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RT-Level Power Analysis Using Information Theoretic
Measures

Abstract

The problem of estimating the power consumption at logic and register transfer levels is
addressed from an information theoretical point of view. It is shown that the average
switching activity can be predicted without simulation using either entropy or
informational energy averages. Consequently, two new measures relying on these
concepts are developed. The accuracy of these models is investigated using comnion
benchmarks and results are reported.



I. INTRODUCTION

Modern design tools have changed the entire design process of digital systems. As a result, most of the
systems are conceived and designed today at the behavioral/logic level, with little or no knowledge of the final
gate level implementation and the layout style. In particular, designers are becoming more and more interested
in register-transfer level (RTL) modules (adders, multipliers, registers, multiplexers) and strategies to put them
together in order to build complex digital systems.

Power minimization in digital systems is not an exception to this trend. Having as soon as possible in the
design cycle an estimate of power consumption, can save significant redesign efforts or even completely
change the entire design architecture. Circuit and gate level power estimation techniques have been extensively
explored [1][2]; they roughly fall in two categories: simulative [3]-[8], and probabilistic [9]-[17]. Generally
speaking, simulation-based techniques can provide very accurate results, but the price we have to pay is too
high; one can extract switching activity information by exhaustive simulation on small circuits, but it is
unrealistic to rely on simulation results for larger circuits. On the other side, probabilistic techniques can
provide sufficient accuracy with a reasonable amount of computational work. Despite the huge amount of
efforts directed in both directions, the performance gap between simulative and probabilistic approaches has
remained basically the same during the last few years.

Higher levels of abstraction have been also considered, but here many problems are still pending a
satisfactory solution. At this level, consistency is more important than accuracy, that is, relative (as opposed to
absolute) evaluation of different designs is often sufficient. Most of the high level prediction tools combine
deterministic analysis with profiling and simulation in order to address data dependencies. Important statistics
include the number of instructions of a given type, the number of bus, register and memory accesses and the
number of 1/O operations executed within a given period [18](19]. Analytic modeling efforts have been
described in [20] where a parametric power model was developed for macromodules. However, the trade-off
between flexibility and accuracy is still a challenging task as major difficulties persist due to the lack of precise
information and the conceptual complexity which characterizes these levels.

Power dissipation in CMOS circuits comes from three sources: leakage currents which include the reverse-
biased junction and subthreshold currents, short-circuit currents which flow due to the DC path between the
supply rails during output transitions and capacitive switching currents which are responsible for charging and
discharging of capacitive loads during logic transitions. In well-designed circuits with relatively high threshold
voltages, the first two sources are very small compared to the last one. Therefore, to estimate the total power
consumption of a module (in a gate level implementation), we may only account for the capacitive switching

currents, yet achieve sufficient levels of accuracy [21]:
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where f,;, is the clock frequency, Vpp is the supply voltage, C, and sw,, are the capacitive load and the average
switching activity of gate n, respectively (the summation is performed over all gates in the circuit). As we can
see, in this formulation the average switching activity per node is a key factor, and therefore its correct
calculation is essential for accurate power estimation. Note that for the same implementation of a module,
different input sequences may give rise to different switching activities at the circuit inputs and at the outputs of
internal gates and consequently, completely different power values.

The problem of power estimation at the RT-level is different from that at the logic level: whilst at gate level
it is desirable to determine the switching activity at each node (gate) in the circuit (Fig.1(a)), for RT-level
designs an average estimate per module is satisfactory (Fig.1(b)). In other words, some accuracy may be
sacrificed in order to obtain an acceptable power estimate early in the design cycle and at a significantly lower

computational cost.
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Fig.1: Power estimation issues at the logic and RT-levels

In the data-flow graph considered in Fig.1(b), the total power consumption may be estimated as:

Usually, the interconnect power consumption is either estimated separately or
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included in the power consumption of the modules, therefore we can write:

P 2 P, o< Z (ij- S ij) where the summation is performed over the set of modules M

total = ;
m; € M m; € M

used in the data-flow graph, and CmJ . Slr‘vmJ stand for the capacitance loading and the average switching activity

of module m;, respectively. Basically, what we propose is to characterize the average switching activity of a

module (SW,, ) through the average switching activity for a typical signal line in that module (swy,,). More
J

formally, for a generic module m; having n internal lines (each characterized by its capacitance and switching

activity values c; and sw;, respectively), we have:
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We assume that module capacitances C, are either estimated or taken from a library, therefore we concentrate
J

on estimating the average switching activity per module. This is a quite different strategy compared to the
previous work. The only other proposed method for power estimation at RT-level is simulative in nature,
requires pre-characterization of the modules and may be summarized as follows: first, RT-level simulation is
performed to obtain the average switching activity at the inputs of the modules and then, this switching activity
is used to ‘‘modulate’’ a switched capacitance value (product of the switching activity and the physical
capacitance) which is pre-computed and stored for each module in the library to obtain the power dissipation
estimate [22]. Compared to this methodology, the distinctive feature of the present approach, is that it does not
require simulation; its predictions are based only on the characteristics of the input sequence and some
knowledge about the function and/or structure of the circuit (see Section IV for details).

In this paper, we address the problem of power estimation at the RT-level from an information theoretical
point of view [23]. Traditionally, entropy has been considered a useful measure for solving problems of area
estimation [24][25], timing analysis [26] and testing [27][28]. We propose two new measures for estimating the
power consumption of each module based on entropy and informational energy. Our entropy/informational
energy-based measures simply provide an approximation for the functional activity in the circuit without
having to necessarily simulate the circuit. With some further simplifications, simple closed form expressions
are derived and their value in practical applications is explored.

Note: We point out that, although this paper targets RT-level and behavioral design, it also presents as a by-
product, a technique applicable to logic level designs. This is a first step in building a unified framework for
power analysis from gate level to behavioral level.

The paper is organized as follows. Sections II and III introduce the main concepts and the motivation behind
our model. In Section IV we present some practical considerations and finally, in Section V, we give the results
obtained by analyzing a common data-path. We conclude by summarizing our main ideas and indicating

possible extensions of the present work.

II. THEORETICAL FRAMEWORK

A. An Entropy-Based Approach
Let Ay,Ay,...,A, be a complete set of events which may occur with the probabilities py,py,....Pn that is:
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We introduce the following definition:
Definition 1: (Self-Information)

The self-information of the event Ay, written I(A), is defined as
1Ay = -log (py) “
where log stands for log,. The function I(Ay) vs. p = p(Ay) is plotted in Fig.2.

