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Abstract

Two of the main phases of compilers for Distributed Memory Multiprocessors
(DMMs) are the code partitioning and scheduling phases. Several satisfactory
solutions have been proposed regarding the scheduling phase. However, much
more needs to be done regarding the code partitioning phase. Existing work
regarding the partitioning problem either considers a specific application and find
an efficient partitioning scheme for it (i.e. no automatic partitioning), or determine
a general solution (automatic partitioning) that is too simple and therefore not
efficient (e.g. exploits only one kind of parallelism level).

Our research deals with the code partitioning phase of the compiler. We pro-
pose a data-flow based partitioning method where all levels of parallelism are
exploited. Given a Directed Acyclic Graph (DAG) representation of the program,
we propose a procedure that automatically determines the granularity of paral-
lelism by partitioning the graph into tasks to be scheduled on the DMM. The
granularity of parallelism depends only on the program to be executed and on the
target machine parameters. Our algorithm uses the Critical Path Length (CPL)
of the task graph as the criterion to compare partitions. Ideally, we want to de-
termine the task graph with minimal CPL among all possible task graphs. The
output of our algorithm is passed on as input to the scheduling phase. Finding an
optimal solution to this problem is NP-complete. Due to the high cost of graph
algorithms, it is nearly impossible to find close to optimal solutions that don’t
have very high cost (higher order polynomial). Therefore, we propose heuristics

that give good performance and that have relatively low cost.
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Chapter 1

Introduction

1.1 Parallel Processing and Multiprocessors

Improvements in device technology are no longer capable of meeting the perfor-
mance demands of today’s applications. Modern sequential computers are ap-
proaching the fundamental physical limitation that signals cannot travel faster
than the speed of light. However, current scientific problems requirements are
ever-increasing.

Parallel processing research (3, 24, 25, 28, 34] offer architectural solutions to
this problem. An example of such architectural solutions is multiprocessor sys-
tems, which are gaining more and more popularity in the research community and
even in the industry. The hope behind designing these machines is that collective
computational power of the multiple processors will enable us to solve very large
problems. Because of the importance of multiprocessors, it is expected that these
machines will become widely commercialized and widely used to solve complicated
and computationally demanding problems.

The advances in hardware design of parallel computers have not been followed
by corresponding advances in software to program these machines. This is es-
pecially true for Distributed Memory Multiprocessors (DMMs)?, for which there
is no shared memory that can be used by all the Processing Elements (PEs)?.

High-level programming abstractions for these machines are almost non-existent,

1From now on, Distributed Memory Multiprocessor will be abbreviated to DMM.
2From now on Processing Element will be abbreviated to PE.



leaving the programmers the task of explicitly programming these architectures
using machine-dependent, low-level abstractions. This approach is error-prone
and forces the programmer to deal with many details outside of the application
domain. More precisely, the programmer has to deal with all parallel processing
tasks required to program the parallel machine. These tasks include explicit parti-
tioning of the program code into parallel tasks, scheduling these tasks on the PEs,
synchronization, and explicit distribution of data among the PEs and insertion of
the appropriate message passing calls needed to exchange data from one remote
memory to another.

Because of the problems mentioned above, providing solutions to ease the task
of programmers of multiprocessors has become a very active area of research in
the last few years [1, 4, 5, 11, 12, 26, 27, 32, 38, 39, 40, 43, 45, 55, 60]. Much
effort is being done to make the parallel processing tasks mentioned above be done
automatically by the compiler of the parallel machine. This way, the user does
not have to know the details of the architecture of the machine. His/her main
concern is the specification of the algorithm for solving the problem.

Several languages have been proposed to program multiprocessors. Some of
these languages are concurrent PASCAL, ADA, OCCAM, parallel FORTRAN
and parallel C. In all of these languages, the programmer has to express the
parallelism explicitly. Furthermore, the programmer is responsible for partitioning
the program, allocating tasks on different PEs and scheduling the execution of the
tasks on the PEs. Hence, programming multiprocessors is still a very complicated
problem.

In order to overcome this problem, much research is being done to efficiently
program multiprocessors using functional languages. For that to be possible, we
need to come up with sophisticated compilers that have powerful optimizers so
that the implementation of these languages can be efficient.

The gain from that is:

e Programming using functional languages is very user friendly and is faster
than using imperative languages, since reading and correcting functional

programs is much easier than reading and correcting conventional languages.



o When using functional languages, the user doesn’t have to know anything
about the details of the machine: free the programmer from the details of

the machine.

o Parallelism is expressed implicitly in the program and is extracted automat-

ically by the compiler.

e Partitioning, allocation and scheduling are done automatically by the com-

piler rather than by the programmer.

All of these advantages can be summarized in saying that using functional
languages to program multiprocessors makes the software much easier to produce
and maintain and thus cheaper. The programmer is provided with a very high
level language, where the main concern is the specification of the algorithm for
solving a problem.

Furthermore, if we compile a functional programming language for a whole
group of multiprocessors, then we will not need to rewrite a program executed on
one of these machines, if we need to execute it on another machine in this group

(portability of software).

1.2 DMDMs: The computers of the future

In order to be able to solve the very large problems that face our scientific com-
munity today, we need computers capable of supporting thousands of powerful
processors, whose aggregate computing capabilities are sufficiently strong. Shared
memory multiprocessors cannot support a big number of PEs, and therefore can-
not be used to solve this kind of problems efficiently. DMMs on the other hand
are potentially scalable to a very large number of PEs, and hence are the right
kind of machines to solve these large-scale problems. A major difficulty with
the current generation of Distributed Memory Machines is that they generally
lack programming tools for software development at a suitably high level. The
user has to deal with all aspects of the distribution of data, since he is provided

with separate address spaces, all aspects of the distribution of work load to the



processors, must explicitly take care of the inter-PE communication by using com-
munication constructs to send and receive data®, and must control the program'’s
execution at a very low level. This results in a programming style similar to as-
sembly programming on a sequential machine. This is tedious, time consuming,
and error prone. The programmer has to face several issues that do not have
their counterparts in sequential programming, such as deadlock which is a major
challenge for programmers of multiprocessors. The programmer also has to de-
cide when it is advantageous to replicate data across processors, rather than send
data. Moreover, debugging could be extremely difficult. This has resulted in very
slow software development cycles and, in consequence, very high software costs.
This research is an attempt at making programming DMMs very user friendly
and therefore make the software cost be low. Our main objective is to provide the
user with a machine independent programming model which is easy to use, and
at the same time performs with acceptable efficiency. This will make the software
portable to different DMMs. Furthermore, changing the parallel program to re-
flect a change in the specifications of the problem will be an easier task. Some
examples of DMMs are: CM5, T3D, Intel Paragon and the Hypercube.

1.3 Outline of this research

Our research deals with the code partitioning phase of the compiler. We propose a
data-flow based partitioning method where all levels of parallelism are exploited.
Given a Directed Acyclic Graph (DAG)* representation of the program, we pro-
pose a procedure that automatically determines the granularity of parallelism by
partitioning the graph into tasks to be scheduled on the DMM. The granularity
of parallelism depends only on the program to be executed and on the target ma-
chine parameters. Our algorithm uses the Critical Path Length (CPL) of the task
graph as the criterion to compare partitions. Ideally, we want to determine the

task graph with minimal CPL among all possible task graphs. The output of our

3This is called message passing.
*From now on Directed Acyclic Graph is abbreviated to DAG.



algorithm is passed on as input to the scheduling phase. F inding an optimal solu-
tion to this problem is NP-complete. Due to the high cost of graph algorithms, it
is nearly impossible to come up with close to optimal solutions that do not have
very high cost (higher order polynomial). Therefore, we propose heuristics that
give good performance and that have relatively low cost.

The rest of this thesis is organized as follows: chapter 2 is about the motivation
of this work. In chapter 3 we define the partitioning problem. Chapter 4 describes
the analysis done to determine the choice of heuristics. Chapter 5 describes the
partitioning heuristics. Chapter 6 talks about the performance analysis of our
algorithm. Finally, chapter 7 summarizes our work and talks about possible future

research.



Chapter 2

Background Research

2.1 Programming styles for multiprocessors

Programming multiprocessors can be broadly classified into 4 methods:

1. Explicit Imperative Programming: In this case, we use an imperative

parallel language such as parallel Fortran or parallel C to program the DMM.
The user is responsible for all dependence analysis and for inserting the par-
allelizing and synchronizing statements in the correct place. In addition, the
programmer is responsible for the data distribution and the data movement
statements (for DMMs only). This programming style is comparable to as-
sembly programming for sequential machines. It is very time consuming and

error-prone yet usually produces the most efficient code.

. Implicit Imperative Programming: Here the programmer uses a con-
ventional sequential language such as Fortran, Pascal or C. It is the job of a
very intelligent compiler to extract the parallelism in the program using data
dependence analysis, insert the appropriate parallelization and synchroniza-
tion primitives, distribute the data across the PEs and insert the required
message passing routines for inter-PE communication (for DMMs only).
Usually the data dependence relations for imperative languages are quite
obscure and many false dependencies exist. Therefore, the compiler is forced
to make very conservative decisions. This results in under-parallelization of
the program. Hence, it is generally very difficult to design such compilers

which are efficient for a wide range of applications.



3. Hybrid Implicit/Explicit Imperative Programming: In this program-
ming style, the language used is an extension of an existing sequential im-
perative language such as Fortran or C. In addition to the usual code, the
programmer is responsible for specifying the data layout (distribution of
data across the PEs) or the processors on which different pieces of code will
execute (such as different iterations of a loop), or both. These specifications
could be part of the source code, or in the form of compiler directives or prag-
mas. With the help of the user specifications, it will be much easier for the
compiler to perform the tasks required to parallelize the code. An example
of such a programming language is Fortran D [26]. Also, another approach
to this programming style is to use an imperative language augmented with
some explicit parallel statements. In this case, the user explicitly specifies
which statements or pieces of code execute in parallel. Again, this facilitates

the analyses done by the compiler.

4. Functional Programming: The above mentioned problems with imper-
ative languages have led to the investigation into other kinds of languages.
Functional languages are an example of that. Here, the programmer uses
a functional language to write the code. All the user needs to know is the
programming language that he/she is using, without any concern with the
details of the machine on which the program is going to execute. It is the job
of the compiler to produce the target program which is executable directly
on the target machine, and compiled using the local compiler. This means
that the compiler is responsible for partitioning the code (i.e. creating the
parallel tasks), scheduling these tasks on the PEs (i.e. task distribution),
managing the tasks for efficient execution on the PEs, and memory man-
agement (e.g. distributing the data across the PEs so that the number of
remote references is minimized). Experience has shown that designing such
a sophisticated compiler is a very hard problem. For example, both optimal
partitioning and optimal data distribution problems are NP-complete. Most

existing compilers rely on programmer interventions to help the compiler



with the analyses. This is done by either enabling or forcing the program-
mer to give some hints to the compiler regarding data distribution, task

distribution and management, or both.

In summary, there is a tradeoff of performance for programming effort. The
more explicit programming DMMs is, the better the performance is but the more
the programming effort becomes. The more implicit we make this task, the less
the programming effort gets at the expense of lower performance. We are faced
with the challenging task of providing the programmer with a high level language,
capable of abstracting the underlying architecture, implicitly detecting the par-
allelism in the program, and managing the parallelism for efficient execution on
a wide range of multiprocessor systems. This should not come at the expense of
performance. This task is obviously very challenging.

Because of all the above mentioned points, we are convinced that functional
languages are the right programming languages to use, in order to have good

programmability for multiprocessors.

2.2 Existing Implementations of Functional
‘Languages on Multiprocessors and their

Inefficiencies

To this day, there is no satisfactory programming environment for multiprocessors,
even using functional languages. This is especially true for DMMs. Most of
the inefficiencies associated with the existing methods have to do with the code

partitioning, data partitioning and scheduling.



2.2.1 SISAL
2.2.1.1 Overview

SISAL! [33] is a general purpose functional language that supports data types
and operations for scientific computation. It is intended for use on a variety of
sequential, vector, multiprocessor and data-flow architectures. A primary goal in
the design of SISAL was to express algorithms for execution on computers ca-
pable of highly parallel operation. It is expected that SISAL will evolve into a
general purpose programming language targeted to run on future parallel com-
puters. Being an applicative language, SISAL uses functions for all operations to
aid the identification of concurrency. This results in a language with very clean
semantics. In addition, SISAL has an elegant functional representation in its in-
termediate forms (the data-flow graphs IF1 and IF2). The language syntax, being
similar to Pascal, is easy to learn and read.

SISAL is a strongly typed language. All inputs and outputs of expressions and
functions are values (no memory address references are used). Each value has an
associated SISAL data type. There are basic scalar arithmetic types (character,
boolean, integer, real and double precision) and aggregate types (arrays, records,
unions and streams).

SISAL supports both sequential (non-product form) and parallel (product form)
loop constructs. The non-product form resembles sequential iteration in conven-
tional languages, but retain single assignment semantics. The product-form loop
allows the programmer to specify iterations that do inner (dot) and outer (carte-
sian) array and stream index computations. All iterations should be independent
of one another. The programmer uses this construct to express parallelism explic-
itly. In addition to iteration forms, SISAL supports program structures for con-
ditional execution. Note that all structured expressions and functions in SISAL

can produce two or more values via multi-ezpression: comma separated lists of

TResearchers at the Lawrence Livermore National Laboratory (LLNL) in collaboration with
individuals from the University of Manchester, Colorado State University and the Digital Equip-
ment Corporation have developed the programming language SISAL (Streams and Iteration in
a Single Assignment Language).
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Figure 2.1: Internal Structure of OSC

expressions producing values of any type. Such expressions are both convenient

and well suited for parallel evaluation.

2.2.1.2 Compilation

SISAL program — Target Machine M (a Parallel Computer, e.g. a shared or
distributed memory multiprocessor).

The SISAL compiler consists of 3 parts: a front end, a back end, and a run-
time system [9, 44, 8, 16, 50, 53]. Figure 2.1 shows the internal structure of an
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existing compiler for SISAL, developed at LLNL. This compiler is called OSC
(Optimizing Sisal Compiler).

1. Front end: Architecture Independent.
SISAL — IF1 graph.
In this step, the syntax analysis of the SISAL program is done. Next, the
program is translated into an intermediate dependence graph form in IF1.

IF1 [51] is data-flow graph language which is applicative.

2. Back end:

IF1 graph — optimized IF1 — IF2 graph — optimized IF2.

Optimized IF1/2 — Language L directly executable on M — use M’s local
L compiler =+ Execute on M.

Some optimization techniques are used on the IF1 graph to get an optimized
IF1. Next, the IF1 graph is extended into an IF2 graph [54] which is a su-
perset of IF1, consisting of the IF1 graph plus some memory requirements
and specifications. More precisely, in the IF2 graph we attempt to preallo-
cate array storage whenever possible, in order to reduce array copying that
results from the incremental aggregate construction problem. IF2 is not an
applicative language since it directly references and manipulates memory.
This optimization phase from optimized IF1 to IF2 is called build-in-place
analysis. The next phase consists of the update-in-place analysis. Here
the IF2 graph is further optimized to help identify at compile-time those
operations that can execute in-place, and to improve chances for in-place
operations at run-time when the analysis fails. The result of this phase is
the optimized IF2 graph. Note that both build-in-place and update-in-place
analysis are optimization phases, that try to reduce the aggregate copying

overhead incurred due to the single assignment nature of SISAL.

3. Run-time system:
This is the library software that provides support for parallel execution,
storage management and interaction with the user. This library of routines is

called from the program L generated by the SISAL compiler. Then program
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L is compiled using M’s local L compiler, and the result is linked with the

run-time system and executed on the target machine.

The compiler analysis up to the optimized IF2 graph is done by the SISAL
group at LLNL. The analysis up to the optimized IF1 is completely independent
from the architecture. The analysis from the optimized IF1 through the optimized
IF2 is architecture independent, but was done with the assumption that the target
machine has a single shared memory. All aggregate data is assumed to be allocated

to a contiguous block of memory.

Portability of OSC

OSC was designed primarily to target shared memory multiprocessors. Complete
implementations exist for various shared memory machines. It is quite easy to
porte OSC to different shared memory multiprocessors. All what is needed is
to make some minor modifications to some low-level routines and some library
routines to reflect the new run-time system and low-level routines of the new
target machine.

It is however much harder to porte OSC to DMMs. This is so because when
writing a parallel program to target a DMM, we have to deal with the data
partitioning, which is not an issue for shared memory multiprocessors. Hence
the compiler has to take care of the non-local memory accesses and the message
passing mechanism, which are not included in the OSC compiler. However, the
parts of OSC which are architecture independent can still be used.

As for our project, we can use all the OSC analysis which is architecture
independent. In addition, the analysis that includes IF2 and the corresponding
optimizations can be used as well, despite the fact that IF2 was designed with
a single address space in mind. This is true because as we will see later in the
proposed research, the virtual shared memory mechanism is used. As for the graph
partitioning, our proposed method is much more complex than the one used in

OSC, and therefore that part of the compiler will have to be redesigned.
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2.2.1.3 Current Implementations

SISAL has proven to be an efficient language for solving many scientific applica-
tions. It can be executed on both conventional and novel architectures. Current
implementations of SISAL exist for sequential machines and for shared memory
multiprocessors (9, 16, 6, 7, 52, 2, 56, 37, 35, 10, 30, 29, 36]. It has been targeted
on most Unix-based uniprocessors. There is also ongoing research in distributed
memory SISAL implementations [19, 20, 21, 23, 22, 41]. Also the intermediate
data-flow graph representation of SISAL programs can be executed on data-flow
machines.

SISAL competed very well with sequential and parallel execution performance
of imperative languages such as C and Fortran, on uniprocessor machines as well
as various multiprocessors and vector architectures.

However, we still have to come up with efficient implementations of SISAL on
DMMs, that can compete with conventional languages implementation on these
machines.

Some of the machines on which SISAL was implemented are: Sun workstations,
Vax machines, Macintosh II, Sequent Balance, Cray X/MP, Alliant FX/8, Encore
Multimax, Warp machine, Connection Machine, nCUBE/2, HEP, Transputers,

and the University of Manchester Data-flow Machine.

2.2.1.4 Inefficiencies of OSC

The main problem with the OSC compiler is the simplicity of the partitioning
scheme used. It is syntax based and exploits the parallelism used in FORALL
loops only. Hence the granularity of parallelism is defined by language constructs

and the programming style affects the multiprocessor performance.

2.2.2 VISA

VISA [21, 23, 22] is a system that targets SISAL to DMMs. It uses the same simple
partitioning scheme used by OSC. The virtual shared memory paradigm is used
for data partitioning. The mechanism for translating virtual addresses to physical

ones is very costly, and therefore introduces tremendous run-time overhead. This
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system uses a dynamic scheduling scheme, where each PE keeps its own ready
queue. This introduces much run-time overhead. Also, because of the distributed

ready queues, this method causes load imbalance.

2.2.3 Occamflow

Occamflow [31, 17] is an implementation of SISAL on a distributed memory mul-
tiprocessor of transputers. The compiler takes as input a SISAL program, and
generates an OCCAM program loadable on the network of transputers. Because
the target code of the compiler was OCCAM, many drawbacks followed. First
of all, using OCCAM the router (for communication between PEs) has to be
explicitly written as part of the code. Because of the nature of the OCCAM pro-
gramming environment, there is no way for the compiler to generate this router
automatically, or to produce a universal router that works for all applications.
Hence, the programmer has to write this router manually in OCCAM. In addi-
tion, the programmer has to add some OCCAM code to the output generated
by the compiler. For example, all variable declarations in OCCAM have to be
written manually by the programmer. Furthermore, since OCCAM does not al-
low recursive function calls, no implementation for recursive calls was done. More
importantly, the partitioning scheme was too simple (syntax based) and was not
even implemented. The compiler generates the code for one transputer and it is
the job of the programmer to partition and load the code on the network. This
was mainly due to the primitive nature of the programming environment of the
transputers available at that time (for example, there wasn’t any operating system
available that provides routines that take care of the low level details, such as the
routing between PEs). Also, the data partitioning has to be done manually by
the programmer using OCCAM.

2.2.4 TAM (Threaded Abstract Machine)
2.2.4.1 Brief Description

TAM [13, 14] defines a self-scheduled machine language of paralle] threads, which

provides a path from data-flow program representations to conventional control
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flow. It presents a model that exploits fine grain parallelism and fine grain syn-
chronization, without any specialized hardware support (with minimum hardware
support). It is an attempt to prove that exploiting fine grain parallelism is a com-
piler and program representation issue rather than a hardware issue, and that a
conventional parallel machine coupled with the right program representation and
the right compiler is able to do that efficiently.

The overall goal in compiling to TAM is to produce code that is latency tol-
erant, yet obtain processor efficiency and locality.

All memory transactions and message passing primitives are split-phase. This
encourages a latency tolerant style of code generation.

All synchronization, scheduling, and storage management is explicit and under
compiler control, yet dynamic. This enables the compiler to optimize the use of
processor resources for the expected case rather than the worst case.

The TAM model shows that implicit scheduling in hardware is of questionable
value, as it prevents register usage beyond thread boundaries. Exposing scheduling
to the compiler allows it to synthesize particular scheduling policies in specific
portions of the program.

Note that the goal of TAM research is not to prove that the exploitation of
fine grain parallelism is the most efficient approach, and that it is better than
the other existing methods. It is merely an attempt to come up with a software
approach for fine grain parallelism, and see how much performance can be obtained
from it. In fact, all TAM performance results give statistics regarding context
switches frequency, dynamic thread length, duration of a quanta, etc. Nothing
is mentioned about absolute performance of TAM, such as total execution time
of real applications, and their comparison with the currently existing approaches.
It is quite obvious that the absolute performance of TAM is slower than other

approaches that use a coarser grain parallelism.

2.2.4.2 Drawbacks

In attempting to exploit fine grain parallelism without any hardware support,
TAM tends to introduce extra run-time overhead due to the software support ap-

proach needed to implement its model. This overhead is due in part to the explicit

"
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scheduling of threads and frame activations. Exploiting fine grain scheduling is an
expensive process. Although the fine grain parallelism in TAM is exploited within
a single processor and not across the processors?, it still generates more inter-PE
communication overhead than coarse grain parallelism. Because fine grain paral-
lelism is exploited within single processors, roughly the same amount of remote
data will be requested by the processors even if we had a coarse grain parallelism.
However, since the code inside each processor is divided into threads and inlets,
it is more likely that a larger number of smaller messages will be requested, for
threads and inlets use smaller messages. Since each message sent on the network
has a start-up time in addition to the time taken to communicate the data, this
will result in higher communication overhead. In addition to the above problems
associated with the TAM model, we have to mention that it would be difficult to
come up with an automatic compiler to target a high-level language to the parallel
assembly language defined by TAM to represent programs (TL0). It is quite hard
to partition the code into threads and inlets that result into an efficient execution.
Furthermore, code-blocks® correspond to function bodies and loop bodies. Hence

the partitioning into code-blocks is too simple.

2.2.5 Sarkar’s Work

Sarkar [47, 46, 48, 49] developed a partitioning and scheduling method for func-
tional languages represented by data-flow like graphs. The graphs that he used
are a generalization of the IF1 graph used for SISAL. His method targets both
shared and distributed memory multiprocessors.

The multiprocessor model is applicable to all kinds of multiprocessors, in-
cluding both shared and distributed memory multiprocessors. This model was

so general that it didn’t represent accurately real machines and was too simple.

2Code-block activations are distributed across the processors, but each code-block activation

is mapped to a single processor, and therefore all threads within a code-block are executed inside
a single processor.

3This is the unit of parallelism between processors, since each entire code-block activation is
mapped to a single processor.
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For instance, the architecture model does not take into account the true charac-
teristics of DMMs and their limitations, such as the high cost of inter-processor
communication.

Also, the program execution model is not efficient for DMMs. It allows any
compound node in the graph to execute in parallel, in which case the compound
node and nodes belonging to it (i.e. nodes that belong to subgraphs of the com-
pound node) execute in separate processors. For DMMs this is not efficient since
it could generate too much communication overhead at run-time. For instance,
LOOPA and LOOPB nodes* are allowed to execute in parallel. To do this, the
nodes that belong to the subgraphs of the LOOP® node are distributed across
the processors, and the processor where LOOP node executes is responsible for
distributing the input(s) and gathering the output(s) of the LOOP node. This
generates too much traffic in the network, since for each iteration of the loop, we
have to communicate messages between the processors involved in the execution
of the LOOP node and nodes belonging to its subgraphs.

Another problem with Sarkar’s approach (refer to Compile-time Partition-
ing and Scheduling part) has to do with compound non-FORALL nodes which
are macro nodes® (let’s call these nodes n,,). When partitioning a graph g, all
subgraphs of the n,, nodes are partitioned first (using a recursive call to the par-
titioning algorithm), then the n,, nodes are assigned to tasks. Therefore an n.,
node and nodes belonging to its subgraphs will belong to different tasks. Hence
the tasks will not be guaranteed to be independent of each other. This violates
the convexity constraint and makes the compiler analysis more complicated.

The code partitioning method proposed by Sarkar is too simple. More will be
said about this later in this chapter.

Finally, Sarkar’s work does not solve the data distribution problem for DMMs.

“LOOPA and LOOPB nodes correspond to the (Repeat ... Until) and (While ... Do) con-
structs respectively in SISAL.

*LOOP stands for LOOPA and LOOPB nodes.

®A macro node is a node that is allowed to execute in parallel.
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2.3 Main Phases of Compilers for DMMs

In addition to all phases required by compilers for conventional sequential ma-
chines, compilers for DMMs also include phases required for parallel processing.
The most important of these phases are: identification of parallelism, program
code partitioning, scheduling, data partitioning (also called data distribution),
and insertion of the appropriate message passing calls needed to exchange data

from one remote memory to another.

2.3.1 Forms of Parallelism

The parallelism in a program is exposed implicitly by a programming language or
a compiler, or explicitly by the programmer. The granularity of parallelism is
the size of the schedulable unit of parallelism, called grain. The different forms

of parallelism are characterized by the grain size and are as follows:

o Procedure or loop level parallelism uses entire loops or procedures (or func-
tions), or different iterations of the same loop as grains. Because the gran-

ularity here is large, we call this coarse grain parallelism.

o Thread level parallelism uses basic blocks as grains. A basic block is a
sequential piece of code that is of medium size, and that does not contain
any loops or jump instructions. These blocks are also called threads. The
thread is called blocking if it has long latency operations, such as read and
write. It is called non-blocking if it does not have any long latency operations.

This form of parallelism is called medium grain parallelism.

e Instruction level parallelism uses individual instructions as grains. Since
the granularity in this case is very small, this is called fine grain parallelism.
This offers the largest amount of parallelism at the expense of much run-time

overhead.

Managing the exposed parallelism in an application is a hard problem. Once
the program is partitioned into grains, we need to do the scheduling, load bal-

ancing, and synchronization among other tasks. As the granularity decreases, so
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does the overhead of scheduling and load balancing. However, the synchronization

overhead increases as the granularity decreases [48].

2.3.2 Identification of Parallelism

During this phase, we have to identify all operations that can execute concurrently.
Usually this is done by drawing the dependency graph of the program. For im-
perative languages, this task is quite difficult, due to the side effects caused by
the updating of variables. For functional languages, this process is quite simple,
since all data refers to values and not memory cells. The parallelism is implicit at
all levels, and data dependencies are the only sequencing constraints. As soon as
an instruction has all its data ready, we can safely execute it. Even though IF2 is
not purely applicative, it is designed in such a way that data dependency ensures

that when all data of any actor is ready, we can safely execute it.

2.3.3 Program Code Partitioning

Once the parallelism is identified, the first thing that we have to do in the back end
compiler analysis is to partition the IF2 (or IF1, depending on which intermediate
form we use) graph.

Partitioning of a parallel program is the separation of program operations into
sequential tasks that can be executed concurrently. In other words, the partition
specifies the sequential units of computation in the program’. More precisely, dur-
ing this phase, we group the concurrent operations identified during the previous
step into sequential tasks to be executed in parallel. Therefore, when partitioning
the code, one of the things that we have to decide on is the granularity of the
partition®. There is a trade-off between fine and coarse grain partitioning. The
finer the partition is, the more available parallelism we have, and the smaller the
load balancing overhead is. However, this comes at the expense of higher over-
head to exploit parallelism, such as higher communication and synchronization

overhead.

"We call these sequential units tasks.
8We can have fine grain partitioning, coarse grain partitioning, or something in between.
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For DMMs, it is particularly important to reduce both inter-PE communica-
tion and load imbalance.

The partitioning problem for a general DAG (Directed Acyclic Graph) where
nodes represent computations and arcs carry the data values is NP-complete,
ruling out the possibility of a pseudo-polynomial algorithm. Therefore all we can
do is to try to come up with a heuristic algorithm that gives us a performance as
close to the optimal one as possible. Generally, this is still a very hard problem. An
algorithm that gives a satisfactory solution has yet to be found. Some partitioning
methods were proposed in [48, 47, 46, 49, 57, 12].

