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Abstract

This paper present a technique for calculating the switching activity of a set of registers
shared by different data values based on the assumption that the joint pdf (probability density
function) of the primary input random variables is known or that a sufficiently large number
of input vectors has been given. Based on this, the register assignment problem for minimum
power consumption is formulated as a minimum cost clique covering of an appropriately defined
compatibility graph (which is shown to be transitively orientable). The problem is then solved
optimally (in polynomial time) using a max-cost flow algorithm. Experimental results confirm
the viability and usefulness of the approach in minimizing power consumption during the

register assignment phase of the behavioral synthesis.
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Chapter 1

Introduction

One driving factor behind the push for low power design is the growing class of personal
computing devices as well as wireless communications and imaging systems that demand high-
speed computations and complex functionalities with low power consumption. Another driving
factor is that excessive power consumption is becoming the limiting factor in integrating more
transistors on a single chip or on a multiple-chip module. Unless power consumption is dra-
matically reduced, the resulting heat will limit the feasible packing and performance of VLSI
circuits and systems.

The behavioral synthesis process consists of three phases: allocation, assignment and
scheduling. These processes determine how many instances of each resource are needed (allo-
cation), on what resource a computational operation will be performed (assignment) and when
it will be executed (scheduling). Traditionally, behavioral synthesis attempts to minimize the
number of resources to perform a task in a given time or tries to minimize the execution time
for a given set of resources.

It is now necessary to develop behavioral synthesis techniques that also account for power
dissipation in the circuit. This extends the two-dimensional optimization problem to a third
dimension. The three phases of the behavioral synthesis process must be thus modified to

produce low power circuits. Unfortunately, power dissipation is a strong function of signal
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statistics and correlations, and hence is non-deterministic. Automatic techniques that minimize
the switching activity on globally shared busses and register files, that select low power macros
that satisfy the timing constraints, that schedule operations to minimize the switching activity
from one cycle step to next, etc. must be developed. This paper considers register assignment
for low power.

Most of the high-level synthesis systems perform scheduling of the control and data flow
graph (CDFQG) before allocation of the registers and modules and synthesis of the intercon-
nect, such as REAL[Kurd87], Facet[Tsen86], EMUCS[HiTh83], as this approach provides tim-
ing information for the allocation and assignment tasks. Other systems perform the resource
allocation and binding before scheduling, in order to provide more precise timing information
available during the scheduling [KuDM90]. Either approach has its own advantages and dis-
advantages. The present work assumes that the scheduling of the CDFG has been done, and
performs the register allocation before the allocation of modules and interconnection.

During the register allocation and assignment, data values (arcs in the data flow graph)
can share the same physical register if their life times do not overlap. In the past, researchers
have proposed various ways to reduce the total number of the registers used. The existing
approaches include rule-based [Goos88], greedy or iterative [KuPa90a], branch and bound
[PaGa87], linear programming [BaMa90], and graph theoretic, as in the Facet system [TsSi86],
the HAL system [PaKkn89a) and the EASY system [Stok91] (see [DeMi94] or [PUPe| for more
details).

Power consumption of well designed register sets depends mainly on the total switching
activity of the registers. In many applications, the data streams which are input to the circuit
have certain probability distributions. Various ways of sharing registers among different data
values thus produces different switching activities in these registers. This work presents a
novel way of calculating this switching activity based on the assumption that the joint pdf

(probability density function) of primary input random variables is known or a sufficiently large



CHAPTER 1. INTRODUCTION 6

number of input vectors has been given. In the latter case, the joint pdf can be obtained by
statistical methods. After obtaining the joint pdf of primary input variables, the pdf of any
internal arc (data value) in the data flow graph and the joint pdf of any pair of arcs (data
values) in the data flow graph are calculated by a method that will be described in detail in
the following chapters. The switching activity on a pair of arcs is then formulated in terms of
the joint pdf of these arcs, or alternatively, in terms of a function of the joint pdf of all primary
mput variables.

The life time of each arc (data value) in a scheduled data flow graph is the time during
which the data value is active (valid) and is defined by an interval [birth_time, death time).
A compatiblity graph G(V,A) for these arcs (data values) is then constructed, where vertices
correspond to data values, and there is a directed arc (u,v) between two vertices if and only
if their corresponding life times do not overlap and the u comes before v. We will show that
the unoriented compatiblity graph for the arcs (data values) in a scheduled data flow graph
without cycles and branches is a comparability graph (or transitively orientable graph, which
is a perfect graph [Golumbic80]). This is a very useful property, as many graph problems (e.g.
maximum clique; maximum weight k-clique covering, etc) can be solved in polynomial time
for perfect graphs while they are NP-complete for general graphs.

Having calculated the switching activity between pairs of arcs that could potentially share
the same register and given the number of registers that are to be used, the register assignment
problem for minimum power consumption is formulated as a minimum cost clique covering of
the compatibility graph. The problem is then solved optimally (in polynomial time) using a
max-cost flow algorithm.

The two problems, calculation of the cross-arc switching activities (which must be per-
formed O(| E |) times, where | E | is the number of edges in the compatibility graph) and
power minimization during register assignment are independent. The calculation of the cross-

arc switching activities can be performed by any means. We present one such technique later.
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Other techniques may be used. The power optimization is performed once the cross-arc switch-
ing activities are known.

