
Satisfiability-Based Test Generator
for Path Delay Faults

in Combinational Circuits

Chih-Ang Chen and Sandeep K. Gupta

CENG 96-07

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, California 90089-2562
(213) 740-2251

A Satisfiability-Based Test Generator for Path Delay
Faults in Combinational Circuits *

Chih-Ang Chen and Sandeep K. Gupta
Electrical Engineering - Systems
University of Southern California

Los Angeles CA 90089-2562

Abstract

This paper describes a new Boolean satisfiability based formulation to generate robust tests
for path delay faults in combinational circuits. Conditions to detect a target path delay
fault are represented by a Boolean formula. Unlike the technique described in [30], which
extracts the formula for each path delay fault, the proposed formulation needs to extract
the formula only once for each circuit cone. Experimental results show tremendous time
saving on formula extraction compared to other satisfiability-based ATPG algorithms. This
also leads to low test generation time, especially for circuits that have many paths but few
outputs. The proposedformulation has also been modified to generate other types of tests for
path delay faults.

•This research was funded by NSF Research Initiation Award no. MIP-9210S71 and NSF CAREER
Award no. MIP-9502300.

1 Introduction

The problem of automatic test pattern generation (ATPG) for a target fault in a circuit is
to find a set of assignments at its primary inputs such that (1) the fault is excited, and (2)
the fault effect is propagated to its primary output(s). This problem can be viewed as a
search problem of finding a point in the space of all possible input vectors that is a valid
test for the fault. The ATPG problem is known to be NP-complete [16], which means that
no polynomial-time algorithm is known to solve the problem. However, in the past two
decades, tremendous progress has been made on the design of efficient ATPG algorithms.
These techniques can be broadly categorized as structural, algebraic, and satisfiability-based.

Structural algorithms directly analyze gate-level description of a circuit and implicitly
enumerate all possible input combinations to find test patterns. The search can be accel

erated by efficient implication engines and intelligent selection criteria. Some well-known

ATPG algorithms for single stuck-at faults are PODEM [17], FAN [14], SOCRATES [33],
TOPS [18], etc. Extensions of these techniques to generate two-pattern tests for delay faults
are also well studied [13, 22]. Efficiency of these approaches normally depends on "bags of
tricks" to avoid entering the non-solution area [7].

An algebraic algorithm converts the test generation problem into an algebraic formula

and applies algebraic techniques to simplify and then solve the formula to obtain a test.

Based on Boolean difference [34], early algebraic techniques were not practical due to their
high computational complexity. Recent developments in efficient circuit representation via

binary decision diagrams (BDDs) [5] have inspired many algebraic ATPG algorithms for
stuck-at faults [15, 35, 36] and delay faults [1]. The memory requirements and computation
time of these techniques are comparable (in some cases, superior) to those of the structural
techniques. These techniques work well for circuits that can be efficiently represented by
BDDs. For some circuits, however, the BDD representations are unpractically large, making

the BDD-based techniques inapplicable to these circuits.

Satisfiability based approach proposed in [20] translates the test generation problem
into a formula in conjunctive normal form (CNF) [11]. Any input combination which makes
the CNF formula evaluate to 1, i.e. any assignment which satisfies the formula, is a test

for the fault. This approach is not strictly algebraic because no algebraic manipulations are

employed but a branch-and-bound strategy, similar to the one used in structural algorithms,

is used to find input combinations that satisfy the formula. However, it is not a structural al

gorithm because all operations are performed on the formula in CNF instead of the gate-level

circuit description. The performance of an efficient implementation of this technique [37]
compares favorably to the best known structural algorithms. Further improvements have
been reported in [7, 8] by calculating global signal dependencies using transitive closure.

The method described in [20, 37] only deals with single stuck-at faults in combina
tional circuits. Extension ofATPG based on satisfiability to find two-pattern tests for path
delay faults has been proposed in [30]. It is proven that any given path delay fault in a cir
cuit is robustly testable if and only if an equivalent stuck-at fault is detectable in a modified
circuit, which has at most four times the number of gates in the original circuit. A robust
test for the given target path delay fault can then be determined by generating a test for the
equivalent stuck-at fault in the modified circuit using the technique described in [37]. In this
approach, the circuit modification and CNF formula extraction must be repeated for each

path delay fault. Typically, 70% to 80% of the overall time to generate tests for stuck-at
faults is spent on CNF formula extraction [37]. In test generation for single stuck-at faults,
the time spent for formula extraction is compensated by a faster satisfiability solver because

a simpler branch-and-bound algorithm can be designed for the satisfiability problem. A test

generator for path delay faults, however, must consider a large number of paths. Due to this

fact, a large amount of time is spent on CNF formula extraction in the approach presented

in [30], thereby adversely affecting the overall test generation time for circuits with a large
number of paths.

This paper describes a new satisfiability based algorithm to generate tests for path

delay faults in combinational circuits. The proposed technique directly formulates the ATPG
problem for path delay faults as a satisfiability problem based on the value system proposed

in [21]. Unlike other techniques [20, 30], the proposed technique extracts the CNF formula
only once for each cone. All path delay faults in the cone use the same CNF formula
merely by making appropriate on-path and off-path value assignments before solving the
CNF formula to find a two-pattern test for the target fault. Experimental results show

tremendous time saving on formula extraction compared to other similar techniques. This
also leads to significant savings on overall test generation time, especially for circuits with

many paths but few outputs (cones).

Another advantage of the proposed technique is the flexibility in handling differ
ent types of tests for path delay faults, such as hazard-free robust, robust, and non-robust
tests [27, 28]. In structural algorithms, different value systems and implication procedures
are often required to generate different types of tests for a path delay fault. In the technique
described in [30] (though originally proposed to generate robust tests for path delay faults,

the technique can be extended to generate other types of tests as well), the circuit must be
modified and the CNF formula extracted for each type oftest for a given target path delay
fault. In the proposed technique, however, the same CNF formula extracted for a cone can
be used to generate different types of tests for all path delay faults in the cone. Hence, if a
hazard-free robust or a robust test does not exist for the target path delay fault, the pro
posed technique can easily search for a non-robust test without any overhead of extracting
a new CNF formula.

