
Simulation of the communication

libraries of the CM-5 on UNIX workstations

Nicolas Guerin and Jean-Luc Gaudiot

CENG Technical Report 95-19

Department of Electrical Engineering - Systems
University of Southern

Los Angeles, California 90089-2562
(213)740-4484

Ecole Nationale Superieure de I'Aeronautique et de I'Espace
31055 Toulouse - FRANCE

August 25, 1995



Simulation of the communication libraries of llie CM-5 on UNIX workstations

Abstract

The purpose of the project described here was to build a function library on UNIX
workstations, that would emulate the communication libraries of the CM-5: CMMD and
CMAML. This simulation should enable the user to compile, run and debug CM-5
programs on a network of UNIX workstations.

Thefirst part of this report is a general presentation of the CM-5 and its communication
libraries: architecture, execution model, active messages etc.

Then, you will find in the second part the details of the implementation: how the
simulation is working, how UNIX communicates with UDP/IP, why an acknowledgment
scheme was necessary, how it is implemented, and the limitations of the simulation.

Finally you will be given the performances of the simulation as compared to a CM-5, the
influence of the number of nodes and the interest of the long active message scheme.

The Appendix contains the fully commented listing ofthe whole program.



Simulation of the communication Libraries of the CM-5 on UNIX workstations

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Jean-Luc Gaudiot, Associate Professor at
USC, and to Steve Jenks, Ph.D. student and advisor of my research work, for their
guidance and support throughout the five months of my training session at USC.

I am also very grateful to Dr. Bernard Lecussan, Chairman of the ENSAE Computer
Science Department, who made all this possible.

This research was conducted as a requirement from Sup'Aero for obtaining the ENSAE
Engineering Diploma.



Simulation of the communication libraries of the CM-5 on UNIX workstations

TABLE OF CONTENTS

ABSTRACT 2

ACKNOWLEDGMENT 3

TABLE OF CONTENTS 4

INTRODUCTION 7

A -BACKGROUND 8

I - The CM-5 8

1 - CM-5 Architecture 8

2 - The CM-5 execution model 9

3 - Languages 10

II - The communication libraries of the CM-5 11

1 -CMMD 11

a- General presentation 11
b- CMMD timers 11

2 - CMAML: CM Active Message Layer 12
3 - Handler functions 13

4 - Active messages 13
5 - Requests, Replies and RPCs 14

III - Functions to implement 15
1 - CMAML functions 15

a- Functions for sending active messages: 15
b- Network polling functions 15

2 - CMMD functions 16

a- CMMD timers 16

b-Other functions 16

c- For compatibility only 16

B - IMPLEMENTATION 17



Simulation of the communication libraries of the CM-5 on UNIX workstations

I - General presentation of the program 17
1 - The package 17
2-Language 18
3 - Installation - Compilation of the library 18
4 - The "HOSTS" file 18
5 - Launching sequence 19
6 - Modifications in the existing program 20
7 - Example 20

II - Communications 21

1 - sockets 21

2 - Protocols 21

3 - Non-blocking mode 22

III - The acknowledgment scheme 23
1 - Why ? 23
2 - The ACK scheme 23

a - First implementation 23
b - The "acknowledgment size" 24
c - Current implementation 25
d - Limitation 25

3 - How to choose the "acknowledgment size" 26

4 - Implementation of an ACK message 27

IV - Active messages 27
1 - Normal active message 27

a - Composition 27
b - Implementation 28

2 - Long active message 28
a - Presentation 28

b - Implementation 29
c - Possible improvement 29

V - The launcher 30

1 - Presentation 30

2 - Launching processes 30
a - Command-line arguments 30
b - Reading the data from file "HOSTS" 30
c - Launching the processes 31

3 - Synchronization 31
4 - Detection of the end of the program 32
5 - Options 33

VI - Initialization of the node 34

1 - Modification of the CMMD program 34
2 - CMMD_init_simulation() 35

VI - Functions implementation 36
1 - C++ implementation: the "node" class 36
2 - Timers 38

3 - CMMD_sync_with_nodcs() 38
4 - CMAML_poll() 38



Simulation of the communication libraries of the CM-5 on UNIX workstations

5 - CMAML_requcst(), CMAML_rcply(), CMAML_rpcO 39
6 - Others 40

a - CMMD_self_address() 40
b - CMMD_parlilion_sizeO 40
c - CMMD_disable_interrupt(), CMAML_disable_interrupt(), CMMD_fset_io_mode()40