The remainder of this paper is organized as follows: Chapter 2 shows the method to
calculate the switching activity between pairs of data values (arcs). Chapter 3 shows the
method to optimize the power consumption of registers in the register allocation phase in

behavioral synthesis. Chapter 4 are some examples to demonstrate the methodology.



Chapter 2

Switching Activity Calculation

2.1 Calculation of various pdfs in a data flow graph

In many instances, the input data streams are somewhat known, and can be thus described
by some probabilistic distributions. (Our proposed method applies not only to the well known
probability distributions, such as joint Gaussian distribution, but also to arbitrary probability
distributions.) Given a sufficient number of the input vectors, it is possible to find the symbolic
expressions for the pdf’s and the joint pdf of all inputs using methods in statistics. For example,
one way to do this is to calculate the frequency of the occurence for each vector among the set
of input vectors, and then perform the interpolation on the sets of discrete points to obtain
the symbolic expression of the joint pdf. Alternatively, one can work directly with the input
vectors without having to find the symbolic expression of the joint pdf, that is, for a sufficiently
large number of the input vectors, the frequency of occurence for each input vector can serve
as the value of the joint pdf for that pattern.

If we are given the joint pdf of the input random variables of a data flow graph, then the
joint pdf of any pair of values (arcs in the data flow graph) can be calcualted [Papoulis]. For
example, suppose that we have only two input random variables x an y, and the data flow
graph contains internal arcs (also random variables) z = ¢(z,y), w = h(z,y) . We denote the

joint pdf of x, y as foy(z,9).

v}
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We can find out the joint pdf f.,(z,w) for z and w as follows:

1. Find the inverse solution of the system of equations for z and w, i.e.,

g(z,y) = =z

h(z,y) = w

Suppose the symbolic real roots of this system are (z;,y;), i = l..n, i.e. (z,y) =

(ui(z, w),vi(z, w)).

o

The joint pdf of z and w is obtained as:

fzw(Z,lD) :I J_l(I11yl) | xfmy(xl:yl) e o ] J_l(mnayn) I x.f:r:y(:vruyn)

where J~1 is the 2x2 inverse Jacobian:

Iz, y) = | g g ‘ [Papoulis, page 143]
dz Ow

The above change-of-variables technique can be extended to the case of a system with n
input random variables [Hogg, Craig) as follows. We want to find the joint pdf of any two arcs.
Suppose that the two arcs are y; = wy(z1,22,...,2,) and yo = us(zy,22,...,2,). We can
add another (n — 2) free functions ys,y4, ..., ¥n and form a system of n equations in n input
variables. Let’s denote the joint pdf of the n input variables as (21, 23,...,2,). If the inverse
solution @ = w1 (Y1, Y2, Yn)s T2 = Wa(Y1,¥25--+sYn)y---1Tn = Wn(Y1,Y2,..-,Yn) can be
obtained symbolically, then the joint pdf of y1,¥s, ..., ¥, which is denoted by ¥'(y1,¥2,. ., Yn)

is:
Tp,(ylay% AT sy'n) :| J_l l X'¢’['LU1(?jl,y2, ] sy'n)!(w'z(ylay?a R ayﬂ)v R awn(yl} Y2yve- ayn)]

where J~! is the nxn inverse Jacobian:
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9y Az, 9x

ay dye Ay
dwy  dmz |, dwp

-1 , dy1 dy2 dy
J (ylay%"'ayn): : F S "
dry  dzn  ,,, Ozy

dy Iy dyn

Once we have the ¥'(yy, y2, . . ., ¥ ),we can calculate the pairwise pdf of y; and ya, fy,4,(y1,92),

as

oo poo co
fylyz(ylzy2) =j; L /_ ¢’(y11y23---:yﬂ)d?mdy‘i-“dyn-

The integration can be performed either symbolically or numerically. The numerical inte-
gration over (n — 2) variables involves much more computation, but is an alternative approach
which is always possible whenever the symbolic integration over the (n — 2) variables is not
possible.

In addition to the calculation of pairwise joint pdfs, the pdf of any internal arc is needed to
calculate the total switching activity of the set of registers. Suppose function y = w(z1, z2,...,2,)
is some arc (data value) in the data flow graph depending on n input random variables
T1,T9,...,T,. The cdf (cumulated distribution function) of the new random variable y is
defined as G(y) = prob(Y < y), which is equal to prob(w(zy,22,...,2,) < y). The above

probability can be evaluated as:

G(y)://A.../1/;(3;1,:112,...,113:;)

where ¥(x1,2,...,2,) is the joint pdf of the n input random variables zy,zy,...,%,, and
A = {(z1,22,...,20) | w(z1,22,...,2,) < y}. The pdf of y as g(y) is then obtained by

d G
g(y) = dyy}'

2.2 The Power Consumption Model

Switched capacitance refers to the product of the load capacitance and the switching activity

of the driver. The power consumption of a register is proportional to the switched capacitance
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C.
Cout,Mux in,R1 Cout,Rl Cin,DeMux

Figure 2.1: Our Register Sharing Model

on its input and output (see Fig. 2.1). Suppose register Ry can be shared between three data
values 7,7 and k. We assume that an input multiplexor picks the value that is written into
R; while an output demultiplexor dispatches the stored value to its proper destination. Now,
P(Ry) o switching(z) x (Cout,Muz + Cin,ry) +switching(y) X (Cout,ry + Cin,DeMuz)- Since
switching(z) = switching(y), P(R1) = switching(y) x Ciopar. Note that Cioa 1s fixed for a
given library. In any case, minimizing the switching activity at the output of the registers
will minimize the power consumption regardless of the specific load seen at the output of the
registers. Here we ignore the power consumption internal to registers and only consider the
external power consumption.