The paper is organized as follows. Section 2 describes the basic terminology used
in this paper. Formulations of the ATPG problem as a Boolean satisfiability problem for
stuck-at and path delay faults are presented in Sections 3 and 4, respectively. Experimental

results are given in Section 5. Some extensions and applications are discussed in Section 6.

Finally, conclusions are presented in Section 7.

2 Basic Terminology

A literal is a Boolean variable or its negation (e.g. a or a). An OR-clause is an OR of one
or more literals. An n-clause is an OR-clause with exactly n distinct literals. A formula is

composed of parentheses, literals, and Boolean operations (e.g. NOT, AND, OR, NAND,
NOR, etc.). A Boolean formula is in conjunctive normal form (CNF), if it is expressed as
an AND of OR-clauses. A Boolean formula is in n-CNF, if each OR-clause is an ?i-clause.

An assignment for a Boolean formula is a set of Boolean input values (0 or 1). A satisfying
assignment for a single-output Boolean formula y is an assignment such that y evaluates to
1. A Boolean formula is satisfiable if it has a satisfying assignment. The problem of Boolean
satisfiability is to determine whether a Boolean formula is satisfiable. As an example, the
Boolean formula y = (a + b+ d)(a + c + d) is in 3-CNF. The formula is satisfiable with the
satisfying assignment {a = l,c = 0}.

3 ATPG Formulation: Stuck-at Faults

Test generation based on satisfiability can be divided into two independent steps: extraction
of the CNF formula and identification of a satisfying assignment. Different fault models

require different CNF formula extractors, but can use identical satisfiability solvers (though
some heuristics may be more efficient for a specific fault model). This section describes CNF

Table 1: CNF formulas for basic gates

Gate CNF formula

NOT

AND

NAND

OR

NOR

(a + y)(a + £)
(a + y)(b + y){a + b+ y)
(a + y)(b + y)(a-{-b + y)
(a + y)(b + y)(a + b+ y)
(a + y){b + y)(a + b+ y)

formula extraction for single stuck-at faults. Much of the description is due to [20, 37] and
is included here to delineate later discussion on test generation for path delay faults.

3.1 Normal Circuit

First, consider a 2-input AND gate represented by the equation

y = ab. (1)

For clarity, the above representation is said to be in equation form. Alternatively, the

equation can be written as

°b(Bv = 0

ay + by + aby = 0

(a + y)(6 + y)(a + 6+ y) = 1.

(2)

(3)

(4)

Now the left-hand side of the equation is in CNF. With a slight abuse of terminology, we
say the equation is in CNF. Note that only the values in the truth table of an AND gate
can satisfy the CNF formula. The CNF formulas for basic gates are summarized in Table 1.
The formulation can be easily extended to a basic gate with multiple inputs.

A Boolean network consists of gates interconnected by wires with possible fanout
stems. The network can be represented in CNF by simply concatenating the CNF formula
for each individual gate together. Consider the circuit shown in Figure 1. The output
function y can be written in equation form as

y = abc + c. (5)

{>

Figure 1: Example circuit

f

Figure 2: Example circuit with fault d s-a-1

The function y can also be written in CNF as

Cg = (a + 3)(6 -I- d){c + d){a + b+ c+ d) (c+ e)(c + e) (rf + j/)(e + y)(d + e + y) = 1. (6)

~\ND~ "Iwr" ~~NOR~~

3.2 Faulty Circuit

The above description only provides the formulation for a circuit's normal operation.
When the circuit is faulty, circuit lines in the transitive fanout of the fault site may take
values that are different from the corresponding values in the good circuit. To model a faulty
circuit, the gates and lines in the transitive fanout of the fault site are duplicated and a new
literal is introduced for each duplicate line. As an example, the circuit shown in Figure 1 is
shown in Figure 2 with a fault d stuck-at-1. The CNF formula for the duplicate circuit is
given by

Cf = (df+yf)(e +yf)(df +e+yf) = 1. (7)

The new variables df and yf (faulty variables) are introduced to indicate that the lines d
and y may have different values in the normal and faulty circuits.

3.3 Active Clauses

To derive a test for a target fault, it is insufficient to concatenate the CNF formulas for the
normal and faulty circuits and to find a satisfying assignment for the resulting CNF formula.
In fact, if a satisfying assignment can be found for the good circuit, it will always satisfy
the faulty circuit — by equating the normal and faulty variables. If a fault is detectable,
there must exist at least one path from the fault site to a primary output of the circuit
such that every line I along the path has different values in the normal and faulty circuits

(i.e. the good value I and the faulty value V are different). The effect of fault propagation
can be formulated by introducing active variables and active clauses. For each line I in the

transitive fanout of the fault site, an active variable la is defined. If I is on the path of fault

propagation (in our terminology, I is active), then the good value I and the faulty value lf
are different. In other words,

la=>(l^ lf) (8)

(F + l + lf)(la +l + lf) = l. (9)

For a fanout stem s in the fault propagation path, the fault effect must be propagated along-

one of the branches. This can be formulated by adding the active clause

N

*+£<, (10)
i=i

where s{ is the i-th. fanout branches and \s\ is the number of fanout branches. The active

clauses for the faulty circuit in Figure 2 are given by

Ca = (T + d+df)(T +d+df)(r +y+yf)(r + y+ yf) = i- (n)

3.4 Fault Detection

To detect a fault, the fault site must have different values in the good and faulty circuit.
Additionally, the fault effect must be propagated to at least one of the primary outputs.
These necessary assignments can be accounted for by adding additional clauses to the CNF
formula. Consider the fault d s-a-1 in the circuit shown in Figure 2. The fault site d must

have the value 0 in the good circuit and 1 in thefaulty circuit (i.e. da = 1, d = 0 and df = 1).
Since y is the only output, the fault effect must be observed at y (i.e. ya = 1). The clauses

daddfya can be added to the CNF formula to represent the necessary conditions in order to
detect the fault.