Self-Information

Fig.2: Self-information I(A;) vs. probability p;.

Self-information can be interpreted as the amount of information provided by occurrence of the event Ay.
According to this interpretation, the less probable an event is, the more information we receive when it occurs.
A certain event (one that occurs with probability 1) provides no information at all, whereas an unlikely event
provides a large amount of information. The measurement unit for / is the bit (binary digiz); when py = 1/2, -
log(Az) = 1 bit, so that 1 bit of information occurs on the choice of one from two equally likely events.

Let us consider an experiment where the outcome is unknown in the beginning; such an experiment exposes
a probability finite field 4,, completely characterized by the discrete probability distribution py,py,....pp. In
order to quantify the content of information revealed by the outcome of such an experiment, Shannon
introduced the concept of entropy [29].

Definition 2: (Entropy)
Entropy of a finite field 4, (denoted by H (4,)) is given by:
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In other words, entropy is the weighted average of self-information over all events of the field. We plot in Fig.3
the entropy of a Boolean wvariable as a function of its signal probability, that is
H(A,) =-p-logp- (1-p)-log(1-p).
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Fig.3: Entropy H(A4;,) vs. probability

We pointed out earlier that self-information of an event increases as its uncertainty grows. Thus, entropy
may be also regarded as a measure of uncertainty in the sense that the larger the entropy, the less certain the
outcome of a random experiment in 4,. Entropy is also a measure of the information contained in each event 4;
(given by I (4)) = -log (p)).

Note: Information and uncertainty have the same quantitative measure (i.e. entropy), but different meanings.
As information increases, the uncertainty decreases and vice versa. Indeed, uncertainty is equal to the amount
of information which is needed to make the outcome of an experiment known.

First, we should note that log (p;) < 0 since 0 < p; < 1 and so H (4,) 2 0. Thus, the entropy can never be

negative. Second, let p; = 1, p; =... = p, = 0. By convention, py log (p;) = 0 when p = 0 and hence, in this case,
H (4,) = 0. Conversely, H (4,) = 0 implies that py log (p) = 0 for all £, so that py is either O or 1. But only one
P can be unity since their sum must be 1. Hence, entropy is zero if and only if there is complete certainty.

Definition 3: (Conditional Entropy)
Conditional entropy of some finite field 4, with probabilities {p;} <<, With respect to B, (with probabilities

{4:}1<i<) is defined as:
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H(4,|8,) = -3 > Pji- log (p;/ qp) (6)
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where pj is the joint probability of events A; and By. In other words, conditional entropy refers to the
uncertainty left about 4, when B,, is known.

Definition 4: (Joint Entropy)

Given two finite fields 4, and B, their joint entropy is defined as:

m

H(A,xB,) = —2 2 Py~ log (pjp) (7
j=1lk=1

Based on these two concepts, one can find the information shared by two complete sets of events:

1(4;8,) = H(A) +H(8,) -H(4,%x3,)

which is called mutual information (or transinformation). Moreover, by using the above definitions, one can
show that:

1(4,:8,) = H(A4,) -H(4,|B,) ®

The Venn diagram for these relations is shown in Fig.4:
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r

e
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Fig.4: A set-theoretic representation of different entropies
Entropy satisfies the following basic properties [29]:

Property 1: Entropy is maximized when all events are equiprobable, that is:

11 l)
<H| == ..., ]= 9
H{p;, Pss s D) _H(n,n, = log (n) ©)

Property 2: If 4, and B,, are any two independent finite fields, 4, X B, a new finite field with nm events, then
H(a xB) = H(A4) +H(3,) (10)

Shannon's entropy is equally applicable to partitioned sets of events. More precisely, given a partitioning [
= {A},4y,...,A, )} on the set of events, the entropy of this partitioning is:

H() = - z p(A)) logp (A) (11)

i=1



where p(A;) is the probability of class A; in partition [T.

The applications of entropy fall in two categories. The first category consists of problems related to the
determination of unknown distributions based on the principle of maximum entropy; that is, determining the
distribution of some partition of events subject to given constraints (statistical mechanics). In the second
category (coding theory), we are given the source entropy and wish to construct various random variables (code
lengths) so as to minimize their expected values. In this paper, we focus on the relationship between the
information (entropy) contained in a binary stream and the resulting power consumption when this binary
stream is applied to the inputs of a combinational logic block.

Example 1: The truth table for a randomly excited 1-bit full adder is given below:

€ %% %% sd
x" __’_ __>_5.
i 00 1 1 o Class A;
Full Adder 100 |1 o /
i - 110 |0 1
111 [1 1
011 |0 1
101 [0 1
A 010 |l 0
i
000 U

Fig.5: 1-bit full adder
where x; y; are the inputs, c; is carry-in, s; is the sum bit and ¢;,; is carry-out. The output space is partitioned in
four classes as 1= {A 45,4344} = {10, 01, 11, 00}, where p(A;) = p(A2) = 3/8, p(A3) = p(Ay) =1/8; applying
(11) we obtain H([T) = 1.8113. We observe that within a class there is no activity on the outputs; this means
that output transitions may occur only when one has to cross class boundaries in different time steps. If the
output sequence is a purely random one, then exactly H bits are needed to represent the output sequence;
therefore the average number of transitions per word (or average switching activity per word) will be H/2. In
any other nonrandom arrangement, for a minimum length encoding scheme, the average number of transitions
per word will be < HJ/2, so in practice, H/2 can serve as a conservative upper bound on the number of
transitions per word. In our example, we find an average switching value approximately equal to 0.905 which
matches fairly well the exact value 1 deduced from the above table. Such a measure was suggested initially by
Hellerman to quantify the computational work of simple processes [24]; it was subsequently explored using

symbolic conditional expressions for the output probabilities [30].
More formally, if a signal x is modelled as a lag-one Markov chain with conditional probabilities pog. Po1,

P1o» P11 and signal probabilities po and py as in Fig.6, then we can characterize it through the conditional
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Fig.6: A two-state Markov-chain modelling a signal line x

The signal probabilities can be expressed in terms of conditional probabilities as: p, = ﬁ— and
Po1 T Pro
Pio . g
py = ——— respectively [16]. Using the well-known identity ~In(l1-a) = 2 — for0<a<1, we
Por tPyo k=1 H
obtain:
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We note that _—p ry- is exactly the switching activity of line x (denoted by sw (x)) and that @~ + o™ (for
01 10
1
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using again the above identity: h (x"Ix") 2 2 - sw (x) - (pgg + p11)- So, what we got is an upper bound for the
switching activity of signal x in the most general case when it is modelled as a lag-one Markov chain: sw (x) <
h (x*1x) / [2 - (poo + P11))- Unfortunately, there is no relationship between pgy and pq; and their sum can take
any value. To obtain an upper bound useful in practice, we assume temporal independence, that is: p; = po; =
P11» Po = P10 = Poo and h (x*Ix)) = h (x). In this simpler case, pog + p11 = 1 and hence the relationship between
sw (x) and h (x) is exactly the one based on intuition: sw (x) < h (x) / 2.

