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Abstract

Two of the main phases of compilers for Distributed Memory Multiprocessors

(DMMs) are the code partitioning and scheduling phases. Several satisfactory

solutions have been proposed regarding the scheduling phase. However, much

more needs to be done regarding the code partitioning phase. Existing work

regarding the partitioning problem either considers a specific application and find

an efficient partitioning scheme for it (i.e. no automatic partitioning), or determine

a general solution (automatic partitioning) that is too simple and therefore not

efficient (e.g. exploits only one kind of parallelism level).

Our research deals with the code partitioning phase of the compiler. We pro

pose a data-flow based partitioning method where all levels of parallelism are

exploited. Given a Directed Acyclic Graph (DAG) representation of the program,

we propose a procedure that automatically determines the granularity of paral

lelism by partitioning the graph into tasks to be scheduled on the DMM. The

granularity of parallelism depends only on the program to be executed and on the

target machine parameters. Our algorithm uses the Critical Path Length (CPL)

of the task graph as the criterion to compare partitions. Ideally, we want to de

termine the task graph with minimal CPL among all possible task graphs. The

output of our algorithm is passed on as input to the scheduling phase. Finding an

optimal solution to this problem is NP-complete. Due to the high cost of graph

algorithms, it is nearly impossible to find close to optimal solutions that don't

have very high cost (higher order polynomial). Therefore, we propose heuristics

that give good performance and that have relatively low cost.

XI



Chapter 1

Introduction

1.1 Parallel Processing and Multiprocessors

Improvements in device technology are no longer capable of meeting the perfor

mance demands of today's applications. Modern sequential computers are ap

proaching the fundamental physical limitation that signals cannot travel faster

than the speed of light. However, current scientific problems requirements are

ever-increasing.

Parallel processing research [3, 24, 25, 28, 34] offer architectural solutions to

this problem. An example of such architectural solutions is multiprocessor sys

tems, which are gaining more and more popularity in the research community and

even in the industry. The hope behind designing these machines is that collective

computational power of the multiple processors will enable us to solve very large
problems. Because of the importance of multiprocessors, it is expected that these
machines will become widelycommercialized and widely used to solve complicated

and computationally demanding problems.

The advances in hardware design of parallel computers have not been followed

by corresponding advances in software to program these machines. This is es
pecially true for Distributed Memory Multiprocessors (DMMs)1, for which there
is no shared memory that can be used by all the Processing Elements (PEs)2.
High-level programming abstractions for these machines are almost non-existent.

lFtom now on, Distributed Memory Multiprocessor will be abbreviated to DMM.
2From now on Processing Element will be abbreviated to PE.



leaving the programmers the task of explicitly programming these architectures

using machine-dependent, low-level abstractions. This approach is error-prone

and forces the programmer to deal with many details outside of the application

domain. More precisely, the programmer has to deal with all parallel processing

tasks required to program the parallel machine. These tasks include explicit parti

tioning of the program code into parallel tasks, scheduling these tasks on the PEs,

synchronization, and explicit distribution of data among the PEs and insertion of

the appropriate message passing calls needed to exchange data from one remote

memory to another.

Because of the problems mentioned above, providing solutions to ease the task

of programmers of multiprocessors has become a very active area of research in

the last few years [1, 4, 5, 11, 12, 26, 27, 32, 38, 39, 40, 43, 45, 55, 60]. Much

effort is being done to make the parallel processing tasks mentioned above be done

automatically by the compiler of the parallel machine. This way, the user does

not have to know the details of the architecture of the machine. His/her main

concern is the specification of the algorithm for solving the problem.

Several languages have been proposed to program multiprocessors. Some of

these languages are concurrent PASCAL, ADA, OCCAM, parallel FORTRAN

and parallel C. In all of these languages, the programmer has to express the

parallelism explicitly. Furthermore, the programmer is responsible for partitioning

the program, allocating tasks on different PEs and scheduling the execution of the

tasks on the PEs. Hence, programming multiprocessors is still a very complicated
problem.

In order to overcome this problem, much research is being done to efficiently

program multiprocessors using functional languages. For that to be possible, we

need to come up with sophisticated compilers that have powerful optimizers so

that the implementation of these languages can be efficient.

The gain from that is:

• Programming using functional languages is very user friendly and is faster

than using imperative languages, since reading and correcting functional

programs is much easier than reading and correcting conventional languages.



• When using functional languages, the user doesn't have to know anything
about the details of the machine: free the programmer from the details of
the machine.

• Parallelism is expressed implicitly in the program and is extracted automat

ically by the compiler.

• Partitioning, allocation and scheduling are done automatically by the com

piler rather than by the programmer.

All of these advantages can be summarized in saying that using functional

languages to program multiprocessors makes the software much easier to produce

and maintain and thus cheaper. The programmer is provided with a very high

level language, where the main concern is the specification of the algorithm for

solving a problem.

Furthermore, if we compile a functional programming language for a whole

group of multiprocessors, then we will not need to rewrite a program executed on

one of these machines, if we need to execute it on another machine in this group

(portability of software).

1.2 DMMs: The computers of the future

In order to be able to solve the very large problems that face our scientific com

munity today, we need computers capable of supporting thousands of powerful

processors, whose aggregate computing capabilities are sufficiently strong. Shared

memory multiprocessors cannot support a big number of PEs, and therefore can

not be used to solve this kind of problems efficiently. DMMs on the other hand

are potentially scalable to a very large number of PEs, and hence are the right

kind of machines to solve these large-scale problems. A major difficulty with

the current generation of Distributed Memory Machines is that they generally

lack programming tools for software development at a suitably high level. The

user has to deal with all aspects of the distribution of data, since he is provided

with separate address spaces, all aspects of the distribution of work load to the



processors, must explicitly take care of the inter-PE communication by using com
munication constructs to send and receive data3, and must control the program's

execution at a very low level. This results in a programming style similar to as
sembly programming on a sequential machine. This is tedious, time consuming,
and error prone. The programmer has to face several issues that do not have
their counterparts in sequential programming, such as deadlock which is a major

challenge for programmers of multiprocessors. The programmer also has to de
cide when it is advantageous to replicate data across processors, rather than send

data. Moreover, debugging could be extremely difficult. This has resulted in very

slow software development cycles and, in consequence, very high software costs.

This research is an attempt at making programming DMMs very user friendly

and therefore make the software cost be low. Our main objective is to provide the

user with a machine independent programming model which is easy to use, and

at the same time performs with acceptable efficiency. This will make the software

portable to different DMMs. Furthermore, changing the parallel program to re

flect a change in the specifications of the problem will be an easier task. Some

examples of DMMs are: CM5, T3D, Intel Paragon and the Hypercube.

1.3 Outline of this research

Our research deals with the code partitioning phase of the compiler. We propose a

data-flow based partitioning method where all levels of parallelism are exploited.

Given a Directed Acyclic Graph (DAG)4 representation of the program, we pro

pose a procedure that automatically determines the granularity of parallelism by

partitioning the graph into tasks to be scheduled on the DMM. The granularity

of parallelism depends only on the program to be executed and on the target ma

chine parameters. Our algorithm uses the Critical Path Length (CPL) of the task

graph as the criterion to compare partitions. Ideally, we want to determine the

task graph with minimal CPL among all possible task graphs. The output of our

3This is called message passing.
4From now on Directed Acyclic Graph is abbreviated to DAG.



algorithm is passed on as input to the scheduling phase. Finding an optimal solu
tion to this problem is NP-complete. Due to the high cost of graph algorithms, it
is nearly impossible to come up with close to optimal solutions that do not have

very high cost (higher order polynomial). Therefore, we propose heuristics that
give good performance and that have relatively low cost.

The rest ofthis thesis is organized as follows: chapter 2 is about the motivation
of this work. In chapter 3we define the partitioning problem. Chapter 4describes
the analysis done to determine the choice of heuristics. Chapter 5 describes the
partitioning heuristics. Chapter 6 talks about the performance analysis of our
algorithm. Finally, chapter 7summarizes our work and talks about possible future
research.



Chapter 2

Background Research

2.1 Programming styles for multiprocessors

Programming multiprocessors can be broadly classified into 4 methods:

1. Explicit Imperative Programming: In this case, we use an imperative

parallel language such as parallel Fortran or parallel C to program the DMM.

The user is responsible for all dependence analysis and for inserting the par

allelizing and synchronizing statements in the correct place. In addition, the

programmer is responsible for the data distribution and the data movement

statements (for DMMs only). This programming style is comparable to as

sembly programming for sequential machines. It is very time consuming and
error-prone yet usually produces the most efficient code.

2. Implicit Imperative Programming: Here the programmer uses a con

ventional sequential language such as Fortran, Pascal or C. It is the job of a

very intelligent compiler to extract the parallelism in the program using data

dependence analysis, insert the appropriate parallelization and synchroniza

tion primitives, distribute the data across the PEs and insert the required

message passing routines for inter-PE communication (for DMMs only).

Usually the data dependence relations for imperative languages are quite
obscure and many false dependencies exist. Therefore, the compiler is forced

to make very conservative decisions. This results in under-parallelization of

the program. Hence, it is generally very difficult to design such compilers
which are efficient for a wide range of applications.

6



3. Hybrid Implicit/Explicit Imperative Programming: In this program
ming style, the language used is an extension of an existing sequential im
perative language such as Fortran or C. In addition to the usual code, the
programmer is responsible for specifying the data layout (distribution of
data across the PEs) or the processors on which different pieces of code will
execute (such as different iterations ofa loop), or both. These specifications
could be part of the source code, or in the form of compiler directives or prag
mas. With the help of the user specifications, it will be much easier for the

compiler to perform the tasks required to parallelize the code. An example
ofsuch a programming language is Fortran D [26]. Also, another approach
to this programming style is to use an imperative language augmented with
some explicit parallel statements. In this case, the user explicitly specifies

which statements or pieces ofcode execute in parallel. Again, this facilitates
the analyses done by the compiler.

4. Functional Programming: The above mentioned problems with imper
ative languages have led to the investigation into other kinds of languages.
Functional languages are an example of that. Here, the programmer uses

a functional language to write the code. All the user needs to know is the

programming language that he/she is using, without any concern with the

details of the machine on which the program is going to execute. It is the job

of the compiler to produce the target program which is executable directly

on the target machine, and compiled using the local compiler. This means

that the compiler is responsible for partitioning the code (i.e. creating the

parallel tasks), scheduling these tasks on the PEs (i.e. task distribution),

managing the tasks for efficient execution on the PEs, and memory man

agement (e.g. distributing the data across the PEs so that the number of

remote references is minimized). Experience has shown that designing such

a sophisticated compiler is a very hard problem. For example, both optimal

partitioning and optimal data distribution problems are NP-complete. Most

existing compilers rely on programmer interventions to help the compiler



with the analyses. This is done by either enabling or forcing the program
mer to give some hints to the compiler regarding data distribution, task
distribution and management, or both.

In summary, there is a tradeoff of performance for programming effort. The

more explicit programming DMMs is, thebetter the performance is but the more
the programming effort becomes. The more implicit we make this task, the less
the programming effort gets at the expense of lower performance. We are faced
with the challenging task of providing the programmer with a high level language,

capable of abstracting the underlying architecture, implicitly detecting the par
allelism in the program, and managing the parallelism for efficient execution on

a wide range of multiprocessor systems. This should not come at the expense of

performance. This task is obviously very challenging.

Because of all the above mentioned points, we are convinced that functional

languages are the right programming languages to use, in order to have good

programmability for multiprocessors.

2.2 Existing Implementations of Functional

Languages on Multiprocessors and their

Inefficiencies

To this day, there is no satisfactory programming environment for multiprocessors,

even using functional languages. This is especially true for DMMs. Most of

the inefficiencies associated with the existing methods have to do with the code

partitioning, data partitioning and scheduling.



2.2.1 SISAL

2.2.1.1 Overview

SISAL1 [33] is a general purpose functional language that supports data types
and operations for scientific computation. It is intended for use on a variety of
sequential, vector, multiprocessor and data-flow architectures. A primary goal in
the design of SISAL was to express algorithms for execution on computers ca
pable of highly parallel operation. It is expected that SISAL will evolve into a
general purpose programming language targeted to run on future parallel com
puters. Being an applicative language, SISAL uses functions for all operations to
aid the identification of concurrency. This results in a language with very clean

semantics. In addition, SISAL has an elegant functional representation in its in

termediate forms (the data-flow graphs IF1 and IF2). The language syntax, being
similar to Pascal, is easy to learn and read.

SISAL is a strongly typed language. All inputs and outputs ofexpressions and
functions are values (no memory address references are used). Each value has an
associated SISAL data type. There are basic scalar arithmetic types (character,
boolean, integer, real and double precision) and aggregate types (arrays, records,
unions and streams).

SISAL supports both sequential (non-product form) and parallel (product form)
loop constructs. The non-product form resembles sequential iteration in conven
tional languages, but retain single assignment semantics. The product-form loop
allows the programmer to specify iterations that do inner (dot) and outer (carte
sian) array and stream index computations. All iterations should be independent
of one another. The programmer uses this construct to express parallelism explic
itly. In addition to iteration forms, SISAL supports program structures for con
ditional execution. Note that all structured expressions and functions in SISAL
can produce two or more values via multi-expression: comma separated lists of

Researchers at the Lawrence Livermore National Laboratory (LLNL) in collaboration with
individuals from the University ofManchester, Colorado State University and the Digital Equip
ment Corporation have developed the programming language SISAL (Streams and Iteration in
a Single Assignment Language).
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Figure 2.1: Internal Structure of OSC

expressions producing values of any type. Such expressions are both convenient

and well suited for parallel evaluation.

2.2.1.2 Compilation

SISAL program —>• Target Machine M (a Parallel Computer, e.g. a shared or

distributed memory multiprocessor).

The SISAL compiler consists of 3 parts: a front end, a back end. and a run

time system [9, 44, 8, 16, 50, 53]. Figure 2.1 shows the internal structure of an

10



existing compiler for SISAL, developed at LLNL. This compiler is called OSC

(Optimizing Sisal Compiler).

1. Front end: Architecture Independent.

SISAL -> IFl graph.

In this step, the syntax analysis of the SISAL program is done. Next, the

program is translated into an intermediate dependence graph form in IFl.

IFl [51] is data-flow graph language which is applicative.

2. Back end:

IFl graph —> optimized IFl -4 IF2 graph —r optimized IF2.

Optimized IF1/2 -4 Language L directly executable onM-> use NTs local

L compiler —r Execute on M.

Some optimization techniques are used on the IFl graph to get an optimized

IFl. Next, the IFl graph is extended into an IF2 graph [54] which is a su

perset of IFl, consisting of the IFl graph plus some memory requirements

and specifications. More precisely, in the IF2 graph we attempt to preallo-

cate array storage whenever possible, in order to reduce array copying that

results from the incremental aggregate construction problem. IF2 is not an

applicative language since it directly references and manipulates memory.

This optimization phase from optimized IFl to IF2 is called build-in-place

analysis. The next phase consists of the update-in-place analysis. Here

the IF2 graph is further optimized to help identify at compile-time those

operations that can execute in-place, and to improve chances for in-place

operations at run-time when the analysis fails. The result of this phase is

the optimized IF2 graph. Note that both build-in-place and update-in-place

analysis are optimization phases, that try to reduce the aggregate copying

overhead incurred due to the single assignment nature of SISAL.

3. Run-time system:

This is the library software that provides support for parallel execution,

storage management and interaction with the user. This libraryof routines is

called from the program L generated by the SISAL compiler. Then program

11



L is compiled using M's local L compiler, and the result is linked with the

run-time system and executed on the target machine.

The compiler analysis up to the optimized IF2 graph is done by the SISAL

group at LLNL. The analysis up to the optimized IFl is completely independent

from the architecture. The analysis from the optimized IFl through the optimized

IF2 is architecture independent, but was done with the assumption that the target

machinehas a single shared memory. Allaggregate data is assumed to be allocated

to a contiguous block of memory.

Portability of OSC

OSC was designed primarily to target shared memory multiprocessors. Complete

implementations exist for various shared memory machines. It is quite easy to

porte OSC to different shared memory multiprocessors. All what is needed is

to make some minor modifications to some low-level routines and some library

routines to reflect the new run-time system and low-level routines of the new

target machine.

It is however much harder to porte OSC to DMMs. This is so because when

writing a parallel program to target a DMM, we have to deal with the data

partitioning, which is not an issue for shared memory multiprocessors. Hence

the compiler has to take care of the non-local memory accesses and the message

passing mechanism, which are not included in the OSC compiler. However, the

parts of OSC which are architecture independent can still be used.

As for our project, we can use all the OSC analysis which is architecture

independent. In addition, the analysis that includes IF2 and the corresponding

optimizations can be used as well, despite the fact that IF2 was designed with

a single address space in mind. This is true because as we will see later in the

proposed research, the virtual shared memory mechanism is used. As for the graph

partitioning, our proposed method is much more complex than the one used in

OSC, and therefore that part of the compiler will have to be redesigned.
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2.2.1.3 Current Implementations

SISAL has proven to be an efficient language for solving many scientific applica

tions. It can be executed on both conventional and novel architectures. Current

implementations of SISAL exist for sequential machines and for shared memory

multiprocessors [9, 16, 6, 7, 52, 2, 56, 37, 35, 10, 30, 29, 36]. It has been targeted
on most Unix-based uniprocessors. There is also ongoing research in distributed

memory SISAL implementations [19, 20, 21, 23, 22, 41]. Also the intermediate

data-flow graph representation of SISAL programs can be executed on data-flow

machines.

SISAL competed very well with sequential and parallel execution performance

of imperative languages such as C and Fortran, on uniprocessor machines as well

as various multiprocessors and vector architectures.

However, we still have to come up with efficient implementations of SISAL on

DMMs, that can compete with conventional languages implementation on these

machines.

Some of the machines on which SISAL was implemented are: Sun workstations,

Vax machines, Macintosh II, Sequent Balance, Cray X/MP, Alliant FX/8, Encore

Multimax, Warp machine, Connection Machine, nCUBE/2, HEP, Transputers,

and the University of Manchester Data-flow Machine.

2.2.1.4 Inefficiencies of OSC

The main problem with the OSC compiler is the simplicity of the partitioning
scheme used. It is syntax based and exploits the parallelism used in FORALL
loops only. Hence the granularity of parallelism is defined by language constructs
and the programming style affects the multiprocessor performance.

2.2.2 VISA

VISA [21, 23, 22] is asystem that targets SISAL to DMMs. It uses the same simple
partitioning scheme used by OSC. The virtual shared memory paradigm is used
for data partitioning. The mechanism for translating virtual addresses to physical
ones is very costly, and therefore introduces tremendous run-time overhead. This
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system uses a dynamic scheduling scheme, where each PE keeps its own ready
queue. This introduces much run-time overhead. Also, because of the distributed
ready queues, this method causes load imbalance.

2.2.3 Occamflow

Occamflow [31, 17] is an implementation ofSISAL on a distributed memory mul
tiprocessor of transputers. The compiler takes as input a SISAL program, and
generates an OCCAM program loadable on the network of transputers. Because
the target code of the compiler was OCCAM, many drawbacks followed. First
of all, using OCCAM the router (for communication between PEs) has to be
explicitly written as part of the code. Because of the nature of the OCCAM pro
gramming environment, there is no way for the compiler to generate this router
automatically, or to produce a universal router that works for all applications.

Hence, the programmer has to write this router manually in OCCAM. In addi

tion, the programmer has to add some OCCAM code to the output generated

by the compiler. For example, all variable declarations in OCCAM have to be

written manually by the programmer. Furthermore, since OCCAM does not al

low recursive function calls, no implementation for recursive calls was done. More

importantly, the partitioning scheme was too simple (syntax based) and was not

even implemented. The compiler generates the code for one transputer and it is

the job of the programmer to partition and load the code on the network. This

was mainly due to the primitive nature of the programming environment of the

transputers available at that time (for example, there wasn't any operating system

available that provides routines that take care of the low level details, such as the

routing between PEs). Also, the data partitioning has to be done manually by

the programmer using OCCAM.

2.2.4 TAM (Threaded Abstract Machine)

2.2.4.1 Brief Description

TAM [13, 14] defines a self-scheduled machine language of parallel threads, which

provides a path from data-flow program representations to conventional control
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flow. It presents a model that exploits fine grain parallelism and fine grain syn

chronization, without any specialized hardware support (with minimum hardware

support). It is an attempt to prove that exploiting fine grain parallelism is a com

piler and program representation issue rather than a hardware issue, and that a

conventional parallel machine coupled with the right program representation and

the right compiler is able to do that efficiently.

The overall goal in compiling to TAM is to produce code that is latency tol

erant, yet obtain processor efficiency and locality.

All memory transactions and message passing primitives are split-phase. This

encourages a latency tolerant style of code generation.

All synchronization, scheduling, and storage management is explicit and under

compiler control, yet dynamic. This enables the compiler to optimize the use of

processor resources for the expected case rather than the worst case.
The TAM model shows that implicit scheduling in hardware is of questionable

value, as it prevents register usage beyond thread boundaries. Exposing scheduling

to the compiler allows it to synthesize particular scheduling policies in specific

portions of the program.

Note that the goal of TAM research is not to prove that the exploitation of

fine grain parallelism is the most efficient approach, and that it is better than
the other existing methods. It is merely an attempt to come up with a software
approach for fine grain parallelism, and see how much performance can beobtained
from it. In fact, all TAM performance results give statistics regarding context

switches frequency, dynamic thread length, duration of a quanta, etc. Nothing
is mentioned about absolute performance of TAM, such as total execution time
of real applications, and their comparison with the currently existing approaches.
It is quite obvious that the absolute performance of TAM is slower than other
approaches that use a coarser grain parallelism.