Overall, test generation for the fault ds-a-1 in the example circuit has been translated
to the problem of finding a satisfying assignment for the CNF formula given by

CgCfCQdaddfya = 1. (12)

Simple branch-and-bound heuristics can then be used to search for satisfying assignments.

One possible solution is given by {a = 0,c = l,d° = l,d = 0,df = l,e = 0,ya = l,y —
1) w —0}) which corresponds to the test {a = 0,b= x, c = 1}.

In the above formulation, a faulty variable and an active variable must be introduced

for each line in the transitive fanout of the fault site. If the fault site is close to the primary

outputs, then only few additional variables need to be introduced and the number of clauses

is small. However, if the fault site is close to the primary inputs, then a large number of

additional variables and clauses need to be introduced. In other words, a stuck-at fault

near the primary inputs will require more memory to store the CNF formula and it may be
harder to find a satisfying assignment when compared to another fault closer to the primary

outputs.

The technique proposed in [30] for generation of a robust test for a path delay fault
uses the above formulation to find a test for a stuck-at fault in the modified circuit that

is equivalent to the target path delay fault. The equivalent stuck-at fault is located on the
I-edge of the target path P, which is defined as the on-path input to the first non-inverter
gate on P [30]. (The I-edge is either a primary input or the output of an inverter fed by
a primary input.) Since the equivalent stuck-at fault is close to a primary input, the CNF
formula for the equivalent stuck-at fault normally has a large number of extra variables and
clauses leading to high memory requirement and, perhaps, high run time. In the following
section, we will show how faulty and active variables can be eliminated in the proposed
formulation of test generation for path delay faults.

4 Proposed ATPG Formulation: Path Delay Faults

CNF formula extraction for a path delay fault has the following major differences from that

for a stuck-at fault.

1. The logic system to represent signal values is different.

2. The fault effect propagation path of the target fault is known.

3. A two pattern test for a path delay fault can be found by finding a primary input
assignment that satisfies all the desired on-path and off-path constraints.

Due to the last two differences stated above, extracting the CNF formula for a path delay
fault is in fact simpler than that for a stuck-at fault as will be shown below.

4.1 Logic Systems

Structural test generation algorithms for stuck-at faults normally use a 5-valued logic system
consisting of {0,1, x, D, D}. The logic systems for delay fault testing are more complicated
due to the need to span two time frames, corresponding to the two pattern tests. Many logic
systems, which range from 5-valued to 23-valued, have been proposed in the literature [2, 6,
13, 21, 22, 24, 25]. A complicated logic system has powerful implication capability and can
often speed up computation by reducing the number of backtracks. This is at the cost of

higher memory requirement and more complex implementation.

Theoretically, it is possible to use any logic system in the CNF formulation described

in the following section. However, the number of clauses in the CNF formula grows expo

nentially with the number of variables used to represent the values. To minimize the number

of clauses, the 7-valued logic system. C7 proposed in [21] is used in the proposed formula
tion. According to [13], C7 can be partitioned into 4 basic values and 3 composite values as
C7 = {{s0,s0,sl,sl}, {x0,xl,xx}}. The second element of each value, which indicates the
final value of a two-pattern test, is either 0, 1, or 2; (don't care). The first element of each
value is either s (static), s (not static), or x (unknown). A signal line has the basic value sO
(si) if both its initial and final values are 0 (1) and no transient hazard exists during the
entire time interval. A signal line has the basic value sO (si), if the line has the final value

0 (1) but not sO (si). The implication table for a 2-input AND gate using C7 is shown in
Table 2.

A simple encoding scheme is to use two ternary variables s and v to represent the
first and second element of each value in £7, respectively. A possible encoding scheme is

shown in Table 3. This encoding is carefully chosen to minimize the number of clauses in the
resulting CNF formulas. For each line / in a circuit, a two-tuple (Is, lv) is used to represent
the code of the value on /. It is counter-intuitive to encode a 7-value logic system with only 2

Boolean variables. But note that any variable that does not have a determined value (i.e. 0

Table 2: Implication table for AND gate

sO si sO si xO xl XX

sO sO sO sO sO sO sO sO

si sO si sO si xO arl XX

sO sO sO sO sO xO sO xO

si sO si sO si xO si XX

xO sO xO xO xO xO xO xO

xl sO xl sO si x-0 xl XX

XX sO XX xO XX xO XX XX

Table 3: Encoding for £7

sO si sO si xO xl XX

s 1 1 0 0 X X X

v 0 1 0 1 0 1 X

or 1) in an assignment has the value x (don't-care). Hence, the variables are indeed ternary
and the two tuples (Is, lv) can be used to represent the seven values.

4.2 Normal Circuit

Consider a 2-input AND gate in equation form given by

y = ab. (13)

The two-tuples (as, av), (bs,bv), and (ys,yv) are used to represent the codes on the lines a, b
and y, respectively. Based on the implication table in Table 2 and the encoding in Table 3,

the variables ys and yv can be represented by

f = asbs + a'av + bsF
yv = avbv.

Equivalently, the two equations can be written as

(af +a¥flf)ff = 0

avbv®yv = 0.

