Simulation of the communication
libraries of the CM-5 on UNIX workstations

Nicolas Guérin and Jean-Luc Gaudiot

CENG Technical Report 95-19

Department of Electrical Engineering - Systems
University of Southern
Los Angeles, California 90089-2562
(213)740-4484

&

Ecole Nationale Supérieure de ’Aéronautique et de I’Espace
31055 Toulouse - FRANCE

August 25, 1995

Simulation of the communication libraries of the CM-5 on UNIX workstations

Abstract

The purpose of the project described here was to build a function library on UNIX
workstations, that would emulate the communication libraries of the CM-5: CMMD and
CMAML. This simulation should enable the user to compile, run and debug CM-5
programs on a network of UNIX workstations.

The first part of this report is a general presentation of the CM-5 and its communication
libraries: architecture, execution model, active messages elc.

Then, you will find in the second part the details of the implementation: how the
simulation is working, how UNIX communicates with UDP/IP, why an acknowledgment
scheme was necessary, how it is implemented, and the limitations of the simulation.

Finally you will be given the performances of the simulation as compared to a CM-5, the
influence of the number of nodes and the interest of the long active message scheme.

The Appendix contains the fully commented listing of the whole program.

Simulation of the communication libraries of the CM-5 on UNIX workstations

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Jean-Luc Gaudiot, Associate Professor at
USC, and to Steve Jenks, Ph.D. student and advisor of my research work, for their
guidance and support throughout the five months of my training session at USC.

I am also very grateful to Dr. Bernard Lécussan, Chairman of the ENSAE Computer
Science Department, who made all this possible.

This research was conducted as a requirement from Sup'Aéro for obtaining the ENSAE
Engineering Diploma.

Simulation of the communication libraries of the CM-5 on UNIX workstations

TABLE OF CONTENTS

ABSTRACT 2
ACKNOWLEDGMENT 3
TABLE OF CONTENTS 4
INTRODUCTION 7
A - BACKGROUND 8
I- The CM-5 - o S B K S A A A A L AL e A AN A 8

1 - CM-5 Architecture 8

2 - The CM-5 execution model 9

3 - Languages 10

II - The communication libraries of the CIV-5 ... iiiieerececeeesreeseessneeeesessaessasssaessasssensens 11

1 - CMMD 11

a- General presentation 11

b- CMMD timers 11

2 - CMAML: CM Active Message Layer 12

3 - Handler functions 13

4 - Aclive messages 13

5 - Requests, Replies and RPCs 14

IIT - Functions to implement ... seeeeess e sae e e anesseneeneeeae - - 15

1 - CMAML functions 15

a- Functions for sending active messages: 15

b- Network polling functions 15

2 - CMMD functions 16

a- CMMD timers 16

b- Other functions 16

c- For compatibility only 16

B - IMPLEMENTATION 17

Simulation of the communication libraries of the CM-5 on UNIX workstations

I - General presentation of the program
1 - The package
2 - Language
3 - Installation - Compilation of the library
4 - The “HOSTS" file
5 - Launching sequence
6 - Modifications in the existing program
7 - Example

IT - COMMUDNICALIONS teieneeeeeeeeesceenmeeeeenessesseessnseesnnens

I - sockels
2 - Protocols
3 - Non-blocking mode

.................................

............

IIT - The acknowledgment SCHEME.....c.. et cs et e s s e se e e ssns s ssnansssnnns

1 - Why?
2 - The ACK scheme
a - First implementation
b - The “acknowledgment size”
¢ - Current implementation
d - Limitation
3 - How to choose the “acknowledgment size"”
4 - Implementation of an ACK message

IV = ACtiVE IMeSSATOS. cucciniiiaanacnsmisansmiionsssibonanissassisasivns

1 - Normal active message
a - Composition
b - Implementation
2 - Long active message
a - Presentation
b - Implementation
¢ - Possible improvement

V - The launcher..
1 - Presentation
2 - Launching processes
a - Command-line arguments
b - Reading the data from file “HOSTS”
¢ - Launching the processes
3 - Synchronization
4 - Detection of the end of the program
5 - Options

VI - Initialization 0Ff The TIOHER ... i i s s i ross s serssdssvannsams aisrase

1 - Modification of the CMMD program
2 - CMMD_init_simulation()

VI - Functions implementation ... o csssnenessssssssssssnsssssssssssesnsssssesssssssansssasssass

1 - C++ implementation: the “node” class
2 - Timers

3 - CMMD_sync_with_nodes()

4 - CMAML_poll()

P ra ettt tasE et Nt teaee e atteseeettteeeEEseeNststENtsstssEIIstITIISRIEEssETARERERETS

17
17
18
18
18
19
20
20

21
21
21
22

23
23
23
23
24
25
25
26

27

i

27
27
28
28
28
29
29

30
30
30
30
30
31
31
32
33

34
34
35

36
36
38
38
38

Simulation of the communication libraries of the CM-5 on UNIX workstations

5 - CMAML _request(), CMAML _reply(), CMAML_rpc()

6 - Others
a - CMMD_self_address()
b - CMMD_partition_size()

39
40
40
40

¢ - CMMD_disable_interrupt(), CMAML _disable_interrupt(), CMMD_fset_io_mode()40

VL < LAt i ONS cussmuminsasasunssssmsssismssivniosn i i s siess i isiassssnsenssnsasasasd 40

1 - Homogencous network 40

2 - Number of nodes 41

C - PERFORMANCES 42
I = BENCHINATKS iovioieivmasicomsisisssssisssisssisssnsssssanesiossdssssisios sossssisnsoniossisssis fosssiusnnsnsnsosissussisisasasiond 42

1 - The “nt-tak™ program 42

a - Presentation 42

b - Implementation 42

c - features 42

d - Results 43

2 - The “nt-pmm” program 43

a - Presentation 43

b - Implementation 43

¢ - features 43
TTi=THOPTACTOTTIL ISSMIE cvrnonuscsmsas cossssnsossosesusnssss s stns atsast sussnn s ouss ss o0 448840489 05 44508 64 43084840 001 524 RS0 RRR A2 44
III - Influence of the number of nodesccceeceeeeeence 45

1 - Time to complete 45

2 - Overall efficiency 46

IV - Using 10ng aCtiVe IMESSAZES cuvveerrrurssesssrnssssssssssresssnsssssesssnssssssesssnsssssesssssssssssssssssassasssssens 47

¥V -~ iComparison with the CMe5 i smismcsscnmisimssaissssssiiisiisissiisiies 48
CONCLUSION 49
BIBLIOGRAPHY 50
APPENDIX 51
LAstinig GF ThE STDUIALION. .o ormmmersessnmvnimissonsmsossscs rrmmesssmmensosesssnsanssssesssssumasss sonssasssenssssasaneonsn 52
Listingof the examiple . cucssiinominissioesssseisiistosssisssii s msssicisisisssesosatssisias 1D

Simulation of the communication libraries of the CM-5 on UNIX workstations

INTRODUCTION

The purpose of this project was to build a function library on UNIX workstations, that
would emulate the communication libraries of the CM-5. This should enable the user to
compile and run CM-5 programs on a network of UNIX workstations.

This project has been conducted for several reasons.

The main one is that having a CM-5 simulator may be useful for debugging programs
when the real machine is unavailable or when running the program on the real hardware
causes deadlocks. It should be easier to debug programs on a workstation acting like a
CM-5 than on the actual machine.

Besides, this is my end of study project, and thus part of my engineering studies; building
a simulator of the CM-5 seemed to be an excellent way of learning the message passing
and execution models of distributed memory parallel computers. In addition, it gave me a
good idea of how programs are structured for such machines.

For those reasons, I found this project very challenging and interesting, and this report
presents the results of my work.

Simulation of the communication libraries of the CM-5 on UNIX workstations

A - BACKGROUND

I-The CM-5

The CM-5 system from Connection Machine is a multiprocessor system designed to
achieve high performance on large and complex problems. This section will briefly
describe the architecture of the CM-5 system, and its communication libraries. Most of
this information comes from [1].

1 - CM-5 Architecture

A CM-5 system consists of a large number of processing nodes, a small number of
partition managers (PMs) and some number of I/O control processors (IOCPs) and I/O
devices. These components are all linked together by two internal communications
networks, the Data Network and the Control Network.

The Data Network is used for fast, high-bandwidth communication of data between the
processing nodes, PMs, and I/O devices. The Control Network provides a number of
global control operations, such as broadcast, scan/reduction operations, and node
synchronization.

In the CM-5 system, each processing node containg a RISC microprocessor and a
Network Interface (NI) chip that connects it to the networks. Each processing node may
also contain four vector processor units (VUs), which are located between the RISC
microprocessor and the node’s memory. The VUs, when they are present, provide highly
efficient memory-based arithmetic calculations.

The following figure shows the components of a CM-5 processing node:

A - Background 8

Simulation of the communication libraries of the CM-5 on UNIX workstations

Memory Memory Memory Memory
8§ MB 8§ MB 8§ MB & MB
Vector Vector Vector Vector
Unit Unit Unit Unit
R I 64-bit bus
Data
/ Network
RISC Network
Microprocessor Interface i-\‘ Control
Network

Figure 1. Components of a CM-5 processing node

The CM-5 processing nodes are grouped into one or more partitions, each controlled by a
partition manager. Program execution always begins and ends on the partition manager.

The CM-5 system uses a parallel timesharing operating system known as CMost, which
allows each partition of nodes to execute as a separate parallel timesharing system. Each
partition has its own set of processes to execute, and can be considered a separate parallel
processing system.

Each node within a partition has a logical address relative to that partition, from 0 to
(partition-size -1). The nodes (and the host) use these logical addresses when sending
messages. They use specific functions to gain the requisite information, among which
CMMD_self address() and CMMD_partition_size(), that will have to be implemented in
the simulation.

2 - The CM-5 execution model

An application program executing on the CM-3 is actually two separate programs. One
program runs on the partition manager (the “host” in CMMD terminology); the other runs
on all nodes. Frequently, this duality is transparent to programmers: a programmer simply
writes a global application, or a “hostless” message-passing program, and the CM
software does the work required to create the appropriate host and node executables. The
simulation, as it will be described later, is working exactly the same way, using the same
duality between the “host” program and the node program.

A - Background 9

Simulation of the communication libraries of the CM-5 on UNIX workstations

In a CM-5 message-passing program:

L 4

The program executes in multiple copies, one on each processing node.

Although all nodes execute the same program, each node operate independently
of the others.

Communication between nodes is in the form of “messages” sent from one
node to another, or from one node to many nodes. It is with theses messaging
features that the CMMD library, and thus the simulation, is mainly concerned.

The partition manager typically does nothing more than start the program
running on each of the nodes, and thereafter acts as an I/O server for the nodes.
This is the standard, “hostless” form of message passing.

Alternatively, the partition manager may execute a separate “host” program that
directs the actions of the nodes, distributes data to them, and collects results.
This is the “host/node” form of message passing. This form is not implemented
in the simulation, and therefore won’t be described much more. For more
information on the host/node programming, see [1].

I/O may be handled by each node independently, with each node opening and
closing its own files.

3 - Languages

CMMD programs can be written in standard Fortran 77, C, or C++. Programs written in
these languages execute exclusively on the microprocessor in each node, ignoring the
vector units. The simulation, however, only supports C++, and thus C. Nevertheless, it
should be possible to call the simulation functions from a Fortran program, but it would
imply some work on the Fortran code.

CMMD programs can also be written in the CM’s data parallel programming languages,
CM Fortran and C¥, allowing them to access the vector units. The simulation does not
support those languages.

A - Background 10

Simulation of the communication libraries of the CM-5 on UNIX workstations

II - The communication libraries of the CM-5

1-CMMD

a- General presentation
CMMD is a library of message-passing routines for the Connection Machine CM-5
system. Programs that use CMMD typically operate in a message-passing style:

¢ Each processing node of the CM-5 runs an independent copy of a single
program, and manages its own computations and data layout.

¢ Communication between nodes is handled by calls to CMMD message-passing
functions

CMMD allows you to send messages from one processing node to another in a number of
different ways, depending on the needs of your application. Therefore, the CMMD library
provides a wide range of communication functions, and only a few of these functions are
actually implemented in the simulation. What is, and what is not implemented will be
fully described later in the report.

b- CMMD timers

The CMMD library provides a set of timing routines for use by the nodes in message-
passing programs. This routines are implemented in the simulation, and provide a good
way to evaluate the performances of the simulation and compare them to the CM-5.

Each node manages its own timers. The timers are called by a single node and record the
time spent by that node. They have no connection with timers used on any other node.

These timers measure three values:
¢ Busy time is the time during which the user program is executing user code.

¢ Idle time is the time during which the user program is looping in the operating
system’s dispatch loop.

¢ Elapsed time is the sum of busy time and idle time.

Each node may have up to 64 timers running simultaneously, and timers can be nested.

A - Background 11

Simulation of the communication libraries of the CM-5 on UNIX workstations

All timers share the same pattern of use:

¢ First, you must call CMMD_node_timer_clear() with an integer timer-ID. This
creates the timer and initializes it to zero.

¢ Then you call CMMD_node_timer_start(), to start the timer going.

¢ The next call should be CMMD_node_timer_stop(). This records the current
value within the timer.

¢ You may call CMMD_node_timer_start() again, timing will be cumulative until
you call CMMD_node_timer_clear() again.

2 - CMAML: CM Active Message Layer

CMAML is the protocol-less transport layer upon which the higher-level CMMD
functions are built. You can use these functions to define custom network protocols and
to perform specialized low-level communication.

CMAML is an internal layer of the CMMD software. It is made available for advanced
programmers and library developers who may require functionality or performance not
otherwise provided by the higher level CMMD functions.

Actually, the purpose of the simulation was to provide CMAML functions, more than
CMMD functions. This is the reason why it is important to describe this library further.

CMAML provides transport functions for two types of message transfer:

¢ Active messages are one packet long (five 32 bits words). Their purpose is to
invoke a function upon the receiving node and to supply arguments to be passed
to the function upon invocation.

¢ Block data transfers, transfer a single block of data from one or more source
nodes to a single receiving node. When the transportation operation completes,
the source and the destination nodes may invoke an attached handler function.
This type of transfer was not needed and therefore is not implemented in the
simulation. It is however possible to implement it on the existing simulation
source code. Block Data Transfers will not be described here. For more
information, see [1].

In support of these transport functions, CMAML also provides functions that allow
polling of the networks, manipulating interrupt states, and preserving register contents.

As with most transport layers, CMAML functions assume that some higher layer of
software is providing any protocol needed, and that (for example) receiving nodes know

A - Background 12

Simulation of the communication libraries of the CM-5 on UNIX workstations

what to do with any data sent to them. Users must ensure that their applications provide
such protocol.

3 - Handler functions

A handler 1s simply a user-defined function that can be invoked in any one of a number of
situations:

¢ upon receipt of an Active Message
¢ upon receipt of all expected data on a receive port
¢ upon completion of CMAML_scopy() or CMAML_pcopy() operations

¢ upon completion of CMMD_send_async() or CMMD_receive_async()
operations

Only the first situation is used in the simulation, since the functions used in the other
situations are not implemented.

Note that handlers are, by definition, executed upon completion of some event, not upon
attaining a given line of code in a program. They thus execute asynchronously to the
application’s main thread of control. In fact, they may cause intermissions in the
background computation whenever the application allows it. Handlers, therefore, must be
written so as not to interfere with the state of the background computation. The user is
responsible for the correct interaction between the background computation,
communication, and handlers.

4 - Active messages

An active message is a single network packet comprising a series of words. The first
word (word 0) is the address of a handler function on the destination node. The remaining
words are arguments to be passed to the function.

The current CMAML implementation uses a five word format:

Function Address argl arg? arg3 argd

word(word 1 word2 word3 word4

Figure 2. Active message format

A - Background 13

Simulation of the communication libraries of the CM-5 on UNIX workstations

Receipt of an active message automatically invokes the handler function with the
specified arguments. The interpretation of the arguments is strictly under the control of
the handler function. When the handler function returns, the node either resumes its
polling of messages or, if it was interrupted to receive the message, continues the
execution of its interrupted computation.

Active messages are never buffered on arrival. When an active message is received
(whether by polling or by interrupt), its handler is invoked immediately.

5 - Requests, Replies and RPCs

There are three types of active messages: requests, replies and RPCs. They differ in their
use of the data network, and in the context in which they can be used.

The Data Network has two independent interfaces. They are sometimes called the
“request” and “reply” interfaces.

Here are a few differences between the three types of active messages.

A request message
¢ Can only be sent from the main thread of control, never from a handler.
¢ Uses the request interface to the Data Network to transmit data.
+ May send only Reply messages from within its handler.

¢ Polls both interfaces for incoming messages.

A Reply message:
¢ Can only be sent from handler functions, never from the main thread of control.
¢ Uses the reply interface to transmit data
¢ Cannot call any communication functions from within its handler.

¢ Polls only the reply interface for incoming messages.

A Remote Procedure Call (RPC) message:

¢ Can be sent either from a node’s main thread of control or from a handler
function.