The partitioning of a program can be done either at compile-time or at run-
time. Run-time partitioning has the advantage of using run-time information
about the behavior of the program, which may lead to a better partition. How-
ever, this comes at the expense of introducing tremendous extra overhead during
program execution. Hence, the partitioning algorithm has to be very simple. We
can also have a hybrid compile-time/run-time partitioning. Here, an initial par-
tition is done at compile-time. Then at run-time, we can use some information
regarding the behavior of the program, to repartition the code and come up with
a better partition. This method suffers from the same drawbacks associated with

the pure run-time scheme. Mainly, it introduces too much run-time overhead.

The different partitioning methods for distributed memory machines can be
classified as follows:

2.3.3.1 Construct based Partitioning

This is also called syntaz-based partitioning. Here we try to exploit only the
parallelism offered by the syntax of the language. For example, in Sisa] we have
the pipelined parallelism in streams and concurrency in FORALL loops. Function
calls could also be spawned as separate tasks. Since in this case the granularity of
parallelism is defined by language constructs (e.g. compound expressions and user-
defined functions), the programming style dramatically affects the multiprocessor

performance. Clearly, this is indesirable.
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This is the simplest partitioning method in terms of analysis of the program.

However it usually gives us the least amount of parallelism.

2.3.3.2 Data-flow based partitioning

In this method, we try to exploit all kinds of parallelism available in the DAG. Any
two nodes are allowed to execute in parallel, provided that no data dependency
exists between them. Any node is allowed to execute as soon as all input data is
available.

For imperative languages, much analysis is required to determine all the par-
allelism available in the program. However for functional languages, this is a

straight forward task.

2.3.3.3 Function-level partitioning

All functions which are independent of each other may be executed in parallel. For
functional programming, two functions are independent of each other if the input
of neither one is the output of the other. The Church Rosser property ensures
that the order of evaluation of functions which are independent of one another will
not affect the outcome of the program. This method might result in a granularity

which is too coarse, and therefore we might not get enough parallelism to keep all
PEs busy.

2.3.3.4 Data driven code partitioning

In this approach, the data is partitioned and mapped to the PEs. A processor
is then thought of as owning the data assigned to it; these data elements are
stored in its local memory. Then the work is distributed according to the data
distribution: computations that define the data elements owned by a processor

are performed by it. This is called the owner-computes paradigm®. Note that

9The owner-computes rule states that all computations updating a given datum are per-
formed by the processor owning that datum.



we can apply the owner-stores paradigm'® instead. Our hope in doing so is that
the code will be mapped to the PEs in such a way that all (or at least most) of
the data references are local. This results in lesser communication on distributed
memory machines.

The success of this approach is very program dependent. For programs where
the information about some of the data (e.g. array size) can only be determined
at run time, the implementation of this method might be quite difficult and could
introduce much run time overhead.

Furthermore, this approach over-emphasizes the locality issue. When we dis-
tribute the data first and then distribute the code in such a way to preserve
locality of reference, the resulting code partition may be unbalanced, leading to
poor performance.

For an example of a data driven code partitioning approach, refer to [26).

2.3.3.5 Code based data allocation

In the code based approach, the program is partitioned so that each processor
gets approximately an equal share of the program code (load balancing). Then,
depending on the data references, the data is allocated to different PEs so that
communication is minimal. Here, we can also apply the owner-computes or owner-
stores paradigms (or possibly a mixture of the two).

Again, the success of this method is very program dependent. For programs
where the information about some of the data (e.g. array size) can only be de-
termined at run time, the implementation of this method might be quite difficult
and could introduce much run time overhead. Furthermore, the goals of locality
of data and load balanced code could be conflicting, and for certain types of codes
impossible to achieve simultaneously. In addition, this approach may lead to high

communication overhead, that would nullify all the benefits of parallelism.

1%The owner-stores rule states that the right-hand side expression of an assignment is com-
puted by a processor which owns data appearing in that expression and this result is then sent
to the processor owning the left-hand side datum.



2.3.3.6 SPMD Model of Computation

In the SPMD (Single Program Multiple Data) approach, also called Data Parallel
Model of Computation, we make use of the regularity of most numerical com-
putations. The processors execute essentially the same code in parallel, each on
the data stored locally. In other words, the multiprocessor executes in a similar
way to an SIMD (Single Instruction Multiple Data) machine. Note however that
this approach is applicable only to specific constructs like forall loops and not all
algorithms can be executed in this way. An Algorithm that can be handled using
this approach has to be some code that is executed several times in parallel using
multiple sets of data, such as a parallel loop. The advantages of this model of com-
putation is its simplicity and the fact that there is no inter-PE communication.
However, for most real life algorithms, there is no way of avoiding communication

between PEs.

2.3.3.7 Programmer intervention

Sometimes, the user is required to supply information to the compiler, through
compiler directives, assertions, etc., with regard to global, high-level properties of
the algorithm whose detection by even the most able systems may be intractable.
One example of this is the specification of FARALL loops to indicate the possible
parallel execution of loop iterations. Another example is when the programmer
asserts some information about some variable in the code (e.g. the variable is a
prime number), which enables the compiler to make some decisions regarding the
execution of that code.

Some parallel languages require the programmer to specify some information,
regarding the partitioning of the program, in the source code. For instance Hi-
ranandani et al. [26] use the data driven partitioning scheme. They define lan-
guage extensions to Fortran called Fortran D. In this language, they include con-
structs for managing data distribution in non-shared address spaces. The user is
responsible for specifying the data layout. Then the compiler uses the informa-
tion regarding the data structures decomposition and the owner-computes rule to

partition the program.



This approach makes the task of the compiler much simpler. However, the goal
of making the programming of multiprocessors easy and convenient, and freeing
the programmer from the details of the machine is defeated here. Furthermore,
due to compile time unknowns, this method might lead to poor performance for
some programs.

Many researchers believe that no compiler can on its own suffice to support the
highly complex and challenging task of producing efficient programs for parallel
systems [60, page 285]. They believe that advanced compilation systems will be
integrated into a sophisticated programming environment that includes an exten-
sive set of programming support tools. These will be needed to provide guidance
in a number of forms. Their claim is that Parallelizing compilers cannot always
perform well without assistance from the user. The programmer may play an
important role, informing the system via assertions of global relationships (some
of which may be due to high-level properties of the algorithm) that an automatic
state-of-the-art tool cannot detect. One of the main reasons of this is the inde-
cidability or intractability of many relevant problems and the lack of adequate

heuristics for handling them.

2.3.3.8 Hierarchical Partitioning

Here the program to be partitioned is represented by a hierarchical graph. A
hierarchical graph is one for which the nodes could contain subgraphs. These
subgraphs could have nodes which in turn contain subgraphs. This gOes on recur-
sively and without any limit. IF1 and IF2 are examples of hierarchical graphs.

The hierarchical partitioning procedure is a recursive one, which takes as argu-
ment the program graph, and is then recursively applied on the subgraphs. Hence,
the partitioning is done starting from the lowest-most level subgraphs and goes
on to the next higher level subgraphs, until we reach the original program graph.
The partitioning method proposed by Sarkar (48] is an example of a hierarchical
partitioning procedure.
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2.3.4 Scheduling Issues

Once the program code has been partitioned into parallel tasks, we need to manage
these tasks (i.e. managing the parallelism) for efficient parallel execution on the
multiprocessor. The management of these tasks is called scheduling. Stated more
formally, scheduling consists of assigning the tasks that result from partitioning
the program (i.e. exposing the parallelism) to the available processors so as to
minimize the parallel execution time. For each task (or process), we have to decide
on when to execute that task and where!! (i.e. on which processor) to execute it.
Clearly, for the tasks that are assigned to the same processor, we have to decide
on the order of execution of these tasks.

The most obvious answer to the when question is to execute tasks as soon
as their inputs are available'? [19, 20]. However, this could cause our system to
saturate and hence deadlock. This is so because some parent tasks that are being
executed might not find any available PEs on which to spawn their child subtasks
to give them the values needed to complete. Thus, a throttle is needed.

As was mentioned before, for DMMs, it is particularly important to reduce
both inter-PE communication and load imbalance. Scheduling is necessary to
achieve a good processor utilization and to optimize inter-PE communication in
the target multiprocessor.

It is well known that finding the optimal scheduling is an NP-complete prob-
lem. Although scheduling is an old, notorious problem with numerous versions
and has attracted the attention of many researchers in the past, the results known
to date offer little help when dealing with real parallel machines. The complexity
of the scheduling problem has led the computing community to adopt heuristic
approaches for each new machine. For maximum performance, the problem should
be entirely left to the user'®. However, this makes programming the multiproces-
sor very user unfriendly, tedious and very time consuming. Worse yet, this work

cannot be ported to other parallel machines if the need arises to run the same

Y This is called task distribution.
12This is a due to the functional nature of our intermediate form.
13This involves hand-coding and manually inserting system calls in the program.
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problem in a different machine. On the other hand, it is very difficult or impos-
sible to find a universal solution for problems such as scheduling, minimization
of interprocessor communication, and synchronization. The reason is that these
problems are architecture dependent. A realistic goal would be to find systematic
and automatic solutions for the scheduling problem for large classes of machine
architectures. For some existing scheduling methods, refer to [46, 48, 42, 27].
When performing the scheduling, there are several factors that have to be
taken into account. Some of these factors are the communication and scheduling
overhead, and the task granularity. Low task granularity results in high scheduling
and inter-PE communication overhead.
4

The scheduling methods can be broadly distinguished into three classes: static'

dynamic®® and hybrid static/dynamic.

2.3.4.1 Static Scheduling

In static scheduling, processors are assigned tasks at compile time, before execu-
tion starts. When program execution starts, each processor knows exactly which
tasks to execute.

When static scheduling is used, there is no overhead due to run-time schedul-
ing; all inter-PE synchronization and communication is directly compiled in the
code. Both task scheduling overhead and load balancing overhead are eliminated.
Further, there is a greater opportunity to optimize inter-PE communication when
the processor assignment is known at compile-time. A global compile-time anal-
ysis reduces communication overhead for the entire program. Such an analysis
cannot be done on the fly at run-time. However, the efficiency of the scheduling
is questionable in this case, because many of the facts regarding the behavior
of the program, such as memory access patterns are only known at run-time!®.
Also, many “adaptive” applications change their access patterns and data loca-

tions over their execution lifetime. For these kind of programs, a compile-time

4Static scheduling is also called compile-time scheduling.

'*Dynamic scheduling is also called run-time scheduling.

15Some of the examples of this are: array subscripts which are functions with unknown values
at compile-time, conditional statements, etc.



solution might lead to a very inefficient execution, and therefore a run-time or a
hybrid run-time/compile-time approach should be used. For programs with fairly

predictable execution times at compile-time, this approach could be very efficient.

2.3.4.2 Dynamic Scheduling

A scheduling scheme is called dynamic when the actual processor allocation is
performed by hardware or software mechanisms during program execution (i.e.
at run-time). Therefore, during dynamic scheduling, decisions for allocating pro-
cessors are taken on-the-fly for different parts of the program, as the program
executes.

With dynamic scheduling, the run-time overhead becomes a critical factor and
may account for a significant portion of the total execution time of the program.
For static scheduling, the compiler or an intelligent preprocessor is responsible for
making the scheduling decisions. However, for dynamic scheduling, this decision
must be made at run-time in a case by case fashion, and the time spent for
this decision-making process is reflected in the program’s total execution time.
Note that we can have the scheduler make scheduling decisions for a chunk of the
program, while other parts of the program are already executing on the processors.
This may reduce the overhead but does not eliminate it. The large overhead of
run-time analysis necessitates very simple scheduling algorithms.

For shared memory multiprocessors, dynamic scheduling is much easier to deal
with. Shared memory implementations of SISAL uses a shared ready queue to
enqueue all the tasks that are ready to be executed'”. This queue is allocated from
shared memory, and therefore is accessible to all processors. Whenever a processor
becomes idle, it fetches a task to execute from the ready queue. A throttle has
not been needed for this approach. The advantage of this scheme is that there is
no need for any dynamic load balancing algorithm, since it is done implicitly by
the use of the shared ready queue. The disadvantage is that the queue is a shared
resource that must be accessed using a critical section. This results in contention

for the shared resource, which causes run-time overhead that consists of the time

17These are either newly created tasks, or tasks that were previously blocked (e.g. waiting for
memory to become available or some value to be computed) and become unblocked.
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required to execute the lock protocol, and the time the process has to wait for the
lock (in case it has to wait).

Dynamic scheduling for DMMs can be performed through a central control
unit'® or it can be distributed. Dynamic scheduling through a central control unit
usually creates too much communication overhead and results in a bottle-neck at
the processor where the central control unit executes. Hence it is usually more
efficient to adopt a self-scheduling scheme. A special case of scheduling through
distributed control units is self-scheduling. As implied by the term, there is no
single control that makes global decisions for allocating processors, but rather
the processors themselves are responsible for determining what task to execute
next. For an example of a self-scheduling method called guided self-scheduling'®,
refer to [42]. Another way to implement distributed dynamic scheduling is to
establish a fixed spawning pattern for each node®®. Here, the processor executing
a task uses a predefined method to decide on where (i.e. on which processor) to
execute the child tasks. This method needs some load balancing scheme to try
to keep the work evenly distributed on all processors. In fact, when we use a
dynamic scheduling mechanism, dynamic load balancing is usually needed. One
more scheme to implement distributed scheduling is to adapt the shared ready
queue idea of the shared memory implementation of SISAL. Here, each processor
is givén its own private ready queue. Each processor monitors its own private
ready list, which now can be done without having to obtain exclusive access, and
executes any task that arrives. Some mechanism is still needed to decide to the
queue of which processor to send a task when it is ready to execute (for instance
when a child task is newly created by the parent, or when a previously blocked
task is ready to resume execution). Unlike for the shared memory case, we now
don’t need to obtain critical section locks to access the ready queue. Hence, the
overhead for contention is eliminated, and we now allow for a scalable number
of processors to be employed. However, we now no longer have implicit load

balancing capabilities, and therefore some dynamic load balancing algorithm is

'8Some people call this unit the arbitrator.
1%This method applies to shared memory machines and is restricted to arbitrary nested parallel
loops.

20This is the method that was first used for shared memory implementation of SISAL.



needed, for it is now possible for the system load to become unbalanced. For a

detailed implementation of this scheme, refer to [23].

2.3.4.3 Hybrid static/dynamic scheduling

We can also have a hybrid static/dynamic scheduling. In this case, we start with
an initial scheduling at compile-time, and allow the assignment of tasks to PEs
to change at run-time (task migration), if we know that this will give us a better
performance. For example, we might have to do some task migration in order to
balance the load.

During run-time, it is not possible to have all the knowledge about the topology
of the program. Compiler support of some form is required for that. Therefore,
a hybrid dynamic/static scheduling is probably the best approach to solve this
problem. In this scheme, the compiler helps the arbitrator or the processors®! in
making a scheduling decision.

The hybrid approach could benefit us from the low overhead of static schedul-

ing and the better task assignment of dynamic scheduling.

2.3.5 Distribution of Data

Data distribution is the task of dividing the data structures that a program uses
among the memory elements so as to minimize the total execution time of the
program. This is equivalent to distributing the data structures so that the num-
ber of remote references is minimal. Therefore, it is necessary to keep the task
distribution and the data distribution closely tied, and keep these two aligned at
all times. Ideally, we want all memory accesses to be local. Clearly, this is not
possible.

The data distribution problem is a very difficult and complex one. In fact,
finding the optimal data partition is an NP-complete problem. Nevertheless, if
good performance is to be achieved, this problem has to be addressed. Since the
optimal partition is very hard to find, we have to settle for heuristic methods

that give us performance as close to optimal partition as possible. An appropriate

21depending on whether we use a central or a distributed scheduling scheme.
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Figure 2.2: Classification of data distribution methods

heuristic method for automatically determining a nearly optimal data partition

has yet to be found.

2.3.5.1 Classification of data distribution methods

Usually, the data partitioning methods are classified according to whether they

are implicit or explicit, compile-time or run-time (see figure 2.2).

e compile-time data distribution: The distribution of data structures is done
at compile-time. This is also called static data distribution. By static we
mean that the distribution remains the same throughout the life-time of the
program. There are several ways this is done, and in what follows we list a

few of them:

1. The compiler uses some distribution function to partition the data.
Distribution functions can be either predefined or user supplied. Typi-
cally, a distribution function has many parameters that control the way
data structures are partitioned. Ideally these parameters are chosen
automatically by the compiler, after doing some formal analysis, such
as analyzing the access patterns, or with the help of run-time profiles
[Sar89). In the case of run-time profiles, the compiler watches several
characteristic runs and notes the distribution patterns used for those

runs. The compiler then selects a distribution function that will come

30



closest to the observed reference behavior. Note that this approach is
inefficient if the profile runs are not characteristic of the actual refer-
ence patterns, or if the reference patterns vary with the input data.

Due to the complexity of this task, many compilers rely on some user in-
tervention, either in the form of language extensions or pragmas (com-

piler directives). For an example of that, refer to [26].

2. The compiler uses a random distribution of data structures. In this
case, the compiler tries to make the distribution even across all PEs
without regard to the access patterns. Naturally this is a very simple

scheme. But its performance could be unacceptable.

o Hybrid compile-time/run-time data distribution: The term hybrid refers
to the possibility of changing the distribution associated with the data-
structure at run-time. An initial distribution is done by the compiler. Then
during run-time, a redistribution (re-mapping) of the data is done in
order to reduce the remote accesses. This method is efficient in case we
have many compile-time unknowns, such as array subscripts which cannot
be determined at compile time. Also for programs where the access pattern
changes during the execution of the program, it might not be possible to
find a mapping of the data structures that will result in minimal remote
references before and after the access pattern changes. In other words, the
best mapping that gives the least amount of remote references for the pro-
gram up to the point just before the access pattern changes might give a big
number of remote references during the execution from the point when the
access pattern changes and on. For example, for the FFT algorithm, the
access pattern changes over the iteration space. For this kind of problems,
re-mapping of the data to recapture local references could result in some 1m-
provements. The problem with this method is that the analysis required to
determine when re-mapping is worth performing is a very difficult one. Also
for DMMs for which the inter-PE communication is expensive, this method
might cause some tremendous run-time overhead due to the extra inter-PE
communication caused by moving the data around during the re-mapping,

and updating the descriptors of the data structures that are re-mapped to
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record the new distribution. Hence, it is important that the communica-
tion incurred by the redistribution of the data (to minimize communication
during a computation) does not exceed the communication overhead which

that redistribution was intended to reduce.

o Run-time data distribution: Here all decisions regarding the distribution of
data are done at run-time. This is also called dynamic data distribution.
One way to do this is to make the decisions regarding distribution of data,

functions of some parameters that are only known at run-time.

o Ezplicit data distribution: The programmer controls the data distribution
explicitly??. In this case, the programmer explicitly inserts the appropriate
inter-PE communication primitives. All of this work is done “by hand” and

contradicts the goal of raising programming to a higher level of abstraction.

o Hybrid Ezplicit/Implicit data distribution: In this method, we use compile-
time, hybrid compile-time/run-time, or run-time data distribution, with
some user intervention. More precisely, the programmer gives some hints
regarding how distribution of data should be done, and the compiler or
the run-time system uses those hints to decide how to distribute the data
structures. For example, the hints could be in the form of some compiler
directives, pragmas or assertions. This method put some burden on the
programmer, but has more potential for success than the purely automatic
data partitioning methods. This is so because the programmer could be
very aware of the data access patterns of his program, and therefore could
know about the optimal or near-optimal partitioning of the data structures
in the program. Some researchers feel that the compiler on its own will
not be able to choose an efficient data decomposition for all programs, and
therefore it needs some additional information from the user. Fortran D
[26] is an example of a language that requires the programmer to specify

the data layout of the program. Then the compiler uses that information

22Usually, the programmer uses an explicit imperative programming method. Hence there is
no compiler that further processes the code to do the parallel processing tasks (code and data
partitioning, scheduling, etc.), since the programmer does all of these tasks explicitly.
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to distribute the data structures (arrays) to the processing elerﬁents, and

insert the appropriate message passing primitives.

o Implicit data distribution: Using the implicit data distribution method, the
compiler or the run-time system is responsible for all the partitioning of
the data structures, without any help from the user. Usually, it is quite
difficult to design a system that produces very efficient data partitioning,
unless some user intervention is available. Note that this method could be

compile-time, run-time, or a hybrid of the two.

2.3.5.2 Using the Shared Memory Programming Paradigm for DMM’s

e Description: In this method, a shared memory programming model is sup-
ported on top of the distributed memory architecture. This is called Dis-
tributed Shared Memory (DSM) or Virtual Shared Memory (VSM) system.
The compiler or programmer is provided with a shared memory abstraction,
and a set of primitives for allocating and accessing shared data structures
within a virtual address space. The programmer (or the compiler) assumes
that there is a contiguous, single address space (this is a virtual space) shared
by all PEs in the network and uses this virtual memory to store and retrieve
the data structures in the program. All the memory access routines in the
program are done with respect to the virtual memory. Then, it is the job of
some software interface to map the virtual space onto the distributed phys-
ical memories. All message passing required for accessing remote values is
handled implicitly by this interface, through the use of a message passing
abstraction. This message passing abstraction provides an abstract interface
to the host operating system. Each data structure allocated to the virtual
space receives a contiguous set of virtual addresses shared among all the
PEs?. Note that the interface will be nothing more than the library of
memory access routines called by the user program. This library of routines

is responsible for the mapping between the virtual memory and the physical

231 fact, data can be represented in two ways: as a local memory variable (i.e. stored in the
local memory of the PE in question) or as a shared addressing space variable (i.e. stored in the
virtual shared memory).
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memories, and all the memory management needed.
This library will be part of the run-time system, and hence the method

described here is called run-time support for a single addressing space.

o Advantages: The main advantage of this scheme is that the library created
can be written as a stand-alone module in a generic (language independent)
way. This module can therefore be plugged into any other run-time system
for compilers of other languages. With some minor modifications to the
message passing routines used, this library could even be ported to other
DMMs.

Another advantage is that this message passing abstraction makes the task
of the programmer (or compiler) much simpler, since all message passing
routines and data distribution will be handled by the library of memory
access routines. However, the way the data distribution is done should be
dictated by the compiler (or the programmer), since these library routines
don’t have any information regarding the behavior of the program. One
way to implement this is to include the mapping function as a parameter in
the routine that allocates the virtual space to data structures, so that this

routine can use that information to distribute the data across the PEs.

e Implementation issue: Using the virtual shared memory scheme has an-
other advantage as far as the implementation goes. Instead of writing a new

compiler, we can simply use the existing OSC compiler with some miner
modifications®*.

e Disadvantages: The main disadvantage of this method is the run-time

overhead caused by the translation of virtual addresses to physical ones.

e Address Translation: When the compiler encounters an array access Ali],
it translates it to some code in the output program, that computes the
address of the element A[i] and then fetches that location. In our case,
this address is a virtual one. Therefore, we have to translate this virtual

address to the corresponding physical one, which for DMMs constitutes of a

240SC was written for shared memory multiprocessors.
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processor number and the local physical address on that processor. Clearly
this translation process is done by the library routines that manage the
virtual address space. One way to do the translation is to have a table
that has one entry for each virtual address and the corresponding physical
address. We need to replicate this table in all PEs in order not to create too
much communication traffic. Although this method makes the translation
process very cheap in terms of time, since it would require one access of this
table, it is extremely costly in terms of space and therefore not feasible. The
other way to do the translation is to use the information regarding the virtual
space allocated to the data structure and the way it is distributed. From
this, we can use some formulas to deduce the virtual address. This method
is not costly in terms of space, since we don't have to store the physical
addresses corresponding to virtual ones, however it is very costly in terms
of time because of the computations involved. There are ways to optimize
the address translation using the second method that we mentioned. For
instance, for virtual addresses corresponding to local physical ones (physical
addresses on the current PE), we can use some tricks to recognize these
virtual addresses and get a direct mapping to physical ones, without using

any computations [21, 23].

e It is clear that using this method does not affect the inter-PE communication
overhead. Very little extra memory space is needed to record the required
information for the translation of virtual addresses to physical ones for each

array.

e This distributed shared memory method was used to implement SISAL on
DMMs?5 [21, 23]. The results were not very impressive however. Some of
the problems were the run-time overhead introduced by the VISA calls®,
and the fact that multi-dimensional arrays were not implemented as true

multi-dimensional arrays?’.

25VISA is the name of the library that was designed.

26The main overhead was caused by the address translation.

27GISAL and its intermediate forms IF1 and IF2 assume that all arrays are one-dimensional.
Multi-dimensional arrays are implemented as arrays of arrays.
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e In order to make this method more attractive, we have to devise some ad-
dress translation scheme that does not involve many computations. We
should be able to afford to sacrifice some memory space for less time, pro-

vided that the space traded for time is not too large.

2.4 Existing Code Partitioning Methods

Existing work regarding the partitioning problem either considers a specific ap-
plication and try to come up with an efficient partitioning scheme for it (i.e. no
automatic partitioning), or come up with a general solution (automatic partition-
ing) that is too simple and therefore not efficient (e.g. exploits only one kind of
parallelism level). The partitioning methods that belong to the second class and
that have been implemented in real systems exploit only certain levels of par-
allelism, with certain granularity. Some methods use syntax-based partitioning,
some others use function-level partitioning, some systems exploit instruction level
parallelism leading to very fine grain size, etc. We believe that the granularity of
parallelism should depend on the particular application that we are solving and
on the target machine.

The best partitioning scheme that we are aware of is the one proposed by
Sarkar (48, 47, 46, 49] and is described briefly next. As was mentioned before,

this method is too simple.

Sarkar’s Partitioning Method

Sarkar considers both static and dynamic scheduling, and only static program
partitioning. His partitioning method for static scheduling differs from the one
for dynamic scheduling. Since we assume static scheduling, we only describe

Sarkar’s partitioning method for static scheduling.

Algorithm

In this section, we describe the overall algorithm without going into any details.
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1. All communication edges in the program graph are sorted in decreasing order

of their communication cost.

2. For each edge e in the graph, starting with the one that has the highest
communication cost, we merge e if the merger does not cause an increase in

the parallel execution time (the critical path length of the graph).

Time Complexity

Let E be the number of edges and N be the number of nodes in the program
graph.

Sorting the E edges takes O(E?) time in the worst case.

The algorithm requires that the parallel execution time be computed for each
iteration (i.e. each edge examined) of the algorithm. The parallel execution time
can be computed by traversing the graph. In the worst case, this takes O(E + N)
time. Since there are E edges in the graph (i.e. E iterations in the algorithm),
this will take O(E(E + N)) time.

Hence the overall time complexity of the algorithm is O(E(E + N)). We will
show later on in this thesis that E < N?. Therefore, the time complexity can be
written as O(E.N?).
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Chapter 3

The Partitioning Problem

3.1 Assumptions

o We assume that we have a weighted Directed Acyclic Graph (DAG) repre-
sentation of the program. The DAG is flat (no hierarchical graphs such as
IF1 and IF2, the intermediate graph representation of SISAL), the nodes
represent instructions (primitive or compound statements), and the edges
represent data. The assumption that we don’t have any hierarchical graphs
makes the analysis simpler, and it allows us not to use hierarchical parti-

tioning algorithms which are in general more complex.

e One way to get the input DAG described earlier is to use IF1 or IF2, and a
variation of Sarkar’s graph expansion method® ([47, 46, 48, 49]) to do some
preprocessing to get a non-hierarchical graph. Doing this, some compound
nodes (compound nodes are nodes that contain subgraphs, and correspond
to compound statements in SISAL) in the original graph (IF1 or IF2) will
be nodes in the final flat DAG used as input to our analysis. In this case,
all subgraphs of the compound nodes will be transparent, and we only look
at the functionality of the node (i.e. given some input, we are interested in
what output the nodes generates).

The advantage in using IF1 or IF2 is that we can use the SISAL compiler

1Sarkar’s graph expansion method is better suited for shared memory multiprocessors. It
does not take into account the high cost of inter-PE communication for DMMs, and therefore
is in general not efficient when used to target DMMs.
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to generate the intermediate form (IF1 or IF2), then preprocess this graph
to get the final input DAG used by our partitioning analysis.

e We assume that the DAG is applicative and therefore we don’t have any
side effects when we execute it. The data carried by the edges represent
mathematical variables and not memory cells. This makes the detection of

parallelism straight-forward.

o All the inputs of the DAG are assumed to be ready when program starts

execution.

e The target DMM is assumed to have point to point communication links

(no busses).

e The output of our partitioning analysis is the input to the scheduling phase.
The best scheduling method known so far is the DSC (Dominant Sequence
Clustering) designed by Tao Yang ([18, 58, 59]).

3.2 Definitions

Code Partitioning: Given a multiprocessor M and a DAG g to be executed
on M, a partition of g is a set Il = {r1,72,...,7n}, where each 7; is a non-empty
set consisting of nodes in g that have to be executed on the same PE,? and
where all the 7;'s are disjoint, and their union forms all the nodes that belong to

g. Each set 7; is called a task.

Definition: The trivial partition is the one for which each task 7; is a singleton
set (i.e. this is the partition that puts each node in a single task). All other

partitions are said to be non-trivial.