2.2.4.2 Drawbacks

In attempting to exploit fine grain parallelism without any hardware support.
TAM tends to introduce extra run-time overhead due to the software support ap

proach needed to implement its model. This overhead is due in part to the explicit
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scheduling of threads and frame activations. Exploiting fine grain scheduling is an
expensive process. Although the fine grain parallelism in TAM is exploited within
a single processor and not across the processors2, it still generates more inter-PE
communication overhead than coarse grain parallelism. Because fine grain paral

lelism is exploited within single processors, roughly the same amount of remote
data will be requested by the processors even if we had a coarse grain parallelism.

However, since the code inside each processor is divided into threads and inlets,

it is more likely that a larger number of smaller messages will be requested, for

threads and inlets use smaller messages. Since each message sent on the network

has a start-up time in addition to the time taken to communicate the data, this

will result in higher communication overhead. In addition to the above problems

associated with the TAM model, we have to mention that it would be difficult to

come up with an automatic compiler to target a high-level language to the parallel

assembly language defined by TAM to represent programs (TLO). It is quite hard

to partition the code into threads and inlets that result into an efficient execution.

Furthermore, code-blocks3 correspond to function bodies and loop bodies. Hence

the partitioning into code-blocks is too simple.

2.2.5 Sarkar's Work

Sarkar [47, 46, 48, 49] developed a partitioning and scheduling method for func

tional languages represented by data-flow like graphs. The graphs that he used

are a generalization of the IFl graph used for SISAL. His method targets both

shared and distributed memory multiprocessors.

The multiprocessor model is applicable to all kinds of multiprocessors, in

cluding both shared and distributed memory multiprocessors. This model was

so general that it didn't represent accurately real machines and was too simple.

2Code-block activations are distributed across the processors, but each code-block activation
is mapped to a single processor, and therefore all threads within a code-block are executed inside
a single processor.

3This is the unit of parallelism between processors, since each entire code-block activation is
mapped to a single processor.

16



For instance, the architecture model does not take into account the true charac
teristics of DMMs and their limitations, such as the high cost of inter-processor
communication.

Also, the program execution model is not efficient for DMMs. It allows any
compound node in the graph to execute in parallel, in which case the compound
node and nodes belonging to it (i.e. nodes that belong to subgraphs of the com
pound node) execute in separate processors. For DMMs this is not efficient since
it could generate too much communication overhead at run-time. For instance,
LOOPA and LOOPB nodes4 are allowed to execute in parallel. To do this, the
nodes that belong to the subgraphs of the LOOP5 node are distributed across

the processors, and the processor where LOOP node executes is responsible for
distributing the input(s) and gathering the output(s) of the LOOP node. This
generates too much traffic in the network, since for each iteration of the loop, we
have to communicate messages between the processors involved in the execution
of the LOOP node and nodes belonging to its subgraphs.

Another problem with Sarkar's approach (refer to Compile-time Partition
ing and Scheduling part) has to do with compound non-FORALL nodes which

are macro nodes6 (let's call these nodes nm). When partitioning a graph g, all
subgraphs of the nm nodes are partitioned first (using a recursive call to the par
titioning algorithm), then the nm nodes are assigned to tasks. Therefore an nm

node and nodes belonging to its subgraphs will belong to different tasks. Hence
the tasks will not be guaranteed to be independent of each other. This violates

the convexity constraint and makes the compiler analysis more complicated.

The code partitioning method proposed by Sarkar is too simple. More will be

said about this later in this chapter.

Finally, Sarkar's work does not solve the data distribution problem for DMMs.

4LOOPA and LOOPB nodes correspond to the (Repeat ... Until) and (While ... Do) con
structs respectively in SISAL.

5LOOP stands for LOOPA and LOOPB nodes.
A macro node is a node that is allowed to execute in parallel.
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2.3 Main Phases of Compilers for DMMs

In addition to all phases required by compilers for conventional sequential ma
chines, compilers for DMMs also include phases required for parallel processing.
The most important of these phases are: identification of parallelism, program
code partitioning, scheduling, data partitioning (also called data distribution),
and insertion of the appropriate message passing calls needed to exchange data

from one remote memory to another.

2.3.1 Forms of Parallelism

The parallelism in a program is exposed implicitly by a programming language or

a compiler, or explicitly by the programmer. The granularity of parallelism is

the size of the schedulable unit of parallelism, called grain. The different forms

of parallelism are characterized by the grain size and are as follows:

• Procedure or loop level parallelism uses entire loops or procedures (or func

tions), or different iterations of the same loop as grains. Because the gran

ularity here is large, we call this coarse grain parallelism.

• Thread level parallelism uses basic blocks as grains. A basic block is a

sequential piece of code that is of medium size, and that does not contain

any loops or jump instructions. These blocks are also called threads. The

thread is called blocking if it has long latency operations, such as read and

write. It is called non-blocking if it does not have any long latency operations.

This form of parallelism is called medium grain parallelism.

• Instruction level parallelism uses individual instructions as grains. Since

the granularity in this case is very small, this is called fine grain parallelism.

This offers the largest amount of parallelism at the expense of much run-time

overhead.

Managing the exposed parallelism in an application is a hard problem. Once

the program is partitioned into grains, we need to do the scheduling, load bal

ancing, and synchronization among other tasks. As the granularity decreases, so
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does the overhead of scheduling and load balancing. However, the synchronization

overhead increases as the granularity decreases [48].

2.3.2 Identification of Parallelism

During this phase, we have to identify all operations that can execute concurrently.

Usually this is done by drawing the dependency graph of the program. For im

perative languages, this task is quite difficult, due to the side effects caused by

the updating of variables. For functional languages, this process is quite simple,

since all data refers to values and not memory cells. The parallelism is implicit at

all levels, and data dependencies are the only sequencing constraints. As soon as

an instruction has all its data ready, we can safely execute it. Even though IF2 is

not purely applicative, it is designed in such a way that data dependency ensures

that when all data of any actor is ready, we can safely execute it.

2.3.3 Program Code Partitioning

Once the parallelism is identified, the first thing that we have to do in the back end

compiler analysis is to partition the IF2 (or IFl, depending on which intermediate

form we use) graph.

Partitioning of a parallel program is the separation of program operations into

sequential tasks that can be executed concurrently. In other words, the partition

specifies the sequential units ofcomputation in the program7. More precisely, dur
ing this phase, we group the concurrent operations identified during the previous
step into sequential tasks to be executed in parallel. Therefore, when partitioning
the code, one of the things that we have to decide on is the granularity of the
partition8. There is a trade-off between fine and coarse grain partitioning. The
finer the partition is, the more available parallelism we have, and the smaller the
load balancing overhead is. However, this comes at the expense of higher over
head to exploit parallelism, such as higher communication and synchronization

overhead.

7We call these sequential units tasks.
8We can have fine grain partitioning, coarse grain partitioning, or something in between.
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For DMMs, it is particularly important to reduce both inter-PE communica
tion and load imbalance.

The partitioning problem for a general DAG (Directed Acyclic Graph) where
nodes represent computations and arcs carry the data values is NP-complete,
ruling out the possibility of a pseudo-polynomial algorithm. Therefore all we can
do is to try to come up with a heuristic algorithm that gives us a performance as
close to the optimal one as possible. Generally, this is still avery hard problem. An
algorithm that gives asatisfactory solution has yet to be found. Some partitioning
methods were proposed in [48, 47, 46, 49, 57, 12].

The partitioning of a program can be done either at compile-time or at run
time. Run-time partitioning has the advantage of using run-time information
about the behavior of the program, which may lead to a better partition. How
ever, this comes at the expense of introducing tremendous extra overhead during
program execution. Hence, the partitioning algorithm has to be very simple. We
can also have ahybrid compile-time/run-time partitioning. Here, an initial par
tition is done at compile-time. Then at run-time, we can use some information
regarding the behavior of the program, to repartition the code and come up with
abetter partition. This method suffers from the same drawbacks associated with
the pure run-time scheme. Mainly, it introduces too much run-time overhead.

The different partitioning methods for distributed memory machines can be
classified as follows:

2.3.3.1 Construct based Partitioning

This is also called syntax-based partitioning. Here we try to exploit onlv the
parallelism offered by the syntax of the language. For example, in Sisal we have
the p.pelined parallelism in streams and concurrency in FORALL loops. Function
calls could also be spawned as separate tasks. Since in this case the granularity of
parallelism is defined by language constructs (e.g. compound expressions and user-
defined functions), the programming style dramatically affects the multiprocessor
performance. Clearly, this is indesirable.
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This is the simplest partitioning method in terms of analysis of the program.

However it usually gives us the least amount of parallelism.

2.3.3.2 Data-flow based partitioning

In this method, we try to exploit all kinds of parallelism available in the DAG. Any

two nodes are allowed to execute in parallel, provided that no data dependency

exists between them. Any node is allowed to execute as soon as all input data is

available.

For imperative languages, much analysis is required to determine all the par

allelism available in the program. However for functional languages, this is a

straight forward task.

2.3.3.3 Function-level partitioning

All functions which are independent of each other may be executed in parallel. For

functional programming, two functions are independent ofeach other if the input
of neither one is the output of the other. The Church Rosser property ensures

that the order of evaluation of functions which are independent of one another will

not affect the outcome of the program. This method might result in a granularity

which is too coarse, and therefore we might not get enough parallelism to keep all

PEs busy.

2.3.3.4 Data driven code partitioning

In this approach, the data is partitioned and mapped to the PEs. A processor
is then thought of as owning the data assigned to it; these data elements are
stored in its local memory. Then the work is distributed according to the data
distribution: computations that define the data elements owned by a processor
are performed by it. This is called the owner-computes paradigm9. Note that

9The owner-computes rule states that all computations updating a given datum are per
formed by the processor owning that datum.



we can apply the owner-stores paradigm10 instead. Our hope in doing so is that
the code will be mapped to the PEs in such a way that all (or at least most) of
the data references are local. This results in lesser communication on distributed

memory machines.

The success of this approach is very program dependent. For programs where
the information about some of the data (e.g. array size) can only be determined

at run time, the implementation of this method might be quite difficult and could
introduce much run time overhead.

Furthermore, this approach over-emphasizes the locality issue. When we dis
tribute the data first and then distribute the code in such a way to preserve

locality of reference, the resulting code partition may be unbalanced, leading to

poor performance.

For an example of a data driven code partitioning approach, refer to [26].

2.3.3.5 Code based data allocation

In the code based approach, the program is partitioned so that each processor

gets approximately an equal share of the program code (load balancing). Then,

depending on the data references, the data is allocated to different PEs so that

communication is minimal. Here, we can also apply the owner-computes or owner-

stores paradigms (or possibly a mixture of the two).

Again, the success of this method is very program dependent. For programs

where the information about some of the data (e.g. array size) can only be de

termined at run time, the implementation of this method might be quite difficult

and could introduce much run time overhead. Furthermore, the goals of locality

of data and load balanced code could be conflicting, and for certain types of codes

impossible to achieve simultaneously. In addition, this approach may lead to high

communication overhead, that would nullify all the benefits of parallelism.

10The owner-stores rule states that the right-hand side expression of an assignment is com
puted by a processor which owns data appearing in that expression and this result is then sent
to the processor owning the left-hand side datum.
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2.3.3.6 SPMD Model of Computation

In the SPMD (Single Program Multiple Data) approach, also called Data Parallel

Model of Computation, we make use of the regularity of most numerical com

putations. The processors execute essentially the same code in parallel, each on

the data stored locally. In other words, the multiprocessor executes in a similar

way to an SIMD (Single Instruction Multiple Data) machine. Note however that

this approach is applicable only to specific constructs like forall loops and not all

algorithms can be executed in this way. An Algorithm that can be handled using

this approach has to be some code that is executed several times in parallel using

multiple sets of data, such as a parallel loop. The advantages of this model of com

putation is its simplicity and the fact that there is no inter-PE communication.

However, for most real life algorithms, there is no way of avoiding communication

between PEs.

2.3.3.7 Programmer intervention

Sometimes, the user is required to supply information to the compiler, through

compiler directives, assertions, etc., with regard to global, high-level properties of

the algorithm whose detection by even the most able systems may be intractable.

One example of this is the specification of FARALL loops to indicate the possible

parallel execution of loop iterations. Another example is when the programmer

asserts some information about some variable in the code (e.g. the variable is a

prime number), which enables the compiler to make some decisions regarding the

execution of that code.

Some parallel languages require the programmer to specify some information,

regarding the partitioning of the program, in the source code. For instance Hi-

ranandani et al. [26] use the data driven partitioning scheme. They define lan

guage extensions to Fortran called Fortran D. In this language, they include con

structs for managing data distribution in non-shared address spaces. The user is

responsible for specifying the data layout. Then the compiler uses the informa
tion regarding the data structures decomposition and the owner-computes rule to

partition the program.
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This approach makes the task of the compiler much simpler. However, the goal

of making the programming of multiprocessors easy and convenient, and freeing

the programmer from the details of the machine is defeated here. Furthermore,

due to compile time unknowns, this method might lead to poor performance for

some programs.

Many researchers believe that no compiler can on its own suffice to support the

highly complex and challenging task of producing efficient programs for parallel

systems [60, page 285]. They believe that advanced compilation systems will be

integrated into a sophisticated programming environment that includes an exten

sive set of programming support tools. These will be needed to provide guidance

in a number of forms. Their claim is that Parallelizing compilers cannot always

perform well without assistance from the user. The programmer may play an

important role, informing the system via assertions of global relationships (some

of which may be due to high-level properties of the algorithm) that an automatic

state-of-the-art tool cannot detect. One of the main reasons of this is the inde-

cidability or intractability of many relevant problems and the lack of adequate
heuristics for handling them.

2.3.3.8 Hierarchical Partitioning

Here the program to be partitioned is represented by a hierarchical graph. A
hierarchical graph is one for which the nodes could contain subgraphs. These
subgraphs could have nodes which in turn contain subgraphs. This goes on recur
sively and without any limit. IFl and IF2 are examples of hierarchical graphs.

The hierarchical partitioning procedure is a recursive one, which takes as argu
ment the program graph, and is then recursively applied on the subgraphs. Hence,
the partitioning is done starting from the lowest-most level subgraphs and goes
on to the next higher level subgraphs, until we reach the original program graph.
The partitioning method proposed by Sarkar [48] is an example of a hierarchical
partitioning procedure.
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2.3.4 Scheduling Issues

Once the program code has been partitioned into parallel tasks, we need to manage
these tasks (i.e. managing the parallelism) for efficient parallel execution on the
multiprocessor. The management ofthese tasks is called scheduling. Stated more
formally, scheduling consists of assigning the tasks that result from partitioning
the program (i.e. exposing the parallelism) to the available processors so as to
minimize the parallel execution time. For each task (or process), we have to decide
on when to execute that task and where11 (i.e. on which processor) to execute it.
Clearly, for the tasks that are assigned to the same processor, we have to decide
on the order of execution of these tasks.

The most obvious answer to the when question is to execute tasks as soon

as their inputs are available12 [19, 20]. However, this could cause our system to
saturate and hence deadlock. This is so because some parent tasks that are being
executed might not find any available PEs on which to spawn their child subtasks

to give them the values needed to complete. Thus, a throttle is needed.

As was mentioned before, for DMMs, it is particularly important to reduce

both inter-PE communication and load imbalance. Scheduling is necessary to

achieve a good processor utilization and to optimize inter-PE communication in

the target multiprocessor.

It is well known that finding the optimal scheduling is an NP-complete prob

lem. Although scheduling is an old, notorious problem with numerous versions

and has attracted the attention of many researchers in the past, the results known

to date offer little help when dealing with real parallel machines. The complexity

of the scheduling problem has led the computing community to adopt heuristic

approaches for each new machine. For maximum performance, the problem should

be entirely left to the user13. However, this makes programming the multiproces

sor very user unfriendly, tedious and very time consuming. Worse yet, this work

cannot be ported to other parallel machines if the need arises to run the same

nThis is called task distribution.
12This is a due to the functional nature of our intermediate form.
13This involves hand-coding and manually inserting system calls in the program.



problem in a different machine. On the other hand, it is very difficult or impos
sible to find a universal solution for problems such as scheduling, minimization

of interprocessor communication, and synchronization. The reason is that these

problems are architecture dependent. Arealistic goal would be to find systematic
and automatic solutions for the scheduling problem for large classes of machine

architectures. For some existing scheduling methods, refer to [46, 48, 42, 27].

When performing the scheduling, there are several factors that have to be
taken into account. Some of these factors are the communication and scheduling

overhead, and the task granularity. Low task granularity results in high scheduling

and inter-PE communication overhead.

The scheduling methods canbe broadly distinguished into three classes: static14,

dynamic15 and hybrid static/dynamic.

2.3.4.1 Static Scheduling

In static scheduling, processors are assigned tasks at compile time, before execu

tion starts. When program execution starts, each processor knows exactly which

tasks to execute.

When static scheduling is used, there is no overhead due to run-time schedul

ing; all inter-PE synchronization and communication is directly compiled in the

code. Both task scheduling overhead and load balancing overhead are eliminated.

Further, there is a greater opportunity to optimize inter-PE communication when

the processor assignment is known at compile-time. A global compile-time anal

ysis reduces communication overhead for the entire program. Such an analysis

cannot be done on the fly at run-time. However, the efficiency of the scheduling

is questionable in this case, because many of the facts regarding the behavior

of the program, such as memory access patterns are only known at run-time16.

Also, many "adaptive" applications change their access patterns and data loca

tions over their execution lifetime. For these kind of programs, a compile-time

14Static scheduling is also called compile-time scheduling.
15Dynamic scheduling is also called run-time scheduling.
16Some of the examples of this are: array subscripts which are functions with unknown values

at compile-time, conditional statements, etc.



solution might lead to a very inefficient execution, and therefore a run-time or a

hybrid run-time/compile-time approach should be used. For programs with fairly

predictable execution times at compile-time, this approach could be very efficient.

2.3.4.2 Dynamic Scheduling

A scheduling scheme is called dynamic when the actual processor allocation is

performed by hardware or software mechanisms during program execution (i.e.

at run-time). Therefore, during dynamic scheduling, decisions for allocating pro

cessors are taken on-the-fly for different parts of the program, as the program

executes.

With dynamic scheduling, the run-time overhead becomes a critical factor and

may account for a significant portion of the total execution time of the program.

For static scheduling, the compiler or an intelligent preprocessor is responsible for

making the scheduling decisions. However, for dynamic scheduling, this decision

must be made at run-time in a case by case fashion, and the time spent for

this decision-making process is reflected in the program's total execution time.

Note that we can have the scheduler make scheduling decisions for a chunk of the

program, while other parts of the program are already executing on the processors.

This may reduce the overhead but does not eliminate it. The large overhead of

run-time analysis necessitates very simple scheduling algorithms.

For shared memory multiprocessors, dynamicscheduling is mucheasier to deal

with. Shared memory implementations of SISAL uses a shared ready queue to

enqueue all the tasks that are ready to be executed17. This queue is allocated from
shared memory, and therefore is accessible to all processors. Whenever a processor

becomes idle, it fetches a task to execute from the ready queue. A throttle has

not been needed for this approach. The advantage of this scheme is that there is

no need for any dynamic load balancing algorithm, since it is done implicitly by

the use of the shared ready queue. The disadvantage is that the queue is a shared
resource that must be accessed using a critical section. This results in contention

for the shared resource, which causes run-time overhead that consists of the time

17These are either newly created tasks, or tasks that were previously blocked (e.g. waiting for
memory to become available or some value to be computed) and become unblocked.
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required to execute the lock protocol, and the timethe process has to wait for the

lock (in case it has to wait).
Dynamic scheduling for DMMs can be performed through a central control

unit18 or it can be distributed. Dynamic scheduling through a central control unit

usually creates too much communication overhead and results in a bottle-neck at

the processor where the central control unit executes. Hence it is usually more

efficient to adopt a self-scheduling scheme. A special case of scheduling through

distributed control units is self-scheduling. As implied by the term, there is no

single control that makes global decisions for allocating processors, but rather

the processors themselves are responsible for determining what task to execute

next. For an example of a self-scheduling method called guided self-scheduling19,

refer to [42]. Another way to implement distributed dynamic scheduling is to

establish a fixed spawning pattern for each node20. Here, the processor executing

a task uses a predefined method to decide on where (i.e. on which processor) to

execute the child tasks. This method needs some load balancing scheme to try

to keep the work evenly distributed on all processors. In fact, when we use a

dynamic scheduling mechanism, dynamic load balancing is usually needed. One

more scheme to implement distributed scheduling is to adapt the shared ready

queue idea of the shared memory implementation of SISAL. Here, each processor

is given its own private ready queue. Each processor monitors its own private

ready list, which now can be done without having to obtain exclusive access, and

executes any task that arrives. Some mechanism is still needed to decide to the

queue of which processor to send a task when it is ready to execute (for instance

when a child task is newly created by the parent, or when a previously blocked

task is ready to resume execution). Unlike for the shared memory case, we now

don't need to obtain critical section locks to access the ready queue. Hence, the

overhead for contention is eliminated, and we now allow for a scalable number

of processors to be employed. However, we now no longer have implicit load

balancing capabilities, and therefore some dynamic load balancing algorithm is

18Some people call this unit the arbitrator.
1 This method applies to shared memorymachinesand is restricted to arbitrary nested parallel

loops.
20This is the method that was first used for shared memory implementation of SISAL.



needed, for it is now possible for the system load to become unbalanced. For a

detailed implementation of this scheme, refer to [23].

2.3.4.3 Hybrid static/dynamic scheduling

We can also have a hybrid static/dynamic scheduling. In this case, we start with
an initial scheduling at compile-time, and allow the assignment of tasks to PEs
to change at run-time (task migration), ifwe know that this will give us a better
performance. For example, we might have to do some task migration in order to
balance the load.