A - Background 14

Simulation of the communication libraries of the CM-5 on UNIX workstations

¢ Uses the request or reply interface to the Data Network to transmit data.
¢ Can call other RPCs, Replies, or any other non-blocking function.

¢ Polls both interfaces for incoming messages.

Request and Reply messages are often used for purposes where one node sends a Request
for data, and the other returns the data as a Reply.

In spite of their differences, Request and RPC messages are the same for the simulation.
Since there is no way to control if the message has been sent from a node’s main thread of
control or from a handler function, and since RPC messages may use either interfaces to
transmit data, there is no problem in implementing RPC messages as Reply messages.

III - Functions to implement

Here is the list of the functions that had to be implemented. A better description of these
functions will be given later in paragraph B.

1 - CMAML functions

a- Functions for sending active messages:

void CMAML_request
void CMAML _reply
void CMAML _rpc
(int dest_node, void (*handler)(), int data1, int data2, int data3, int data4)

dest_node Integer specifying the destination node for the message.
handler Address of a handler function on the destination node.

datal..4 Handler function arguments.

b- Network polling functions

void CMAML_poll()
void CMAML_request_poll()

A - Background 15

Simulation of the communication libraries of the CM-5 on UNIX workstations

void CMAML _reply_poli()

CMAML_poll() is the generic CMAML polling function, and checks both interfaces for
messages.

2 - CMMD functions

a- CMMD timers

int CMMD_node_timer_clear(int timer)

int CMMD_node_timer_start(int timer)

int CMMD_node_timer_stop(int timer)

double CMMD_node_timer_elapsed(int timer)
double CMMD_node_timer_busy(int timer)
double CMMD_node_timer_idle(int timer)

timer Integer from 0 to 63, identifying the timer.

b- Other functions

int CMMD_self_address()
This function give the logical address of the node in its partition.

int CMMD_partition_size()
Returns the number of nodes in the partition.

void CMMD_sync_with_nodes()
This function allows a synchronization between the nodes. Once a program on a specified
node calls this function, it waits until all the other nodes also call this function.

¢- For compatibility only

void CMMD_disable_interrupts()
int CMMD_fset_io_mode(File *,int)

Those functions have no effect on the simulation, and are provided only to avoid
compatibility problems when compiling a CM-5 program for the simulation.

A - Background 16

Simulation of the communication libraries of the CM-5 on UNIX workstations

B - IMPLEMENTATION

I - General presentation of the program

1 - The package

While developing this project, it was important to keep in mind that the potential user of
the simulation would probably be familiar with the CM-5 interface, and thus it seemed
important to keep a very simple interface. A program running on the CM-5 should be able
to run on the simulation with only minor modifications.

And in fact, except for an indispensable initialization, the CM-5 programs do not need
any modification. Once the compilation options have been modified to provide a link
edition with the library, the program may compile as if it were on a CM-5. The only
difference is that, when the program calls a CMAML function, the functions from the
library will be used instead of the genuine CM-5 functions.

Once the simulation has been compiled, only three files are useful:

¢ cmmd.h : This file replaces the original cmmd.h of the CM-5. It contains the
definition of the functions available in the library. You can also take a look at
this file to know the exact syntax and types of the functions.

¢ libcmmd.a : This is the library itself. You have to specify a path to this library
when compiling and binding a CMMD program.

¢ go: As its name suggests, this program is the launcher of the simulation. It runs
the program on the workstations specified, and also acts like the partition
manager of the CM-5: it is for example used for synchronization.

When running your CM-5 program, the simulation also needs another important file:
¢ HOSTS : This file contains major information for the simulation: the hosts for

each node, the login name on each host, the ports to use, the path and the name
of the executable.

B - Implementation 17

Simulation of the communication libraries of the CM-5 on UNIX workstations

The package also contains an example of CMMD program. See 7- for more information
about it.

2 - Language

The simulation has been programmed using the C++ programming language. For this
reason, it will handle perfectly programs written in C++ for the CM-5. This language has
been chosen because it provides a good flexibility, and can still be very efficient thanks to
the C functions it is able to call.

Programs written in C can be easily adapted, since C is an internal layer of C++. Such
programs only need to be compiled with a C++ compiler, and linked to the library. In the
same way, programs written in Fortran 77 should be able to use the library, provided that
the compiler allows calls to C++ functions.

3 - Installation - Compilation of the library

The first thing you need to do to install the library is to “un-tar” the file “CMMDsim-
1.0.tar”. This will create the directory “CMMDsim-1.0" and five sub-directories: “src”,
which contains the source code of the library, “example”, which contains an example of
CMMD program, “bin”, “lib” and “include”.

Compiling the library should be really easy. It has been programmed on hp and SUN
workstations, but there is no reason why it would not run on other UNIX platforms. It is
possible to use the “g++” compiler from the GNU C compiler (gcc), but other compilers
are also fine (for example hp’s CC compiler).

Just type “make all” in the “src¢” directory: every file will be compiled, including the go
program which is the only executable, and the library “libcmmd.a” is created. The
simulation is then ready.

4 - The “HOSTS” file

As it has been already said before, this file contains major information for the simulation:
the hosts for each node, the login name on each host, the ports to use, the path and the
name of the executable.

Here is an example of HOSTS file:

Host port Command Login Nameand Location of binary file
hyde 12365 remsh guerin main Jusers/guerin/project/example
chryse 10248 remsh guerin - main fauto/users/guerin/project/example

B - Implementation 18

Simulation of the communication libraries of the CM-5 on UNIX workstations

When you want to run the simulation, run the go program; it will first read the HOSTS
file, then launch the node processes on each specified host.

In the example given, go will launch two processes, one on the host “hyde”, the other on
“chryse”. The program launched is called “main”. It will use the ports 12365 to 12370 on
hyde, and the ports 10248 to 10253 on chryse. Each process uses indeed five ports. This
specification of the port is useful when one of the ports you intended to use is already
occupied. You just have to modify the number in the HOSTS file, and try again.

The executable is not located in the same directory on each host, and this is why you have
to specify it for each node.

You can also use a different login for each host. This is useful when you have several
logins, or when you want to use a machine with the login of a friend. Nevertheless, you
must be allowed to do so! (e.g. your login must be in the “.rhosts” file). For more
information, read the “rsh” or “remsh” man pages. Indeed, the name of the “remote shell”
UNIX program is not the same on every platform: “rsh” on SUN, “remsh” on hp; that is
why you have to specify it in the HOSTS file.

You can also launch several processes on a single machine. It is not recommended
though: socket communications among a single machine is not very reliable. And
furthermore, this will slow down the simulation.

There is no “partition” when you use the simulation. The partition size is just the number
of entries in the HOSTS file. There is no explicit limitation in the number of nodes you
might use. Nevertheless, you should read VII- before trying to run the simulation on ten
thousand hosts.

5 - Launching sequence
This is the sequence of actions that happens when the user types go:

¢ The program reads the command-line arguments, in order to feed them back to
each node

¢ goreads the “HOSTS” file

¢ for each entry in this file, a process is launched with its number in the command
line: There is no other way for a process to know its logical address
(CMMD_self_address()). Hence, we have to modify the existing program (see
6- for more details).

¢ When all processes are launched, go waits for an acknowledgment from all of
them. This allows the simulation to synchronize. It is done by a call to the
CMMD_sync_with_nodes() function.

For more technical details, see V-.

B - Implementation 19

Simulation of the communication libraries of the CM-5 on UNIX workstations

6 - Modifications in the existing program

Several parameters have to be given to each process, among which the indispensable
logical address. Those parameters are given among the command-line arguments of the
process. Therefore, the existing program has to be slightly modified.

A special function was created to handle the command-line arguments:
CMMD_init_simulation(). In spite of its name, it is not a real CMMD function. It has been
created for the simulation only. Not only does it handle the command-line arguments, but
it also initiates the communications.

The only modification that you need to do in the existing program is to add these few
lines just after the declaration of the main() function:

// to add if you are using the simulation; needs stdlib.h (atoi())
// begin

{

// test number of arguments
if (argc<6) {

exit(2);

}

{// Init with the 5 last arguments
CMMD_init_simulation(atoi(*(argv+argc-5)),*(argv+argc-4),atoi(*(argv+argc-3)),
atoi(*(argv+arge-2)),atoi(*(argv+arge-1)));

/I lgnore the 5 last arguments
argc-=5;

}
// end

The “argc” and “argv” variables must be declared in the definition of main().

7 - Example

An example of CMMD program is included with the package (directory “example”). It is
very simple and it is probably not necessary to explain what it does. It has been provided
to familiarize the user with the simulation, before he starts to run much more complicated
programs.

First, you must compile it (see the Makefile), and then you can try to run it. Don’t forget
to modify the “HOSTS” file for your system. If you have any problem running it, the
answer is probably in this report.

B - Implecmentation 20

Simulation of the communication libraries of the CM-5 on UNIX workstations

II - Communications

This project requests the use of the communication tools of UNIX. To implement the
communication functions, it is necessary to use low-level UNIX functions, and to use the
sockets. Here is a brief and simple description of UNIX communication tools. For more
information on UNIX communications, see [2].

1 - sockets

A socket is a very powerful UNIX tool that allows you to exchange messages with
another host. A socket is working like a letterbox: it has an address and a buffer. A socket
address is defined by its host and a port number. If you send a message through a socket,
you only have to specify the address of the destination socket. When a message is
received, you can also know the address of the sender. There is a buffer where messages
are stocked, waiting for the receiver to read them.

2 - Protocols

You can use two different protocols when using UNIX sockets: UDP/IP and TCP/IP,
which is the best known since it is used on the Internet.

TCP/IP has a big advantage: it is safe; a message can not be lost, which means that each
message sent is indeed received. In fact, a TCP/IP communication, or stream
communication, needs the sockets to be in a connected mode. Each socket is linked to
exactly one other, and can send or receive messages only with this socket.

UDP/IP is working more like a mailbox: when a message is sent, it is put in a FIFO
queue, and the receiver may or may not read the message. This is known as the datagram
mode. A socket can send a message to any other socket, provided that it knows its
address. The sockets do not need to be connected. Furthermore, a message can be lost:
there is no way to be sure that a message has been received.

Even if TCP/IP offers reliability, UDP/IP has been chosen for this project. These are the
two main reasons:

¢ UDP/IP is faster than TCP/IP.

¢ You don’t want to saturate the ports of the machine. The connected mode needs
a lot of sockets, since a socket can only communicate with one other. If N is the
number of nodes you want to use, you will need at least 2N sockets on each host
(because there are two interfaces). Thus, if you use 32 nodes, you will need 64
sockets, whereas you need only 5 sockets for the datagram mode.

B - Implementation 21

Simulation of the communication libraries of the CM-5 on UNIX workstations

The fact that you can lose messages with UDP/IP is a real problem, and you will see in
III- how the simulation copes with it.

3 - Non-blocking mode

Many of the CM-5 communication functions must not block. For example, a call to
CMAML_poll() should return quickly if there is no message pending. This means that the
simulation has to use communication functions in non-blocking mode, which is not the
default mode.

Furthermore, the simulation sometimes needs to be in blocking mode. For example when
sending a message, you do not want it to be truncated, and you want to send the whole
message. For this, you need to be in blocking mode.

The simplest way to do this is to use the ioctl library, which provides tools to handle this
problem. When applying the ioctl function on the socket file descriptor with the
FIONBIO option and the proper flag, you can switch between blocking and non-blocking
mode.

Here are the functions used in the simulation (file node.cc):

static inline int setsocknoblock(int fd) { //fd = file descriptor
int flag = 1;
return(ioctl(fd,FIONBIO,&flag));

static inline int setsockblock(int fd) { //fd = file descriptor
int flag = 0;
return(ioctl(fd,FIONBIO,&flag));

}

B - Implementation 22

Simulation of the communication libraries of the CM-5 on UNIX workstations

III - The acknowledgment scheme

1- Why ?

The UNIX protocol used in this simulation is UDP/IP. With this protocol, there is no
guaranty that the message is indeed delivered. Are messages lost often ? sometimes ?
hardly ever ? never ?

A benchmark program was necessary to answer these important questions. This program
allows two hosts to exchange messages: one host sends n messages, and the other
receives m. Is m equal to n ? Here are the results.

When 1000 messages are sent, 1000 messages are received. Great ! no loss !

But when sending 100,000 messages, between 2% and 6% are lost, i.e. between 2000 and
6000! This is very embarrassing... And it proves that an active message can be lost quite
often in the simulation.

I ran the benchmark with the two nodes being on the same host. The percentage of
messages lost jumped to 12%. This is one of the reasons why it is not a good idea to run
several nodes on a single host...

At first, I ignored this situation. But when I ran a CMMD benchmark program that
exchanged many active messages between nodes, 1 obtained very strange behaviors
because messages were lost. It thus appeared to be a major problem, and the only solution
was to implement an acknowledgment scheme.

2 - The ACK scheme

a - First implementation
The first implementation was simple:
¢+ Every message has a number.
¢+ [Each time a node receives a message, it sends an acknowledgment.
¢ Each time a node wants to send a message, it waits until the previous message
sent to the same node is acknowledged. If it is not after some time, the node
sends again the previous message (which as not been acknowledged) and

returns in the loop to receive an acknowledgment.

¢ If a node receives an acknowledgment that was already received previously,
then it just ignores it.

B - Implementation

2
L8]

Simulation of the communication libraries of the CM-5 on UNIX workstations

¢ If a node receives a message for the second time, it must send an
acknowledgment (the previous was probably lost), but it must not execute the
handler for a second time.

This scheme worked perfectly with the benchmark that used to fail. The problem was
resolved... but the new simulation was twice as slow ! Indeed, the number of messages
exchanged between nodes is doubled, and the nodes have to wait for an acknowledgment
when they need to send a message.

b - The “acknowledgment size”

A simple way to control the time wasted by a node waiting for an acknowledgment is to
reduce the frequency of those verifications. For example, a node could send an
acknowledgment every twenty messages instead of every message. This would reduce the
time spent with acknowledgment by twenty since the nodes verify and wait for an
acknowledgment only once every twenty messages.

The new specifications are as follow:

Let “N” be the “acknowledgment size”

¢+ Each time a node receives a message, it increments a counter (specific to the
sender).

¢+ When a counter reaches N:
e Jtisreset.
° Anacknowledgment is sent to the sender.

¢ Each time a node sends a message, it first increments another counter (also
specific to the receiver).

¢ If the counter is less than N, the message is sent.
¢ ifitisequal to N:
e Itisreset.

® The node waits for an acknowledgment. If it is received, the message
is sent.

e Otherwise, the node sends all N previous messages again, and waits
for an acknowledgment. This is a loop; the node does it again until it
receives the acknowledgment. Then the message is sent.

B - Implementation 24

Simulation of the communication libraries of the CM-5 on UNIX workstations

¢ Else, the message is sent straight away.

¢ Finally, the message is stored (in case it has to be sent again).

This scheme is a bit more elaborate, and not only does it work perfectly, but the time lost
is almost negligible, compared to the version without acknowledgment.

¢ - Current implementation

I thought that this scheme was sufficient to cope with every message lost. But then, I tried
another CMMD benchmark, and it did not work well. Here is why:

I worked with two nodes. The main characteristic of this benchmark was that when a
node sends a message, it waits immediately for the answer, in a blocking loop. If this
message was lost, there was no way to exit the loop. And since the simulation is supposed
to work without modifying the original program, the acknowledgment scheme had to be
modified.

To solve this problem, it is necessary to add a new scheme to the previous one:
¢ Each time a node polls for messages, a counter is incremented.
¢ Each time the node sends a message, the counter is reset.

¢ When the counter reaches M (number defined by the user, about 1000 or more),
it means that the node has been polling for M times in a row, without sending
any message. Then

e The counter is reset.
e The node sends again all the messages that have not been

acknowledged: reply or request messages, to every node. The message
that had been lost is thus sent again, and the program may continue.

This is probably slowing down the simulation, since there might be many messages to
send. Nevertheless, it is hardly noticeable, and thanks to this scheme, the simulation is
now reliable.

d - Limitation

B - Implementation 25

Simulation of the communication librarics of the CM-5 on UNIX workstations

Even though the acknowledgment scheme seems complete now, there is still a small
probability that your program might lose some messages. Indeed, there is no
acknowledgment for the /ast messages sent by a node before its termination.

For example, if the acknowledgment size is 20, and if the last message sent by a node is
number 415, the 15 last messages will not be acknowledged, and if they are lost, you will
have to run the simulation again.

There is no way to avoid this situation, except by controlling the way your CMMD
program ends. And since the original program should not be modified, the situation is
hopeless. However, this problem should be quite rare, and you can limit it by using a
smaller acknowledgment size.

3 - How to choose the “acknowledgment size”

Let Time be the total amount of time needed for all the communications.

Time 1s the sum of the normal time to send the messages, the time to send again the
messages not acknowledged, the time to send the acknowledgment messages and the time
waiting for an acknowledgment.

N
Time=N*t+N* prob_loss* ACK *t + *(t +wait)
ACK
where prob_loss is the probability to lose a message, ACK is the acknowledgment size, N
the number of messages sent and “wait” the average time waiting for an acknowledgment.

