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Summary: To develop a parallel program on a message-passing multicomputer, the user needs
to know the delays and overheads incurred with various communication operations, such as point-
to-point communication, collective communication, and collective computation. This information
provides a basis for selecting the most efficient grain sizes and parallelization strategy. Hockney

[3] modeled the point-to-point communication overhead ¢ using a linear equation t=t,+m/r_,

where the message length m is a varizble and the tatency ¢, and the bandwidth r, are both
constants.

In this paper, we generalize Hockney’s formula to cover all three types of communication
operations, using a non-linear equation t=ty(n)+m/r(n), where both ¢, and r, are a simple
function of the number of nodes n involved in a communication operation. This formula is
validated by a performance study of the Message Passing Interface (MPI) and the IBM Message-
passing Library (MPL) on a 400-node IBM SP2 multicomputer. Overheads of all three types of
communication operations were measured with various combinations of machine size and
message length. The collected performance data are used to derive the constants in the timing
formulae. These formulae have been successfully used in the development of a suite of message-
passing parallel programs for real-time radar signal processing.

Our results show that the overliead for 2 single communication operation on SP2 can be long
enough to perform thousands or more floating-point operations. Therefore, only coarse-grain
parallelism should be exploited on SP2. Compared with the native IBM MPL library, MPI
performs equally well for point-to-point communications. For collective communication or
collective computation operations, the derived overhead formulae not only indicate that the
current portable implementation of MPI (MPICH) is slower than MPL, but also identify where
the bottleneck lies. Modeling communication delays, overhead, and bandwidth becomes critically
important for designers and programmers of massively parallel processors. Our communication

models can be used by both MPP designers and message-passing programmers in the
optimization of system/program performance.
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1. Introduction

There are three types of fundamental communication operations on current message-passing
multicomputers. In a point-to-point communication, only two tasks are involved: the source task
sends a message to the destination task. In a collective communication, a group of tasks (usually
more than two) send messages to one another. In a collective computation, a group of tasks
synchronize with one another or aggregate local values into global values. To develop a parallel
program on a message-passing multicomputer, the user needs to know the overheads incurred by
these operations. These overheads depend on many factors, such as the number, #, of computing

nodes invoived, the message length m, and the type of communication operation. It would be

ideal if the user can estimate overheads with a simple, closed-form formula.

Hockney [3] has suggested a simple linear equation to model the overhead of point-to-point
communications. In this paper, we generalize Hockney’s model to cover all three types of
message-passing communication operations. This new communication overhead model is
validated by a performance study of the Message Passing Interface (MPI) and the IBM Message-
passing Library (MPL) on a 400-node IBM SP2 multicomputer at Maui High-Performance
Computing Center (MHPCC) [11]. Up to 256 dedicated nodes of the SP2 were used. Overheads
of all three types of communication operations were measured with various combinations of
machine size and message length. The collected timing data are used to derive the constants in

the timing formulae. Overall, overheads projected by these formulae match closely with the

measured overheads on SP2.

The new overhead model are used to evaluate the MPL and the MPI message-passing
libraries. MPI [9,10] is a public-domain standard, developed by the MPI Forum, a broadly-based
consortium of parallel computer vendors, software writers, and application specialists. MPL [6,7]
is an proprietary library developed by IBM to support message passing functions on the IBM
RS/6000 architecture, including from low-end, PowerPC-based workstation clusters to high-end

distributed memory SP2 multicomputers. The overhead model is used to quantitatively compare



these two librarics and to identify implementation problems.

The overhead model is also very useful for parallel programs development on any
multicomputer like SP2. It provides a basis for selecting the most efficient grain sizes and
parallelization strategy. We have successfully used this model in parallelizing a suite of radar
signal processing applications [5] consisting of more than 4,000 lines of C code. The model

predicts various communication overheads rather close to measured ones, within 25% of

accuracy.

The new communication overhead model is general enough to characterize the
communication performance of other multicomputer architectures using different communication
software packages. Although the timing formulae derived from this model are obtained from
measured data on SP2, they can be modified to predict other message-passing systems such as

Intel Paragon, Meiko CS2, etc; in most cases one needs to change only a few constants.