VII - Limitations 40
1 - Homogeneous network 40
2-Number of nodes 41

C - PERFORMANCES 42

I - Benchmarks 42

1 - The "nt-tak" program 42
a - Presentation 42

b - Implementation 42
c - features 42

d - Results 43

2 - The "nt-pmm" program 43
a - Presentation 43

b - Implementation 43
c - features 43

II - The platform issue 44

III - Influence of the number of nodes 45

1 - Time to complete 45
2 - Overall efficiency 46

IV - Using long active messages 47

V - Comparison with the CM-5 48

CONCLUSION 49

BIBLIOGRAPHY 50

APPENDIX 51

Listing of the simulation 52

Listing of the example 75



Simulation of the communication libraries of the CM-5 on UNIX workstations

INTRODUCTION

The purpose of this project was to build a function library on UNIX workstations, that
would emulate the communication libraries of the CM-5. This should enable the user to

compile and mn CM-5 programs on a network of UNIX workstations.

This project has been conducted for several reasons.

The main one is that having a CM-5 simulator may be useful for debugging programs
when the real machine is unavailable or when running the program on the real hardware
causes deadlocks. It should be easier to debug programs on a workstation acting like a
CM-5 than on the actual machine.

Besides, this is my end of study project, and thus part of my engineering studies; building
a simulator of the CM-5 seemed to be an excellent way of learning the message passing
and execution models of distributed memoiy parallel computers. In addition, it gave me a
good idea of how programs are structured for such machines.

For those reasons, I found this project very challenging and interesting, and this report
presents the results of my work.



Simulation of the communication libraries of the CM-5 on UNIX workstations

A - BACKGROUND

I - The CM-5

The CM-5 system from Connection Machine is a multiprocessor system designed to
achieve high performance on large and complex problems. This section will briefly
describe the architecture of the CM-5 system, and its communication libraries. Most of
this information comes from [1].

1 - CM-5 Architecture

A CM-5 system consists of a large number of processing nodes, a small number of
partition managers (PMs) and some number of I/O control processors (IOCPs) and I/O
devices. These components are all linked together by two internal communications
networks, the Data Network and the Control Network.

The Data Network is used for fast, high-bandwidth communication of data between the
processing nodes, PMs, and I/O devices. The Control Network provides a number of
global control operations, such as broadcast, scan/reduction operations, and node
synchronization.

In the CM-5 system, each processing node contains a RISC microprocessor and a
Network Interface (NI) chip that connects it to the networks. Each processing node may
also contain four vector processor units (VUs), which are located between the RISC
microprocessor and the node's memoiy. The VUs, when they are present, provide highly
efficient memory-based arithmetic calculations.

The following figure shows the components of a CM-5 processing node:

A - Background



Simulationof thecommunication librariesof the CM-5 on UNIX workstations

Memory
8 MB

Memory
8 MB

Memory
8 MB

Memory
8 MB

Vector

Unit

Vector

Unit

Vector

Unit

Vector

Unit
A

1

A.

I t

\ '

UH-UIl OUS

-^ Data
^,—•"•"* Network

* ' -..^ Control
RISC

Microprocessor
Network

Interface

Network

Figure I. Components of a CM-5 processing node

The CM-5 processing nodes are grouped into one or more partitions, each controlled by a
partition manager. Program execution always begins and ends on the partition manager.

The CM-5 system uses a parallel timesharing operating system known as CMost, which
allows each partition of nodes to execute as a separate parallel timesharing system. Each
partition has its own set of processes to execute, and can be considered a separate parallel
processing system.

Each node within a partition has a logical address relative to that partition, from 0 to
(partition-size -1). The nodes (and the host) use these logical addresses when sending
messages. They use specific functions to gain the requisite information, among which
CMMD_self_address() and CMMD_partition_size(), that will have to be implemented in
the simulation.