If we consider the time of waiting negligible when compared to time to send a message,
then Time is proportional to (1+ACK#*prob_loss+(1/ACK)). We want to minimize this
expression by choosing the right ACK. The derivation gives:

prob_loss — : > =0
ACK

ACK = |— L
prob_loss

with prob_loss=1%, we get ACK=10.
with prob_loss=0.2%, ACK=22.

It is difficult to evaluate the probability of the loss of a message. Nevertheless, we may
consider that the good values of ACK are between 10 and 30. The experience allows me
to say that 20 is a good value.

which finally gives:

B - Implementation 26

Simulation of the communication libraries of the CM-35 on UNIX workstations

4 - Implementation of an ACK message

Acknowledgment messages are very simple messages. They contain only the number of
the sender, of the receiver and the number of the message. Here is the exact
implementation in the simulation:

class ack_message {

public:

int dest;

int number;
int source;

/{ Constructors

}

This type of message is very simple, but very useful too !

IV - Active messages

1 - Normal active message

a - Composition

CMMD active messages are composed of five words (see A-II-4): one is the address of
the handler function, and the four others are the arguments used by the handler.
Nevertheless, the active messages of the simulation are longer, for several reasons:

¢ The number of arguments used by the handler is variable: four is the maximum,
but it is possible to call a handler without argument. This is why the simulation
has to know the number of arguments, and it is part of the active message.

¢ The acknowledgment scheme needs some data about each message. The active
message must contain the number of the sender, of the receiver, and the number
of the message itself.

However, it is important to handle short messages, because they are less likely to be lost
or truncated. This is the reason why the address of the handler is implemented as a union:

B - Implementation 27

Simulation of the communication libraries of the CM-5 on UNIX workstations

it might be a handler with four, three, two , one or no argument, but it just uses one word
in the message.

b - Implementation

Here is the C++ implementation of an active message

class active_message {

public:
int nb_arg; /I Number of arguments for handler
int source; // Sending node
int dest; // Destination node
int number; /I Number of the message (for ACK)
union {

void (*handler4)(int,int,int,int);

(")
void (*handler3)(int,int,int);
void (*handler2)(int,int);

void (*handler1)(int);
void (*handler0)();
void (*handler)(char *);
b
int data[4];

// Constructors

2 - Long active message

a - Presentation

Performance is a very important issue when simulating a CM-5. Indeed, the only reason
why someone would buy such a powerful - and expensive - machine, is that it is the only
way to achieve very high performance. Now, if the simulation is much slower, there is no
point in using such a program. That is the reason why everything has been done in order
to improve the simulation speed and performances.

One of the main limitations when using the CMAML library is that an active message
only contains four words of data. When one needs to transmit more data, one has to cut
the data in pieces, send several messages, and put the data back together. No need to say
that it is painful (it requires some work !), and slows the program.

When working with UNIX, sending five messages that are five words long (twenty words
of data) is obviously slower than sending one message which is twenty-one words long.

B - Implementation 28

Simulation of the communication libraries ol the CM-5 on UNIX workstations

This is why the simulation has been designed to send active messages with an arbitrary
long data part.

This has been added in order to provide a real speed-up in the simulation. Of course, to
get this speed-up, you have to modify slightly the original CMMD program. Furthermore,
every program is not likely to be improved: some only need the four words of data. But
when a program needs to send longer data, the improvement is very noticeable.

b - Implementation

The new class is a sub-class of the normal active message class. It needs indeed the same
data: sender, receiver, number, handler, and only one more: long_data.

Here is the actual C++ implementation:

class Ig_active_message : public active_message {
public:
char long_data[DATA_SIZE];
Il Constructors

}

The new “CMMD?” functions that use long messages are defined in cmmd.h:

// long argument handler
void CMAML_request(int,void (*)(char *),char *);
void CMAML_rpc(int,void (*)(char *),char *);
void CMAML _reply(int,void (*)(char *),char *);
The data are accessed through a pointer to a character.

¢ - Possible improvement

The “long_data” size is fixed when the program is compiled. Thus, the simulation might
crash when the user wants to use a longer message (in fact, it will warn the user before).
The idea is then either to recompile the program with a higher DATA_SIZE value, or to
provide a function that would cut the message in several pieces, send it, and then put the
pieces back together. This is not implemented in the current version of the simulation.
However, this routine is pre-written. It has not been tested, and should not work yet, but it
gives a good idea of how this could be done. See the request() function that uses a long
argument handler for more details (file node.cc).

B - Implementation 29

Simulation of the communication libraries of the CM-5 on UNIX workstations

V - The launcher

1 - Presentation

The go program is the only executable which is part of the package. It is used to launch
the node processes on each hosts, but it also has other functions. A preliminary
presentation of this program can be found in I-5.

In fact, the go program has several features:
¢ It launches the processes on the hosts
¢ It allows the synchronization between nodes
¢ Itdetects the end of the program

¢ It provides several options

2 - Launching processes

This is the primary use of the go program. When a CMMD program has been successfully
compiled with the library, it is still difficult to use: you have one executable, and you
want it to run on several machines, with the different processes interacting with each
other. This is how go does it:

a - Command-line arguments

The first thing to do is to store the command-line arguments which are to be given to each
node. This is done automatically by go.

b - Reading the data from file “HOSTS”
This file contains all the data needed to launch the processes.
Here is an example of HOSTS file: (cf. I-4)

Host port Command Login Nameand Location of binary file
hyde 12365 remsh guerin -~ main /users/guerin/project/example
chryse 10248 remsh guerin main /auto/users/guerin/project/example

With this file, go will compose the actual commands that will launch the processes.

B - Implementation 30

Simulation of the communication libraries of the CM-5 on UNIX works(ations

¢ - Launching the processes

For each line in the file “HOSTS”, go will duplicate its process (using fork()), and will
execute the launching command on the child process:

// fork process and launch program on child
if ((process[size]=fork())==0) // The child process
execl("/bin/sh", "sh", "-c",buf, 0);

The two launching commands corresponding to the “HOSTS” file given and invoked by
the command “go 1 2 3 4” on the host “tenedos™ are: (on hp workstations)

remsh hyde -l guerin ‘cd /users/guerin/project/example; ./main 1 2 3 4 0 tenedos 7389 0 0’
remsh chryse -| guerin ‘cd /auto/users/guerin/project/example; /main 1 23 4 1 tenedos 7389 0 0'

The format of this command is as follow:

launch-command ‘cd work_dir; ./program_name options node_number host_of_go
port#_of _go verbose_type acknowledgment_size’

The meaning of the two last options will be explained later (in 5-).

When running go on SUN, “rsh” is used instead of “remsh”. The launch_command is
then “rsh -1 guerin hyde ...”.

3 - Synchronization

Once all processes are launched, go is still useful. It knows the addresses of all the
sockets used by the nodes (since they are in the HOSTS file), and the nodes also know its
address, which was given in the command-line arguments (host_of_go and port#_of go).
This allows go to communicate with the nodes.

It is used when the nodes want to synchronize (command CMMD_sync_with_ node()).
This command is a barrier synchronization where all nodes wait until all other nodes
execute the function. Its implementation in the node will be described later (VI-3), but it
seems obvious that the only way to implement this is to have a process that acts like the
Partition Manager of the CM-5. And go is indeed an exact analog of the Partition
Manager, and a synchronization is simple to implement.

g0 just waits for messages (blocking mode). When a message is received, and when this
message is indeed a synchronization message, then a counter in incremented. When the
counter reaches the size of the partition (i.e. the number of nodes running), then go sends
a signal to every node, which means that all nodes are indeed executing the barrier
synchronization.

B - Implementation 31

Simulation of the communication libraries of the CM-5 on UNIX workstations

This is the actual C++ implementation:

for(;;) {
memset(mes,0,DIALOGUE_SIZE);

// Wait for message, and read it
n=recvfrom(launch_socket,mes,DIALOGUE_SIZE,0,&adr_temp,&length);

/I Test if sync_with_node message
if (mes[0]=='"@') { // sync_with_node
counter++;
if (counter==size) { // all nodes are waiting
/l reset counter
counter=0;
// send signal to all nodes
for (i=0;i<size;i++) {
if (sendto(launch_socket,&answer,1,0,&node_address|i],
sizeof(struct sockaddr_in))==-1) {
cerr << "sendto\n";
exit(2);
}
}

if (vb) cout << "Launcher: Sync_with_nodes() succeded\n®;

4 - Detection of the end of the program

How do you know when a program is terminated ? Usually, it will print a message saying
that the computation has been completed. Nevertheless, when the program prints all its
results in a file, you can not easily say when it is finished.

A small routine has been implemented to detect the end of the program.

As it was said before, each node process is launched by a child process of go. This
program is therefore able to detect the termination of one of its child. This is achieved by
catching the SIGCHLD signal, which is sent each time a child process ends. You can then
count the number of child processes finished, and when this number equals the partition
size, then the program is terminated.

Here is the implementation:

void node_finished(int)

B - Implementation 32

Simulation of the communication libraries of the CM-5 on UNIX workstations

{

(void) signal(SIGCHLD,SIG_IGN); // Empty queue
(void) signal(SIGCHLD, node_finished); // Ready to catch next signal
nb_finished++;

if (nb_finished==size) exit(0);

}

H —=mmeneee
/I - main() -
N —meme

main(int argc,char **argv)

{

(void) signal(SIGCHLD, node_finished);
/ When the signal SIGCHLD is caught,
// the function node_finished() will be called

This routine will not work properly if two signals are received exactly at the same time,
which, though unlikely, might happen.

5 - Options

the go program offers several options that can be accessed through the command-line
arguments.

¢ “go -h” will print the various options available:
usage: go [-port nnnn] [-v 1/2] [-ack nn] [-tofile] [node_arguments]

¢ “go -port 1234 will force the program to use port 1234 instead of the default
port (7389). This is useful when the default port is already used. This explains
why the port number is specified in the node command-line arguments.

¢ “go-v1”and “go -v 2" are the verbose options. If you don’t use this option, the
program will execute exactly as it would on a CM-5. With the “-v 17 option,
you will be given some information: the actual commands executed by go
(remsh...), you will know when a sync_with_nodes() has been successfully
executed, and you will be given the number of the messages that are sent
several times by the ACK scheme. “go -v 27 is very verbose. It will give the
same information as the “-v 17 option, plus it will print the number of every
message sent, every message received, every acknowledgment etc. These
options were primarily used when programming and debugging the library, and
are probably useless to the user.

B - Implementation 33

Simulation of the communication libraries of the CM-5 on UNIX workstations

¢ “go -ack nn” is a very important option. This is the only way to activate the
acknowledgment scheme. “nn” is the acknowledgment size, as described
before. “go -ack 0" will run the simulation with the acknowledgment scheme
disabled (same as “go” alone). “go -ack 1” will request an acknowledgment for
every message sent. This will noticeably slow down the simulation. “go -ack
207 seems to be the best compromise for speed and reliability (acknowledgment
every 20 messages). Be careful though, the acknowledgment size is limited! See
node.h to know the actual limit (probably 30).

¢ “go -tofile” is useful when the output of the nodes is considerable, or when you
need the output separated for each node. With this option enabled, the output of
each node will be redirected into a file called “resultN” where “N” is the
number of the node. This can be very useful when debugging a CMMD
program.

VI - Initialization of the node

1 - Modification of the CMMD program

You will find the same text in I-6, but this is very important (and easy to forget).

Several parameters have to be given to each process, among which the indispensable
logical address. Those parameters are given among the command-line arguments of the
process. Therefore, the existing program has to be slightly modified.

A special function was created to handle the command-line arguments:
CMMD_init_simulation(). In spite of its name, it is not a real CMMD function. It has been
created for the simulation only. Not only does it handle the command-line arguments, but
it also initiates the communications.

The only modification that you need to do in the existing program is to add these few
lines just after the declaration of the main() function:

// to add if you are using the simulation; needs stdlib.h (atoi())
// begin
{
// test number of arguments
if (argc<6) {
exit(2);
}

B - Implementation 34

Simulation of the communication libraries of the CM-5 on UNIX workstations

// Init with the 5 last arguments
CMMD_init_simulation(atoi(*(argv+argc-5)),*(argv+arge-4),atoi(*(argv+arge-3)),
atoi(*(argv+argc-2)),atoi(*(argv+arge-1)));

/l'lgnore the 5 last arguments
argc-=5;

}
/l end

The “argc™ and “argv” variables must be declared in the definition of main().

The CMMD program can now use its own command line arguments, since the others
have been “forgotten™.

2 - CMMD init_simulation()

The five arguments that have to be ignored by the CMMD program (cf. 1-), are those that
were described in V-2-¢: node_number, host_of_go, port#_of _go, verbose_type and
acknowledgment_size.

The main() function of the CMMD program calls the CMMD_init_simulation() function
with those five arguments: node_number, verbose_type and acknowledgment size are
assigned to corresponding variables that will hold these values during the whole
execution. The two other arguments are used to compute the address of the socket of the
launcher.

Just like the program go, each node will read the file “HOSTS”. This file needs to be in
the directories containing the executable on each host. Don’t forget to put this file in each
directory! This is a source of very common mistakes.

The node will use the data contained in the file “HOSTS” to compute the address of every
socket that will communicate with it. Each node has five sockets: one for each interface
to the data network (request and reply), one for each corresponding acknowledgment
channel, and finally one to communicate with go (for synchronization).

Once every address has been computed and every socket has been opened, every node
execute the CMMD_sync_with_nodes() function, which will enable them to be
synchronized: you don’t want a node to send a message to another one which has not
even opened its own sockets.

B - Implementation 35

Simulation of the communication libraries of the CM-5 on UNIX workstations

VI - Functions implementation

1 - C++ implementation: the “node” class

In the C++ implementation of the simulation, each process launched uses an object of the
“node” class. This class contains the data for the node: partition size, virtual address, the
data for the communication: sockets, addresses of every other node, and the declaration of
all the CMMD and CMAML functions.

In fact, an object of the class “node” is declared in the file emmd.cc; and each call to a
CMMD or CMAML function (declared in emmd.h) is translated into a call to the
corresponding “node” function (see the details in the listing of the files in the Appendix).

The “node” class is thus the central class of the simulation. It contains the actual
implementation of the functions, whereas the other classes (active_message,
ack_message, timer) are only tools manipulated by the node.

Here is the code of the “node” class:

class node {

// the '[2]' means that the data is available for both interfaces:
/1 0 -> reply interface
/I 1 -> request interface

int interrupt; /I interrupt on/off (1/0). Not used...

int number; // number of the node

int size; // partition size

int my_socket[2]; // socket on interfaces

int socket_ack[2]; /1 socket for acknowledgments

int socket_dialogue; / socket allowing dialogue with launcher
int vb; /I verbose mode

int is_ack[2][MAX_PARTITION_SIZE]; //Boolean, has ACK message been
// received ?
int counter_msg_received[2][MAX_PARTITION_SIZE];// Counters for
/I acknowledgments
int counter_msg_sent[2][MAX_PARTITION_SIZE]; // counters of
/l messages sent
int message_nb[2][MAX_PARTITION_SIZE]; // current message nb
int message_nb_received[2][MAX_PARTITION_SIZE]; // last numbers
/I received

/I last messages sent :
struct msg_box {

B - Implementation 36

Simulation of the communication libraries of the CM-5 on UNIX workstations

int type; // 0 for normal message, 1 for long
active_message a_msg;
lg_active_message Ig_msg;
} message_sent[2][MAX_PARTITION_SIZE][MAX_ACK_SIZE];

//addresses of all the other sockets

struct sockaddr_in node_address[2][MAX_PARTITION_SIZE];
struct sockaddr_in node_address_ack[2][MAX_PARTITION_SIZE];
struct sockaddr_in launch _address; // address of the launcher

void test_ack(int,int); // Should | send the messages again ?

void process_ack(ack_message *,int); /I process incoming ACK message

void process_msg(active_message *,int); // process incoming message

void process_lg_msg(lg_active_message *,int);// process incoming long message

void call_handler(active_message /I any explanation needed ?

void call_Ig_handler(lg_active_message *); // any explanation needed ?

void send_msg(active_message *,int); /I send active message

void send_msg(lg_active_message *,int); /I send long active message

void send_ack(ack_message *,int); /I send ACK message

void send_ack(ack_message *,int,int); // send ACK message, but modify number

void poll_ack(int); /I poll for ACK messages

void resend_all_messages(); // resend all messages not acknowledged
public:

timer the_timer[64];
int ack; /I acknowledgment mode: sending ACK every 'ack’ messages

// The following functions are called by the CMMD library

void init(int,char”,int,int,int);

int self_address() { return number; }
int partition_size() { return size; }
int disable_interrupts();

int enable_interrupts();

void poll(int);

/' long message handler

void request(int,void (*)(char *),char *);

void rpc(int,void (*)(char *),char *);

void reply(int,void (*)(char *),char *);

// 4 arguments handler

void request(int,void (*)(int,int,int,int),int,int,int,int);

void rpc(int,void (*)(int,int,int,int),int,int,int,int);

void reply(int,void (*)(int,int,int,int),int,int,int,int);
(e

/ 0 argument handler

void request(int,void (*)());

B - Implementation 37

Simulation of the communication libraries of the CM-5 on UNIX workstations

void rpc(int,void (*)());
void reply(int,void (*)());

void sync_with_nodes();
int fset_io_mode(FILE *, int);

2 - Timers

The timers are implemented very simply (cf. Appendix for listing).