Given a scheduled data flow graph, the life time of each arc is known. Let’s denote the life
time of each data value z; by an interval (birth_time;, death_time;). From the set of intervals,
we can easily construct a directed graph G = (V,A4), where each vertex corresponds to an
interval and arc (u,v) € A exists whenever the two intervals u and v do not overlap (7.e. are
compatible) and death_time, < birth_time,. It can be easily proved that the directed graph
G = (V,A) after removing the orientation is a comparability graph (or transitively oriented
graph), as will be shown in Chapter 3.1.

In the register allocation phase, if several compatible arcs are assigned to the same register

R, the switching on R will occur whenever one stored data value is replaced by another data
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value. For example, suppose X,Y,Z and W are four compatible data values that share register R
and the arcs (X,Y),(Y, Z),(Z,W) € A. Suppose that in the beginning, the registers were reset
to some unknown value. We assume the switching activity from the unknown value to X is some
constant value. Then the following is the chain of the data transitions X — Y — Z — W. If
the input variable values are known, then the exact switching activity is calculated as constant
+ H(X,Y )+ H(Y, Z) where H(i,7) is the Hamming distance between two numbers 7 and j. If,
however, the circuit has even one input random variable, the whole system has to be described
in a probabilistic way as described next.
Assume that the n primary input random variables are ay, as, . . ., a, and set A = {(ay,as,...,a,)}

is the set containing all possible combinations of input tuples. Let set B = {(z,y) | = =
z(ar,az,...,a,), y = ylanas,...,a,), V(ai,az,...,a,) €A}. The switching activity

between the two consecutive data values X and Y is then given by:

switching(X,Y) = ¥ ful,y)* H(z,y) (2.1)

(a,y)EB

where the summations are over all possible patterns of (x,y) € B, and the function H(x,y)
is the Hamming distance between two numbers x and y which are represented in a certain
number system in binary form. Equation ( 2.1) requires that the diserete type joint pdf for
x,y be known. The method for calculating the joint pdf of two random variables described in
Chapter 2.1 is mainly suitable for the case when the variables in the system are of continuous
type. When however the precision used to represent the discrete numbers is high enough or
the variance of the underlying distribution is not too large, the continuous type pdf g.,(z,y)
can be used as a good approximation for the discrete type pdf f.,(z,y) after being multiplied
by the scaling factor (3, 4)es goy(z,y)) "

The symbolic computation method is however not very practical , because it involves the
tasks of finding the symbolic inverse solution of the system of nonlinear equations and symbolic

or numerical integration of complicated expressions over the region defined by a combination
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of inequalities and/or equalities. Fortunately, the same switching activity for a pair of discrete

type random variables z and y can be obtained much more easily by the following;

switching(X,Y) = ZZ ey plag, agy. . an) ¥ H(z(a, g, . . . a0),y(ar, ag, ..., an))
e (2.2)
where ¥(aq, as, ..., a,) is the joint pdf of the input variables ay, aq,. .., ay.

Both equation ( 2.1) and equation ( 2.2) started from the assumption that the joint pdf
(ay, az,...,ay,) is obtained or known. This is a reasonable and necessary condition in order
to precisely calculate the cross-arc switching activities. Furthermore, equation ( 2.2) can be
used directly once the input vectors are given without obtaining the symbolic expression for
(ay, ag,...,a,). Here we assume that the bit_width of a register is finite, so the total number
of the patterns that can be stored in a register is also finite. If we assume all of the numbers
in our system are integers (positive or negative), then the total number of different (x,y)

pairs involved in equation ( 2.1) is at most 2%bit-width,

In general, equation ( 2.2) involves
multidimensional nested summations over intervals of integral values. When the joint pdf of
primary input variables is band-limited (e.g. Gaussian), we can narrow down the interval of
summation in each dimension and thereby significantly speed up the computation.

Let’s denote the set A = {(a1,as,...,a,)}, set B = {(z,y) | = = z(ay,as,...,a,),
y = ylay,a,...,a,), V(ay,ag,...,a,) €A}, C = {(y,2) |y = wlar,as,...,a,), z =
z(ay, ag,. .. a,), V(ap,az,...,a,) €A}, and D = {(z,w) | 2 = 2z(a1,02,...,0,), W =
w(ay, agy ... an), Y(da1,az,...,a,) EA}

The total switching activity in the above example with register R shared by four arcs (data

values) is formulated as follows:
switching(Unknown, X)) + switching(X,Y") + switching(Y, Z) + switching(Z, W2.3)

= constant+ Y fay(z,y)* H(z,y) + > oy, z) x H(y, 2)
(:c,y}EB (yv’-)ec

+ Z fzw(z; w)*]](z,u’) (2.4)
(z,w)ED
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= constant +Y_ > -+ W(ar,az,...,a,) * (H(z,y) + H(y,z) + H(z,w)) (2.5)

ay a2 an
The total switching activity for a register can be calculated after the the set of variables
that share that register are found. Note that the sequence of data transitions are known at

that time.