2 - The CM-5 execution model

An application program executing on the CM-5 is actually two separate programs. One
program runs on the partition manager (the "host" in CMMD terminology); the other runs
on all nodes. Frequently, this duality is transparent to programmers: a programmer simply
writes a global application, or a "hostless" message-passing program, and the CM
software does the work required to create the appropriate host and node executables. The
simulation, as it will be described later, is working exactly the same way, using the same
duality between the "host" program and the node program.

A - Background



Simulation of the communication libraries ofthe CM-5 on UNIX workstations

In a CM-5 message-passing program:

♦ The program executes in multiple copies, one on each processing node.
Although all nodes execute the same program, each node operate independently
of the others.

♦ Communication between nodes is in the form of "messages" sent from one
node to another, or from one node to many nodes. It is with theses messaging
features that the CMMD library, and thus the simulation, is mainly concerned.

♦ The partition manager typically does nothing more than start the program
running on each of the nodes, and thereafter acts as an I/O server for the nodes.
This is the standard, "hostless" form of message passing.

♦ Alternatively, the partition manager may execute a separate "host" program that
directs the actions of the nodes, distributes data to them, and collects results.
This is the "host/node" form of message passing. This form is not implemented
in the simulation, and therefore won't be described much more. For more

information on the host/node programming, see [1].

♦ I/O may be handled by each node independently, with each node opening and
closing its own files.

3 - Languages

CMMD programs can be written in standard Fortran 77, C, or C++. Programs written in
these languages execute exclusively on the microprocessor in each node, ignoring the
vector units. The simulation, however, only supports C++, and thus C. Nevertheless, it
should be possible to call the simulation functions from a Fortran program, but it would
imply some work on the Fortran code.

CMMD programs can also be written in the CM's data parallel programming languages,
CM Fortran and C*, allowing them to access the vector units. The simulation does not
support those languages.

A - Background 10



Simulation of the communication libraries of the CM-5 on UNIX workstations

II - The communication libraries of the CM-5

1 - CMMD

a- General presentation

CMMD is a library of message-passing routines for the Connection Machine CM-5
system. Programs that use CMMD typically operate in a message-passing style:

♦ Each processing node of the CM-5 runs an independent copy of a single
program, and manages its own computations and data layout.

♦ Communication between nodes is handled by calls to CMMD message-passing
functions

CMMD allows you to send messages from one processing node to another in a number of
different ways, depending on the needs of your application. Therefore, the CMMD library
provides a wide range of communication functions, and only a few of these functions are
actually implemented in the simulation. What is, and what is not implemented will be
fully described later in the report.

b- CMMD timers

The CMMD library provides a set of timing routines for use by the nodes in message-
passing programs. This routines are implemented in the simulation, and provide a good
way to evaluate the performances of the simulation and compare them to the CM-5.

Each node manages its own timers. The timers are called by a single node and record the
time spent by that node. They have no connection with timers used on any other node.

These timers measure three values:

♦ Busy time is the time during which the user program is executing user code.

♦ Idle time is the time during which the user program is looping in the operating
system's dispatch loop.

♦ Elapsed time is the sum of busy time and idle time.

Each node may have up to 64 timers running simultaneously, and timers can be nested.

A - Background 11



Simulation of the communication libraries of the CM-5 on UNIX workstations

All timers share the same pattern of use:

♦ First, you must call CMMD_node_timer_clear() with an integer timer-ID. This
creates the timer and initializes it to zero.

♦ Then you call CMMD_node_timer_start(), to start the timer going.

♦ The next call should be CMMD_node_timer_stop(). This records the current
value within the timer.

♦ You may call CMMD_node_timer_start() again, timing will be cumulative until
you call CMMD_node_timer_clear() again.

2 - CMAML: CM Active Message Layer

CMAML is the protocol-less transport layer upon which the higher-level CMMD
functions are built. You can use these functions to define custom network protocols and
to perform specialized low-level communication.

CMAML is an internal layer of the CMMD software. It is made available for advanced
progi'ammers and library developers who may require functionality or performance not
otherwise provided by the higher level CMMD functions.

Actually, the puipose of the simulation was to provide CMAML functions, more than
CMMD functions. This is the reason why it is important to describe this library further.

CMAML provides transport functions for two types of message transfer:

♦ Active messages are one packet long (five 32 bits words). Their puipose is to
invoke a function upon the receiving node and to supply arguments to be passed
to the function upon invocation.