The timers of the simulation use the “time” library of UNIX (time.h). This is the only
way to evaluate the “busy” time. But this method has a severe drawback: the timers are
reset every 36 minutes, whereas the CM-5 timers are reset every 43 hours only. There is
no way for the program to know when the timer is reset, and therefore, it is impossible to
give an accurate number after 36 minutes. However, in some cases, it might be possible
to know how many times the timer has been reset, by using an external clock.

The timers of the simulation only give the busy time. We have always:

CMMD_node_timer_elapsed() = CMMD_node_timer_busy()
CMMD_node_timer_idle() = 0

3-CMMD sync_with _nodes()

The global behavior of this function has already been described in V-3. Here is the “node
part” of it.

When a node executes this function, it is expected to wait until every node also executes
this function. The node simply sends an appropriate message to the launcher and waits for
the answer (in blocking mode). When the launcher has received as many messages as the
number of nodes in the partition, it sends the answer to every node.

4 - CMAML _poll()

The poll() function of the node class has been written so as to simulate CMAML_poll(),
CMAML_poll_request() and CMAML_poll_reply(). This is achieved by using an integer
parameter to the poll() function: 0 is CMAML_poll_reply(), 1 is CMAML_poll_request(),
and 2 is CMAML_poll().

Here is the sequence of the instructions executed when polling:
¢ Testif the poll() function is being executed for the 2000th time in a row.

o Ifitis true, a message might have been lost, so the node sends again all
messages (function node::resend_all_messages()).

B - Implementation 38

Simulation of the communication libraries of the CM-5 on UNIX workstations

e [f not, the counter is incremented.
¢ The socket(s) is put in non-blocking mode.

¢ The program tries to receive a message on its socket. If no message is received,
the program returns.

¢ If a message is received, then it is processed (function node::process_msg()).

e The number of the message is compared to the number awaited. If it is
an old message (already received), the corresponding acknowledgment
is sent. If its number is to high, nothing is done: the previous message
must have been lost. If it is a good message, then:

e The counter is incremented.

e If it has to send an acknowledgment, it is sent.

e At last, the handler function is called.

¢ If there are other messages in the queue, they are also processed.

For more details, you can read the listing of node.cc in the Appendix.

5 - CMAML_request(), CMAML_reply(), CMAML rpc()
In the actual version of the simulation, CMAML_request() and CMAML_rpc() are

implemented in the same way. In fact, a call to CMAML_rpc() is simply replaced by a call
to CMAML_request().

Here is the sequence of the instructions executed when sending an active message:
¢ The active message to be sent is created.

¢ The node tests if the previous message sent had to be acknowledged, and if so,
if it has been acknowledged. If it has not been acknowledged then:

e it polls 1000 times for an acknowledgment.

o If no acknowledgment was received, then it sends again the whole
sequence of messages that should have been acknowledged, and
returns in the previous loop (waiting for an acknowledgment).

¢ The socket is put in blocking mode.

¢ The active message is sent.

B - Implementation 39

Simulation of the communication libraries of the CM-5 on UNIX workstations

¢ The message is stored, the counter incremented.

¢ The node polls for messages (only reply interface if it is a reply active message,
or both if not).

For the exact implementation, see the listing of node.cc in the Appendix.

6 - Others

a- CMMD_self address()

This function returns the virtual address of the node, which was initialized by
CMMD_init_simulation().

b - CMMD_partition_size()

This function returns the size of the partition, which corresponds to the number of entries
in the HOSTS file.

¢ - CMMD_disable_interrupt(), CMAML _disable_interrupt(),
CMMD _fset_io_mode()

Those functions are provided for compatibility only. And they do... nothing at all.

VII - Limitations

1 - Homogeneous network

The simulation was designed to use many workstations in the same time, so as to provide
good performances and speed. Unfortunately, it is not possible to use different types of
workstations in the same time.

The reason to this limitation is very simple. An active message contains the address of the
handler function to call. This address is local to the sending node, but if the receiver is the
same type of station, running the same program, the address will indeed correspond to the
handler function. However, if the platform is not the same, it is highly improbable that the
address will correspond to anything, and the handler can not be called.

B - Implementation 40

Simulation of the communication libraries of the CM-5 on UNIX workstations

This is why you can not mix several types of workstations when using the simulation.
You can use SUN Sparc stations, hp stations, but not both in the same time. However,
you might be able to use slightly different stations such as hp 9000/750 and hp 9000/755,
or SUN Sparc 4 and SUN Sparc 5.

2 - Number of nodes

Even if there is no explicit limitation in the number of nodes, you might get into trouble if
you want to use too many nodes.

The limitation is caused by UNIX. Each time the program go launches a process, it has to
fork, i.e. to duplicate its own process. The problem is that the number of processes
running on a UNIX machine are limited. And after fifteen or twenty nodes launched, you
might get the error message: “Can not fork: too many processes”.

However, this depends on the machine you use, and on the number of people who use it
in the same time. You might be able to get many nodes if you run the program go on the
appropriate machine.

B - Implementation 41

Simulation of the communication libraries of the CM-5 on UNIX workstations

C - PERFORMANCES

I - Benchmarks

1 - The “nt-tak” program

a - Presentation

This program has been provided by Steve Jenks. He is using it as a benchmark for his
own research on nomadic threads.

b - Implementation

The “nt-tak” program is an implementation of a Lisp program (tak) using nomadic
threads. This program takes three arguments and finally return one. Here is the original
Lisp “tak™:

(defuntak (x vy z)
(if (>=y x)
z
(tak (tak (1 -x)y z)
(tak (1 -y) z x)
(tak (1 -2) xy))))

¢ - features
This program is a good benchmark program because:
¢ The number of messages exchanged between nodes is very large.
¢ The data that have to be exchanged between nodes is larger than the normal size

of an active message. Therefore, it will be possible to use long active messages
on the simulation.

C - Performances 42

Simulation of the communication libraries of the CM-5 on UNIX workstations

¢ The time of completion decreases exponentially with the number of nodes, i.e.
if N nodes finish in t seconds, then 2N nodes finish in t/2 seconds.

d - Results

Here are a few results of the “tak” program:

Ist Arg 2nd Arg 3rd Arg TAK result Nb of activations
2 3 4 4 1
5 4 2 4 21
0 4 2 3 33
8 6 2 3 469
10 6 2 3 1733
12 6 2 3 4321
18 12 6 7 63609
20 12 6 7 155449
17 16 5 16 632965
25 20 10 20 6895965

2 - The “nt-pmm” program

a - Presentation

This program has also been provided by Steve Jenks, and it is also using nomadic threads.
It is nevertheless quite different from “nt-tak™.

b - Implementation

The “nt-pmm” program is a simple implementation of a matrix multiply program. It takes
the matrix size as an argument, and only returns the time took by the execution of the
program.

¢ - features

This program is also good benchmark program because:

C - Performances 43

Simulation of the communication libraries of the CM-5 on UNIX workstations

¢ The number of messages exchanged between nodes is very large.

¢ It is quite different from the “nt-tak” program, and it helped me find some
defaults in the acknowledgment scheme I would not have find without (see B-
I11-2-¢).

¢ The data that have to be exchanged between nodes is larger than the normal size
of an active message. Therefore, it will be possible to use long active messages
on the simulation.

IT - The platform issue

The simulation has been tested successfully on both SUN and hp workstations. The SUN
version has been compiled with the GNU C++ Compiler (g++), whereas the hp version
has been tested with both g++ and hp’s C++ compiler (CC). Of course, performances are
not the same on every platforms, and here is a quick comparison of the workstations
tested.

The benchmark program is nt-tak, and the command was:

go-ack20 18126
which means that the arguments are 18 12 and 6, and that the acknowledgment size is 20.
In every cases, only two nodes where used. The simulation is using long active messages.

Workstation Time to complete
hp 9000/755 35s
SUN Sparc 4 41s-57s

The two values given for the SUN Sparc 4 have been obtained in two configurations. In
the first case, the two stations were very close to each other, and no message has been
lost. In the second case, the stations were far away, and many messages had to be sent
several times.

This shows the importance of using close workstations with reliable communications. It
might be a bad idea to add a workstation in the partition if it is far away from all the
others.

C - Performances 44

Simulation of the communication libraries of the CM-5 on UNIX workstations

III - Influence of the number of nodes

The following results have been obtained with “nt-tak™ and the command: “go -ack 20 18
12 6”. All nodes are SUN Sparc 4 workstations linked with ethernet, and “nt-tak” is using
long active messages. The maximum number of nodes used is 12. This limitation comes
from the fact that the process table of the machine which hosted the launcher was full.

This limitation has been described in B-7-2.

1 - Time to complete

Number of nodes Time
2 41
3 21
4 21
5 14.5
8 11.5
10 10
12 9.7

The following figure (fig. 3) is a simple representation of this table.

Influence of the number of nodes
Time (s)

45 4
40
35 1
30
25 4
20
15 4

10 4

0 T T T T T T T T T 1

2 3 4 5 6 7 8 9 10 11 12 Number of nodes

figure 3. Influence of the number of nodes on the time of completion

C - Performances

Simulation of the communication libraries of the CM-5 on UNIX workstations

The figure obtained is a rough decreasing exponential, as expected. However, the value
obtained with four nodes is quite different (or is it the value with three nodes ?). There is
no improvement between a three and a four-node partition. This is probably due to the
benchmark program. However, this should be verified on the CM-5.

2 - Overall efficiency

The following graph (fig. 4) shows the total amount of CPU time used to complete the

computation. This was obtained by multiplying the time to complete by the number of
nodes.

Influence of the number of nodes on efficiency
Total Time (s)

140 -
120 A
100 +
80

60
40

20

T —

2 4 6 8 10 12 Number of nodes

Figure 4. Total CPU time used to complete computation

Except for the anomaly at four nodes, the total CPU time seems to be growing steadily
with the number of nodes. The probable cause is that the first few hosts were close, and
very few messages were lost, but when you increase the number of hosts, you also
increase the distance between them, and thus lose more messages.

It is also possible that, with so many messages going through it, the network is saturating,
and more messages are lost.

Figure 5 shows the global speed-up obtained by increasing the number of nodes. Since
the benchmark program does not give a good information when run with one node, the
base value is obtained with two nodes.

The straight line shows the ideal speed-up (proportional to the number of nodes).

C - Performances 46

Simulation of the communication libraries of the CM-5 on UNIX workstations

Speed-up

Number of nodes

Figure 5. Speed-up obtained by increasing the number of nodes

Well, the results are obviously not perfect. However, it seems that the “nt-tak” program is
not a very good benchmark to measure the influence of the number of nodes: the speed-
up values obtained with three and five nodes are even better than the ideal ones.

It is also important to keep in mind that those benchmarks are based on heavy
communication, and not on heavy computation. It might also explain the results that were
obtained.

It would be interesting to compare this aspect of the simulation with the CM-5.

IV - Using long active messages

The gain obtained using long messages depends entirely on the application used. If only 4
data words are needed, using long messages won’t improve the performances. However,
if your program needs to exchange longer data between nodes, this feature can be very
powerful.

The “nt-tak™ program needs up to 12 data words per message (but sometimes less). Its
performances are therefore improved by using long active messages.

C - Performances 47

Simulation of the communication libraries of the CM-3 on UNIX workstations

The following times have been established in similar conditions: same hosts (two nodes)
and same options (ACK size: 20):

Here is the corresponding speed-up:

Arguments Normal active messages Long active messages
g0 18126 79 s 35s
go 17165 789 s 329 s

The average speed-up is about 140% ! It is now obvious that this feature can be really
useful, and I sometimes wonder why the CM-5 is limited to 4 words...

V - Comparison with the CM-5

These are the important results everybody is waiting for...

The following times have been obtained using the “nt-tak” program with the arguments
17 16 5 on two nodes. The simulation used an acknowledgment size of 20, and the two
nodes are hp 9000/755.

Platform Time Comparison/CM-5
CM-5 123.27 § 1
hp 9000/755 Normal messages 789.03 s 6.4
hp 9000/755 Long messages 349.09 s 2.8

The simulation running on hp 9000/755 is therefore 6.4 times slower than the CM-5. This
is not as bad as it seems, since the CM-5 has been optimized for inter-node
communications, whereas the simulation is running on standard workstations. It is also
important to notice that the benchmark program is based on frequent message exchanges
(more than 1,000,000 in this configuration), which is where the CM-5 is the best. A
program that needs more computation in the node itself would probably give better
results.

The “long message™ option is the only feature that can improve the performance of the
simulation, compared to the CM-5. For the “nt-tak” program, the simulation runs only 2.8
times slower than the CM-5. This is a good result, since 2.8*N workstations are less
expensive than a CM-5 with N nodes.

C - Performances 48

Simulation of the communication libraries of the CM-5 on UNIX workstations

CONCLUSION

The main purpose of this project is to simplify the programming and debugging of a CM-
5 program. It should be easier to debug programs on a workstation acting like a CM-5

than on the actual machine. The final version of the program is still supposed to run on
the CM-5.

However, the simulation is “only” six times slower than the CM-5, and this number can
be decreased to three or less by using long active messages. And, a CM-5 node is much
more expensive than three workstations.

Furthermore, a CM-5 can only be used for extensive and huge computations, whereas a
network of workstations is multi-purpose and much more flexible. For example, each
computer can be used individually during the day, and simulate a CM-5 at night for
intensive computations. It can even be done in the same time! Or some stations might be
dedicated to the simulation whereas others are used differently...

However, a CM-5 might be the best choice when you need to make huge computations all
day long, for example in a research laboratory. And the simulation also has some
limitations on the total number of nodes. But it is probably safer to consider other
options, like a network of workstations, before buying such an expensive machine.

49

Simulation of the communication libraries of the CM-5 on UNIX workstations

(1]

(2]

(3]

BIBLIOGRAPHY

CMMD reference Manual

Thinking Machines Corporation, Cambridge, Massachusetts

UNIX System V Network Programming

Stephen A. Rago
Addison - Wesley Professional Computing Series

The C++ Programming Language, Second Edition

Bjarne Stroustrup
Addison - Wesley Publishing Company

50

Simulation of the communication libraries of the CM-5 on UNIX workstations

APPENDIX

Listing of the simulation:
¢ cmmd.h
¢ cmmd.cc
¢ timer.h
¢ timer.cc
¢ ack_msg.h
¢ active_msg.h
¢ active_msg.cc
¢ lg_act_msg.h
¢ lg_act_msg.cc
¢+ node.h
¢ node.cc
¢ go.cc

¢ Makefile

Listing of the example:
¢ main.cc
¢ Makefile

¢ example of HOSTS file

51

/* emmd.h - dummy header file to simulate the real cmmd.h

* History:

* 4/22/95 - created by §. Jenks

* 5/09/95 - modified by N. Guerin

+ $728/95 - last modification hy N. Guerin
*7

#ifndef CMMD_H
fdefine CMMD_H

extern "C* (
finclude <stdio.h> // for the FILE type
1

void CMMD_init_simulation(int,char*,int,int,int); // NOT a real CMMD function, on
1y used for simulation

/7 interrupts are not handled yet
void cMMD_disable_interrupts{);
void CMAML_disable_interrupts{]:

¥define CMMD_independent 0
//int CMMD_fset_io_mode(struct _IO_FILE *, int):
int CMMD_fset_io_mode(FILE *, int); // not implemented

int CMMD_self_address();
int CMMD_partition_size():

int CMMD_node_timer_clear(int);

int CMMD_node_timer_start(int);

int CMMD_node_timer_stop(int);

// WARNING: the timer resets after 16 minutes only (43 hours for real CM-35)
double CMMD_node_timer_elapsed(int);

double CMMD_node_timer_busy(int); // for compatlibility only = elapsed()
double CMMD_node_timer_idle(int); // feor compatibility only = 0

veid CMMD_sync_with_nodes();

void CMAML_poll();
void CMAML_request_poll():
void CMAML_reply_poll();

// CMAML functions which send messages (request, reply and RFC)
// WARNING: for now, RPC = request

// long argument handler

void CMAML_regquest (int,veoid (*} (char *),char *);

void CMAML_rpc(int,veid (*)(char *),char *);

void CMAML_reply (int,void (*)(char *),char *);

// 4 arguments handler

void CMAML_reguest (int,void (*) (int, int, int, int),int,int,int, int);
void CMAML_rpc(int,veld ('l(1nt,int,1nt,1nt).inC,int,lnt,intJ:
void CMAML_reply(int,void t')(int,int,int.int),int,int.int,lnt]:
// 3 arguments handler

void CMAML_request(int,veoid {*) (int, int, int),int,int,int);
void CMAML_rpc(int,veoid {(*) (int, int, int),int,int,int};

vold CMAML_reply (int,vold t')(1nt,lnt,int).int.ln:,int);