To evaluate H, one can use basic results from information theory concerning transmission of information

through a module. More precisely, for a module with input X and output Y, we have
1(X;Y) = H(X) - H(X|Y) and by symmetry I(X;¥) = H(Y) —H(Y|X) due to the commutativity
property of mutual information. When input X is known, no uncertainty is left about the output Y and thus

H(N'X) is zero. Therefore, the information transmitted through a module can be expressed as

10



H(Y) = H(X) - H(X|Y) which represents the amount of information provided about X by Y. For instance,
in Fig.5, I (X; Y) = H (Y) = 3 - 1.1887 = 1.8113; thus, informally at least, the observation of the output of the
module provides 1.8113 bits of information about the input, on average. However, in real examples, this type
of characterization is essentially very expensive as long as the input/output relation is not a one-to-one
mapping. This usually ends up in intricate analytical calculations; for instance, the exact calculation of the
output entropy of an n-bit adder, would require the knowledge of joint input/output probabilities and a double
summation with 22* terms (as in (6)).

For interconnected modules, the estimation of output entropy for the entire design is even more complicated.
Assume the following interconnection structure among n-bit adders (Fig.7). To find out the information

transmitted through the whole design, we are faced with very expensive computations: the number of needed

joint probabilities (and the number of terms in the summation (6)) becomes @(24"). Therefore, this approach is

quite impractical.

n-bit
| adder

T n-bit
- adder

n-bit
—1 adder

Fig.7: Complexity increase for interconnected modules

As a consequence, in order to analyze large designs, we target a compositional approach where the basic
modules are already characterized in terms of transinformation and what is left to find, is only a propagation
mechanism among them (all details are given in Section I'V).

As we have seen, an appropriate measure for the average switching activity of each net in the circuit is its
entropy value. Basically, what we need is a mapping & — &’ from the actual set & of the nets in the target
circuit (each having a possibly distinct switching activity value) to a virtual set §’, which contains the same
collection of wires, but this time each net has the same value of switching activity. More formally, & — £’ is a

mapping such that the following conditions are satisfied:

gl =1€"l

(12)
sw(x) = sw(x) x; %€ &’

Bearing in mind this, one can express the total number of f(ransitions per step as:

SW(E) = SW(E) <n- "(f) 13)

11



where n stands for the presumed cardinality of &’ and h (&’) represents the average entropy per bit of any net in
€. To clarify these ideas, let us consider the simple circuit in Fig.8.

X cy a b z
110 Random , ?8(1)888
101 111 ]11]/1
b TR
000 4 b 010|00]0
000/0O0]O

Fig.8: An example to illustrate the mapping § — &’

In this example, we feed the circuit with a 3-bit random sequence and tabulate in the right side, the logic
values obtained in the entire circuit by logic simulation. We have that § = {x, ¢, ¥, a, b, z} with the switching
profile (in number of transitions) {4, 4, 4, 2, 2, 2}, respectively. Doing a quick calculation, we get SW (&) =
2.25 transitions per step. On the other hand, &’ ={x ¢, ¥, a b, z} with the average entropy / EN=0B*1+2*
0.811 + 0.954) / 6 = 0.9295 characterizing each signal in the set; using relation (13) we get an expected value
SW (§") = 2.73 which is greater than SW (&), but sufficiently close to it.

Unfortunately, in large circuits, it is expensive to compute h (&) as the complete set of events characterizing
a circuit is exponential in the number of nodes. To avoid the brute force approach, that is exhaustive logic

simulation, we make some simplifying assumptions which will be detailed in Section MLA.

B. An Informational Energy-Based Approach
Assuming that we have a complete set of events 4, (as in (3)), we may regard the probability py as the

information associated with the individual event A;. Hence, as in the case of self-information, we may define
an average measure for the set 4,

Definition 5: (Informational Energy)

The global information of the finite field 4, (denoted by E(4,)) may be expressed by its informational energy

as (also called the Gini Function"):

n
E(1) = Y.p; (14)

j=1
We plot in Fig.9 the informational energy of a Boolean variable as a function of its signal probability, that is

E(4) =p +(1-p)°.

1This was first used by Corrado Gini in a study from “Atti del R. Ist. Veneta di Scienze,” Lettere ed Arti, 1917, 1918, v. LXXVII

12
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Fig.9: Informational energy E(4,) vs. probability
Due to its simplicity, the informational energy was used mainly in statistics (not necessarily in conjunction
with Shannon’s entropy) as a characteristic of a distribution (discrete as is the case here, or continuous in
general). However, without a precise theory, its use was rare until its usefulness was proved [31].

The value of the informational energy is always upper-bounded by 1. This is because

n n 2
2
Z p; S( 2 ij = 1 with equality iff one of the events has probability 1 and the rest of them have the
Ji=k
probability 0. Thus, E (4,) = 1 iff the experiment provides the same determinate and unique result. We give in

J=1

the following few basic properties satisfied by the informational energy [32].

Property 3: The informational energy becomes 1/n when all events are equally likely and 1 when one of the

events in 4, is certain:

11 1 1

S i 2y = =KZ 15
E(n’ - ...,n) - E(Aa) (15)

Property 4: If the uniformity (or the uncertainty) of the system increases, then its informational energy
decreases.
Property 5: If 4, and B,, are two independent finite fields, then E(4,, X B,,) = E(A4,) - E(B,).