Input and Output Nodes: Given a DAG g, an input (entry) node in g is any
node for which an input edge carries an input data, and an output (ezit) node in

g is any node for which an output edge carries an output data.

2Nodes belonging to the same 7; could be independent of each other, and therefore could in
theory be executed in parallel.
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There is no predecessor node to an input node and there is no successor node to
an output node.
Input nodes are also called root nodes, and output nodes are also called leaf

nodes.

Execution Path: Given a DAG g, an execution path of g is any path from an

input node to an output node.

Critical Path: Given a DAG g, a critical path of g is any longest execution
path in g.

The critical path length of g is the length of a critical path of g.

Let P..; := Critical path of the DAG.

Let CPL := Critical Path Length of the DAG.

Independent Nodes: Given a DAG, two nodes are dependent if and only if
there is a path between them. Otherwise they are independent.

We define || as the independency relationship, and L as the dependency

relationship.
ny || n2 means n; and n, are independent.
n; L n, means n; and n, are dependent.

Independent Sets

1. Given a DAG g, an independent set is a set of nodes in g in which each pair

of nodes are independent (i.e. all nodes are pairwise independent).

2. Given a DAG g and a set S of nodes belonging to g, an independent set of

S is an independent set which is contained in S.

Dependent Sets

1. Given a DAG g, a dependent set is a set of nodes in ¢ in which each pair of

nodes are dependent (i.e. all nodes are pairwise dependent).

2. Givena DAG g and a set S of nodes in g, a dependent set of S is a dependent

set which is contained in S.
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Figure 3.1: Path from N; to Niyy (1 <i<m—1)

Remarks
e If a set is not independent, it does not necessarily imply that it is dependent.

e Any path in the DAG constitutes a dependent set.

Parallel Sets

1. Given a DAG g, a parallel set is an independent set which is not contained

in any other independent set.

2. Given a DAG g and a set S of nodes belonging to g, a parallel set of S is an

independent set of S which is not contained in any other independent set of

S.

Anti-Parallel Sets

1. Given a DAG g, an anti-parallel set is a dependent set which is not contained

in any other dependent set.

2. Given a DAG g and a set S of nodes belonging to g, an anti-parallel set of
S is a dependent set of S which is not contained in any other dependent set

of S.

Theorem: Let g be a DAG.

Let ny,ng,...,nm be nodes in the graph.

{n1,n2,...,nm} (m 2 2) is a dependent set <=

3 a path containing nodes ni,na,...,ny (the path could contain other nodes as
well).
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Figure 3.2: Path from N; to npq (1 <1< m)

Proof

1. 3 a path containing nodes ny,nz,...,nm
=
{ni,n2,...,nn} is a dependent set:
Trivial.

2. {n1,n2,...,n,} is a dependent set
=
3 a path containing nodes ny,nz,...,nm:

We use proof by induction.
Base Case: m =2
n; L ny = there is a path from n; to n,; or from n; to n;.

Induction Step: We assume that the property is true for m > 2.

Let’s prove that the property is true for m + 1.

Assume that {n;,n3,...,7m,nm41} is a dependent set
=

{n1,n2,...,nm} is a dependent set

p—.

3 a path containing nodes ny,n3,...,nm,

—

There is a path from N; to Ny, (1 £ ¢ < m—1), where N; € {ny,n,,....



(1 £1< m), and all the N;’s are different from each other (see figure 3.1).
Nm4+1 L Ny = there is a path from N; to npy or from npyy to Ny

If there is a path from n,4; to Ny, then there is a path containing nodes
Ni,Nay...yNpy o

—

J a path containing nodes ny,n2,...,m, Nm41.

Now assume that there is a path from N; to nmyi.

Nm+1 L Na = there is a path from N; to n,4; or from npy4q to N,

If there is a path from nm41 to N, then there is a path containing nodes
N1, Ny, ..., Npy ipng

—

3 a path containing nodes ny,na,...,m; Nmi1-

Now assume that there is a path from N3 to npmig.

Nm41 L N3 = there is a path from N3 to npmy or from np4y to N3,

If there is a path from nm,41 to Na, then there is a path containing nodes
Ny, Noyooo s Ny Mt

=

J a path containing nodes ni,na, ..., Nm, Nmt1.

Now assume that there is a path from N3 to npm4a.

We keep doing this reasoning until we reach node Np,.

ims1 L Ny = there is a path from Ny t0 npm4y or from nmiy to Np.

If there is a path from nm4; to Ny, then there is a path containing nodes
Ny, Ny o5 Vs Bingd

N

J a path containing nodes nj,n2,...,%m, m41-

Now assume that there is a path from N, to nm41 (see figure 3.2)

—_—

There exists a path containing nodes Ny, No, ..., Nisis e
—

3 a path containing nodes nj,nz,..., m, Pm+1-

Hence the property is true for m + 1.

Theorem: Let g be a DAG.
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Let ny,n2,...,nm be nodes in the graph.

{ny,n2,...,nm} (m > 2) is an anti-parallel set
=

3 a path containing only nodes ni,na, ..., Nm.
Proof

Assume that {ny,ns,...,nm} (m > 2) is an anti-parallel set. Then {ny,ns,...,nn}
is a dependent set. Therefore, from a theorem stated earlier, there exists a path
p containing nodes nj,ng,...,nn,. Hence, there is a path p; ;41 from N; to Nij,
(1 <i<m=1), where N; € {n1,n2,...,nn} (1 £ ¢ < m), and all the N;’s are
different from each other (see figure 3.1).

We claim that path p; ;41 is equal to edge (Ni,ni41), 1 <1 <m— 1.

To see why this is the case, assume that the claim is incorrect.

Then, 3 anode N;, 7 # i and j # 1+ 1 such that n; € p;i4y. Clearly N; # Ny, 1 <
k < m, otherwise we will have a cycle in path p. Since N; L Ni,1 < k < m,
then {N;, Na,..., Npm, N;} is a dependent set. Hence, {nj,n;,...,nm,N;} is a
dependent set. This means that {n;,n3,...,n,} is not an anti-parallel set, which
contradicts our original assumption. Therefore, our claim is correct, which means

that path p contains only nodes ny,n,,...,np.

Remark: Given a DAG g.

3 a path containing only nodes ny,ng,...,n, (m > 2)
#
{n1,n3,...,nm} is an anti-parallel set.

To see why this is the case, assume that there exists a path p containing only
nodes nj,ny,...,N,. Then there could exist a path p’ which contains p, p' # p
(see figure 3.3 for 2 examples of such a situation), in which case there exists at
least a node n, n # n;,1 <1 < m, such that n L n;,1 <1 < m. Hence,

{n1,n2,...,nm,n} is a dependent set. Therefore, {n;,ns,...,n,,} cannot be an

anti-parallel set.

Theorem: Given a DAG g.

Let ny,n2,...,n, be nodes in the graph.
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p = (nl,nz, ...,nm)

p' = (ny,a,nyns, e M)

\

Figure 3.3: 2 examples where {n1,n2,...,nm} cannot be an anti-parallel set



J a unique path p containing nodes n;,ns,...,nm, (m > 2)

AND

p contains only nodes ny,ny,...,nn
—

{n1,n2,...,n,} is an anti-parallel set.
Proof

Assume that:

There exists a unigque path p containing nodes ny,n,...,nm, (m > 2)
AND
p contains only nodes ny,ny,...,ny,

Clearly, § = {n1,n3,...,nm} is a dependent set.
Let’s assume that S is not an anti-parallel set.
Then there exists at least one node n, n # n;,1 < i < m, such that {n;,ns,...,nm, n}
is a dependent set. From a previous theorem, this implies that there exists a path
p' containing nodes n,n;,...,nm,n. Since p is the unique path containing nodes
ny,M2,...,Nm, then p = p’. But p contains only nodes ny,n,,...,nm, which con-
tradicts the fact that n € p. Hence, our assumption that S is not an anti-parallel

set is wrong.

3.3 Some Properties
L Relationship
1. The relationship is not reflexive.
2. The relationship is symmetric.

3. The relationship is not transitive.

In figure 3.4-a, n; L ny, ny L ng, but n; || na.

|| Relationship

1. The relationship is not reflexive.
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(a)

()
@
(b)

. /

Figure 3.4: || and L are not transitive
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(b)

Figure 3.5: Number of elements in parallel sets

2. The relationship is symmetric.

3. The relationship is not transitive.

In figure 3.4-b, n, || ng, n2 || n3, but n; L na.

Parallel Sets

Consider a DAG g.

The parallel sets don’t always have the same number of elements.

In figure 3.5-a, the parallel sets are: {ng,n1,n4}, {ne,n1,n5}, {ne, n3,ns}, {n7,n2,n5}.
{n7,n1,n4}, {n7,n1,n5}, {n7,n3,n5}. In this case, all parallel sets have the same

number of elements.
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In figure 3.5-b, the parallel sets are: {ne,n1}, {ne,n4}, {ne,ns}, {n7,n2,n4},
{n7,n2,ns}, {n7,n1}, {n7,n3,ns}. In this case, not all parallel sets have the same

number of elements.

Anti-Parallel Sets

Consider a DAG g and a set S of nodes belonging to g.

In general, the set S has zero or more anti-parallel sets, and a set Si,4 of zero or
more nodes which don’t belong to any dependent set®.

Assume that the anti-parallel sets are S}, Sy, . .., Sk, and that Sinqis {n1,n2,...,2m },
where*

k>0and m>0.

In general, the anti-parallel sets are not necessarily disjoint. Furthermore, 2 nodes
belonging to 2 different anti-parallel sets could be dependent.

For an example of this, consider figure 3.5-b.

Let S = {ny,ny,...,n7}.

The anti-parallel sets are: {ns,nr}, {ns, na,na}, {n1, n2,na}, {n1, n4,na}, {n1,n4,ns}.
In this case Sinq = 0.

Figure 3.5-a shows another example.

Let S = {ny,no,...,n7}.

In this case, the anti-parallel sets are: {ng,n7}, {ne,n2}, {n1,n2,n3}, {n2,n3,na},
{n4,ns}.

Also for this case, Sinqg = 0.

Note that in this case, S can be written as

S = S, U S, U S3, where

Sy = {ni,na2,n3}, S2 = {ng,ns} and S3 = {ne,nz}. 51, S2 and 53 are disjoint
anti-parallel sets.

Note also that in some cases, the set S can be expressed as

3FEach node in Sing and any other node in S are independent, and clearly Sinq is an indepen-
dent set of S. However, Sinq is not a parallel set.

4k = 0 represents the case where S has no dependent sets (i.e. S is an independent set), and
m = 0 represents the case where each element in S belongs to some dependent set.
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S =5 US;U...USkUS;ng, where the S;’s are disjoint anti-parallel sets, and Sina

is a set of one or more nodes which don’t belong to any dependent set.

3.4 Task Graph

Definition: We define the task dependency graph (or task graph for short) of a
partition to be the directed graph whose nodes are the tasks in the partition, and
where the arcs between nodes represent the data dependency between tasks (i.e.
there is an edge from task 7; to task 7; if and only if data has to be transmitted

from 7; to 7;).

3.4.1 Defining Task Graph Weights
3.4.1.1 Node Weights

The weight of a node in the task graph is the sum of the execution times of all

actors that belong to the task represented by the node.

3.4.1.2 Edge Weights

Consider an edge e = (n;,n;) in the task graph, where node n; represents task 7;
and node n; represents task 7;.
The weight of e is the total amount of data transmitted from 7; to 7; during one

execution of the program.

3.4.2 Communication Between Tasks

Consider 2 tasks 7, and 7, in the task graph such that there is an edge from 7, to
2.
Assume that actors ay,as,...,a, belong to 7, and actors by, b,, ..., b, belong to
75, and that there is an edge from a; to b; (1 € 7 < n) in the original DAG (the
input program graph).

The question is: do we send the messages from a; to b; individually, or do we

combine them into ONE larger message that is sent from 7 to 7,7



In other words, do we wait for all messages destined from 7 to 7, to be ready
and send them all together in one larger message, or do we send each message

individually as soon as it is ready?

One advantage of sending messages individually is that the destination actors
wait less time for their input data to arrive (as soon as an actor inside a task
finishes execution, we send the outputs of the actor to their destination actors).
However, as will be seen later, our execution model does not allow any partial
execution of tasks. Hence, this will not be of any benefit to us. Note that if
partial task execution were allowed, then sending the outputs of actors inside a

task individually as soon as they are ready could be of great benefit.

One popular optimization technique used for DMMs is to combine smaller mes-
sages going to the same destination into larger ones before sending them whenever
possible. This usually reduces the communication overhead. This is true because
the dominant component in the cost to communicate a message between PEs is
the message start-up time. The other component, mainly the delay component
(the duration from the time the message is sent to the time it is feceived) is
small compared to the message start-up component. Therefore, when we combine
smaller messages into a larger one, we only have one message start-up for the new

larger message, rather than several for each smaller message.

Because of the reasons mentioned above, we chose to combine all messages

destined from 7; to 7; into one larger message.

3.5 Graph Execution Cost and Effect of Data

Distribution

3.5.1 Nodes in the Input Program Graph

Two kinds of nodes:

1. RNODEs: Nodes whose execution always involves one or more memory

accesses.
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These are also the nodes whose execution may involve one or more remote

accesses (in case the memory accessed is remote).

2. LNODEs: Nodes whose execution does not involve any memory accesses.

These are also the nodes whose execution never involves any remote accesses.

Examples of RNODEs: Array manipulation nodes (ABuild, AFill, AElement,
AReplace, ACatenate, AScatter, AGather).
Examples of LNODEs: Arithmetic and Boolean nodes.

3.5.2 Graph Execution Cost
1. Node computation cost.

9. Inter-node communication cost.

Node Computation Cost

1. LNODES: Given the target machine, we can determine the execution cost

of these nodes.

2. RNODES: The execution cost of an RNODE depends on the PE to which
the node is assigned, and the memory (i.e. memory of which PE) that has

to be accessed. Therefore, the way data is distributed across the PEs affects
the execution cost of RNODES.

Inter-Node Communication Cost

Given the assignment of nodes to PEs and the size of data transmitted along an
edge in the graph, we can determine the cost of transmitting the data along the

edge.

1. If an edge links two nodes assigned to different PEs, then the cost of trans-

mitting data along this edge is the cost of communicating the data between
the PEs®.

5An edge connecting two nodes mapped to different PEs doesn’t necessarily cause inter-PE
communication. For more details, refer to the section regarding local and non-local edges.

52



2. If an edge links two nodes assigned to the same PE, then we assume that

the cost of transmitting data along the edge is zero.

3.5.3 Cost Measures Needed for Partitioning Analysis

As will be seen later, during the partitioning analysis, we need to compute the
CPL of the task graph. Evaluation of CPL of task graph requires knowledge of

node computation cost and inter-node communication cost.

1. Inter-node communication cost:
Since we assume that each node in the task graph is mapped to a different
virtual PE, and that we have minimum non-zero communication overhead,
then given the size of the data transmitted along an edge, we can figure out

the inter-PE communication cost caused by this transmission.

2. Node computation cost:

(a) LNODES: Given the target machine, we can estimate the cost.

(b) RNODES: During the partitioning phase, we don’t know the assign-
ment of nodes to the physical PEs yet. Hence we have no way of telling
whether an RNODE involves a remote access or not. Therefore, it is
not possible to determine accurately the execution time of RNODEs.
This is true even if we know the way the data is partitioned across the
PEs.

3.5.4 Estimation of Execution Cost of RINODES

Data Distribution Procedure: We assume that it is a function of the number
of PEs and the distance between each pair of PEs.
It does not depend on code partitioning and scheduling (i.e. it can be done

before code partitioning and scheduling phases).

Method 1: Assume that all RNODES do local memory accesses only.

In this case, inter-PE communication can be caused by edges only.



Method 2: Apply data distribution procedure to map data to the virtual PEs
to which the nodes in the graph are assigned.

Problems with Method 2

o There is a very large number of nodes in the graph. This number could be
in the order of 10,000 or more, and therefore the number of virtual PEs used
could be in the order of 10,000 or more. Hence, we might not have enough

data to distribute across all virtual PEs.

o At each step of the partitioning algorithm, nodes in the graph are merged.
Therefore, fewer virtual PEs are used, and we will have to apply the data
distribution procedure again to take into account the change in the number
of virtual PEs.

One way to get around this problem is to assume that each time 2 nodes are
merged, the corresponding virtual PEs PE; and PE; to which these nodes
are assigned are replaced by another virtual PE PEy, and all the data which
was mapped to PE; and PE; is assigned to PE). For this to be possible,
we need some way to keep track of this data reassignment. This could be

costly in terms of time or memory space.

e Usually for DMMs, the cost to determine the physical addresses of the data
used is quite high. Hence, this method could add too much to the time

complexity of the compiler analysis.

3.5.5 Task Execution Model and Qutput Data Storage

o Convezity Constraint: A task receives all inputs before starting execution,
then it executes to completion without interruption (i.e. no partial task
execution).

For this not to cause any deadlock situations, we have to make sure that the

task graph is acyclic at all times.

o At the end of execution, all outputs are sent immediately to destination

tasks.



e Output data is not stored in memory.

e Data is sent to the PE where destination task executes right away, using the

send primitive.

o Destination task gets data by executing a receive command right before

starting execution.

Convexity Constraint Versus Partial Task Execution

As was mer;tioned previously, our execution model does not allow any partial task
execution. The question that arises here is: will this affect the utilization of the
multiprocessor? For a typical application, there will be so many tasks ready to
execute most of the time during run-time. Therefore, it is most probable that
we can keep the multiprocessor busy most of the time even without allowing any
partial task execution.

Using the convexity constraint, our execution model is simpler, and there is

no need for context switching during run-time.

3.5.6 Existing work

e Partitioning and scheduling methods for DMMs don’t take into account

effect of data distribution.

e Execution of nodes is assumed not to cause any remote accesses, and there-
fore does not cause any inter-PE communication.

Inter-PE communication can be caused by edges only.

3.5.7 How to model effect of data distribution in the graph?

Node Cost:
e LNODE: z , where = := computation cost.
e RNODE: (z,y) , where

— z := computation cost,



— y := communication cost due to remote access, if there is any,

y := 0, otherwise.
Problem:

During partitioning phase, y is unknown, since assignment of nodes to

PEs hasn't been done yet.

3.5.8 Conclusion

e Communication can be caused by non-local edges and RNODE:s.

e Because assignment of nodes to PEs is done after code partitioning phase,
during code partitioning analysis, it won’t be possible to take into account

communication caused by RNODES.

o However during scheduling phase, we could use the effect of communication
caused by RNODES.
As soon as an RNODE is assigned to a PE, its corresponding y value can

be determined, assuming that the data partitioning has already been done.

3.6 Parallel Execution Time (PARTIME)

Since all our analysis is done at compile-time, we have to devise some way of
estimating the parallel execution time of the program at compile-time. Obviously,
the only way to determine the exact execution time of the program is to run it on

the multiprocessor.

3.6.1 Execution Profile Information

In recent years, execution profile information became widely used in automatic

compiler optimizations. In our case, it provides us with:
e Average data sizes for all communication edges.

o Average frequency values for function calls for each function in the program.
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o Average frequency values for subgraphs of parallel and compound nodes.

In order to be as accurate as possible, the only information generated from pro-
files is counts and sizes. Execution time costs are not used since unlike counts
and sizes, they cannot be measured exactly from profiles. Execution times and
communication costs are estimated from the information obtained from the pro-
file. This information can be generated by any execution (sequential or parallel)
of the program on the target machine.

A drawback of execution profiles is their sensitivity to changes in program
inputs. Clearly, this could affect the optimizations done by the compiler. For this
reason, it is more efficient to average the information over several inputs.

Note that if we change the target machine, then we have to regenerate the
profile information even if we use the same program. This is true since the data

sizes for the new machine might be different from the previous one®.

3.6.2 Cost Assignment

An important information for our compiler analysis is the average execution time
of the nodes in the graph. Here we are concerned with the sequential execution
time of the nodes. Our approach is the same as the one in [48]. Mainly, we
assume that the average execution time f,(n) of all simple nodes n is one of
the target multiprocessor parameters. There are many possible techniques for
estimating the execution time for simple nodes, and these techniques vary for
different architectures. One simple scheme is to add the execution times of the
target instructions which implement the simple node.

All average execution times of non-simple nodes are derived from f, and from

the profile information. This derivation is based on the following 3 simple rules:

1. The average execution time of a graph is the sum of the average execution

times of all its nodes.

2. The average execution time of a parallel node is the product of its average

number of iterations and its subgraph’s average execution time.

5The graph frequencies remain the same however.

o
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3. The average execution time of a non-parallel compound node is the sum of

the products of each subgraph’s average frequency and execution time.

3.6.3 Multiprocessor Parameters and Communication Model

The multiprocessor parameters needed for our analysis are the communication
overhead between PEs and the simple node average execution time cost function
fs- fao(n) for simple node n is the execution time of n.

The communication overhead between 2 PEs is assumed to have two compo-
nents [48):

1. Processor component: the duration for which a processor participates in a
communication. If the processor is sending data, then this is the time it
takes it to write and prepare the message, before it is sent on the network.
We represent this time by a function W,.. If the precessor is receiving a
message, then this is the time it takes it to read the message, after it arrives
to the PE from the network. We represent this time by a function R..
Note that when a message is sent between 2 processors, the sum of W,
and R, caused by this message constitutes the message start-up component

(allocating buffers, copying data to or from buffers, etc.)”.

2. Delay component: this is the duration from the time the message is sent
on the network by the source processor (after it is written), to the time
it is received by the destination processor (before it is read). This is also
the fraction of communication time during which the sender and receiver
precessors are free to execute other instructions. We also call this time

network component. We represent this time by a function D..

D, is a function of a 4-tuple (1, j, s,[), where i is the source processor number,
J is the destination processor number (i # j), s is the size of the message, and [

is the total communication load in the multiprocessor at the time of the message

"The message start-up component also includes the time to execute the routing algorithm,
the time to establish an interface between the local processor and the router, etc.
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transfer. R. is a function of the couple (j,s) and W, is a function of the couple

(z,8).

DMMs use message passing as a means for communication between PEs (syn-
chronization and remote data access). The message passing protocol uses the
send and receive commands. We assume that send is non-blocking and receive is
blocking.

Assume that processor PE; communicates a message to processor PE;. Let t;
be the time when PE; executes the send command and t; be the time when PE;
executes the receive command®. The message arrives at PE; at time 3 = t;+W.+

D.. Let’s compute the time taken by PE; and PE; due to this communication.

Sending Processor

For processor PE;, there will be no idle time since the send command is non-
blocking. Thus the time taken by the sending processor due to this communication

is simply W..

Receiving Processor

There are two possibilities:

1. If the receive command is executed at any time after t3 (¢; > t3), then PE;
will never idle to wait for the message to arrive:
tdletime = 0.
PE; will spend another R. time to read the data, and therefore the data
will be available at time t, + R.. We say that all the communication delay
has been overlapped with computation in PE;.
The time taken by PE; due to this communication is:
idletime + R. = R..

2. If on the other hand the receive command is executed before t3 (2 < t3),

then PE; will idle for t3 — ¢, time to wait for the message to arrive:

8Here we assume that we have a global clock used by all PEs.
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idletime=1t3—ty=t1+ W+ D, -ty =t1 —t9+ W+ D, = At+ W.+ D,,
where At = t; — t, is the difference between the time when PE; executes
the send command and the time when PE; executes the receive command.
In this case, the data will be available in PE; at time t3 + R..

The time taken by PE; due to this communication is:

idlettme+ R, = At + W, + D. + R..

In conclusion, for the receiving processor, the time taken due to the commu-
nication is tdletime + R..
idletime is equal to zero or At+W.+ D,, depending on when the receive command
was executed relative to the send command. Another expression for idletime is
idletime = a( At + W, + D,), where
a=0ift, >4, +W.+ D,
a = 1 otherwise.

Since W, and D, are functions of (7, s) and (3, j, s, () respectively, idietime is
a function of (1,7, s,[,11,12).

3.7 Problem Statement

Definition: Given a multiprocessor M and a DAG g to be executed on M, we
say that an execution of g on M does not violate partition II = {m,72,..., 7}, if
and only if, each task 7; of II is executed in a single PE (i.e. all the nodes in 7;
are executed on the same PE).

Note that 2 nodes that are in different tasks may be executed on the same PE.

However, 2 nodes that are in the same task have to be executed on the same PE.

Example: The trivial partition is not violated by any execution graph g on
multiprocessor M.

Definition: A partition II, is said to be contained in partition II,, if and only if,
each task 7; of II; is included in some task 7; of II;.° We write IT; C I1,.2° We

also say that II; is smaller than II;.

®1; could be the same as ;.

10This is not the same as the ususal set inclusion. We simply borrow this notation for
convenience.
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Example: The trivial partition is contained in any non-trivial partition

Corollary: For a multiprocessor M and DA g, if an execution of g on M does
not violate some partition II;, then it does not violate any partition II; which is

contained in II;.

Corollary: For any 2 partitions II; and IIy, IT; C II; = II; has at least as many

tasks as II; does.

Proof: Straightforward: Use proof by contradiction: We assume that the
statement of the corollary is not true, then using that we deduce a false

statement.

Definition: Given a multiprocessor M and a DAG g to be executed on M, a
universal partition is a non-trivial partition which is not violated by any
execution of g on M, that leads to minimal parallel execution time for any
number of PEs in M (including the infinite number).

Stated differently, a universal partition is a non-trivial partition II, which is
contained in any optimal partition I, (i.e. a partition that results into minimal

parallel execution time) for any number of processors: I, C Il p.

The Partitioning Problem: Given a target multiprocessor M and a DAG g
to be executed on M, the code partitioning problem consists of finding the

smallest universal partition for g.

The Idea: The reason for choosing a universal partition is that when we start
from such partition and start lumping tasks together, we are able to get to the
optimal partition for the number of processors that are available, provided that
our algorithm leads to optimal solution. This is true since a universal partition
is contained in the optimal partition. When we start from the smallest universal
partition, we save work since the smallest partition has the least amount of tasks.

This lumping process is done in the scheduling phase as will be seen later!!.

UWhen 2 tasks are assigned to the same processor, we say that they are lumped together.
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Remark (Intuitive fact): The number of tasks in the smallest universal
partition should be greater than the number of PEs in the multiprocessor. If it
is not, then the problem that we are trying to run does not have sufficient

parallelism for all the PEs.

Theorem: Given a target multiprocessor M and a DAG g to be executed on
M,

Let II, be The optimal partition for the following case:

We have a virtual DMM (DM M, ) satisfying the following 2 properties:

1. Infinite number of virtual PEs,
2. Communication overhead between the PEs is minimal (not zero)'?.

Il is the smallest universal partition.
Proof:

1. First, let’s prove that Il is a universal partition.
For any task 7; in Il., all nodes in 7; have to be executed in the same
processor to get optimal parallel execution time, given the best case
situation of an infinite number of processors with minimum communication
overhead. Therefore, in the realistic case of a finite number of processors
with varying communication overhead, all the nodes in 7; have to be
executed in the same processor as well, in order to get optimal parallel
execution time. Hence, any execution that leads to optimal performance

does not violate I1,. As a consequence, Il,, is a universal partition.

12Here we assume that the communication overhead between any 2 virtual processors is mini-
mal. In other words, we assume that the distance between any two processors is one hop (i.e. all
processors are directly linked with one another). Also, we assume that the total communication
load in the multiprocessor network is always negligible and does not affect the communication
time between processors, and therefore we can ignore it. Hence in this case, the delay component
D. does not depend on the source processor, the destination processor, or the total communi-
cation load. D, is then a function of the size of the message only. In addition, we assume that
W, and R, for any virtual processor are equal to the minimum value of W, and R, respectively
of all physical processors. Hence, W. and R. are also functions of the message size only.



2. Now we have to prove that Il,, is the smallest universal partition.
Since Il is an optimal partition, then any universal partition II, is
contained in it. Therefore Il is smaller than any universal partition. Since

it is itself a universal partition, then it is the smallest universal partition.

3.7.1 Remarks

o Sarkar uses the same definition for the partitioning problem. However, our

definition is much more formal.

o The code partitioning is usually done at compile-time. It is very unusual for
parallel compilers to use dynamic code partitioning schemes. In this work,

the compile-time method is used.

3.7.2 Why II.7

Here, we give a more informal and easier to understand explanation for the choice
of Il

Consider a task 7; in Il...

Let 7; = {a1,a3,...,a.}, where the a;’s are actors in the input program graph.
Since under the ideal case of infinite number of PEs and minimum non-zero com-
munication overhead actors ay, as, ..., @, belong to the same task, then under the
realistic case of finite number of PEs and actual communication overhead they
have to belong to the same task as well. Hence all the actors that belong to the
same task in II, belong to the same task in the optimal partition for the realistic
case. Therefore, by doing some further merging of the tasks in II, we can obtain
the optimal partition for the realistic case. If our scheduling algorithm is optimal,
then the tasks that should be merged together will be assigned to the same PE.
In our approach, Il is passed as the input to the scheduling phase, and we rely
on the scheduling algorithm to assign the tasks that should be merged together
to the same PE.
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3.7.3 Overall Procedure

e Start with the trivial partition.
e Perform a sequence of partitioning refinements.

e At each step, the algorithm tries to improve on the previous partition by
choosing a pair of tasks to be merged using some heuristic'®.
We record the parallel execution time (PARTIME)! corresponding to the

new partition.
e Stop when the singleton partition is reached.

e Choose partition with lowest PARTIME.