// 2 arguments handler

void CMAML_request (int,void (*) (int,int),int,int);

void CMAML_rpc{int,veid (*) (int, int) ,int,int});

void CMAML_reply(int,void (*) (int, int), int,int);

// 1 argument handler

vold CMAML_request (int,volid (*) (int} ,inkt};

vold CMAML_rpc(int,vold (*)(int),int);

void CMAML_reply(int,void (*)(int),int);

// 0 argument handler

void CMAML_requesct (int,void (=) ()):
void €MAML_rpe(int,void (*)1()):
void CMAML_reply(int,vold (*)()):

fendif /* CMMD_H */

/* cmmd.cc - Implementaticn of the CMMD and CMAML fuctions using the node class

* History:

* 05/09/95 - Created by N. Guerin

* 06/28/95 - Last meodification by N. Guerin
*/

finclude °cmmd.h®

finclude *node.h’

static nede the_node:

void CMMD_init_simulation(int nb,char “hostname, int port,int verbose,int ackno) (
// NOT a real CHMD function, only used for simulation
the_node.init(nb,hostname,port,verbose,ackno); }

void CMMD_disable_interrupts() { the_node.disable_interrupts(); }

vold CMAML_dlsable_jnterrupts() (the_node.disable_interrupts(); }

//int CMMD_fset_io_mode(struct _IO_FILE *stream, int lo_mode)

int CMMD_fset_io_mode(FILE *stream, int fo_mode)

{ return the_node. fset_io_mode (stream, lo_mode) ; }

int CMMD_self_address() (return the_node.self_address{);)
int CMMD_partitien_size() ({ return the_node.partition_size(); }

/4 timer functions

int CMMD_node_timer_clear(int nb) (return the_node.the_timer(nb].cleax(); }
int CMMD_node_timer_start(int nb) (return the_node.the_timer(nk).start(); }
int CMMD_node_timer_stop(int nb) (return the_node.the_timer[nb] .stop();)

double CMMD_node_timer_elapsed(int nb) [return the_node.the_timer(nb] .elapsed();
¢ ¥

// for compatibility only ({busy=elapsed)

double CMMD_node_timer_busy(int nb) { retumn the_node.the_timer[nb).elapsed();)

// for compatibility only (idle=0)

double CMMD_node_timer_idle(int) { return (double)0; }

// Communication functions
volid CMHD*sync_with_nodes[veid) { the_node.sync_with_nodes();)

// poll for messages

void CMAML_poll() (the_node.poll(2); }

void CMAML_reguest_poll() { the_node.poll(l); }
void CMAML_reply_poll() { the_node.poll(0): }

// send request, reply and RPC messages

// long argument handler
void CMAML_reguest (lnt dest_node,void (*handler) (char *),char *datal) (
the_node.requesc(dest_node,handler,datal);

}

void CMAML_rpc(int dest_node,void (*handler) (char *),char *datal) (
the_node.rpc (dest_node, handler, datal) ;
)

veid CMAML_reply (int dest_node,void (*handler) (char *),char *datal) {
the_node.reply(dest_node.handler,datal];
}

// 4 arguments handler
void CMAML_regquest (int dest_node,void ('handler)(int,Lnt,int.int).int datal,int da
+ ta2,int datal, int datad)
{ the_noda.request(dest,nude.handler,datal.dataz,dataz,datad};)

void CMAML_rpc(int dest_node,void (*handler) (int,int,int,int),int datal, int data2,
int data3l, int datad)

{ the_node.rpc(dest_node, handler,datal,data2,datal, datad); }
void CMAML_reply(int dest_node,void (*handler) (int,int,int,int),int datal,int data
2,int datal, int datad)

{ the_node.reply(dest_node, handler,datal,data2, datal, datad);)

// 3 arguments handler
void CMAML_request (int dest_node,void (vhandler)(int,int,int).int datal,int datal,
int data3l)

{ the_node.request(dest_node, handler,datal,data2, datal); }
void CMAML_rpc(int dest_node,void (*handler) (int,int,int),int dacai,int data2,int
datal)

{ the_node.rpc(dest_node, handler,datal, data2,daca3); }
void CMAML_reply lint dest_ncde,void (<handler) (int,int,int),int datal,int data2,in
t data3l)

{ the_node.reply(dest_node, handler,datal,data2,data3);)

/¢ 2 arguments handler

void CMAML_request (int dest_node,void (“handler){int,int),int datal,int data2)
{ the_node.request{dest_ncde, handler,datal,data2); }

void CMAML_rpc(int dest_node,void (*handler) (int,int),int datal, int data2)
{ the_node.rpc(dest_node, handler,datal,data2);)

vold CMAML_reply (int dest_node,void (*handler) (int,int), int datal, int data2)
{ the_node.reply(dest_node, handler,datal,data2); }

// 1 argument handler

void CMAML_request (int dest_node,vold (*handler) (int), int datal)
{ the_node.request (dest_node, handler,datal); }

void CMAML_rpc(int dest_node,void (*handler) (int),int datal)
{ the_neode.rpc(dest_node, handler,datal); }

void CMAML_reply(int dest_node,vold (*handler) (int),int datal)
{ the_node.reply(dest_node, handler,datal);)

// 0 argument handler
void CMAML_request (int dest_node,vold (*handler)())
{ the_node.reguest (dest_node,handler);)
vold CMAML_rpc(int dest_node,void (*handler)())
the_nede.rpc(dest_node, handler); }
void CMAML_reply(int dest_node,void (*handler){))
{ the_neode.reply(dest_node, handler); }

/* timer.h - Implementation of the CMMD timers

* History:

05/09/95 - Created by N. Guerin

- 06/01/95 - Last modification by HN. Guerin
*d

extern "C" {
tinclude <time.h>
)

$ifndef CLOCKS_PER_SEC
} define CLOCKS_PER_SEC 1000000 // is it OK for all systems ?
fendif

class timer (

clock_t begin; /! start time

clock_t end; // stop time

double counter; // private counter
public:

int clear(); // reset timer

int start():
int stopl();
double elapsed(): // in secends

/* timer.cc

* History:
L 05/09/95 - Created by N.Guerin

*/
¢include *timer.h®

// ATTENTION -
// timer resets after 36 minutes
// CMMD timer : 43 hours

int timer::clear() { // reset timer
counter=0;
return 0;

b

int timer::start() {
begin=clock():
return 0;

)

int timer::stopl) (
end=clock();
counter+=double(end-begln}fCLOCKS_PER_SEC;
recurn 0;

}

double timer::elapsed() (// in seconds
return counter;
¥

/* ack_msg.h

* History:

+ 06/14/95 - Created by N.Guerin

] 06/28/95 - Last modification by N.Guerin
!

class ack_message {

public:
int dest;
int number;
int source;

// Constructors

ack_message (int src,int des,int num)({
sources=src;
dest=des;
number=num;

}i

ack_message (] {
source=0;
dest=0;
number:O;

}i

{!IpquUnu UINIDIT) () aequmu—Bsu Uy

{f3sep uInlaI) {)assp” bsw Jul

(teoanes UInldI) (y@oanos Bsw uT

{{. abessaw {OR)}2® PTOA

: ()obessaW aajide

L04) (o) uHo>.uuM.ucﬂ.u:ﬂ_mmmmmmﬁlu>quum

t{aut’ (3uT) (&) v“o>.u:ﬂ.ucﬂ.uuﬂ_ummmmwpﬁm>auom

(auf auy’ (U1 3UT) («) Uﬂo>.u:ﬂ.ucﬁ.unavmmmmmwalw>quum
hnucd.ucﬂ.u:ﬂ.Hu:q.ucd.u:ﬁu,¢_ v«o>.ucﬂ.ucﬂ~ucﬁ_mmmmmmEIm>ﬂuUm
hau:ﬁ.uﬁq_uzﬂ.u:ﬂ.ﬁucﬂ.ucq_ucd.ucﬁ,_.v uﬂc>_uca‘ucm.u:ﬁ,mmmmmmﬁlw>ﬂu0d

t(ple3Ep T
#y
1, IRYD) (I8 1PURY.) PTCA
£() (pi2TpuURY.) DIOA
f(qur) (132 (pUERY.) PTOA
£{3uy’auy) (zI2Tpuey.) PIOA
£{3uT’auy’auT) (cI2TPUEY.) PIOA
P(auT’auyauT‘IuT) (yISTPURYL) PTOA

} uojun
(0¥ o)) obessaw ayj jo Isqumy // fIaqumu qul
spou uotaeurasaqg // f3s8p UT

apou Bujpuss // {82INos 3JUy
1a1pury i0j siusunbie jo Isquny // iBxeTqu 3uy
:o11and
} obessauw @2ATI0® SSETD

Y Bswyoe, SpRIdUTH

/e

utisng N Aq uoTaedT)Tpou 1se] - §6/81/90 .
utasng'N Aq p2aesid - S6/L1/50 -

1 ATOASTH

-

y-Bsw aAflae ./

/* active_msg.cc

-

* History:

+ 05/17/95 - Created by N.Guerin

+ 06/28/95 - Last modification by N.Guerin
*i

tinclude *active_msg.h*

void active_message::ack(ack_message *ack_msg){
ack_msg->source=source;
ack_msg->dest=dest;
ack_msg->number =number;

}

/! Constructors

active_message::active_message(int src,int des,int num,void (*hand) (int, int, int, in
+ t),int datal,int data2,
int data3,int data4){
data(0)=datal;
data(l)=Gata2;
datal2)=datal;
data (3] =datad;
nb_arg=4:
handlerd=hand:
sources=src;
dest=des;
number=num;
)

activa,message::active_message(int src,int des,int num,void (*hand) (int, int, int), i
+ nt datal,int dataz,
int data3)(
data[0] =datal;
data[l)=datal;
datal2)=datad;
data(3]=0;
nb_arg=3;
handler3=hand;
source=src;
dest=des:
number=num;
}

activeJnessagez:acuive_message[int sre,int des,int num,void (*hand) (int, int),int 4
+ atal,int data2){

data(0]=datal;
data(l)=data2;
data(2)=0;
data(3)=0;
nb_arg=2;
handler2=hand;
source=sIcj
dest=des;
numbers=num;

}

active_message::active_message(int srec, int des,int num,veid {*hand) (int),int datal
+)

data[0]=datal;

data[1]=0;

data(2]=0;

data[3]=0;

nb_arg=1l;

source=src;

dest=des;

number=num;

handleri=hand;
}

active_message::active_message(int src,int des, int num,veid (*hand) ()){
data(0)=0;
data(1}=0;
data[2]=0;
data(3]=0;
nb_arg=0;
handler0O=hand;
SOUrCe=src;
dest=des;
number=num;

}

active_message::active_message()(
data[0)=0;
data[1]1=0;
data[2]=0;
dataf3]=0:
nb_arg=4;
handler4=0;

source=0;
dest=0;
number=0;

S
{ $Iaquny UIN3I®I} () zequnu—bBsw Ut
{ 3sep uinial} ()3sep” bsu uj
(f20in0s UINIDI) {)=s2anos” Bsw Juj
s ()abessaw aaTI2e BT
(« IBY2) (&) ﬁﬂo>.Hmcu.ucM.u:A‘u:M,mmmmmmﬁlm>ﬂuumlmH
f{. T0YD' (o ZRYD) (a) vﬂo>.hm:u_u:“.ucﬁ.unﬂ_mmmmmwﬁlm>ﬂuumlmﬂ

(Bxe Buot) Bsw iebuol ® jo 1184 // ‘paucdTeq o3l I'YD
f{EzIsTYINg)eaepT BUOT aBYD
1oy14nd

) sbessaw 2all0e o11and abessaw aaTi0e BT SSRI2

werboxd Wyl 103 ¥O // LS IZIS YING 2UTIIRH

.y Bsuraatioe. SpnT2UTE
<y Butiis> SpnIdUTH

/s

utasng M Ag uoraedIjIpow 35T - 56/82/%90 .
utzang N Ag pelEsId - S56/97/90 .

:tA103STH »

-+

yr-Bswaoe™hHY

!g=13qumu
{p=359p
{(=92anes
!p=paucoTagq 03]
fg=I2TPURY
f1-=HaeTqu

vﬁumemmaﬁlm>qu0ulmﬂ""wmmmmmﬁlw>quumlmﬂ

{
‘pauco=paucd_aq el
rpuey=as puey
fwnu=lagumu
‘sap=1sap
{515=92IN0S
{1-=baeTqu
Y (ls 3Y2) (P
uey.) PIOA‘P3UOD IBYD'umu Juy’sep Jui ‘oas uGAvmmumm@EIw>muueluﬁ" abessawaATI2e BT

{
!pauoa=pauodTaq o3l
{puey=13puTy
fumu=Jaqumu
{S2p=1sSap
{51s=821IN0S
:1-=baeTqu
hPmuHmlmbmm.Hmumv.uumutmcoﬂvhaueme
}(Te3Ep. I®UD‘ (. I®YD) (P
uey,) PIoA’pPIUCD IRYDWNLU JUT 'SP qui’oas ucﬂ“mmmmmmﬁlw>ﬁu0mlma""mndmmmslﬂ>auuuluﬁ

sI103oMAIsSUOD //

Y Bsw 30 B1. apnNIoUTH

L
uyasng N A UoTIEIT]IPOW 3SET - GB/BT/90
utzang N Aq peae2ld - S6/9T/90 -

: £107STH «

2o bBswyoe”BT o/

* History:
. 0D5/09/95 - Created by N. Guerin

08/22/95 - Last medification by N. Guerin
!

tinclude *"timer.h*
#include *"lg_act_msg.h"

finclude <fstream.h>
finclude <libc.h>

extern "C* {

¥include <stdlib.h>
finclude <stdio.h>
finclude <string.h>
#include <signal.h>
finclude <sys/types.h>
#include <netinet/in.h>
#include <netdb.h>
f#include <unistd.h>
finclude <sys/socket.h>

§ifdef _SUN
#include <sys/filio.h>
fendif
)
fdefine STRING_SIZE 255
fdefine DIALOGUE_SIZE 1
¥define MAX_PARTITION_SIZE 16

fdefine MAX_ACK_SIZE 30
fdefine AF AF_INET
class nede {

// the '[2]" means that the data is avallable for both interfaces:

/t 0 -> reply interface
// 1 -> request interface

int interrupt; // interrupt on/eff (1/0). Not used...
int number; /¢ number of the node

int size; /{ partition size

int my_socket[2]; // socket on interfaces

int socket_ack[2]; // socket for acknowledgments

int socket_dialogue; // socket allowing dialogue with launcher
int vb; /! verbose mode

int is_ack[2) [MAX_PARTITION_SIZE]; // Boolean, has ACK message been recelved ?
int counter_msg_received[2] [MAX_PARTITION_SIZE];// Counters for ack

int counter_msg_sent (2] [MAX_PARTITION_SIZE]; // counters of messages sent
int message_nb(2) [MAX_PARTITICON_SIZE]; // eurrent message nb

int message_nb_received(2] (MAX_PARTITION_SIZE]; // last numbers received

// last messages sent

struct msg_box {
int type; // 0 for normal message, 1 for leng
active_message a_msg;
1g_active_message lg_msg;

) message_sent (2] [MAX_PARTITION_SIZE] [MAX_ACK_SIZE];

/ faddresses of all the other sockets
struct sockaddr_in node_address([2) [MAX_PARTITION_SIZE];
struct sockaddr_in node_address_ack(2] [MAX_PARTITION_SIZE];

struct sockaddr_in launch_address; // address of the launcher

void test_ack(int,int); // Should I send the messages again ?

void process_ack({ack_message *,int);: // process incoming ACK message
void process_msg{active_message *,int); // process incoming message

void process_lg_msg(lg_active_message *,int);// process incoming long message
void call_handler (active_message *); // any explanation needed ?

void call_lg_handler{lg_active_message *);: // any explanation needed ?

void send_msg(active_message *,int); // send active message

void send_msg(lg_active_message *,int); // send long active message
void send_ack (ack_message *,int); /{ send ACK message

void send_ack(ack_message *,lnt,int);// send ACK message, but modify number...
vold poll_ack(int); // poll for ACK massages
vold resend_all_messages(); // resend all messages not acknowledged

public:

timer the_timer(64);
int ack; /{ acknowledgment mode: sending ACK every ‘ack' messages
// The following functions are called by the CMMD library

void inic(int,char*,int,int,int);

int self_address() { return number;)}
int partition_size{) { return size;)
int disable_interrupts();

int enable_interrupts();

vaeid poll{int);

// long message handler

void request(int,void (*)(char *),char *);

void rpe(int,veid (*) (char *),char *):

volid reply(int,void () (char *).char *);

// 4 arguments handler

void reguest(int,void (*) (int,int,int,int},int, int, int, int};
void rpc{int,void (*){int,int,int,int),int,int,int,int);
vold reply(int,veld (*)(int,int,int,int),int,int,int,int);
// 3 arguments handler

void request(int,void (*) (int,int,int),int,int,inc);:
void rpe(int,veld (*) (int,int,int),int,int, inc);

void reply(int,void (v) (int,int,int), int,int,int);