♦ Block data transfers, transfer a single block of data from one or more source
nodes to a single receiving node. When the transportation operation completes,
the source and the destination nodes may invoke an attached handler function.
This type of transfer was not needed and therefore is not implemented in the
simulation. It is however possible to implement it on the existing simulation
source code. Block Data Transfers will not be described here. For more

information, see [1].

In support of these transport functions, CMAML also provides functions that allow
polling of the networks, manipulating interrupt states, and preserving register contents.

As with most transport layers, CMAML functions assume that some higher layer of
software is providing any protocol needed, and that (for example) receiving nodes know

A - Background 12



Simulation of the communication libraries of the CM-5 on UNIX workstations

what to do with any data sent to them. Users must ensure that their applications provide
such protocol.

3 - Handler functions

A handler is simply a user-defined function that can be invoked in any one of a number of
situations:

♦ upon receipt of an Active Message

♦ upon receipt of all expected data on a receive port

♦ upon completion of CMAML_scopy() or CMAML_pcopy() operations

♦ upon completion of CMMD_send_async() or CMMD_receive_async()
operations

Only the first situation is used in the simulation, since the functions used in the other
situations are not implemented.

Note that handlers are, by definition, executed upon completion of some event, not upon
attaining a given line of code in a program. They thus execute asynchronously to the
application's main thread of control. In fact, they may cause intermissions in the
background computation whenever the application allows it. Handlers, therefore, must be
written so as not to interfere with the state of the background computation. The user is
responsible for the correct interaction between the background computation,
communication, and handlers.

4 - Active messages

An active message is a single network packet comprising a series of words. The first
word (word 0) is the address of a handler function on the destination node. The remaining
words are arguments to be passed to the function.

The current CMAML implementation uses a five word format:

Function Address argl arg2 arg3 arg4

wordO

A - Background

word 1 word2 word3

Figure 2. Active message format

word4

13



Simulation of the communication libraries of the CM-5 on UNIX workstations

Receipt of an active message automatically invokes the handler function with the
specified arguments. The interpretation of the arguments is strictly under the control of
the handler function. When the handler function returns, the node either resumes its
polling of messages or, if it was interrupted to receive the message, continues the
execution of its interrupted computation.

Active messages are never buffered on arrival. When an active message is received
(whether by polling or by interrupt), its handler is invoked immediately.

5 - Requests, Replies and RPCs

There are three types of active messages: requests, replies and RPCs. They differ in their
use of the data network, and in the context in which they can be used.

The Data Network has two independent interfaces. They are sometimes called the
"request" and "reply" interfaces.

Here are a few differences between the three types of active messages.

A request message

♦ Can only be sent from the main thread of control, never from a handler.

♦ Uses the request interface to the Data Network to transmit data.

♦ May send only Reply messages from within its handler.

♦ Polls both interfaces for incoming messages.

A Reply message:

♦ Can only be sent from handler functions, never from the main thread of control.

♦ Uses the reply interface to transmit data

♦ Cannot call any communication functions from within its handler.

♦ Polls only the reply interface for incoming messages.

A Remote Procedure Call (RPC) message:

♦ Can be sent either from a node's main thread of control or from a handler

function.

A - Background 14



Simulation of the communication libraries of the CM-5 on UNIX workstations

♦ Uses the request or reply interface to the Data Network to transmit data.

♦ Can call other RPCs, Replies, or any other non-blocking function.

♦ Polls both interfaces for incoming messages.

Request and Reply messages are often used for purposes where one node sends a Request
for data, and the other returns the data as a Reply.

hi spite of their differences, Request and RPC messages are the same for the simulation.
Since there is no way to control if the message has been sent from a node's main thread of
control or from a handler function, and since RPC messages may use either interfaces to
transmit data, there is no problem in implementing RPC messages as Reply messages.

Ill - Functions to implement

Here is the list of the functions that had to be implemented. A better description of these
functions will be given later in paragraph B.

1 - CMAML functions

a- Functions for sending active messages:

void CMAML_request
void CMAML_reply
void CMAML_rpc

(int dest_node, void (*handler)(), int datal, int data2, intdata3, intdata4)

dest_node Integer specifying the destination node for the message,

handler Address of a handler function on the destination node,

datal ..4 Handler function arguments.

b- Network polling functions

void CMAML_poll()
void CMAML_request_poll()

A - Background 15



Simulation of the communication libraries of the CM-5 on UNIX workstations

void CMAML_reply_pol

CMAML_poll() is the generic CMAML polling function, and checks both interfaces for
messages.