Remarks

e Most partitioning algorithms use the above overall approach.

o The main work of the algorithm is to find the appropriate tasks to be merged
during each step.
Therefore, we have to study very carefully the effects of task merging and
understand its impact on CPL, available parallelism in the task graph, re-

duction in communication overhead, etc.

e We keep merging tasks until we reach the coarsest (singleton) partition.
We will see in a later section that we need to keep merging tasks even if the
merger results into a higher PARTIME. This is done so that we don’t get

caught at a local minimum.

o The parallelism granularity is determined by the size of the tasks in the

partition that results from the partitioning analysis.

!3Merging 2 tasks 7; and 7; means replacing them by a new task 7, which contains all the
actors in 7; and 5: e = R U T;.
4From now on, parallel execution time will be abbreviated to PARTIME.
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Figure 3.6: Two tasks mapped to the same PE

3.7.4 Estimating PARTIME

We make the following 2 assumptions:

1. At each step of the algorithm, each task of the current partition is mapped
to a separate PE.

2. All the inputs of the program graph are ready before the program starts

execution.

Therefore, we can estimate PARTIME to the CPL of the task graph of the current
partition.

Remark

To see why the assumption stating that each task of the current partition is
mapped to a separate PE is necessary, consider the task graph shown in figure 3.6.
Nodes n, and n3 are mapped to the same PE. When the program starts execution,
these 2 nodes cannot start execution at the same time. Assume that n, starts

execution first. Thus n3 can start execution only when n, finishes. Therefore
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we have to add comp(n;) to the length of path (ns,ne,n;) when we figure out

PARTIME.

Notations and Definitions

Given a task graph.

Let n be a node in the graph.

Let e = (n;,n3) be an edge in the graph connecting 2 nodes n; and n;.

Let p be a path in the graph.

comp(n) := Cost of computation in node n.

data(e) := Amount of data communicated along edge e during 1 execution of the
program.

data(n;,n;) := 0, if there is no edge (n;,n;).

comm(e) := Cost of communicating data on edge e during 1 execution of the
program.

comp(e) := comp(n;) + comp(nz).

L(p) := Length of path p.

L(p) = Tnep comp(n) + L., comm(e).

Ly(p) := Length of path p before merger.

L.(p) := Length of path p after merger.

CPL, and CPL, are defined to be the CPL of the task graph before and after

the merger respectively.

Consider two virtual PEs PE; and PE, belonging to DM M,,.

Let f. be the cost to communicate a message from PE; to PE,.

f. is a function of the message size s only, because of the characteristics of
DMM,.

fo(s) := Cost to communicate a message of size s from PE; to PE,.

fo(s) has 2 components: a message start-up component Ty, and a delay
component delay(s).

fe(8) = Tytare + delay(s).

delay(s) is proportional to s.

Since the message start-up component is a constant and does not depend on the

message size, then
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fe(s1 4 s2) # fe(s1) + fe(s2).

i.e. f.(s) is not proportional to s.

We have delay(s; + s2) = delay(s;) + delay(sz).
fe(s1 + 82) = Tstart + delay(sy + s2).

Thus, f.(s1 + $2) = Tstart + delay(sy) + delay(s2).
Hence, f.(s; + s2) = fe(s1) + delay(sz).

We define delay(s) := 0, if s = 0.

comm(e) = Tstart + delay(data(e))

3.7.5 Equivalent Problem Statement

The optimal partition is the one for which the corresponding task graph has the
shortest CPL among all partitions. The task graph corresponding to the optimal
partition is called optimal task graph.

3.7.6 Complexity

The partitioning problem is NP-complete [48]. Therefore, all we can do is find

heuristics that give a performance as close to the optimal as possible.

3.7.7 The Algorithm

An informal description of the algorithm for the code partitioning follows:

ALGORITHM PartitionGraph
BEGIN
Partition := Trivial_Partition /* Start with the trivial partition.
PARTIME := CPL of current task graph /* Parallel Execution Time
/* corresponding to current
/* partition.
best_partition := Partition /* Best partition found so far.
best_time := PARTIME /* Best parallel execution time found so far.
WHILE |partition| >= 2 DO

BEGIN /* Perform a merging iteration.
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Partition := Merge(H) /#* Choose a pair of tasks to be merged
/* using Heuristic H, and merge them.
/* Partition = partition after merger.
PARTIME := CPL of new task graph
IF (PARTIME < best_time)
THEN
BEGIN
best_partition := Partition
best_time := PARTIME
END
END
END

At the end of the execution of the algorithm, variable best-partition is the
partition chosen by the algorithm, and variable best-time is its corresponding
PARTIME.

3.7.8 Effect of Merging a Pair of Tasks

o If the tasks are independent =
. No reduction in communication cost.

. Loss in parallelism.

o If the tasks are connected by an edge =
. Reduction in communication overhead'®.

. Possible loss in parallelism.

Merging Tasks

Goal: Minimize CPL of task graph.

15Note that during the scheduling phase, these two tasks may be assigned to the same physical
PE, and therefore no reduction in communication overhead is done as a result of merging them.
However, since we assume that we have an infinite number of virtual PEs, and that each task is
mapped to a different virtual PE, there is reduction in communication overhead as a result of
the merger.
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Rule: Merge only pairs of nodes connected by an edge, since there is no gain

from merging nodes not connected by edges.

PARTIME := Parallel execution time of the program on the DMM.
PARTIME = T, + T,, where

T. := Computation Time Component,

T, := Overhead Component (communication overhead only, no scheduling
overhead).

Trade-off between computation component and overhead component.

The more parallelism we exploit, the smaller 7, and the larger T, will be, and
vice versa.

CPL =T, +T,.

For DMMs, communication cost is quite high = Try to reduce communication
as much as possible.

In general, merge tasks = T increases (loss in parallelism and more

sequentialization) and T, decreases (reduction in communication overhead).

3.8 Task Merging
2 poésibilities:

1. Ezplicit merging:
In this method, we keep track of how the task graph looks like during the
execution of the partitioning algorithm. Each time tasks are merged, we
update the task graph to reflect the new partition (i.e. after each merging
step, we determine the task graph of the new partition).
This is called explicit merging, because we explicitly reflect the task merging
in the task graph.
Using explicit merging helps the partitioning analysis. For instance, it al-
lows us to compute the parallel execution time at each step of the merging
process, which is simply the CPL of the corresponding task graph. Also,
it allows us to keep track of the available parallelism between tasks and of

the dependency relationship between tasks, which help with the choice of
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Before Merger

Figure 3.7: Explicit Task Merging



After Merger

Figure 3.8: Explicit Task Merging



appropriate tasks to be merged.

Since at each merging step we have to update the task graph, we have to
make sure that this updating of the graph has low time complexity.

For an example of this, refer to figures 3.7 and 3.8.

Figure 3.7 shows a task graph before merging nodes n, and n;.

Figure 3.8 shows the task graph after the merger.

2. Implicit merging:
In this method, we don’t keep up of how the task graph looks like during
the execution of the partitioning algorithm.
The problem with this approach is that without knowing how the task graph
looks like during each merging step, we cannot figure out the parallel ex-

ecution time, and it is hard to figure out the parallelism available in the

graph.

For our analysis, we use the explicit merging method.

Explicit Merging Procedure

In this section, we show how we update the task graph when tasks are merged.

For an example of this, refer to figures 3.7 and 3.8.
Figure 3.7 shows a task graph before merging nodes n; and n,.

Figure 3.8 shows the graph after the merger.

Assumption: We assume that all messages inside a task which are destined to
the same task are grouped together into a bigger message. There is no loss in
doing so since no partial task execution is allowed because of the convexity
constraint. Since tasks are generally small to medium grains, messages are never

too big.

Initially, each actor in the input program graph is put in a separate task.
Therefore, the task graph has one node for each actor in the program graph. The
edges in the task graph are determined by the edges between the actors in the
program graph.

=1
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Fach time 2 nodes n; and n, in the task graph connected by an edge (ny,n2),

are merged into a node nj 2, we do the following:
e Nodes n, and n, are replaced by node n; .
¢ Edge (nj,n2) is deleted.

e Any edge going from n; to any other node n; (i # 2) is replaced by an edge
going from ny to n;, and any edge going from n; to n; is replaced by an

edge going from n; to nj .

o Any edge going from n, to any other node n; (i # 1) is replaced by an edge
going from n,, to n;, and any edge going from n; to ng is replaced by an

edge going from n; to ny .

o If there is an edge from n; to n; and an edge from nz to n; (2 # 1 and 7 # 2),

then edges (n;,n;) and (nz,n;) are replaced by one edge (n1,2, 7).

o If there is an edge from n; to n; and an edge from n; to ny (2 # 1 and 1 # 2),

then edges (ni,n1) and (n;,n,) are replaced by one edge (niyn1,2)-

Merging an Edge in the Task Graph

Let e = (n,n;) be an edge in the task graph. Merging the edge e means merging
tasks n; and ny together.

Time Complexity of Explicit Merging

Let N be the number of actors in the input program graph.
Initially, the task graph has N nodes as well.

Let’s consider the cost of merging nodes n; and n.
Replacing these 2 nodes by node n, ; takes a constant amount of time.
Each of these 2 nodes is connected to at most (N — 1) other nodes. Therefore, the
total cost to replace all edges during this merging step Is O(N). Hence, it costs
at the most O(N) time to explicitly merge nodes n; and n;. Since there is a total
of (N — 1) merging steps, then the total cost to do the explicit merging, counting
all merging steps in the algorithm is O(N?).
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Note that we over-estimated this time complexity because we assumed the
worst case scenario. For real applications, the 2 nodes merged are not connected
to all other nodes in the graph. on the average, the nodes in the task graph are
connected to 3 or 4 nodes. Therefore, each merging step takes a constant amount
of time. Hence the total cost to do the explicit merging, counting all merging
steps in the algorithm is O(N).

3.8.1 Updating Task Graph Weights as a Result of the
Merger

Assume explicit merging.

Consider 2 nodes n; and n, in the DAG, connected by an edge (n;,n;) and

merged into a node n; ;.

For an example of this, refer to figures 3.7 and 3.8.
Figure 3.7 shows a DAG g before merging nodes n; and n,.
Figure 3.8 shows the graph g after the merger.
The thick edges represent edges that carry more data (i.e. the edge weights has
increased).
The larger node represent a node that has more computations (i.e. the node

weight has increased).

3.8.1.1 Node Weights

comp(ny 2) = comp(ny) + comp(ns).
Here we assume that all PEs are simple and are not capable of doing parallel

computations’®.

3.8.1.2 Edge Weights

1. If an edge €' replaces one edge e:
data(e') = data(e).

16Even simple computations are done sequentially.



2. If an edge €' replaces two edges e; and e:
data(e') = data(e,) + data(e;).
Since all messages inside a task that have the same destination task are
combined together into a bigger message then:
comm(e') # comm(e;) + comm(ez).
comm(€') = Tyart + delay(data(er)) + delay(data(es)).
comm(e') = comm(e1) + delay(data(es)).

comm(e') = comm(e2) + delay(data(e1)).

3.8.2 Creation of Cycles as a Result of Task Merging

The task graph should remain acyclic at all times, so that we guarantee that no
deadlock situation occurs because of the convexity constraint rule. Hence the task
graph should always be a DAG.

Initially the task graph is acyclic because we assume that the input program graph
is acyclic. When we merge tasks, we have to make sure that no cycles are created

as a result of the merger.

Consider 2 nodes n; and nj in the task graph, connected by an edge (ni,n2)
and merged into a node ny 3.
Cycles could be introduced after the merger, because new edges are created.

All newly created edges are connected to the newly created node ny ».

Theorem: Given an acyclic task graph, consider 2 nodes n) and n; in the
graph, connected by an edge (n;,n,) and merged into a node njz. A cycle is
created after the merger if and only if there exists a path from n; to n, other

than (n;,n;) before the merger.

Proof

1. There exists a path from n; to n, other than (ny,n2) before the merger
=2
A cycle is created after the merger:

The proof of this is quite obvious. Refer to figure 3.9.

=1
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Figure 3.9: Cycle creation

2. A cycle is created after the merger
=
There exists a path from n; to n, other than (n;,n,) before the merger:
For a cycle to be introduced, a newly created edge has to have created it.
Since any new edge is connected to n; s, then any created cycle contains the
node n, ; (see figure 3.10-a).
Before the merger, the portion of the graph in figure 3.10-a used to be the
one shown in figure 3.10-b.
We cannot have edges going from both nodes n, and n; to n,, because that
would create a cycle, and we no that the graph is acyclic before the merger.
Also we cannot have edges going from n; to both nodes n; and nj, because
that would also create a cycle.
Assume that we have an edge from n; to n,. Then we cannot have an edge
from ny to n; because that would create a cycle. Therefore, we can only
have an edge from n, to n, (see figure 3.10-c).
Assume that we have an edge from n; to n,. Then having an edge from n;

to n; or an edge from n, to ny would create a cycle. Hence we cannot have
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(b) Before the merger

(c) The only possible solution

Figure 3.10: Cycle creation
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an edge from n; to n,.

In conclusion, the only possibility is the one shown in figure 3.10-c.

A merging Rule

If there is a path from n; to n, in the task graph other than (n;,n;), then nodes
n; and n, should not be merged, otherwise we create a cycle in the graph.
Keeping the task graph free of cycles guarantees that no deadlock situation occurs

because of the convexity constraint.

Effect on Time Complexity

Because of the merging rule stated above, each time 2 tasks are chosen to be
merged, we have to check for cycle creation before we do the merger. This check
will add to the time complexity of the partitioning algorithm. In order to be

efficient, we should try to find a way to do this check at a low time cost.

Effect on Efficiency of Partitioning Algorithm

Consider the 2 nodes n; and n; in the task graph, that are best candidates to be
merged (i.e. their merger results into the best improvement in the partition). If
their merger results into a cycle, then we cannot merge them, even though their
merger results into the best improvement in the partition.

To get around this problem, we might consider merging nodes n, and n; and
all the nodes that belong to all cycles created as a result of merging n, and n,
together. This will guarantee that no cycles are created as a result of the merger.
However, there is no guarantee that the partition obtained as a result of the merger

is better than the one before the merger.

-7
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Chapter 4

Analysis of the Task Graph

4.1 Parallelism Loss Due to Task Merging

In this section, we study the effect of task merging on the available parallelism in

the task graph.

Question: Given a task graph, could there be any loss in parallelism when two

nodes connected by an edge are merged?
Answer: Yes

It is quite obvious that some parallelism may be lost, even though

these 2 nodes are connected by an edge, and therefore are dependent.

Proof: Assume that the answer is NO.

Then when we merge two nodes connected by an edge, there is reduction in
communication overhead, and in addition no parallelism is lost. Therefore the
optimal partition is obtained by merging any two nodes connected by an edge,
which will result into a graph consisting of only ONE node (i.e. optimal

partition consists of a single task)!!

Why?

Consider two nodes n; and n, connected by an edge (n1,n;) and merged into a

node nj .
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Figure 4.1: Parallelism Loss

Let’s examine node n,:

Let n3 be a node in g such that n; and n3 are independent, and n; and nj are
dependent.

Then after the merger, n; and ns become dependent’. Thus n; and n3 cannot be
executed in parallel any longer. This represents a loss in parallelism with respect

to n; in the task graph.

For an example of this, refer to figure 4.1.

4.1.1 Definitions

Parallel Set of a Node: Given a node n in a DAG g, the Parallel Set of n is
ParSet(n) := {n’ € g / n and n’ are independent}.
These are the nodes that can be executed in parallel® with n.

Given 2 nodes n; and n; in a DAG,

1To be more accurate, it is ny 2 and n3 which are dependent, since n; by itself no longer
exists after the merger.

25 may not be executed in parallel with all nodes in ParSet(n) simultaneously, since ParSet(n)
is not necessarily an independent set.
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ParSet(n1,n2) := ParSet(n;) U ParSet(n,).

Dependent Set of a Node: Given a node n in a DAG g, the dependent set of
n is

DepSet(n) := {n’ € g / n and n' are dependent}

Given 2 nodes n; and n; in a DAG,

DepSet(n;, na) := DepSet(n;) U DepSet(n,).

Remark: DepSet(n) is evaluated by finding all paths that pass through n.

Lemma: Consider two nodes n; and n, connected by an edge (n;,n;) and
merged into a node n; ,,
ParSet(n, ;) = ParSet(n;) N ParSet(n,)

Remark: Also
ParSet(n; ;) = ParSet(ni,n2) — [ParSet(ny,nz) N DepSet(ny, n2)]

Lemma: Consider two nodes n; and n, connected by an edge (n;,n2) and
merged into a node n; 3,
DepSet(n; 2) = DepSet(n;) U DepSet(n,)

4.1.2 Parallelism with respect to a Node

Parallelism with respect to a Node: Given a node n in a DAG g, we define
the Parallelism with respect to n to be |ParSet(n)*.

Parallelism Loss with respect to a Node: Given a node n in a DAG g, we
say that there is parallelism loss with respect to n as a result of merging nodes if
and only if the parallelism with respect to n after the merger is strictly smaller

than the parallelism with respect to n before the merger.

3Given a set S, |S| is the number of elements in S.

81



4.1.2.1 Condition for Parallelism Loss

Consider two nodes n; and n; in the task graph, connected by an edge (n,n2)

and merged into a node n; ;.

Definition: We say that some parallelism is lost in the task graph as a result

of the merger if and only if some parallelism is lost with respect to n; or n,.

Thus if we guarantee that no parallelism is lost with respect to n, and no
parallelism is lost with respect to n,, then we guarantee that no parallelism is lost

in the task graph as a result of the merger.

ParSet(n;) represents all nodes which can be executed in parallel with n,
before the merger.
Any node belonging to DepSet(n,) cannot be executed in parallel with n, after
the merger.
Therefore, the set ParSet(n;) N DepSet(n;) represents all nodes which could ex-
ecute in parallel with n; before the merger, and no longer can be executed in

parallel with n, after the merger.
The same analysis can be applied to node n,.

Hence:

1. Some parallelism will be lost with respect to n; as a result of the merger if
and only if
ParSet(n;) N DepSet(ny) # 0.
An equivalent condition is:
ParSet(n, ;) # ParSet(n,).

2. Some parallelism will be lost with respect to n; as a result of the merger if
and only if
ParSet(n;) N DepSet(n,) # 0.
An equivalent condition is:

ParSet(ny2) # ParSet(n,).



4.1.2.2 Amount of Parallelism Lost

Consider 2 nodes n; and n; in the task graph, connected by an edge (n;,n2) and

merged into a node n; .

1. The amount of parallelism lost (if any) with respect to n; as a result of the
merger is defined to be
| ParSet(n,) N DepSet(ny)|.
This can also be expressed as:
|ParSet(n;)| — |ParSet(ni2)|.

2. The amount of parallelism lost (if any) with respect to n; as a result of the
merger is defined to be
|ParSet(nz) N DepSet(n,)|.
This can also be expressed as:

|ParSet(ny)| — |ParSet(n )|

Definition: The amount of parallelism lost in the task graph as a result of the
merger is defined to be the sum of the amount of parallelism lost with respect to

n, and the amount of parallelism lost with respect to n,.

4,1.2.3 Remark 1

Consider the example in figure 4.2.

ParSet(nz) = {nas,n4}.

DepSet(n;) = {n4,na}.

ParSet(n;) N DepSet(n,) = {n4} # 0.

Hence there is parallelism loss with respect to n,.

Note that ParSet(n;) is not an independent set. n3 and n4 are dependent, and
therefore n, cannot execute in parallel with these 2 nodes simultaneously. Hence,
if only one of these 2 nodes becomes dependent with ny after the merger, n,
can still execute in parallel with the other node. Nevertheless, the CPL can still
increase here. However, if both ns and n4 become dependent with n. after the

merger, then node n; will not be able to execute in parallel with any of these 2
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nodes. For an example of this refer to figure 4.3.
In figure 4.3,

ParSet(n,) = {ns,n4}.

DepSet(n,) = {ns, nq,n2}.

ParSet(n,) N DepSet(n;) = {na,ns} # 0.

4.1.2.4 Remark 2

Consider the following 2 examples.

Example 1

Given the task graph in figure 4.4.

Before the merger:

ParSet(n,) = {na,n4,ns,n6}.

ni, na, ng and ng can execute in parallel.

After the merger:

ParSet(n; ;) = {n4,ns,ne}.

We have parallelism loss with respect to n, (one node: nz lost). However, n3, n4
and ns can still execute in parallel. In other words, only one node is lost for

parallelism (node n,).
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Figure 4.5: Example 2

Example 2

Given the task graph in figure 4.5.

Before the merger:

ParSet(n;) = {n3, n4,ns}.

ni1, n3, N4 and ns can execute in parallel.

After the merger:

ParSet(n; ) = 0.

All the parallelism with respect to n, is lost (3 nodes). However, n3, ns and ns
can still execute in parallel. In other words, only one node is lost for parallelism

(node ny).

Let S = ParSet(n,) N DepSet(n,). For all nodes n € S, there exists at least one
path p which goes through n and n; but not n, (before the merger). Therefore,
p increases in length after the merger (see section 4.2). The more nodes S has
the more execution paths are most likely to increase after the merger. Hence
defining the amount of parallelism with respect to n; as |S| makes sense. Note
that in general the number of execution paths that increase as a result of

merging tasks is different from |S|.

4.1.3 Defining Parallelism

It is very hard to define the parallelism available in a task graph formally and
precisely. All we can do is give an approximative definition. The definition should
depend on what we need it for and how we are going to use it. For instance in our

case, our measure of the performance of the partitioning algorithm is the CPL.
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We will see later on in the analysis that our definition of parallelism is tightly
coupled with the CPL of the task graph, and that the way the CPL is affected by
the merger of tasks is related to the loss of parallelism (the way we defined it) in

the task graph.

Some other possible definitions of the parallelism in a task graph follow. Note
that we assume that all nodes have the same weight and all edges have the same
weight.

Total Parallelism = ¥,¢p,,. (1 + MazPar(n)).
Maximum Parallelism = Maznep,,., {1 + MazPar(n)}.

4.1.4 Usable Parallelism

Degree of Parallelism: Given a DAG g and a set S of nodes belonging to g,
the degree of parallelism in S is | P|, where* P is the largest parallel set of S.

Usable Parallelism: Given a DAG g and a node n in g, the Usable
Parallelism with respect to n is MaxPar(n), defined to be the degree of
parallelism in ParSet(n).

Lemma: Given a DAG g and a node n in g, the Usable parallelism with
respect to n is the maximum number of nodes in ¢ that can be executed in

parallel simultaneously with node n.

4.1.4.1 Condition for Usable Parallelism Loss

Consider 2 nodes n; and n, in the task graph, connected by an edge (ny,n2) and

merged into a node ny .

1. There is usable parallelism loss with respect to ny as a result of the merger
if and only if
MaxPar(n;) > MaxPar(n; 2).

4|P| is the number of elements in the set P.
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2. There is usable parallelism loss with respect to n, as a result of the merger
if and only if
MaxPar(n;) > MaxPar(n, ).

4.1.4.2 Amount of usable Parallelism Lost

Consider 2 nodes n; and n; in the task graph, connected by an edge (n1,n2) and

merged into a node ng ;.

1. The amount of usable parallelism lost (if any) with respect to n; as a result
of the merger is defined to be
MaxPar(n;) — MaxPar(n, 2).

2. The amount of usable parallelism lost (if any) with respect to n, as a result
of the merger is defined to be
MaxPar(n,;) — MaxPar(n, 3).

4.1.4.3 Another condition for usable Parallelism Loss

In what follows, we assume that two nodes n, and n; in the task graph, connected

by an edge (n;,n;) are merged into a node n, .

Let’s examine the parallelism lost with respect to n;.

Let § = ParSet(n;) N DepSet(n,).

S represents all the nodes which could be executed in parallel with n; before the
merger, and no longer can execute in parallel with n, after the merger.
However, ParSet(n;) is not necessarily an independent set, and therefore it is not
always the case that n; can execute with all nodes in ParSet(n;) simultaneously.
Let’s assume that ParSet(n,) is not an independent set.

Hence, there exists at least one dependent set S’ C ParSet(n,).

Clearly, no 2 nodes belonging to S’ can execute in parallel.

Hence, n, can execute in parallel with only one node at a time from $’.
Therefore, if after the merger some nodes in S’ become dependent with n;
because they used to belong to DepSet(n;) before the merger, no parallelism will
be lost with respect to n; because of that, provided that at least one node in S

remains independent with n, after the merger.
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The Condition

Some usable parallelism will be lost in the task graph as a result of the merger if

and only if any of the 2 following conditions is true:
1. Some usable parallelism with respect to n,; is lost.

2. Some usable parallelism with respect to n; is lost.

Usable Parallelism Lost With Respect to n,

Case 1 ParSet(n,) is an independent set®.

In this case, some parallelism will be lost with respect to ny if and only if
ParSet(n;) N DepSet(n,) # 0.

Case 2 ParSet(n;) is not an independent set.
Therefore, there is at least one dependent set S’ C ParSet(n,).
Without any loss of generality, let’s assume that ParSet(n;) has k anti-
parallel sets: Sy, 52,...,Sk. '
Let S, =S;USU...US.
Let S = ParSet(n;) N DepSet(n,).
In this case, some parallelism will be lost with respect to n, if and only if

the following 2 conditions C; and C; are satisfied:

1L Cli S :,é @
2. CQ = Cgll OR, Cg.g.
Cg.li S ¢ Su

(i.e. there exists at least one node n € S such that n € S, < n does
not belong to any of the sets S;, 1 <t < k < n and any other node in
ParSet(n;) are independent.) _
Ca2% S C S, and at least one of the sets S; C 5,1 <1 <k.

5There is no dependent set S' C ParSet(n;).
SHere we are assuming that all sets S;'s are disjoint, and that no two nodes belonging to
different anti-parallel sets of ParSet(n;) can be dependent.
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Usable Parallelism Lost With Respect to n;

The exact same analysis that applies to n; applies to n, as well.

Problem With Above Condition

As was mentioned earlier, for condition C; 3, we assume that all sets S;’s are dis-
joint, and that no two nodes belonging to different anti-parallel sets of ParSet(n,)

can be dependent. Clearly, in general this might not be true.

4.1.5 Relationship between Parallelism and Usable
Parallelism

Lemma: Given a DAG g and a node n in g,
PAR(n) > MaxPar(n)
i.e. the parallelism w/ respect to n is greater or equal than the usable

parallelism w/ respect to n.

Lemma: Given a DAG g and a node n in g,
There is usable parallelism loss with respect to n =

There is parallelism loss with respect to n.

There is parallelism loss with respect to n #=>

There is usable parallelism loss with respect to n.

There is no parallelism loss with respect to n =

There is no usable parallelism loss with respect to n.

There is no usable parallelism loss with respect to n =

There is no parallelism loss with respect to n.

Lemma: Given a DAG g and a node n in g, if ParSet(n) is an independent
set, then
PAR(n) = MaxPar(n).

Lemma: Given a DAG g and a node n in g, if ParSet(n) is an independent

set, then:
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There is parallelism loss with respect to n <=

there is usable parallelism loss with respect to n.

4.1.6 Upper Bound on Degree of Parallelism

Consider a DAG g and a set S of nodes belonging to g.

We find the smallest & such that

S=5US5U...US:USind,

where each S; is an anti-parallel set, and Sinq4 is a set of zero or more nodes that
don’t belong to any dependent set.

k = 0 represents the case for which S doesn’t have any dependent sets (i.e. S is
an independent set).

Any parallel set of S contains zero or one element from each set S;, plus all
elements in Sinq.

Therefore, the degree of parallelism in S is < k + |Sinal.

Consider the case where S can be written as

8 =5 U8 U .. U8 U Sia,

where each S; is an anti-parallel set, and S;,q is a set of zero or more nodes that
don’t belong to any dependent set, and all S;’s are disjoint, and no 2 nodes which
belong to different anti-parallel sets (from the above listed anti-parallel sets) are
dependent.

In this case, the degree of parallelism = k + |Sinal.

4.1.7 Theorem

Let g be a task graph. Let n; and n, be 2 nodes in g connected by an edge
e = (n1,ng).

Let Sy := DepSet(n,) — {n2}.

Let S; := DepSet(ny) — {n,}.

ParSet(n,) N DepSet(ny) = @ AND ParSet(n;) N DepSet(ny) =0

—

ParSet(n,) = ParSet(n,)
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—
Sl = Sg.