// 2 arguments handler

void request(int,veid (*)(int,int),int,int);

void rpeiint,veoid (*) (int,int),int,int);

vold reply(int,void (*) (int,int),int,int);

// 1 argument handler

vold request(int,void (*) (int),inc);

void rpe(int,void (*) (int),int);

void reply(int,void (*) (int),ink);

// 0 argument handler

void request(int,void (%) ()):

void rpel(int,void (*)());

vold reply({int,veld (*)());

void sync_with_nodes();
int fset_io_mode(FILE *, int);

/* node.cc - Main body of the CMMD simulation

* History:

¥ 05/09/95 - Created by N. Guerin

- 08/22/95 - Last mofification by N. Guerin
4

¥include *node.h*

static int waliting=0; // see poll() function
statiec int resending=0; // see poll() functien

f] =mmes—mmemmmesssmmmmm—emmm——esseseSesssSSSnomooSesssmsmEanTnT
// - create_socket () - General function that creates a socket -
Ll = on a specified port -
L ST e s fe e eSS e e s e m o s S AT A S8 S8 SR SRS EE TR
static int create_socket (int *port,int type)
(
int desc; /* descriptor of the new socket */
struct sockaddr_in name; /* address of the socket ~/
int length; /* Length of address */
/* Creation of the socket */
if ((desc:socket(AF.type.OJ)z:-ll(
cerr << "Cannot create socket\n®:
return(-1};
)
memset { (char *)&name,0,sizeof(name));
name.sin_port="port;
name.sin_addr.s_addr=INADDR_ANY;
name.sin_family=AF;
if(bindtdesc,&name.sizeof(name)]){
fprintf(stderr, "Node: Can’'t bind socket\n®);
return(-1);}
length=sizeof (name) ;
if(getsockname(desc.&name,&length))(
perror (*Cannot get socket name\n*};
return(-1);)
*port=ntohs(name.sin_port);
return(desc) ;
}
J[memmmmmesmmmemmm———sosm—s—ss oSS SooSomomoeTTTEm T
// - setsocknoblock() - Set socket in non-blocking mode -
i e

static inline int setsockneblock(int £d) (//fd = file descriptor
int flag = 1;
return(ioctl (fd,FIONBIO,&flag));

e
J/ - setsockblock() - Set sockat in blocking mode -

7] mmommm oo mma mm e e d S o e m e s

static inline int setsockblock(int fd) { //fd = fille descriptor
int flag = 0;
return(ioctl (fd, FIONBIO,&flag))

void node::init(int nb,char *launch_host,int launch_peort,int verbose, int ackno) (

int dialogue_port;

char comment;

char buf [STRING_SIZE];

char host_buf[STRING_SIZE];
int my_port(2);

int port_ackl[2];

struct hostent *hp;

int i,j,reqg;

ack=ackno;
vb=verbose;

// get node number
number =nb;

if (ack) for (1=0; i<MAX_PARTITION_SIZE;i++) {
for (req=0;reg<2;reg++) |
is_ack[req) [i]1=1;
counter_msg_received|reqg) [1]=0;
counter_msg_sent [reg) [1]=0;
message_nblreg) (1]1=0;
message_nb_received([req] (1]=0;
for (j=0;j<ack;j++) {
message_sent [req] (1] []] .type=0;
memset (&message_sent [req] (1)) .a_msg,0,sizeof (active _message));
Temsett&message_sent[req][1]lj].lg_msg,D,sizeof(1g_activeumessage));
}
)

// = change stdout to stderr -
// messages will be printed on terminal
// Flrst, close stdout

close(l);

// and then, duplicate stderr (new stdout)
dup(2);

A o mmm e
// - Read datas: partition_size, addresses... -
B SESRRSR eSS TSR H A w e e e e

// Open file HOSTS

ifstream from(*HOSTS");

if (!from) {
cerr << 'Cannot open file HOSTS\n*;
exit(1);
}

// Read the file
size=0;
while (from.getline(buf,STRING_SIZE)) (
// forget it if it is a comment
camment=buf (0] ;
if ((comment=='#')|| (comment==’ '} 1| (comment=="\n"} || (comment==0))

continue;
if (Isscanf(buf,"%$s %d", host_buf,&my_port(0])) continue;

port_ack|[0])=my_port (0]+1;
my_port [1]=my_port(0]+2;
port_ack([1]=my_port [0]+3;
dialogue_port=my_port (0]+4;
1f (size==nb) { // My data
// Open dialogue socket
if ((socket_dialogue=create_socket[&dialoguehport.SOCK_DGRAM)]==-1](
cout << *"Node'<<number<<®: Cannot create dialogue socketin®;
exit(l);
)
if (vb) cout << *Nede® << number <<": Socket ‘<< socket_dialogue << " open
+ ed on port *<< dialogue_port<<’\n’;
)

// Compute addresses
if({(hp = gethostbyname (host_buf)) == 0)
{

cerr << °*Cannot find address\n®;
exit(1);

for (reg=0;reg<2;reg++) |
memset (&node_address(req) [size],0, sizeof (struct sockaddr_in)) ;
node_address[req)] [size) .sin_family = AF;
node_address [req) [size) .sin_port = htons (my_port([reg]);
memcpy[&node_address[req]isizel.sin_addx,hp—>hﬂaddr_listtDl,hp-:h_lengthp;
}

if (ack) (
for (reg=0;reqg<Z;reqg++) {
memset (&node_address_ack(req] [size],0, sizeof {struct sockaddr_in)):
node_address_ack(reg) [size].sin_family = AF;
node_address_ack[req] [size].sin_port = htons (port_ack([reg));
memcpy(&node_address_ack[req]lsize].sin_add:,hp—>h_addr_1lst[0],hp->h_leng
+ th);
}
)

size++;

if (size >= MAX_PARTITION_SIZE+1) (
cerr << °"Max partition size (" << MAX_PARTITION_SIZE << ") exceeded\n®;
break;
}

}

// Close file
from.close();

// compute the address of the laucher
if((hp = gethostbyname (launch_host)) == 0)
(
cerr << *Cannot find address\n®;
exit{1);

)
memset (&launch_address,0, sizeof (struct sockaddr_in));
launch_address.sin_family = AF;
]aunch_address.sin_port = htons (launch_port);
memepy (&launch_address.sin_addr, hp->h_addr_1ist (0], hp->h_length);

// Creation of the sockets

// Conversion of the port numbers
for (req=0;req<2;regs+) |

my_port [reg] =ntohs (node_address [req] [number] .sin_port) ;
if (ack) port_ack[reg]=ntohs(node_address_ack[req] [number].sin_port);

if ((my_socket[reqg]=create_socket (&my_port|req],SOCK_DGRAM))==-1){
cerr << °*Node" << number << *: Cannot create reply socket\n";
exit(l);
]

if (ack) |

// sockets used for ACK messages

if (({socket_ack|[req]=create_socket (&port_ack[req], SOCK_DGRAM))==-1){
cerr << "Mode®<<number<<®: Cannot create socket\n";
exlt(1);
)

}

() // connect socket to launcher

1 L[(connect (socket_dialogue, &§launch_address,sizeof (struct sockaddr_in))==-1)
1/ (

o cerr << "Can not connect socketi\n®;
1 exit(2);
17)

// wait until all nodes are ready
sync_with_nodes() ;
if {(vb) cerr << *Node"<<numbear<<"® : All nodes ready\n*;

Sl s e o i e e B T SR T T 4
// - disable_interrupts() - Not used by simulation -
J o T e e e e A R I i i e

int node::disable_interrupts() ({
interrupt=0;
return 0; }

J | = e e e e e

// - enable_interrupts() - Not used by simulation -
e e P L e E LT LT e L= e IR e Py CEEL LA AT St e)

int node::enable_interrupts() ({
Interrvupt=1;
return 0;)

V37 R E R R R £ L R A X R R A Rt b ol Yo
// - process_ack() - process ACK message -
) e e st e o R 0 S S R e st

inline void node::process_ack({ack_message *mes,int reg) (

int ack_nb_awaited;
ack_nb_awaited=message_nb[req] [mes->dest];
// This allows the node to accept an ACK message which number
// is higher than expected. It means that the other node has

// already received the data, and that it is pointless to go
// on sending old messages

- @bessow bBuol e ssadold - {)Bbsw— b1 sseooad - //

! (eqep~BuoT<-5aW) I8 TpURY<-5aW

) (saux mmwmmm51m>ﬁuUmlmHuumHunmzlaﬁlwamun“wuoc pToA 2ujlTuf

....... B e]
- {)aetpuey BYTTIRD - //
mmmmmmem e /)

{ (ypiepuey<-saw (g==bieTqu<-saw) J1 2518
f([0)elEp<~-SauW) [IaTpURy<-sal (1==baer qu<-saw) JT @sla
! ([1]e3ep<-saw’ [Q]elep<-SaUW) ZIBTPUBY<-SaU (z==Baer~qu<-sauw) JT es1@

[z)eaep<-souw’ [1]eiep<-sow’[(]viep<-Saw) gIa[pury<-sau (g==hbarTqu<-saw) JT @2s(@
t(fgleae
p<-saw’([g)e3ep<-saw’ () ei2p<-saw’ [Q] BIEp<-SaU) YISTPURY<-SBW (p==Bxe qu<-sauw) 3J7I

} (sow. sbessaW 2AT19T)Ia[puURy [TEO:2pOU PTOA BUTTUT

....... e
- (asTpueyTTIRD - //
e e /1
{

{

t(g)amxe

f,u\O3pUasS, >> 1132
} (T-==((Ul IpPEY20S 15MI35)3J0azTIs’ [#0Inos<-ssau) (baa]yoe ssaappe apouy
‘o.awmﬂmmmslxvmvuowuqm.mme.vau_xumluwaOmUOuvcwmv 3¥
abessaw puas //

! ([(bax] 0BT 184205) {20 [qAPO0S IS
apow BuTyP01gq UT 1I2YD0s A8S //

lymusIagqunu< -ssau

y (b2x aur‘unu Juy’sssu, sbessaw yoe)yoe puas:iapou pIoA auTTuUl

. Smmemmimaeas -1

{
d(z)atxe
{ , u\OIpUas, >> 1182
} (1-=={(ur”appey0s Jon13s) joazis' [e2anos<-ssaw) (baa)yor ssaappe”apouy
‘0’ (ebessawyor) jooz]s ‘ssau’ [bai]yorT39¥20s5)03puas) 11
abessau pusas //

! ([baa)yoeT 19008) Y20 1qYD0SOS
spow buiysolq uUr 323205 189S S/

} (bax juj’‘sseuw, sbessow 3o®)YORTPUSS!:3POU PTOA SUTTUT

+

- juswbpsMouNde puss - (y¥orTpuas - //

- e B

{
“_wwu.mwamuxumlmmeOHa
11=be13
! | (aBessawyor) JoazTs ‘U’ Iaqumu
L u\ (seafq pg 3O 3INO py) =2bessau pajeouni) paalsoal :pPY¥OPON ONINHEYM.
‘1a3pas) 3autady ((oBessawyor)joezys=iu) JY
Y(r-=iu) 37

““:umsvam.m&wulunmm_c.‘mummmwﬁlxumuuowmﬂm.mwsq.ﬁuwuuxumluwaOmuEOnu>owuu:
aoejIaqul ¥o® 2yl syddud //

1p=be1
} (BeT3)arTTum

dooT 1104 //

{
f(T)aTxe
f.u\ () ¥oorgouyoosyas, >> 1I8d
} Hﬁ|uu__umu_xUmluwaOm,xuOmno:xuouumm_ 3T

apow Buiyooiq-ucu uj sa@ysos //

‘saw abesseW xo®
f(urTIppRY20s 4an13s) joezs=yibual Juy
tdwsaTIpE U IPPEYDOS IONAIS
t1=bet1} uy
{u qut

} (bax aut)yoeT [Tod: :EpOU PIOA

- T T — . ——— -_q

- (s)ssejisaur ¥oe [rod - ()¥oeTTrred - //
I

“nkuqazmlnalxuM.uwnsncA-me_nmnésc
r,u\ (pi Jo pes3sul pyi) 2bessau MOV PEQ pantaday :pyapoN,. ‘112pas) 3autad;y
| uaddey YIAIN pInOus sTUL //
¢ yBy 03 ST Isqumu DY BU3 f
} (p@aTeme quT {O® < Iaqunu<-sau) 371

(

i

u_vmuﬂmzmlnclxum_uwnﬁjca-mwe.umnﬁsc.
JUN (R O o+
peaisu] pyf) obessau HOV PIe paalsssy P1opON. '132pas) JIutad;] lg==qa) 3T
ybroua 15®3 YOV @Yl pues 13,Upip 31 ssnessq 1
201M7 BIEP BYJ PRATAIII Atqeqoad sey spou Iayle ayy //
abessau 4DV PIO //
) (paiafEme quyoe > Iaqumu<-sau) JT
{
"ﬁu—ummva-mwﬁ__Uwu_xvmimﬂ as|a
r1=[asep<-sau) [ba1]yoeTsT (bax) 371
Yo Taqumu //
} (p2ateme qu yoe == Iequnu<-saw) 37
“nwunzoma-mms.uwasaca-mwe.nwnsﬂn
* U\pPy SPOU WOIJ D% HOV PIATIDDIL: pyepoN. ‘118pas)jautad]
(g==qa) 37

fyrpoafeme QU Yoe ncumemavuu“m3minclxumv atTum

void node::process_lg_msg(lg_active message *mes, int req) |

if (tack) {
call_lg_handler (mes);
return;
1

else (
ack_message ack_msg;

/f Initialization of the ACK message
mes->ack (kack_msg) ;

if (mes-snumber > message_nb_received(reg] [mes->sourcej+ack) 1
// 1 missed several messages 7!7
// The message received has a number which is too high .
// This message shouldn’t have been sent in the first place,
/! because it needs an ACK which has not been sent...
/4 This should NEVER happen !!!
fprintf(stderr, "Nodetd: WARNING missed messages (%4 instead of %d)!!\n",
number, mes->number, message_nb_received[req] [mes->scurce]+1);
return;

}

if (mes->number < message_nb_received[reg] [mes->source]+1 } |
// ©1d message .
7/ This happens when the ACK message has not been received

// send acknowledgment
send_ackt&ack_msg,message_nb_receivedireq]£mes->source],req);

{f (vb==2) fprincf(stderr, *Node%d: 0ld msg received (%d instead of %d+) se
+ nding ACK %d\n*,
number, mes-snumber, message_nb_received[reg] [mes->source]+1,
message_nb_received(req] (mes->source]) ;
return;
}

if (mes->number == message_nb_received(reqg) [mes->source] +1+
counter_msg_received(reg] [mes->source]) |
// Good message
if (vb==2) fprintf(stderr, *Node%d: long msg #id received from node %d on n
+ etwork &d\n*,
number, mes->number, mes->source, req) ;

walting=0; // reset poll() counter
{f (resending) resending=0; // stop resending messages

// Increment the counter of messages received
// 1f the counter has the good value, send acknowledgment
if ++counter_msg_received[req) [mes->source] == ack) {

// reset counter
counter_msg_received(req) [mes->source] = 0;

// Increment the number of messages received
message_nb_received(reqg) [mes->source]+=ack;

// send acknowledgment

if (vb==2) fprintf(stderr,"Nodetd: sending ACK 2d\n", number, mes->number) ;
send_ack (kack_msg,req) ;

)

// call handler

call_lg_handler(mes) ;
return;
)

// 1f none of these cases is correct, it means that a message was lost
// so, we just wait for the sending node to send the messages again...
/4 TODO ? Send a NACK (non-acknowledged) message ?
// or it means that the message had been already received
if (vb==2) fprintf(stderr, *Nodeid: received bad msg #%d\n",number,mes->number);

Il e e e
// - process_msg() - Process a message -
J s e i S R B e e

void node: :process_msg(active_message *mes,int req) {

if (tack) {(
call_handler(mes);
return;
)

else |
ack_message ack_msg;

// Initlalization of the ACK message
mes->ack (&kack_msg) ;

if (mes->number > message_nb_received[req) [mes->sourcelsack | {
// 1 missed several messages 7!7?
// The message received has a number which is too high .
// This message shouldn’t have been sent in the first place,
// because it needs an ACK which has not been sent...
// This should NEVER happen i!!
fprintf(stderr, "Node%d: WARNING missed messages (#%d instead of &d)!!\n",

number,mes->number, message_nb_received([reg] [mes->source] +1);
return;

}

if (mes-s>number < message_nb_received[req] [mes->sourcel+1) {
// 0ld message

// This happens when the ACK message has not been received

// send acknowledgment
send_ack (kack_msg,message_nb_received(req] [mes->source], req);

if (vb==2) fprintf(stderr, *Node®d: 0ld msg received (%d instead of %d+) se

+ nding ACK %d\n*,

number, mes->number, message_nb_received|req) [mes->source]+1,
message_nb_received[req] [mes->source]);
return;

}

if (mes->number == message_nb_received[req] [mes->sourcel+l+
counter_msg_received([req) [mes-ssource] |} {
// Good message
waiting=0; // reset poll() counter
if (resending) resending=0; // stop resending messages

if (vb==2) fprintf(stderr, "Nodeld: msg %4d received from node td on network
2d\n",

number, mes->number, nes->source, req) ;

// Increment the counter of messages received
/7 1f the counter has the good value, send acknowledgment

if (++counter_msg_receivedlreq](mes-:source] == ack) (

// reset counter
counter_msg_received[reg) [mes->source] = 0;

// Increment the number of messages received
message_nb“received[req][mes->source]+=ack;

// send ackncwledgment

if (vb==2) fprintf(stderr,*Nodeid: sending ACK 1d\n", number , mes->number) ;
send_ack (&ack_msg, req) ;

)

// call handler
call_handler (mes);
return;

)

// 1f none of these cases is correct, it means that a message was lost
// so, we just wait for the sending node to send the messages again...
/7 TODO ? Send a NACK (non-acknowledged) message ?
/! or it means that the message had been already received
if(vb==2) fprintf(stderr,*Node%d: received bad msg #%d\n",number, mes->number) ;

P e ermn e e SRR SR S A R A S S e S S TS R A s S e TR AL R RN
/! - test_ack{) - Test if ACK was received and resend messages if necessary -
i ittt

inline void nede::test_ack(int dest,int req) (
int i;

// Any pending ACK message ?