During run-time, it is not possible to have all the knowledge about the topology
of the program. Compiler support of some form is required for that. Therefore,
a hybrid dynamic/static scheduling is probably the best approach to solve this
problem. In this scheme, the compiler helps the arbitrator or the processors21 in
making a scheduling decision.

The hybrid approach could benefit us from the low overhead of static schedul
ing and the better task assignment of dynamic scheduling.

2.3.5 Distribution of Data

Data distribution is the task of dividing the data structures that a program uses
among the memory elements so as to minimize the total execution time of the
program. This is equivalent to distributing the data structures so that the num
ber of remote references is minimal. Therefore, it is necessary to keep the task
distribution and the data distribution closely tied, and keep these two aligned at
all times. Ideally, we want all memory accesses to be local. Clearly, this is not
possible.

The data distribution problem is a very difficult and complex one. In fact,
finding the optimal data partition is an NP-complete problem. Nevertheless, if
good performance is to be achieved, this problem has to be addressed. Since the
optimal partition is very hard to find, we have to settle for heuristic methods
that give us performance as close to optimal partition as possible. An appropriate

21 depending on whether we use a central or adistributed scheduling scheme.
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Figure 2.2: Classification of data distribution methods

heuristic method for automatically determining a nearly optimal data partition

has yet to be found.

2.3.5.1 Classification of data distribution methods

Usually, the data partitioning methods are classified according to whether they

are implicit or explicit, compile-time or run-time (see figure 2.2).

• compile-time data distribution: The distribution of data structures is done

at compile-time. This is also called static data distribution. By static we

mean that the distribution remains the same throughout the life-time of the

program. There are several ways this is done, and in what follows we list a

few of them:

1. The compiler uses some distribution function to partition the data.

Distribution functions can be either predefined or user supplied. Typi

cally, a distribution function has many parameters that control the way

data structures are partitioned. Ideally these parameters are chosen

automatically by the compiler, after doing some formal analysis, such

as analyzing the access patterns, or with the help of run-time profiles

[Sar89]. In the case of run-time profiles, the compiler watches several

characteristic runs and notes the distribution patterns used for those

runs. The compiler then selects a distribution function that will come



closest to the observed reference behavior. Note that this approach is

inefficient if the profile runs are not characteristic of the actual refer

ence patterns, or if the reference patterns vary with the input data.

Due to the complexity of this task, many compilers rely on some user in

tervention, either in the form of language extensions or pragmas (com

piler directives). For an example of that, refer to [26].

2. The compiler uses a random distribution of data structures. In this

case, the compiler tries to make the distribution even across all PEs

without regard to the access patterns. Naturally this is a very simple

scheme. But its performance could be unacceptable.

• Hybrid compile-time/run-time data distribution: The term hybrid refers

to the possibility of changing the distribution associated with the data-

structure at run-time. An initial distribution is done by the compiler. Then

during run-time, a redistribution (re-mapping) of the data is done in

order to reduce the remote accesses. This method is efficient in case we

have many compile-time unknowns, such as array subscripts which cannot

be determined at compile time. Also for programs where the access pattern

changes during the execution of the program, it might not be possible to

find a mapping of the data structures that will result in minimal remote

references before and after the access pattern changes. In other words, the

best mapping that gives the least amount of remote references for the pro

gram up to the point just before the access pattern changes might give a big
number of remote references during the execution from the point when the

access pattern changes and on. For example, for the FFT algorithm, the

access pattern changes over the iteration space. For this kind of problems,

re-mapping of the data to recapture local references could result in some im
provements. The problem with this method is that the analysis required to
determinewhen re-mapping is worth performing is a very difficult one. Also

for DMMs for which the inter-PE communication is expensive, this method

might cause some tremendous run-time overhead due to the extra inter-PE
communication caused by moving the data around during the re-mapping,

and updating the descriptors of the data structures that are re-mapped to



record the new distribution. Hence, it is important that the communica
tion incurred by the redistribution of the data (to minimize communication
during a computation) does not exceed the communication overhead which
that redistribution was intended to reduce.

• Run-time data distribution: Here all decisions regarding the distribution of
data are done at run-time. This is also called dynamic data distribution.
One way to do this is to make the decisions regarding distribution of data,
functions of some parameters that are only known at run-time.

• Explicit data distribution: The programmer controls the data distribution
explicitly22. In this case, the programmer explicitly inserts the appropriate
inter-PE communication primitives. All ofthis work is done "by hand" and
contradicts the goal of raising programming to a higher level ofabstraction.

• Hybrid Explicit/Implicit data distribution: In this method, we use compile-
time, hybrid compile-time/run-time, or run-time data distribution, with
some user intervention. More precisely, the programmer gives some hints

regarding how distribution of data should be done, and the compiler or
the run-time system uses those hints to decide how to distribute the data
structures. For example, the hints could be in the form of some compiler

directives, pragmas or assertions. This method put some burden on the
programmer, but has more potential for success than the purely automatic
data partitioning methods. This is so because the programmer could be
very aware of the data access patterns of his program, and therefore could
know about the optimal or near-optimal partitioning of the data structures

in the program. Some researchers feel that the compiler on its own will
not be able to choose an efficient data decomposition for all programs, and

therefore it needs some additional information from the user. Fortran D

[26] is an example of a language that requires the programmer to specify
the data layout of the program. Then the compiler uses that information

22Usually, the programmer uses an explicit imperative programming method. Hence there is
no compiler that further processes the code to do the parallel processing tasks (code and data
partitioning, scheduling, etc.), since the programmer does all of these tasks explicitly.
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to distribute the data structures (arrays) to the processing elements, and

insert the appropriate message passing primitives.

• Implicit data distribution: Using the implicit data distribution method, the

compiler or the run-time system is responsible for all the partitioning of

the data structures, without any help from the user. Usually, it is quite

difficult to design a system that produces very efficient data partitioning,

unless some user intervention is available. Note that this method could be

compile-time, run-time, or a hybrid of the two.

2.3.5.2 Using the Shared Memory Programming Paradigm for DMM's

• Description: In this method, a shared memory programming model is sup

ported on top of the distributed memory architecture. This is called Dis

tributed Shared Memory (DSM) or Virtual Shared Memory (VSM) system.

The compiler or programmer is provided with a shared memory abstraction,

and a set of primitives for allocating and accessing shared data structures

within a virtual address space. The programmer (or the compiler) assumes

that there is a contiguous, single address space (this is a virtualspace) shared

by all PEs in the network and uses this virtual memory to store and retrieve

the data structures in the program. All the memory access routines in the

program are done with respect to the virtual memory. Then, it is the job of

some software interface to map the virtual space onto the distributed phys

ical memories. All message passing required for accessing remote values is

handled implicitly by this interface, through the use of a message passing

abstraction. This message passing abstraction provides an abstract interface

to the host operating system. Each data structure allocated to the virtual

space receives a contiguous set of virtual addresses shared among all the

PEs23. Note that the interface will be nothing more than the library of

memory access routines called by the user program. This library of routines

is responsible for the mapping between the virtual memory and the physical

23In fact, data can be represented in two ways: as a local memory variable (i.e. stored in the
local memory of the PE in question) or as a shared addressing space variable (i.e. stored in the
virtual shared memory).
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memories, and all the memory management needed.
This library will be part of the run-time system, and hence the method

described here is called run-time support for a single addressing space.

• Advantages: The main advantage ofthis scheme is that the library created
can be written as a stand-alone module in a generic (language independent)

way. This module can therefore be plugged into any other run-time system

for compilers of other languages. With some minor modifications to the

message passing routines used, this library could even be ported to other

DMMs.

Another advantage is that this message passing abstraction makes the task

of the programmer (or compiler) much simpler, since all message passing

routines and data distribution will be handled by the library of memory

access routines. However, the way the data distribution is done should be

dictated by the compiler (or the programmer), since these library routines

don't have any information regarding the behavior of the program. One

way to implement this is to include the mapping function as a parameter in

the routine that allocates the virtual space to data structures, so that this

routine can use that information to distribute the data across the PEs.

• Implementation issue: Using the virtual shared memory scheme has an

other advantage as far as the implementation goes. Instead of writing a new

compiler, we can simply use the existing OSC compiler with some miner

modifications24.

• Disadvantages: The main disadvantage of this method is the run-time

overhead caused by the translation of virtual addresses to physical ones.

• Address Translation: When the compilerencounters an array access A[i],

it translates it to some code in the output program, that computes the

address of the element A[i] and then fetches that location. In our case,

this address is a virtual one. Therefore, we have to translate this virtual

address to the corresponding physical one, which for DMMs constitutes of a

24OSC was written for shared memory multiprocessors.
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processor number and the local physical address on that processor. Clearly

this translation process is done by the library routines that manage the

virtual address space. One way to do the translation is to have a table

that has one entry for each virtual address and the corresponding physical

address. We need to replicate this table in all PEs in order not to create too

much communication traffic. Although this method makes the translation

process very cheap in terms of time, since it would require one access of this

table, it is extremely costly in terms of space and therefore not feasible. The

other way to do the translation is to use the information regarding the virtual

space allocated to the data structure and the way it is distributed. From

this, we can use some formulas to deduce the virtual address. This method

is not costly in terms of space, since we don't have to store the physical

addresses corresponding to virtual ones, however it is very costly in terms

of time because of the computations involved. There are ways to optimize

the address translation using the second method that we mentioned. For

instance, for virtual addresses corresponding to local physical ones (physical

addresses on the current PE), we can use some tricks to recognize these

virtual addresses and get a direct mapping to physical ones, without using

any computations [21, 23].

• It is clear that using this method does not affect the inter-PE communication

overhead. Very little extra memory space is needed to record the required

information for the translation of virtual addresses to physical ones for each

array.

• This distributed shared memory method was used to implement SISAL on

DMMs25 [21, 23]. The results were not very impressive however. Some of
the problems were the run-time overhead introduced by the VISA calls26,
and the fact that multi-dimensional arrays were not implemented as true

multi-dimensional arravs2'.

25VISA is the name of the library that was designed.
26The main overhead was caused by the address translation.
27SISAL and its intermediate forms IFl and IF2 assume that all arrays are one-dimensional.

Multi-dimensional arrays are implemented as arrays of arrays.
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• In order to make this method more attractive, we have to devise some ad

dress translation scheme that does not involve many computations. We

should be able to afford to sacrifice some memory space for less time, pro

vided that the space traded for time is not too large.

2.4 Existing Code Partitioning Methods

Existing work regarding the partitioning problem either considers a specific ap

plication and try to come up with an efficient partitioning scheme for it (i.e. no

automatic partitioning), or come up with a general solution (automatic partition

ing) that is too simple and therefore not efficient (e.g. exploits only one kind of

parallelism level). The partitioning methods that belong to the second class and

that have been implemented in real systems exploit only certain levels of par

allelism, with certain granularity. Some methods use syntax-based partitioning,

some others use function-level partitioning, some systems exploit instruction level

parallelism leading to very fine grain size, etc. We believe that the granularity of

parallelism should depend on the particular application that we are solving and

on the target machine.

The best partitioning scheme that we are aware of is the one proposed by

Sarkar [48, 47, 46, 49] and is described briefly next. As was mentioned before,

this method is too simple.

Sarkar's Partitioning Method

Sarkar considers both static and dynamic scheduling, and only static program

partitioning. His partitioning method for static scheduling differs from the one

for dynamic scheduling. Since we assume static scheduling, we only describe

Sarkar's partitioning method for static scheduling.

Algorithm

In this section, we describe the overall algorithm without going into any details.



1. All communication edges in the program graph are sorted in decreasing order

of their communication cost.

2. For each edge e in the graph, starting with the one that has the highest

communication cost, we merge e if the merger does not cause an increase in

the parallel execution time (the critical path length of the graph).

Time Complexity

Let E be the number of edges and N be the number of nodes in the program

graph.

Sorting the E edges takes 0(E2) time in the worst case.

The algorithm requires that the parallel execution time be computed for each

iteration (i.e. each edge examined) of the algorithm. The parallel execution time

can be computed by traversing the graph. In the worst case, this takes 0(E -f- N)

time. Since there are E edges in the graph (i.e. E iterations in the algorithm),

this will take 0(E(E + N)) time.

Hence the overall time complexity of the algorithm is 0(E(E + N)). We will

show later on in this thesis that E < N2. Therefore, the time complexity can be

written as 0(E.N2).



Chapter 3

The Partitioning Problem

3.1 Assumptions

• We assume that we have a weighted Directed Acyclic Graph (DAG) repre

sentation of the program. The DAG is flat (no hierarchical graphs such as

IFl and IF2, the intermediate graph representation of SISAL), the nodes

represent instructions (primitive or compound statements), and the edges
represent data. The assumption that we don't have any hierarchical graphs

makes the analysis simpler, and it allows us not to use hierarchical parti

tioning algorithms which are in general more complex.

• One way to get the input DAG described earlier is to use IFl or IF2, and a

variation of Sarkar's graph expansion method1 ([47, 46, 48, 49]) to do some

preprocessing to get a non-hierarchical graph. Doing this, some compound

nodes (compound nodes are nodes that contain subgraphs, and correspond

to compound statements in SISAL) in the original graph (IFl or IF2) will

be nodes in the final flat DAG used as input to our analysis. In this case,

all subgraphs of the compound nodes will be transparent, and we only look

at the functionality of the node (i.e. given some input, we are interested in

what output the nodes generates).

The advantage in using IFl or IF2 is that we can use the SISAL compiler

Sarkar's graph expansion method is better suited for shared memory multiprocessors. It
does not take into account the high cost of inter-PE communication for DMMs, and therefore
is in general not efficient when used to target DMMs.
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to generate the intermediate form (IFl or IF2), then preprocess this graph

to get the final input DAG used by our partitioning analysis.

• We assume that the DAG is applicative and therefore we don't have any

side effects when we execute it. The data carried by the edges represent

mathematical variables and not memory cells. This makes the detection of

parallelism straight-forward.

• All the inputs of the DAG are assumed to be ready when program starts

execution.

• The target DMM is assumed to have point to point communication links

(no busses).

• The output of our partitioning analysis is the input to the scheduling phase.

The best scheduling method known so far is the DSC (Dominant Sequence

Clustering) designed by Tao Yang ([18, 58, 59]).

3.2 Definitions

Code Partitioning: Given a multiprocessor M and a DAG g to be executed

on M, a partition of g is a set n = {ru r2,..., rn}, where each r,- is a non-empty

set consisting of nodes in g that have to be executed on the same PE.2 and
where all the r,-'s are disjoint, and their union forms all the nodes that belong to

g. Each set T{ is called a task.

Definition: The trivial partition is the one for which each task r, is a singleton

set (i.e. this is the partition that puts each node in a single task). All other
partitions are said to be non-trivial.

Input and Output Nodes: Given a DAG g, an input (entry) node in g is any
node for which an input edge carries an input data, and an output (exit) node in

g is any node for which an output edge carries an output data.

2Nodes belonging to the same r, could be independent ofeach other, and therefore could in
theory be executed in parallel.
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There is no predecessor node to an input node and there is no successor node to

an output node.

Input nodes are also called root nodes, and output nodes are also called leaf

nodes.

Execution Path: Given a DAG g, an execution path of g is any path from an

input node to an output node.

Critical Path: Given a DAG #, a critical path of g is any longest execution

path in g.

The critical path length of g is the length of a critical path of g.

Let Pa-it := Critical path of the DAG.

Let CPL := Critical Path Length of the DAG.

Independent Nodes: Given a DAG, two nodes are dependent if and only if

there is a path between them. Otherwise they are independent.

We define || as the independency relationship, and J_ as the dependency

relationship.

n\ || n2 means ni and n2 are independent.

ni _L n2 means nx and n2 are dependent.

Independent Sets

1. Given a DAG g, an independent set is a set of nodes in g in which each pair

of nodes are independent (i.e. all nodes are pairwise independent).

2. Given a DAG g and a set 5 of nodes belonging to g, an independent set of

S is an independent set which is contained in S.

Dependent Sets

1. Given a DAG g, a dependent set is a set of nodes in g in which each pair of

nodes are dependent (i.e. all nodes are pairwise dependent).

2. Given a DAG g and a set S of nodes in g, a dependent set of 5 is a dependent

set which is contained in S.
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Figure 3.1: Path from N> to Ni+1 (1 < i < m - 1)

Remarks

• If a set is not independent, it does not necessarily imply that it is dependent.

• Any path in the DAG constitutes a dependent set.

Parallel Sets

1. Given a DAG #, a parallel set is an independent set which is not contained

in any other independent set.

2. Given a DAG g and a set S of nodes belonging to g, a parallel set of S is an

independent set of S which is not contained in any other independent set of

S.

Anti-Parallel Sets

1. Given a DAG g, an anti-parallel set is a dependent set which is not contained

in any other dependent set.

2. Given a DAG g and a set S of nodes belonging to g, an anti-parallel set of
5 is a dependent set of5 which is not contained in any other dependent set

of 5.

Theorem: Let g be a DAG.

Let n-i, n2,..., nm be nodes in the graph.

{ni,n2,... ,nm} (m > 2) is a dependent set «=>
3 a path containing nodes nun2,... ,nm (the path could contain other nodes as
well).
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Figure 3.2: Path from Ni to nm+1 (1 < i < m)

Proof

1.3a path containing nodes ni, n2,..., nm

{ni, n2,..., nm] is a dependent set:

Trivial.

2. {tti, n2,..., nm} is a dependent set

3 a path containing nodes %, n2,..., nm:

We use proof by induction.

Base Case: m = 2

n1 1. n2 => there is a path from ni to n2 or from n2 to rij.

Induction Step: We assume that the property is true for m > 2.

Let's prove that the property is true for m -f 1.

Assume that {ni,n2,... ,nm,nm+i} is a dependent set

{"i 5n25 •••i nm} is a dependent set

3 a path containing nodes n^ n2,..., n,

There is a path from Art- to Ar,+i (1 < i < m—1), where A^, € {n1} n2, TV.}
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(1 < i < m), and all the N^s are different from each other (see figure 3.1).

nm+1 1 Ni => there is a path from Nj to nm+1 or from nm+1 to Nx.

If there is a path from nm+1 to Ni, then there is a path containing nodes

Ni,N2,.--,Nm,nm+i

3 a path containing nodes ni,n2,... ,nm,nm+i.

Now assume that there is a path from A/i to nm+i.

nm+i _L N2 =$> there is a path from N2 to nm+i or from nm+i to N2.

If there is a path from nm+i to N2, then there is a path containing nodes

Ni,N2,...,Nm,nm+l

3 a path containing nodes ni, n2,..., nm, nm+i.

Now assume that there is a path from Af2 to nm+i.

nm+x _L N3 as> there is a path from N3 to nm+i or from nm+1 to iV3.
If there is a path from nm+i to A/3, then there is a path containing nodes

Afi,N2,...,Afm,nm+i

3 a path containing nodes n^, n2,..., nm,nm+i.

Now assume that there is a path from A/3 to nm+\.

We keep doing this reasoning until we reach node 7V"m.

nm+i ± Nm ^ there is a path from Nm to nm+1 or from nm+i to Afm.
If there is a path from nm+1 to A/m, then there is a path containing nodes
Ari,A^2,...,Arm,nm+1

3 a path containing nodes ni, n2,..., nm,nm+i.

Now assume that there is a path from Nm to nm+i (see figure 3.2)

There exists a path containing nodes A/i, A/2,..., Nm, nm+1

3 a path containing nodes n\,n2,... ,nm,nm+i.

Hence the property is true for m + 1.

Theorem: Let g be a DAG.
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Let ni, n2,..., nm be nodes in the graph.

{ni,n2,.. •, nm} (m > 2) is an anti-parallel set

3 a path containing only nodes rii,n2,... ,nm.

Proof

Assume that {ni,n2,... ,nm} (m > 2) isan anti-parallel set. Then {n1?n2,... ,nm}
is a dependent set. Therefore, from a theorem stated earlier, there exists a path

p containing nodes ni,n2,... ,nm. Hence, there is a path pt,,+i from A/t to Ni+i
(1 < i < m- 1), where N,- 6 {ni,n2,..., nm} (1 < i < m), and all the Hfs are
different from each other (see figure 3.1).

We claim that path p,-,,+i is equal to edge (N,-,n,-+1), 1 < i < m - 1.

To see why this is the case, assume that the claim is incorrect.

Then, 3 a node Nj, j ^ i and j ^ i+1 such that n, 6 p»\i+i. Clearly Nj ^ Nk,l <
k < 77i, otherwise we will have a cycle in path p. Since Nj _L A/fc, 1 < k < m,

then {Ni,N2,...,Nm,Nj} is a dependent set. Hence, {ni,n2,... ,n^, Nj) is a

dependent set. This means that {nx,n2,..., nm} is not an anti-parallel set, which

contradicts our original assumption. Therefore, our claim is correct, which means

that path p contains only nodes tti,n2,..., nm.

Remark: Given a DAG g.

3 a path containing only nodes »j, n2,..., nm (m > 2)

{ni,n2,... ,nm} is an anti-parallel set.

To see why this is the case, assume that there exists a path p containing only

nodes rii, n2,..., nm. Then there could exist a path p' which contains p, p' ^ p

(see figure 3.3 for 2 examples of such a situation), in which case there exists at

least a node n, n ^ n,-, 1 < i < m, such that n X n,-, 1 < i < m. Hence,

{ni,n2,... ,nm,n} is a dependent set. Therefore, {ni,n2,... ,nm} cannot be an
anti-parallel set.

Theorem: Given a DAG g.

Let rii, n2,..., nm be nodes in the graph.
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a

p = (nvn2,...,nm)

p' = (nya,nTn3,...tnm)

n n,

p = (nvn2,...,nm)

p = (a,nvn2> ...,«m,£)

-©

w
m

Figure 3.3: 2examples where {nun2,... ,nm} cannot be an anti-parallel set
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3 a unique path p containing nodes ni, n2,..., nm, (m > 2)

AND

p contains only nodes ni,n2,...,nm

{ni,n2,..., nm} is an anti-parallel set.