Proof

1. Assume that: ParSet(n;)NDepSet(n;) = @ AND ParSet(n;)NDepSet(n;) =
0.

(a) ParSet(ni) N DepSet(ny) = 0:
DepSet(ng) = {n1} U S,.
Vn € S3, n & ParSet(n,) =
Vn € S3, n € DepSet(n,) (since n # n;) =
Vn € S, n € 5 (since n # ny) =
S, C 5 (1)
Vn € ParSet(n), n € DepSet(n;) =
Vn € ParSet(n;), n € ParSet(n;) (since n # ny) =
ParSet(n,) C ParSet(n;) (2)

(b) ParSet(n;) N DepSet(n;) = 0:
DepSet(n;) = {ns} U 5.
Vn € Sy, n € ParSet(n;) =
VYn € 51, n € DepSet(n,) (since n # ny) =
VYn € S, n € 5; (since n # n;) =
51 CS; (3)
Vn € ParSet(n;), n € DepSet(n,) =
¥n € ParSet(n,), n € ParSet(n;) (since n # n;) =
ParSet(n;) C ParSet(n,) (4)

(2) AND (4) = ParSet(n,) = ParSet(ns).

2. Assume that:
ParSet(n,) = ParSet(n,).



vn € DepSet(n;), n ¢ ParSet(ny) =

Vn € DepSet(ny), n € ParSet(n,) =
ParSet(n;) N DepSet(ny) =0 (5)
¥n € DepSet(n,), n € ParSet(n) =

¥n € DepSet(n,), n € ParSet(nz) =
ParSet(n;) N DepSet(ny) = 0 (6)
(5) AND (6) = S1 = S2.

3. Assume that:
S, = 8.
Vn € ParSet(n,), n € DepSet(n1) =
¥Yn € ParSet(n;),n € S1 =
Vn € ParSet(n),n € S2 =
Vn € ParSet(n,), n € DepSet(ny) (since n # n) =
Vn € ParSet(n;), n € ParSet(n;) (since n #ny) =
ParSet(n;) C ParSet(ny) (7)
Vn € ParSet(ny), n ¢ DepSet(ns) =
¥n € ParSet(ny), n € S2 =
Vn € ParSet(n;), n &€ 51 =
Vn € ParSet(n;), n € DepSet(n;) (since n #ny) =
Vn € ParSet(ny), n € ParSet(n,) (since n #ny) =
ParSet(ny) C ParSet(n;) (8)
(7) AND (8) = ParSet(n) = ParSet(nz).

Corollary

Let g be a task graph. Let m; and n, be 2 nodes in g connected by an edge

e = (ny1,n2)-

No parallelism is lost in the task graph as a result of the merger
—

ParSet(n,) = ParSet(na).

93



Proof

No parallelism is lost as a result of the merger if and only if no parallelism is lost
with respect to n; and no parallelism is lost with respect to n,.

This is true if and only if

ParSet(ny) N DepSet(ny) = @ AND ParSet(ny) N DepSet(ny) = 0.

From the above theorem, that is true if and only if

ParSet(n,) = ParSet(nz).

4.2 Effect of Task Merging on CPL

4.2.1 Problem Statement

In all what follows, we assume that 2 nodes n; and nj in the task graph connected
by an edge e = (n;,n,), are merged into a node n; ;.

Let p. = Py of task graph before the merger.

ly := length of P..;; of task graph before the merger.

ly = Ly(pc)-

CPL; = ;.

lo := length of P.;; of task graph after the merger.

4.2.2 Effect on Path Length

Let p be any path in the task graph.
We have 3 possibilities:

1. None of the two nodes merged belongs to p.

2. Only one of the two nodes merged belongs to p.

3. Both nodes merged belong to p: = e € p.
To see why this is true, assume that e & p.

= there are two possibilities:
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(a) There is a path from n,; to n; other than (n;,n,).
= After a merger, a cycle will be created.

Therefore n; and n, cannot be merged together.

(b) There is a path from nj to n,.
= There is a cycle before the merger, because of edge (n,,n;), which

is not possible since we have a DAG.

The length of p is affected by the merger if and only if at least one of the

following conditions is true:

1. A node in p is replaced by another node that has more computations (this
is the case when only one of the 2 merged nodes belongs to p).
Assuming that n; € p,
L(p) is increased by comp(nz).

2. An edge in p is deleted (this is the case when e € p).
L(p) is reduced by commi(e).

3. An edge in p is replaced by another edge which carries more data (this is
the case when two edges e; and e, are replaced by one edge €', and either
e; or e; belongs to p).
Assume e; € p, then

L(p) is increased by delay(data(ez)).
There are 3 cases:

Case 1 None of the two nodes merged belongs to p:

La(p) = Lb(p)

Case 2 Only one of the two nodes merged (say it is n1) belongs to p:
Let n, be the predecessor of n; in p (if any).
Let n, be the successor of n; in p (if any).
La(p) = Ls(p) + comp(ny) + delay(data(ny, n2)) + delay(data(na, ng)).
Note that if (np,ny) and (ng,n,) don’t exist (or if n, and n, don't exist),

then



La(p) = Ls(p) + comp(na).

This increase in length of p represents a loss in parallelism and increase in se-
quentialization by the amount comp(n;)+delay(data(n,, ny))+delay(data(ns, n,))
relative to path p.

The terms involving the delay function are due to the fact that some inter-
PE communication has to be sequentialized are a result of the merger. For
instance, the increase by the amount delay(data(ny, n2)) is due to the fact
that before the merger, n, used to send the data on edges (n,,n;) and
(n,,n2) to separate virtual PEs in parallel. After the merger, the data on
these 2 edges is combined and sent to the same virtual PE. Clearly this takes
more time.

In conclusion, we could have an increase in the CPL, and as a consequence
the parallel execution time could increase.

For an example of this, refer to figures 3.7 and 3.8.

Figure 3.7 shows a task graph before merging nodes n; and nj.

Figure 3.8 shows the graph after the merger.

Consider path p; = (ns,np,n1,n,,ns,n10) in figure 3.7. After the merger,

= (n?n Tip,y 1,2, Tay M5, nm)-

Case 3 Both nodes merged belong to p:
Let n, be the predecessor of n, in p (if any).
Let n, be the successor of n; in p (if any).
La(p) = Lu(p) — comm(e) + delay(data(n,, ny)) + delay(data(ny, n,)).
Note that if (np,nz) and (n;,n,) don’t exist (or if n, and n, don’t exist),
then
La(p) = Ls(p) — comm((e).
This decrease in the length of p represents a reduction in communication
overhead by the amount ¢ = comm(e)—delay(data(n,, ny))—delay(data(ny, ny))
relative to path p (assuming that z > 0, which is true for most cases).
Again, the terms involving the delay function are due to the fact that some
inter-PE communication has to be sequentialized are a result of the merger.
For an example of this, refer to figures 3.7 and 3.8.

Figure 3.7 shows a task graph before merging nodes n; and nj.
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Figure 3.8 shows the graph after the merger.
Consider path p2 = (na, np, 11,2, Ry, N5, Nyo) in figure 3.7. After the merger,

P2 = (n3, np, 1,2, Ny N5, n1o).

4.2.3 Merging an Edge Belonging to the Critical Path

In what follows, we omit the terms involving the function delay in the expressions
giving the length of a path after merging two nodes, in terms of its length before

the merger.

Let’s assume that e € P of task graph.
Thus, La(p.) = ly — comm(e).

4.2.3.1 Effect on Execution Paths

Clearly for any execution path p in the task graph, Ly(p) < l, since [ is the CPL

before the merger.

1. Any execution path p that doesn’t go through any of the 2 nodes merged:
La(p) = Ls(p)-

2. Any execution path p that goes through n, and not na:
Lq(p) = Ls(p) + comp(na).

3. Any execution path p that goes through n, and not n;:
Lq(p) = Lu(p) + comp(n).

4. Any execution path p that goes through edge e:
La(p) = Ls(p) — comm(e).

4.2.3.2 Effect on Critical Path

Case 1 There is no execution path that goes through only one of the 2
nodes merged:
Thus for any execution path p, La(p) < Ls(p)-
Also we know that Ly(p) < lp. Therefore, L.(p) £ 1.

Hence, CPL will either decrease or remain unchanged as a result of the
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merger.

P..;: could change as a result of the merger. We have 2 cases:

1. If all execution paths p go through e:
La(p) = Ls(p) — comm(e).
In this case, all execution paths including p. will be reduced in length
by the same amount.
Hence, P..i will not change and CPL decreases by comm(e) as a result

of the merger.

2. At least one execution path doesn’t go through e:
Let p1,p2, .- ., pr be such execution paths, where k > 1.
La(pi) = Ly(p:), 1 1 < k.
There are 2 cases:
(a) If at least one of the p;’s is such that
Ly(p:) = ly:
P..iy will change and CPL will remain unchanged.
(b) If Ly(pi) < b, 1 S i < ke
CPL will decrease.
P..it could change. There are 2 possibilities:
i. Ly(pi) < La(pe)y 1 1< ke
CPL will decrease by comm(e).
P--;+ will not change.
ii. At least one of the p;’s is such that Ly(p;) > La(pc):
Pt will change.
CPL will decrease by an amount smaller than comm(e).

Let p., be the p; such that Ly(py,) is the largest among all p;’s.
After the merger,

Perit = pm and CPL = Ly(pm)-
CPL will decrease by {, — Ls(pm).

Case 2 There is at least one execution path p that goes through only
one of the 2 nodes merged:

P..i: could change as a result of the merger, and CPL could increase, since
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the length of p increases after the merger.

Let py,pa,---,pk be all execution paths that go through only one of the 2
nodes merged, where k > 1.

Let n;; and n;; be the two nodes merged, and let n;; be the node that
belongs to p;, and let n;, be the other node’, 1 <: < k.

La(pi) = Ly(p:) + comp(nia), 1 <1 < k.

We know that ly > Ly(pi), 1 < i < k, since I is the CPL before the merger.

There are so many possibilities, depending on the length of the execution
paths before the merger, l;, the value of comp(niz), the value of comm(e),

etc.

Since we already studied the case where no execution path goes through
only one of the 2 nodes merged, let’s assume that all execution paths
(p. excluded) go through only one of the 2 nodes merged. This will
simplify our analysis.

In this case, the execution paths are py,pa,...,Pk and pe.

There are 2 possible situations:

1. i Lo(pi) € La(pe), 1 <1< ke
P..;; will not change.

CPL will decrease by comm(e).

2. If there is at least one execution path p such that Ls(p) > L.(pc):
P will change, but CPL does not necessarily increase. We have 2
cases:

(a) If La(pi) Sy 1S15 K
i If at least one of the p;’s is such that L.(p;) = ly:
Let p, be this p;.
After the merger,
Peit = Po-

CPL remains unchanged.

7If p; goes through n; then n;, is n; and n; 7 is ny. If pi goes through n, then n; ; is ny and
ng.2 1s nj.
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i, I La(p) <l 1S 1<k
CPL will decrease by an amount less than comm(e).
Let pm be the p; such that La(pm) is the largest among all p;’s.
After the merger,
P.it = pm and CPL = La(pm)-
CPL will decrease by Iy — Ly(pm) — comp(nm,2)-
(b) If there is at least one execution path p such that La(p) > l:
CPL will increase.
Let p» be the p; such that Ly(pm) is the largest among all pi's.
After the merger,
Poit = pm and CPL = L,(pm)-
CPL will increase by Ly(pm) + comp(nm,2) — ls-

4.2.3.3 Conclusion

o Merging an edge that belongs to P of task graph does not guarantee a

decrease in CPL.
¢ The maximum decrease in CPL is comm(e).

o Merging an edge that belongs to all execution paths guarantees the maxi-

mum decrease in CPL.

o If none of the execution paths go through only one of the 2 nodes merged,
then CPL will either decrease or remain unchanged.

Also the maximum decrease in CPL could be achieved here.

o If at least one execution path goes through only one of the 2 nodes merged,
then CPL will either increase, remain unchanged or decrease.

Also the maximum decrease in CPL could be achieved here.

4.2.4 Merging an Edge Not Belonging to the Critical Path

In what follows, we omit the terms involving the function delay in the expressions
giving the length of a path after merging two nodes, in terms of its length before
the merger.
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Let’s assume that € € Perit-
Clearly, e belongs to at least one execution path®.

There are 2 possible cases:

Case 1 P..; goes through only 1 of the 2 nodes merged:
Let n;, be the node merged which belongs to p, and let n,,: be the node
merged which does not belong to p..
Lo(pe) = by + comp(nout).
After the merger, CPL will increase by at least comp(noy:) and Peir might
change.

There are 2 possibilities:

1. If none of the execution paths p (p. excluded) go through only one of
the 2 nodes merged:
La(p) < Lo(p)-
Since Ly(p) < Iy, then La(p) < .
Hence CPL will increase by comp(noyu:) and Perir Will not change after

the merger.

‘9. If at least one execution path (p. excluded) goes through only one of
the 2 nodes merged:
Let p1,pa,-...,px be all the execution paths that go through only one
of the 2 nodes merged (p. excluded), k > 1.
Let n;, be the node merged which belongs to p;, and n,; be the node
merged which does not belong to p;.
La(p:) = Ly(pi) + comp(niz), 1 < i < k.
If comp(niz) < comp(nou) then Ferit will not change and CPL will
increase by comp(nout)-
If nia = now then Pei will not change and CPL will increase by
comp(nout)-

Let p.. be the p; such that Lo(pm) is the largest among all pi’s.

8 Any edge in the graph belongs to at least one execution path.
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There are 2 possible cases:

(a) If La(pi) € La(pe), 1 i< ke

P..i¢ will not change and CPL will increase by comp(nou:).
(b) If at least one p; is such that La(pi) > La(pc):

After the merger,

Poit = pm and CPL = L,(pm).

CPL will increase by an amount greater than comp(nout).

The increase in CPL is Ly(pm) + comp(nm2) — .

Case 2 P, does not go through any of the 2 nodes merged:
La(pe) = Lo(pc) = -
CPL will either increase or remain unchanged.
P..;; might change.

There are 2 possibilities:

1. If no execution path p (p. excluded) goes through only one of the 2
nodes merged:
La(p) < Li(p).
Since Ly(p) < Iy then L,(p) < I.
Thus, Py and CPL will not change.

2. If at least one execution path goes through only one of the 2 nodes
merged:
Let p1,p2,...,px be all the execution paths that go through only one
of the 2 nodes merged (p. excluded), k > 1.
Let n;; be the node merged which belongs to p;, and n;, be the node
merged which does not belong to p;.
La(pi) = Lo(pi) + comp(niz), 1 <1 < k.
Hence, P, could change and CPL could increase.
There are 2 cases:
(a) If La(pi) S by 1 i < k:
Perit and CPL will not change.
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(b) If at least one p; is such that Ls(pi) > b
Let pn. be the p; such that La(pm) is the largest among all p;’s.
After the merger,
P.it = pm and CPL = L,(pm).
CPL will increase by Ly(pm) + comp(nim2) = lb.

Conclusion

e If e € P,y then CPL never decreases (it will either increase or remain

unchanged) after the merger.

o If P, goes through only one of the 2 nodes merged, then CPL will increase
by at least comp(n,u) after the merger, where n,y; is the node merged which

does not belong to Perit-

o If P..;; does not go through any of the 2 nodes merged, then CPL will either

increase or remain unchanged after the merger.

4.3 Merging Tasks: Effect of Parallelism Loss on
CPL

In this section, we study the effect of parallelism loss on the CPL of the task graph.
We consider two nodes n, and n, belonging to the task graph and connected by
an edge e = (n1,nz). We study the effect of merging nodes n; and n, on the CPL

when the merger causes parallelism loss and when it doesn’t.

4.3.1 No Parallelism Loss

Theorem: Assume that ParSet(n;,) = ParSet(n,), so that there is no
parallelism loss when we merge n, and ng.

Then the CPL of the task graph never increases as a result of the merger.
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Figure 4.6: No parallelism loss
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Figure 4.7: No parallelism loss
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Figure 4.8: No parallelism loss
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Proof

Let’s use proof by contradiction. We assume that the CPL increases as a result of

the merger. Therefore, there should exist at least one execution path p such that
L.(p) > CPLy. Clearly, Ly(p) < CPL.

There are 3 possible cases:

1. p goes through both nodes n, and n,.
2. p goes through n; but not n,.

3. p goes through n, but not n,.

The situation where p doesn’t go through any of the 2 nodes n; and n; is not

possible, since in that case L(p) is not affected by the merger.

Let’s investigate the 3 possible cases.

Casel p goes through both nodes n; and nj:
Let p = (Riy. .. Np, N1, N2, Ny ooy ).
For p to have the maximum increase in length after the merger, we have to
have an edge (n,,n2) and an edge (n1,n,) (see figure 4.6).
Let AL := L,(p) — Ls(p).
AL = delay(data(n,,ns)) + delay(data(ny, n,)) — comm(ny, na).
The comm function includes both the start-up component and the delay
component. Since in general the start-up component is much larger than
the delay component, AL must be negative. Furthermore, in practice the
edges (np,ny) and (ny,n,) are most likely not to exist.
This means that Lo(p) < Ls(p). Since Ly(p) < CPLy, then Lo(p) < CPLs.
This is a contradiction since we assumed that L,(p) > CPLs.

Case 2 p goes through n; and not nj:
Let p = (Riy. ..y Rpy N1y Ny, ooy ).
Since ParSet(n;) = ParSet(n,;) and nodes n; and n, are dependent, then
nodes n; and n, have to be dependent as well. Thus either there exists a
path from ns to n, or there exists a path from n, to ny. If there exists a path

from n, to n, then there exists a path from n; to n, other than (ny,n2).
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Therefore we will have a cycle in the task graph after the merger. Hence we
have to disregard this case, which means that there exists a path from n; to
n, (see figure 4.7).

Let p' = (Riyes oy Rpy N1y N2y ensy Mgy e ey RY)

Let AL := Lq(p) — Ls(p').

For AL to have its maximum value, L,(p) has to be maximized and L;(p)
has to be minimized. Hence, the path from n; to n, has to be constituted
of the single edge (ns,n,).

Also for L,(p) to be maximized, we have to have an edge (n,, n2) (see figure
4.6).

Therefore, p' = (niy...,Np, N1, N2y Nyyo oy Tg).

Hence,

AL = delay(data(ny, n3)) + delay(data(n,y, n,)) — comm(ny, na).

Again, AL must be negative. Furthermore, in practice the edges (n,,n,)
and (ny,n,) are most likely not to exist.

This means that L,(p) < Ly(p'). Since Ly(p') < CPLy, then L,(p) < CPL.
This is a contradiction since we assumed that L,(p) > CPLs.

Case 3 p goes through n; and not n;:
Let p = (niy...,np, N2, Ny, ..., 0y).
Since ParSet(n;) = ParSet(n;) and nodes n, and n, are dependent, then
nodes n; and n, have to be dependent as well. Thus either there exists a
path from n; to n, or there exists a path from n, to n;. If there exists a path
from n; to n, then there exists a path from n;, to n, other than (n;,n,).
Therefore we will have a cycle in the task graph after the merger. Hence we
have to disregard this case, which means that there exists a path from n, to
n, (see figure 4.8).
Let p' = (g o oy Mipye woo i Vg5 Mo w0y T )
Let AL := La(p) — Ls(p).
For AL to have its maximum value, L,(p) has to be maximized and L;(p)
has to be minimized. Hence, the path from n, to n; has to be constituted
of the single edge (n,,n;).

Also for L,(p) to be maximized, we have to have an edge (n,n,) (see figure
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Figure 4.9: Example: no parallelism loss

4.6).

Therefore, p' = (Riy ..., Npy N1, N2y Ry -+ -y )

Hence,

AL = delay(data(n,y,n,)) + delay(data(ny, ns)) — comm(ny, n2).

Again, AL must be negative. Furthermore, in practice the edges (np,m1)
and (n;,n,) are most likely not to exist.

This means that La(p) < Ly(p'). Since Ly(p) < CPLy, then L.(p) < CPL,.
This is a contradiction since we assumed that La(p) > C'PLs.

Hence, there cannot exist an execution path p such that L.(p) > CPLy
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Figure 4.10: Example: no parallelism loss
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Figure 4.11: Example: no parallelism loss
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Examples

o Figure 4.9 shows a task graph before and after the merger.
ParSet(n;) = {ne, ns}
ParSet(ny) = {ne,ns}
ParSet(n;) = ParSet(n;)
Hence, there is no parallelism loss as a result of the merger.
Before merger: CPL = 45.
After merger: CPL = 35.
The CPL has decreased.

e Figure 4.10 shows a task graph before and after the merger.
ParSet(n,) = {ne, n7,ns, n10, n11}
ParSet(ny) = {ne, n7,ns, n10, 211}
ParSet(n,) = ParSet(ny)
Hence, there is no parallelism loss as a result of the merger.
Before merger: CPL = 67.
After merger: CPL = 57.
The CPL has decreased.

e Figure 4.11 shows a task graph before and after the merger.
ParSet(n;) = {na, ne, n7, na, , N, N0, N11, N12}
ParSet(nz) = {na, ns, n7, ns, ,ng, n10, R11, 12}
ParSet(n;) = ParSet(n,)
Hence, there is no parallelism loss as a result of the merger.
Before merger: CPL = 56.
After merger: CPL = 56.
The CPL has not changed.

4.3.2 There is Parallelism Loss

Theorem: Assume that there is parallelism loss when we merge n; and n;.

Then the CPL of the task graph could increase as a result of the merger.
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Figure 4.15: Example: there is parallelism loss
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Proof

Let’s prove the claim in the theorem by studying some examples.
In all the figures used in the following examples, the number next to a node
represents its execution time, and the number next to an edge represents the

communication time caused by the edge.

o Figure 4.12 shows a task graph before and after the merger.
ParSet(n;) = {n3,n4}
DepSet(n,) = {nz,n4}
ParSet(n;) N DepSet(ny) = {na}
Hence, there is parallelism loss with respect to n;.
Before merger: CPL = PARTIME = 4.
After merger: CPL = 5.
Thus the CPL has increased.
Note that before the merger, the graph had a critical path which contained

n, and not nz ((ny,n4)), and that is why we have an increase in the CPL.

o Figure 4.13 shows the same graph as in figure 4.12, except for the weights.
Before merger: CPL = 7.
After merger: CPL = 7.
Thus the CPL did not change.

e Figure 4.14 shows a task before and after the merger.
ParSet(n;) = {ns,n4,ns}
DepSet(ny) = {nz, s}
ParSet(ny) N DepSet(n,) = {ns}
Hence, there is parallelism loss with respect to n,.
Before merger: CPL = 7.
After merger: CPL = 7.
Thus the CPL did not change.

e Figure 4.15 shows a task graph before and after the merger.
ParSet(ny) = {n3,n4,ns,ne}: independent set.

DepSet(n,) = {nz,n3,ng, ns,ne}
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ParSet(n,) N DepSet(n,) = {ns, n4,ns,n6} = ParSet(ny)

Hence, there is parallelism and usable parallelism loss with respect to n,.
Before merger: CPL = 12.

After merger: CPL = 13.

Thus the CPL has increased.

Note that before the merger, the graph had at least one critical path which

contained n; and not n; (e.g. (n1,n3)), and that is why we have an increase

in the CPL.

e Figure 4.16 shows a task graph before and after the merger.
ParSet(ny) = {n3, n4,ns}: independent set.
DepSet(n;) = {na,n3,n4,ns,n6}
ParSet(ny) N DepSet(n;) = {na,n4,ns} = ParSet(n,)
Hence, there is parallelism and usable parallelism loss with respect to n,.
Before merger: CPL = 23.
After merger: CPL = 13.
The CPL has decreased.

Conclusion

e Given a task graph, if there is parallelism loss as a result of task merging,

the CPL can increase, remain unchanged, or decrease.

o Given a task graph, if there is usable parallelism loss as a result of task

merging, the CPL can increase, remain unchanged, or decrease.

4.4 A Comparison with DSC

The scheduling problem as defined by Tao Yang (18, 58, 59] (a sequence of task
clustering) has some similarities with the way we define the partitioning problem
(a sequence of task merging). Mainly both assume the availability of an infinite
number of PEs and non-zero communication overhead between PEs. As a conse-
quence, both problems use the CPL of the task graph as the parallel execution

time.
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Figure 4.17: Example of task merging

However, there is a major difference, since merging tasks involves changes in
the task graph® whereas task clustering doesn’t°.

Because of this, there is a major difference in the effect of task merging and
task clustering on the length of execution paths and as a consequence on the CPL

of the task graph.

4.4.1 Task Merging

As we saw previously, task merging could increase the CPL of the task graph. As
an example, consider the task graph in figure 4.17. Before the merger, the critical
path is (n4,ns) and the CPL is 15. After the merger, both execution paths

(ny,n3,ns) and (n2,n3,ns) increase in length by 4, since they both go through

“When two tasks are merged, they are replaced by a new task and some edges are replaced
by new ones.

10Clustering simply means that all tasks in the same cluster are executed in the same PE.
The only change in the task graph is the addition of pseudo-edges between independent tasks
in the same cluster to.impose an execution order in the PE. Also all weights of edges between
tasks in the same cluster are zeroed.
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only one of the 2 nodes merged. The CPL increases to 18. This is a side effect of

the merger.

4.4.2 Task Clustering

Task clustering rarely causes the CPL of the task graph to increase. As an exam-
ple, consider the task graph in figure 4.18. Before the merger, the critical path
is (n4,ns) and the CPL is 15. After ng and ns are put in the same cluster, the
execution paths (nj,ns,ns) and (na, n3, ns) are not affected'’. The CPL decreases
to 14.

4.4.3 Consequence

Because of the side effect caused by task merging, reducing the CPL using task

merging is much harder than using task clustering. This makes the partitioning

11The only case when execution paths could increase in length is when pseudo-edges are added.
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problem (as defined in this work) much harder than the scheduling problem (as
defined by Tao Yang).

4.5 Criteria for Merging

In this section, we list some criteria that will be used by the partitioning heuristics
to choose the edge to be merged.
We use the results of the previous analysis from the previous sections to obtain

these criteria.

e Edge has to belong to a critical path.
o Edge that belongs to all execution paths (if such an edge exists).

e Edge e such that none of the execution paths go through only one of the 2

nodes connected by e.

o Edge e = (n1,n;) such that ParSet(n;) = ParSet(n;) (no parallelism loss

as a result of the merger).

o Edge e with the largest comm(e). This way all execution paths which go

through e will decrease in length by a maximum quantity.

e Edge e = (ny,n,) such that comp(e) is smallest. This way, if there is an
execution path p that goes through only one of the two nodes n; and n,,

the length of p increases by the smallest possible quantity.

e Edge e = (n1,n;) such that the merger causes the minimum loss in paral-
lelism:
(|ParSet(n,)| — |ParSet(n;2)|) + (|ParSet(nsy)| — |ParSet(n;2)|)

is the smallest.

e Edge e = (n1,n;) such that the merger causes the minimum loss in usable

parallelism: -
(MazPar(ny) — MazPar(n,3)) + (MazPar(n;) — MazPar(n, 3))

is the smallest.



o Edge e such that the merger causes the least amount of execution paths to
increase in length.
For instance, we could choose edge e = (n;,n2) such that the number of
execution paths that go through only one of the 2 nodes n; and n; is mini-

mum.

o Edge e such that the merger causes the largest number of execution paths
to decrease in length.
In other words, we look for edge e such that the number of execution paths

that go through e is maximum.

We have to make sure that the criteria used in our partitioning algorithm are not
too costly. For instance, the 2 last criteria mentioned above require a large time

complexity.
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Chapter 5

The Partitioning Heuristics

Note: In the partitioning algorithm, if there is more than one critical path,

then choose one randomly.

Safe Edges: Let g be a task graph (DAG). An edge e = (ny,n;) is said to be a
safe edge if merging nodes n; and ny does not cause any cycles to be created in

g. Otherwise, e is said to be an unsafe edge.

A Requirement: An edge e = (n;,n) in a task graph is chosen for merger if
and only if e is safe. In other words, there should not exist a path from n; to n,

other than (n,,nz).

Lemma: Let g be a task graph (DAG) and e = (ny,n;) be a safe edge. If a
path p in g goes through both nodes n; and nj, then e € p.

Proof

Assume a path p in g goes through both nodes n; and n,.
If e € p then there are 2 possibilities:

1. There is a path from n, to n; other than (n;,n;). This contradicts our

assumption that e is a safe edge.

2. There is a path from n; to n;. This means that ¢ has a cycle, which con-

tradicts our assumption that g is a DAG.
Hence, € € p.
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Perfect Edges: We define a perfect edge to be one that belongs to all
execution paths in the DAG. Otherwise, the edge is said to be an imperfect edge.

Risky Edges: An edge e = (n),n2) is said to be a risky edge if there exists at

least one execution path that goes through only one of the nodes n; and n,.

5.0.1 Heuristics

In what follows, we show a few heuristics that can be used to choose the edge to be
merged during each iteration of the partitioning algorithm. Since these heuristics
are used in each merging step (i.e. merging iteration), we also call them merging

heuristics.

Heuristic 1

1. Find heaviest safe edge e in task graph which is perfect.
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

If no such edge go to 2, else go to 5.

2. Find heaviest safe edge € in P..;; which is not risky. If there is more than one
such edge e, choose the one such that comp(e) has the minimal value. If there
is still more than one edge that satisfies that, then choose one randomly.