Based on this measure, one can find a relationship between the switching activity and the informational
energy. Let e(x) denote the informational energy of a single bit x. Considering x modelled as a lag-one Markov

chain with conditional probabilities pgo. Po1» P10» P11 and signal probabilities py and p; as in Fig.6, we can

characterize it through the conditional informational energy between two successive steps in time by: e (x*Ix)

13
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=p1 @10 +P112) -Po (Poo2 +po;2). Since the switching activity of line x is M and p; = L.
Po1 TPy Po1 T Pyo
_ _Po . . N
Py = W one can write the following relationship between conditional informational energy and
01 10

switching activity: e (x*lx) = 1 - sw (x) - (pgo + p11)- Again, in the most general case, pgo and pp; can take any

values and thus even if we have an exact relation between energy and switching activity (sw (x) = (1 - e (x*Ix"))

/ (pgo + p11)) we cannot bound the sum from the denominator. However, under temporal independence

assumption [16], we have an exact relation since pgy + pyy = 1 and thus:

sw(x) = 2p(x) (1-p(x)) = 1-e(x) (16)

For instance, returning to the 1-bit full-adder example in Fig.5, we find E;,,,, = 0.125 and E,p,, = 0.875.
Thus, on average, the output exposes an informational energy of 0.437 and, based on (16), a switching activity
of 0.563 (compared to the exact value of 0.5). Thus, informational energy (along with entropy) seems to be a
reliable candidate for estimation of energy consumption.

Once again we consider the virtual mapping & — &’, where each net in &’ is characterized by the same
amount of average informational energy e (£’). Based on (12), the expected switching activity per step in the
whole circuit SW (§”), can be expressed as:
SW(E)= SW(E) =n- (1-e(§)) (17)
where the cardinality of & is assumed to be .
Considering the simple case in Fig.8, we gete (§") = (3 * 0.5 + 2 * 0.625 + 0.531) / 6 = 0.546 and therefore,
SW (£") = 2.71 which matches well the actual value (2.25).

However, in real circuits, direct computation of e (§) is very costly; to develop a practical approach, we

need further simplifications as will be shown subsequently.

C. Quantitative Evaluations

In order to derive a consistent model for energy consumption at RT-level, we first have to abstract somehow
the information present at gate level. Thus, a simplified model is taken as a starting point.

Let us consider some combinational block realized on n levels as a leaf-DAG! of 2-input NAND gates (a
similar analysis can be carried out for 2-input NOR gates and the final result is the same). We assume that
inverters may appear only at primary inputs/outputs of the circuit; we do not include these inverters in the level

assignment step. One can express the signal probability of any net at level j+1 as a function of the signal

11 aleaf-DAG, only the leaf nodes have multiple fanouts.

14



probability at level j by:

i1 =1-p,  Vi=0,.,n-1 (18)
Similarly, the signal probability of any net at level j+2 is given by:
22
Pj.a = 1—(1—pj) Vji=0,...0-2 (19)
The average entropy per net at level j is given by:

hj = -'Pj‘ logpj— (1 _pj) - log (l—pj) (20)

Using the corresponding average entropy per net at level j+2, the parametrized relationship between h; and hj.o

=

J

can be approximated by hj £2™% when j is sufficiently large (values greater than 6). Hence we get

h
expressions for entropy per bit at even/odd levels of the circuit: k, i = ;q and h2j L ;l , where hg, hy are

entropies per bit at the primary inputs and first level, respectively. To get a closed form expression, we may

h
further assume that #; may be estimated in terms of hg as h; = :/% (in fact, the exact entropy decrease for a
pseudorandom excited NAND gate is 0.811, but for uniformity, we chose this way). Thus, for a 2-input NAND
gate leaf-DAG, the entropy per bit at level j may be approximated as:

hy
b= @1)
This may be further generalized for the case of f-input NAND gate leaf-DAGs, observing that increasing the
fanin from 2 to f, produces an decrease in the number of levels by log (f). Hence, for a fanin of f; (21) becomes:

" h, h, -
.f~2(i-logf)/2 _fj/z (22)

We call — information scaling factor; it characterizes each logic component (gate, module or circuit). We

Jf

will see how this relation is affected by the circuit structure and functionality in general. In any case, this
provides a starting point for estimating the total entropy at each level in the circuit. In general, the total entropy

over all levels N in the circuit would thus be:

N N
Hipa = 2, H; = Xm0 by (23)
j=0 j=D

15



where Hj is the total entropy at level j and n; is the number of nodes on level j.

All these considerations can be easily extended for the case of informational energy. Considering the same

assumptions as in previous section and using relation (18), the informational energy per net at level j may be
expressed as:

2 2
¢ =p;+ (1-p) (24)

Applying (18) for level j+2 and substituting in (24), we get the following parameterized dependency
between the informational energies at levels j + 2 and j:

B 2)2)? 2 4 2 2
€y = (1‘(1‘1’1)) +(1_Pf) ¢ =Pt d-py) 25)
Using a similar approach as in the case of entropy, we get the following expression for the average

informational energy per bit at level j in a circuit with fanin f:

1-e,

¢ =1-—7 (26)
f

From here, an estimate can be drawn for the total energy at level j, and thus for the total energy over all the

levels of the circuit:
N N

E pral = 2 E; = Z &y W

i=0 j =0

where E; is the total energy at level j and again ; is the number of nodes on level j.
IIT. INFORMATION MODELING

A. Theoretical Results

As we have seen, an estimate of the average switching activity for a module can be obtained from the total
entropy (informational energy) over all levels of the circuit. An exact technique would be too expensive to use
in practice; on the other hand, since we are dealing with RT-level designs, the internal structure may be
unknown. So, in order to make things manageable, we will use the following simplifying assumptions:

Ay. Uniform Network Structure: Nodes are uniformly distributed over the levels of the circuit.

In other words, we assume the same number of nodes on each level of the circuit. Also, all the gates on each
level are assumed to get their inputs from the previous level. This will significantly simplify our task in
obtaining closed-form formulae for average switching activity per module (see Section IV.A for the effect of

other common network structures when assumption A is relaxed).
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As we have seen, for particular structures (that is leaf-DAGs containing 2-input NAND/NOR gates), there is
a simple relationship between the values of entropy (informational energy) on adjacent levels in the circuit.
Unfortunately, in practice these structures are too restrictive to be considered alone: random logic circuits
exhibit a large fanout, not only at the primary inputs, but also at internal nodes. This is one reason to reconsider
the above relations and make them applicable in practice. In addition, logic circuits contain a mixture of gates:
while NAND (AND), NOR (OR) are entropy decreasing, XORs and inverters are entropy preserving gates.
More precisely, the output entropy of XORs is 1 when they are randomly excited and therefore their
information scaling factor is 1. Their behavior is still described by (22) for f = 1 (similar considerations apply
to informational energy). In general, any generic “gate” having almost equal-sized ON and OFF sets, exposes

the same almost entropy preserving characteristic.