Chapter 3

Power Optimization in the Register
Allocation Phase

3.1 Max-Cost Flow formulation for the optimization

Definition 3.1 (Golumbic80) An undirected graph G =(V,E) is a comparability graph if

there exists an orientation (V,F) of G salisfying
FNF'=0, F+F'=E, F*CF

where F? = {(a,c) | (a,b),(b,c) € F for some vertex b }. Comparability graphs are also known

as transitive orientable graphs and partially oderable graphs. O

Definition 3.2 A directed graph Gy = (V,A) is called the compatibility graph for register
allocation problem if the graph Gy is constructed by the following procedure.

Each are; (data value) in the data flow graph has an interval (birth_time;, death_time;)
associated with it. Fach interval; corresponds to a vertex; in Gy = (V,A). There is a directed

arc (u,v) € A if and only if interval, N interval, = O and death_time, < birth_time, O

Definition 3.3 A Graph G}, = (V,E) is called unoriented compatibility graph associated with
the compatibility graph Go = (V,A) if Y are a € A we have a corresponding e € I which is

an edge formed by removing the orientalion of arc a. o

15
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Theorem 3.1 Given a data flow graph without loops and branches, the unoriented compati-

bility graph G{, = (V,E) for register allocation problem is a comparability graph.

Proof: V two edges (u,v) and (v,w) € E in G = (V, I/), we can find the associate two arcs
(u,v") and (v',w') € Ain Gy = (V, A). This implies that death_time, < birth_time, and
death_time, < birthtime,. The above two facts implies death time, < birth_time,..
This implies (v',w’) € A from the constructing procedure stated before. The corresponding
edge (u,w) is just the arc (u',w') with the removal of its orientation. So (u,w) & FE. This
implies that G, is a comparability graph.

O

Theorem 3.2 Given a data flow graph without loops and branches, the oriented graph Gy =

G(V,A) for register allocation problem is acyclic.

Proof: Assume the above is not true. Assume in the graph Gy, there is a cycle consisted
of v, Vig1,..,Vk, Vi .... From the construction procedure of the graph Gy, we know that
birth_time; < death_timeir < birth_time, < death_time, but the above cycle tell us that

death_time; < birth_time;. This is contractive. So the assumption is not true, this says that

the oriented graph Gy is acyclic. m
To minimize the total power consumption on the registers, a network Ng = (V,,, En, s,1,C, K)
is constructed from the directed (oriented) compatibility graph Gy = G(V, A) for the reg-

ister allocation problem. This is a similar construction to the network used by [Stok91] in
solving the weighted module allocation problem which simultaneously minimizes the number
of modules and the amount of interconnection needed to connect all modules. Conceptually,
Ng = (Vp, Eqn,s,t,C,K) is constructed from Gy = G(V,A) with two extra vertices, the
source vertex s and the sink vertex ¢. The additional arcs are the arcs from the source vertex
s to every vertex in V of G(V, A), and from every vertex in V of G(V, A) to the sink vertex .

We use the Max-Cost Flow algorithm on Ng to find a maximum cost set of cliques that cover
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the Go = G(V, A). The network on which the flow is conducted has the cost function C and
the capacities K defined on each arc in £,. Assuming that each register has an unknown value
at time {o_, we use a constant swp to represent the switching(Unknown,v) for each vertex v.

More formally, the network Ng = (V,, E,,s,t,C, K) is defined as the following:

Vo = VU {5,t}
E, = AU {(s,v), (v,t)| ve V}

w(s,v) = L— |switching(Unknown,v) + M|

= L— |swp* M| (3.1)
w(u,v) = L — |switching(u,v)* M|
= L — | > fulu,v)*H(uv)*M]
(wv)EB
= L — LZZ ‘e Z b(ay, ag,. .. an) * H(u(ay,az,. .. a,),v(a1,az,...,a,32)
a; a2 an
w(v,t) = L, Yve V, w(t,s) = L. (3.3)

where A = {(ay,a2,...,a,)}, B = {(v,v) |u = u(ar,as,...,as), v = v(ay,as,...,a,),
Y(ay, ag,. .. a,) €A}, L = |maz {switching(u,v)} * M] over all possible u,v € V U {s},
and M is a large constant used to magnify the smallest switching activity value to an integer.

For each arc e € F,, a cost function C: K, — N is defined, which assigns a non-negative
integer to each arc . The cost function C' for network Ng is : ¢(u,v) = w(u,v) for all (u,v)
€ FE,. The cost function is defined to indicate the power savings on the arc.

For each arc e € E,, a capacity function K: FE, — N, is defined that assigns to each arc
a non-negative number. The capacity of all the arcs is one, except for the return arc from t to

s which has capacity k, where k is user-specified flow value.