Proof

Assume that:

There exists a unique path p containing nodes ftg, n2,..., nm, (m > 2)

AND

p contains on/y nodes ni, n2,..., nm

Clearly, 5 = {»i,nj,..., nm] is a dependent set.
Let's assume that S is not an anti-parallel set.

Then there exists at least one node n,n^ ni, 1 < : < m, such that {nun2,..., nm, n}
is a dependent set. From a previous theorem, this implies that there exists a path
p' containing nodes ni,n2,...,nm,n. Since p is the unique path containing nodes
ni,n2,..., nm, then p = p\ But p contains only nodes nl5 n2,..., nm, which con

tradicts the fact that n € p. Hence, our assumption that S is not an anti-parallel
set is wrong.

3.3 Some Properties

J_ Relationship

1. The relationship is not reflexive.

2. The relationship is symmetric.

3. The relationship is not transitive.

In figure 3.4-a, n\ J_ n2, n2 1 n3, but n} || n3.

!| Relationship

1. The relationship is not reflexive.
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Figure 3.4: || and _L are not transitive
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(a)

(b)

Figure 3.5: Number of elements in parallel sets

2. The relationship is symmetric.

3. The relationship is not transitive.

In figure 3.4-b, ni || n2, n2 II n3, but ni _L n3.

Parallel Sets

Consider a DAG g.

The parallel sets don't always have the same number of elements.

Infigure 3.5-a, the parallel sets are: {n6,ni,n4}, {n6,ni,n5}, {n6,n3,n5}. {727.n2.n5}.
{n7.nun4}, {n7,nun5}, {n7,n3,n5}. In this case, all parallel sets have the same
number of elements.
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In figure 3.5-b, the parallel sets are: {n6,ni}, {n6,n4}, {n6,n5}, {n7,n2,n4},

{n7,n2,ns}, {n7,ni}, {727, n3,n5}. In this case, not all parallel sets have the same
number of elements.

Anti-Parallel Sets

Consider a DAG g and a set S of nodes belonging to g.

In general, the set S has zero or more anti-parallel sets, and a set Sind of zero or

more nodes which don't belong to any dependent set3.

Assume that the anti-parallel sets are Si, 52,..., S*, and that S,„i is {ni,n2,..., nm},

where4

k > 0 and m > 0.

In general, the anti-parallel sets are not necessarily disjoint. Furthermore, 2 nodes

belonging to 2 different anti-parallel sets could be dependent.

For an example of this, consider figure 3.5-b.

Let S = {n!,n2,...,n7}.

The anti-parallel sets are: {n6,"7}, {n6,n2, n3}, {%, n2, n3}, {ni,n4, n3}> {ni, n4, n5}.

In this case S,-„d = 0.

Figure 3.5-a shows another example.

Let S = {n!,n2,...,n7}.

In this case, the anti-parallel sets are: {n6, n7}, {n6, n2}, {ni, n2, n3}, {n2, n3, n4},

{n4,n5}.

Also for this case, Stmf = 0.

Note that in this case, S can be written as

S = Si U S2 U S3, where

Si = {ni,n2,n3}, S2 = {n4,n5} and S3 = {n6,n7}. Si, S2 and S3 are disjoint
anti-parallel sets.

Note also that in some cases, the set S can be expressed as

3Each node in Sind and any other node in S are independent, and clearly Sind is an indepen
dent set of 5. However, Sind ls not a parallel set.

*k = 0 represents the case where S has no dependent sets (i.e. S is an independent set), and
m = 0 represents the case where each element in 5 belongs to some dependent set.
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S = SiUS2 U... USk USind, where the S.'s are disjoint anti-parallel sets, and Sind
is a set of one or more nodes which don't belong to any dependent set.

3.4 Task Graph

Definition: We define the task dependency graph (or task graph for short) of a

partition to be the directed graph whose nodes are the tasks in the partition, and
where the arcs between nodes represent the data dependency between tasks (i.e.
there is an edge from task Tj to task Tj if and only if data has to be transmitted

from Ti to Tj).

3.4.1 Defining Task Graph Weights

3.4.1.1 Node Weights

The weight of a node in the task graph is the sum of the execution times of all
actors that belong to the task represented by the node.

3.4.1.2 Edge Weights

Consider an edge e = (ni,n,) in the task graph, where node nt- represents task r,

and node n, represents task Tj.

The weight of e is the total amount of data transmitted from tj to Tj during one

execution of the program.

3.4.2 Communication Between Tasks

Consider 2 tasks rx and r2 in the task graph such that there is an edge from T\ to

r2.

Assume that actors aua2,...,an belong to tu and actors 61, 62,..., 6n belong to

r2, and that there is an edge from a, to &,- (1 < i < n) in the original DAG (the

input program graph).

The question is: do we send the messages from a, to 6, individually, or do we

combine them into ONE larger message that is sent from rj to t2?



In other words, do we wait for all messages destined from Tj to r2 to be ready

and send them all together in one larger message, or do we send each message

individually as soon as it is ready?

One advantage of sending messages individually is that the destination actors

wait less time for their input data to arrive (as soon as an actor inside a task

finishes execution, we send the outputs of the actor to their destination actors).

However, as will be seen later, our execution model does not allow any partial

execution of tasks. Hence, this will not be of any benefit to us. Note that if

partial task execution were allowed, then sending the outputs of actors inside a
task individually as soon as they are ready could be of great benefit.

Onepopular optimization technique used for DMMs is to combine smaller mes

sages going to the same destination into larger ones before sending them whenever
possible. This usually reduces the communication overhead. This is true because
the dominant component in the cost to communicate a message between PEs is

the message start-up time. The other component, mainly the delay component
(the duration from the time the message is sent to the time it is received) is
small compared to the message start-up component. Therefore, when we combine
smaller messages into a larger one, we only have one message start-up for the new

larger message, rather than several for each smaller message.

Because of the reasons mentioned above, we chose to combine all messages

destined from rt- to Tj into one larger message.

3.5 Graph Execution Cost and Effect of Data

Distribution

3.5.1 Nodes in the Input Program Graph

Two kinds of nodes:

1. RNODEs: Nodes whose execution always involves one or more memory

accesses.
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These are also the nodes whose execution may involve one or more remote

accesses (in case the memory accessed is remote).

2. LNODEs: Nodes whose execution does not involve any memory accesses.

These are also the nodes whose execution never involves any remote accesses.

Examples of RNODEs: Array manipulation nodes (ABuild, AFill, AElement,
AReplace, ACatenate, AScatter, AGather).
Examples of LNODEs: Arithmetic and Boolean nodes.

3.5.2 Graph Execution Cost

1. Node computation cost.

2. Inter-node communication cost.

Node Computation Cost

1. LNODES: Given the target machine, we can determine the execution cost

of these nodes.

2. RNODES: The execution cost of an RNODE depends on the PE to which

the node is assigned, and the memory (i.e. memory of which PE) that has

to be accessed. Therefore, the way data is distributed across the PEs affects

the execution cost of RNODES.

Inter-Node Communication Cost

Given the assignment of nodes to PEs and the size of data transmitted along an

edge in the graph, we can determine the cost of transmitting the data along the

edge.

1. If an edge links two nodes assigned to different PEs, then the cost of trans

mitting data along this edge is the cost of communicating the data between

the PEs5.

5An edge connecting two nodes mapped to different PEs doesn't necessarily cause inter-PE
communication. For more details, refer to the section regarding local and non-local edges.
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2. If an edge links two nodes assigned to the same PE, then we assume that
the cost of transmitting data along the edge is zero.

3.5.3 Cost Measures Needed for Partitioning Analysis

As will be seen later, during the partitioning analysis, we need to compute the
CPL of the task graph. Evaluation of CPL of task graph requires knowledge of
node computation cost and inter-node communication cost.

1. Inter-node communication cost:

Since we assume that each node in the task graph is mapped to a different
virtual PE, and that we have minimum non-zero communication overhead,
then given the size of the data transmitted along an edge, we can figure out
the inter-PE communication cost caused by this transmission.

2. Node computation cost:

(a) LNODES: Given the target machine, we can estimate the cost.

(b) RNODES: During the partitioning phase, we don't know the assign
ment of nodes to the physical PEs yet. Hence we have no way oftelling
whether an RNODE involves a remote access or not. Therefore, it is

not possible to determine accurately the execution time of RNODEs.
This is true even if we know the way the data is partitioned across the

PEs.

3.5.4 Estimation of Execution Cost of RNODES

Data Distribution Procedure: We assume that it is a function of the number
of PEs and the distance between each pair of PEs.

It does not depend on code partitioning and scheduling (i.e. it can be done
before code partitioning and scheduling phases).

Method 1: Assume that all RNODES do local memory accesses only.
In this case, inter-PE communication can be caused by edges only.
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Method 2: Apply data distribution procedure to map data to the virtual PEs

to which the nodes in the graph are assigned.

Problems with Method 2

• There is a very large number of nodes in the graph. This number could be

in the order of 10,000 or more, and therefore the number of virtual PEs used

could be in the order of 10,000 or more. Hence, we might not have enough
data to distribute across all virtual PEs.

• At each step of the partitioning algorithm, nodes in the graph are merged.
Therefore, fewer virtual PEs are used, and we will have to apply the data
distribution procedure again to take into account the change in the number
of virtual PEs.

One way to get around this problem is to assume that each time 2 nodes are

merged, the corresponding virtual PEs PEi and PEj to which these nodes
are assigned are replaced by another virtual PE PEk, and all the data which

was mapped to PEi and PEj is assigned to PEk. For this to be possible,
we need some way to keep track of this data reassignment. This could be
costly in terms of time or memory space.

• Usually for DMMs, the cost to determine the physical addresses of the data
used is quite high. Hence, this method could add too much to the time
complexity of the compiler analysis.

3.5.5 Task Execution Model and Output Data Storage

• Convexity Constraint: Atask receives all inputs before starting execution,
then it executes to completion without interruption (i.e. no partial task
execution).

For this not to cause any deadlock situations, we have to make sure that the
task graph is acyclic at all times.

• At the end of execution, all outputs are sent immediately to destination
tasks.
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• Output data is not stored in memory.

• Data is sent to the PE where destination task executes right away, using the

send primitive.

• Destination task gets data by executing a receive command right before

starting execution.

Convexity Constraint Versus Partial Task Execution
«

As was mentioned previously, our execution model does not allow any partial task

execution. The question that arises here is: will this affect the utilization of the

multiprocessor? For a typical application, there will be so many tasks ready to

execute most of the time during run-time. Therefore, it is most probable that

we can keep the multiprocessor busy most of the time even without allowing any

partial task execution.

Using the convexity constraint, our execution model is simpler, and there is

no need for context switching during run-time.

3.5.6 Existing work

• Partitioning and scheduling methods for DMMs don't take into account

effect of data distribution.

• Execution of nodes is assumed not to cause any remote accesses, and there

fore does not cause any inter-PE communication.

Inter-PE communication can be caused by edges only.

3.5.7 How to model effect of data distribution in the graph?

Node Cost:

• LNODE: x , where x := computation cost.

• RNODE: (x,y) , where

- x := computation cost,
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—y := communication cost due to remote access, if there is any,

y := 0, otherwise.

Problem:

During partitioning phase, y is unknown, since assignment ofnodes to

PEs hasn't been done yet.

3.5.8 Conclusion

• Communication can be caused by non-local edges and RNODEs.

• Because assignment of nodes to PEs is done after code partitioning phase,

during code partitioning analysis, it won't be possible to take into account

communication caused by RNODES.

• However during scheduling phase, we could use the effect of communication

caused by RNODES.

As soon as an RNODE is assigned to a PE, its corresponding y value can

be determined, assuming that the data partitioning has already been done.

3.6 Parallel Execution Time (PARTIME)

Since all our analysis is done at compile-time, we have to devise some way of

estimating the parallel execution time of the program at compile-time. Obviously,

the only way to determine the exact execution time of the program is to run it on

the multiprocessor.

3.6.1 Execution Profile Information

In recent years, execution profile information became widely used in automatic

compiler optimizations. In our case, it provides us with:

• Average data sizes for all communication edges.

• Average frequency values for function calls for each function in the program.
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• Average frequency values for subgraphs of parallel and compound nodes.

In order to be as accurate as possible, the only information generated from pro

files is counts and sizes. Execution time costs are not used since unlike counts

and sizes, they cannot be measured exactly from profiles. Execution times and

communication costs are estimated from the information obtained from the pro

file. This information can be generated by any execution (sequential or parallel)

of the program on the target machine.

A drawback of execution profiles is their sensitivity to changes in program

inputs. Clearly, this could affect the optimizations done by the compiler. For this

reason, it is more efficient to average the information over several inputs.

Note that if we change the target machine, then we have to regenerate the

profile information even if we use the same program. This is true since the data

sizes for the new machine might be different from the previous one6.

3.6.2 Cost Assignment

An important information for our compiler analysis is the average execution time

of the nodes in the graph. Here we are concerned with the sequential execution

time of the nodes. Our approach is the same as the one in [48]. Mainly, we

assume that the average execution time fa(n) of all simple nodes n is one of

the target multiprocessor parameters. There are many possible techniques for

estimating the execution time for simple nodes, and these techniques vary for
different architectures. One simple scheme is to add the execution times of the

target instructions which implement the simple node.

All average execution times of non-simple nodes are derived from f3 and from

the profile information. This derivation is based on the following 3 simple rules:

1. The average execution time of a graph is the sum of the average execution

times of all its nodes.

2. The average execution time of a parallel node is the product of its average

number of iterations and its subgraph's average execution time.

'The graph frequencies remain the same however.
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3. The average execution time of a non-parallel compound node is the sum of

the products of each subgraph's average frequency and execution time.

3.6.3 Multiprocessor Parameters and Communication Model

The multiprocessor parameters needed for our analysis are the communication

overhead between PEs and the simple node average execution time cost function

fa- f*(n) for simple node n is the execution time of n.

The communication overhead between 2 PEs is assumed to have two compo

nents [48]:

1. Processor component: the duration for which a processor participates in a

communication. If the processor is sending data, then this is the time it

takes it to write and prepare the message, before it is sent on the network.

We represent this time by a function We. If the precessor is receiving a

message, then this is the time it takes it to read the message, after it arrives

to the PE from the network. We represent this time by a function Rc.

Note that when a message is sent between 2 processors, the sum of Wc

and Rc caused by this message constitutes the message start-up component

(allocating buffers, copying data to or from buffers, etc.)7.

2. Delay component: this is the duration from the time the message is sent

on the network by the source processor (after it is written), to the time

it is received by the destination processor (before it is read). This is also

the fraction of communication time during which the sender and receiver

precessors are free to execute other instructions. We also call this time

network component. We represent this time by a function Dc.

Dc is a function of a 4-tuple (i,j,s,l), where i is the source processor number,

j is the destination processor number (i f^ j), s is the size of the message, and /

is the total communication load in the multiprocessor at the time of the message

7The message start-up component also includes the time to execute the routing algorithm,
the time to establish an interface between the local processor and the router, etc.

58



transfer. Rc is a function of the couple (j, s) and Wc is a function of the couple

(i,s).

DMMs use message passing as a means for communication between PEs (syn

chronization and remote data access). The message passing protocol uses the

send and receive commands. We assume that send is non-blocking and receive is

blocking.

Assume that processor PEi communicates a message to processor PEj. Let f-i

be the time when PEi executes the send command and t2 be the time when PEj

executes the receive command8. The message arrives at PEj at time t3 = ti + We+

Dc. Let's compute the time taken by PEi and PEj due to this communication.

Sending Processor

For processor PEi, there will be no idle time since the send command is non-

blocking. Thus the timetaken by the sending processor due to this communication

is simply Wc.

Receiving Processor

There are two possibilities:

1. If the receive command is executed at any time after t3 (t2 > t3), then PEj

will never idle to wait for the message to arrive:

idletime = 0.

PEj will spend another Rc time to read the data, and therefore the data
will be available at time t2 + Rc. We say that all the communication delay

has been overlapped with computation in PEj.

The time taken by PEj due to this communication is:

idletime -f Rc = Rc-

2. If on the other hand the receive command is executed before *3 (t2 < t3).

then PEj will idle for t3 - t2 time to wait for the message to arrive:

'Here we assume that we have a global clock used by all PEs.



idletime = t3 -12 = U + Wc -f Dc -12 = U -12 + Wc + Dc = At + Wc + Dc,

where At = ti —t2 is the difference between the time when PEi executes

the send command and the time when PEj executes the receive command.

In this case, the data will be available in PEj at time t3 + Rc-

The time taken by PEj due to this communication is:

idletime + Rc = At + Wc + Dc + Rc.

In conclusion, for the receiving processor, the time taken due to the commu

nication is idletime + Rc.

idletime is equal to zeroor At--f Wc+Dc, dependingon when the receive command

was executed relative to the send command. Another expression for idletime is

idletime = a(At + Wc + Dc), where

a = 0 if t2 > h + Wc + Dc

a = 1 otherwise.

Since Wc and Dc are functions of (i,s) and (i,j,s,l) respectively, idletime is

a function of (i, j,s,/, f-i, ^2)-

3.7 Problem Statement

Definition: Given a multiprocessor M and a DAG (7 to be executed on M, we

say that an execution of g on M does not violate partition n = {ti, t2, ..., rn}, if

and only if, each task r,- of n is executed in a single PE (i.e. all the nodes in rt-

are executed on the same PE).

Note that 2 nodes that are in different tasks may be executed on the same PE.

However, 2 nodes that are in the same task have to be executed on the same PE.

Example: The trivial partition is not violated by any execution graph g on

multiprocessor M.

Definition: A partition Hi is said to be contained in partition T[2, if and only if,

each task r,- of Hi is included in some task tj of n2-9 We write Hi C n2-10 We

also say that U2 is smaller than Hi.

9r, could be the same as Tj,
10This is not the same as the ususal set inclusion. We simply borrow this notation for

convenience.



Example: The trivial partition is contained in any non-trivial partition

Corollary: For a multiprocessor M and DA g, if an execution of g on M does

not violate some partition IIi, then it does not violate any partition II2 which is

contained in IIj.

Corollary: For any 2 partitions Hi and n2, IIi C n2 =4« nx has at least as many

tasks as n2 does.

Proof: Straightforward: Use proof by contradiction: We assume that the

statement of the corollary is not true, then using that we deduce a false

statement.

Definition: Given a multiprocessor M and a DAG g to be executed on M, a

universal partition is a non-trivial partition which is not violated by any

execution of g on M, that leads to minimal parallel execution time for any

number of PEs in M (including the infinite number).

Stated differently, a universal partition is a non-trivial partition nu which is

contained in any optimal partition Hopt (i-e- a partition that results into minimal

parallel execution time) for any number of processors: nu C nopt.

The Partitioning Problem: Given a target multiprocessor M and a DAG g

to be executed on M, the code partitioning problem consists of finding the

smallest universal partition for g.

The Idea: The reason for choosing a universal partition is that when we start

from such partition and start lumping tasks together, we are able to get to the

optimal partition for the number of processors that are available, provided that

our algorithm leads to optimal solution. This is true since a universal partition

is contained in the optimal partition. When we start from the smallest universal

partition, we save work since the smallest partition has the least amount of tasks.

This lumping process is done in the scheduling phase as will be seen later11.

11 When 2 tasks are assigned to the same processor, we say that they are lumped together.
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Remark (Intuitive fact): The number of tasks in the smallest universal

partition should be greater than the number of PEs in the multiprocessor. If it

is not, then the problem that we are trying to run does not have sufficient

parallelism for all the PEs.

Theorem: Given a target multiprocessor M and a DAG g to be executed on

M,

Let Hqo be The optimal partition for the following case:

We have a virtual DMM (DMMV) satisfying the following 2 properties:

1. Infinite number of virtual PEs,

2. Communication overhead between the PEs is minimal (not zero)12.

Hoc is the smallest universal partition.

Proof:

1. First, let's prove that Hoo is a universal partition.

For any task t,- in Hoo, all nodes in r,- have to be executed in the same

processor to get optimal parallel execution time, given the best case

situation of an infinite number of processors with minimum communication

overhead. Therefore, in the realistic case of a finite number of processors

with varying communication overhead, all the nodes in r, have to be

executed in the same processor as well, in order to get optimal parallel

execution time. Hence, any execution that leads to optimal performance

does not violate Uqo. As a consequence, Hoo is a universal partition.

12Here we assume that the communication overhead between any 2 virtual processors is mini
mal. In other words, we assume that the distance between any two processors is one hop (i.e. all
processors are directly linked with one another). Also, we assume that the total communication
load in the multiprocessor network is always negligible and does not affect the communication
time between processors, and therefore we can ignore it. Hence in this case, the delay component
Dc does not depend on the source processor, the destination processor, or the total communi
cation load. Dc is then a function of the size of the message only. In addition, we assume that
We and Rc for any virtual processor are equal to the minimum value of Wc and Rc respectively
of all physical processors. Hence, Wc and Rc are also functions of the message size only.
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2. Now we have to prove that n,*, is the smallest universal partition.

Since 11^ is an optimal partition, then any universal partition Uu is

contained in it. Therefore Tloo is smaller than any universal partition. Since

it is itself a universal partition, then it is the smallest universal partition.

3.7.1 Remarks

• Sarkar uses the same definition for the partitioning problem. However, our

definition is much more formal.

• The code partitioning is usually done at compile-time. It is very unusual for

parallel compilers to use dynamic code partitioning schemes. In this work,

the compile-time method is used.

3.7.2 Why IIoc?

Here, we give a more informal and easier to understand explanation for the choice

ofnoo.

Consider a task rt in n^.

Let Ti = {ai, a2,..., an}, where the a;-'s are actors in the input program graph.