Example 2:

As we can easily see, the boolean function f has equal ON- and OFF-sets and thus,
abecl fg implements an information preserving gate. If exhaustively excited, the output entropy
000f 00 of fis:

001 10

o10| 11 Hf= - 0.5 1og(0.5) - 0.5 10g(0.5) = 1 and thus the information scaling factor is 1.

011f 00 On the other hand, g has unbalanced ON- and OFF-sets (only 2 out of 8 minterms are
100 11

101f 00
110l 00 Hy = - 0.25 10g(0.25) - 0.75 10g(0.75) = 0.8113 which corresponds to its information

in the ON-set). The corresponding output entropy is:

1111 10 scaling factor.

In short, we may say that both structural and functional aspects are important. At RT-level both of them
have to be abstracted and used in an implicit manner to compensate the lack of explicit information which
characterize high-level representations. To overcome this difficulty, we will use another simplifying
assumption:

A,. Uniform Information Variation: The entropy and informational energy per bit at level j are estimated in

terms Of f g as:

- = |le=— j= 28
hj =~ and e 1 72 J 0,1,..,N. (28)
Fegy Tegr

Differently stated, we assume that each “generic gate” from a given circuit is characterized by an effective
information scaling factor whose value depends on both structure and functionality of gates. In fact, the above
formula is similar with (22) and (26) derived for a particular circuit (leaf-DAG).

Under assumptions A; and A,, we may state the following:
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Proposition 1: The average entropy (informational energy) per bit in an N-level circuit, may be estimated as:

S N+1 N+1
= bl
1—[}.@ 1 [l_eour) N
h, | 1-e
_ in / i
havg = hy, ) i & g, = 1-(1-e;,) - i = (29
h N 1= N
(N+1) | 1- L‘“) (N+1) -] 1- Sour
\ hin L~ €in
where h;, (e;,), hou (e, are the average input and output entropies (energies) per bit.
h.
Proof: From (28), the average entropy per bit at level j as a function of input entropy A;, = hy-is hj = ;;2
T

Thus, summing-up over all the levels and taking the average we get:

{ 1 N+1
N N _( )

By = s Y e = S (30)
N+1 72 N+1 j’2 n 1
j-of.y j=ofy (N+1)-(1— )
N egy

On the other hand, for j = N, relation (28) is applicable to the outputs:

h. N
h,, = ﬁ and from here, 1 (h".”') . Plugging this in (30), we get exactly the claim of the
feff l’feﬁ in
Proposition. Similar considerations apply to informational energy. a

Proposition 1 gives us an estimate of the average entropy/informational energy in a circuit with N levels. The

factor f,is “hidden” in the relationship between N, h;, (e;,) and h,,, (e,,,) since the outputs are considered to be

on level N:
h h. l-e l-e,;
0 in _ 0 _ in
hau;=h1v=7z= 72 €out = EN = 1_7_ 1__72_ (1)
eff eff eff eff

The greater the number of levels is, the smaller the value for f,q will be, which somehow suggests that the

loss of information per bit from one level to another decreases with the number of levels. However, the
usefulness of these formulas is limited, since in general at RT-level we know very little about the internal
structure of the circuit. To compensate this lack of information, we add a new assumption valid for circuits with
large logical depth:

As. Asymptotic Network Depth: The number of levels N is large enough to be considered infinity.
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Using this, we get the following:
Corollary: For sufficiently large N, the average entropy and informational energy per bit in the circuit are given
by:

hin - hour éin—¢€
— !
avg —h eavg = 1- sz_% (32)

‘h_m‘ ln out

out 1- €in
Proof: From (30), we have that
N+1
1— out N
hin N h —-h

havg - lim h _ in out

(hin = haul A}l_l}l]m = ( hin J
( J hour

= In (a) . A similar calculation can be done for infor-

= l
h N
(N+1)- 1—[ ""’]

hin

where we applied the well known identity lim &
x—=0

mational energy. a
Note: In the above derivations, trivial cases such as zero input or output entropy and one input or output energy
are excluded.

What we have obtained so far are simple formulae for estimating the average entropy (informational energy)
per bit, and from these, the average switching activity over all the nets in the module. The main difficulty in

practice is to estimate the actual output entropy hg,, (or informational energy eour), Since the information

usually available at this level of abstraction is not detailed.

B. The Influence of Structure and Functionality

All logic gates belonging to a given module can be characterized by an effective factor fpz which captures

information about the circuit structure and functionality. How can we model a general circuit for entropy/
energy based evaluations? One can consider relations (29) and (31), where the information scaling factor

reflects not only the structure, but also the fraction of information preserving gates.
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Example 3: Let us consider for instance, circuit C17 given below:
level 0 level 1 level 2 level 3
/

<

-

e
T

Fig.10: An example of levelization - Circuit C17
To levelize it properly (every wire that connects the output of a gate at level i to the input of a gate at level
i+2 must go through some buffer gate at level i+1), we added three “dummy” components x, y, z. Logically, x,
y, z function as buffers but informationally, they are entropy preserving elements. Considering the nodes
uniformly distributed throughout the circuit (according to assumption A,), the average number of nets per level
is (6+5+4+2)/4 = 4.25. Applying random vectors at the circuit inputs, the exact value of the entropy per bit at

the output is obtained as h,,, = 0.44. The effective scaling factor can be calculated as a weighted sum over all
2
B
3. 146+
2

preserving and 6 entropy decreasing gates). From (31) we get an estimate for the output bit entropy (j = 3) as

the gates in the circuit; thus the corresponding foz is: = 1.55 (there are 3 entropy

b,y = 0.51 which is reasonably close to the exact value. Based on the input and output entropy, we may get an
estimate for the average entropy per bit and thus for the switching activity. The average switching activity for a
generic net in the circuit is swgyg(simy = 0.437 (from simulation) and based on (29), we get sWgyp(esy) = 0.382

which is very good compared to simulation. A similar analysis can be performed for the informational energy.