K(u,v) = 1, VY(uwv)€ E, \{(t,s)}
K(t,s) = k
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For each arc e € [F,, a flow function f: F, — N is defined which assigns to each
arc a non-negative number. The flow f(e) on each arc e € [, must obey the following:

0 < f(e) < K(e)and the flow on each vertex v € V,, must satisfy the flow conservation rule.

Theorem 3.3 A flow f: £, — N with | f | = 1, in the network Ng corresponds to a clique

X in the unoriented compatibility graph Gj.

Proof: Since the capacity for all the arcs in E, \ {({,s)} is one. The flow with | f | =1
will flow through a directed path starting from source vertex s and ending at the sink vertex
t. Also, the graph (g is acyclic, the directed path will not have repeated vertices. As Gy is
transitive, for any index ¢, if there are arcs (v;,vi41) and (vig1,vig2), in the path, then there
must be also an arc (v, viy2) in Go (for it is transistive). Use mathematical induction, there
is an arcs between any two vertices in Gy if the two vertices are in the directed path flown
through by a flow with | f | = 1. The unoriented graph Gj is obtained by removing the
orientation from all the arcs in Gy. This implies the directed path flown through by a flow of

value on is a clique in (. O

Theorem 3.4 A flow f: E, — N, with| f| =k, in the network Ng corresponds to a set of

cliques X1, X2,.- ., X% in the unoriented compatibility graph Gj,.

Proof: Since the capacity for all the arcs in E, \ {({,s)} is one. The flow with | f | =k
will flow through a k arc disjoint paths in the network Ng. Each path forms a clique by the
previous theorem.

O

The generated cliques may not be vertex disjoint because the k paths in the Ng may not be
vertex disjoint. One way to ensure that the resulting cliques are vertex disjoint is to employ a
node-splitting technique proposed in [Sarra90]. This technique duplicates every vertex v € V

in the graph Gy = G(V, A) into another node v'. There is an arc from v to v’ for each v € V.



CHAPTER 3. POWER OPTIMIZATION IN THE REGISTER ALLOCATION PHASE 19

If there is an arc (u,v) € A in the graph Gy = G(V, A), there is an arc (v',v) in the new
network N¢. There is also an arc from the source vertex s to every vertex v € V and from
every duplicated vertex v’ to the sink vertex t.

More formally, the node splitting technique generates the following network Ni, = (V! B! s,t,C"| K

where:

V: = V,uV
there is a vertex v' = f(v) €V{ for each vertex veE Vo
o = AU{(s,0),(f(v),t),ve VoI U{(t,5)}U{(v,f(v) | v e Vo}
A = {(f(w),v) ] (u,0) € A}
C'((t,s) = C'(v, f@) =L, ¥ veTs
C'((w'v)) = C((u,v)) for all (u',v) € A'U{(s,v),(f(v),1) | v € Vo}
K'((t,s) = kK'((wv))=1 for all us#t, and v#s.

The transformations from the data flow graph to the final network N¢, are shown in Fig.

3l

Theorem 3.5 A flow f: E, — N, with | f | =k, in the network N, corresponds to a set of

vertex disjoint cliques i, Ya,..., X i the unoriented compatibility graph Gf. O

Definition 3.4 (Papadimitriou, Steiglitz) Let N = (s,t,V,E,b) be a flow network with un-
derlying directed graph G=(V,E), a weighting on the arcs ¢;j € R for every arc (i,j) € E, a
capacity b(e) for every arc e € E, and a flow value vy € RY. The min-cost flow problem is to

find a feasible s-t flow of value vy that has minimum cost. In the form of an LP:

min c'f

Af = —uved every node
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Data Folw Graph

Compatibility Graph

Network before Applying Vertex Spliting

Network After Applying Vertex Spliting

Figure 3.1: From Dataflow Graph to network Ng
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f < b every arc

f = 0 every arc

where A is the node-are incidence matriz and

-1 1=3s
d; = +1 1=t
0 otherwise
Oa

Definition 3.5 The mazimum cost flow problem is that given a nelwork N=(s,t,V,E,b) and a

fized flow value vo, find the flow pattern that mazimize the total cost. O

The easiest method to solve the max-cost flow problem is to negate the cost of each arc in
the network, and run the min-cost flow algorithm on the new network.

The previous network construction N¢ ensures that the resulting paths are vertex disjoint
cliques in Gy (or G). When the maa-cost flow algorithm is applied on this network,we obtain
cliques that maximize the total cost. The flow value on each path is one, this implies that the
total cost on each individual path is the sum over all individual arcs on that path according
to their topological order in the graph Gy = G(V, A), where the cost on each arc is a linear
function of the “Saved Power”. For example, if (s, 0), (b,¢), (¢,d), (d,1) is a path from source
s to sink t. The total cost on this path is cost(s,b) + cost(b,c) + cost(c,d) + cost(d,t). Also,

from the above information, we can conclude that the set of variables {b,¢,d} will share the

same register according to the order b — ¢ — d.

Theorem 3.6 The Maz-Cost Flow algorithm on the network N{, gives the minimum total

power consumption on the registers in the circuil represented by the compatibility graph Go.