2. The SP2 Platform and Testing Conditions

The IBM SP2 is an message-passing, multicomputer consisting of a large number of
computing nodes with distributed memories. These nodes are interconnected by an internal
ethernet as well as a High-Performance Switch (HPS). The HPS is an any-to-any, packet-
switched, multi-stage Omega network. The SP2 system at MHPCC consists of 400 nodes. Each
node employs a 66.7 Mhz POWER2 processor, which is a high-performance implementation of
the IBM RS/6000 architecture. At each clock cycle, the POWER2 superscalar processor can issue
up to six instructions, and perform up to 4 floating-point operations on its two Floating-Point

Units. Thus, a single node has a floating-point speed of 266 MFLOPS in its peak performance.

To conduct a meaningful performance evaluation, we have assumed the following testing

conditions throughout the benchmark experiments:

(1) The data structures used are made small enough to fit in each node memory of 64 MB,
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2)

©)

(4)

)

(6)

so there will not be extensive page faults for disk 1/O operations.

All test programs are written in C. The only library functions used are standard 1/O
functions, timing functions, and MPI (or MPL) functions. No machine-specific library

functions nor any assembly codes are used.

The best compiler options are used: cc -O3 -garch=pwr2 program.c for sequential

programs and mpcc -O3 -qarch=pwr2 program.c for parallel programs. The test

programs for MPI are run using the "mpirun" script file.

Use the system resources as dedicated as possible, so that the interference_s from the
operating system and other user tasks can be minimized. Each of the 256 nodes is set
to be solely used by one task, by specifying in the host.list file:
hostname dedicated unique
We also set the following environment variables for dedicated use of the HPS:
setenv EUIDEVICE css0
setenv EUILIB us.

However, during our testing, other user tasks were also runni ng in the remaining nodes
of the 400-node SP2, which demanded portion of the HPS. Therefore, the

communication operations of our programs had to compete for the HPS against other

user tasks.

We measure both the wall clock time and the CPU time. The Unix function
gettimeofday( ) is used to measure the wall clock time, and the Unix times( ) function
is used to measure the CPU time. Only wall-clock times are used in interpreting results

and deriving timing formulae.

Each test program is executed multiple times. The minimal time, the maximal time,
and the mean time of each communication operation are collected. However, To

interpret the results, we focus on the minimal time, because we feel it is the most
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accurate one, with the least interference from the OS and other users.

(7) In all communication operations, single-precision (4-byte) floating-point numbers are

used. In other words, for MPI the data type of the message elements is always
MPI_FLOAT.

In the IBM SP2 native parallel programming environment, user tasks are scheduled
statically. In all of our testing runs, we assign at most one task to a node. The tasks of a program
can form different groups. We always use one unique group: the group of all tasks. Thus the
group size is always equal to the number of tasks in a program run, which in turn is equal to the
number of nodes used in that run. The number of nodes (tasks) used, denoted by n, range to a

maximum of 256 nodes. We denote the message length by m (bytes), where m ranges from 4
bytes to 16 MBytes.

In each test run, each message-passing operation is executed twenty times, and the average
time of the last eighteen executions is calculated on each task. The maximum of all these n
average timing values, one from each task, is reported. Five test runs are done for every n nodes
(n=2, 4, 8, ..., 256). The reason for filtering out the first two executions is that it is common on
SP2 that the first one or two executions of a communication function could take considerably
longer (more tiian one order of magnitude) than the rest of executions, probably due to the

overhead of loading the function into the memory or the cache.

3. MPI and MPL Message-Passing Functionalities

The functionalities of MPI and MPL are compared in Table 1. Among its objectives, MPI
is designed to be portable, powerful, and efficient. The portability of MPI is supported by its
public domain and machine independent nature. Compared to the widely used public domain
library PVM (Parallel Virtual Machine) [2], MPI is indeed more powerful for message-passing,

with its enhanced capabilities in collective communication, communicator (context and grouping),



virtual topology, etc. Not intended to be 2 complete software package for parallel processing,
both MPI and MPL only provide message-passing functionalities. They do not provide

functionalities such as task creation or machine configuration as PVM does.