10

(14)

(15)

(16)

(17)

After some Boolean manipulation, the equations can be represented in CNF by

ftura>(«, o, c) = (as + f -(- ys)(as + a" + y5)(6s + bv + 2/5)(a5 + 6s + ys)
(as+6u+r)(au+6s+r)K+pk*+rw+p+^ = 1. (is)

Note that only the values in the truth table of an AND gate, where the output y has a
determined binary value (0 or 1), can satisfy the CNF formula. The CNF formulas for other
basic gates can be derived similarly. For a 2-input basic gate, there are 9 clauses in its CNF
formula extracted for delay testing, of which 7 clauses have 3 literals and 2 clauses have 2
literals. A 1-input gate (an inverter or a buffer) is a special case which has 4 clauses, each
with 2 literals.

The formulation for an n-input gate is more complicated. An n-input AND gate is
represented by the Boolean equation

XXX2 •••Xn-xXn = IJ. (19)

The output variables ys and y° can be represented by

f = ft «?+£«» (2°)
»=i i=i

f = IK (21)
t=i

The variable ys belongs to the class of functions that have polynomial number of minterms
in their true form but have exponential number of minterms when complemented [3].

In the proposed technique, an alternative formulation is used to reduce the number
of clauses. An n-input basic gate can be decomposed into (n - 1) 2-input gates as shown in
Figure 3. As proven in [19], such a decomposition neither changes the number of paths in
the circuit nor does it affect the detectability of any path delay fault. The CNF formula for
the n-input gate can now be obtained by concatenating the CNF formula for its constituent
2-input gates. For example, the CNF formula for a 3-input NAND gate can be obtained by
concatenating the CNF formulas for a 2-input AND gate and a 2-input NAND gate. The
CNF representation of each n-input basic gates contains 9(n - 1) clauses, of which 7(n - 1)
clauses have 3 literals and 2(n - 1) clauses have 2 literals.

For a single output circuit, the CNF formula of each individual gate can be concate
nated to form a CNF formula for the circuit. The number of clauses and literals remains

polynomial in terms of the number of gates in the circuit, as proven in the following theorem.

11

kn-2

(a) AND gate (b) NAND gate

(c) OR gate (d) NOR gate

Figure 3: Decomposition of n-input gates

Theorem 1 For a single-output circuit with N = Y^=i Ni gates, where Ni is the number of
i-inputs gates, there are R^ = 9(N —n + 1) —5iVi clauses in its CNF representation for
delay testing, of which 7(N - n + 1) - 7ATX clauses have 3 literals and 2(N —n + 1) + 2Ni
clauses have 2 literals.

Proof: The number ofclauses for the circuit isgiven by 4J^+£JU 9(./V,—1) = 9(N-n+l)-
5iVV As described earlier, the number of clauses with 3 literals is given by £"=27(Ni - 1) =
7(iV - n+1) - 7JVi). The number ofclauses with 2 literals is given by 4/Vj + £tn=2 2(Arf -1) =
2(N-n + l) + 2Ni). •

For a circuit with multiple outputs, the CNF formulas must be extracted once for
each cone. If a gate G belongs to k cones, then the CNF formula for G must be extracted
k times. In the worst case where all the m cones in an m-output circuit completely overlap,

the number of clauses that need to be extracted is given by mRN. Since m « N, the
number of clauses and literals remain polynomial in terms of the number of gates even for
a circuit with multiple outputs.

12

4.3 Fault Excitation

In the CNF formulation for stuck-at faults, faulty variables and active variables are intro
duced for lines in the transitive fanout ofthe fault site to represent possible fault propagation
paths. Since the fault site and the fault propagation paths are different for each stuck-at
fault, the clause extraction must be repeated for each fault. For a path delay fault, however,
the propagation path is known. A two-pattern test can be generated for a delay fault by
satisfying the CNF formula for the circuit subject to constraints on the values on the on-path
and off-path inputs. The clauses extracted for the normal circuit are sufficient to model the

faults and no faulty clauses or active clauses are required.

The formula extraction in the proposed technique includes two portions: (1) the ex
traction of the clauses for gates in a circuit cone; and (2) the assignment of values to the
literals corresponding to the necessary conditions to detect a target path delay fault. As
proven in Theorem 1, the complexity of the first portion is proportional to the number of

gates in the circuit. However, the complexity of the second portion is proportional to the

number of paths, which may grow exponentially in terms of the number of gates in the cir

cuit. By carefully implementing the path enumeration algorithm, however, the computation

required to determine the necessary conditions for each path delay fault can be kept small.

During traversal of the circuit to enumerate a path Pi, the necessary assignments to detect

a delay fault on Pi can be stored in a stack. Since only a few nodes need to be modified in
depth-first search to identify the next path P2, the stack can be updated incrementally and

the necessary conditions for Po can be quickly determined.

The fact that the clause extraction does not have to be repeated for each path delay

fault is a very important feature of the proposed formulation. For all path delay faults in the

same cone, the CNF formula is the same. Only the off-path input constraints are different.

The CNF formula can be extracted once for each cone to generate the path delay faults in

the cone. As noted in [37], the clause extraction accounts for a significant portion of the
computation time in ATPG based on satisfiability. The savings in clause extraction can

tremendously improve the efficiency of the proposed ATPG for path delay faults.

Different types of tests for path delay faults have been proposed in the literature.

In this paper, we consider three kinds of two-pattern tests: restricted delay test pairs

(RDTPs) [31] (called single-path propagating hazard-free robust tests in [28]), robust tests,
and non-robust tests. (Extensions to other types of tests for path delay faults [9, 29] are
possible and are currently under investigation.) These tests differ on the constraints on the
off-path values as shown in Table 4. In the proposed technique, these off-path input con-

13

Table 4: Constraints on off-path values

RDTP Robust Non-robust

on-path rising on-path falling
AND/NAND

OR/NOR
si

sO

xl

sO

si

xO

xl

xO

Figure 4: Decomposition of example circuit

straints can be uniformly represented by fixing the variables for the off-path inputs before

solving the CNF formula to find a two-pattern test.