Proof: The total cost is ¥, ¢ f(€) * ¢(€), which is a linear function of the “Total Saved

Power”. The reason is that 3, ¢ 5. f(e) *c(e) = Toep, [f(€) % [L — M % switching(e)] =

Lx Y [(e)— M= > [f(e) * swilching(e)

€ EEH e €y
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In our specially constructed network, f(e) in every arc e except (¢,s) has value either zero or
one. The first term in the above, 3> cp.  f(e), is a constant (= 2 x | V | + k for Gy =
G(V, A)) among all possible clique coverings that cover all of the vertices in the original graph
Go. When we maximize the total cost for a given flow value in N, we are indeed minimizing
the total power consumption given that the number of registers is equal to this flow value.
Note that, the max-cost flow on N always finds the clique covering that covers all of the
vertices in the original graph Gy whenever the flow value | f | > kuin. kmin can be determined
by the left edge algorithm [Kurd87] or simply by finding the maximum number of arcs cut by
the transitions of C-steps among all C-steps. In most cases, the k,,;, found by the left edge
algorithm is equal to the k., for max-cost flow. However, in some pathological cases, the
two values are not the same. In that case, a post-processing step is needed. The key idea
is that whenever kmin(maw_cost_flow) 18 greater than kpin(iese_cdge), We try to push those vertices
uncovered by the flow back to the kpin(iesi_cage) paths and minimize the total cost. 0

The time complexity for the Max-Cost flow Algorithm is O(km?), according to [Edmonds72],

where m = 2x | V | 42 for the graph G = G(V, A) and & is the flow valus.

3.2 Handling of the conditional branches in data flow
graphs

In the following discussion, we consider the cases that each conditional execution (or branching)
is represented by a D — J (Distribute-Join) block. Only one of the branches is traversed or
executed when the test condition has been evaluated. In the simplest case, the data flow graph
in Fig. 3.2 contains only one D — J block. Let A and B denote the left and right branches,
respectively. Suppose that the primary inputs to this data flow graph are a,b,c and d. The
condition to be evaluated in the D block can be written as function of the primary inputs,
gla,b,¢,d). (In general, a branch condition may be a function of all variables including the

internal variables. However, the internal variables can be eventually represented in terms of
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:l fl:f (primary inputs)\

g(a,b,c,d)="‘T" or ‘F’

Bianch A

B:)mch B

N Y,

Figure 3.2: The dataflow graph with D — J blocks and two branches
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- - a
Ilr rf(pn'mzuy inputs)
m gl (ubed)y="T or'F
!’_

% ¥

Figure 3.3: The dataflow graph with nested D — J blocks and four branches

functions of primary input variables.) Let’s assume that branch A is the branch taken when
g(a,b,c,d) = ‘true’. Suppose the joint pdf of the primary inputs a,b,c and d is ¥(a,b, ¢, d).
Let’s denote the set S = {(a,b,¢,d) | g(a,b,c,d) =" true'}. The switching activity between any

two arcs x and y in branch A of the data flow graph can be written as the follows: !

switching(z,y) = Y, (a,b,c,d)* H(z(a,b,c,d),y(a,b,c,d)). (3.4)
(a,bye,d)ES

The above method can be extended to calculate the switching activity for a data flow graph
consisting of several D —.J blocks. For example, in Fig. 3.3, there are two D —J blocks, where
D2—.J2is nested in D1—J1. Let’s denote the test condition in D1 as gy, and the test condition
in D2 as g5. Obviously, branch A in Fig. 3.3 is executed when g; = "true’, branch B and branch

C are executed when ¢; = 'false’ and g, = ’true’, and branch B and branch D are executed when

!Note that switching((z,y) | branch A is taken) =", . ajes 5"—%1 « H(2(a,b,c,d),y(a,b,c,d)), where

P, is the probability that branch A is taken. P4 = Z(a,b.c,d)es ¥(a,b,c,d). Thus, switching(z,y) = Pa *
switching((z,y) | branch A is taken) = z(a,b.c,d)es Y(a,b,c,d)* H(x(a,b,e,d),y(a,b,c,d)).
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4 rf:f(primary inputs) )

gl (ab.ed) =T’

ch A

o J
Figure 3.4: The dataflow graph G with Branch A

g1 = 'false’ and g, = 'false’. Again, assume the data flow graph has primary inputs a,b,c and
d, with joint pdf as ¥(a, b, c,d). Let’s denote the set Sy = {(a,b,¢,d) | g1(a,b,¢,d) = "true'},
set Sy = {(a,b,¢,d) | gi(a,b,c,d) = 'false’ and ga(a,b,e,d) =" true'}, and set Sz =
{(a,b,c,d) | g1(a,b,c,d) = 'false’ and go(a,b,c,d) =" false'}. When (a,b,c,d) € 51,
we obtained a new unconditional data flow graph G consisting of everything in the original
dataflow graph except branches B,C' and D, as shown in Fig. 3.4 When (a,b,c,d) € 52,
we obtaind a new unconditional data flow graph G consisting of everything in the original
dataflow graph except branches A and D, as the one shown in Fig. 3.5 When (a,b,¢,d) € 53,
we obtaind a new unconditional data flow graph Gs consisting of everything in the original
dataflow graph except branches A and C, as shown in Fig. 3.6 Since the three new data flow
graph Gy, Ga, and G are themselves unconditional, we can use the previous method to find