2 - CMMD functions

a- CMMD timers

int CMMD_node_timer_clear(int timer)
int CMMD_node_timer_start(int timer)
int CMMD_node_timer_stop(int timer)
double CMMD_node_timer_elapsed(int timer)
double CMMD_node_timer_busy(int timer)
double CMMD_node_timer_idle(int timer)

timer Integer from 0 to 63, identifying the timer.

b- Other functions

int CMMD_self_address()
This function give the logical address of the node in its partition.

int CMMD_partition_size()
Returns the number of nodes in the partition.

void CMMD_sync_with_nodes()
This function allows a synchronization between the nodes. Once a program on a specified
node calls this function, it waits until all the other nodes also call this function.

c- For compatibility only

void CMMD_disable_interrupts()
int CMMD_fset_io_mode(File *,int)

Those functions have no effect on the simulation, and are provided only to avoid
compatibility problems when compiling a CM-5 program for the simulation.

A - Background 16



Simulation of the communication libraries of the CM-5 on UNIX workstations

B - IMPLEMENTATION

I - General presentation of the program

1 - The package

While developing this project, it was important to keep in mind that the potential user of
the simulation would probably be familiar with the CM-5 interface, and thus it seemed
important to keep a very simple interface. A program running on the CM-5 should be able
to run on the simulation with only minor modifications.

And in fact, except for an indispensable initialization, the CM-5 programs do not need
any modification. Once the compilation options have been modified to provide a link
edition with the library, the program may compile as if it were on a CM-5. The only
difference is that, when the program calls a CMAML function, the functions from the
library will be used instead of the genuine CM-5 functions.

Once the simulation has been compiled, only three files are useful:

♦ cmmcl.h : This file replaces the original cmmd.h of the CM-5. It contains the
definition of the functions available in the library. You can also take a look at
this file to know the exact syntax and types of the functions.

♦ libcmmd.a : This is the library itself. You have to specify a path to this library
when compiling and binding a CMMD program.

♦ go : As its name suggests, this program is the launcher of the simulation. It runs
the program on the workstations specified, and also acts like the partition
manager of the CM-5: it is for example used for synchronization.

When running your CM-5 program, the simulation also needs another important file:

♦ HOSTS : This file contains major information for the simulation: the hosts for
each node, the login name on each host, the ports to use, the path and the name
of the executable.

B - Implementation 17



Simulation of the communication libraries of the CM-5 on UNIX workstations

The package also contains an example of CMMD program. See 7- for more information
about it.

2 - Language

The simulation has been programmed using the C++ programming language. For this
reason, it will handle perfectly programs written in C++ for the CM-5. This language has
been chosen because it provides a good flexibility, and can still be very efficient thanks to
the C functions it is able to call.

Programs written in C can be easily adapted, since C is an internal layer of C++. Such
programs only need to be compiled with a C++ compiler, and linked to the library. In the
same way, programs written in Fortran 77 should be able to use the library, provided that
the compiler allows calls to C++ functions.

3 - Installation - Compilation of the library

The first thing you need to do to install the library is to "un-tar" the file "CMMDsim-
1.0.tar". This will create the directory "CMMDsim-1.0" and five sub-directories: "src",
which contains the source code of the library, "example", which contains an example of
CMMD program, "bin", "lib" and "include".

Compiling the library should be really easy. It has been programmed on hp and SUN
workstations, but there is no reason why it would not run on other UNIX platforms. It is
possible to use the "g++" compiler from the GNU C compiler (gcc), but other compilers
are also fine (for example hp's CC compiler).

Just type "make all" in the "src" directory: every file will be compiled, including the go
program which is the only executable, and the library "libcmmd.a" is created. The
simulation is then ready.

4 - The "HOSTS" file

As it has been already said before, this file contains major information for the simulation:
the hosts for each node, the login name on each host, the ports to use, the path and the
name of the executable.