Table 1. Comparison of MPI and MPL Message-Passing Functionalities

Attributes MPI MPL
Portability A Standard, IBM Proprietary,
Architecture Independent, Portable among any
Public-Domain versions of the RS/6000
Implementations Available Architecture
Total Number of Functions | 125 32 :
Point-to-Point Blocking Send/Receive, Blocking Send/Receive,
Communication Nonblocking Send/Receive Nonblocking Send/Receive
Collective Communication Broadcast, Broadcast,
Gather, Scatter, Gather, Scatter,
Total Exchange Total Exchange, Shift
Collective Computation Barrier, Barrier,
Reduction, Reduction,
Parallel Prefix (Scan) Parallel Prefix (Scan)
Group Management Group Construction, Group Construction,
Destruction, Inquiry, etc. Inquiry, etc.
Communicator Management | Inter- and Intra- N/A
Communicator Construction,
Destruction, etc.
Topology Various Topology Manage- | N/A
ment Functions

MPI and MPL have about the same functionality for point-to-point communication,
collective communication, and collective computation operations. MPI has introduced two new
concepts: the communicators and the topology. A communicator is a task group plus the notion
of safe communication context. Communicators guarantee that a communication is isolated from

other communications in the system. This is valuable for supporting safe inter-group



communication and parallel libraries. Topology is usefui in mapping applications to tasks groups.
There exist several implementations of MPI, including the IBM experiment MPI-F [1]. The MPI
used in this study is MPICH, a portable implementation of the full MPI specification developed
at Argonne National Laboratory [9].

There were very few studies on the performance of MPI or MPL in the past [1,8]. The
existing studies focused on point-to-point communication. Our study is the first one covering all
three types of communication operations over a large range of machine sizes. These

communication operations are illustrated in Fig.1 for readers not familiar with the terminology.

in a point-to-point communication, one task sends a message to another task. Thus only two
tasks, one sender and one receiver, are involved. Note that the original copy of the fncssagc in
the sender task is always retained. The IBM SP2 uses a HPS to speedup up the message passing
operations. Theoretically, all nodes have equal distance from one another. The concept of
neighboring nodes or remote nodes does not exist in SP2. Consequently, the time for a point-to-
point communication is a function of message length, but not of the number of nodes, i.e.,

t=f(m). This is different from other multicomputers (e.g., Intel Paragon) that employ a point-to-

point network, where communication between two neighboring nodes is less expensive than
between two remote nodes.

In a collective communication operation, a group of tasks send messages to one another, and

the communication time, including all communication overhead and delays, is a function of both

the message length and the group size, namely,

t=f{m,n) (1)

Five representative collective communication operations were measured:

In a broadcast operation (MPI_Bcast in MPI or mpc_bcast in MPL), node 0 sends an

m-byte message to all n nodes.

In a gather operation (MPI_Gather or mpc_gather), node 0 receives an m-byte message

from each of the n nodes, so in the end mn bytes are received by node 0.
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* In a scatter operation (MPI_Scatter or mpc_scatter), node 0 sends a distinct m-byte
message to each of the n nodes, so in the end mn bytes are sent out by node 0.

[n a total exchange (or all-to-all) operation (MPI_Alltoall or mpc_index), every of the
n nodes sends a distinct m-byte message to each of the n nodes, so in the endmn?
bytes are communicated.

In a circular-shift operation (mpc_shift), node i sends an m-byte message to node i+1,

and node n-1 sends m bytes to node 0.

In a collective computation operation, a group of tasks is involved to synchronize among

one another or to aggregate partial results. Usually, the time for such an operation is a function

of the group size, but not of the message length, as the message length is fixed (i.e., t=f(n)).

Three representative collective computation operations were measured:

In a barrier operation (MPI_Barrier or mpc_sync), a group of tasks synchronize with
one another, i.e., they wait until all tasks execute their respective barrier operation.

* In a reduction operation (MPI_Reduce or mpc_reduce), a group of tasks aggregate
partial results, one from each task, into a final result. Typical examples of reductions
are to sum or to find the maximum of n values, one from each of the i tasks.

In a parallel prefix operation (MPI_Scan or mpc_prefix), also known as a scan, a

group of tasks aggregate n partial results, one from each of the n tasks, into n final
results.

4. Communication Performance Metrics

Hockney [3] suggested an elegant model to characterize the communication time (in us) of

a point-to-point communication operation as follows:
(=l + — (2)
Here m denotes the message length in bytes. The parameter r_is called the asymptotic bandwidth
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in MB/s, which is the maximal bandwidth achievable when the message length approaches
infinity. The parameter ¢, is called the latency (or startup time) in ps, which is the time needed

to send a O-byte message. Two additional parameters can be derived. The half-peak length,
denoted by m, ,bytes, is the message length required to achieve half of the asymptotic bandwidth.