the switching between any two arcs x and y in the three new graphs.
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4 rfrf(primary inputs) h

gl (ab,c,d)="F
F

- J

Figure 3.5: The dataflow graph G with Branch B and Branch C

4 ff‘:f(primary inputs) \

 Difgl (abe,d)=F
~J

% J

Figure 3.6: The dataflow graph G5 with Branch B and Branch D
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For example, the switching activity between any two arcs x and y on (4 is the following:

switching((z,y)) = Y.  (a,b,c,d)* H(x(a,b,c,d),y(a,b,c,d)) (3.5)
(a,b,c,d)ESy

After we obtaind all of the cross-arc switching activities on Gy, we can construct a new
network Ng; out of G, and perform the Maz-Cost Flow algorithm on the N, , and find out n;,
the minimum number of cliques needed in G. Similarly, we can obtain ng, and nj from G, and
Gls. Let N = max(ny,na,ng), this is the actual total number of the registers that will be used
on the original conditional data flow graph. After we obtain N, we perform the Maaz-Cost Flow
on the three networks Ng, , Ng,, and Ng, respectively, given the fixed flow value equal to N.
From that we obtain the cliques in Gy, (i3, and G5 and calculate the total switching activity on
G4, Gs, and G3 as total _switching(G,), total_switching(G,), and total_switching(Gs). The

actual total switching activity of the original conditional data flow graph is just the following:

total_switching(Conditional DFG) = total_switching(G1) + total_switching(Ga)

+total switching(Gs) (3.6)

Within each individual unconditional data flow graph G, G, or G3, data values share the
N physical registers. The same N register are shared by the three data flow graphs Gy, Go,
and Gs. Here we are considering the non-pipelined design, and the sharing of the same N
registers by the three data flow graphs takes place sequentially. Given an input vector, one
and only one of the three unconditional data flow graphs will be traversed and executed and
the new unconditional data flow graph will be executed only when a new input vector comes
in. The sharing of the N registers among the three unconditional data flow graphs Gy, Gi» and

(G5 is achieved by using multiplexors and issuing control signals at correct C-Steps.
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Example:

The following example is based on a scheduled data flow graph as the one shown in Fig 4.1.

This simple data flow graph has five primary input variables a,b, ¢, d and e. For the sake of

presentation, we choose the 5-variate joint Gaussian distribution as the joint pdf of a,b, ¢, d

and e. Note however that our method works for arbitrary joint pdf’s. The 5-variate Gaussian

is a good choice as this pdf is commonly seen in many application domains, like DSP. Let

[ T

~ i,
— Hb
— e |, where
— Hd
— e

The 5-variate Gaussian distribution is given by:

Gaussiand(a, b, c,d, ¢)

= J(X) =

fla 1.0
b 1.0
e =1 1.0
ILd 1.0
[le 1.0
1

\/(27)5 + det(C)

erz:p{—%Xt Cc! X}

The matrix C is the covariance matrix for the 5-variate Gaussian joint pdf ad is given by:

Taa  OTab
Tba  OTbb
C = Oca Och
Tda  Tdb
Oca  OTeb

Tac
The
Occ
Tde
Tec

Tad
Thd
aCti

Tdd
Ted

Tae
The
Tee
Ode
Oee

69.3092
—25.3706

= | —38.2909
—12.6694
6.57557

—25.3706 —38.2909 —12.6694  6.57557
73.2355 —11.9927  4.95206 —63.0632
—11.9927  91.0169 —21.7674  2.55902
4.95206 —21.7674  66.7315  10.3661
—63.0632  2.55902  10.3661  74.7069
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Figure 4.1: The Scheduled Data Flow graph

The numerical values on the right hand side are provided as an example. IFrom Fig. 4.1, we

know that there are six intermediate variables in the data flow graph, that is, random variables

f: g, h; i; j, and k.

[ = a+b
g = c+d
h = (a+b)*(c+d)
i = (a+b+1)*(c+d)
j= e

k= e+(at+b+1)*(c+d)
The variables’ life times are:

{a[1,2], b[1,2], ¢[1,2], d[1,2], e[1.4], [[2,3], g[2,4], h[2,4], i[4,5], j[4,5], k[5,6]}
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Figure 4.2: The Oriented Compatibility Graph for register allocation problem

From the above life times, the procedure used to construct the oriented compatibility graph
for the register allocation problem generates Gy = G(V, A) shown in Fig. 4.2.

In this example, we assume 16-bit registers and the two’s complement representation for
the values. All numbers are in the range [-32768, 32767).

We used equation ( 2.2) in Chapter 2.2 to calculate the cross-arc switching activities for
every pair of arcs in G(V, A).

The switching activity of for any variable x from time = to_ which is assumed to have
some unknown value to the time that the variable gets its first value was taken to be a
constant equal to (1/5)#*[switching(0,a)+switching(0, b)+ switching(0, ¢)+ switching(0, d)+
switching(0, e)].

Here are the results:

After calculating the switching activities, we construct the max-cost flow network. The
weight on each arc is calculated by equation ( 3.1)-( 3.3). in Chapter 3.