Here is an example of HOSTS file:

#Host port Command Login Name and Location ofbinary file
hyde 12365 remsh guerin main /users/guerin/project/example
chryse 10248 remsh guerin main /auto/users/guerin/project/example

B - Implementation



Simulationof thecommunication librariesof the CM-5 on UNIX workstations

When you want to run the simulation, ran the go program; it will first read the HOSTS
file, then launch the node processes on each specified host.

In the example given, go will launch two processes, one on the host "hyde", the other on
"chryse". The program launched is called "main". It will use the ports 12365 to 12370 on
hyde, and the ports 10248 to 10253 on chryse. Each process uses indeed five ports. This
specification of the port is useful when one of the ports you intended to use is already
occupied. You just have to modify the number in the HOSTS file, and try again.

The executable is not located in the same directory on each host, and this is why you have
to specify it for each node.

You can also use a different login for each host. This is useful when you have several
logins, or when you want to use a machine with the login of a friend. Nevertheless, you
must be allowed to do so! (e.g. your login must be in the ".rhosts" file). For more
information, read the "rsh" or "remsh" man pages. Indeed, the name of the "remote shell"
UNIX program is not the same on every platform: "rsh" on SUN, "remsh" on hp; that is
why you have to specify it in the HOSTS file.

You can also launch several processes on a single machine. It is not recommended
though: socket communications among a single machine is not very reliable. And
furthermore, this will slow down the simulation.

There is no "partition" when you use the simulation. The partition size is just the number
of entries in the HOSTS file. There is no explicit limitation in the number of nodes you
might use. Nevertheless, you should read VII- before trying to run the simulation on ten
thousand hosts.

5 - Launching sequence

This is the sequence of actions that happens when the user types go:

♦ The program reads the command-line arguments, in order to feed them back to
each node

♦ go reads the "HOSTS" file

♦ for each entry in this file, a process is launched with its number in the command
line: There is no other way for a process to know its logical address
(CMMD_self_address()). Hence, we have to modify the existing program (see
6- for more details).

♦ When all processes are launched, go waits for an acknowledgment from all of
them. This allows the simulation to synchronize. It is done by a call to the
CMMD_sync_with_nodes() function.

For more technical details, see V-.

B - Implementation 19



Simulation of the communication libraries of the CM-5 on UNIX workstations

6 - Modifications in the existing program

Several parameters have to be given to each process, among which the indispensable
logical address. Those parameters are given among the command-line arguments of the
process. Therefore, the existing program has to be slightly modified.

A special function was created to handle the command-line arguments:
CMMD_init_simulation(). In spite of its name, it is not a real CMMD function. It has been
created for the simulation only. Not only does it handle the command-line arguments, but
it also initiates the communications.

The only modification that you need to do in the existing program is to add these few
lines just after the declaration of the main() function:

// to add if you are using the simulation; needs stdlib.h (atoi())
// begin

{
// test number of arguments
if (argc<6) {

exit(2);

}

// Init with the 5 last arguments
CMMD_init_simulation(atoi(*(argv+argc-5)),*(argv+argc-4),atoi(*(argv+argc-3)),

atoi(*:(argv+argc-2)),atoi(*(argv+argc-1)));

// Ignore the 5 last arguments
argc-=5;

}
//end

The"argc" and "argv" variables must be declared in the definition of main().

7 - Example

An example of CMMD program is included with the package (directory "example"). It is
veiy simple and it is probably not necessary to explain what it does. It has been provided
to familiarize the user with the simulation, before he starts to run much more complicated
programs.

First, you must compile it (see the Makefile), and then you can try to run it. Don't forget
to modify the "HOSTS" file for your system. If you have any problem running it, the
answer is probably in this report.

B - Implementation 20



Simulation of the communication libraries of the CM-5 on UNIX workstations

II - Communications

This project requests the use of the communication tools of UNIX. To implement the
communication functions, it is necessary to use low-level UNIX functions, and to use the
sockets. Here is a brief and simple description of UNIX communication tools. For more
information on UNIX communications, see [2].

1 - sockets

A socket is a very powerful UNIX tool that allows you to exchange messages with
another host. A socket is working like a letterbox: it has an address and a buffer. A socket
address is defined by its host and a port number. If you send a message through a socket,
you only have to specify the address of the destination socket. When a message is
received, you can also know the address of the sender. There is a buffer where messages
are stocked, waiting for the receiver to read them.