The specific performance, denoted by x, MB/s, indicates the bandwidth for short messages. Only

two of these four parameters are independent. The other two can be derived by

= oo 1 ©)

Hockney’s model (2) has several nice properties. It is simple, a linear function of a single
variable m. It is meaningful: the two parameters ¢, and r_ each represent a fundamental quantity

of point-to-point communication. It is architecture-independent, in that the same model can be
applied to different architectures, by changing the values of the two parameters. It is fairly
accurate, meaning the projected values computed from Equation (2) match closely the measured
communication times. In [3], Hockney showed how the linear model was used to characterize

communication overheads on Intel Paragon, Intel Delta, Meiko CS-2, and Cray C90.

However, Equation (2) is only suitable for point-to-point communication operations. It needs
to be generalized for collective communication and collective computation operations. There are
two reasons: First, the times for these collective operations may be a function of both the
message length 7 and the number of nodes n. Second, the functions are usually not linear with
respect to n. There are many possibilities to generalize Equation (2). However, a good one should
maintain the nice properties of the original Hockney model. We have tried several generalizations
and found the best one to be the following: The communication time ¢ is still a linear function
of the message length m. However, the latency and the asymptotic bandwidth are now simple

functions of the number of nodes n. We define below a generalized timing model:

nt
r ()

When n is fixed, the latency and the asymptotic bandwidth will become constants. For collective

fi= to(n) +

(4)
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computation operations, we oaly need to focus on the latency. The asymptotic bandwidth can be

viewed as a constant. To keep the new model (Equation (4)) simple, the latency and the

asymptotic bandwidth must be simple functions of n.

To summarize, we want to derive the communication performance metrics listed in Table

2 for each of the communication operations. The bandwidth r_ is the one-way bandwidth for

sending an m-byte message between two nodes. To get a sense of how well SP2 supports various
collective communication operations, we included in Table 2 another metric, the aggregated
asymplotic bandwidth, denoted by R,, MB/s, which is defined as the ratio of the total number of
bytes transmitted in a communication operation to the time of that operation, when the message
size m approaches infinity. This metric refiects the aggregated communication capability of the
HPS. For a point-to-point communication, R_=r.. For a total exchange, R._=n’r,. For other

collective communications (broadcast, gather, scatter, and shift), R =nr,,

Table 2. Performance Metrics for Communication Functions

Communication Time m
t=t(n) + S
r.(n)
Latency to 1S
Asymptotic Bandwidth r., MB/s
Half-Peak Length m,, Bytes
Aggregated Asymptotic Bandwidth R, MB/s

Note: n = number of nodes involved, m = message length

S. Point-to-Point Communication

MPI and MPL provide several point-to-point communication functions, we measured the

blocking send and blocking receive operations, since they are representative. The well-known

pingpong (also known as hot-potato) [3] scheme is used in an n-task run: Task 0 executes a

12



blocking send (MPI_Send or mpc_bsend) to send a message of /m bytes to task n-1, which

execules a corresponding blocking receive (MPI_Recy or mpe_breev). Then task n-1 immediately

sends the same message back to task 0. All other tasks do nothing. The total time for this

pingpong operation is divided by 2 to compute the point-to-point communication time. The

results are shown in Fig.2. Our results confirm the fact that there are only small differences in

sending messages to different nodes from the same source on SP2.

Using least-square fitting of the measured data, we derived the performance metrics as
shown in Table 3. The time formulae of MPL and of MPI are accurate within 20% for most
message: length m and number of nodes n combinations. The details are discussed in [14,15].
Figure 2 shows that the measured communication times and projected times' match. closely. In

both Table 3 and Fig. 2, we compare our results to the best results reported from IBM [12].

Table 3. Hockney Parameters for Point-to-Point Communication

Metric Communication Latency Asymptotic Half-Peak
System Time ¢ t Bandwidth r_ Length m,,
MPL 46+0.035m 46 us 28.67 MB/s 1314 Bytes
MPI 67+0.035m 67 us 28.67 MB/s 1921 Bytes
IBM 39+0.028m 39 us 35.54 MB/s 1386 Bytes

The time for a point-to-point communication is a linear function of the message length m,
and can be considered independent of the number of nodes 1. This communication time can be
estimated by Equation (2). For both MPI and MPL, the best bandwidth achieved in our
experiments is 35.54 MB/s, which is exactly what IBM reported. An optimistic user may want
to use the IBM metrics. The IBM time formula in Table 3 is accurate within 25% for most cases,
and it is actually more accurate than the MPI and the MPL formulae for larger messages. The
latter two formulae are more accurate for smaller messages. They tend to overestimate the

communication time for large messages. The MPI time is slightly longer. However, the difference