Since under the ideal case of infinite number of PEs and minimum non-zero com

munication overhead actors <zl5 a2,..., an belong to the same task, then under the

realistic case of finite number of PEs and actual communication overhead they

have to belong to the same task as well. Hence all the actors that belong to the

same task in Hoo belong to the same task in the optimal partition for the realistic

case. Therefore, by doing somefurther merging of the tasks in Hoo, we can obtain

the optimal partition for the realistic case. If our scheduling algorithm is optimal,

then the tasks that should be merged together will be assigned to the same PE.

In our approach, U.^ is passed as the input to the scheduling phase, and we rely
on the scheduling algorithm to assign the tasks that should be merged together

to the same PE.



3.7.3 Overall Procedure

• Start with the trivial partition.

• Perform a sequence of partitioning refinements.

• At each step, the algorithm tries to improve on the previous partition by

choosing a pair of tasks to be merged using some heuristic13.

We record the parallel execution time (PARTIME)14 corresponding to the

new partition.

• Stop when the singleton partition is reached.

• Choose partition with lowest PARTIME.

Remarks

• Most partitioning algorithms use the above overall approach.

• The main work of the algorithm is to find the appropriate tasks to be merged

during each step.

Therefore, we have to study very carefully the effects of task merging and

understand its impact on CPL, available parallelism in the task graph, re

duction in communication overhead, etc.

• We keep merging tasks until we reach the coarsest (singleton) partition.

We will see in a later section that we need to keep merging tasks even if the

merger results into a higher PARTIME. This is done so that we don't get

caught at a local minimum.

• The parallelism granularity is determined by the size of the tasks in the

partition that results from the partitioning analysis.

13Merging 2 tasks r,- and r, means replacing them by a new task Tk which contains all the
actors in r, and Tj: Tk = r,- U Tj.

14From now on, parallel execution time will be abbreviated to PARTIME.
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Figure 3.6: Two tasks mapped to the same PE

3.7.4 Estimating PARTIME

We make the following 2 assumptions:

1. At each step of the algorithm, each task of the current partition is mapped

to a separate PE.

2. All the inputs of the program graph are ready before the program starts

execution.

Therefore, we can estimate PARTIME to the CPL of the task graph of the current
partition.

Remark

To see why the assumption stating that each task of the current partition is

mapped to a separate PE is necessary, consider the task graph shown in figure 3.6.

Nodes ni and n3 are mapped to the same PE. When the program starts execution,

these 2 nodes cannot start execution at the same time. Assume that »j starts

execution first. Thus n3 can start execution only when 7i] finishes. Therefore
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we have to add comp^) to the length of path (n3,n6,n7) when we figure out
PARTIME.

Notations and Definitions

Given a task graph.

Let n be a node in the graph.

Let e = (ni,n2) be an edge in the graph connecting 2 nodes ni and n2-
Let p be a path in the graph.

comp(n) := Cost of computation in node n.

data(e) := Amount of data communicated along edge e during 1 execution of the

program.

data(n,-,nj) := 0, if there is no edge (n,-,nj).

comm(e) := Cost of communicating data on edge e during 1 execution of the

program.

comp(e) := comp(ni) -f comp(n2).

L(p) := Length of path p.

Up) = En6pcomp(n) + Ee€pcomm(e)-
Lb(p) := Length of path p before merger.

La(p) := Length of path p after merger.

CPU and CPLa are defined to be the CPL of the task graph before and after

the merger respectively.

Consider two virtual PEs PE\ and PE2 belonging to DMMV.

Let fe be the cost to communicate a message from PE\ to PE2.
fc is a function of the message size s only, because of the characteristics of

DMMV.

fe(s) := Cost to communicate a message of size s from PE\ to PE2.

fc(s) has 2 components: a message start-up component Tatart and a delay

component delay(s).

fc(s) = T3tart + delay(s).
delay(s) is proportional to s.

Since the message start-up component is a constant and does not depend on the

message size, then
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fc(si-rS2)r±fc{si)Jrfc(s2)-
i.e. /c(s) is not proportional to s.

We have delay(si + s2) = delay(s\) + delay(s2).

fc(s\ + s2) = Tstart + delay(si + s2).
Thus, /c(s! + s2) = Tatari -r delay(Sl) + delay(s2).
Hence, /c(si + s2) = /c(si) + delay(s2).

We define delay(s) := 0, if s = 0.

comm(e) = Tatart + delay(data(e))

3.7.5 Equivalent Problem Statement

The optimal partition is the one for which the corresponding task graph has the

shortest CPL among all partitions. The task graph corresponding to the optimal

partition is called optimal task graph.

3.7.6 Complexity

The partitioning problem is NP-complete [48]. Therefore, all we can do is find

heuristics that give a performance as close to the optimal as possible.

3.7.7 The Algorithm

An informal description of the algorithm for the code partitioning follows:

ALGORITHM PartitionGraph

BEGIN

Partition :s Trivial.Partition /* Start with the trivial partition

PARTIME := CPL of current task graph /* Parallel Execution Time

/* corresponding to current

/* partition,

best.partition := Partition /* Best partition found so far.

best.time := PARTIME /* Best parallel execution time found so far.

WHILE Ipartition I >= 2 DO

BEGIN /* Perform a merging iteration.



Partition :* Merge(H) /* Choose a pair of tasks to be merged

/* using Heuristic H, and merge them.

/* Partition • partition after merger.

PARTIME := CPL of new task graph

IF (PARTIME < best.time)

THEN

BEGIN

best.partition ;• Partition

best.time :* PARTIME

END

END

END

At the end of the execution of the algorithm, variable best-partition is the

partition chosen by the algorithm, and variable best-time is its corresponding

PARTIME.

3.7.8 Effect of Merging a Pair of Tasks

• If the tasks are independent =>

. No reduction in communication cost.

. Loss in parallelism.

• If the tasks are connected by an edge =>

. Reduction in communication overhead15.

. Possible loss in parallelism.

Merging Tasks

Goal: Minimize CPL of task graph.

15Note that during the scheduling phase, these two tasks maybe assigned to the samephysical
PE, and therefore no reduction in communication overhead is done as a result of merging them.
However, since we assume that we have an infinite number of virtual PEs, and that each task is
mapped to a different virtual PE, there is reduction in communication overhead as a result of
the merger.
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Rule: Merge only pairs of nodes connected by an edge, since there is no gain

from merging nodes not connected by edges.

PARTIME := Parallel execution time of the program on the DMM.

PARTIME = Tc + T0, where

Tc := Computation Time Component,

T0 := Overhead Component (communication overhead only, no scheduling

overhead).

Trade-off between computation component and overhead component.

The more parallelism we exploit, the smaller Tc and the larger T0 will be, and

vice versa.

CPL = Tc -r T0.

For DMMs, communication cost is quite high =>• Try to reduce communication

as much as possible.

In general, merge tasks => Tc increases (loss in parallelism and more

sequentialization) and T0 decreases (reduction in communication overhead).

3.8 Task Merging

2 possibilities:

1. Explicit merging:

In this method, we keep track of how the task graph looks like during the

execution of the partitioning algorithm. Each time tasks are merged, we

update the task graph to reflect the new partition (i.e. after each merging

step, we determine the task graph of the new partition).

This is called explicit merging, because we explicitly reflect the task merging

in the task graph.

Using explicit merging helps the partitioning analysis. For instance, it al

lows us to compute the parallel execution time at each step of the merging

process, which is simply the CPL of the corresponding task graph. Also,

it allows us to keep track of the available parallelism between tasks and of

the dependency relationship between tasks, which help with the choice of

69



Figure 3.7: Explicit Task Merging
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Figure 3.8: Explicit Task Merging
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appropriate tasks to be merged.
Since at each merging step we have to update the task graph, we have to

make sure that this updating of the graph has low time complexity.

For an example of this, refer to figures 3.7 and 3.8.
Figure 3.7 shows a task graph before merging nodes nx and n2.
Figure 3.8 shows the task graph after the merger.

2. Implicit merging:

In this method, we don't keep up of how the task graph looks like during

the execution of the partitioning algorithm.

Theproblem with this approach is that without knowing how the task graph
looks like during each merging step, we cannot figure out the parallel ex

ecution time, and it is hard to figure out the parallelism available in the

graph.

For our analysis, we use the explicit merging method.

Explicit Merging Procedure

In this section, we show how we update the task graph when tasks are merged.

For an example of this, refer to figures 3.7 and 3.8.

Figure 3.7 shows a task graph before merging nodes ni and n2.

Figure 3.8 shows the graph after the merger.

Assumption: We assume that all messages inside a task which are destined to
the same task are grouped together into a bigger message. There is no loss in
doing so since no partial task execution is allowed because of the convexity
constraint. Since tasks are generally small to medium grains, messages are never

too big.

Initially, each actor in the input program graph is put in a separate task.
Therefore, the task graph has one node for each actor in the program graph. The
edges in the task graph are determined by the edges between the actors in the

program graph.
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Each time 2nodes m and n2 in the task graph connected by an edge (nun2),
are merged into a node nii2, we do the following:

•

•

•

Nodes nx and n2 are replaced by node nl<2.

Edge (ni,n2) is deleted.

Any edge going from nY to any other node m(i # 2) is replaced by an edge
going from n1<2 to n,-, and any edge going from nt- to nx is replaced by an
edge going from n,- to n\t2.

• Any edge going from n2 to any other node m(i / 1) is replaced by an edge
going from nli2 to n;, and any edge going from m to n2 is replaced by an
edge going from n,- to n\t2.

• Ifthere is an edge from nj to n, and an edge from n2 to nt- (i ^ 1and ?^ 2),
then edges (n^n,-) and (n2,ni) are replaced by one edge (nh2,n{).

• Ifthere is an edge from mto iij and an edge from n< to n2 (i ^ 1and z^ 2),
then edges (n,-,^) and (n{,n2) are replaced by one edge (nt-,ni,2).

Merging an Edge in the Task Graph

Let e= (nun2) be an edge in the task graph. Merging the edge e means merging
tasks ni and n2 together.

Time Complexity of Explicit Merging

Let N be the number of actors in the input program graph.

Initially, the task graph has N nodes as well.
Let's consider the cost of merging nodes n: and n2.

Replacing these 2 nodes by node nli2 takes a constant amount of time.
Each ofthese 2 nodes is connected to at most (N - 1) other nodes. Therefore, the
total cost to replace all edges during this merging step is O(N). Hence, it costs
at the most O(N) time to explicitly merge nodes nY and n2. Since there is a total
oi (N -\) merging steps, then the total cost to do the explicit merging, counting
all merging steps in the algorithm is 0(N2).
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Note that we over-estimated this time complexity because we assumed the

worst case scenario. For real applications, the 2 nodes merged are not connected

to all other nodes in the graph, on the average, the nodes in the task graph are

connected to 3 or 4 nodes. Therefore, each merging step takes a constant amount

of time. Hence the total cost to do the explicit merging, counting all merging

steps in the algorithm is 0(N).

3.8.1 Updating Task Graph Weights as a Result of the

Merger

Assume explicit merging.

Consider 2 nodes ni and n2 in the DAG, connected by an edge (ni,n2) and

merged into a node nli2.

For an example of this, refer to figures 3.7 and 3.8.

Figure 3.7 shows a DAG g before merging nodes n\ and n2.

Figure 3.8 shows the graph g after the merger.

The thick edges represent edges that carry more data (i.e. the edge weights has

increased).

The larger node represent a node that has more computations (i.e. the node

weight has increased).

3.8.1.1 Node Weights

comp(nit2) = comp(ni) + comp(n2).

Here we assume that all PEs are simple and are not capable of doing parallel

computations16.

3.8.1.2 Edge Weights

1. If an edge e' replaces one edge e:

data(e') = data(e).

16Even simple computations are done sequentially.
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2. If an edge e' replaces two edges ex and e2:
data(e') = data(ex) + data(e2).
Since all messages inside a task that have the same destination task are
combined together into a bigger message then:
comm(e') *fi comm(ei) + comm(e2).
comm(e') = Tatart + delay(data(e1)) + delay(data(e2)).
comm(e') = comm(el) -f delay(data(e2)).
comm(e') = comm(e2) + delay(data(e\)).

3.8.2 Creation of Cycles as a Result of Task Merging

The task graph should remain acyclic at all times, so that we guarantee that no
deadlock situation occurs because ofthe convexity constraint rule. Hence the task

graph should always be a DAG.
Initially the task graph is acyclic because we assume that the input program graph
is acyclic. When we merge tasks, we have to make sure that no cycles are created
as a result of the merger.

Consider 2 nodes nx and n2 in the task graph, connected by an edge (nun2)

and merged into a node n\t2.
Cycles could be introduced after the merger, because new edges are created.

All newly created edges are connected to the newly created node ni,2.

Theorem: Given an acyclic task graph, consider 2 nodes nY and n2 in the
graph, connected by an edge (nun2) and merged into a node nli2. Acycle is
created after the merger if and only if there exists a path from nx to n2 other

than (ni,n2) before the merger.

Proof

1. There exists a path from n} to n2 other than (nun2) before the merger

=>

A cycle is created after the merger:

The proof ofthis is quite obvious. Refer to figure 3.9.
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Before Merger

^
After Merger

Figure 3.9: Cycle creation

2. A cycle is created after the merger

There exists a path from ni to n2 other than (ni,n2) before the merger:

For a cycle to be introduced, a newly created edge has to have created it.

Since any new edge is connected to nii2, then any created cycle contains the

node nli2 (see figure 3.10-a).

Before the merger, the portion of the graph in figure 3.10-a used to be the

one shown in figure 3.10-b.

We cannot have edges going from both nodes n± and n2 to na, because that

would create a cycle, and we no that the graph is acyclic before the merger.

Also we cannot have edges going from n\, to both nodes nx and n2, because

that would also create a cycle.

Assume that we have an edge from n^ to na. Then we cannot have an edge

from nj, to nx because that would create a cycle. Therefore, we can only

have an edge from n^, to n2 (see figure 3.10-c).

Assume that we have an edge from n2 to na. Then having an edge from nj,

to Hi or an edge from nj, to n2 would create a cycle. Hence we cannot have
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n

(a) Cycle created as a result of the merger

IJ From n. or n~

or both

(b) Before the merger

(c) The only possible solution

Figure 3.10: Cycle creation

To n, or n^
or both
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an edge from n2 to nQ.

In conclusion, the only possibility is the one shown in figure 3.10-c.

A merging Rule

If there is a path from nx to n2 in the task graph other than (ni,n2), then nodes

rii and n2 should not be merged, otherwise we create a cycle in the graph.

Keeping the task graph free of cycles guarantees that no deadlock situation occurs

because of the convexity constraint.

Effect on Time Complexity

Because of the merging rule stated above, each time 2 tasks are chosen to be

merged, we have to check for cycle creation before we do the merger. This check

will add to the time complexity of the partitioning algorithm. In order to be

efficient, we should try to find a way to do this check at a low time cost.

Effect on Efficiency of Partitioning Algorithm

Consider the 2 nodes n,- and nj in the task graph, that are best candidates to be

merged (i.e. their merger results into the best improvement in the partition). If

their merger results into a cycle, then we cannot merge them, even though their

merger results into the best improvement in the partition.

To get around this problem, we might consider merging nodes nx and n2 and

all the nodes that belong to all cycles created as a result of merging n\ and n2

together. This will guarantee that no cycles are created as a result of the merger.

However, there is no guarantee that the partition obtained as a result of the merger

is better than the one before the merger.



Chapter 4

Analysis of the Task Graph

4.1 Parallelism Loss Due to Task Merging

In this section, we study the effect of task merging on the available parallelism in

the task graph.

Question: Given a task graph, could there be any loss in parallelism when two
nodes connected by an edge are merged?

Answer: Yes

It is quite obvious that some parallelism may be lost, even though

these 2 nodes are connected by an edge, and therefore are dependent.

Proof: Assume that the answer is NO.

Then when we merge two nodes connected by an edge, there is reduction in

communication overhead, and in addition no parallelism is lost. Therefore the

optimal partition is obtained by merging any two nodes connected by an edge,
which will result into a graph consisting of only ONE node (i.e. optimal

partition consists of a single task)!!

Why?

Consider two nodes nt and n2 connected by an edge (ni,n2) and merged into a

node n1<2.



Before Merger

®

V J After Merger

Figure 4.1: Parallelism Loss

Let's examine node ni:

Let n3 be a node in g such that n\ and n3 are independent, and n2 and n3 are

dependent.

Then after the merger, nx and n3 become dependent1. Thus nx and n3 cannot be

executed in parallel any longer. This represents a loss in parallelism with respect

to n\ in the task graph.

For an example of this, refer to figure 4.1.

4.1.1 Definitions

Parallel Set of a Node: Given a node n in a DAG g, the Parallel Set of n is

ParSet(n) := {n' Gg / n and n' are independent}.
These are the nodes that can be executed in parallel2 with n.

Given 2 nodes nj and n2 in a DAG,

xTo be more accurate, it is nli2 and n$ which are dependent, since ni by itself no longer
exists after the merger.

2n may not be executed in parallel with all nodes in ParSet(n) simultaneously, since ParSet(n)
is not necessarily an independent set.
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ParSet(ni,n2) := ParSet^) U ParSet(n2).

Dependent Set of a Node: Given a node n in a DAG g, the dependent set of

n is

DepSet(n) := {n' 6 g / n and n' are dependent}

Given 2 nodes n\ and n2 in a DAG,

DepSet(n!,n2) := DepSetfnO U DepSet(n2).

Remark: DepSet(n) is evaluated by finding all paths that pass through n.

Lemma: Consider two nodes n2 and n2 connected by an edge (ni,n2) and

merged into a node riii2,

ParSet(rii,2) = ParSet^) H ParSet(n2)

Remark: Also

ParSet(ni,2) = ParSet(n!,n2) - [ParSet(n!,n2) n DepSet(n!,n2)]

Lemma: Consider two nodes n\ and n2 connected by an edge (n\,n2) and

merged into a node n\<2,

DepSet(nii2) = DepSet(nx) U DepSet(n2)

4.1.2 Parallelism with respect to a Node

Parallelism with respect to a Node: Given a node n in a DAG g, we define

the Parallelism with respect to n to be \ParSet(n)\3.

Parallelism Loss with respect to a Node: Given a node n in a DAG g, we

say that there is parallelism loss with respect to n as a result of merging nodes if
and only if the parallelism with respect to n after the merger is strictly smaller

than the parallelism with respect to n before the merger.

3Given a set 5, \S\ is the number of elements in 5.
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4.1.2.1 Condition for Parallelism Loss

Consider two nodes nx and n2 in the task graph, connected by an edge (nx,n2)

and merged into a node n1|2.

Definition: We say that some parallelism is lost in the task graph as a result

of the merger if and only if some parallelism is lost with respect to n\ or n2.

Thus if we guarantee that no parallelism is lost with respect to n\ and no

parallelism is lost with respect to n2, then we guarantee that no parallelism is lost

in the task graph as a result of the merger.

ParSet(ni) represents all nodes which can be executed in parallel with nx

before the merger.

Any node belonging to DepSet(n2) cannot be executed in parallel with n\ after

the merger.

Therefore, the set ParSet(ni) D DepSet(n2) represents all nodes which could ex

ecute in parallel with n\ before the merger, and no longer can be executed in

parallel with n\ after the merger.

The same analysis can be applied to node n2.

Hence:

1. Some parallelism will be lost with respect to nj as a result of the merger if

and only if

ParSetfni) D DepSet(n2) ^ 0.

An equivalent condition is:

ParSet(n\t2) ^ ParSet(n\).

2. Some parallelism will be lost with respect to n2 as a result of the merger if

and only if

ParSet(n2) D DepSetfnj) ^ 0.

An equivalent condition is:

ParSet(nh2) ^ ParSet(n2).



4.1.2.2 Amount of Parallelism Lost

Consider 2 nodes ni and n2 in the task graph, connected by an edge (nx,n2) and

merged into a node ni,2.

1. The amount of parallelism lost (if any) with respect to ni as a result of the

merger is defined to be

\ParSet(nx)r\DepSet(n2)\.
This can also be expressed as:

\ParSet(nx)\ - \ParSet(nlt2)\.

2. The amount of parallelism lost (if any) with respect to n2 as a result of the

merger is defined to be

\ParSet(n2) H DepSet(ni)\.

This can also be expressed as:

\ParSet(n2)\- \ParSet(nh2)\.

Definition: The amount of parallelism lost in the task graph as a result of the

merger is defined to be the sum of the amount of parallelism lost with respect to
n\ and the amount of parallelism lost with respect to n2.

4.1.2.3 Remark 1

Consider the example in figure 4.2.

ParSet(n2) = {n3,n4}.

DepSet(ni) = {n4,n2}.
ParSet(n2) H DepSet^) = {n4} ^ 0.

Hence there is parallelism loss with respect to n2.

Note that ParSet(n2) is not an independent set. n3 and n4 are dependent, and
therefore n2 cannot execute in parallel with these 2 nodes simultaneously. Hence.
if only one of these 2 nodes becomes dependent with n2 after the merger, n2

can still execute in parallel with the other node. Nevertheless, the CPL can still
increase here. However, if both n3 and n4 become dependent with n2 after the

merger, then node n2 will not be able to execute in parallel with any of these 2
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Figure 4.2: Parallelism Loss

n2i\ After

Merger

Figure 4.3: Parallelism Loss
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Figure 4.4: Example 1

nodes. For an example of this refer to figure 4.3.

In figure 4.3,

ParSet(n2) = {n3,n4}.

DepSet(nx) = {n3,n4,n2}.

ParSet(n2) 0 DepSet(ni) = {n3,n4} fh 0.

4.1.2.4 Remark 2

Consider the following 2 examples.

Example 1

Given the task graph in figure 4.4.

Before the merger:

ParSet^) = {n3,n4,n5,n6}.

ni, n3, n4 and n$ can execute in parallel.