As an example, consider the path in the circuit shown in Figure 4. The CNF formula

for the circuit is given by

£and(o> c,a1)SAND(a, ah d)ENOT(c, e)£NOn(d, e,y) = 1. (22)

A robust test for the slow-to-rise delay fault on the path a-d-y can be generated by fixing the

on-path variables: (as,av) = (0,1), (ds,dv) = (0,1), (ys,yv) = (1,0); and off-path variables:
avj = bv = cv = 1, (e6', ev) = (1,0). These constraints can be represented by adding the clause

asavds'dvysy°avjbvcvese" to Eq. 22. A possible satisfying assignment is given by (as,av) =
(0, l),(bs,bv) = (x,l),(cs,cv) = (1,1), which corresponds the robust test {a = sl,b =
xl,c = si}. Using the same CNF formula, a non-robust test for the same path delay
fault can be generated by changing the off-path variables: a} = bv = cv = 1, ev = 0. A
possible satisfying assignment is given by (as,av) = (0,1), (bs,bv) = (cs,cv) = (x,l), which
corresponds to the non-robust test {a = sl,b = xl,c = xl}.

Since the circuit in Figure 4 has a single output, the CNF formula extracted in Eq. 22,
together with additional clause corresponding to the necessary conditions for detection of
the target fault, can be used to generate tests for other path delay faults in the circuit. For
example, to generate a robust test for the slow-to-rise delay fault on the path c-a^d-y,

14

the clause cscvajavIdsdvysyvavbvesev can be added to Eq. 22. Since no satisfying assignment
can be found, no robust test exists for the path delay fault. However, by adding the clause
cscvasIavIdsdvysyvavbvev to Eq. 22, a non-robust test {a = xl,b = xl,c= si} can be derived
for the path delay fault.

4.4 Boolean Satisfiability

After an ATPG problem has been converted into a satisfiability problem, any satisfiability
solver can be used to find a satisfying assignment that corresponds to a valid test, irrespective

of the original circuit structure and the type of test desired. Efficient branch-and-bound
algorithms have been developed to avoid the exponential worst-case run time for solving
the satisfiability problem. Extensive experiments have been performed to compare different

search strategies that determine variable order for branching [37]. In [8], the transitive
closure of the implication graph derived from the 2-clauses in a CNF formula is used to

determine global signal dependencies. All these techniques can be applied directly to solve

the CNF formulas extracted for path delay faults.

5 Experimental Results

The proposed ATPG program for path delay faults has been implemented and tested on

the combinational parts of the ISCAS89 [4] circuits. The experimental results presented
in the following are obtained using a HP-710 with 32 Mbytes of memory. The program

consists of a front-end clause extractor that extracts the CNF formula from the gate-level

description of the given circuit. A path delay fault is activated by fixing values at the on-

path and off-path inputs. Three kinds of two-pattern tests — RDTPs, robust tests, and

non-robust tests — can be generated by our current implementation. They only differ in

the off-path constraints specified for fault activation. The satisfiability solver is based on

the implementation in [37], originally integrated in an ATPG for single stuck-at faults. As
described earlier, this satisfiability solver can be used to find a satisfying assignment for the

CNF formula extracted for a path delay fault.

The experimental results for test generation of robust tests are shown in Table 5.

Column 1 gives the circuit name (only the combinational parts of these circuits are used).
Columns 2-5 show the number of path delay faults that are detected, untestable, and

aborted, followed by the total number of path delay faults in the circuit. In all these

15

Table 5: Results of test generation: robust tests

Ckt Path delay faults CPU time (sec) CNF/total

(%)det. untst. ab. total CNF SAT total

s27 50 6 0 56 0.02 0.07 0.09 22.22

s208 290 0 0 290 0.20 1.00 1.20 16.66

s298 343 119 0 462 0.25 1.44 1.69 14.79

s344 611 99 0 710 0.35 3.24 3.59 9.75

s349 611 119 0 730 0.29 3.31 3.60 8.06

s382 667 133 0 800 0.38 2.49 2.87 13.24

s386 413 1 0 414 0.30 1.57 1.87 16.04

s400 663 233 0 896 0.41 2.69 3.10 13.23

s420 738 0 0 738 0.33 5.19 5.52 5.98

s444 586 484 0 1070 0.47 3.44 3.92 11.99

s510 729 9 0 738 0.47 6.21 6.68 7.04

s526 694 126 0 820 0.42 3.39 3.81 11.02

s526n 695 121 0 816 0.51 3.31 3.82 13.36

s641 1979 1509 0 3488 2.98 34.91 37.89 7.87

s713 1184 42440 0 43624 25.69 126.20 151.89 16.91

s820 980 4 0 984 0.62 9.02 9.65 6.42

s832 984 28 0 1012 0.82 9.60 10.42 7.87

s838 2018 0 0 2018 1.91 31.59 33.50 5.70

s953 2302 10 0 2312 1.99 24.63 26.62 7.47

sll96 3581 2615 0 6196 8.40 152.28 160.68 5.22

sl238 3589 3529 0 7118 10.08 186.78 196.86 5.12

sl423 28696 60756 0 89452 78.09 1310.32 1388.41 5.62

sl488 1875 49 0 1924 1.52 20.26 21.78 6.9S

sl494 1882 70 0 1952 1.45 20.79 22.24 6.52

s5378 18656 8428 0 27084 42.33 524.61 566.94 7.46

s9234 21389 468319 0 489708 1629.09 8575.07 10204.16 15.96

16

experiments, each path delay fault is individually targeted and no fault simulation or fault
dropping is performed. Note that the proposed technique is able to find a robust test or to

prove that no robust test exists for every path delay fault in the circuits we experimented
on. The remaining columns show the time spent on formula extraction (CNF) and solving
(SAT), followed by the total time required for test generation. Finally, the percentage of
the total test generation time that was spent on formula extraction is presented. As shown

in the table, formula extraction (CNF) accounts for 10% of the total computation time on
the average, compared to 63% reported in [30]. The formula extraction time for the pro
posed technique is significantly lower because the formula extraction needs to be performed

only once for each cone and the necessary conditions to detect the path delay faults can be

quickly determined and updated.