Time in Microseconds

100000

—+— Measured MPI Time

— & — Projected MPI Time
—&— Measured MPL Time
- - % - -Projected MPL Time
— @ — Projected IBM Time

10000 -

.ﬂ O ! 1 1 1 1 1 ] 1
< (s} < w0 s (o] < (o] <
= o w 8] D e 0] mw T
ol o o [52] e o
™~ oo [{o) o} N
— o ©
(oY)

Message Length In Bytes

Figure 2. Measured Versus Projected Times for Point-to-Point Communication

1048576



is small, especially when medium to large messages are used.

The derived performance metrics revealed a weakness in current implementations of MPI
and MPL. The HPS poses a hardware limitation of about 1 us latency and about 40 MB/s
bandwidth for point-to-point communication. At the application level, although the asymptotic
bandwidth is close to the hardware limit, the latency is much large than the hardware latency.
This hurts short messages. IBM has made great stride in reducing the latency. In the earlier
implementation using the IP protocol, the latency is even larger, about 600 us by our
measurement. This is because a communication has to involve kernel calls. The new User Space
protocol bypasses the kernel, thus reducing the latency to only 39-67 us. There is still room to

further improve the latency, by using techniques such as active message [13).

6. Collective Communication Operations

We measured the execution times of four MPI and five MPL collective communication
operations over 2 nodes to 256 nodes. The timing results over 32 nodes are shown in Figs. 3-6.
We measured all the five MPL operations up to 16MB. However, the MPI program deadlocked
when testing gather, scatter, and total exchange using messages of 16 KB or more. Therefore,
only the timing data for up to 4 KB are used for those operations. The MPI broadcast operation

worked fine for up to 1 MB messages. It encountered "insufficient memory" errors when larger

message sizes were used.

After fitting the measured timing data according to Equation (4), we derived the performance
metrics for the collective communication operations as shown in Tables 4-6. Throughout the
entire paper, all logarithmic functions are base-2. The projected times are plotted in Figs. 3-6.
Overall the projected times match the measured times rather closely. The half-peak length m,, is
not shown in Tables 5 and 6, but it can be easily computed using m,=t;xr,. As a concrete

example, the values of the Hockney parameters over 32 nodes are computed in Tables 7 and 8.



Table 4. Comparison of Collective Communicaticn Times in MPI and MPL

Operation

MPL Timing Formula (us)

MPI Timing Formula (us)

Broadcast

(16logn+10)+(0.025logn)m

(40logn+20)+(0.037logn)m

Gather

(17logn+15)+(0.025n-0.02)m

(24n+84)+(0.045n)m

Scatter

(17logn+15)+(0.025n-0.02)m

(24n+105)+(0.0261+0.03)m

Shift

(6logn+60)+(0.00310gn+0.04)m

Not Measured

Total Exchange

80logn+(0.03n"*)m

(125n-22)+(0.06n"*)m

Table 5. Hockney Parameters for MPI Collective Communicaticn

Operation Latency ¢, Asymptotic Aggregated
(us) Bandwidth r_ (MB/s) | Asymptotic

Bandwidth R_
(MB/s)

Broadcast 40logn+20 27/logn 27n/logn

Gather 24n+84 22/n 22

Scatter 24n+105 1/(0.026n+0.03) n/(0.0261+0.03)

Total Exchange 125n-22 16.70# 16.7n%™

Table 6. Hockney Parameters for MPL Collective Communication

Operation

Latency ¢, Asymptotic Aggregated
(us) Bandwidth r_ (MB/s) | Asymptotic
Bandwidth R
(MB/s)
Broadcast 16logn+10 40/logn 40n/logn
Gather/Scatter 17logn+15 1/(0.025n+0.03) n/(0.025n+0.03)
Shift 6logn+60 1/(0.003logn+0.04) n/(0.003logn+0.04)
Total Exchange 80logn 33.3n"% 33.3n%7

16




9/88%01|

vr1c9e

SepON Z& JoA0 1seopeolg 10} sall] pajoslold SNSIBA painsesi e 8.nB14

9€559

P8EIL

salhg u| Yibua abessa|y

960

1 ¥201

9Ge
9
gl

=S

oo " » -

awi] TdW peyslold - - % - -
awl| 14N painsesiy —¥—
awl] |dW paoalold — i ~
awil |dW painsesjy —e—