If no such edge go to 3, else go to 5.

3. Find Heaviest safe edge e = (n1,n2) € Perit such that
ParSet(n;) = ParSet(nz).
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

If no such edge go to 4, else go to 5.

4. Find safe edge € = (n1,n2) € Pie such that
(|ParSet(ny)| — |ParSet(ny2)|) + (|ParSet(na)| — |ParSet(ny2)|)
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is the smallest among all safe edges in P..;.
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

5. Merge 2 tasks linked by e.

Heuristic 2

1. Find Heaviest safe edge e = (n,, ng) € P,y such that
ParSet(n,) = ParSet(n,).
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

If no such edge go to 2, else go to 3.

2. Find safe edge e = (r1,n3) € Poy such that B
(|ParSet(n,)| — |ParSet(n;,)|) + (|ParSet(nsy)| — |ParSet(ny,)|)
is the smallest among all safe edges in P..;.
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

3. Merge n; and n,.

Heuristic 3

1. Find Heaviest safe edge e = (nr1,n2) € Py such that
ParSet(n,) = ParSet(n,).
If there is more than one such edge e, choose the one such that comp(e) has

the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

If no such edge go to 2, else go to 3.
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2. Find safe edge e = (n1,n2) € Peit such that
(MazPar(n;) — MazPar(n,2)) + (MazPar(n;) — MazPar(n.z))
is the smallest among all safe edges in P.
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

3. Merge n; and n,.

Finding MazPar(n; ;) without doing the merger

ParSet(n,2) = ParSet(n;) N ParSet(ny).

Or better yet: Express Maz Par(n; ;) in terms of Maz Par(n,) and Maz Par(n,).

Heuristic 4

1. Find Heaviest safe edge e = (n;,n2) € Pgit such that
ParSet(n;) = ParSet(n;).
If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

If no such edge go to 2, else go to 4.

o

Find Heaviest safe edge e = (n;,n;) in task graph such that

ParSet(n;) = ParSet(ns).

If there is more than one such edge e, choose the one such that comp(e) has
the minimal value. If there is still more than one edge that satisfies that,
then choose one randomly.

If no such edge go to 3, else go to 4.

3. Find safe edge e = (n;,n,) in graph, such that
(|ParSet(n;)| — |ParSet(n)|) + (|ParSet(ns)| — |ParSet(n, 2)|)
is the smallest among all safe edges.

If there is more than one such edge e, choose the one such that comp(e) has



the minimal value. If there is still more than one edge that satisfies that,

then choose one randomly.

4. Merge n; and n;.

Heuristic 5

1. Find safe edge e in P, that has the largest merge merit.

If there is more than one such edge e, then choose one randomly.

2. Merge 2 tasks linked by e.

Merge Merit of an Edge: The merge merit of an edge e is

merge(e) := a.comm(e) — B.comp(e), o, 8 > 0.

Determining a and 3

a comm
SRR

comp

RZm™ = communication to computation ratio of target machine.

comp

Remarks

o Heuristic 4, Step2: if (n,,n,) € P.; then no decrease in CPL !!
e Heuristics 3 and 4 have very high time complexities.

o Heuristics 1 and 2 have the lowest time complexities. Heuristic 2 is less

costly than heuristic 1, but heuristic 1 is more efficient than heuristic 2.

e We chose heuristic 1 to do the performance analysis of our partitioning
algorithm.

5.1 Some Properties

The following properties enable us to reduce the time complexities of the parti-

tioning heuristics, by making it easier and quicker to find the edge to be merged.
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Theorem: For any DAG g such that each node in the graph has at most one

output, all edges in g are safe.

Proof

We use proof by contradiction.

Assume that there exists an edge e = (n;,n2) € g such that e is unsafe.
& There exists at least one path p from n; to n, other than (n;,ns).
Let p = (n1, Rz1, Nz2y - -« ) Remy R2), M 2 L

There are 2 possibilities:

1. nz = ng. Therefore g is cyclic: contradiction.
2. ng # ny. Therefore n; has at least 2 outputs: contradiction.

Therefore there cannot be any unsafe edges in g.

Lemma: Given a task graph (DAG) and a safe edge e = (n;,n2) in the graph.
e is not a risky edge
—

Node n; has only one output edge (e), and node n, has only one input edge (e).

Proof

1. Assume that No execution path goes through only one of the 2 nodes con-

nected by edge e.

e If n; has more than one output edge (let the other output edge be €’ =
(n1,n3)), then there is at least one execution path p that goes through
edge (n1,n3). Clearly, p cannot go through edge (ni,n;) (otherwise p
will have a cycle, which means that the graph is not acyclic). Thus, p
cannot go through n, (otherwise p goes through both nodes n, and no,
which implies that it goes through edge e). Hence p goes through n,;
and not ny. This contradicts our assumption. Therefore, n, has only

one output edge.
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e If n, has more than one input edge (let the other input edge be ¢’ =
(ns,ns)), then there is at least one execution path p that goes through
edge (na,n2). Clearly, p cannot go through edge (ni,nz) (otherwise p
will have a cycle, which means that the graph is not acyclic). Thus, p
cannot go through n; (otherwise p goes through both nodes n, and n,
which implies that it goes through edge e). Hence p goes through n;
and not n;. This contradicts our assumption. Therefore, n; has only

one input edge.

2. Assume that node n; has only one output edge (e), and node n, has only

one input edge (e).

e Any execution path p that goes through n, has to go through edge e

(since n; has only one output edge).

e Any execution path p that goes through n, has to go through edge e

(since ny has only one input edge).
Hence, no execution path goes through only n; or only n,.

Corollary: Given a task graph (DAG) such that each node in the graph has at
most one output, and a safe edge e = (n;,n2) in the graph.

e is not a risky edge

—

Node n; has only one input edge (e).

Proof: Trivial, from the previous lemma.

Lemma: Given a task graph (DAG) and an edge € = (ny,n;) in the graph.
e is a perfect edge
=

Node n; has only one output edge (e), and node n, has only one
input edge (e)

AND

ParSet(n,) = ParSet(n,) =0



Proof

Assume that e is a perfect edge.

If n, has more than one output edge or n, has more than one input edge, then
clearly there exists at least one execution path that doesn’t go through e. Hence,
e is not a perfect edge, which contradicts our assumption. Therefore, node n; has
only one output edge, and node n; has only one input edge.

Now, let's prove that ParSet(n,) = ParSet(n;) = 0.

We know that all execution paths go through e. For any node n in the graph
other than n; and nj, n belongs to at least one execution path p. Since p goes
through e, then p goes through n; and ny. Hence, n and n, are dependent and n
and n, are dependent. Therefore ParSet(n,) = ParSet(n;) = 0.

Lemma: Given a task graph (DAG) such that each node in the graph has at
most one output, and an edge e = (ny,n2) in the graph.
ParSet(n;) = ParSet(n;) <=

Node n, has only one input edge (e).

Proof

1. Assume that ParSet(n,) = ParSet(n,).
If n, has more than one input edge, then it will have at least one input edge
(n3,n2) other than e.
There can be no path between n; and nj, otherwise we must have a path
from n to n3 (since n; has only one output edge, which is (n1,n2)), which
means that the task graph is acyclic.
There can be no path between nj and ni, otherwise we must have a path
from ns to ny (since ns has only one output edge, which is (n3,n2)), which
means that the task graph is acyclic.
Hence ns € ParSet(n,). Clearly,ns & ParSet(n,). Therefore, ParSet(n,) #
ParSet(n;), which contradicts our original assumption.

Therefore, n, has only one input edge.

2. Assume that n, has only one input edge.



e ¥n € ParSet(n,), there is no path from n; to n and no path from n to
ni.
There cannot be a path from n to n,, otherwise we must have a path
from n to n; (since ny has only one input edge).
There cannot be a path from n, to n, otherwise we must have a path
from n, to n (because of edge (ni,n,)).
Hence, n € ParSet(nz).
Thus, ParSet(n,) C ParSet(n,).

e Vn € ParSet(n,), there is no path from n, to n and no path from n to
na.
There cannot be a path from n; to n, otherwise we must have a path
from n; to n (since n, has only one output edge).
There cannot be a path from n to n;, otherwise we must have a path
from n to n, (because of edge (ny,n3)).
Hence, n € ParSet(n,).
Thus, ParSet(n;) C ParSet(n,).

Therefore, ParSet(n,) = ParSet(n,).

Corollary: Given a task graph (DAG) such that each node in the graph has at
most one output, and a safe edge e = (ny,n;) in the graph.
ParSet(n;) = ParSet(n;) <

e 1s not a risky edge.

Proof: From a previous corollary and a previous lemma.

5.2 Time Complexity of Partitioning Algorithm

Let E be the number of edges and N be the number of nodes in the program
graph.
2, the initial task graph will have N nodes and at most E edges.
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5.2.1 DAG Traversal

As will be seen later, the partitioning algorithm requires traversal of the task
graph, which is a DAG.

In what follows, we describe the general procedure for DAG traversal.

Let Q be a queue (could be implemented as a linked list).
Q + 0.

Insert all root nodes in @ (in any order).

Repeat until @ =0

n + Front of Q.

Delete n from Q.

visit(n) % Node n is visited here.
IF n is not a leaf node THEN

Insert all children of n in @
% The way insertion is done depends on the traver-
sal

% type (e.g. breadth-first, depth-first).

Traversal of general DAGs is different from tree traversal. With general DAGs,
if we are not careful, a node might be visited more than once. Clearly, this is not
the case for trees. The reason for this is that for general DAGs, a node may have
more than one input edge.

In order to avoid visiting nodes more than once, when a node is put in the queue
Q, it is marked as queued. After a node is visited, only its children which are not
marked gueued are inserted in Q.

Hence the correct version of the general algorithm is as follows.

Let Q be a queue (could be implemented as a linked list).
Q « 0.

Insert all root nodes in @ (in any order)

% No need to mark root nodes as queued.

Repeat until @ =0
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n + Front of Q.

Delete n from Q.

visit(n) % Node n is visited here.

n is marked visited. % This marking may not be needed.
IF n is not a leaf node THEN

Insert all children of n that are not marked queued
in Q, and mark them as queued % So that nodes
are not visited more than once.

% The way insertion is done depends on traversal

% type (e.g. breadth-first, depth-first).

Deadlock Situations:

The algorithm for DAG traversal listed above never leads to deadlock situations
(deadlock means that the algorithm ends and there are still nodes not visited).
To see why this is the case, assume that during the execution of the algorithm
we reach a deadlock situation. This means that the queue @ is empty and there
is at least one node n in the graph that hasn’t been visited yet. Clearly, n hasn’t
been inserted in Q yet. Therefore, none of its parent nodes has been visited yet.
Let n, be a parent node of n (if any). Then n; was never inserted in @ either.
This goes on until we reach a root node r (since the graph is acyclic), and
establish that r was never inserted in ). Clearly this cannot be the case since all
root nodes are inserted in () at the beginning of the algorithm. Hence our
assumption that there is a deadlock situation cannot be true.

Another way to see why we cannot have any deadlock situations is to notice that
starting from the root nodes, we can reach any node in the graph by following

the paths emanating from the root nodes.

Depth-First Traversal

For depth-first traversal, the children of the node just visited are inserted at the

Front of @. The order among the children nodes in @) does not matter.
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Breadth-First Traversal

For breadth-first traversal, the children of the node just visited are inserted at the

Rear of Q. The order among the children nodes in Q does not matter.

Remarks

1. Breadth-first and depth-first traversals for general DAGs are different from
the ones for trees. This is so because for general DAGs a node may have

more than one input edge.

2. Time Complexity:
Breadth-first and depth-first traversals take at the most O(E + N) time

complexity.

Proof:

All nodes in the graph are inserted in @ exactly once and are visited exactly
once. This takes O(N) time.

Each time a node n is visited, each one of its children is examined to see
whether it is marked gueued or not. The number of children of n is equal to
the number of output edges of n. Therefore, since each node in the graph is

visited exactly once, this takes O(E) time.

Parents-First Traversal

In parents-first traversal, a node is not visited until all of its parent nodes are
visited!. The idea here is to keep a counter for each node in the graph (except the
root nodes). This counter is used to keep track of the number of parent nodes of
a given node that are already visited. When the counter of some node n is equal
to the total number of parents of node n, then we know that all the parent nodes
of n are already visited. A child node is inserted in the queue @ only when all of
its parents are already visited.

The procedure is as follows:

I This is a traversal using a topological order.
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Let Q be a queue (could be implemented as a linked list).
Q « 0.
Insert all root nodes in @ (in any order).

FOR all non-root nodes n in the graph DO

% Initialize the counters of the nodes.

n.count + Number of parent nodes of n
Repeat until @ = 0

n + Front of Q.
Delete n from Q.
visit(n) % Node n is visited here.

n is marked visited. % This marking may not be needed.
IF n is not a leaf node THEN

FOR all children nodes n’ of n DO

n'.count + n'.count —1 % One more parent
visited.

IF n'.count = 0 % All parents of n' are vis-
ited.

THEN Insert n’ at the Rear of @.

Remarks

1. The above algorithm is similar to breadth-first traversal because the inser-
tion of the children nodes is done at the Rear of Q.
We could have chosen to do the insertion of the children nodes at the Front of

Q. This way the algorithm would have been similar to depth-first traversal.

2. Deadlock situations:
The algorithm for parents-first traversal never leads to deadlock situations
because our graph has no cycles.
To see why this is the case, let’s assume that during the execution of the
algorithm, we reach a deadlock situation.

This means that Q is empty and there is still at least one non-visited node
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n. 2, n has never been inserted in Q. Hence, at least one parent (if any) n,
of n hasn’t been visited yet. This means that n, has never been inserted in
Q either. Hence, at least one parent (if any) na of n; hasn’t been visited yet.
This goes on until we reach a root node r (since the graph is acyclic), and
establish that r hasn't been inserted in Q yet. Clearly this is a contradiction,
since all root nodes are inserted in @ at the beginning of the algorithm.
Hence it is not possible to reach any deadlock situation during the execution

of the algorithm.

3. Time Complexity:

The time complexity of the parents-first traversal is O(E + N i

Proof:

It takes O(N) to initialize the counters of the nodes. All the nodes in the
graph are inserted in Q and visited exactly once. This takes O(/N) time.
Fach time a node n is visited, each one of its children is examined (its
counter is updated, and depending of the value of that counter, it may be
inserted in Q). Examining a child node takes a constant amount of time.
The number of children nodes of n is equal to to number of output edges
of n. Hence, since each node in the graph is visited exactly once, this takes

O(E) time.

5.2.2 Determining the Notions Used by the Partitioning
Algorithm

Determining the CPL

For each node n in the graph, we define length(n) to be the length of the longest
path from any input node to n, n excluded. Also, for each node n in the graph,
we define pred(n) to be the predecessor node of n along the longest path from
any input node to n, n included (if there is more than one such path, we choose
any one of them). Furthermore, for each output node n in the graph, we define
exec.path.length(n) to be the length of the longest execution path that ends in n.
Finally, we define cp.last to be the last node (output node) in the critical path (if

there is more than one critical path, we choose anyone of them).
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The idea here is to use a parents-first traversal of the graph to determine length(n)
for each node n, and pred(n) for each non-root node n in the graph. Then, we
determine exec.path.length(n) for each output node n. Finally, we choose the leaf
node [ such that exec.path.length(/) is the largest among all leaf nodes. The CPL
is equal to exec.path.length(l). Clearly, cp.last is I. To find the critical path P,
we use the function pred. [ is the last node in P, I} = pred(l) is the node
preceding ! in P, l; = pred(l,) is the node preceding l; in P, etc., until we
reach an input node.

The algorithm is as follows:

Let @ be a queue (could be implemented as a linked list).
Q « 0.

Insert all root nodes in @ (in any order).
FOR all non-root nodes n in the graph DO

% Initialize the counters of the nodes.

n.count + Number of parent nodes of n
FOR all nodes n in the graph DO

% Initialize length(n) for all nodes n in the graph.
length(n) « 0

Repeat until Q = 0

n + Front of Q.

Delete n from Q.

visit(n) % Node n is visited here.

n is marked visited. % This marking may not be needed.
IF n is not a leaf node THEN

FOR all children nodes n' of n DO

n’.count + n’.count —1 % One more parent
visited.

temp + length(n) + comp(n) + comm(n,n')
% temp is the longest path from any input
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node to n’

% (n' excluded) that goes through edge (n,n’).
[F temp > length(n')

THEN

% temp is the longest path that has been
traversed so far % from any input node to

n'.

length(n') « temp

pred(n') « n
IF n'.count = 0 % All parents of n’ are vis-
ited.
THEN

Insert n' at the Rear of @

% Find CPL
CPL « 0
FOR all output nodes n DO

exec.path.length(n) « length(n) + comp(n)
IF exec.path.length(n) > CPL
THEN

CPL « exec.path.length(n)

cp.last «+n

Time Complexity:

The time complexity to find the CPL and the critical path of a DAG
is O(E + N).

Proof:

It takes O(N) to initialize the counters of the nodes. It takes O(NV)
to initialize length(n) for all nodes n.
Each node in the graph is inserted in @ and visited exactly once.

This takes O(N) time.
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Each time a node n is visited, each one of its children n' is examined
(its counter is updated and depending of the value of that counter it
may be inserted in Q, variable temp is calculated and depending on
its value length(n') and pred(n') could be updated). Examining a
child node takes a constant amount of time. The number of children
nodes of n is equal to to number of output edges of n. Hence, since
each node in the graph is visited exactly once, this takes O(E) time.
To determine the CPL and critical path of the graph (once length(n)
and pred(n) for all nodes n has been determined), each leaf node [ is
examined (exec.path.length(!) is calculated, and depending on its
value CPL and cp.last could be updated). Examining [ takes a
constant amount of time. Hence this takes O(N) time at the most.
Finally, starting from cp.last and tracing back along the critical path

until we reach an input node takes at the most O(N) time.

Perfect Edges

Consider an edge e = (ny,n3).
From a previous lemma, we know that if n; has more than one output edge or
ny has more that one input edge, then e is not a perfect edge. This check can be

done in constant (O(1)) time.

However, if n, has exactly one output edge and n; has exactly one input edge,
then e could be either perfect or imperfect. In this case, we do a special kind of
graph traversal to determine whether the edge is perfect or imperfect. The way

we traverse the graph is as follows:

We do a complete graph traversal (e.g. breadth-first or depth-first) in
the usual way with the following exception: when node n; is visited,
its child n, is not inserted in the queue Q. If any leaf node is visited,
then edge e is not perfect. Otherwise (if no leaf node is visited), edge
e is perfect. Hence, whenever a node is visited, we check whether it
is a leaf node or not. If it is, we can stop the search immediately and
conclude that e is not a perfect edge. If after the search is over none

of the nodes visited is a leaf node, then e is a perfect edge.
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The idea behind the above procedure is to traverse the graph without going
through edge e. By not inserting n; in the queue @, we don’t traverse edge
e. If a leaf node is reached, then there must exist at least one path from an input
node to an output node which does not go through e. This means that there much
exist at least one execution path which doesn’t go through e. If none of the leaf
nodes is reached, then there cannot be any path from an input node to an output
node which doesn’t go through e. This means that all execution paths must go

through e.

Time Complexity:

The graph traversal described above takes at the most O(E + V)
time.
Therefore, we need O(E + N) time to determine whether an edge is

perfect or imperfect.

Remark: The above procedure can be used to check whether edge e is perfect
or not even when n; has more than one output edge or n, has more that one

input edge.

Safe Edges

An edge e = (ny,ny) is safe if its merger does not result in a cycle. For this to
be true, there should not be a path from n, to n, other than (ni,n;) before the
merger.

The procedure here is almost the same as the one for perfect edges described

above and is as follows:

We do a graph traversal (e.g. breadth-first or depth-first) starting
from node n, (initially the queue @ has only node n,, instead of the
root nodes). After n, is visited, all of its children nodes are inserted in
Q except for node n,. This way, we traverse all paths emanating from
n, and which don't go through edge e. If node ns is visited, then we
can stop the traversal immediately and conclude that e is not a safe

edge (i.e. there much exist at least one path from n; to n, other than
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(ny,ng)). If after all the traversal is complete node n; is not visited,
then we can conclude that e is a safe edge (i.e. there cannot be a path

from n; to ny other than (ny,n;3)).

Time Complexity:

In the worst case, we will traverse all the graph (except for edge e).
Therefore, the above procedure takes at most O(E + N) time.

Risky Edges

From a previous lemma, we know that an edge e = (ny,mn2) is not risky #f and
only if ny has only one output edge and n; has only one input edge. This check
can be done in constant time. Hence we need O(1) time to find out whether an

edge is risky or not.

Determining DepSet(n)

Let n be a node in the DAG.

First, we do a traversal of the graph starting from node n (initially the queue Q
has only node n, instead of the root nodes). This will give us all nodes n’ such
that there is a path from n to n’. Second, we do a backwards traversal of the
graph starting from node n (we follow the opposite direction of the edges). This
will give us all nodes n' such that there is a path from n’ to n.

Initially, we set DepSet(n) to 0. Each time we visit a node (other than n), we
add it to DepSet(n).

In the worst case, this takes O(E + N) time (complete graph traversal).

Determining ParSet(n)

Let n be a node in the DAG.

One way to determine ParSet(n) is to first determine DepSet(n). By doing
that, all nodes n’ in the DAG such that n and n’ are dependent are marked
visited. Initially, we set ParSet(n) to 0. Then we do a complete traversal of the

graph, and any node which was not marked visited from the traversal to determine
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DepSet(n) is added to ParSet(n). Note that we have to distinguish between the
nodes that are marked visited during the graph traversal to determine DepSet(n),
and during the complete graph traversal to determine ParSet(n). This can be
done easily by using different markings (for instance, when we are determining
DepSet(n) nodes that are visited are marked with the letter 'D’, and when we are
determining ParSet(n) nodes that are visited are marked with the letter 'P’).

It takes O(E + N) time to determine DepSet(n). Then it takes O(E + N) to do
the complete graph traversal to determine ParSet(n). Hence, it takes O(E + N)

time complexity to determine ParSet(n).

5.2.3 Time Complexity Using Heuristic 1

Each iteration of the partitioning algorithm consists of choosing the edge to be
merged using some heuristic, then the edge chosen is merged?.
In what follows, we determine the cost for each step of a merging iteration using

heuristic 1.

Step 1: First we determine the critical path and the CPL of the task graph®.
Then for each edge e in the critical path, we check whether e is a safe edge.
For all safe edges s found, we check whether s is a perfect edge. Finally,
among all edges that are found to be both safe and perfect (if any), we
choose the heaviest one.

It takes O(E + N) time to determine the critical path. This path has at the
most E edges. For each edge e in the critical path, it takes O(E + N) time
to determine whether e is safe and perfect or not. Given the m edges that
are found to be perfect and safe (0 < m < E), it takes O(m) time at the
most to determine the heaviest one.

Hence the total time complexity for step 1 is O(E(E + N)).

Step 2: The critical path and all m (0 < m < E) safe edges in it are determined
in step 1. Among these safe edges, we determine the ones that are not risky.

This takes Q(m) time. Among the m’ (0 < m' < m) non-risky edges found,

2This is called a merging iteration.
3These are actually determined before we start the current merging iteration.
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we determine the heaviest one. This takes at the most O(m') time.
Hence, it takes at the most O(E) time for step 2.

Step 3: If the DAG is such that each node has at most one output edge, then
using a previous corollary regarding risky edges we conclude that step 2 and
step 3 are exactly the same, and therefore step 3 is skipped. Otherwise, we
do the following.

The critical path and all m (0 < m < E) safe edges in it are determined
in step 1. Among these safe edges e = (n,,n2), we determine the ones such
that ParSet(n;) = ParSet(n;). Therefore for all nodes n that belong to
such edges, we need to determine ParSet(n). Since there are at most N
nodes along the critical path, this takes at the most O(N(E + N)) time.
Given 2 sets S; and S, that have m; and m; elements respectively, it takes
at the most O(m;m;) time to find out whether §; = S;. ParSet(n,) and
ParSet(n;) have at most N elements each. Hence it takes at the most
O(N?) time to find out whether ParSet(n;) = ParSet(n;). This check has
to be done for all the m safe edges. Hence the total time this takes cannot be
more than O(E.N?). Determining the heaviest edge among all edges found
(if any) cannot cost more than O(E).

Therefore, step 3 takes O(E.N?) time complexity.

Step 4: The critical path and all m (0 < m < E) safe edges in it are determined
in step 1. Also, for each safe edge e = (ny,n;), we determined ParSet(n;)
and ParSet(ny) in Step 3, and we need to determine ParSet(n, ;) = ParSet(n;)N
ParSet(n,). Given 2 sets S and S, that have m; and m; elements respec-
tively, it takes O(m;m,) time at the most to determine S; N S;. Since
ParSet(n,) and ParSet(n;) have at most N elements each, it takes at
the most O(N?) time to compute ParSet(n;2). This computation has to
be done for each one of the m safe edges found. This takes at the most
O(E.N?) time.
Therefore, it takes at the most O(E.N?) time to execute step 4.

Step 5: As we saw before, it takes at the most O(N) time to explicitly merge 2

tasks.
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Conclusion:

A merging iteration using heuristic 1 costs at the most
O(E(E + N?)).

Since there are N — 1 merging iterations in the partitioning
algorithm, the total cost of the partitioning algorithm is
O(EN(E + N?%)).

Relationship between E and N:

Let E and N be the total number of edges and nodes respectively in
a DAG g.

E is equal to the sum of the number of output edges of all nodes n in
4

gr.
E = ¥ ,e,(number of output edges of n).

For each node n in g, the number m of output edges of n is such that
0 <m < N —15. Therefore 0 < E < N(N —1). E =0 is the case
when all nodes are output nodes. E = N(N —1) is the case when
there is an edge from each node n in g to all other nodes in g. These
9 cases never occur in practice. In fact, the case when E = N(N -1)

doesn’t occur even in theory, since the graph is acyclic®.

Another expression for Time Complexity:

Since E < N?, the time complexity of the partitioning algorithm

using heuristic 1 can be written” as O(E.N?).

Over-Estimation of Time Complexity:

In the previous analysis, we over-estimated the time complexity of
the partitioning algorithm because we had to assume the worst case

scenario.

4\We assume that the input nodes don’t have any input edges.
S;m = 0 is the case when n is an output node. m = N — 1 is the case when there is an edge

from n to each other node in the graph.
61f there is an edge from each node n in g to all other nodes in g, then clearly the graph will

have cycles.
TSince in this case O(E + N?) is the same as O(N?).
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For instance, we used E and N for the numbers of edges and nodes
respectively along the critical path. Also we used NV for the number
of elements in ParSet(n) for various nodes n. In addition, we used E
for the number of safe edges along the critical path. Clearly for real
applications, the actual numbers are usually much smaller than that.
Finally as was mentioned before, merging 2 tasks takes O(N) time in
the worst case, but it takes a constant amount of time in the average

case (for real applications).

Average Time Complexity:

Assume:

Average number of nodes along critical path: constant.

Average number of edges along critical path: constant.

Average number of elements in ParSet(n): constant.

Then:

Step 1: O(E + N).

Step 3: O(E + N).

Step 4: O(E + N).

Hence, the average time complexity of the partitioning algorithm
using heuristic 1 is O(N(E + N)).

Remark

It is very difficult to determine the average number of edges and nodes along the
critical path. These numbers do not necessarily depend on E and N. For instance,
we could have a DAG with a very large number of nodes that has a short critical
path (i.e. a DAG with a large width), and a DAG with a much smaller number
of nodes that has a longer critical path (i.e. DAG with a small width).
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Chapter 6

Performance Analysis

6.1 Partitioning Fork and Join DAGs

Since a DAG is composed of fork and join components (Tao Yang: [18, 58, 59]), we
study the performance of our partitioning algorithm on these primitive structures

to further understand its behavior.

6.1.1 Fork DAGs

Consider the fork DAG shown in figure 6.1. Each ¢; is the communication cost of
edge (r,n;), and each e; is the execution cost of node n;. Also, e is the execution
cost of the root node r.

Without loss of generality, assume that the leaf nodes are sorted such that ¢;+e; >
Girt e, lSiSsm—1.

Optimal Partition

The critical path of the fork DAG shown in figure 6.1 is (r,n,). Hence initially,
the CPL is lp = e+c¢; +€;. Clearly, the CPL of the optimal task graph is l,p: < lo.
The main thing to notice here is that whenever an edge (r,n;) is merged, all
the other execution paths (r,n;) (j # i) are increased in length by e;.
If l,pt = lo then the initial task graph is the optimal one.
If l,pt < lo then in the optimal partition, nodes r and n, have to belong to the

same task. Otherwise, [,y cannot be smaller than lo. Hence, edge (r,n,) has to
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Fork DAG

Figure 6.1: Fork DAG

be merged. The result of this merger is shown in figure 6.2 (a). The new critical
path is (ry,n2), and the new CPLis l, = e+ e, + ¢c2 + e3.

Again, lpe < 1.

If lope = l; then the task graph in figure 6.2 (a) is the optimal one.