One important feature of the proposed technique is that the time spent on formula

extraction does not grow rapidly with the number of paths in the circuit. Consider the

circuits si238 (with 428 gates and 32 outputs) and sl423 (with 490 gates and 79 outputs)
in Table 5. The number of paths in sl423 is about 12.6 times the number of paths in sl238.

Though sl423 has more gates and outputs than sl238, the formula extraction time for

sl423 is only about 7.7 times that for sl238, while the percentage of the formula extraction

over the total test generation time increases only slightly from 5.12% to 5.62%.

Similar experiments have been performed to generate RDTPs and non-robust tests

for the benchmark circuits. The results are shown in Tables 6 and 7, respectively. As shown

in the tables, the number of untestable faults increases (decreases) as more (less) restricted
tests are generated for the path delay faults. The total run time as well as the percentage of

the total run time that is spent on formula extraction are both about the same for different

types of tests for path delay faults.

6 Discussion

CNF formulation has the advantages of simplicity and uniformity. The CNF formula can

be obtained by merely concatenating CNF formulas for individual circuit components. As
shown in the formulation for stuck-at faults, faulty and active variables need to be introduced

to represent fault propagation path in the faulty circuit. On the other hand, for path delay

faults, the CNF formulation does not require any such additional variables. Hence, this

formulation is very well suited for path delay faults.

For the technique described in [30], the time spent on formula extraction is propor-

17

Table 6: Results of test generation: RDTPs

Ckt Path delay faults CPU time (sec) CNF/total

(%)det. untst. ab. total CNF SAT total

s27 48 8 0 56 0.01 0.07 0.08 12.50

s208 290 0 0 290 0.16 1.08 1.24 12.91

s298 332 130 0 462 0.23 1.49 1.72 13.37

s344 578 132 0 710 0.40 3.33 3.73 10.73

s349 576 154 0 730 0.39 3.44 3.83 10.18

s382 632 168 0 800 0.31 2.64 2.95 10.51

s386 412 2 0 414 0.22 1.68 1.90 11.58

s400 624 272 0 896 0.44 2.71 3.51 13.96

s420 738 0 0 738 0.30 5.23 5.53 5.42

s444 504 566 0 1070 0.47 3.12 3.59 13.09

s510 720 18 0 738 0.46 6.31 6.77 6.79

s526 680 140 0 820 0.49 3.37 3.86 12.70

s526n 682 134 0 816 0.55 3.32 3.87 14.21

s641 1576 1912 0 3488 2.77 34.47 37.24 7.44

s713 400 43224 0 43624 24.53 105.25 129.78 18.90

s820 970 14 0 984 0.72 8.94 9.66 7.46

s832 962 50 0 1012 0.78 9.54 10.32 7.56

s838 2018 0 0 2018 1.75 31.95 33.70 5.19

s953 2292 20 0 2312 1.94 25.91 27.85 6.97

sll96 3088 3108 0 6196 8.49 154.11 162.60 5.22

sl238 2852 4266 0 7118 10.71 201.10 211.81 5.06

sl423 24458 64994 0 89452 79.74 1310.44 1390.18 5.73

S1488 1832 92 0 1924 1.50 20.34 21.84 6.87

sl494 1826 126 0 1952 1.38 20.82 22.20 6.22

s5378 17254 9830 0 27084 42.88 511.93 554.81 7.73

s9234 14696 475012 0 489708 1689.99 7952.41 9642.40 17.52

18

Table 7: Results of test generation: non-robust tests

Ckt Path delay faults CPU time (sec) CNF/total

(%)det. untst. ab. total CNF SAT total

s27 50 6 0 56 0.04 0.05 0.09 44.44

s208 290 0 0 290 0.09 1.08 1.17 7.69

s298 364 98 0 462 0.22 1.46 1.68 13.10

s344 654 56 0 710 0.33 3.07 3.40 9.71

s349 656 74 0 730 0.33 3.09 3.42 9.65

s382 734 66 0 800 0.33 2.57 2.90 11.37

s386 414 0 0 414 0.26 1.58 1.84 14.13

s400 753 143 0 896 0.44 2.79 3.24 13.58

s420 738 0 0 738 0.39 5.00 5.39 7.23

s444 813 257 0 1070 0.49 3.26 3.75 13.06

s510 738 0 0 738 0.48 6.23 6.71 7.16

s526 720 100 0 820 0.46 3.32 3.78 12.17

s526n 718 98 0 816 0.40 3.37 3.77 10.61

s641 2270 1218 0 3488 2.99 35.00 37.99 7.87

s713 4922 38702 0 43624 26.76 202.13 228.89 11.69

s820 984 0 0 984 0.73 8.85 9.58 7.62

s832 996 16 0 1012 0.73 9.57 10.30 7.09

s838 2018 0 0 2018 2.02 31.23 33.24 6.05

s953 2312 0 0 2312 1.85 24.84 26.69 6.93

sll96 3759 2437 0 6196 8.72 149.88 158.60 5.50

S1238 3684 3434 0 7118 11.08 182.70 193.78 5.72

sl423 45198 44254 0 89452 78.79 1364.71 1437.50 5.45

sl488 1916 8 0 1924 1.53 20.17 21.71 7.05

sl494 1927 25 0 1952 1.49 20.57 22.06 6.76

s5378 21928 5156 0 27084 43.40 583.52 626.92 6.73

s9234 59854 429854 0 489708 1836.20 8300.58 10136.78 18.11

19

tional to the number of paths in the circuit. Therefore, the time spent on formula extraction
remains a large portion of the total computation time. In the proposed technique, the time
spent on formula extraction is proportional to the number of outputs of the circuit. As
demonstrated above, the time spent on the formula extraction is very small even for circuits
with a large number of paths.