// poll for acknowledgment

1 poll_ack(req);

// no, because, message_nb[req) {dest] hasn’'t got the good value (1 more)

// Should I check if messages where acknowledged ?
if ((counter_msg_sent[req] (dest]!=0) &&
{ (counter_msg_sent [reg) [dest]) %ack == 0))
{
// Any pending ACK message 7?7
/! poll for acknowledgment
poll_ack(req);

// reset counter
counter_msg_sent [req] [dest]=0;

// message not acknowledged ?
while (!is_ack(reg)[dest]) (
// a bit arbitrary...
for{i=0;1<1000;i++) (
poll_ack(req);
{f (is_ack[req)] [dest]) break;
)
//acknowl edgment was received
if (is_ack(req) [dest]) break;

//acknowledgment was not received
Lf (vb) (
if (messageﬂsent[req][dest][0].type)
fprintf(stderr, "Nodetd: Must resend messages #id-%d to node id\n*®,
number , message_sent [req] [dest) [0].1g_msg.number,

, message_sent (req] ([dest) [0) .1g_msg.number+ack-1,dest) ;
else
fprintf(stderr, *Nodeid: Must resend messages Mlid-id to node %d\n*
number , message_sent [req) (dest] (0] .a_msg.number, '

message_sent [req) (dest] (0] .a_msg.number+ack-1,dest);
}

// previous messages acknowledged
is_acklreq] (dest]=1;

// Go back in the counter
message_nb(req) [dest] -=ack;

// Send messages again

for (i=0; i<ack; i++) {
if (message_sent([reg)(dest](i).type) // long message

send_msg (&message_sent [reqg) [dest] [1].1g_msg, reqg);

else // normal message
. send_msg (&message_sent (req) [dest] [i].a_msg, req);
if (is_ack(req] [dest]) break;
}

// reset counter

counter_msg_sent [req] [dest]=0;

B O

// - resend_all_messages() - resend all messages not acknowledged -
L R e L S o e 78 2 S S 1 o i 0 S i i e st S

void node::resend_all_messages()(
ink 103K

for (j=0;3<2;3i++)
for (i=0;i<size;i++)
if (i!=number) test_ack(i,j):

// Send messages agaln

resending=1; // allows the send_msg() function to know that it is a resending

for (3=0;3<2;j++) (
for (k=0;k<size;k++) (
if ((counter_msg_sent (j)(kl==0) ||

{(counter_msg_sent(]j] (k])%ack == 0)) continue; // processed by test_ac
+ k() or no msg -

for (1=0; l<counter_msg_sent[3)(k); i++) (
if (!resending) return;
if (message_sent[3j)[k][i].type) // long message
send_msg(&message_sent (] (k] [1) -1g_msg,]):
else { // normal message

if {vb==2) fprintf(stderr, *Nodetd: Resending message 3d
+ ork %d to node %d\n",number, g on netw

message_sent[j] [k] [1] .a_msg.number, j, mess
+ [k [1].a_msg.dest); A .
Tend_msqf&message_smtul (k1 [i).a_msg,3)s
)
}
)
resending=0;

tg=[3159p<-ssow] (bax]yoe™s]
J2A pabpeimow{dw J0U :§NIVIS //

rssaw,=Bsue | [3sap<-ssau] [ba1]aues Bsuwxajunos] [1sep<-ssau] [(bax]quesTebessau
tp=adAa- [[3sep<-ssou) [bai]jues bsw 1a3unod)] [3sep<-ssau] (bax) juss abessau
obessaw ayy 1038 //

! ++ [3sap<-ssau] (baa)qu abessau
Jues sabessaw Jo Iaqunu oyj3 Iusweaouy //
} ((Buypuasaxj)ny(yoe)) 3T

(
f(z)atHe
fJu\ojpUues, >> IIal
} (1-=={(uT Ippeyoos 3ona3s) Jo=2zis’'[asop<-ssau) (bax)ssaippe opoun
‘o' (obessawaATI0R) JoozTs ‘ssow’ [bax]qaynos” Aw)olpues) 3§
sbessaw puas //

{([baa]@ypos” Au) {20 TqxHo0sIBS

apow Butyoolq Ul IPYDOS 1A3S [/
1a33unod () pred 3Iesax // ‘g=Butatem
! (bax ‘ysap<-ssau) Yoe 3587 (4oe) I1

} (bax juy‘ssau, sbesssuw aalioe)bsw puas::apou ploA

i
! {p'sawy) bsw ssanoxd
abessaw ssa201d //
f1=be13
! ((sbessauaATIDE) JORZTS U’ I9QUNU
‘. Is214Aq py jo Ino py) sbessaw pPalEdUNI] PaaTodal :DLSPON ONINHVM.
‘z38pas)jiutad] ((abesssu aAT3IDR) JOIZIS= (U} 3T
IsawTHr=sauw
sbessaw Tewrou //) asi2
{
! (p*sew—B1y)bsw—B1 ssaocad
abessaw ssaooiad //
t1=be1]
!((ebessaw aaTiow)Jo22]s ‘U’ Iaqunu
'L (S82AQ py 3o Ino ps) 25esSoW PaIEOUNA] PIATIIRI iPEOPON ONINEVM.
'11apas) jautady ((=bessaw aafioe Bl)joszis=iu) JT
-+ -paaput abessaw Buoy //) (1-==Bae qu'saw B1) 31
Yl1-=iu) 3%

3bue 1y 'dum i Ipey ‘0’ (2beSSaw aATI0e BT) JoazZ s ‘SaW B1Y ' (0] 32205 Aw) woagAoai=U
sovjasljur Ardex syl suo3y2 //
) (1=iba1) 371

{

! (1 ‘sowxn) Bsussasead
abessaw ssadoad //
f1=ber}

Py o+

1 ((obessaw@aTi0v) JOBLTS ‘U’ IaqUNU

. {sea4q py JO N0 py) ebrssaw pajeouniy PRATaDeT (PEOPON ONINUVM.

+310pas)Jautad] { (ebessou oa]ioR) Joaels=ju) 37
tsau Bi=sau
abegsow Tewiou /f/)} @s51@
{
uﬂﬁ.m@&lmﬁm_wmﬁlmaimmmuou&
obessou ssa201d //
f1=Be13
! ((abessauaaTa0r) JoaZTS ‘U’ I2quUnU

1, (s27hq p% JO INO pyx) obessow pajeduUNnI] POATIDAI PYIPON ONINYYM.

‘119pas)jautad] { (sbessaw aa13ane B1) JoozIs=iU) 37
-+ -paaput abessaw Buol //) (1-==bae qu-sauW BT) w«
ylr-=ju) 3%

umcuﬁm.mﬁmulnema.c.awwmmmmcﬁd>ﬂuumlmavuomu“m.mmEImHa_Hﬁﬂuwxuomlmﬁvﬁouu>bwnnn

aoejxaaul 3sanbax aya sy28yd //
) (baz) 3%

tp=be13
} (Be13)alTum

doot 1104 //

{
flThatHe
1 U\ () Y201qouyo0sias, >> A18D
Yo -uuﬁ_o_uwxuomlhsvxuoﬁno:xuomummv 17
(1=ibaz2) 37
{
flT)ate
!ouy () ¥ooTqouyoosias, »» 1180
} HH-unHHﬁuuwxuoml>ﬁuxuoHnOﬁxuomuwmv 37
(bax) 17
spow Bury¥solg-uou ul s3@¥d0s //

(
stres ()11ed jo Isaunod // t++bupaTEM
(
!p=butatem
¢ ()sabessaw [Te puasal
f(zaqunu’ . uy- - -Butried :pyepoN. ‘Iaspas)jauridy (qa) 37
} (oooz==Butates) JT
} (d2m) 37

sapott 4y o3 sabessaw 3Se] PUDSSI T TMO3 B UT W3 Y3I000Z B4 1093 puttted 3% //

‘sewHT abessawaatice BT

‘saw abessaw 9ATlO®

! (urTIppRYSes 3onI3s) Joazis=yibual JUT
‘dwal”Tape U1 IPPEYD0S IINATS

t1=Ber3 aut

fu quy
ssoeji21ul Yioq : g = bax //
aoejiaquy Atdex : 0 = bax //
aoejasauy isenbax @ 1 = bax //

y (bax aur)11od: :apou proa

semrmEs SRR R it S P '/
- sapejieaul yloq tred - ()r1ted - //
cmmmmmmme- e sommemmaaas It

// increment counter
counter_msg_sent [reqg] [mess->dest]++;
}

if (vb==2) fprintf(stderr, *Node%d: Message H%d sent to nodeid on network %d\n",
number ,mess->number, mess->dest , req) ;

/{ poll interfaces for incoming messages
if (req) poll(2); //poll both interfaces

else poll (0); //poll only reply interface
)
E B e
// - send_msg() - send a long active message -
[Semm s e e e e e o e

void node::send_msg(lg_active_message *mess, int reqg} (

if (ack) test_ack(mess-»dest,req);
waiting=0; // reset poll() counter

// set socket in blocking mode

setsockblock (my_socket [req]):

// send message

if (sendto(my_socket[req), mess,sizeof(lg_active_message),0,

&node_address [reg] (mess->dest],sizeof (struct sockaddr_in))==-1) (

cerr << "sendto\n®;
exic(2);
)

if (({ack) &% (!resending)) (
// increment the number of messages sent
message_nb [req) [mess-»>dest]++;

// store the message
message_sentlreq][mess—>dest][counter_msg_sent[req}[mess—>des:]].type:l;
message,sentlreq]{mess->destl[counter_msg_sent[req][mess->dest1].1g_m5g='mess;

// status: not acknowledged yet
is_ack[reg] [mess->dest]=0;

// increment counter
counter_msg_sent (reg} [mess->dest]++;

)

if (vb==2) fprintf(stderr, Nodetd: Long message #%d sent to node 3d on network

+ &d\n°*,
number, mess-»number, mess->dest, req) ;

// poll Interfaces for incoming messages
if (reg) poll(2); //pell both interfaces
else poll(0): //pell only reply interface

JJ o o o e £ o e e e o e e e e R W S e e ey
// - request() - send a request message, long argument handler -
Jl mmmmmmmmm e e d s s s mso oo Soscessssssoso-oo—ooses
void node::request (int dest_node,void (*handler) (char =*),char *datal) {

1f (sizeof(datal)<=DATA_SIZE) [

{/ The message can be sent as is
lg_active_message mess (number, dest_node,message_nb(1] [dest_node]+1,0,handler
+ , (char *)datal);
send_msg (&mess, 1) ;
)
else {

/# This part hasn't been tested yet (and is not working...)

/f The message is cut in smaller parts

fprintf(stderr, *Message too long ! : %d bytes\n',sizeof(datal));

int current_size=sizeof(datal);

int n=0;

1g_active_message mess (number,dest_node,message_nb(1)] [dest_node]+1,1,handler

while (current_size>DATA_SIZE) (
memcpy (mess.long_data, (char *)datal+n*DATA_SIZE,DATA_SIZE):
send_msg(&mess, 1) ;
current_size-=DATA_SIZE;
n++;
)
// Send last part
memcpy (mess. long_data, (char *)datal+n*DATA_SIZE,current_size):
mess.to_be_contd=0;
send_msg (&mess,1);

R e e e T
// = reguest() - send a request message, 4 arguments handler -
Il ==rmesmenen e s m st T e B A R A

veid node::request (int dest_node,void (vhandler) (int,int,int,int),int datal,int da
+ ta2,int datal,inp datad) {

active_message mess (number,dest_node,message_nb[1][dest_node)+1,handler,datal,d
+ atal,datald,datad);

send_msg(&mess, 1) ;
,.',f __
// = raguest() - send a request message, 3 arguments handler -

[e e e s

void node::request (int dest_node,veoid (*handler) (int,int,inc),int datal, int data2,
+ int datal) {(

active_message mess(number,dest_nocde,message_nb(1l) [dest_node]+1,handler,datal,d
+ ata2,datal);

send_msg (&mess, 1) ;
i ettt oioiiak et e iatodinteinindbteie i detaintetnindedett bbb EC T L BT
// - request() - send a request message, 2 arguments handler -
J] ==t mr e e e e e e e e s e ——
void node::request (int dest_node,vold (*handler) (int,int), int datal, int data2) (

active_message mess(number, dest_node,message_nb(1] [dest_node]+1,handler,datal,d
+ ata2);

send_msg (&mess, 1) ;

! {p‘ssouy) bswpuss

!{(geqep’zele
p'1eaep‘a1aTpuey’ 1+ [opou3sap] (0] qu abessaw ‘apouT 3sap ' 1aqunu) ssaw abessau aATI0e

) (geaep 3

UT‘ZeIEP QUT‘TRIBP JUT’(IUT'JUT’IUT) (I3TPuUels) PIoa‘spouisap Juy)drdex: :apou pioa
--- I/

- aapuvy sjuoumbie g ‘obessaw Ardex e puss - ()Ardex - //
--- Y7

{

{{p'ssawy)bsupuss

‘(yeaep’gejep’geqe
p'relep’IaTpuey’ 1+ [apouT asep] [plquTebessauw ‘apouT 3sap ' Iaqunu) ssawl abessaw @AT30®

) (pe3ep IUT'EEIEP IUT'C
BIEP JUT/TRIEP 3IUT‘(IUT’IUTIUT‘IUT) (IDTPULY.) PTOA’epou3sap 3uy) Ardea: :apou pyoa

--- 1
- zaTpuery sjusumbie p ‘abessew Aidei e puss - ()Ardexa - //

--- 17

f,u\j; Buor ooy sbessal :ONINYYM. >> 1180 8512

{
{1 'sgowy) Bswpuas

f(Te3ep (. IBYD) '
JaTpuey Q' 1+ [opow 3s8p] (0)quTobesssu'spou 3sap faequmu) ssau abessawaATIoe BT

ST s® 3juas ag ued abessaw aylL //
} (3ZISTWINQG=>(T®IEP)JOIZTIS) JT

} (Te3aep. Ieys' (. IeYD) (IDIPULY.) PIOA'spou—3sap aur)A1dax::apou pioa

--- r/
- Iatpuey jusunbie Buoy ‘sbessaw Aydex = puss - ()Atdex - //

--- VY

{
! (1a1puey 'opoU 3sap) 3sanbax

r+asenbal=2>d1l ‘mou 10j /!