2 - Protocols

You can use two different protocols when using UNIX sockets: UDP/IP and TCP/IP,
which is the best known since it is used on the Internet.

TCP/IP has a big advantage: it is safe; a message can not be lost, which means that each
message sent is indeed received. In fact, a TCP/IP communication, or stream
communication, needs the sockets to be in a connected mode. Each socket is linked to

exactly one other, and can send or receive messages only with this socket.

UDP/IP is working more like a mailbox: when a message is sent, it is put in a FIFO
queue, and the receiver may or may not read the message. This is known as the datagram
mode. A socket can send a message to any other socket, provided that it knows its
address. The sockets do not need to be connected. Furthermore, a message can be lost:
there is no way to be sure that a message has been received.

Even if TCP/IP offers reliability, UDP/IP has been chosen for this project. These are the
two main reasons:

♦ UDP/IP is faster than TCP/IP.

♦ You don't want to saturate the ports of the machine. The connected mode needs
a lot of sockets, since a socket can only communicate with one other. If N is the
number of nodes you want to use, you will need at least 2N sockets on each host
(because there are two interfaces). Thus, if you use 32 nodes, you will need 64
sockets, whereas you need only 5 sockets for the datagram mode.

B - Implementation 21



Simulation of thecommunication libraries of theCM-5 on UNIX workstations

The fact that you can lose messages with UDP/IP is a real problem, and you will see in
III- how the simulation copes with it.

3 - Non-blocking mode

Many of the CM-5 communication functions must not block. For example, a call to
CMAML_poll() should return quickly if there is no message pending. This means that the
simulation has to use communication functions in non-blocking mode, which is not the
default mode.

Furthermore, the simulation sometimes needs to be in blocking mode. For example when
sending a message, you do not want it to be truncated, and you want to send the whole
message. For this, you need to be in blocking mode.

The simplest way to do this is to use the ioctl library, which provides tools to handle this
problem. When applying the ioctl function on the socket file descriptor with the
FIONBIO option and the proper flag, you can switch between blocking and non-blocking
mode.

Here are the functions used in the simulation (file node.cc):

//

// - setsocknoblockQ - Set socket in non-blocking mode -
// ----- -

static inline int setsocknoblock(int fd) {//fd = file descriptor
int flag = 1;
return(ioctl(fd,FIONBIO,&flag));

}

// —~

// - setsockblock() - Set socket in blocking mode -
//

static inline int setsockblock(int fd) {//fd = file descriptor
int flag = 0;
return(ioctl(fd,FIONBIO,&flag));

}

B - Implementation 22



Simulation of thecommunication libraries of the CM-5 on UNIX workstations

III - The acknowledgment scheme

1 - Why ?

The UNIX protocol used in this simulation is UDP/IP. With this protocol, there is no
guaranty that the message is indeed delivered. Are messages lost often ? sometimes ?
hardly ever ? never ?

A benchmark program was necessary to answer these important questions. This program
allows two hosts to exchange messages: one host sends n messages, and the other
receives m. Is m equal to n ? Here are the results.

When 1000 messages are sent, 1000 messages are received. Great! no loss !

But when sending 100,000 messages, between 2% and 6% are lost, i.e. between 2000 and
6000! This is very embarrassing... And it proves that an active message can be lost quite
often in the simulation.

I ran the benchmark with the two nodes being on the same host. The percentage of
messages lost jumped to 12%. This is one of the reasons why it is not a good idea to run
several nodes on a single host...

At first, I ignored this situation. But when I ran a CMMD benchmark program that
exchanged many active messages between nodes, I obtained very strange behaviors
because messages were lost. It thus appeared to be a major problem, and the only solution
was to implement an acknowledgment scheme.

2 - The ACK scheme

a - First implementation

The first implementation was simple:

♦ Every message has a number.

♦ Each time a node receives a message, it sends an acknowledgment.

♦ Each time a node wants to send a message, it waits until the previous message
sent to the same node is acknowledged. If it is not after some time, the node
sends again the previous message (which as not been acknowledged) and
returns in the loop to receive an acknowledgment.

♦ If a node receives an acknowledgment that was already received previously,
then it just ignores it.

B - Implementation 23














































































