- 000}

- 0000}

- 000004

0000001}

SPUODISOUD|IN Ul W]

17



81

Time in Microseconds

10000

—— Measured MPI Gather Time

- % — Projected MPI Gather Time

—#— Measured MPI Scatter Time

- - % - + Projected MPI Scatter Time

—%— Measured MPL Gather Time
—a— Measured MPL ScatterTime

— + — Projected MPL Gather/Scatter Time

1000

4 16 64 256 1024 4096
Message Length in Bytes

Figure 4. Measured Versus Projected Times for Gather and Scatter over 32 Nodes
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Table 7. Hockney Parameters for MPI Collective Communication on 32 Nodes

Operation Latency ¢, Asymptotic Half-Peak Aggregated

(1) Bandwidth r, | Length m,, Asymptotic
(MB/s) (Bytes) Bandwidth R
(MB/s)

Broadcast 220 5.40 1188 173

Gather 852 0.69 586 22

Scatter 873 1.16 1013 37

Total Exchange 3978 0.19 759 195

Table 8. Hockney Parameters for MPL Collective Communication over 32 Nodes

Operation Latency ¢, Asymptotic Half-Peak Aggregated

(us) Bandwidth r, | Length m,, | Asymptotic
(MB/s) (Bytes) Bandwidth R
(MB/s)

Broadcast 522 8.00 4176 256

Gather/Scatter 100 1.20 120 39

Shift 90 18.18 1637 582

Total Exchange 400 0.38 153 390

The performance differences between MPI and MPL are significantly larger for collective
communication operations. The communication time can be estimated by Equation (4). Both the
MPL and the MPI timing formulae for broadcast have the same form. The latency t,(n) is a
logarithmic function of n, so is the inverse of the asymptotic bandwidth. However, the constants
are quite different. Consequently, the latency of an MPI broadcast is 150% longer than that of
an MPL one. The asymptotic bandwidth of an MPI broadcast is only 68% of that of MPL. For

gather, scatter, and total exchange, the latencies for MPI are linear function of n, while those for
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MPL are only logarithmic functions. The asymptotic bandwidth for MPI total exchange is only
half of that for MPL. These results show that there exists much room for improvement for MPI

functions, especially on their latencies.

We also calculated the aggregated bandwidth, i.e., how many bytes are communicated by
all n nodes in a second. The highest aggregated bandwidth achieved in our experiment is 969
MB/s for MPI in a 256-node, 1-MB broadcast operation. For MPL, the same broadcast achieved
1,593 MB/s aggregated bandwidth. The highest aggregated bandwidth achieved for MPL is 3,779
MB/s in a 256-node, 4-MB circular shift operation.

7. Coliective Computation Operations

Three collective computation operations are measured. The timing results are shown in Fig.
7. For MPI, the timing data for parallel prefix are not reliable, thus only the results for barrier
and reduction are reported. In all cases, the barrier is the most expensive operation, while the
reduction is the least expensive one. The timing differences among these operations become more
pronounced as the number of nodes n increases. We curve-fitted the timing data for the collective
computation operations. The resultant timing formulae are shown in Table 9. Figure 7 shows that

the projected times match nicely with the measured times.

Table 9. Collective Communication Timing Formulae

Operation MPL Timing Formula MPI Timing Formula
Barrier 94logn+10 150logn-30
Parallel Prefix 60logn-25 Data Not Reliable
Reduction 20logn+23 45logn+15

Again, there are significant performance differences between MPI and MPL collective
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Figure 7. Measured Versus Projected Times for Barrier, Reduction, and Scan



cemputation operations. [n both cases, the time for a collective computation operation is a lineur
function of the logarithm of the number of nodes n, i.c., t=clogn+d. The coefficient ¢ is the
important constant, which indicates how many more microseconds are needed when the number
of nodes is doubled. Our results show that when the number of nodes is doubled, an MPL barrier
will take 94 more us, an MPL parallel prefix will take 60 more us, and a MPL reduction will

take only 20 more ps. An MPI barrier takes 1.6 times as long as an MPL barrier. Similarly, an

MPI reduction takes 2.25 times as long as an MPL reduction.

When the machine size becomes very large, such as greater than 128 nodes, the projection
deviates far from the measured results for the barrier and the scan (parallel prefix) operations.
This was caused by unreliable timing from interferences to the HPS in SP2, when more nodes

are involved in the measurement. If these interferences were completely removed, the deviation

can be also eliminated accordingly.