After the merger:

ParSet(nii2) = {n4,n5,n6}.
We have parallelism loss with respect to ni (one node: n3 lost). However, n3, n4

and n5 can still execute in parallel. In other words, only one node is lost for

parallelism (node nj).



Figure 4.5: Example 2

Example 2

Given the task graph in figure 4.5.

Before the merger:

ParSet(ni) = {n3,n4,n$}.

ni, n3, n4 and n5 can execute in parallel.

After the merger:

ParSet(nli2) = 0.

All the parallelism with respect to n\ is lost (3 nodes). However, n3, n4 and n5

can still execute in parallel. In other words, only one node is lost for parallelism

(node fix).

Let 5 = ParSet(ni) n DepSet(n2). For all nodes n € S, there exists at least one

path p which goes through n and n2 but not ni (before the merger). Therefore,

p increases in length after the merger (see section 4.2). The more nodes S has

the more execution paths are most likely to increase after the merger. Hence

defining the amount of parallelism with respect to nx as \S\ makes sense. Note

that in general the number of execution paths that increase as a result of

merging tasks is different from \S\.

4.1.3 Defining Parallelism

It is very hard to define the parallelism available in a task graph formally and

precisely. All we can do is give an approximative definition. The definition should

depend on what we need it for and how we are going to use it. For instance in our

case, our measure of the performance of the partitioning algorithm is the CPL.
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We will see later on in the analysis that our definition of parallelism is tightly-
coupled with the CPL of the task graph, and that the way the CPL is affected by
the merger of tasks is related to the loss of parallelism (the way we defined it) in
the task graph.

Some other possible definitions of the parallelism in a task graph follow. Note
that we assume that all nodes have the same weight and all edges have the same

weight.

Total Parallelism = E„€/>eril(l + MaxPar(n)).
Maximum Parallelism = Maxn6pcr„{l + MaxPar(n)}.

4.1.4 Usable Parallelism

Degree of Parallelism: Given a DAG g and a set S of nodes belonging to g,
the degree of parallelism in S is |P|, where4 P is the largest parallel set of S.

Usable Parallelism: Given a DAG g and a node n in g, the Usable
Parallelism with respect to n is MaxPar(n), defined to be the degree of
parallelism in ParSet(n).

Lemma: Given a DAG g and a node n in g, the Usable parallelism with
respect to n is the maximum number of nodes in g that can be executed in
parallel simultaneously with node n.

4.1.4.1 Condition for Usable Parallelism Loss

Consider 2nodes nt and n2 in the task graph, connected by an edge (nun2) and
merged into a node ni,2.

1. There is usable parallelism loss with respect to m as a result of the merger
if and only if

MaxPar(ni) > MaxPar(n1>2).

A\P\ is the number of elements in the set P.



2. There is usable parallelism loss with respect to n2 as a result of the merger
if and only if

MaxPar(n2) > MaxPar(nli2).

4.1.4.2 Amount of usable Parallelism Lost

Consider 2 nodes ni and n2 in the task graph, connected by an edge (ni,n2) and
merged into a node nii2.

1. The amount of usable parallelism lost (if any) with respect to nx as a result

of the merger is defined to be

MaxPar(ni) —MaxPar(nJi2).

2. The amount of usable parallelism lost (if any) with respect to n2 as a result

of the merger is defined to be

MaxPar(n2) —MaxPar(nli2).

4.1.4.3 Another condition for usable Parallelism Loss

In what follows, we assume that two nodes n2 and n2 in the task graph, connected
by an edge (ni,n2) are merged into a node nii2.

Let's examine the parallelism lost with respect to nx.

Let S = ParSet^) n DepSet(n2).

S represents all the nodes which could be executed in parallel with nx before the
merger, and no longer can execute in parallel with n-[ after the merger.

However, ParSet^) is not necessarily an independent set, and therefore it is not

always the case that nY can execute with all nodes in ParSet^) simultaneously.
Let's assume that ParSet(nx) is not an independent set.

Hence, there exists at least one dependent set S' C ParSet^).
Clearly, no 2 nodes belonging to S' can execute in parallel.

Hence, n\ can execute in parallel with only one node at a time from S'.

Therefore, if after the merger some nodes in S' become dependent with n\
because they used to belong to DepSet(n2) before the merger, no parallelism will
be lost with respect to n: because of that, provided that at least one node in S'
remains independent with nY after the merger.



The Condition

Some usable parallelism will be lost in the task graph as a result of the merger if

and only if any of the 2 following conditions is true:

1. Some usable parallelism with respect to n\ is lost.

2. Some usable parallelism with respect to n2 is lost.

Usable Parallelism Lost With Respect to ni

Case 1 ParSet(ni) is an independent set5.
In this case, some parallelism will be lost with respect to n\ if and only if

ParSet^) n DepSet(n2) ^ 0.

Case 2 ParSet(ni) is not an independent set.

Therefore, there is at least one dependent set S' C ParSet(rii).

Without any loss of generality, let's assume that ParSet(ni) has k anti-

parallel sets: S\,S2,.. .,Sk-

Let Su = Si U S2 U ... U Sk.

Let S = ParSet(ni) n DepSet(n2).

In this case, some parallelism will be lost with respect to nx if and only if

the following 2 conditions C\ and C2 are satisfied:

1. Gx\ 5^0.

2. C2 = C2<\ OR C/2,2.

C2y. S£SU

(i.e. there exists at least one node n € S such that n £ Su & n does

not belong to any of the sets 5,-, 1 < i < k <* n and any other node in

ParSetfui) are independent.)

C2i26: S C Su and at least one of the sets 5, C S, 1 < i < k.

5There is no dependent set 5' C ParSet(ni).
6Here we are assuming that all sets 5,'s are disjoint, and that no two nodes belonging to

different anti-parallel sets of ParSet(rii) can be dependent.



Usable Parallelism Lost With Respect to n2

The exact same analysis that applies to n.\ applies to n2 as well.

Problem With Above Condition

As was mentioned earlier, for condition C2,2, we assume that all sets 5,'s are dis

joint, and that no two nodes belonging to different anti-parallel sets of ParSet(nx)

can be dependent. Clearly, in general this might not be true.

4.1.5 Relationship between Parallelism and Usable

Parallelism

Lemma: Given a DAG g and a node n in g,

PAR(n) > MaxPar(n)

i.e. the parallelism w/ respect to n is greater or equal than the usable

parallelism w/ respect to n.

Lemma: Given a DAG g and a node n in g,

There is usable parallelism loss with respect to n ==>

There is parallelism loss with respect to n.

There is parallelism loss with respect to n f^

There is usable parallelism loss with respect to n.

There is no parallelism loss with respect to n ==$>

There is no usable parallelism loss with respect to n.

There is no usable parallelism loss with respect to n 7^

There is no parallelism loss with respect to n.

Lemma: Given a DAG g and a node n in g, if ParSet(n) is an independent

set, then

PAR(n) = MaxPar(n).

Lemma: Given a DAG g and a node n in g, if ParSet(n) is an independent

set, then:
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There is parallelism loss with respect to n

there is usable parallelism loss with respect to n.

4.1.6 Upper Bound on Degree of Parallelism

Consider a DAG g and a set S of nodes belonging to g.

We find the smallest k such that

S = Si U S2 U . . . U Sk U Sind,

where each Si is an anti-parallel set, and Stnd is a set of zero or more nodes that

don't belong to any dependent set.

k = 0 represents the case for which S doesn't have any dependent sets (i.e. 5 is

an independent set).

Any parallel set of S contains zero or one element from each set 5,, plus all

elements in S^d-

Therefore, the degree of parallelism in S is < k -f- |5,-nd|.

Consider the case where S can be written as

5 = Si U S2 U . . . USk U Bind,

where each 5,- is an anti-parallel set, and Sind is a. set of zero or more nodes that

don't belong to any dependent set, and all 5,'s are disjoint, and no 2 nodes which

belong to different anti-parallel sets (from the above listed anti-parallel sets) are

dependent.

In this case, the degree of parallelism = k + |S,nd|-

4.1.7 Theorem

Let g be a task graph. Let nY and n2 be 2 nodes in g connected by an edge

e = (ni,n2).

Let Si := DepSet(ni) —{n2}.

Let 52 := DepSet(n2) —{ni}.

ParSet(ni) n DepSet(n2) = 0 AND ParSet(n2) DDepSet(ni) = 0

ParSet(ni) = ParSet(n2)
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Si = &.

Proof

1. Assumethat: ParSet(ni)C\DepSet(n2) = 0 AND ParSet(n2)C\DepSet(ni)

0.

(a) ParSer-^) H DepSet(n2) = 0:

DepSet(n2) = {nj U52.

VnG 52, n $ ParSet(ni) =»

Vn G £2, n G DepSet(ni) (since n ^ nx) =>•

Vn G S2,n G Si (since n ^ n2) =*>

52 C ft (1)

Vn G ParSet(ni), n £ DepSet(n2) =>

Vn G ParSet(ni), n G ParSet(n2) (since n 7^ n2) =*•

ParSe^nj) C ParSet(n2) (2)

(b) ParSet(n2) D De^Ser^O = 0:

DepSet(ni) = {n2} US\.

Vne Sun $ ParSet(n2) =*

Vn G Si, n G DepSet(n2) (since n ^ n2) =>•

Vn G5i, n G52 (since n f£ %) ^

ft C S2 (3)

Vn G ParSet(n2), n g DepSe^ni) =*>

Vn G ParSet(n2), n G ParSet(ni) (since n ^ ni) =^

ParSet(n2) C ParSe/f^) (4)

(1) AND (3) =*> 5i = St.

(2) AND (4) => ParSer(n,) = ParSet(n2).

2. Assume that:

ParSet(ni) = ParSet(n2).

92



Vn G DepSet(n2), n g ParSet(n2) =»

Vn G DepSet(n2), n £ ParStt(nx) =*•

ParSei(ni) 0 DepSet(n2) = 0 (5)
Vn GDepSetfnO, n £ ParSet(ni) =$>
Vn GDepSei(ni), n £ ParSet(n2) =>•
ParSet(n2) n DepSet(nY) = 0 (6)
(5) AND (6) =» ft « 52.

3. Assume that:

Si = 52.

Vn GPar5e*{rai), n £ DepSei(ni) =*
Vn G Par5et(ni), n £ Si =*

Vn G ParSer^nO, n £ S2 =4>

Vn GParSei-(ni), n £ DepSet(n2) (since n ^ nx) =4>
Vn GParSet-(ni), n GParSei(n2) (since n^ n2) ^
ParSet(ni) CParSet(n2) (7)
Vn GParSei(n2), n £ DepSet(n2) =>
Vn G ParSet(n2), n $ S2 =>
Vn G ParSer-(n2), n £ Si =*>
Vn GParSet(n2), n £ DepSet(nx) (since n ^ n2) =•
Vn GParSet(n2), n GParSet(ni) (since n ^ nx) =>
ParSet(n2) CParSei^) (8)
(7) AND (8) =>• ParSei(ni) = ParSet(n2).

Corollary

Let $be a task graph. Let n, and n2 be 2nodes in gconnected by an edge
e = (ni,n2).
No parallelism is lost in the task graph as aresult of the merger

ParSet(ni) = ParSet(n2).



Proof

No parallelism is lost as a result of the merger if and only ifno parallelism is lost
with respect to ni and no parallelism is lost with respect to n2.

This is true if and only if

ParSet(ni) n DepSet(n2) = 0 AND ParSet(n2) n DepSet(nY) = 0.
From the above theorem, that is true if and only if

ParSet(ni) = ParSet(n2).

4.2 Effect of Task Merging on CPL

4.2.1 Problem Statement

In all what follows, we assume that 2 nodes nx and n2 in the task graph connected

by an edge e = (ni,n2), are merged into a node nli2.

Let pc = Peru of task graph before the merger.

lb := length of Pa-n of task graph before the merger.

k = U(pc).

CPU := h-

la := length of P^u of task graph after the merger.

4.2.2 Effect on Path Length

Let p be any path in the task graph.

We have 3 possibilities:

1. None of the two nodes merged belongs to p.

2. Only one of the two nodes merged belongs to p.

3. Both nodes merged belong to p: =>eGp.

To see why this is true, assume that e £ p.

=>• there are two possibilities:
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(a) There is a path from nx to n2 other than (ni,n2).

=>• After a merger, a cycle will be created.

Therefore ni and n2 cannot be merged together.

(b) There is a path from n2 to rii.

=> There is a cycle before the merger, because of edge (ni,n2), which

is not possible since we have a DAG.

The length of p is affected by the merger if and only if at least one of the

following conditions is true:

1. A node in p is replaced by another node that has more computations (this

is the case when only one of the 2 merged nodes belongs to p).

Assuming that ni G p,

L(p) is increased by comp(n2).

2. An edge in p is deleted (this is the case when e Gp).

L(p) is reduced by comm(e).

3. An edge in p is replaced by another edge which carries more data (this is

the case when two edges ex and e2 are replaced by one edge e', and either

ei or e2 belongs to p).

Assume ei G p, then

L(p) is increased by delay(data(e2)).

There are 3 cases:

Case 1 None of the two nodes merged belongs to p:

La(p) = Lb(P).

Case 2 Only one of the two nodes merged (say it is n:) belongs to p:
Let np be the predecessor ofni in p (ifany).
Let n3 be the successor of ni in p (if any).
La(p) = Lb(p) + comp(n2) + delay(data(np,n2)) + delay(data(n2,ns)).
Note that if (np,n2) and (n2,n3) don't exist (or if np and ns don't exist),

then
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La(p) = Lb(p) + comp(n2).
This increase in length ofprepresents a loss in parallelism and increase in se-

quentialization by the amount comp(n2)-\-delay(data(nv, n2))-rdelay(data(n2, n3))
relative to path p.

The terms involving the delay function are due to the fact that some inter-
PE communication has to be sequentialized are a result of the merger. For

instance, the increase by the amount delay(data(np,n2)) is due to the fact

that before the merger, np used to send the data on edges (np,ni) and
(np,n2) to separate virtual PEs in parallel. After the merger, the data on
these 2 edges is combined and sent to the same virtual PE. Clearly this takes

more time.

In conclusion, we could have an increase in the CPL, and as a consequence

the parallel execution time could increase.

For an example of this, refer to figures 3.7 and 3.8.

Figure 3.7 shows a task graph before merging nodes ni and n2.

Figure 3.8 shows the graph after the merger.

Consider path pi = (n3,np,ni,n,,n5,nio) in figure 3.7. After the merger,

Pi = {n3,np,nii2,n„n5,nio).

Case 3 Both nodes merged belong to p:

Let np be the predecessor of ni in p (if any).

Let n3 be the successor of n2 in p (if any).

La(p) = Lb(p) —comm(e) -f delay(data(np, n2)) + delay(data(ni, n3)).

Note that if (np,n2) and (ni,n3) don't exist (or if np and n3 don't exist),

then

La(p) = Lb(p) —comm(e).

This decrease in the length of p represents a reduction in communication

overhead by the amount x = comm(e)—delay(data(np, n2))—delay(data(nY, n3))

relative to path p (assuming that x > 0, which is true for most cases).

Again, the terms involving the delay function are due to the fact that some

inter-PE communication has to be sequentialized are a result of the merger.

For an example of this, refer to figures 3.7 and 3.8.

Figure 3.7 shows a task graph before merging nodes ni and n2.
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Figure 3.8 shows the graph after the merger.
Consider pathp2 = (n3,np, ^,^,^^5,^0) in figure 3.7. After the merger,

p2 = (n3,np,ni,2,n,,n5,nio).

4.2.3 Merging an Edge Belonging to the Critical Path

In what follows, we omit the terms involving the function delay in the expressions
giving the length of a path after merging two nodes, in terms of its length before
the merger.

Let's assume that e G Pa-it of task graph.

Thus, La(pc) = k- comm(e).

4.2.3.1 Effect on Execution Paths

Clearly for any execution path pin the task graph, Lb(p) < lb, since lb is the CPL
before the merger.

1. Any execution path pthat doesn't go through any of the 2 nodes merged:

La(p) = Lh(p).

2. Any execution path p that goes through nx and not n2:
La(p) = Lb(p) 4- comp(n2).

3. Any execution path p that goes through n2 and not ftx:
La(p) = Lb(p) + comp(ni).

4. Any execution path p that goes through edge e:

La(p) = Lb(p) ~ comm(e).

4.2.3.2 Effect on Critical Path

Case 1 There is no execution path that goes through only one of the 2
nodes merged:

Thus for any execution path p, La(p) < Lb(p).
Also we know that Lb(p) < k- Therefore, La(p) < h-
Hence, CPL will either decrease or remain unchanged as a result of the
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merger.

P^ could change as a result of the merger. We have 2 cases:

1. If all execution paths p go through e:

La(p) = Lb(p) - comm(e).
In this case, all execution paths including pc will be reduced in length

by the same amount.

Hence, Pcrit will not change and CPL decreases by comm(e) as a result

of the merger.

2. At least one execution path doesn't go through e:

Let pi,p2,...,pk be such execution paths, where k > 1.

La(Pi) = Lb(pi), l<i<k.

There are 2 cases:

(a) If at least one of the p.'s is such that

Lb(Pi) = h:
Pa-it will change and CPL will remain unchanged.

(b) If Lb(Pi) <lb,l<i< k:

CPL will decrease.

Pcrit could change. There are 2 possibilities:

i. Lb(Pi) < La(Pc), \<i<k:

CPL will decrease by comm(e).

Pcrit will not change,

ii. At least one of the p.'s is such that Lb(pi) > La(pc):

Pa-it will change.

CPL will decrease by an amount smaller than comm(e).

Let pm be the p,- such that Lb(pm) is the largest among all p,'s.

After the merger,

Pa-it = Pm and CPL = Lb(pm)-

CPL will decrease by lb —Lb(pm).

Case 2 There is at least one execution path p that goes through only

one of the 2 nodes merged:

Peru could change as a result of the merger, and CPL could increase, since



the length ofp increases after the merger.
Let Pi,p2,... ,pk be all execution paths that go through only one of the 2
nodes merged, where k>\.
Let nt,i and n<,2 be the two nodes merged, and let n,,i be the node that
belongs to p{, and let nJi2 be the other node7, 1 < i < k.
La(pi) = Lb(pi) + comp(ni>2), \ < i < k.
We know that lb > Lb(pi), 1 < i < k, since lb is the CPL before the merger.

There are so many possibilities, depending on the length of the execution
paths before the merger, lb, the value of comp(ni<2), the value of comm(e),
etc.

Since we already studied the case where no execution path goes through
only one of the 2nodes merged, let's assume that all execution paths
(pc excluded) go through only one of the 2 nodes merged. This will
simplify our analysis.

In this case, the execution paths are pi,p2, ---,Pk and pc.
There are 2 possible situations:

1. If La(Pi) < La(pc), 1 <t<fc
Pcrit will not change.

CPL will decrease by comm(e).

2. If there is at least one execution path p such that La(p) > La(pc):
Peru will change, but CPL does not necessarily increase. We have 2
cases:

(a) If La(Pi) <ft,l<i< k
i. If at least one of the p.'s is such that La(p%) = lb:

Let p0 be this p,'.

After the merger,

Pcrit = Po-

CPL remains unchanged.

7Ifp, goes through n! then n,M ism and n,-,2 is n2. If p, goes through n2 then ntA is n2 and
n,,2 is ni-



ii. If La(Pi) < k, 1 < *< fc=
CPL will decrease by an amount less than comm(e).
Let pm be the pt- such that La(pm) is the largest among all p,'s.
After the merger,

Pcrit = Pm and CPL = La(pm)-
CPL will decrease by lb - Lb(pm) - comp(nmy2)-

(b) If there is at least one execution path psuch that La(p) > lb:
CPL will increase.

Let pm be the p{ such that La(pm) is the largest among all p.'s.
After the merger,

Peru = Pm and CPL = La(pm)-
CPL will increase by Lb(pm) + cornp(nma) ~ k-

4.2.3.3 Conclusion

• Merging an edge that belongs to Pcrit of task graph does not guarantee a

decrease in CPL.

• The maximum decrease in CPL is comm(e).

• Merging an edge that belongs to all execution paths guarantees the maxi

mum decrease in CPL.

• If none of the execution paths go through only one of the 2 nodes merged,

then CPL will either decrease or remain unchanged.

Also the maximum decrease in CPL could be achieved here.

• If at least one execution path goes through only one of the 2 nodes merged,

then CPL will either increase, remain unchanged or decrease.

Also the maximum decrease in CPL could be achieved here.

4.2.4 Merging an Edge Not Belonging to the Critical Path

In what follows, we omit the terms involving the function delay in the expressions

giving the length of a path after merging two nodes, in terms of its length before

the merger.
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Let's assume that e ^ Pa-it-

Clearly, e belongs to at least one execution path8.
There are 2 possible cases:

Case 1 Pa-it goes through only 1 of the 2 nodes merged:
Let nin be the node merged which belongs to pc, and let nout be the node
merged which does not belong to pc.

La(pc) = h + comp(nout)-
After the merger, CPL will increase by at least comp(nout) and Petit might
change.

There are 2 possibilities:

1. If none of the execution paths p (pc excluded) go through only one of
the 2 nodes merged:

La(p) < Lb(p).

Since Lb(p) < k, then La(p) < lb.
Hence CPL will increase by comp(nout) and Pcrit will not change after

the merger.

2. If at least one execution path (pc excluded) goes through only one of
the 2 nodes merged:

Let pi,p2,. -. ,Pk be all the execution paths that go through only one
of the 2 nodes merged (pc excluded), k> 1.
Let n,-(1 be the node merged which belongs to Pi, and n,,2 be the node
merged which does not belong to p,-.

La{pi) = Lb(Pi) + comp(nl<2), \ < i < k.
If comp(nlt2) < comp(nout) then P^t will not change and CPL will
increase by comp(nout).
If n,-,2 = noui then P^ will not change and CPL will increase by
comp(nout).
Let pm be the p, such that La(pm) is the largest among all p.'s.