IV. PRACTICAL CONSIDERATIONS

A. Using Structural Information
These considerations are equally applicable to data-path operators with known internal structure as well as to
control circuits represented either at gate or RT-level.

If some structural information is available (such as the number of internal nodes, the number of logic
levels), the average entropy (informational energy) may be evaluated using the actual values of Jegs N and the
distribution of nodes on each level. In all cases, the output entropy (informational energy) is the same,
computed as in (28). The average entropy (or informational energy) for the whole module depends on the

actual distribution of nodes in the circuit. In practice, some common distributions are:
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a) Uniform distribution (this case was treated in detail in Section III).

b) Linear distribution (e.g. circuit C17 in Fig.10):

Fig.11: An example of linear distribution of nodes
Using a similar approach as the one in Section III, we found the following result (valid for sufficiently large
N) for a generic n input, m output module:

(1_2).[1_}1“‘)
2-n-h, m b n h;,

in

havg B hin . 1—; . hin B hin
(n + M) - In k_ In h_
out

out

(33)

c) Exponential distribution (e.g. a balanced tree circuit with 8 inputs):

Fig.12: An example of exponential distribution of nodes

In this case, we have:
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(34)

Note: The main advantage of relationships (33), (34) is that they allow an estimate of average entropy (and
therefore for average switching activity) of modules or gate-level circuits, without resorting to logic simulation
or probabilistic techniques like those presented in [3]-[17].

Similar derivations apply for informational energy. We can see that when n = m, we get the same results as

in Section III (see equation (32)).

B. Using Functional Information

Common data-path operators allow a quick estimation of A, based on the “compositional technique”
introduced in [28]. There, the Information Transmission Coefficient (/TC) is defined as the fraction of
information that is transmitted through a function; it may be computed by taking the ratio of the entropy on the
outputs of a function and the entropy on the inputs of that function. For convenience, we call ITCs “Entropy
Transmission Coefficients” (HTCs) either for input or component values. In Table 1 we give the HTC values

for some common 8-bit data-path operators as they appear in [28].
Table 1: HTC Values for Common 8-bit Data-path Operators

Operator HTC Operator HTC
Addition 0.500 Negation 1.000
Subtraction 0.500 And, Or 0.406
Multiplication 0.461 <, > 0.063
Divide by 2 0.875 Multiplexer 0471

Using the following relationship between the HTCs on the output signals and the HTC values on the input

signals for a particular component, we may estimate the HTC values throughout the circuit [28] as:

n Wl-
HTC,, = HTC,,,," Y, " HTC, (35)
i=1
where HTC¢pp is the HTC for the component of interest, HTC; is the HTC value for input i, n is the number of

n

input signal paths for the component, w; is the data-path width for input i,and W = 2 w;.

i=1
In particular, the output entropy h,,, may be estimated relying solely on the RT-level description of the circuit.

The main advantage of such an approach, is that it needs only a high-level view of the design in order to derive
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useful information.
The HTC value on the inputs is in fact the entropy normalized to the data-path width. To make the
compositional technique useful for our purpose, we need to consider both the input and output entropies

normalized to the data-path width. For an n-input data-path operator, we have:

Rour = HTCcomp (- hy,) (36)
where h;, is the average input bit entropy.

Example 4: Let’s apply the compositional technique to the following circuit composed by two 8-bit adders (4,
and A,), and one multiplier (M,).

M

I —
iy

Ay |

A

Fig.13: A simple example to illustrate the application of the compositional technique
Since M; and A, are fed by the primary inputs, we have that HTCy = HTC)y;= 0.461 and HTCy = HTCy; =

0.500. For all the primary inputs of the modules M, and A; we have h;, = 1. Accordingly to (36) we have that
hy = 0.461-2:1 = 0.92 and hy = 0.500 -2 -1. Assuming that all paths have the same width, then the weighted

hy+hy I 1+092
2 »

average of the inputs to Ay is = 096 and therefore

h, = 0.500-2-0.96 = 0.96.

However, in general, the HTCs associated with a component are not constant and depend on the input bit
entropy (or input HTCs) as we shall see in Section IV.C.

A similar technique can be introduced to compute the output informational energy as follows.
Definition 6: The fraction of informational energy transmitted through a function called “Energy Transmission
Coefficient” (ETC) is defined as the ratio of the output and input informational energy.
In Table 2 we give the values of the ETC coefficients for the very same data-path operators considered in Table

1.
Table 2: ETC Values for Common Data-path Operators

Operator ETC | Operator ETC
Addition 0.500 Negation 1.000
Subtraction 0.500 And, Or 0.625
Multiplication 0.516 <, > 0.063
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Table 2: ETC Values for Common Data-path Operators

Operator ETC Operator ETC
Divide by 2 1.125 Multiplexer 0471
Hence, a compositional technique can also be developed here. Similar to (35), we may evaluate ETC,,,; as a

function of ETC for the component of interest and the ETC values for all inputs:

n W,-
ETC,,, = ETC,,,,- Y, 7' ETC; 37
i=1
Thus, for modules with n inputs, the output informational energy is related to the input energy by the
following relation:
Cour = Echomp - (n-ep,) (38)

where e;, is the input informational energy per bit.

This type of considerations can be used for any type of data-path operator which has the scalability property
that is, all sizes of the operator behave similarly up to a multiplicative factor (which is the data-path width).
Common arithmetic operators exhibit the scalability property but unfortunately, there are many other circuits
(e.g. control circuits) which cannot be treated in this manner. In those cases, relation (32) has to be used in
conjunction with some information about the circuit structure in order to get reliable estimates for average

switching activity.

C. HTC and ETC Variations with the Input Statistics
As presented in [28], Thearling and Abraham’s compositional techniques is only an approximation because it
does not consider any dependency which may arise in practical examples. In reality, every module may be
embedded in a larger design and therefore its inputs are no longer independent due to the structural
dependencies (namely, the reconvergent fan-out). As a consequence, the values given in Tables 1 or 2 (which
correspond to the case of pseudorandom inputs) cannot be used without error as we proceed from circuit inputs
to circuit outputs; in order to be accurate we need a more detailed analysis as will be described in the following.
Without loss of generality, we restrict ourselves to the case of 8- and 16-bit adders and multipliers and for

each of them, we consider two scenarios:

- Each module is fed by biased input generators, that is input entropy (informational energy) per bit varies
between 0 and 1 (respectively 0.5 and 1); each such module is separately analyzed.