* ONINYVM //

} (() (1a1puey.) pioa‘spouT3sap juy)odi::apou proa
-- 1
- zarpuey ajueumbie (‘abessaw D4y ® puas - ()odx - //
-- 1

(
! (1ealep ‘I8 [pURY ‘apou” 3sap) isenbal
-3sanbai=ada ‘mou 103 17

: ONINWYM //
} (Te2ep 23Uy’ (3uy) (Iafpuey.) ploa‘apou—isap 3ut)adi::spou pioa

-- 1/
- 1atpuey jusumbie 1 ‘abessaw D4y e puas - ()odr - /f

¢

!(zeaep’ Iw:ep ‘zatpuey”’ apou’nsap)asanbax

s3sanbax=odx ‘mou 10} 1/

i ONINEYM //

)} (zejep auf‘yelep U’ (3UTIIUT) (TOTPURYL) pioa‘spouT3sap Juy)odi::apou proA
--- 1/

- zsTpuey sajuaumbie g ‘shessauw D4y ® Pu=s - (yodx - //
--- /"

{

!({geaep’geaep’ tenep ‘1a{pury ‘apou”1sap) 3sanbax

+asanbai=odi ‘mou 103 £if

i ONINYVM //

} {geaep

Jui‘Zelep Uy ‘reIEp UL (UT UL IUT) (I2TPURY,) pyoA‘apouTIsap aut)odi: :opou pioa
--- 1/

- I=a1puey squamnﬁxe g ‘abessow DdY © PUIS - (yodx - //
--- I

{

! (peaep'geqep‘gelep’ teqep':a[pueq ‘spouT3sap) asenbal

-qsanbai=odx ‘mou 10j 1/

+ ONINWYM //

) (pe3eEp U7 'EEIED QU

‘ZeaEp JuUT’‘1elEp qUT (IUT UL’ IUT ‘2uT) (I2TPURYL) pToa‘spouTisap juy)odi::apou proA
-------------------------- emmmmmmm s ee e e [
--- r

{

: ({e3ep ‘I5TpURY ‘spouT 31s3p) asanbax

sgsonbeax=adx ‘mou 10} 1/

: ONINEYM //

) (Te3ep. Ieyd’ (. Z®YDd) (I2TPUEY.) pIOA‘BpOU 1Sap quy)ada: :apou proa
--- 1

--- "

‘(1 'ssawy)bswpuas
!tlaIpUEq'[+[apou"qsap][Ijqu_aﬁassam'apou_:sap‘:aqmnu)ssam sbessaW @ATIo®
} (() (I2Tpuey.) PTOA’'SpoOUTISIP IUT)Isenbax: :2poUu pIoA
-- tif
- 1atpuey jusumbie ¢ ‘obessau 3senbax v puss - {yasanbaz - //

-- 1

{
! (1 ‘ssauy)bswuTpuas

!(tenep'xalpueq'tr[apou‘nsap}[t]qu'aﬁessam'apou’:sap’:aqmnu)saam abessaw @Al10w®

} (Teaep Ui’ (3ut) (I27puey.) plroa‘spou 1sap aur) 1sanbal: :apou proa

-- 1
- iorpuey jusunbiv [‘sbesssw 1senbal e puss - (yasenbax - //
e

(L U\BUOP () BRPOUTYITMTDUAR 1, >albqunux>,OpoN. => 1122 (QA) JT

{
H(T)aTxe
! u\paatsosa abesssuw umouyun, >> IIID

} t.d,=ilo)sauw) 37
{(p 1 'sau'anboTRTR 12}008) ADDI=U
IaMsSUE ay3l Ioj fem //

{
fz)atxe
{,u\puas 30U uevd, >> II83D
) {T-==((UTIppPeYD0s 3ONIIAS)JOIZTSSSIAPPE YouUNe[y
‘0’3215 AN90TYIQ ‘sau’enforeipT 3@%00s)olpuas) J7
Iayoune] o3 obessau puss //

f (3ZISTANS0TIVIA’ . ®, 'S9u) Iasuau

puas 03 sbessaw " ITuy //

{ 1 <- 32Is"IN00OIVIA) //

spouy3tm ouds 103 pasn Ajuec aaysunel JT abuwys o3 //

(arnejap) apow Bujxserq uj AT and o1 pIsu ou <~ //
apow Bupyoolq UT oq sAemle plnoys 3a320s anbotetp auy //

uwoquy
{[FZISTAND0TTYIg)SauW Ieyd
} {)sepouyatM duds::apou ploa
...................... B e

- S8pouU BYa JO UOTIRZTUCIUDUAS - ()sSapou yiaim ouks - //

e s = 1

! (p'ssauwy)bsuTpuss
s {zaTpuey” 1+ [epou—asasp] [g)gu abessow’apou 3sap ‘Isqumu) ssau sbessaw aAaTi0e
} {{) (z2TpuBy.) pioA’‘spouTasep aur)Ar1dax::apou DIOA
S taie e § R AYAT & P - 1 AR = A1
T Ees e e T TS sesiemamessiieasas e Sl
! (g *ssawy)bswpuas
1 {peaep’12Tpuey’ T+ [epou3sap) [0)qu sbessow ‘epou” 3sap ' Iaqunu) ssaw abessawTaATIoe
) {T2a=p aufp’(auy) (221puey.) pIoA’apouT3isap 3ul) ATdaa: :spou pyoa

............... e /]

- zatpuey jusumbBie 1 ‘sbeussaw A1dea ® puas - ()Ardex - //

T E e = e = e e P e L L R e g
{
: ¢ (g 'ssswy)bswpuas
o {0 uiniaa ‘(geae
} (aur ‘. FTId)epowT ol 33s5]::apou jur v;ﬁmumn_ucﬁn:mz.ﬁ+hmvo:lummuHchnclmmmmmws.wvoq!umwﬁ~uwnes:9mmws abesssw aatT308

1 } (ze3ep autr‘relep auy‘(3uf’Iuj) (Ia[puey.) pTOA’‘SpouTasap 3ui)Ardel::spou pioA

/* go.cc - launch the simulation
*

* History:
v 05/16/95 - Created by N.Guerin
& 08/08/95 - Last modification by N.Guerin

¢include *node.h*

extern "C* {
#include <sys/wait.h>
}

#define HOSTNAME_SIZE 200
idefine LAUNCH_PCRT 7389 // default port# of the launcher

struct sockaddr_in node_address[MAX_PARTITION_SIZE]); // addresses of all nodes
int launch_socket; // launcher socket

int slize=0; // partition size = number of entries in HOSTS
int vb=0; /! verbose mode off

int ack=0; // acknoledgement mode off

int tofile=0; /¢ write to file off

pld_t process(MAX_PARTITION_SIZE); // pid of the launching processes (not used)
int nb_finished=0; // number of processes terminated

[/ e e e e oo e

// - maln_loop() - Main loop of the program -

/- Allows display of messages on the -

hi = screen and sync_with_nodes() -

Ll =mmmmmrmr e e e s Ao a e ea SRS ERem S TR

void main_loop() {

struct sockaddr_in adr_temp;

int length=sizeof (struct sockaddr_in);
char mes[DIALOGUE_SIZE];

int n,&;

int counter=0;

char answer='@’;

for(is) (
memaet (mes, 0, DIALOGUE_S]Z2E)
// Walt for message, and read it
n=recvfrom(launch_socket ,mes, DIALOGUE_SIZE, 0, &adr_temp, &length);
{f (vb==2) cout << *Launcher: Message received from port "<< adr_temp.sin_po
+ rt << * \n";

// Test if sync_with_node message
if (mes([0]=='@') (// sync_with_node
counter++;
if (counter==size) (// all nodes are walting
// reset counter
counter=0;
// send signal to all nodes
for (i=0;i<size;i++) {(
if (sendto(launch_socket, &answer,l,0, &node_address[i],
sizeof (struct sockaddr_in))==-1) (
cerr << "sendto\n*;
exit(2);
)
)
if (vb) cout << "Launcher: Sync_with_node() succeded\n®;

else if (mes{0}!=0) (// simple message. In fact, not implemented...
cout << "message: " << mes << '\n’';fflush(stdout);

f = e e e e e e e

// - create_socket() - General function that creates a socket -
,o’.{ --

static int create_socket (int *port,int type)

{
int desc; /* descriptor of the new socket */
struct sockaddr_in name; /* address of the socket */
int length; /* Length of address =/

/* Creation of the socket */

if ((desc=socket (AF,type,0))==-1){
cerr << *"Cannot create socket\n*;
exic(2);

memset { (char *)&name,0,sizeof(name)):;

name.sin_port=*port;

name.sin_addr.s_addr=INADDR_ANY;

name.sin_family=AF;

if{bind(desc,&name,sizecf(name)})(
fprintf(stderr, "go: Can not bind socket\n");fflush(stderr);
exic(2);)

length=sizeof (name) ;

if (getsockname (desc, &name, &length)) {
perror(*Cannot get socket name\n®);
exit(2);
)

*port=ntohs(name.sin_port);

return (desc) ;

Rt e e et E e O L B
// Handler for SIGCHLD signal
S S e a S e e e R

void node_finished(int)

{

//tprintf (stderr, *Node :SIGMAL %d caught, one noda is finished\n®,toto);
//£flush(stderr);

(vold) signal (SIGCHLD,SIG_IGN) ;

(volid) signal (SIGCHLD, node_finished);

nb_finished++;

if (nb_finished==size) exit{0);

}

[t =mececnean
/7 - main() -
R

main(int argc,char *+*argv)

{
int launch_port=LAUNCH_PORT;
char hostname [HOSTNAME_SIZE] ;
char argu(STRING_SIZE];
char argu_buf [STRING_SIZE];
char login[STRING_SIZE);
char remote_shell (STRING_SIZE];
char launch_cmd[STRING_SIZE];
int 1;

{void) signal (SIGCHLD, node_finished);

memset (argu,0,STRING_SIZE);
if (argci=1) {

int arge_init=1;

int flag=1;

while ((flag)&&largc_init<arge)) {
flag=0;

// Want some help ?
if (!stremplargv(arge_init],*-h")) {

cout << "usage: * << argv(0] << * [-port nnnn]

+ file] [node_arguments]\n*;
exit (0):
)

// Change port ?

if (!strempl{argv[argc_init], *-port=)) |{
launch_port=atoi(argviargc_init+1));
argc_init+=2;
flag=1;
continue;
)

// Verbeose mode ?

if (!stremplargvi{argc_init],*-v"}) {
vb=atol (argv|arge_init+1]);
if ((yb!=1)&&(vb!=2)) wvb=0;
argc_init+=2;
flag=1;
continue;
}

// Acknowledgment mode ?
if (!stremplargviargc_init],"-ack®})) (
ack=atoel (argvlarge_init+1]);
if (ack<l) (
cerr << *size of ack missing \n*;
exit(1);)
argc_init+=2;
flag=1;
continue;

)

/! Write to file ?
if (Istrempiargv{argc_init], *-tofile®))
tofile=1;
argec_init++;
flag=1;
continue;
)

)

// Copy argv in string argu

for (i=argec_init;li<arge;i++) {
sprintf(argu_buf, "%s #s*, argu,argv(i]);
strcpy (argu, argu_buf);
)

}

if (gethostname(hostname, HOSTNAME_SIZE)==-1)
cerr << "Can not get host name\n®;
exit(l);
}

(

{

[-v 1/2]

[-ack nnn]

[-to

':“ R
e 2

// Open socket

if ((launch_socket=create_socket (&launch_port, SOCK_DGRAM))==-1)(
cerr << "Cannot create dialogue socket\n®;
exit(1);
)

// Read the datas from file HOSTS

// Open file HOSTS

ifstream from("HOSTS");

if (tfrom) {
cerr << "Cannot open file HOSTS\n";
exit(l);
}

// Read the file

char comment ;

char *buf = new char([STRING_SIZE);

char *host_buf new char[STRING_SIZE];
char *name_buf new char [STRING_SIZE] ;
char “*path_buf new char [STRING_SIZE) ;
struct hostent *hp;

int port_req,port_rep,port_dialogue;

L T 1

size=0;
while (from.getline(buf,STRING_SIZE)) {

/7 forget it if it is a comment, or if it is empty
comment =buf [0] ;
if ((comment=='#')||(comment==' ')||(comment=="\n')1| (comment==0})
continue;
// reads the datas
if (!sscanf(buf,"%s 2d 3s %s is %s",host_buf, &port_req,
remote_shell, login,name_buf,path_buf)) continue;
port_rep=port_reg+2;
port_dialogue=port_req+4;
// compute addresses of the other nodes
if((hp = gethostbyname (host_buf)) == 0)
(

cerr << "Cannot find address\n®;
exic(1);
)
memset (&node_address(size),0, sizeof (struct sockaddr_in));:
node_address[size] .sin_family = AF;
node_address[size)] .sin_port = htons (port_dialogue);
memcpy (&node_address(size].sin_addr, hp-»h_addr_list (0], hp->h_length);

size++;

if (size >= MAX_PARTITION_SIZE+1l) {
cerr << "Max partition size (* << MAX_PARTITION_SIZE << *) exceeded\n®;
break;

)

if (!strcmp(remote_shell, *rsh*))

sprintf(launch_cmd, *%s -1 %s %s*,remote_shell, login, host_buf);
else

sprintf(launch_cmd, "%s %s -1 %s*,remote_shell, host_buf,login);

// Launch program on specified host

if (tofile)
sprincf(buf,*3s \'cd %s; ./4s %s %d %s id 3d td>& resultid\’", launch_cmd,

rr

+ ut);

path_bufl,name_buf, argu,size-1, hostname, launch_port,vb, ack,slze-1);

else
sprintf{buf, "%s \'cd %s; ./%s %s 3d 4s 2d 4d %d\’", launch_cmd,
path_buf,name_buf, argu,size-1, hostname, launch_port,vb,ack) :

if (vb) (fprintf(stderr,"%s\n",buf);fflush(stderr);)
system(buf);

/1 fork process and launch pregram on child
if {((processisizel=fork())==0) { // The child process
execl{®/bin/sh*, ®sh*, *=-c¢*,buf, 0);
)
if (vb) printf(*Process %d launched pid=%td\n",size,process([size]);{{lush(stdo

}

from.close();
/i Main loop...

if

(vb) cout << *Launcher in main leep\n*®;

main_loopi):

INCLUDE = -1I.

EXTRALIBRARY = -L.

LIBS= -lecmmd

¥For SUN stations, add -1gs++ in LIBS
C+4+ = CC

#C+4 = ge+

CFLAGS= +02
#CFLAGS= -D_SUN -02
f§For SUN stations, add -D_SUN in CFLAGS

FHESSEINEAANNNRY END OF CONFIGURATION OPTIONS KRERHAHHENKERNEMS

LIBRARIES= $(EXTRALIERARY) $(LIBS)

lib: timer.o node.o active_msg.c lg_act_msg.o cmmd.o
ar ruv lihcmmd.a timer.o active_msg.o lg_act_msg.o node.o cmmd.o
ranlib libcmmd.a > /dev/null

¥ ranlib useful for SUN stations only

timer.o: timer.h
§(C++) -c §(CFLAGS) timer.cc

active_msg.o: active_msg.h
$(C++) -¢ $(CFLAGS) active_msg.cc

lg_act_msg.o: lg_act_msg.h
§(C++) -c S(CFLAGS) 1lg_act_msg.cc

node.o: timer.h node.h
$(C++) -c $(CFLAGS) node.cc

cmmd.o: timer.h node.h cmmd.h
$(C++) -c $(CFLAGS) cmmd.cc

main.o: timer.h node.h cmmd.h
§(C++) -¢ S(INCLUDE) $(CFLAGS) main.cc

go: node.h go.cc
$(C++) -0 go $(CFLAGS) go.cc §(LIBRARIES)

all: 1ib go

/* main.cc
!

finclude <emmd.hs>
#include <jostream.h>

extern "C* {
Finclude <stdlib.h>
¥include <stdio.h>
)

fdefine MAX 4

int stop=0;
int counter=0;

P LT -
[7 =mmmmmmmmmm e

vold hand(int datal)
{
Int i=CMMD_self_address();

fprintf(stderr, "Nodetd: received data %d\n*,CMMD_self_address(),datal);fflush(stde
rr);

if (dacal==MAX) |{
stop=1;
if (1==0) return:
)

if (i==0) datal+s;

i44;

if (i==CMMD_partition_size()) i=0;
CMAML_requesct (i, hand, dacal);

)

main(int arge,char **argv) // argc and argv must be present here

{

// to add Lf you are using the simulation; needs stdlib.h ({atoif(})
// begin
{
// test number of arguments
if (arge<$s) (
fprintf(stderr, 'You must launch the CMMD simulatien to execute this program\n

exit(2);
)

// Init with the 5 last arguments
CMMD_init_simulation(atei(*(argv+argc-5)),*(argv+argec-4),atei(* (argv+argc-3}),
atol (* (argv+argc-2)),atel(* (argv+arge-1)));

// Ignore the 5 last arguments
arge-=5;

}

// end

CMMD_node_timer_clear(0);
CMMD_node_timer_start(0);

if (CMMD_self_address()==0)
{
CMAML_request (1, hand, counter) ;
while (!stop) {
CMAML_poll (),
}
}
else
{
while (!stop) ({
CMAML_poll () ;
)

CMMD_node_timer_stop(0);

fprintf(stderr, "Nodeid: Time elapsed:%d sec\n"
+ r_elapsed(0)); £flush(stderr);

exit(0);

}

,CMMD_self_addresst),CMMD&node_time

EXTRALIBRARY= -L../lib
LIBS= -lemmd
[—lg++

Cs+#+ = CC
CFLAGS= +02 -1../include

$¥RFUAERRARAEFEE END OF CONFIGURATION OFTIONS HEREKFEEAHARRUHNH
LIBRARIES= § (EXTRALIBRARY) $(LIBS)
main: main.o

$(C++) -o main $(CFLAGS) main.o $ (LIBRARIES)

main.o:
5(C++) -c S(CFLAGS) main.cc

B AHIHGRE BHBARE

oxd/urasnb/siesn/iotpneb/ 0T 1qIvVE/

sn/joteneb/ 307 1qIvE/cane /T duy /

sn/301pneb/307 1qIveE/oaney/auwTduy/
8113 Aleurq jo uotaedonq

pue

urew ujranb Yyswal
utew urzanb Yswsa

ujew uyasnb yswal

alduexa/ Q" [-WISAHKD/ 203l +

gvzotl asiayo
atduexsa/’ T-WISqRRD/30aford/utaanb/s1s
s3€gl apdy
ardwexa/0" 1-UTSQWWD/ 30efoad/utaanb/s1a
L9zel Sopaua)
q10d ASOH §

awey utbe7 pueuwo)