5Any edge in the graph belongs to at least one execution path.
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There are 2 possible cases:

(a) If La(Pi) < La(pc), \<i<k:
Pcrit will not change and CPL will increase by comp^^t).

(b) If at least one p, is such that La(pi) > La(pc):

After the merger,

Pa-it = Pm and CPL = La(pm)-

CPL will increase by an amount greater than comp^o^t)-

The increase in CPL is Lb(pm) + cornp(nma) - lb-

Case 2 Po-it does not go through any of the 2 nodes merged:

La(pc) = Lb(pc) = lb.

CPL will either increase or remain unchanged.

Peru might change.

There are 2 possibilities:

1. If no execution path p (pc excluded) goes through only one of the 2

nodes merged:

La(p) < Lb(p).

Since Lb(p) < lb then La(p) < lb.

Thus, Pa-it and CPL will not change.

2. If at least one execution path goes through only one of the 2 nodes

merged:

Let Pi,p2, --. ,pk be all the execution paths that go through only one

of the 2 nodes merged (pc excluded), k > 1.

Let mtj be the node merged which belongs to p,-, and n,,2 be the node

merged which does not belong to p,\

La(pi) = Lb(pi) + comp(nii2), 1 < i < k.

Hence, Pa-u could change and CPL could increase.

There are 2 cases:

(a) If La(pi) <lb,l<i< k:

PCrit and CPL will not change.
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(b) If at least one p, is such that La(pi) > lb:
Let pm be the pi such that La(pm) is the largest among all p.'s.

After the merger,

Pcrit = Pm and CPL = La(pm)-

CPL will increase by Lb(pm) + comp(nm,2) ~ h-

Conclusion

If e ^ Pa-it then CPL never decreases (it will either increase or remain
unchanged) after the merger.

If Pa-it goes through only one of the 2 nodes merged, then CPL will increase
by at least comp(nout) after the merger, where nout is the node merged which
does not belong to Pa-it-

• IfP^t does not go through any of the 2nodes merged, then CPL will either
increase or remain unchanged after the merger.

4.3 Merging Tasks: Effect of Parallelism Loss on

CPL

In this section, we study the effect of parallelism loss on the CPL of the task graph.
We consider two nodes nx and n2 belonging to the task graph and connected by
an edge e= (nun2). We study the effect of merging nodes nx and n2 on the CPL
when the merger causes parallelism loss and when it doesn't.

4.3.1 No Parallelism Loss

Theorem: Assume that ParSet(ni) = ParSet(n2), so that there is no

parallelism loss when we merge ni and n2.
Then the CPL of the task graph never increases as a result of the merger.

•

•
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Before Merger After Merger

Figure 4.6: No parallelism loss
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Figure 4.7: No parallelism loss
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Figure 4.8: No parallelism loss
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Proof

Let's use proof by contradiction. We assume that the CPL increases as a result of

the merger. Therefore, there should exist at least one execution path p such that

La(p) > CPLb. Clearly, Lb(p) < CPLb.

There are 3 possible cases:

1. p goes through both nodes nx and n2.

2. p goes through ni but not n2.

3. p goes through n2 but not ti\.

The situation where p doesn't go through any of the 2 nodes nx and n2 is not

possible, since in that case L(p) is not affected by the merger.

Let's investigate the 3 possible cases.

Casel p goes through both nodes ni and n2:

Let p = (ni,... ,np,ni,n2,n3,... ,nf).

For p to have the maximum increase in length after the merger, we have to

have an edge (np,n2) and an edge (ni,n3) (see figure 4.6).

Let AL := La(p) - Lb(p).

AL = delay(data(np,n2)) + delay(data(nun3)) - comm(nun2).
The comm function includes both the start-up component and the delay

component. Since in general the start-up component is much larger than
the delay component, AL must be negative. Furthermore, in practice the
edges (np,n2) and (ni,n3) are most likely not to exist.

This means that La(p) < Lb(p). Since Lb(p) < CPLb, then La(p) < CPLb.
This is a contradiction since we assumed that La(p) > CPLb.

Case 2 p goes through ni and not n2:

Let p = (ni,...,np,ni,n3,...,nj).

Since ParSet(ni) = ParSet(n2) and nodes nY and ns are dependent, then
nodes n2 and n3 have to be dependent as well. Thus either there exists a
path from n2 to n3 or there exists a path from n3 to n2. Ifthere exists a path
from n3 to n2 then there exists a path from n} to n2 other than (ni,n2).
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Therefore we will have a cycle in the task graph after the merger. Hence we

have to disregard this case, which means that there exists a path from n2 to

n, (see figure 4.7).
Let p' = (n,-,...,np,ni,n2,...,n8,.. .,nj).

Let AL := La(p) - Lb(p').

For AL to have its maximum value, La(p) has to be maximized and Lb(p)

has to be minimized. Hence, the path from n2 to n8 has to be constituted

of the single edge (n2,na).

Also for La(p) to be maximized, we have to have an edge (np,n2) (see figure

4.6).

Therefore, p' = (n,-,..., np, ni, n2,n„..., nj).

Hence,

AL = delay(data(np, n2)) + delay(data(ni,n,)) —comm(ni,n2).

Again, AL must be negative. Furthermore, in practice the edges (np,n2)

and (n2,n3) are most likely not to exist.

This means that La(p) < Lb(p'). Since Lb(p') < CPLb, then La(p) < CPLb.

This is a contradiction since we assumed that La(p) > CPLb.

Case 3 p goes through n2 and not lii.:

Let p = (ni,..., np, n2,n„..., n/).

Since ParSet(ni) = ParSet(n2) and nodes n2 and np are dependent, then

nodes ni and np have to be dependent as well. Thus either there exists a

path from ni to np or there exists a path from np to n^ If there exists a path

from ni to np then there exists a path from ni to n2 other than (ni,n2).

Therefore we will have a cycle in the task graph after the merger. Hence we

have to disregard this case, which means that there exists a path from np to

ni (see figure 4.8).

Let p' = (n{,... ,np,... ,nun2,n3,... ,n}).

Let AL := La(p) - Lb(p').

For AL to have its maximum value, La(p) has to be maximized and Lb(p)

has to be minimized. Hence, the path from np to nx has to be constituted

of the single edge (np,ni).

Also for La(p) to be maximized, we have to have an edge (n1?n3) (see figure
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Figure 4.9: Example: no parallelism loss

4.6).

Therefore, p' = (n,-,... ,np,nx,n2,n3,... ,nf).

Hence,

AL = delay(data(np,n2)) + delay(data(nY,n3)) - comm(nun2).
Again, AL must be negative. Furthermore, in practice the edges (np,nx)
and (ni,n3) are most likely not to exist.
This means that La(p) < Lb(p'). Since Lb(p') < CPLb, then La(p) < CPLb.
This is a contradiction since we assumed that La(p) > CPLb.

Hence, there cannot exist an execution path psuch that La(p) > CPLb
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Merge

Weights:

Actors: 1 (except ^19)
Edges: 10

Figure 4.10: Example: no parallelism loss
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Merge

Weights:

Actors: 1 (except n^ 2 ) fn{
Edges: 10

Figure 4.11: Example: no parallelism loss
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Examples

• Figure 4.9 shows a task graph before and after the merger.

ParSet(ni) = {n6,n&}

ParSet(n2) = {n6,n&}

ParSet(ni) = ParSet(n2)
Hence, there is no parallelism loss as a result of the merger.

Before merger: CPL = 45.

After merger: CPL = 35.

The CPL has decreased.

• Figure 4.10 shows a task graph before and after the merger.

ParSet(ni) = {n6,n7,n6,ni0,nii}
ParSet(n2) = {n6,n7,n8,nio,nn}

ParSet(ni) = ParSet(n2)

Hence, there is no parallelism loss as a result of the merger.

Before merger: CPL = 67.

After merger: CPL = 57.

The CPL has decreased.

• Figure 4.11 shows a task graph before and after the merger.

ParSet(n{) = {n3,n6,n7,n6, ,n9,nio,nn,ni2}

ParSet(n2) = {n3,n6,n7, n8,, n9,n10, nn? ni2}

ParSet(ni) = ParSet(n2)

Hence, there is no parallelism loss as a result of the merger.

Before merger: CPL = 56.

After merger: CPL = 56.

The CPL has not changed.

4.3.2 There is Parallelism Loss

Theorem: Assume that there is parallelism loss when we merge ni and n2.

Then the CPL of the task graph could increase as a result of the merger.
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Figure 4.12: Example: there is parallehsm loss

Figure 4.13: Example: there is parallelism loss

113



Merge •,

Figure 4.14: Example: there is parallelism loss

Merge

Figure 4.15: Example: there is parallelism loss
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Figure 4.16: Example: there is parallelism loss
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Proof

Let's prove the claim in the theorem by studying some examples.
In all the figures used in the following examples, the number next to a node
represents its execution time, and the number next to an edge represents the
communication time caused by the edge.

• Figure 4.12 shows a task graph before and after the merger.

ParSet(n2) = {n3,n4}

DepSet(ni) = {n2,n4}
ParSet(n2) n DepSet(nx) = {n4}

Hence, there is parallelism loss with respect to n2.

Before merger: CPL = PARTIME = 4.

After merger: CPL = 5.

Thus the CPL has increased.

Note that before the merger, the graph had a critical path which contained

ni and not n2 ((ni,n4)), and that is why we have an increase in the CPL.

• Figure 4.13 shows the same graph as in figure 4.12, except for the weights.

Before merger: CPL = 7.

After merger: CPL = 7.

Thus the CPL did not change.

• Figure 4.14 shows a task before and after the merger.

ParSet(n2) = {n3,n4,nb}

DepSet(nx) = {n2,n5}

ParSet(n2) D DepSet(ni) = {n5}

Hence, there is parallelism loss with respect to n2.

Before merger: CPL = 7.

After merger: CPL = 7.

Thus the CPL did not change.

• Figure 4.15 shows a task graph before and after the merger.

ParSet(n2) = {n3,n4,n5,n6}: independent set.

DepSet(ni) = {n2,n3,n4,n5,n6}
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ParSet(n2) C)DepSet(ni) = {n3,n4,n5,n6} = ParSet(n2)

Hence, there is parallelism and usable parallelism loss with respect to n2.

Before merger: CPL = 12.

After merger: CPL = 13.

Thus the CPL has increased.

Note that before the merger, the graph had at least one critical path which

contained ni and not n2 (e.g. (ni}n3)), and that is why we have an increase

in the CPL.

• Figure 4.16 shows a task graph before and after the merger.

ParSet(n2) = {n3,n4,n5}: independent set.

DepSet(ni) = {n2,n3,n4,n5,n&}
ParSet(n2) DDepSet(nx) = {n3,n4,ns} = ParSet(n2)

Hence, there is parallelism and usable parallelism loss with respect to n2.

Before merger: CPL = 23.

After merger: CPL = 13.

The CPL has decreased.

Conclusion

• Given a task graph, if there is parallelism loss as a result of task merging,

the CPL can increase, remain unchanged, or decrease.

• Given a task graph, if there is usable parallelism loss as a result of task
merging, the CPL can increase, remain unchanged, or decrease.

4.4 A Comparison with DSC

The scheduling problem as defined by Tao Yang [18, 58, 59] (a sequence of task
clustering) has some similarities with the way we define the partitioning problem
(a sequence of task merging). Mainly both assume the availability of an infinite
number of PEs and non-zero communication overhead between PEs. As a conse

quence, both problems use the CPL of the task graph as the parallel execution

time.
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Merge n^ and n^

CPL = 15 CPL =18

Figure 4.17: Example of task merging

However, there is a major difference, since merging tasks involves changes in

the task graph9 whereas task clustering doesn't10.

Because of this, there is a major difference in the effect of task merging and

task clustering on the length of execution paths and as a consequence on the CPL

of the task graph.

4.4.1 Task Merging

As we saw previously, task merging could increase the CPL of the task graph. As

an example, consider the task graph in figure 4.17. Before the merger, the critical

path is (n4,n$) and the CPL is 15. After the merger, both execution paths

(ni,723,715) and (n2,n3,n5) increase in length by 4, since they both go through

9When two tasks are merged, they are replaced by a new task and some edges are replaced
by new ones.

10Clustering simply means that all tasks in the same cluster are executed in the same PE.
The only change in the task graph is the addition of pseudo-edges between independent tasks
in the same cluster to impose an execution order in the PE. Also all weights of edges between
tasks in the same cluster are zeroed.
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CPL =15

1 n* and "5 are put
in the same cluster

CPL = 14

Figure 4.18: Example of task clustering

only one of the 2 nodes merged. The CPL increases to 18. This is a side effect of
the merger.

4.4.2 Task Clustering

Task clustering rarely causes the CPL of the task graph to increase. As an exam
ple, consider the task graph in figure 4.18. Before the merger, the critical path
is (n4,n5) and the CPL is 15. After n4 and n5 are put in the same cluster, the
execution paths (nun3,n5) and (n2,n3,n5) are not affected11. The CPL decreases
to 14.

4.4.3 Consequence

Because of the side effect caused by task merging, reducing the CPL using task
merging is much harder than using task clustering. This makes the partitioning

llThe only case when execution paths could increase in length is when pseudo-edges are added.



problem (as defined in this work) much harder than the scheduling problem (as
defined by Tao Yang).

4.5 Criteria for Merging

In this section, we list some criteria that will be used by the partitioning heuristics

to choose the edge to be merged.

We use the results of the previous analysis from the previous sections to obtain

these criteria.

• Edge has to belong to a critical path.

• Edge that belongs to all execution paths (if such an edge exists).

• Edge e such that none of the execution paths go through only one of the 2

nodes connected by e.

• Edge e = (ni,n2) such that ParSet(nx) = ParSet(n2) (no parallelism loss

as a result of the merger).

• Edge e with the largest comm(e). This way all execution paths which go

through e will decrease in length by a maximum quantity.

• Edge e = (ni,n2) such that comp(e) is smallest. This way, if there is an

execution path p that goes through only one of the two nodes ni and n2.

the length of p increases by the smallest possible quantity.

• Edge e = (ni,n2) such that the merger causes the minimum loss in paral

lelism:

(\ParSet(ni)\ - \ParSet(nh2)\) + (\ParSet(n2)\ - \ParSet(nh2)\)

is the smallest.

• Edge e = (ni,n2) such that the merger causes the minimum loss in usable

parallelism:

(MaxPar(ni) —MaxPar(nii2)) + (MaxPar(n2) —MaxPar(nii2))

is the smallest.
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• Edge e such that the merger causes the least amount of execution paths to

increase in length.

For instance, we could choose edge e = (ni,n2) such that the number of

execution paths that go through only one of the 2 nodes ni and n2 is mini

mum.

• Edge e such that the merger causes the largest number of execution paths

to decrease in length.

In other words, we look for edge e such that the number of execution paths

that go through e is maximum.

We have to make sure that the criteria used in our partitioning algorithm are not

too costly. For instance, the 2 last criteria mentioned above require a large time

complexity.
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Chapter 5

The Partitioning Heuristics

Note: In the partitioning algorithm, if there is more than one critical path,

then choose one randomly.

Safe Edges: Let g be a task graph (DAG). An edge e = (ni,n2) is said to be a

safe edge if merging nodes nx and n2 does not cause any cycles to be created in

g. Otherwise, e is said to be an unsafe edge.

A Requirement: An edge e = (nx,n2) in a task graph is chosen for merger if

and only if e is safe. In other words, there should not exist a path from ni to n2

other than (ni,n2).

Lemma: Let g be a task graph (DAG) and e = (ni,n2) be a safe edge. If a

path p in g goes through both nodes ni and n2, then e 6 p.

Proof

Assume a path p in g goes through both nodes nj and n2.

If e £ p then there are 2 possibilities:

1. There is a path from nx to n2 other than (ni,n2). This contradicts our

assumption that e is a safe edge.

2. There is a path from n2 to n\. This means that g has a cycle, which con

tradicts our assumption that g is a DAG.

Hence, e £ p.
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Perfect Edges: We define a perfect edge to be one that belongs to all

execution paths in the DAG. Otherwise, the edge is said to be an imperfect edge.

Risky Edges: An edge e = (nx,n2) is said to be a risky edge if there exists at

least one execution path that goes through only one of the nodes ni and n2.

5.0.1 Heuristics

In what follows, we show a few heuristics that can be used to choose the edge to be

merged during each iteration of the partitioning algorithm. Since these heuristics
are used in each merging step (i.e. merging iteration), we also call them merging

heuristics.

Heuristic 1

1. Find heaviest safe edge e in task graph which is perfect.

If there is more than one such edge e, choose the one such that comp(e) has

the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

If no such edge go to 2, else go to 5.

2. Find heaviest safe edge e in Peru which isnot risky. If there is more than one
such edge e, choose the one such that comp(e) has the minimal value. Ifthere
is still more than one edge that satisfies that, then choose one randomly.

If no such edge go to 3, else go to 5.

3. Find Heaviest safe edge e = (nx,n2) <E Pa-it such that

ParSet(nx) = ParSet(n2).
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

If no such edge go to 4, else go to 5.

4. Find safe edge e = (nun2) € Pa-it such that
(\ParSet(ni)\ - \ParSet(nU2)\) + (\ParSet(n2)\ - |ParSet(nli2)|)
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is the smallest among all safe edges in P •*.
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

5. Merge 2 tasks linked by e.

Heuristic 2

1. Find Heaviest safe edge e= (m,n2) e Pa-it such that
ParSetfnO = ParSet(n2).

If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.
If no such edge go to 2, else go to 3.

2. Find safe edge e = (nun2) e P^it such that

(\ParSet(m)\ - \ParSet(nh2)\) +(\ParSet(n2)\ - \ParSet(mt2)\)
is the smallest among all safe edges in P^.
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

3. Merge nY and n2.

Heuristic 3

1. Find Heaviest safe edge e=(nuni) 6 p„„ such that
ParSet(ni) = ParSet(n2).

If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.
If no such edge go to 2, else go to 3.
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2. Find safe edge e = (ni,n2) G Peru such that

(MaxPar(ni) - MaxPar(nXt2)) + (MaxPar(n2) - MaxPar(nit2))

is the smallest among all safe edges in Pan-

If there is more than one such edge e, choose the one such that comp(e) has

the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

3. Merge ni and n2.

Finding MaxPar(nlt2) without doing the merger

ParSet(nli2) = ParSet(ni) D ParSet(n2).

Or better yet: Express MaxPar(ni<2) in terms of MaxPar(ni) and MaxPar(n2).

Heuristic 4

1. Find Heaviest safe edge e = (ni,n2) € Pcrit such that

ParSet(nx) = ParSet(n2).

If there is more than one such edge e, choose the one such that comp(e) has

the minimal value. If there is still more than one edge that satisfies that.

then choose one randomly.

If no such edge go to 2, else go to 4.

2. Find Heaviest safe edge e = (ni,n2) in task graph such that

ParSet(nx) = ParSet(n2).

If there is more than one such edge e, choose the one such that comp(e) has

the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

If no such edge go to 3, else go to 4.

3. Find safe edge e = (ni,n2) in graph, such that

(\ParSet(ni)\ - |ParSer(nli2)|) + (|ParSei(n2)| - |ParSei(nli2)|)
is the smallest among all safe edges.

If there is more than one such edge e, choose the one such that comp(e) has
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the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

4. Merge nx and n2.

Heuristic 5

1. Find safe edge e in Pa-it that has the largest merge merit.

If there is more than one such edge e, then choose one randomly.

2. Merge 2 tasks linked by e.

Merge Merit of an Edge: The merge merit of an edge e is

merge(e) := a.comm(e) —(S.comp(e), a,(3 > 0.

Determining a and (3

23? Dcomm
P^^comp

RUm™ := communication to computation ratio of target machine.

Remarks

• Heuristic 4, Step2: if (ni,n2) £ Pa-n then no decrease in CPL !!

• Heuristics 3 and 4 have very high time complexities.

• Heuristics 1 and 2 have the lowest time complexities. Heuristic 2 is less

costly than heuristic 1, but heuristic 1 is more efficient than heuristic 2.

• We chose heuristic 1 to do the performance analysis of our partitioning
algorithm.

5.1 Some Properties

The following properties enable us to reduce the time complexities of the parti
tioning heuristics, by making it easier and quicker to find the edge to be merged.



Theorem: For any DAG g such that each node in the graph has at most one

output, all edges in g are safe.

Proof

We use proof by contradiction.

Assume that there exists an edge e = (ni,n2) € g such that e is unsafe.

•^ There exists at least one path p from ni to n2 other than (ni,n2).

Let p = (ni,nxi,nx2,... ,nrm,n2), m > 1.

There are 2 possibilities:

1. nrl = n2. Therefore g is cyclic: contradiction.

2. nrl ^ n2. Therefore ni has at least 2 outputs: contradiction.

Therefore there cannot be any unsafe edges in g.

Lemma: Given a task graph (DAG) and a safe edge e = (nx,n2) in the graph.

e is not a risky edge

Node nx has only one output edge (e), and node n2 has only one input edge (e).

Proof

1. Assume that No execution path goes through only one of the 2 nodes con

nected by edge e.

• If nx has more than one output edge (let the other output edge be e' =
(ni,n3)), then there is at least one execution path p that goes through
edge (nx,n3). Clearly, p cannot go through edge (nun2) (otherwise p
will have a cycle, which means that the graph is not acyclic). Thus, p
cannot go through n2 (otherwise pgoes through both nodes nx and n2,
which implies that it goes through edge e). Hence p goes through nx
and not n2. This contradicts our assumption. Therefore, nx has only

one output edge.
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• If n2 has more than one input edge (let the other input edge be e' =

(n3,n2)), then there is at least one execution path p that goes through
edge (n3,n2). Clearly, p cannot go through edge (ni,n2) (otherwise p
will have a cycle, which means that the graph is not acyclic). Thus, p

cannot go through ni (otherwise p goes through both nodes nj and n2,

which implies that it goes through edge e). Hence p goes through n2

and not n%. This contradicts our assumption. Therefore, n2 has only

one input edge.