If lop < Iy then in the optimal partition, the root node r; and node n; have to
belong to the same task. Otherwise, /,; cannot be smaller than /5. Hence, edge
(r1,n2) has to be merged. The result of this merger is shown in figure 6.2 (b).
The new critical path is (r,n3), and the new CPLis l; = e+ e; + e3 + ¢ca + €.
This process goes on, and after the k’th merging step, the task graph is shown
in figure 6.2 (c). The critical path of this task graph is (r,nk41), and its CPL is
lk=e+e +e+- -+ ex+ k1 + k4.

This process could go on until all tasks are merged together and the task graph
is constituted of a single task. The CPL in this caseis |, = e+e1+ex+-- -+ en.
Note that the order of merging the edges in the graph does not matter, and we
always get to the same result. In other words, to obtain task {r,ni,na,...,nk},

we need to merge the k edges whose costs are ¢;,¢z,...,c in any order.

The above intuitive analysis leads us to the following theorem.

Theorem: The optimal partition for the fork DAG is constituted of the

following tasks:
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Figure 6.2: Determining optimal partition for fork DAGs
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Figure 6.3: Proof: optimal partition for fork DAGs

{r,ny,n2,...,ne}, {nks1}, {nks2}y ..y {nm}, where 0 <k < m.
For k = 0 the optimal partition is the trivial partition, and for k = m the

- optimal partition is the singleton partition.

Proof

First, let’s prove that the optimal partition is constituted of the following tasks:

{ry N1, N2, ..., Ni}, {Nks1}, {Nis2}, - .-, {Nm}, where 0 < k < m and N; = some
n; (i not necessarily equal to j).

In other words, in the optimal partition, there is a task containing r and zero or
more other n;’s, and the rest of the n;'s are in separate tasks (i.e. these tasks are
constituted of a single n;).

This is also equivalent to saying that in the optimal partition, any task that

doesn’t contain r cannot contain more than a single n;.

Intuitively, since merging 2 independent tasks together doesn’t reduce com-
munication cost, it will never decrease the parallel execution time (CPL), and
therefore, any task in the optimal partition should not consist entirely of n;’s.

Hence, any task which does not contain r is constituted of a single n;.
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Figure 6.4: Proof: optimal partition for fork DAGs

To prove this more formally, let’s show that any partition II that has a task
T not containing r and that contains more than one n; has a CPL that is greater
or equal than the one of the partition obtained from II by putting each n; that
belongs to 7 in a separate task.
Without any loss of generality, let 7 = {n;,n;} (i < j). The task graph of II is
shown in figure 6.3. Clearly, task T contains r'. z; is the execution cost of task
T%. yx is the communication cost of edge (T, Tk). x is the execution cost of task
T. The communication cost of edge (T, 7) is y = ¢ + delay(data(T, 7)).
Also without any loss of generality, assume that yx + zx 2 yg+1 + ZTit1, 1 £k <
p—1.
The CPL of IT is
| = z + maz(y; + 71,y + & + ¢€;).
Now consider the partition II’ obtained from II by putting n; and n; in separate
tasks. The task graph corresponding to II' is shown in figure 6.4.
The CPL of II' is
I'=z +maz(y, + z1,¢ + €).
Since y + €; + €; > ¢; + €;, then [ > ['.

1T could be constituted entirely of r.
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Figure 6.6: Proof: optimal partition for fork DAGs

Figure 6.7: Proof: optimal partition for fork DAGs
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\ep+1 ep+2

Figure 6.8: Proof: optimal partition for fork DAGs

Now let’s prove the claim in the theorem.
First we use an intuitive reasoning.
Let’s assume that the claim is not correct.
Hence there exists at least one n,, s > k, such that the optimal partition is

constituted of the following tasks:
B= {r'l M3y ey Mgy Mgy Ng42y Mg 43y - - :nk}-r {nk-f-l}a {nk+2}) “ wsoy {ns—l}; {nq-}-l}!

{nerr}h {nosaly ooy {m}.
Refer to figure 6.5.

The task graph corresponding to this partition is shown in figure 6.6.
The CPL of this optimal partition is

lpp=e+er+eg+ - +e+ea+euat -+ er+e+ Copr+ g1
Consider the partition constituted of the following tasks:

{r,ni,n2,...,ng}, {ngs1}, {ng42}, --+ s {Rm}-

Its CPL is

l=et+ertert---+e;+cgp1 + €4

Note that / < [y, which should not be. Hence we have a contradiction, and
therefore our assumption is not possible.

Then the claim of the theorem is correct.

Now let’s prove the claim in the theorem more formally.
Assume that the claim is not correct.

The optimal partition Il is constituted of the following tasks:
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7= {r, N, Na, ..., N}, {Nes1}, {Nis2}, .., {Nmm}, where 0 < k <m and N, =
some n; (1 not necessarily equal to j).

Without any loss of generality, assume that k¥ > 1. When k = 0, the optimal
partition is the trivial partition, and therefore the claim is true.

Also, without any loss of generality, assume that the N;’s (1 <2 < k) in 7 are
ordered such that if N; = n;; and Nj4; = njp then j2> 351, 1 <j<k-1.

Let No=r and ng =r.

Let p be the smallest integer such that N, = n, and Npy1 # np1, 0 <p <k - 1.
For instance, if 7 = {r,n;,ns,na,ns,...} then p = 3. If 7 = {r,ny,ns,...} then
p=1.If r ={r,ny...} then p=0.

We have T = {r,n1,n2,...,np, Np41, Npg2, ..., Ni}, 0 < p < k- L.

Clearly, N; # np41, p+ 1 <1 < k. Therefore, n,4, is in a task by itself. The task
graph corresponding to Il is shown in figure 6.7.

Since one of the leaf nodes is np4; and all n;’s such that 1 <1 < p are in task 7,
then critical path of this task graph is (7,np4+1). Hence the CPL of IL,: is

Loyt = comp(r) + comm(7, np41) + comp(npa).

Let the execution time of N; be E;, 1 <1 < m.
comp(tr)=e+er+er+ - +e+ Epp1 + Eppa+ -+ + Ei.

comm(T, Np41) = Cpt1-

comp(np+1) = €pt1-

Hence

lpp=eter+er+ - +e+ Eppi+ Eppat -+ Ex + o1 + €ppa

Consider the partition IT constituted of the following tasks:

' = {r,n;,n2,...,np}, {nps1}, {nps2}, .- {nm}

The task graph corresponding to II is shown in figure 6.8.

Its critical path is (7/,n,41) and its CPL is
l=e+er+er+- - +e+ o1+ Ept1e

Note that [ < lopt, which means that we have a contradiction. Therefore, our

assumption is not correct, and the claim of the theorem is correct.



Using Heuristic 1

The critical path of the fork DAG in figure 6.1 is (r,n,). Hence the first edge
chosen to be merged is (r,n;). The result of this merger is shown in figure 6.2 (a).
The new critical path is (r;,n2). Hence the next edge to be merged is (ry, n,).
The resulting task graph is shown in figure 6.2 (b). This process goes on, and
at the k’th merging step, edge (rx—1,n)? is chosen for merger. The result if this
merger is shown is figure 6.2 (c). This merging process goes on until we reach the
singleton partition.

It is quite clear that using Heuristic 1, the partitions that we get during the
iterations of the partitioning algorithm are constituted of the following tasks:
{ryn1,n9,...,ne}, {nks1}y {nk+2}, ..., {nm}, where 0 < k < m.

From the above theorem, we conclude that our algorithm always leads to the

optimal partition.

Some Analysis

Let IIx be the partition constituted of the following tasks:

{r,nl,ng,...,nk}, {nks1}s {nks2}, - oy {nm}, where 0 < k < m.

Let [; be the critical path length of ITj.

From the above theorem, we know that the optimal partition is one of the II;’s,
0<k<m.

Note that using our partitioning algorithm with Heuristic 1, II; is the partition
obtained after the k'th merging step, and Ii is the CPL of the task graph after
the k’th merging step.

The task graph corresponding to partition IT; is shown in figure 6.2 (c), with rg

and eg defined to be r and e respectively.

lk=et+er+er+ - +er+er +ck41,0<k<m—1.
lm=e€e+e+e3+ - +en.
Note that lp = e + e; + ¢;.

=Ly =€+ —ck, 1 Sk<m-—1.

? Assume that rg is defined to be r, so that when k =1 ry_y = rp = r.



Hence, for 1 < k <m — 1, we have

I Sl & ek > ersr + Cksr

AND

le > ley & ek < ery1 + Chtr-

lg—lm =Chy1 —€k42 —€Ckg3— - —€m, 0 Sk <m -1
Hence, for 0 < k < m — 2, we have

I <l & Chp1 S erp2+ €3t 0+ Em.

Note that l,,—1 — lm = ¢m. Hence

;o1 > lm, and therefore II,,_; can never be the optimal partition.

Corollary: Assume that there exists an integer ¢, 1 < ¢ < m —2, such that
VEk 1<k<qce2eks1+ Chia

AND

Vk,g+1<k<m-—1,ck < €41+ Ckp1

AND

Co+1 S €g42 + €gp3 + 0+ Em.

Then II, is the optimal partition.

Proof

Using the analysis above, we obtain the following:
Vk 1<k<ql <l
AND
Vk qrl<k<m—1,1L >l
AND
b, < b
Hence, l, < Ik, 0 <k < m.

Therefore, II, is the optimal partition.

Examples

1. Consider the fork DAG shown in figure 6.9 (a).
Using the above corollary with ¢ = 2, we conclude that II; is the optimal

partition.
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Figure 6.9: Examples of fork DAGs
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2. Consider the fork DAG shown in figure 6.9 (b).

Using the above corollary with ¢ = 1, we conclude that II; is the optimal

partition.

3. Consider the fork DAG shown in figure 6.9 (c).
Here we cannot apply the above corollary because ¢ does not exist.
lo = 70‘ !1 == 65, [2 = 75, [3 = 70, 14 = 71, zs - 67, ie = 52.

Therefore, Il is the optimal partition.

4. Consider the fork DAG shown in figure 6.9 (d).
Here we cannot apply the above corollary because ¢ does not exist.
lo =170,1; =65, 1l =175,l="T0, 14 =72, I =74, lsg = T3.
Therefore, I1, is the optimal partition.

5. Consider the fork DAG shown in figure 6.9 (e).
Here we cannot apply the above corollary because ¢ does not exist.
lg = 69, 11 = 85, 12 - 80, 13 = 68, Z4 = 70, !5 = 71, fs = T70.

Therefore, I is the optimal partition.

6. Consider the fork DAG shown in figure 6.9 (f).
Here we cannot apply the above corollary because g does not exist.
lO = 70, [1 = 65, 12 = 70, [3 = 65, !4 = 61, 15 = 62, la = 61.

Therefore, I14 and Il are the optimal partitions.

7. Consider the fork DAG shown in figure 6.9 (g).
Using the above corollary with ¢ = 3, we conclude that IT5 is the optimal

partition.

Using Sarkar’s Partitioning Method

Examples

1. Consider the fork DAG shown in figure 6.9 (a).
The edges in the graph sorted in decreasing communication cost are as
follows:

(T,Th), (r, n?)s (T‘, n3)a (r!n4)1 (T‘,ﬂs), (T‘, nﬁ)'



Initially, the CPL of the graph is 33. Merging edge (r,n,) results in a CPL
of 30, and therefore it is accepted. Merging edge (r,nz) results in a CPL of
99, and therefore it is accepted. Merging edge (r,n3) results in a CPL of 34,
and therefore it is not accepted. Merging edge (r,n4) results in a CPL of
35, and therefore it is not accepted. Merging edge (r,ns) results in a CPL
of 33, and therefore it is not accepted. Finally, merging edge (r,ns) results
in a CPL of 32, and therefore it is not accepted.

Hence, the partition obtained using Sarkar’s method is II, which is as was

seen earlier the optimal partition.

. Consider the fork DAG shown in figure 6.9 (b).

The edges in the graph sorted in decreasing communication cost are as
follows:

(ryn1), (ryna), (ryna), (r,ns), (r,n4), (ry76)-

Initially, the CPL of the graph is 70. Merging edge (r,n,) results in a CPL
of 65, and therefore it is accepted. Merging edge (r,na) results in a CPL of
70, and therefore it is not accepted. Merging edge (r,nz) results in a CPL of
75, and therefore it is not accepted. Merging edge (r,ns) results in a CPL of
70, and therefore it is not accepted. Merging edge (r, n4) results in a CPL
of 80, and therefore it is not accepted. Finally, merging edge (r,ng) results
in a CPL of 75, and therefore it is not accepted.

Hence, the partition obtained using Sarkar’s method is II;, which is as was

seen earlier the optimal partition.

. Consider the fork DAG shown in figure 6.9 (c).

The edges in the graph sorted in decreasing communication cost are as
follows:

(r,n1), (r,n3), (ryn2), (ryn4), (ry1m5), (7, n6).

Initially, the CPL of the graph is 70. Merging edge (r,n1) results in a CPL
of 65, and therefore it is accepted. Merging edge (r,n3) results in a CPL of
70, and therefore it is not accepted. Merging edge (r, n2) results in a CPL of
75, and therefore it is not accepted. Merging edge (r,n4) results in a CPL of
70, and therefore it is not accepted. Merging edge (r,ns) results in a CPL
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of 66, and therefore it is not accepted. Finally, merging edge (r,ng) results
in a CPL of 66, and therefore it is not accepted.

Hence, the partition obtained using Sarkar’s method is II;. As was seen
earlier, the optimal partition for this case is Ils. Hence, Sarkar's method

does not lead to the optimal partition.

. Consider the fork DAG shown in figure 6.9 (e).

The edges in the graph sorted in decreasing communication cost are as
follows:

(r,n2), (ryn1), (r,n3), (r,ns), (r,n4), (r,76).

Initially, the CPL of the graph is 69. Merging edge (r,n2) results in a CPL
of 84, and therefore it is not accepted. Merging edge (r, n) results in a CPL
of 85, and therefore it is not accepted. Merging edge (r, n3) results in a CPL
of 79, and therefore it is not accepted. Merging edge (r, ns) results in a CPL
of 70, and therefore it is not accepted. Merging edge (r, n4) results in a CPL
of 72, and therefore it is not accepted. Finally, merging edge (r, ns) results
in a CPL of 75, and therefore it is not accepted.

Hence, the partition obtained using Sarkar’s method is Ilop. As was seen
earlier, the optimal partition for this case is II3. Hence, Sarkar’s method

does not lead to the optimal partition.

. Consider the fork DAG shown in figure 6.9 (f).

The edges in the graph sorted in decreasing communication cost are as
follows:

(rym1), (rym2), (ryn3), (r,14), (ry1s), (1, ne).

Initially, the CPL of the graph is 70. Merging edge (r,n,) results in a CPL
of 65, and therefore it is accepted. Merging edge (r, n2) results in a CPL of
70, and therefore it is not accepted. Merging edge (r, n3) results in a CPL of
75, and therefore it is not accepted. Merging edge (r, n4) results in a CPL of
70, and therefore it is not accepted. Merging edge (r, ns) results in a CPL
of 66, and therefore it is not accepted. Finally, merging edge (r, ne) results
in a CPL of 70, and therefore it is not accepted.

Hence, the partition obtained using Sarkar’s method is II,. As was seen
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earlier, [T, and Ils are the optimal partitions. Hence, Sarkar’s method does

not lead to the optimal partition.

6. Consider the fork DAG shown in figure 6.9 (g).
The edges in the graph sorted in decreasing communication cost are as
follows:
(r,n1), (ryn2), (r,na), (ryns), (r,n4), (r,ne).
Initially, the CPL of the graph is 70. Merging edge (r,n;) results in a CPL
of 65, and therefore it is accepted. Merging edge (r,n2) results in a CPL of
60, and therefore it is accepted. Merging edge (r,ns) results in a CPL of
59, and therefore it is accepted. Merging edge (r,ns) results in a CPL of
62, and therefore it is not accepted. Merging edge (r,n4) results in a CPL
of 64, and therefore it is not accepted. Finally, merging edge (r,ng) results
in a CPL of 67, and therefore it is not accepted.
Hence, the partition obtained using Sarkar’s method is I3, which is as was

seen earlier the optimal partition.

Theorem: If there exists an integer g, 1 < ¢ £ m — 2, such that
Vi, 1<k<gq,cr2 €41+ Chs1

AND

Vk,g+1<k<m-—1,cr £ €41+ s

AND

Cot1 S €42+ €g43 + - + €m.

then Sarkar’s method finds the optimal partition II,.

Proof

Clearly, in this case we have

Vk,1<k<gq,ck> Cqi.

Also, since ¢; 2> €441+ €441, and we know that ¢;+€; 2> cip1 + €41, L L1 <m -1,
thenc, 2 cr+ ek, g+1 < k<m.

Therefore, ¢; > ¢k, g+ 1 < k < m.

Therefore, the edges are merged in the following order:

(s )y P8y « ooy (Mg < o
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Join DAG

Figure 6.10: Join DAG

The merging of (r,n;) leads to partition IT;. Since /; < lo, this merger is accepted.
Next, (r,n,) is merged and we get partition II;. Since l; < [y, this merger is
accepted. Since Iy < li_;, | € k < g, then this process goes on until we reach

partition II,, which is the optimal partition.

The fork DAGs in figure 6.9 (a), (b) and (g) are examples of such situation.

Theorem: Assume that the optimal partition of the fork DAG is I,

1 < p<m,and that II;, 0 < i < p—1, is not an optimal partition.

If there exists an s, 1 < s < p, such that merging edge (r,n,) is not accepted
(i.e. we have an increase in the CPL), then Sarkar’s method does not find the

optimal partition.

Proof

We know that if II; is an optimal partition, then ¢ > p. If edge (r,n,) is not
merged, then we can never obtain any partition II;, s < ¢ < m. Hence, the

optimal partition can never be obtained.

The fork DAGs in figure 6.9 (c), () and (f) are examples of such situation.
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6.1.2 Join DAGs

Consider the join DAG shown in figure 6.10. Each ¢ is the communication cost of
edge (n:,r), and each e; is the execution cost of node n;. Also, e is the execution
cost of the leaf node r.
Without loss of generality, assume that the root nodes are sorted such that ¢;+e; 2
ciy1 + ey, 1 St <m—1

The case of join DAGs is the same as the one for fork DAGs, and the analysis
here is the same as for fork DAGs. We just have to reverse the direction of the
edges in the graph.

The critical path of the join DAG shown in figure 6.10 is (n1, r). Hence initially,
the CPLis lp=€e+ ¢ + €;.

Again, the main thing to notice here is that whenever an edge (n;, r) is merged,

all the other execution paths (nj,r) (j # i) are increased in length by e;.

Theorem: The optimal partition for the join DAG is constituted of the
following tasks:

{r,n1,na,... 0k}, {Resr}s {nks2}y -0 {nm}, where 0 < k < m.

For k = 0 the optimal partition is the trivial partition, and for k = m the

optimal partition is the singleton partition.

Proof: The proof is exactly the same as the one for the theorem for fork DAGs.

Using Heuristic 1

The critical path of the join DAG in figure 6.10 is (ny,7). Hence the first edge
chosen to be merged is (n;,r). The result of this merger is shown in figure 6.11
(a). The new critical path is (nz,m1). Hence the next edge to be merged is (n, T1)-
The resulting task graph is shown in figure 6.11 (b). This process goes on, and
at the k’th merging step, edge (nk,rk-1)° is chosen for merger. The result if this
merger is shown is figure 6.11 (c). This merging process goes on until we reach

the singleton partition.

3 Assume that rq is defined to be r, so that when k=1 ry_y =ro=r.
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Figure 6.11: Merging steps for join DAGs using our heuristic 163



It is quite clear that using Heuristic 1, the partitions that we get during the
iterations of the partitioning algorithm are constituted of the following tasks:
{ryn1,n2,...,nc}, {nes1}, {nk+2}, .., {nm}, where 0 <k < m.

From the above theorem, we conclude that our algorithm always leads to the

optimal partition.

Some Analysis

Let II; be the partition constituted of the following tasks:

{r,n1,na,. .., ne}y {nksr }y {nes2ks - {nm}, where 0 < k < m.

Let [, be the critical path length of II.

From the above theorem, we know that the optimal partition is one of the II;’s,
0<k<m.

Note that using our partitioning algorithm with Heuristic 1, Il is the partition
obtained after the k’th merging step, and li is the CPL of the task graph after
the k’th merging step.

The task graph corresponding to partition Il is shown in figure 6.11 (c), with ro

and e defined to be r and e respectively.

lk=e+e;+e+ - +er+eppr+, 0<k<m—1.
ln=et+ey+er+-+en.

Note that [y = e+ ¢€; + ¢;.
h—lha=epr+epr—cr, 1 <k<m-1

Hence, for 1 < k < m — 1, we have

le Sloy & ek 2 erq1 + Cipn

AND

le 2 li-1 € ¢k < €ky1 + Chpr.
=lm=cr41—€ry2—€t43—-—€n, 0<k<m -1
Hence, for 0 < k < m — 2, we have

I <lm © ckp1 S ehpa+ g3+ +€m.

Note that I,y =, = ¢n. Hence

lmn—1 > lm, and therefore II,,_; can never be the optimal partition.

Corollary: Assume that there exists an integer ¢, 1 < ¢ < m — 2, such that
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Vk,1<k<q cr2eesr t i

AND

Yk g+l <k<m-—1, ¢ < k41 + Crpa
AND

Co+1 S €g12 + €g43 + -+ Em.

Then II, is the optimal partition.
Proof: The proof is exactly the same as for the corollary for fork DAGs.

Examples: The same examples that were used for fork DAGs can be used

here. We just have to reverse the direction of the edges in the graph.

Using Sarkar’s Partitioning Method

The case for join DAGs is the same as the one for fork DAGs.

Theorem: If there exists an integer ¢, 1 < ¢ < m — 2, such that
Vk,1<k<q,ck 2 k41 + Chia

AND

Vk,g+1<k<m—1,ck < ks + ki

AND

Cor1 S €g2 + €gp3 o0+ Em.

then Sarkar’s method finds the optimal partition I,.

Proof

Exactly the same as for the case of fork DAGs.

Theorem: Assume that the optimal partition of the fork DAG is II,,
1<p<m,and that I[;; 0 <1 <p—1, is not an optimal partition.

If there exists an s, 1 < s < p, such that merging edge (ns,r) is not accepted
(i.e. we have an increase in the CPL), then Sarkar’s method does not find the

optimal partition.



Proof

Exactly the same as for the case of fork DAGs.

6.2 Partitioning Complete Binary Trees

In this section, we assume that the program graph to be partitioned is a complete
binary tree.
We also assume that all actors in the graph have the same weight, and all edges

in the graph have the same weight.

Usefulness

Binary trees represent many useful problems, such as search, sort, finding the
minium or maximum of a list, numerical algorithms constituted of binary opera-
tors only, and divide and conquer problem solving techniques.

Furthermore, it was shown that (see [15]) many efficient algorithms for several
scheduling problems use binary trees (generally complete binary trees). Dekel
and Sahni ([15]) used binary trees to design efficient parallel algorithms. More
precisely, they used binary trees for parallel computations, and showed that the

binary tree is an important and very useful program graph for parallel algorithms.

Definitions Related to Trees

Consider a directed graph constituted of a tree.

We assume that all leaf nodes are at the first level (top most, level 1) of the tree
and the root node is at the last level (bottom level, level N where N is the number
of levels in the tree) of the tree.

The tree is upside down and therefore the leaf nodes are at the top and the root
node is at the bottom.

The direction of the arcs are from smaller to larger levels.

166



6.2.1 Properties
Property 1: G-Trees

Given a program graph g that is a complete binary tree, such that all actors in
the graph have the same weight and all edges in the graph have the same weight.
For any task graph T that corresponds to a partition of g, there is a task graph
T’ such that the CPL of T" is less or equal than the CPL of T, and T" has the
following properties:

T’ is a tree such that

e The number of input arcs of any node is a power of 2.

e All nodes (tasks) at the same level have the same number of actors (and as

a consequence the same weight).

e The number of actors in any task (node in the task graph) is equal to the
number of input edges of the node corresponding to the task minus 1 (clearly,

this is not the case for nodes at level 1).

o The sum of the number of actors in all nodes (i.e. tasks corresponding to
the nodes) in T" except the nodes at the top most level is 2 — 1, where 2°

is the number of nodes at the top most level of the tree.

T' is called a G-tree (G stands for Good).
Clearly all G-trees satisfy the following 2 properties:

o T' is a complete tree and all execution paths have the same length.
o All nodes at the top most level (level 1) represent tasks that have 2V—° — 1

actors, where N is the total number of levels in the tree and there are 2°

nodes at the top most level of the tree.

Property 2

This is a direct consequence of Property 1.

Given a program graph g that is a complete binary tree, such that all actors in
the graph have the same weight and all edges in the graph have the same weight.
The optimal task graph is a G-tree.
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6.2.2 Optimal Partition

One way to figure out the optimal partition for complete binary trees with N
levels is to find all possible task graphs which are G-trees and determine the one
with the minimum CPL. That task graph is the optimal one (from Property 2).
Hence, we determine all possible G-trees with 1 level, all possible G-trees with 2
levels, ... , all possible G-trees with N — 1 levels, and finally all possible G-trees
with N levels.

Clearly the task graph consisting of a single node is the only G-tree with 1 level.
Also the task graph corresponding to the trivial partition is the only G-tree with
N levels.

Example

Assume that our program graph is a complete binary tree with 4 levels. Figure
6.12 shows all G-trees with 2 levels. Figure 6.13 shows all G-trees with 3 levels.
The number next to each node is the number of actors in the task corresponding
to the node.

CPL of G-trees

Assume that our program graph is a complete binary tree with N levels.
Consider all G-trees with m levels (1 < m < N).

For a path p, let A(p) be the sum of the numbers of actors in all nodes in p.
Clearly for any G-tree T, A(p) is the same for any execution path p of T. Also
any execution path of T is a critical path.

Let’s define A(T') to be A(p), where p is any execution path of 7.

For a G-tree T with m levels, the possible values for A(T') are

(2°t —=1) + (22 = 1) 4 --- + (2°™ — 1), where ay,a3,...,a,, are positive integers
(not zero) such that

ay+a+---+an=N.

(2%t — 1) is the number of actors in each node at level 1.

(222 — 1) is the number of actors in each node at level 2.
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Figure 6.12: All G-trees with 2 levels

169



2

T

I
R RPRKY
LY

5




(2¢m — 1) is the number of actors in each node at level m.

Let e be the execution time of each actor in the original program graph.
Let ¢ be the communication time of each edge in the graph®.

Hence, the possible values for the CPL of T are
CPLn=[2-1)+(22=1)4- -+ (2 -1)]xe+(m—1) *c,
where a,, as, . .., an are positive integers (not zero) such that

al+02+"'+am=A}V-

Examples

1. Let N=4 and m = 3.
Let’s find all possible values of (a1, as, as).
The solution of a; + az + as = 4 is: {(1,1,2),(1,2,1),(2,1,1)}.
Hence there are 3 possible G-trees with 3 levels. These are shown in figure
6.13.

2. Let N =6 and m = 3.
In this case a; + a; + a3z = 6.
There are 10 possible values for (a1, a2, as).
The solution is:
((1,1,4),(1,2,3),(1,3,2), (1,4,1),(2,1,3),(2,2,2), (2,3,1),(3,1,2), (3,2, 1), (4. 1, 1)}

Hence there are 10 possible G-trees with 3 levels.

Minimal CPL

Assume that our program graph is a complete binary tree with N levels.

The G-tree with m levels which has the minimal CPL among all G-trees with m
levels is one for which CPL,, is minimal. Hence, we find ay, as,...,am such that
A, = 2% 4 2% 4 ... 4+2° is minimal given that

ay,as,...,am are positive integers (not zero) such that

a1+ a3+ +am=N.

A, is minimal when the a;’s are chosen in the following manner:

“Note that the weight of the edges in any task graph is the same as the weight of the edges
in the original program graph.
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Figure 6.14: Optimal G-tree with 3 levels

We divide N as evenly as possible on aj,az,...,6m. In other words, if N is a
multiple of m, then each a; will take the value N/m (using integer division).
Otherwise, (N MOD m) q;’s will take the value (N/m + 1) and the rest take the
value N/m (using integer division). Hence when N is not a multiple of m, we

have more than one solution for (ay,as,...,am).

Examples

1. Let N=4and m =3.
The G-tree with 3 levels for which (a;,a2,a3) = (2,1,1) has minimal CPL
among all G-trees with 3 levels.
Also the G-tree with 3 levels for which (a4, a3,a3) = (1,2,1) has minimal
CPL among all G-trees with 3 levels.

2. Let N=6and m=3.
The G-tree with 3 levels and (a,, a2,a3) = (2,2,2) has minimal CPL among
all G-trees with 3 levels.
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(2t — 1) = 3 is the number of actors in each node at level 1.
(2°2 — 1) = 3 is the number of actors in each node at level 2.
(293 — 1) = 3 is the number of actors in each node at level 3.
Using property 1 for G-trees (first point), it is easy to construct this G-tree.
This is shown in figure 6.14. The number next to each node is the number

of actors in the task corresponding to the node.