Structural ATPG algorithms often explore the circuit topology to discover additional
unique assignments on some of the lines. These unique assignments can be represented by
fixing the value of the corresponding variable. Another method often used in structural
algorithms is learning [33], which explores the contrapositive of a logic consequence that can
not be inferred by direct implications. These logic inferences (sometimes called global or
non-local implications) [37] can be easily represented by adding clauses to the CNF formula.
Hence, the CNF formulation can take advantage of many techniques developed to accelerate

structural ATPG algorithms.

In the above discussion, no constraint is imposed on the variables. Any input assign

ment that satisfies the CNF formula is a test for the target fault. In some ATPG applications,

the variables may have correlations which can be represented by imposing extra constraints

on these variables. Such ATPG variations are called constrained ATPG. In the following,

we will show how constrained ATPG can be uniformly formulated after the ATPG problem

is translated into a Boolean satisfiability problem.

In the following discussion, each two-pattern test V = (Vi, V2) for a sequential circuit
consists of the primary input part I and the secondary input part D, i.e. V = (Vi,V2) =
(Ii\Di,I2\D2). Extra clauses can be introduced into the CNF formulas to represent the
constraints imposed by the design-for-testability (DFT) technique employed.

Scan Shifting A standard full scan design does not allow the application of arbitrary two-

pattern tests due to shift correlations. Determining the order of the flip-flops in a standard
scan chain to enhance the delay fault coverage (called the scan-chain ordering problem) has
been studied [10, 23, 26]. In scan shifting [10] (called skewed-load transition test in [26]),
assuming that the scan chain order is known, the final vector D2 of a two-pattern test is a

one bit shift of its initial vector D%. The scan chain is configured in the test mode and the
test clock is used to scan-in the initial vector and trigger the final vector.

Given a scan chain order, two-pattern tests that can be applied via scan shifting

can be generated by introducing additional clauses into the CNF formulae. Consider two

consecutive flip-flops d\ and d2 in a scan chain. The final value of d2 must equal to the

20

initial value of dx. In the proposed CNF formulation, this constraint can be represented by
adding the following clauses

(d1 + d\ + d\)(d[+ 3J + dv2)(d[+ ^ + dj)(d{ + aj + 5J) = 1. (23)

Functional Justification In functional justification [10], the initial vector of a two-
pattern test is scanned-in with the flip-flops configured in test mode as a scan chain. The

second vector is the obtained by the implication of the initial vector via the next state

(functional) logic which is captured by configuring the flip-flops in their normal modes and
activating the circuit clock. As noted in [10, 32], combining both methods (functional justi
fication and scan shifting) can often achieve higher delay fault coverage than each individual
method alone.

A two-pattern test V = (Vi,V2) that can be applied in the functional justification
mode must satisfy the property D2 = f(Vi), where / is the next state function for the
circuit. Let di and 5{ be the input (secondary output) and output (secondary input) of
the i-th. flip-flop, respectively. In functional justification, the values in the flip-flops can be

correlated by the following equation

$ + di + 5)(fc + 7i+ Sfiffl + V + «JX< + «C + 3T) = 1- (24)

Clock Grouping Clock grouping was introduced in [12] to further enhance delay fault
coverage by separating the flip-flops into clocked groups and allowing extra freedom to in

dividually clock each group. The technique can be combined with functional justification

and/or scan shifting to obtain very high delay fault coverage not possible with each individ
ual method. Experimental results show that typically two groups are sufficient to achieve

acceptable delay fault coverage.

In clock grouping, the final vector can be obtained by configuring the flip-flops in

functional justification or scan shifting mode. In addition, flip-flops in any group may be

either clocked or allowed to hold their V\ values. In CNF formulation, a flip-flop d operated

in the hold mode can be represented by setting ds to 1 during ATPG.

7 Conclusion

In this paper, the problem of ATPG for path delay faults has been converted to a Boolean

satisfiability problem. Any set of input assignments that satisfies the CNF formula is a

21

test for the target fault. The proposed formulation is simpler and faster than the technique
proposed in [30]. Unlike their technique which extracts the CNF formula for each path delay
fault, the proposed formulation needs to extract the CNF formula only once for each cone.
All path delay faults in the same cone can use the same CNF formula, but only differ on the
on-path and off-path input constraints. Experimental results show tremendous time savings
on formula extraction. The proposed formulation has also been modified to generate other
types of tests for path delay faults.

Satisfiability-based ATPG algorithm has the advantage of simplicity and uniformity,

and is very well suited for path delay faults because faulty and active variables are not

required. The formula extraction time is proportional to the number of circuit outputs and

is typically small even for circuits with a large number of paths. As described earlier, the

proposed formulation can also be used to solve many design-for-testability problems.

References

[1] D. Bhattacharya, P. Agrawal, and V. D. Agrawal. Delay Fault Test Generation for
Scan/Hold Circuits using Boolean Expressions. In Proc. IEEE-ACM Design Automa
tion Conference, pages 159-164, 1992.

[2] S. Bose, P. Agrawal, and V. D. Agrawal. Logic Systems for Path Delay Test Generation.
In Proc. European Design Automation Conf., pages 200-205, 1993.

[3] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston,

MA, 1984.

[4] F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles of Sequential Bench
mark Circuits. In IEEE Int. Sym.p. on Circuits and Systems, pages 1929-1934, 1989.

[5] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans, on Computers, C-35(8):677-691, Aug. 1986.

[6] T. J. Chakraborty, V. D. Agrawal, and M. L. Bushnell. Delay Fault Models and Test
Generation for Random Logic Sequential Circuits. In Proc. IEEE-ACM Design Au
tomation Conference, pages 165-172, 1992.