- Modules are included in a large design with reconvergent fanout branches, so that inputs of the modules

cannot be considered independent. The structure of such an example design is the following:
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Fig.14: The configuration used to analyze the variation of HTC/ETC values
Initially, for the analysis of multipliers, all modules were considered multipliers; in the analysis of adders,
modules 4-6, 10-12 were adders (modules 1-3, 7-9 were still kept multipliers to increase the level of correlation
in the design).
In both scenarios, the average input and output entropies (energies) per bit were monitored and using them,
the HTC and ETC values were extracted. Values obtained in both scenarios for each module are plotted on the

same graph, as shown in Fig.15-18:
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Fig.15: HTC values for 8- and 16-bit Multipliers
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Fig.16: HTC values for 8- and 16-bit Adders
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Fig.17: ETC values for 8- and 16-bit Multipliers
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Fig.18: ETC values for 8- and 16-bit Adders
As we can see, the behavior of the operators is almost independent of the data-path width, so the same
values for HTC (ETC) can be safely used in both cases. We point out that ETC values are less dependent on the
input statistics than HTCs and presumably, the technique based on informational energy will be less prone to
error when the inputs are far from the pseudorandom case. The dependence of HTCs and ETCs on the input

statistics (that is, input entropy and/or informational energy) can be described empirically by the following

simple relations:

h, —1
HTC" <~ HTC34d. (2-h,) HTC™ ~HTCpw . 2™ (39)
ETC*" ~ ETCgdd ETC™ =~ ETC!

where the O-subscripted values correspond to the pseudorandom case (reported in Tables 3 and 4). These
equations can be easily used to adjust the HTC/ETC coefficients in order to analyze large designs more
accurately. Differently stated, using equations (39) we do not loose information from level to level because we
account for structural dependencies.

If the data-path is within a loop, then we may resort to a loop-unrolling technique in order to evaluate the
output entropy (informational energy). For this purpose, equations (39) can be used to compute the actual

values of HTC/ETC coefficients across successive iterations. For instance, assume we have to compute the dot-
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product of two random vectors X and Y using the following data-flow graph:
i YIi]

S=58+ X[i] * YTi]
Fig.19: Dot-product computation

Monitoring the output entropy (informational energy) values, we got the following behavior as a function of
the number of steps performed in the unrolling process (Fig.20).

Fig.20: h,,, and e, behavior during loop-unrolling
This is a typical behavior in practice, that is, the two information measures converge rapidly to the steady-

state values and therefore we may exploit this property to use it in conjunction with the compositional
technique described before.

In any case, this framework is also open to simulation (the zero-knowledge scenario); this may provide

accurate values for output entropy (informational energy) values, but with a much higher computational cost.
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In practice, we thus have the following options to analyze a logic- or RT-level design:
Less information needed

Input description

Use functional info.

™ Eva!uateh e
N Evaluaz‘e RsidCons ) . ouj out ,
with eq. (31) with eq. (36), (38), (39)

and Table 1

Evaluate ha,,g/eavg
with eq. (32), (33), (34)

Evaluate sWgye
with eq. (13) or (16)

and Power with eq. (2) Accuracy increases

Fig.21: Flowchart of the Power Estimation Procedure

In general, using structural information can provide more accurate results either based on entropy or
informational energy measures. On the other hand, evaluations based on functional information require less
information about the circuit and therefore may be more appealing in practice as they provide an estimate of
power consumption earlier in the design cycle.

To illustrate this aspect, we provide here our results obtained for some common data-path operators (4-bit
adders and multipliers) with different structures: ripple-carry and carry-lookahead adders, and array and
Wallace-tree multipliers. The exact values for the average switching activity per module are shown in Table 3;

they were obtained by exhaustive logic simulation using the SIS logic simulator.
Table 3: Exact Values for Average Switching Activity

Ripple-Carry Adder |Carry-Lookahead Adder Array Multiplier Wallace-tree Multiplier

0.4187 0.3591 0.2846 0.2860

Results of Table 3 show that for modules with the same functionality, the structure plays an important role;

specifically, the average switching activity may be different even when the input statistics are the same. An
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important observation is that looking only at the input/output relationship (even through exhaustive
simulation), one is unable to distinguish between two different implementations of the same functional module,
but having different average switching activities.

To asses the accuracy of the different approaches in Fig.21, we considered first the two 4-bit adders (ripple-

carry and carry-lookahead) having the following node distributions:
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Fig.22: Node distributions for 4-bit ripple-carry (left) and carry-lookahead adder (right)

We estimated first the average switching activity per module using the compositional technique presented
previously under the uniform distribution assumption (the default option). After that, assuming that more
structural information is available (i.e. node distribution was taken to be linear), we re-calculated the switching
activity using equation (31). As shown in Table 4, the quality of results is improved in the latter case. (We

report the absolute error defined as abs_err = IsWayg(sim) = SWavg(est)) WHEIE SWayg(sim) WS taken from Table 3).

Table 4: Analysis of Structurally Different Adders

abs_err for Ripple-carry Adder abs_err for Carry-lookahead Adder
Measure Functional info Structural info Functional info Structural info
h 0.0494 0.0351 0.1073 0.0588
€ 0.0493 0.0350 0.1072 0.0587

The best results are obtained when structural information is available. This is expected as structural

information provides more detailed description of the circuit in question.
For the sake of completeness, we also analyzed two structurally different 4-bit multipliers (array and

Wallace tree). We give in Fig.23 the node distributions for these circuits and in Table 5 the results of a
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complete analysis based on functional or structural information. The distribution of nodes per level was
considered exponential for the Wallace-tree multiplier; the actual distribution in the case of array multiplier
was approximated by a piecewise linear fit. Again, the best results were obtained when using structural
information to calculate the output entropy.
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Fig.23: Node distributions for 4-bit array (left) and Wallace-tree multipliers (right)

Table 5: Analysis of Structurally Different Multipliers

abs_err for Array Multiplier abs_err for Wallace-Tree Multiplier
Measure Functional info Structural info Functional info Structural info
h 0.0517 0.0429 0.0873 0.0102
e 0.0444 0.0427 0.0871 0.0101

To conclude this section, the structural approach is more appropriate to be used when a gate-level description is
available (and therefore detailed information can be extracted) whilst the functional approach (using the
compositional technique) suits better for RT/behavioral level descriptions.