8. Concluding Remarks

We have shown that the performance of all three types of communications can be modeled
by the generalized Hockney equation (4), where the latency and the asymptotic bandwidth are

simple functions of the number of nodes n. The forms of these functions for both MPI and MPL

are summarized in Table 10.

Most of the metric items for MPL make sense from the architecture angle. For instance, the
latencies of all collective operations are O(log n). This is understandable since the Omega
network in the HPS has O(log n) stages. For large messages, the time for a gather (or scatter)
should be O(mn), because n messages, each m bytes, need to be received (sent) by one node

sequentially. The O(n™"*") bandwidth for total exchange is quite respectable, as the much less

complex gather operation can only achieve O(n).

The boldfaced items need improvement. There is only one such item for MPL: The



asymptotic bandwidth for broadcast should be a constant on a pipelined Omega network, not
decreasing for larger machine size. The 1/0O(logn) asymptotic bandwidth suggests that either the

current MPL implementation does not exploit pipelining in the HPS or the effect of pipelining

is canceled out by other factors.

Table 10. Summary of Hockney Parameters for MPI and MPL

Metric MPI MPL
Operation Latency Asymptotic Latency ¢, Asymptotic
Bandwidth Bandwidth 7,
rm

Point-to-Point Constant Constant Constant Constant
Collective O(logn) Constant O(logn) Constant
Computation

Broadcast O(logn) 1/O(logn) O(logn) 1/0(log n)
Gather/Scatter O(n) 1/0(n) O(logn) 1/0(n)
Total Exchange O(n) O(n'*) O(logn) Oo(n'*)

MPI performs almost equally well for point-to-point communication. This is impressive
giving that MPL is machine-specific, proprietary library, while MPI is a machine-independent,
public domain library standard. However, MPI is still significantly slower than MPL for
collective communication and collective computation operations. As Tables 4, 9, and 10 indicate,
the latencies of all operations, and the bandwidth for barrier and total exchange, could be
improved. We must stress that the version of MPI we used, MPICH, is a public domain, portable

implementation. IBM has developed an experimental implementation, called MPI-F [1], which

could have better performance.

In designing message passing libraries, two approaches have been taken in the past. The
PVM approach provides simple point-to-point primitives. Not only is the implementation easier,

but also users have less primitives to learn. If a user needs a more advanced operation (e.g., for
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collective communication), he can always simulate it by using a number of point-to-point
primitives. The MPI (and MPL) approach, on the other hand, provides collective primitives as

part of the library. Our experiment show that the second approach is more advantageous in two

aspects:

First, collective operations are frequently needed in parallel programs. Providing them
directly through a library makes coding easier and less error-prone for the user. One should not,

though, push this approach to the extreme by defining hundreds or thousands of functions as

primitives. Overall, we think MPI and MPL achieved a balanced design.

Second, coliective primitives have a performance edge over simulation through point-to-point
primitives. As an example, consider broadcasting a 1-MB message on a 128-node syétem. Using
the MPL broadcast primitive directly will take about 136,381 us. However, if we want to
simulate this collective communication operation with point-to-point send/receive, the best way
is to use a fan-out tree algorithm in log128=7 steps, where each node performs two point-to-point
communications per step. Each point-to-point communication of a 1IMB message takes about

31,348 ps. The total time will then be 31348x14=438,872 us, which is 2.22 times slower than

the broadcast primitive.

The IBM SP2 is equipped with very powerful POWER2 processors. In contrast, the
communication capability does not quite match the processing capability. This was also observed
for other multicomputers such as Intel Paragon and Meiko CS-2 [3]. Listed in Table 11 are some
performance data we have collected regarding the floating-point capability of one SP2 node. The

Efficiency column shows the ratio of the real performance to the 266 MFLOPS peak
performance, in percentage.

Let us consider the simplest communication operation: one task sends a 4B message to
another task. By our measurement, such a point-to-point communication takes about 46 s.
Compared with applications with a slow MFLOPS rate (e.g., the pi program with 25 MFLOPS),

a single communication operation takes all the time to perform 1,150 flops. Compared to fast
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applications (e.g., beamforming. with 199 MFLOPS}, such a communication operation is
equivalent to 9,154 flops. Thus SP2 is only suitable for coarse-grain parallel programs, where

thousands or more computation operations are performed for each communication operation

encountered.