22

[7] S. T. Chakradhar and V. D. Agrawal. A Transitive Closure Based Algorithm for Test
Generation. In Proc. IEEE-ACM Design Automation Conference, pages 353-358, 1991.

[8] S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler. ATransitive Closure Algorithm
for Test Generation. IEEE Trans, on CAD, 12(7):1015-1028, July 1993.

[9] K.-T. Cheng and H.-C. Chen. Delay Testing for Non-Robust Untestable Circuits. In
Proc. IEEE Int. Test Confi, pages 954-961, 1993.

[10] K.-T. Cheng, S. Devadas, and K. Keutzer. A Partial Enhanced-Scan Approach to
Robust Delay-Fault Test Generation for Sequential Circuits. In Proc. IEEE Int. Test
Confi, pages 403-410, 1991.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, New York, NY, 1992.

[12] W.-C. Fang and S. K. Gupta. Clock Grouping: A Low Cost DFT Methodology for Delay
Fault Testing. In Proc. IEEE-ACM Design Automation Conference, pages 94-99, 1994.

[13] K. Fuchs, F. Fink, and M. H. Schulz. DYNAMITE: An Efficient Automatic Test Pattern
Generation System for Path Delay Faults. IEEE Trans, on CAD, 10(10):1323-1335,

Oct. 1991.

[14] H. Fujiwara and T. Shimono. On the Acceleration of Test Generation Algorithms. IEEE
Trans, on Computers, C-32(12), Dec. 1983.

[15] R. K. Gaede, M. R. Mercer, K. M. Butler, and D. E. Ross. CATAPULT: Concurrent
Automatic Testing Allowing Parallelization and Using Limited Topology. In Proc.

IEEE-ACM Design Automation Conference, pages 597-600, 1988.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

[17] P. Goel. An Implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits. IEEE Trans, on Computers, C-30(3), Mar. 1981.

[18] T. Kirkland and M. R. Mercer. A Topological Search Algorithm for ATPG. In Proc.
IEEE-ACM Design Automation Conference, pages 502-508, 1987.

[19] S. Kundu, S. M. Reddy, and N. K. Jha. Design of Robustly Testable Combinational
Logic Circuits. IEEE Trans, on CAD, 10(8):1036-1048, Aug. 1991.

23

[20] T. Larrabee. Efficient Generation of Test Patterns Using Boolean Difference. In Proc.
IEEE Int. Test Confi, pages 795-801, 1989.

[21] C. J. Lin and S. M. Reddy. On Delay Fault Testing in Logic Circuits. In Proc. IEEE
Int. Conf. on Computer-Aided Design, pages 148-151, 1986.

[22] C. J. Lin and S. M. Reddy. On Delay Fault Testing in Logic Circuits. IEEE Trans, on
CAD, CAD-6(5):694-703, Sept. 1987.

[23] W. Mao and M. D. Ciletti. Reducing Correlation to Improve Coverage of Delay Faults
in Scan-Path Design. IEEE Trans, on CAD, 13(5):638-646, May 1994.

[24] E. S. Park and M. R. Mercer. Robust and Non-Robust Tests for Path Delay Faults in
a Combinational Circuit. In Proc. IEEE Int. Test Conf, pages 1027-1034, 1987.

[25] E. S. Park and M. R. Mercer. An Efficient Delay Test Generation System for Com
binational Logic Circuits. In Proc. IEEE-ACM Design Automation Conference, pages
522-528, 1990.

[26] S. Patil and J. Savir. Skewed-Load Transition Test: Part II, Coverage. In Proc. IEEE
Int. Test Conf, pages 714-722, 1992.

[27] A. K. Pramanick and S. M. Reddy. On the Detection of Delay Faults. In Proc. IEEE
Int. Test Conf, pages 845-856, 1988.

[28] A. K. Pramanick and S. M. Reddy. On the Design of Path Delay Fault Testable
Combinational Circuits. In Proc. IEEE Int. Conf. on Computer-Aided Design, pages

374-381, 1990.

[29] A. K. Pramanick and S. M. Reddy. On Multiple Path Propagating Tests for Path Delay
Faults. In Proc. IEEE Int. Test Conf, pages 393-402, 1991.

[30] A. Saldhana, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Equivalence of Robust
Delay Fault and Single Stuck Fault Test Generation. In Proc. IEEE-ACM Design

Automation Conference, 1992.

[31] J. Savir and W. H. McAnney. Random Pattern Testability of Delay Faults. In Proc.
IEEE Int. Test Conf, pages 263-273, 1986.

[32] J. Savir and S. Patil. Broad-Side Delay Test. IEEE Trans, on CAD, 13(8):1057-1064,
Aug. 1994.

24

[33] M. H. Schulz, E. Trischler, and T. M. Sarfert. SOCRATES: A Highly Efficient Auto
matic Test Pattern Generation System. In Proc. IEEEInt. Test Conf, pages 1016-1026,
1987.

[34] F. F. Sellers, Jr., M. Y. Hsiao, and L. W. Bearnson. Analyzing Errors with the Boolean
Difference. IEEE Trans, on Computers, C-17(7):676-683, July 1968.

[35] S. Srinivasan, G. Swaminathan, J. H. Aylor, and M. R. Mercer. Combinational Circuit
ATPG Using Binary Decision Diagram. In IEEE VLSI Test Symposium, pages 251-258,
1993.

[36] T. Stanion and D. Bhattacharya. TSUNAMI: A Path Oriented Scheme for Algebraic
Test Generation. In Proc. IEEE Int. Conf on Fault-Tolerant Computing, pages 36-43,
1991.

[37] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Combinational Test
Generation using Satisfiability. Technical Report UCB/ERL M92/112, Univ. of Cali
fornia, Berkeley, 1992.

25