Here we choose M = 1000, and so L. = 10836. The following weights are obtained:

w(z,z')= L, Yo €V, and
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a b c d e { g h i j k|t
a 6.138 | 7.522 | 8.772 | 8.931 | 8.140 | 9.604 | 0
b 6.150 | 7.082 | 8.735 | 8.839 | T.771 | 9.508 | 0
c 7.464 | 6.238 | 8.612 | 8.546 | 8.220 | 9.134 | 0
d 7.026 | 6.285 | 8.579 | 8.541 | 8.129 | 9.196 | 0
e 8.692 | 6.953 | 8.546 |0
f 10.158 | 8.010 | 10.187 |0
g 7.223 | 8.419 | 8.763 | 0
h 8.119 | 10.836 | 10.227 | 0
1 7.921 | 0
] 9.350 | 0
s | 5.566 | 5.566 | 5.566 [ 5.566 | 5.566 | 5.566 | 5.566 | 5.566 | 5.566 | 5.566 | 5.566 | 0
Table 4.1: Cost Matrix for network
a b c d e f g h 1 ] k t
a 4698 | 3314 | 2064 | 1905 | 2696 | 1232 | 10836
b 4686 | 3754 | 2101 | 1997 | 3065 | 1328 | 10836
C 3372 | 4598 | 2224 | 2290 | 2616 | 1702 | 10836
d 3810 | 4551 | 2257 | 2295 | 2707 | 1640 | 10836
e 2144 | 3883 | 2290 | 10836
f 678 | 2826 | 649 | 10836
g 3613 | 2417 | 2073 | 10836
h 2717 0| 609 | 10836
i 2915 | 10836
i 1486 | 10836
s | 5270 | 5270 | 5270 | 5270 | 5270 | 5270 | 5270 | 5270 | 5270 | 5270 | 5270

Table 4.2:

Cost Matrix for network




CHAPTER 4. EXAMPLE:

No. of reg | cliques actual total switching activity
7 {{a, f},{c, 9,1}, {e, 5}, {6}, {d}, {h}, {k}} | 65.514
6 {{a,f},{c, 9,0, k},{e, 7}, {0}, {d}, {R}} | 67.872048
5 Ha, f}.{c, 9,0, k}, {d, h}, {e, j}, {b}} 70.882
Table 4.3: Results
No. of reg | cliques actual total switching activity
5 {{(L,h? k},{b,_[,‘i},{C,g,j},{d},{ﬁ}} 80.487882

Table 4.4: Results

Applying the Max-Cost Flow on the network in Fig. 4.3 with the vertex splitting technique,

the following results are obtained:

Note that our method finds the minimum power register assignment for the given number

of registers.

To demonstrate that the switching activity calculation based on the joint pdf is necessary

to obtain a low power register assignment we performed an experiment where every arc weight

in the compatibility graph was set to some constant (C=100) and then ran the max-cost flow

for different flow values. For flow value 5, we obtained:

which is 13.55% worse than the optimum solution.

Next, we generated register assignment solution using Real [Kurd87] which finds the mini-

mum number of registers need (in this case) and obtained the following result:

No. of reg

cliques actual total switching activity

5

{{a, f,i,k},{b, 9,7}, {c,h}, {d},{e}} | 78.471137

Table 4.5: Results
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Min-Power Register Assignment

No. of reg | cliques actual total switching activity

9 {{a,7}, {6, h}, {e, 5, k}, {l,m}, {n}, {c}, {d}, {f}, {g}} | 6.861

8 {{a,l,m}, {0, h},{e,j,k},{f,i},{c},{d},{g},{n}} 7.272
7 Ha,l,m,n}, {d, h},{e,5,k},{f,1}, {6}, {c}, {g}} 7.763
Table 4.6: Results
Min-Count Register Assignment
No. of reg | cliques actual total switching activity
7 {{a,7,m},{b, h, k,n},{c,1,1},{d},{e},{f},{g}} | 10.017

Table 4.7: Results

which is 10.71% worse than the optimum solution. Indeed, among all valid register assign-
ment of given size, our proposed algorithm finds the one that minimizes the power consumption.
The percentage power reduction increases for larger data flow graphs. For example, we
obtained 22.5% improvement in power (compared to the minimum register count register as-
signment procedure) on T-input data flow graph shown in Iig. 4.4 using similar assumptions

about the joint pdf and the data types. Specifically,
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Figure 4.3: The network After applying the vertex splitting techniques
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Figure 4.4: The data flow graph with 7 primary inputs.
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Conclusion

This paper presented a novel way to calculate the switching activity external to a set of regis-
ters based on the assumption that the joint pdf (probability density function) of the primary
input random variables is known or can be calculated. For a scheduled data flow graph without
cycles, the compatibility graph for register allocation and assignment problem was proven to
be a transitively orientable graph. A special network was then constructed from the above
compatibility graph and the max-cost flow algorithm (a variation of min-cost flow algorithm)
was performed to obtain the minimum power consumption register assignment. Due to prop-
erties of transitively orientable graph, the time complexity is polynomial. Our future work will

focus on the register assignment for pipelined design and data flow graph with outer loops.

36
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