Finding Optimal Partition

Given a complete binary tree with N levels as a program graph, one way to find
the optimal partition is to determine:

1- I,: the G-tree with one level which has minimal CPL among all G-trees with
one level.

9- II,: the G-tree with 2 levels which has minimal CPL among all G-trees with 2
levels.

m- I1,.: the G-tree with m levels which has minimal CPL among all G-trees with

m levels.

N- TIy: the G-tree with NV levels which has minimal CPL among all G-trees with
N levels.

The I1; which has the smallest CPL among all II;’s corresponds to the optimal

partition.
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Figure 6.15: Plot of f(i)

partition II;.
Note that if NV is large, this method will take too much time, and the next
method should be used.

2. Let f(z) := CPL of II,.
The general shape of the plot of f(i) is shown in figure 6.15°.
Hence, all we need to do is to find II; such that f(i—1) > f(:) and f(i+1) >
f(i). II; corresponds to the optimal partition®.
In general, by determining several points in the curve of the function f (i.e.
we determine several I1;’s and their corresponding f(7)’s), we can determine

i.

This is shown in the following examples.

SNote that it is possible for IT; to correspond to the optimal partition. For instance, if
(N,e,e) = (4,10,1) then I, corresponds to the optimal partition.

S1f I, is the optimal G-tree, then i = 1 and f(i — 1) doesn’t make any sense. If f(2) > f(1)
then we know that II; is the optimal G-tree.
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Figure 6.16: Optimal task graph

Example 1

Assume that our program graph is a complete binary tree with 5 levels.
The total number of nodes in the graph is 2° — 1 = 31.
Assume that the execution time of the actors is 1 and the communication cost of

edges is 5.

1. The G-tree with one level is constituted of 1 node. The corresponding task
of this node contains 31 actors. Hence the CPL is 31.

2. G-tree with 2 levels that has minimum CPL:
a;=5/24+1=3.
a;=5/2=2.
The corresponding CPL is [(22 = 1) + (22 = 1)]*14+(2—-1)*5 = 15.

3. G-tree with 3 levels that has minimum CPL:

a=5/3+1=2.

az=5/3+1=2.

az=5/3=1.

The corresponding CPL is [(2* = 1)+ (22 = 1)+ (2' = 1)]*1+(3—1) =5 =
1.

4. G-tree with 4 levels that has minimum CPL:
ay=5/4+1=2.
g = 5/4 =:,
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Figure 6.17: Optimal task graph
as=5/4 = 1.
ag = 5/4 = 1.
The corresponding CPL is [(22—1)+(2'—1)+(2' = 1)+ (2' —1)]*1+(4—1)*5
= 21.

5. The G-tree with 5 levels is the original program graph.
Its corresponding CPLis (1+14+14+1+4+1)*14(5—=1)=5=25.

Hence, the G-tree with 2 levels and (a;, a2) = (3,2) is an optimal task graph (i.e.
the partition it represents is optimal). This G-tree is shown in figure 6.16. The
number next to each node is the number of actors in the task corresponding to
the node.

Remark: It was not necessary to look at G-trees with levels 4 and 5. We could
have stopped when we found the best G-tree with 1,2 or 3 levels. This is true for
the following reason: knowing that the best G-tree (i.e. the one that has
minimal CPL) with 1, 2 or 3 levels has a CPL of 15, and that any G-tree with 4
or more levels has a CPL greater or equal than (4 *1+ 3 *5) = 19, we can

conclude that the best G-tree found for 1, 2 or 3 levels is the optimal task graph.
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Example 2

Assume that our program graph is a complete binary tree with 6 levels.
The total number of nodes in the graph is 2° — 1 = 63.
Assume that the execution time of the actors is 1 and the communication cost of

edges is 3.

1. The G-tree with one level is constituted of 1 node. The corresponding task
of this node contains 63 actors. Hence the CPL is 63.

2. G-tree with 2 levels that has minimum CPL:
a;=6/2=3.
a3 = 6/2=3.
The corresponding CPL is [(22 —1) + (22 = 1)]* 1+ (2 - 1) =5 = 19.

3. G-tree with 3 levels that has minimum CPL:

a; =63 =2

a;=6/3=2.

as="6/3 = 2.

The corresponding CPL is [(22 —1) + (22 —1) + (22 = 1)]*x1+ (3 - 1)*5 =
19.

4. G-tree with 4 levels that has minimum CPL:
a;=6/4+1=2.
a;=6/44+1=2.

az = 6/4 —

ag = 6/4 = i,

The corresponding CPL is [(22—1)+(22—1)+(2' =1)+(2' =1)]*1+(4—1)*5
= 23.

5. Any G-tree with 5 or more levels:
Its corresponding CPL is greater or equal than (1+1+1 +141)%14+(5—1)*5.
Thus CPL > 25.

Hence, the G-tree with 2 levels and (a;,a2) = (3,3) is an optimal task graph. This

G-tree is shown in figure 6.17.
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Also, the G-tree with 3 levels and (ay,dz,a3) = (2,2,2) is an optimal task graph.
This G-tree is shown in figure 6.18.

Example 3

Assume that our program graph is a complete binary tree with 5 levels.
The total number of nodes in the graph is 2° — 1 = 31.
Assume that the execution time of the actors is 1 and the communication cost of

edges is 10.

1. The G-tree with one level is constituted of 1 node. The corresponding task
of this node contains 31 actors. Hence the CPL is 31.

9. G-tree with 2 levels that has minimum CPL:
a, = 3.
a; = 2.
The corresponding CPL is [(2® — 1) + (22 = 1)] * 1 + (2 — 1) * 10 = 20.

3. G-tree with 3 or more levels:
The corresponding CPL is greater or equal than (1+1+ 1)*1+(3—-1)=10.
Hence CPL > 23.

Hence, the G-tree with 2 levels and (a1,a2) = (3,2) is an optimal task graph (i.e.
the partition it represents is optimal).

This G-tree is shown in figure 6.16.

Example 4

Assume that our program graph is a complete binary tree with 6 levels.
The total number of nodes in the graph is 2° — 1 = 63.
Assume that the execution time of the actors is 1 and the communication cost of

edges is 10.

1. The G-tree with one level is constituted of 1 node. The corresponding task
of this node contains 63 actors. Hence the CPL is 63.
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9. G-tree with 2 levels that has minimum CPL:
ay = 3.
dy = 3

The corresponding CPL is [(2° — 1)+ (22 = 1)]x1 +(2—=1) * 10 = 24.

3. G-tree with 3 levels that has minimum CPL:
a; = 2.
a; = 2.
az = 2.
The corresponding CPL is [(22 = 1)+ (22 =1) + (22 = 1)]* 1 + (3 — 1) * 10
= 29,

4. G-tree with 4 or more levels:
The corresponding CPL is greater or equal than (1+1+1+1)*1+(4—1)*10.
Hence CPL > 34.

Hence, the G-tree with 2 levels and (ai, a2) = (3,3) is an optimal task graph. This
G-tree is shown in figure 6.17.

Example 5

Assume that our program graph is a complete binary tree with 100 levels.
The total number of nodes in the graph is 2'% — 1.
Assume that the execution time of the actors is 1 and the communication cost of

edges is 10.

[ ] ng: 0.1:(22:"':&10:10.

£(10) = 10320.

] Hgg: a1=a2=---=agg=5.
£(20) = 810.

L] nsg: ay =4az = "'=£150=2.
£(50) = 640.

L Hgsi a1=ag=~-=a25=4.
£(25) = 615.
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® Hao: al=a2=..-=alo"_’4,

011=a12=-»-=a30=3.
£(30) = 580.

[ ] Hw: a1=a2=---=ago=3.
g1 = G2 =+ = Qg0 = 2.
£(40) = 590.

° H352 ﬂ1=a2="-=030=3.
az = a3 = = ag = 2.
£(35) = 565.

e llag:ay=ay=-+-=ayu=3.
025=026‘—‘"'=038=2-
£(38) = 580.

e Ha,s: 01=02="'=025=3.
029=030="'=a33=2.
£(36) = 570.

e [[3:a,=a3="-+=azp=23.

a33=¢134=2.

£(34) = 560.

L H332 a2=a3=»--=a33=3.
a, = 4.
£(33) = 559.

e [l gy =a=a3=a4=4.
as = ag = - = aaz; = J.

£(32) = 566.

Hence, Ila; is the optimal G-tree and the optimal CPL is 559.
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Example 6

Assume that our program graph is a complete binary tree with 50 levels.
The total number of nodes in the graph is 2°¢ — 1.

Assume that the execution time of the actors is 1 and the communication cost of

edges is 10.

® Hgs: a1=ag=---=a25=2.
£(25) = 315.

° Hgoi (11=ﬂ2="'=0.10=3.
ay = a3 ="+ =ayp=2
£(20) = 290.

e [jssa=a=""=07
a5=a7=---=a15=3.
£(15) = 285.

L H14: 01:-(12:"':&3:4.
09=Gm="'=014=3-
£(14) = 292.

o I115: ay =a; =4.
a3 = a4 ="' = a5 = 3.

£(16) = 278.

L Hu: a1=a2=---=a16=3.
(117-_—'2.

F(17) = 275.

° H]_g! a1=a2='--=a14=3.
415 = a1 =+ = G188 = 2.

£(18) = 280.

Hence, II,7 is the optimal G-tree and the optimal CPL is 275.
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6.2.3 Using Heuristic 1

Example 1

Assume that our program graph is a complete binary tree with 3 levels.

Assume that the execution time of the actors is 1 and the communication cost of
edges is 2.

Figure x31 shows the merging steps using Heuristic 1. The number next to each
node is the number of actors in the task corresponding to the node. The edge
that has an “x” mark next to it is the edge chosen for merger. From the figure, we
see that the task graph that has a CPL of 6 corresponds to the the best partition

using Heuristic 1.

Example 2

Assume that our program graph is a complete binary tree with 5 levels.

Assume that the execution time of the actors is 1 and the communication cost of
edges is 5.

Figure x32 shows the merging steps using Heuristic 1. From the figure, we see
that the task graph that has a CPL of 19 corresponds to the the best partition

using Heuristic 1.

Example 3

Assume that our program graph is a complete binary tree with 6 levels.

Assume that the execution time of the actors is 1 and the communication cost of
edges is 10.

Figure x33 shows the merging steps using Heuristic 1. From the figure, we see
that the task graph that has a CPL of 37 corresponds to the the best partition

using Heuristic 1.

Example 4

Assume that our program graph is a complete binary tree with 8 levels.

Assume that the execution time of the actors is 1 and the communication cost of
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edges is 15.

Figure x34 shows the merging steps using Heuristic 1. From the figure, we see that
the task graph that has a CPL of 79 corresponds to the the best partition using
Heuristic 1. In the last task graph shown in the figure there are two “x" marks to
indicate that both execution paths to which the marks belong are critical paths,
and therefore either of the edges marked could be chosen for merger (clearly these

are not the only edges that could be chosen).

Best Partition Using Heuristic 1

Assume that the execution time of actors is e and the communication cost of edges
is c.

We find the smallest integer z such that z > 1 and (2 —=1)*e > c.
Hence, we find the smallest integer z such that z > 1 and 2* > £ + 1.
The best partition using Heuristic 1 is the one for which the task graph is a
complete binary tree with [N — (z — 1)] levels such that all top most nodes have
(2% — 1) actors and all other nodes have 1 actor.

Hence, the corresponding CPL is

CPL = [(Z=-1)+((N=(z=1))=1)]*e+[(N—(z—-1))—1]xc
= (°-1+N-z)*xe+(N—-1z)*c

Example 1

Assume that our program graph is a complete binary tree with 5 levels.

Assume that the execution time of the actors is 1 and the communication cost of
edges is 10.

Find the smallest integer z such that z > 1 and 2% > 11.

z =4.

Hence, the best partition using Heuristic 1 is the one for which the task graph is
a complete binary tree with 5 — 3 = 2 levels such that all top most nodes have

94 _ 1 = 15 actors and all other nodes have 1 actor.
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The corresponding CPL is
CPL=(2—-1+5—4)*14(5-4)=10=26.

Example 2

Assume that our program graph is a complete binary tree with 6 levels.

Assume that the execution time of the actors is 1 and the communication cost of
edges is 5.

Find the smallest integer z such that z > 1 and 2% > 6.

z=3.

Hence, the best partition using Heuristic 1 is the one for which the task graph is
a complete binary tree with 6 — 2 = 4 levels such that all top most nodes have
2% — 1 = 7 actors and all other nodes have 1 actor.

The corresponding CPL is

CPL=(22—-1+4+6-3)%1+(6-3)%5=25.

Example 3

Assume that our program graph is a complete binary tree with 4 levels.

Assume that the execution time of the actors is 1 and the communication cost of
edges is 10.

Find the smallest integer = such that z > 1 and 2% > 11.

z =4

Hence, the best partition using Heuristic 1 is the one for which the task graph
is a complete binary tree with 4 — 3 = 1 level such that all top most nodes have
24 — 1 =15 actors and all other nodes have 1 actor.

2, this is the task graph constituted of 1 node that has all 15 actors.

The corresponding CPL is

CPL=(2"-1+4—-4)%1+(4—4)x5=15.

Example 4

Assume that our program graph is a complete binary tree with 8 levels.

Assume that the execution time of the actors is 1 and the communication cost of
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edges is 5.

Find the smallest integer = such that z > 1 and 2% > 6.

z=J.

Hence, the best partition using Heuristic 1 is the one for which the task graph is
a complete binary tree with 8 — 2 = 6 levels such that all top most nodes have
23 — 1 = 7 actors and all other nodes have 1 actor.

The corresponding CPL is

CPL=(2°-1+8-3)*1+(8-3)x5=23T.

Example 5

Assume that our program graph is a complete binary tree with 100 levels.
Assume that the execution time of the actors is 1 and the communication cost of
edges is 10.

Find the smallest integer z such that z > 1 and 2% > 11.

z =4

Hence, the best partition using Heuristic 1 is the one for which the task graph is
a complete binary tree with 100 — 3 = 97 levels such that all top most nodes have
24 — 1 = 15 actors and all other nodes have 1 actor.

The corresponding CPL is

CPL=(2*—1+100—4)*1+ (100 —4)*10 = 1071.

Example 6

Assume that our program graph is a complete binary tree with 50 levels.
Assume that the execution time of the actors is 1 and the communication cost of
edges is 10.

Find the smallest integer z such that z > 1 and 2% > 1L

z =4,

Hence, the best partition using Heuristic 1 is the one for which the task graph is
a complete binary tree with 50 — 3 = 47 levels such that all top most nodes have
94 — 1 = 15 actors and all other nodes have 1 actor.

The corresponding CPL is
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C'PL:(Q"—1+5(}—-4)*1+(50—4)*10=521.

6.2.4 Performance of Heuristic 1

Assume that we have a complete binary tree with NV levels.
Let the communication cost of edges be ¢ = 10 and the execution cost of actors
bee=1.

We determine the performance of Heuristic 1 by comparing the partition ob-
tained using this heuristic with the optimal partition for various values of N.
We assume that the performance of a partitioning algorithm is the inverse of the
CPL of the task graph corresponding to the partition obtained using the algo-
rithm.

Let [ be the CPL of the task graph corresponding to the partition obtained using
Heuristic 1 and /,,c be the CPL of the task graph corresponding to the optimal
partition.

Let p be the percentage of the performance of Heuristic 1 relative to the optimal
partitioning algorithm.

1 P A — lopt
e ¥ = = * 100.

e N =4,
Optimal: II,.
Lot = 15,
=15,

p =100

o N =3.
Optimal: II,.
Lope = 20.
l'=28.
p=176.9

e N =6.
Optimal: II,.
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lopt = 24.
l = 37,
p = 64.9

N =8.
Optimal: IT3.
Lipt = 3T.

[ =59.
p=62.7

N = 10.
Optimal: I13.
lopt = 49.

[ =8l.
p=60.5

N = 20.
Optimal: II5.
lope = 105.

[ =191.
p=2355

N = 30.
Optimal: II;o.
lope = 160.

[ = .301.
p=53.2

N = 40.
Optimal: II;a.
b = 218.

[ = 411.
p=953.3

N = 50.
Optimal: II;7.
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4 3 6 8 10 | 20 | 30 | 40 | 50 | 100 | 150 | 200

lopt

15 | 20 | 24 | 37 | 49 | 105 | 160 | 219 | 275 | 559 | 840 | 1125

15 | 26 | 37 | 59 | 81 | 191 | 301 | 411 | 521 | 1071 | 1621 | 2171

100 | 76.9 | 64.9 | 62.7 | 60.5 | 55.0 | 53.2 | 53.3 | 52.8 | 52.2 | 51.8 | 51.8

Table 6.1: Performance of Heuristic 1 for Complete Binary Trees

Io‘pt == 275.
[ = 521.
p=32.8

e N =100.

Optimal: II33.
lopt = 559.

1 = 1071
p=952.2

e N =150.

Optimal: IIs,.

lope = 840.

[ =1621.

p = 51.81986 ~ 51.82

e N = 200.

Optimal: Ilg7.

Lopt = 1125.

[ =21T71.

p = 51.81943 ~ 51.82

Table 6.1 summarizes the above results.

Figure 6.19 shows the plot of p as a function of N.

We see from the curve that as NV exceeds 25, p starts to decrease very slowly.

When N reaches 50, the decrease in p becomes almost negligible.

We can safely conclude that the performance of Heuristic 1 is above 50% of the

performance of the optimal partitioning algorithm, for any value of N.
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Figure 6.19: Performance of Heuristic 1
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6.2.5 Using Sarkar’s Partitioning Method

Since all edges in the graph have the same weight, Sarkar’s method chooses edges

to be merged randomly. Clearly, this could result in very poor performance.

6.3 Merger that Results into Higher PARTIME

In this section, we show why we have to keep doing the merger until the coarsest
partition is obtained. We will see that we accept the merger of the edge chosen,
even if it results into a higher CPL (PARTIME).

As was seen earlier, the parallel execution time of the program is PARTIME
= T.+ T,, where
T. := Computation Time Component, and
T, := Overhead Component (communication overhead only, no scheduling over-
head).
There is a trade-off between computation component and overhead component.
The more parallelism we exploit, the smaller 7, and the larger 7, will be, and vice
versa. In general, merging tasks results into an increase in T; (loss in parallelism
and more sequentialization) and a decrease in T, (reduction in communication
overhead).
The CPL of the task graph is CPL = Y ,cp.,., comp(n) + ¥ .ep,., comm(e).
Clearly,
T. = ¥ pep,,., comp(n). and
T, = Teep,, comm(e).

The partitioning algorithm consists of a loop in which each iteration consists
of a merging step. Assume that there are N iterations in the algorithm.
Let II; be the partition obtained after iteration i is done”. IIy is the coarsest
partition (i.e. the singleton partition).
Let I(i) be the CPL of the task graph at the end of iteration 7, 1 < i1 < N, of
our partitioning algorithm (using Heuristic 1). [(0) is the CPL of the initial task

"Iteration 0 is not defined. Iy is defined to be the initial partition, before any iteration is
performed.
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Figure 6.20: CPL as a function of the iteration number

graph.
I(i) = Te(3) + To(i), where T.(i) and T,(i) are the computation component and
overhead component at the end of iteration ¢ respectively.

Intuitively, it is easy to see that during the execution of the algorithm, T.
starts to increase and T, starts to decrease. The net result (i.e. the sum of the
2 components) is shown in figure 6.20. From the curve shown in figure 6.20, we
can see that PARTIME can increase momentarily, then decrease. Therefore, if
during an iteration of the algorithm the merger causes an increase in PARTIME,

we should still accept this merger, and continue with the next merging iterations.

193



PARTIME versus |

40
Curve for I(1)
251
20k
T ~
15+ _,,.\‘\
i ~
~
~
~
10 ~
5-
00 1

W1 ‘Curve for Te

- ———

Figure 6.21: PARTIME Plot for Example 1

leration Numbar i

Otherwise we can get caught at a local minimum. It is for this reason that we

keep merging tasks until the coarsest partition (singleton partition) is reached.

Examples

We consider the case of the fork DAG shown in figure 6.1.
Te(2) =r+n+ng+-+ni+ni41,0 <i<m-1.

T(m)=r+n+ny+- - +0m
T,(1)=c4, 01 Sm—1.
To(m) = 0.

1. Consider the fork DAG shown in figure 6.9 (a). Here N = 6. The values of

T,, T, and [(3) for each iteration of the algorithm are shown in table 6.2.

The plots for PARTIME, T, and T, are shown in figure 6.21.

9. Consider the fork DAG shown in figure 6.9 (b). Here N = 6. The values of
T., T, and (i) for each iteration of the algorithm are shown in table 6.3.

The plots for PARTIME, T, and T, are shown in figure 6.22.
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Figure 6.22: PARTIME Plot for Example 2
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Figure 6.23: PARTIME Plot for Example 3
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Figure 6.27: PARTIME Plot for Example 7
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T.

l

13

20

33

15

15

30

20

29

26

34

30

37

33

38

| G | I = O] -

33

| Uv| =~1| CO

33

Table 6.2: Table for Example 1

T,

!

25

45

70

40

25

65

45

30

75

60

20

80

65

25

90

75

15

90

| O o] =] O —-

75

75

Table 6.3: Table for Example 2
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Te | Ts |l 4
25145| 70
40 | 25 | 65
45|30 | 75
3012070
51120 | 71
52 | 15 | 67
52| 0 | 52

| || co| 2| —| of —-

Table 6.4: Table for Example 3

.| T, | !

25| 45| 70
40 | 25 | 65
45| 30 | 75
50|20 |70
52 | 20 | 72
7301 |74
7310 |73

| x| W 2] ]| O =

Table 6.5: Table for Example 4

_ Consider the fork DAG shown in figure 6.9 (c). Here N = 6. The values of

T., T, and [(z) for each iteration of the algorithm are shown in table 6.4.

The plots for PARTIME, T. and T, are shown in figure 6.23.

. Consider the fork DAG shown in figure 6.9 (d). Here N = 6. The values of

T., T, and [(i) for each iteration of the algorithm are shown in table 6.5.

The plots for PARTIME, T and T, are shown in figure 6.24.

_ Consider the fork DAG shown in figure 6.9 (e). Here N = 6. The values of

T., T, and I(3) for each iteration of the algorithm are shown in table 6.6.

The plots for PARTIME, 7 and T, are shown in figure 6.25.

_ Consider the fork DAG shown in figure 6.9 (f). Here N = 6. The values of

T., T, and I(i) for each iteration of the algorithm are shown in table 6.7.
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T,

l

35

34

69

50

35

85

60

20

80

63

68

64

70

70

71

D] | | — | O -

70

O|=| D

70

Table 6.6: Table for Example 5

T,

l

25

45

70

40

25

65

50

20

70

55

10

65

56

61

61

62

DD O | W B =] Of =

61

61

Table 6.7: Table for Example 6
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| LT, 4
0125|4570
1140|2565
2145|1560
31509 |59
45311 |64
5|61 5 | 66
6 61| 0 |61

Table 6.8: Table for Example 7

The plots for PARTIME, T. and T, are shown in figure 6.26.

7. Consider the fork DAG shown in figure 6.9 (g). Here N = 6. The values of

T., T, and (i) for each iteration of the algorithm are shown in table 6.8.

The plots for PARTIME, T. and T, are shown in figure 6.27.

It is easy to see that for the join DAGs in figure 6.9 (c), (e) and (f), if we don’t
accept the mergers that result into a higher PARTIME, we can never reach the

optimal partition. In other words, the only way to reach the optimal partition is

to keep merging the tasks chosen until the coarsest partition is reached.
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis, we presented heuristics for automatic program code partitioning
and grain size determination for DMMs. Like most partitioning methods, our ap-
proach is compile-time. Given a weighted non-hierarchical (flat) Directed Acyclic
Graph (DAG) representation of the program, we proposed a data-flow based parti-
tioning method where all levels of parallelism available in the DAG are exploited.
Our procedure automatically determines the granularity of parallelism by par-
titioning the graph into tasks to be scheduled on the DMM. The granularity of
parallelism depends only on the program to be executed and on the target machine
parameters. The output of our algorithm is passed on as input to the scheduling
phase.

We use the definition of code partitioning given by Sarkar [48]. Mainly, we
assume the availability of an infinite number of processing elements and that the
communication overhead between the processing elements is minimum but not
zero, then we find the optimal partition (i.e. the one that results into minimal
parallel execution time). In this case, the parallel execution time of the input pro-
gram graph is the same as the CPL of the corresponding task graph. Our scheme
is based on minimizing the CPL of the task graph, by performing a sequence of
task merging. Since we assume that our execution model obeys the convexity con-

straint, our method guarantees that the task graph remains acyclic at all times,



in order to avoid deadlock situations. The algorithm consists of a loop, and dur-
ing each iteration of the loop a pair of tasks is chosen to be merged' using some
heuristic. Hence, the main work of the algorithm is to decide on which tasks are
to be chosen for merger during each merging iteration, with the goal being the
minimization of the CPL of the task graph.

In order to come up with the criteria for task merging to be used by the
heuristics, we did some analysis of the task graph to better understand the effect
of merging tasks on the CPL and on the available parallelism in the Task graph.
We also studied the effect of parallelism loss due to task merging on the CPL of
the task graph. We determined a necessary and sufficient condition for parallelism
loss as a result of task merging. Then we presented some rules to determine the
mergers that result into the maximum decrease in the CPL, the mergers that
result in no increase in the CPL, etc. We showed that the pair of tasks to be
merged has to belong to a critical path of the task graph, otherwise the CPL
can never decrease as a result of the merger. Finally, we showed that if there is
no parallelism loss as a result of the merger, then the CPL of the task graph is
guaranty not to increase. However, if there is parallelism loss, then the CPL could
increase as a result of the merger.

Finding an optimal solution to the code partitioning problem is NP-complete.
Due to the high cost of graph algorithms?, it is nearly impossible to come up with
close to optimal solutions that don’t have very high cost (higher order polynomial).
For instance, some of the criteria that can be used in choosing the pair of tasks to
be merged, and that result into good performance in minimizing the CPL, have a
very high time complexity. Therefore, we had to use criteria that result into lower
performance and that have lower time complexities. In other words, we had to
trade performance for less time complexity. Hence, we proposed heuristics that
give reasonably good performance and that have relatively low cost. Our algorithm
has a worst case time complexity of O(E.N?). However as was explained earlier

in this thesis, for real applications, the average time complexity is expected to be

1These are called merging iterations.
2For our analysis we had to use various DAG traversal algorithms.
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O(N(E + N)). For fork and join DAGs, our algorithm gives optimal performance.

For complete binary trees, the performance is more than 50% of the optimal one.

7.2 Future Research

We need to do more experiments using other kinds of regular DAGs and real life
benchmarks to further test our heuristics and improve them. Also, an interesting
future research would be to consider complete binary trees where not all actors
have the same weights and not all edges have the same weights.

Furthermore, we mentioned previously that we over-estimated the worst case
time complexity of our partitioning algorithm (the complexity given is an upper
bound and can never be achieved). It would be interesting to determine a tighter
worst case time complexity. In other words we would like to find an achievable
worst case time complexity.

In addition, if we can find ways to reduce the time complexity of our parti-
tioning algorithm, our proposed procedure will be even more useful. Following are
some methods that could be used to achieve this goal and optimize our proposed

algorithm:

e Use incremental methods to determine CPL, ParSet(n), DepSet(n), perfect
edges, safe edges, instead of recomputing them for each iteration of the
algorithm. For instance, we could try to express the CPL at step n as a
function of the CPL at step n — 1 and the way the merger is done at step n.
Tao Yang (18, 58, 59] uses an incremental way to determine the CPL of a
task graph. He defines the tlevel and blevel of a node n in a DAG to be the
length of the longest path from an entry node to n, excluding the weight of n,
and the length of the longest path from n to an exit node respectively. Then
he defines the priority PRIO(n) of the node n to be tlevel(n) + blevel(n). It
is easy to see that the node with the highest priority belongs to the critical
path. Using these definitions, Tao Yang was able to make the choice of the
edge to be zeroed (i.e. merged) without having to compute the critical path

of the task graph, and in an incremental manner. It would be interesting
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to see if we can use a method similar to his, to determine the edge to be

merged in our partitioning algorithm.

e Find optimal solution for restricted classes of DAGs.
We expect that the time complexity of our algorithm becomes much lower
when we restrict ourselves to special classes of DAGs. For instance for DAGs
for which the nodes have at most one output edge, there are some properties
that could enable us to find the edge to be merged in a much cheaper way.
Also, we can study DAGs for which each node has at most one input edge

(trees).

e In our partitioning algorithm, we keep merging tasks until we reach the
coarsest partition (i.e. the partition consisting of a single task). We accept
the merger even if it results in an increase in PARTIME. If we can find a way
to stop the merging process much earlier without sacrificing performance,
then we will have a reduction in the time complexity of the algorithm without

losing any performance.

Furthermore, an interesting question to answer would be: if heuristic H; gives
larger improvements between successive merging iterations than heuristic H,, does
that mean that H, performs better than H; ?

Finally, an interesting future research would be to investigate merging more

than 2 nodes in the task graph (i.e. tasks) at a time.
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