2. Assume that node ni has only one output edge (e), and node n2 has only

one input edge (e).

• Any execution path p that goes through nx has to go through edge e

(since ni has only one output edge).

• Any execution path p that goes through n2 has to go through edge e

(since n2 has only one input edge).

Hence, no execution path goes through only nx or only n2.

Corollary: Given a task graph (DAG) such that each node in the graph has at

most one output, and a safe edge e = (ni,n2) in the graph,

e is not a risky edge

Node n2 has only one input edge (e).

Proof: Trivial, from the previous lemma.

Lemma: Given a task graph (DAG) and an edge e = (ni,n2) in the graph.

e is a perfect edge

Node ni has only one output edge (e), and node n2 has only one

input edge (e)

AND

ParSet(ni) = ParSet(n2) = 0



Proof

Assume that e is a perfect edge.

If ni has more than one output edge or n2 has more than one input edge, then

clearly there exists at least one execution path that doesn't go through e. Hence.

e is not a perfect edge, which contradicts our assumption. Therefore, node nx has

only one output edge, and node n2 has only one input edge.

Now. let's prove that ParSet(nx) = ParSet(n2) = 0.
We know that all execution paths go through e. For any node n in the graph

other than nx and n2, n belongs to at least one execution path p. Since p goes

through e, then p goes through nx and n2. Hence, n and nx are dependent and n
and n2 are dependent. Therefore ParSet(ni) = ParSet(n2) = 0.

Lemma: Given a task graph (DAG) such that each node in the graph has at

most one output, and an edge e = (ni,n2) in the graph.

ParSet(ni) = ParSet(n2) <<=>

Node n2 has only one input edge (e).

Proof

1. Assumethat ParSet^) = ParSet(n2).

If n2 has more than one input edge, then it will have at least one input edge

(n3,n2) other than e.
There can be no path between nj and n3, otherwise we must have a path
from n2 to n3 (since nY has only one output edge, which is (ni,n2)), which
means that the task graph is acyclic.

There can be no path between n3 and ni, otherwise we must have a path
from n2 to nx (since n3 has only one output edge, which is (n3,n2)), which
means that the task graph is acyclic.

Hencen3 € ParSet(ni). Clearly, n3 g ParSet(n2). Therefore, ParSet(m) 4
ParSet(n2), which contradicts our original assumption.
Therefore, n2 has only one input edge.

2. Assume that n2 has only one input edge.
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• Vn € ParSet(ni), there is no path from ni to n and no path from n to

nt.

There cannot be a path from n to n2, otherwise we must have a path

from n to ni (since n2 has only one input edge).

There cannot be a path from n2 to n, otherwise we must have a path

from ni to n (because of edge (ni,n2)).

Hence, n € ParSet(n2).

Thus, ParSeifnO C ParSei(n2).

• Vn € ParSei(n2), there is no path from n2 to n and no path from n to

n2.

There cannot be a path from nt to n, otherwise we must have a path

from n2 to n (since nx has only one output edge).

There cannot be a path from n to nx, otherwise we must have a path

from n to n2 (because of edge (nl5n2)).

Hence, n 6 ParSet(ni).

Thus, ParSet(n2) C ParSet(ni).

Therefore, ParSet(n{) = ParSet(n2).

Corollary: Given a task graph (DAG) such that each node in the graph has at

most one output, and a safe edge e = (ni,n2) in the graph.

ParSet^) = ParSet(n2) *=>

e is not a risky edge.

Proof: From a previous corollary and a previous lemma.

5.2 Time Complexity of Partitioning Algorithm

Let E be the number of edges and N be the number of nodes in the program

graph.

2, the initial task graph will have N nodes and at most E edges.



5.2.1 DAG Traversal

As will be seen later, the partitioning algorithm requires traversal of the task

graph, which is a DAG.
In what follows, we describe the general procedure for DAG traversal.

Let Q be a queue (could be implemented as a linked list).

Insert all root nodes in Q (in any order).

Repeat until Q = 0

n f~ Front of Q.

Delete n from Q.

visit(n) % Node n is visited here.

IF n is not a leaf node THEN

Insert all children of n in Q

%The way insertion is done depends on the traver

sal

% type (e.g. breadth-first, depth-first).

Traversal of general DAGs is different from tree traversal. With general DAGs,
ifwe are not careful, a node might be visited more than once. Clearly, this is not
the case for trees. The reason for this is that for general DAGs, a node may have

more than one input edge.

In order to avoid visiting nodes more than once, when a node is put in the queue
Q, it is marked as queued. After a node is visited, only its children which are not
marked queued are inserted in Q.
Hence the correct version of the general algorithm is as follows.

Let Qbe a queue (could be implemented as a linked list).

Insert all root nodes in Q (in any order)

% No need to mark root nodes as queued.

Repeat until Q = 0



n «- Front of Q.

Delete n from Q.

visit(n) % Node n is visited here.

n is marked visited. %This marking may not be needed.

IF n is not a leaf node THEN

Insert all children of n that are not marked queued

in Q, and mark them as queued % So that nodes

are not visited more than once.

% The way insertion is done depends on traversal

% type (e.g. breadth-first, depth-first).

Deadlock Situations:

The algorithm for DAG traversal listed above never leads to deadlock situations

(deadlock means that the algorithm ends and there are still nodes not visited).

To see why this is the case, assume that during the execution of the algorithm

we reach a deadlock situation. This means that the queue Q is empty and there

is at least one node n in the graph that hasn't been visited yet. Clearly, n hasn't

been inserted in Q yet. Therefore, none of its parent nodes has been visited yet.

Let ni be a parent node of n (if any). Then ni was never inserted in Q either.

This goes on until we reach a root node r (since the graph is acyclic), and

establish that r was never inserted in Q. Clearly this cannot be the case since all

root nodes are inserted in Q at the beginning of the algorithm. Hence our

assumption that there is a deadlock situation cannot be true.

Another way to see why we cannot have any deadlock situations is to notice that

starting from the root nodes, we can reach any node in the graph by following

the paths emanating from the root nodes.

Depth-First Traversal

For depth-first traversal, the children of the node just visited are inserted at the

Front of Q. The order among the children nodes in Q does not matter.
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Breadth-First Traversal

For breadth-first traversal, thechildren of the node just visited are inserted at the
Rear of Q. The order among the children nodes in Qdoes not matter.

Remarks

1. Breadth-first and depth-first traversals for general DAGs are different from
the ones for trees. This is so because for general DAGs a node may have

more than one input edge.

2. Time Complexity:

Breadth-first and depth-first traversals take at the most 0(E + N) time
complexity.

Proof:

All nodes in the graph are inserted in Qexactly once and are visited exactly
once. This takes O(N) time.
Each time a node n is visited, each one of its children is examined to see
whether it is marked queued or not. The number of children of n is equal to
the number of output edges of n. Therefore, since each node in the graph is
visited exactly once, this takes 0(E) time.

Parents-First Traversal

In parents-first traversal, a node is not visited until all of its parent nodes are
visited1. The idea here is to keep a counter for each node in the graph (except the
root nodes). This counter is used to keep track of the number of parent nodes of
agiven node that are already visited. When the counter of some node nis equal
to the total number of parents of node n, then we know that all the parent nodes
of nare already visited. Achild node is inserted in the queue Qonly when all of
its parents are already visited.
The procedure is as follows:

lThis is a traversal using a topological order.
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Let Q be a queue (could be implemented as a linked list).

Q^0.

Insert all root nodes in Q (in any order).

FOR all non-root nodes n in the graph DO

% Initialize the counters of the nodes.

n.count <— Number of parent nodes of n

Repeat until Q = 0

n <— Front of Q.

Delete n from Q.

visit(n) % Node n is visited here.

n is marked visited. % This marking may not be needed.

IF n is not a leaf node THEN

FOR all children nodes nt of n DO

n'.count <— n'.count —1 % One more parent

visited.

IF n'.count = 0 % All parents of n' are vis

ited.

THEN Insert n' at the Rear of Q.

Remarks

1. The above algorithm is similar to breadth-first traversal because the inser

tion of the children nodes is done at the Rear of Q.

We could have chosen to do the insertion of the children nodes at the Front of

Q. This way the algorithm would have been similar to depth-first traversal.

2. Deadlock situations:

The algorithm for parents-first traversal never leads to deadlock situations

because our graph has no cycles.

To see why this is the case, let's assume that during the execution of the

algorithm, we reach a deadlock situation.

This means that Q is empty and there is still at least one non-visited node
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n. 2, n has never been inserted in Q. Hence, at least one parent (if any) rtj
of n hasn't been visited yet. This means that m has never been inserted in
Qeither. Hence, at least one parent (if any) n2 of m hasn't been visited yet.
This goes on until we reach a root node r (since the graph is acyclic), and
establish that r hasn't been inserted in Qyet. Clearly this is a contradiction,

since all root nodes are inserted in Q at the beginning of the algorithm.
Hence it is not possible to reach any deadlock situation during the execution

of the algorithm.

3. Time Complexity:

The time complexity of the parents-first traversal is 0(E + N).
Proof:

It takes O(N) to initialize the counters of the nodes. All the nodes in the
graph are inserted in Qand visited exactly once. This takes O(N) time.
Each time a node n is visited, each one of its children is examined (its
counter is updated, and depending of the value of that counter, it may be
inserted in Q). Examining a child node takes a constant amount of time.
The number of children nodes of n is equal to to number of output edges
ofn. Hence, since each node in the graph is visited exactly once, this takes

0(E) time.

5.2.2 Determining the Notions Used by the Partitioning
Algorithm

Determining the CPL

For each node n in the graph, we define length(n) to be the length of the longest
path from any input node to n, nexcluded. Also, for each node n in the graph,
we define pred(n) to be the predecessor node of n along the longest path from
any input node to n, n included (if there is more than one such path, we choose
any one of them). Furthermore, for each output node n in the graph, we define
exec.path.length(n) to be the length of the longest execution path that ends in n.
Finally, we define cp.last to be the last node (output node) in the critical path (if
there is more than one critical path, we choose anyone of them).
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The idea here is to use a parents-first traversal of the graph to determine length(n)

for each node n, and pred(n) for each non-root node n in the graph. Then, we

determineexec.path.length(n) for each output node n. Finally, we choose the leaf

node / such that exec.path.length(/) is the largest among all leaf nodes. The CPL

is equal to exec.path.length(/). Clearly, cp.last is /. To find the critical path Pcrit,

we use the function pred. I is the last node in Pa-it, li = pred(l) is the node

preceding I in Pa-u, l2 = pred(li) is the node preceding lx in Pa-it, etc., until we

reach an input node.

The algorithm is as follows:

Let Q be a queue (could be implemented as a linked list).

g<-0.

Insert all root nodes in Q (in any order).

FOR all non-root nodes n in the graph DO

% Initialize the counters of the nodes.

n.count <r- Number of parent nodes of n

FOR all nodes n in the graph DO

% Initialize length(n) for all nodes n in the graph.

length(n) «- 0

Repeat until Q = 0

n «— Front of Q.

Delete n from Q.

visit(n) % Node n is visited here.

n is marked visited. %This marking may not be needed.

IF n is not a leaf node THEN

FOR all children nodes n' of n DO

n'.count «— n'.count —1 %One more parent

visited.

temp «— length(n) + comp(n) + comm(n, n')

%temp is the longest path from any input
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node to n'

%(n1 excluded) that goes through edge (n, n').

IF temp > length(n')

THEN

% temp is the longest path that has been

traversed so far % from any input node to

n'.

length(n') «— temp

pred(n') <— n

IF n'.count = 0 % All parents of n' are vis

ited.

THEN

Insert n' at the Rear of Q

% Find CPL

CPL <-0

FOR all output nodes n DO

exec.path.length(n) *r- length(n) + comp(n)
IF exec.path.length(n) > CPL

THEN

CPL «- exec.path.length(n)

cp.last «— n

Time Complexity:

The time complexity to find the CPL and the critical path of a DAG

is 0(E + N).

Proof:

It takes 0(N) to initialize the counters of the nodes. It takes 0(N)
to initialize length(n) for all nodes n.

Each node in the graph is inserted in Q and visited exactly once.

This takes O(N) time.
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Each time a node n is visited, each one of its children n' is examined

(its counter is updated and depending of the value ofthat counter it
may be inserted in Q, variable temp is calculated and depending on
its value length(n') and pred(n') could be updated). Examining a
child node takes a constant amount of time. The number of children

nodes of n is equal to to number of output edges of n. Hence, since

each node in the graph is visited exactly once, this takes 0(E) time.

To determine the CPL and critical path of the graph (once length(n)

and pred'n) for all nodes n has been determined), each leaf node / is
examined (exec.path.length(/) is calculated, and depending on its

value CPL and cp.last could be updated). Examining / takes a

constant amount of time. Hence this takes O(N) time at the most.

Finally, starting from cp.last and tracing back along the critical path

until we reach an input node takes at the most O(N) time.

Perfect Edges

Consider an edge e = (ni,n2).

From a previous lemma, we know that if nx has more than one output edge or

n2 has more that one input edge, then e is not a perfect edge. This check can be

done in constant (0(1)) time.

However, if nx has exactly one output edge and n2 has exactly one input edge,

then e could be either perfect or imperfect. In this case, we do a special kind of

graph traversal to determine whether the edge is perfect or imperfect. The way

we traverse the graph is as follows:

We do a complete graph traversal (e.g. breadth-first or depth-first) in

the usual way with the following exception: when node ni is visited,

its child n2 is not inserted in the queue Q. If any leaf node is visited,

then edge e is not perfect. Otherwise (if no leaf node is visited), edge

e is perfect. Hence, whenever a node is visited, we check whether it

is a leaf node or not. If it is, we can stop the search immediately and

conclude that e is not a perfect edge. If after the search is over none

of the nodes visited is a leaf node, then e is a perfect edge.



The idea behind the above procedure is to traverse the graph without going

through edge e. By not inserting n2 in the queue Q, we don't traverse edge

e. If a leaf node is reached, then there must exist at least one path from an input

node to an output node which does not go through e. This means that there much

exist at least one execution path which doesn't go through e. If none of the leaf

nodes is reached, then there cannot be any path from an input node to an output

node which doesn't go through e. This means that all execution paths must go

through e.

Time Complexity:

The graph traversal described above takes at the most 0(E + N)
time.

Therefore, we need 0(E + N) time to determine whether an edge is

perfect or imperfect.

Remark: The above procedure can be used to check whether edge e is perfect

or not even when ni has more than one output edge or n2 has more that one

input edge.

Safe Edges

An edge e = (ni,n2) is safe if its merger does not result in a cycle. For this to
be true, there should not be a path from ni to n2 other than (ni,n2) before the

merger.

The procedure here is almost the same as the one for perfect edges described
above and is as follows:

We do a graph traversal (e.g. breadth-first or depth-first) starting
from node ni (initially the queue Q has only node nx, instead of the
root nodes). After nx is visited, all of its children nodes are inserted in
Qexcept for node n2. This way, we traverse all paths emanating from
nx and which don't go through edge e. If node n2 is visited, then we
can stop the traversal immediately and conclude that e is not a safe
edge (i.e. there much exist at least one path from nL to n2 other than
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(m,n2)). If after all the traversal is complete node n2 is not visited,
then we can conclude that e is a safe edge (i.e. there cannot be a path

from ni to n2 other than (ni,n2)).

Time Complexity:

In the worst case, we will traverse all the graph (except for edge e).
Therefore, the above procedure takes at most 0(E + N) time.

Risky Edges

From a previous lemma, we know that an edge e = (nx,n2) is not risky if and
only ifni has only one output edge and n2 has only one input edge. This check
can be done in constant time. Hence we need 0(1) time to find out whether an

edge is risky or not.

Determining DepSet(n)

Let n be a node in the DAG.

First, we do a traversal of the graph starting from node n (initially the queue Q
has only node n, instead of the root nodes). This will give us all nodes n' such
that there is a path from n to n'. Second, we do a backwards traversal of the
graph starting from node n (we follow the opposite direction of the edges). This
will give us all nodes n' such that there is a path from n' to n.
Initially, we set DepSet(n) to 0. Each time we visit a node (other than n), we

add it to DepSet(n).

In the worst case, this takes 0(E + N) time (complete graph traversal).

Determining ParSet(n)

Let n be a node in the DAG.

One way to determine ParSet(n) is to first determine DepSet(n). By doing

that, all nodes n' in the DAG such that n and n' are dependent are marked
visited. Initially, we set ParSet(n) to 0. Then we do a complete traversal of the
graph, and any node which was not marked visited from the traversal to determine
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DepSet(n) is added to ParSet(n). Note that we have to distinguish between the

nodes that are marked visited during the graph traversal to determine DepSet(n),

and during the complete graph traversal to determine ParSet(n). This can be

done easily by using different markings (for instance, when we are determining

DepSet(n) nodes that are visited are marked with the letter 'D', and when we are

determining ParSet(n) nodes that are visited are marked with the letter 'P').

It takes 0(E + N) time to determine DepSet(n). Then it takes 0(E + N) to do

the complete graph traversal to determine ParSet(n). Hence, it takes 0(E + N)

time complexity to determine ParSet(n).

5.2.3 Time Complexity Using Heuristic 1

Each iteration of the partitioning algorithm consists of choosing the edge to be

merged using some heuristic, then the edge chosen is merged2.

In what follows, we determine the cost for each step of a merging iteration using

heuristic 1.

Step 1: First we determine the critical path and the CPL of the task graph3.

Then for each edge e in the critical path, we check whether e is a safe edge.

For all safe edges s found, we check whether s is a perfect edge. Finally,

among all edges that are found to be both safe and perfect (if any), we

choose the heaviest one.

It takes 0(E + N) time to determine the critical path. This path has at the

most E edges. For each edge e in the critical path, it takes 0(E -r N) time

to determine whether e is safe and perfect or not. Given the m edges that

are found to be perfect and safe (0 < m < E), it takes 0(m) time at the

most to determine the heaviest one.

Hence the total time complexity for step 1 is 0(E(E + N)).

Step 2: The critical path and all m (0 < m < E) safe edges in it are determined
in step 1. Among these safe edges, we determine the ones that are not risky.

This takes 0(m) time. Among the m' (0 < m' < m) non-risky edges found,

2This is called a merging iteration.
3These are actually determined before we start the current
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we determine the heaviest one. This takes at the most O(m') time.

Hence, it takes at the most 0(E) time for step 2.

Step 3: If the DAG is such that each node has at most one output edge, then

using a previous corollary regarding risky edges we conclude that step 2 and

step 3 are exactly the same, and therefore step 3 is skipped. Otherwise, we

do the following.

The critical path and all m (0 < m < E) safe edges in it are determined

in step 1. Among these safe edges e = (ni,n2), we determine the ones such

that ParSet(ni) = ParSet(n2). Therefore for all nodes n that belong to

such edges, we need to determine ParSet(n). Since there are at most N

nodes along the critical path, this takes at the most 0(N(E 4- N)) time.

Given 2 sets Si and S2 that have mi and m2 elements respectively, it takes

at the most 0(mim2) time to find out whether Si = S2. ParSet(ni) and

ParSet(n2) have at most N elements each. Hence it takes at the most

0(N2) time to find out whether ParSet(ni) = ParSet(n2). This check has

to be done for all the m safe edges. Hence the total time this takes cannot be

more than 0(E.N2). Determining the heaviest edge among all edges found

(if any) cannot cost more than 0(E).

Therefore, step 3 takes 0(E.N2) time complexity.

Step 4: The critical path and all m (0 < m < E) safe edges in it are determined

in step 1. Also, for each safe edge e = (ni,n2), we determined ParSet(ni)

and ParSet(n2) in Step3, and we need to determineParSet(nii2) = ParSet(ni)f)

ParSet(n2). Given 2 sets Si and S2 that have mi and m2 elements respec

tively, it takes 0(mim2) time at the most to determine 5i fl 52. Since

ParSet(ni) and ParSet(n2) have at most N elements each, it takes at

the most 0(N2) time to compute ParSet(nii2). This computation has to

be done for each one of the m safe edges found. This takes at the most

0(E.N2) time.

Therefore, it takes at the most 0(E.N2) time to execute step 4.

Step 5: As we saw before, it takes at the most O(N) time to explicitly merge 2

tasks.
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Conclusion:

Amerging iteration using heuristic 1 costs at the most

0(E(E + N2)).
Since there are N - 1 merging iterations in the partitioning
algorithm, the total cost of the partitioning algorithm is
0(EN(E + N2)).

Relationship between E and N:

Let E and N be the total number of edges and nodes respectively in

a DAG g.
E is equal to the sum of the number of output edges of all nodes nin

E = En6«7(nUITlber °f 0UtPUt edSeS °f ")•
For each node n in g, the number mof output edges of n is such that
0 < m < jv - l5. Therefore 0 < E < N(N - 1). E = 0 is the case
when all nodes are output nodes. E= N(N - 1) is the case when
there is an edge from each node n in g to all other nodes in g. These
2cases never occur in practice. In fact, the case when E= N(N - 1)
doesn't occur even in theory, since the graph is acyclic .

Another expression for Time Complexity:

Since E < N2, the time complexity of the partitioning algorithm
using heuristic 1can be written7 as 0(E.N ).

Over-Estimation of Time Complexity:

In the previous analysis, we over-estimated the time complexity of
the partitioning algorithm because we had to assume the worst case
scenario.

"V^HSX^kA hI- aU othe, node, in *then c,eatly the gtaph „U.
have cycles. «

7Since in this case 0(E + N2) is the same as 0{N ).
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