Table 11. Performance of Some Computations on One SP2 Node

Computation MFLOPS Efficiency %

FFT 47 17.61
Householder Transform | 80 30.08
Beamforming 199 74.81
Matrix Multiplication 106 39.85
Inner Product 96 36.09
Computation of 5t 25 9.40
Bubble Sorting 50 18.80
Search 73 27.44

We do not imply that the IBM SP2 has inferior communication support. In fact, the
communication capability of SP2 compares quite favorably over those of other contemporary
distributed memory multicomputers. For instance, consider just one parameter, the latency in
point-to-point communication. The SP2 has a user-level latency of 39 us according to IBM and

46 ps according to our measurement. The latency is 86 s on a TMC CM-5, and 164 us on an
Intel Paragon.



What we would like to point out is that although remarkable advances have beern made in
the communication capability of multicomputers, the computational capability increased even
faster, as shown in Table 12. The Cosmic Cube, representing the first generation multicomputers,
had a 0.047 MFLOPS per-node peak performance. It had a latency of 2000-6000 s and an
asymptotic bandwidth of 0.25 MB/s for point-to-point communication. Compared to Cosmic
Cube, the SP2 has improved the latency by 51-154 times and the bandwidth 142 times. However,

the peak speed has increased 5,675 times! Therefore communication overhead is still a significant

problem with today’s multicomputers.

Table 12. Comparison between First-Generation and Current Multicomputers

Metric Cosmic Cube SP2 Improvement

Per Node

Peak Speed 0.047 266 5,675
(MFLOPS)

Latency 2,000-6,000 39-46 51-154
(us)

Bandwidth 0.25 35.54 142
(MB/s)

Acknowledgments

We would like to thank David Martinez and Robert Bond at MIT Lincoln Laboratory for
their support. We are especially grateful to Peggy Williams, Racine Arnowitz, Blaise Barney,
Tim Fahey, George Gusciora, and Lon Waters at Maui High-Performance Computing Center for

their help. Craig Stunkel of IBM provided the IBM latency and bandwidth data for point-to-point

communication.

References

(1) H. Franke, P. Hochschild, P. Paitnail, J.P. Prost, and M. Snir, "MPI on IBM SP1/SP2:
Current Status and Future Directions", (contact: frankeh@watson.ibm.com), 1993.

28



(2) A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM:
Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Parallel
Computing, MIT Press, Cambridge, MA, 1994,

(3) R.W. Hockney, "The Communication Challenge for MPP: Intel Paragon and Meiko CS-2",
Parallel Computing, 1994, 20():389-398.

(4) K.Hwang, Advanced Computer Architecture: Parallelism, Scalability, and Programmability,
McGraw-Hill, New York, 1993.

(5) K. Hwang, Z. Xu, and M. Arakawa, "STAP Benchmarking on IBM SP2 in MHPCC", Tech.
Report, University of Southern California, Dept. of EE-Systems, Los Angeles, Jan. 1995.

(6) 1BM Corp., IBM AIX Parallel Environment: Operation and Use (Release 2.0), SH26-7230-
01, June 1994.

(7) 1BM Corp., IBM AIX Parallel Environment: Parallel Programming Subroutine Reference
(Release 2.0), SH26-7228-01, June 1994,

(8) W. Gropp and E. Lusk, "Some Early Performance Results with MPI on the IBM SP1",
Argonne National Laboratory, August 1994.

(9) W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the
Message Passing Interface, MIT Press, Cambridge, MA, 1994.

(10) MPI Forum, "MPI: A Message-Passing Interface Standard", International Journal of
Supercomputer Applications, 1994, 8(3/4).

(11) MHPCC, MHPCC 400-Node SP2 Environment, Maui High-Performance Computing Center,
October 1994.

(12) C. B. Stunkel, Private Communication, August 1994,

(13) T.von Eicken, D.E. Culler, S.C. Goldstein, K.E. Schauser, "Active Messages: A Mechanism

for Integrated Communication and Computation", Proc. of 19th Int’l. Symp. on Computer
Architecture, May 1992.

(14) Z. Xu and K. Hwang, "Computation and Communication Characteristics of the IBM SP2

Multicomputer System", Tech. Report, University of Southern California, Dept. of EE-
Systems, Los Angeles, December 1994.

(15) Z. Xu and K. Hwang, "Performance Characterization of MPI Communication Functions on
the Maui IBM SP2 Multicomputer System", Tech. Report, University of Southern
California, Dept. of EE-Systems, Los Angeles, December 1994,

29



