == 0 || p_idx >= (Asize-1))
makec (0.0,0.0,z([p_i]);

else
makec (1.0,0.0,z([p_1i]);

fft (z, newz, Asize, zs); /* call fft =/

void fft (a,b,n, zs)
plural complex_ t *a, *b;
int n,zs;
{
plural complex_t p_omega,p_omega_£,p_lc,p_rc;
plural real p_t,.p_theta_k;
plural int p_k,p_i,p_zi;
plural int P_jl.p_Jj2,p_j3; /* £(33,1+1) = £(j1,1) +(-) w*f(j2,1) */

real twoPI, theta;

int half_n = n/2;

int depth,1l; /* depth log2(n) */

int nl.n2,n3; /* 2°x, used in various ways. See below */

twoPI PEI*2.0;

depth = ilog2(n);

nl = 2; /* 2°(1+1) */

n2 n/2; /* N/(27(1+1)) =*/
n3 n; /* N/(271) */

1

}

I

for (1=0; l<depth;l++){
theta = twoPI / nl; /* for w(27(1+1) ,x) */



for (p_zi:O;p_zi<ZS;p_zi++){
plural int p_tj3;

P_Jj3 = (p_zi<<MemShift) + iproc;
/* p_j3 the index this PE is procsessing */
if (p_j3 < half_n)
p_tj3 = p_j3;
else
pP_ti3 = p_j3 - half_n;

p_k = p_tj3/n2;

pP_i = p_tj3%n2;

p_jl p_k*n3 + p_i;
P_J2 = p_jl + n2;

n

/* use "rfetch* for remote array access */

ps_rfetch (p_jl&ProcMask, (plural char * plural)&(alp_jl>>MemShift]),
(plural char *)&p_lec, sizeof (complex_t)):

ps_rfetch (p_j2&ProcMask, (plural char * plural)&(a(p_j2>>MemsShift]),
(plural char *)&p_rc, sizeof (complex_t));

p_theta_k = theta * p_k;
makec (p_cos (p_theta_k), -p_sin(p_theta_k), p_omega) ;

mulc (p_omega, p_rc, p_omega_f);
if (p_j3 < half_n)
addc (p_lc,p_omega_f,b[p_zi]};
else
subc (p_lc,p_omega_f,b(p_zi]);
)

*
"

nl
n2
n3

’

i

~ O~
I n
[0 S I 6

‘

for (p_zi=0;p_zi<zs;p_zi++)/* copy back the results for next iteration */
copyc (blp_zi],a[p_zi]);
)
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