V. EXPERIMENTAL RESULTS

The main advantage of the proposed power consumption model is that it does not need any simulation. In
the following we report the accuracy of this model.

Two experiments were performed: one involving individual modules (ISCAS’85 benchmarks and common

data-path components) and the other involving a collection of data-path modules specified by a data flow graph.
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A. Validation of the Structural Approach (Gate-Level Descriptions)

The experimental setup consisted of a pseudo-random input generator feeding the modules under
consideration. The values of the entropy and informational energy for the circuit inputs were extracted from the
input sequence, while the corresponding values at the circuit outputs and the average values of entropy or
informational energy were estimated as in Section III (using structural information). These average values were
then used to estimate the average switching activity per node; the latter, when weighted by an average module
capacitance, is a good indicator of power/energy consumption.

We report in Table 6 our results on benchmark circuits and common data-path operators. Power;,, and sw;,,

are the exact values of power and average switching activity obtained through logic simulation under SIS.

Conodule Stands for the module capacitance as in (2); it is taken as the product of number of nets and the average
load seen by each gate in the circuit. We also report for comparison under the Power column the value of power

obtained using the approximation in (2). The error introduced by this approximation is on average 5.55 %! In the
next four columns we report our results for average switching activity and power calculated as in (2) for both

entropy- and informational energy-based approaches.
Table 6: Data-Path and ISCAS’85 Circuits (All power values are computed using Vpp = 5V and f = 100MHz)
Simulated values with SIS Estimated values as in Section I1I

SWayg Power g Wayg Power g
from A from h from e from e

add8 1019.39 9.46 0.4199 | 993.06 | 0.4410 | 104263 | 04410 1042.51
add16 2082.70 | 18.91 0.4282 | 202431 | 04546 | 214940 | 04546 | 2148.58
add32 3980.91 37.82 | 04073 | 3851.02 | 0.4923 | 4654.89 | 04923 | 4654.74
mul4 2785.53 | 25.04 | 0.4170 | 261042 | 0.4594 | 2875.60 | 04471 | 2799.03
mul8 1094951 | 100.16 | 0.4081 |10218.82| 0.4545 | 11381.09 | 04410 | 11043.80
mull6 | 44076.52 | 400.64 | 0.4094 |[41005.50] 0.4515 | 45222.57 | 04373 | 43795.33
mul32 | 166235.89 | 1602.56 | 0.3904 |156409.86] 0.4498 [180219.10§ 04351 |174333.74
C1355 5163.54 | 53.59 0.3779 | 5062.92 | 04261 | 5707.99 | 04058 | 5436.64
C1908 | 5957.64 | 66.09 0.3417 | 5645.74 | 0.4280 | 7071.99 | 04090 | 6756.85
C3540 | 13966.75 | 175.03 | 0.2809 |12291.48| 0.3586 | 15691.77 | 0.3281 | 14354.56
C432 2085.67 | 2922 | 0.3862 | 2821.19 | 0.4468 | 3263.71 | 04331 | 3163.47
C499 6085.72 | 61.69 0.3794 | 5851.30 | 0.4301 6633.53 | 04120 | 6354.57
C6288 | 41860.77 | 430.24 | 0.3582 [38527.99| 0.4354 | 46832.16 | 04173 | 44880.26
C880 5200.12 | 54.78 | 0.3540 [ 4848.03 | 04465 | 611532 | 04318 | 5913.98

Circuit Powerg;,, Cmodule SWim Power

As we can easily see, the average percentage error (over all the circuits) is 15.81% (12.03%) for entropy
(informational energy)-based evaluations of average switching activity, whilst for total power estimation is

9.27% (5.85%) for entropy (informational energy)-based approaches..

value . — va[ue"

sim 1

value_,
sim

IThe percentage error was calculated as - 100.
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B. Validation of the Functional Approach (Data-Flow Graph Descriptions)

In Fig.24 we consider a complete data-path represented by the data-flow graph of the differential equation
example given in [33]; all the primary inputs were considered as having 8 bits and the output entropy of the
entire module was estimated with the compositional technique based on HTCs or ETCs. The HTC/ETC values
for the multipliers and adders were taken as in (39). Using the entropy based approach, the average switching
activity was estimated as 0.1805, whilst when using the informational energy, the average switching activity
was 0.1683. Comparing these results against the exact value of 0.1734 obtained by behavioral simulation, the
overall error in estimating the average switching activities using entropy and informational energy is 0.0071

and 0.0051, respectively.

— — — — — — — —

Fig.24: A data-path example

Our technique can also be applied to analyze different implementations of the same design in order to trade-
off power for area, speed or testability. Suppose we select from the data-path in Fig.24 only the part which
computes u;. In Fig.25 we give two possible implementations of the selected part of the data-path. One is the
same as above and the other is obtained using common algebraic techniques such as factorization and common
subexpression elimination. All the primary inputs were assumed to be random (except inputs ‘3’ and ‘dx’
which are constants). Each adder or multiplier is labelled with its average switching activity value SW. In the
first case, applying the compositional technique based on entropy, we obtain an average switching activity of
0.186, whilst using informational energy this value is 0.197. For the second implementation, the corresponding

values are 0.242 from entropy and 0.282 from informational energy which show an average increase in
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switching activity of 30%. However, considering the module capacitance of adders and multipliers (as given in
Table 6), we actually get a total switched capacitance of 331.15 for the first design and 268.88 for the second
one (using entropy-based estimations). This means a decrease of 19%, and thus, the second design seems to be

a better choice as far as power consumption is concerned.
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Fig.25: Comparison between two possible implementations

VI. CONCLUSION

In this paper, we have proposed two new measures to estimate the power consumption in logic- or RT-level
digital circuits. Their foundation relies on statistical modelling of the circuit behavior and seems to successfully
overcome the lack of information which characterizes higher levels of abstraction. The accuracy of the model is
investigated using common benchmarks for pseudorandom input sequences. As shown, the average switching
activity may be predicted without simulation using either entropy or informational energy averages; the error in
prediction is generally small enough to be satisfactory in practice. Future work will be devoted to make the

compositional technique more sensitive to different styles of implementing data-path/control hardware.
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