High Performance Parallel Logic
Programming on Distributed
Shared Memory Multiprocessors

Hiecheol Kim

CENG 96-19

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213) 740-4484

September 1996

HIGH PERFORMANCE PARALLEL LOGIC PROGRAMMING
ON DISTRIBUTED SHARED MEMORY MULTIPROCESSORS

by

Hiecheol Kim

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
Ia Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(Computer Engineering)

AUGUST 1996

Copyright 1996 Hiecheol Kim

UNIVERSITY OF SOUTHERN CALIFORNIA
THE GRADUATE SCHOOL
UNIVERSITY PARK
LOS ANGELES, CALIFORNIA 90007

This dissertation, written by

...

under the direction of h.i5...... Dissertation
Committee, and approved by all its members,
has been presented to and accepted by The
Graduate School, in partial fulfillment of re-
quirements for the degree of

DOCTOR OF PHILOSOPHY

Dean of Gradugte Studies

Date-......ém;..:%:z.....ij.i.é;..

DISSERTATION CCMMITTEE
< = —
]

...

-

Dedication

To my parents Won-suk Kim and Sun-won Lee.

Acknowledgements

I am deeply grateful to my advisor, professor Jean-Luc Gaudiot, for his guidance,
support, and encouragement throughout my graduate studies at University of
Southern California. His thorough scientific approach and unending quest for
excellence have been inspirational during the years of my thesis research.

[would like to thank professor Alvin Despain and professor Doug lerardi for
serving on my dissertation committee. I sincerely appreciate the time and guid-
ance they provided in the completion of my dissertation. I would also like to thank
professor Ellis Horowitz, Michel Dubois, and professor Massoud Pedram for their
valuable comments and discussions.

Many thanks are due to my colleagues in the USC PDPC (parallel distributed
processing center). Dr. Namhoon Yoo, Dr. Dae-kyun Yoon, Wenyen Lin, Eric
Tsen, Chung-ta Chung, and Chulho Shin have closely worked with many insightful
discussions and comments. Also, my former colleagues , Professor Chin-hyun Kim
and Professor Andrew Shon encourage me a lot when I began my dissertation.
Also, I really appreciate Neung-soo Park, You-Pyo Hong, and Yung-ho Choi for
their help. Special thanks goes to Mary Zittercob, Rohini Montenegro, and Joanna
Wingert for their assistance.

Several organizations and individuals made this dissertation possible with
many insightful discussions and equipment support. Dr. Cristine Montgomery
and Robert E. Stumberger of Language Systems Inc., and Dr. Raymond Liuzzi
in Rome Laboratory closely collaborated with me during the whole period of this
thesis. Also, I would like to acknowledge the support by the Air force Systems
Command, Rome Laboratory/C3CA, Griffiss Air force Base, NY, under Contract
No. F30602-91-C-0130. Fujitsu Laboratories, Ltd. in Japan permits me to use

the AP1000 parallel machine for my experimentation.

111

Many thanks are due to my friends Kangwoo Lee, Edward Kim in TRW,
Suk-hee Kim, Junho Ha, Donghyun Heo, Jong-Bum Lee and numerous others
including Dr. Sung-bok Kim, and Dr. Sungwook Kim for their [riendship and
sharing their valuable time in many occasions. I would also like to express special
thank to professor Yong-Doo Lee at Taegu university and professor Sin-Duck Kim
in Yousei university for their encouragement and support.

I sincerely thank my parent for his care and love. I also thank many saints
in Cana Presbyterian church, particularly Reverend Sim, Puyng-hwa Kim’s, and
Sin-mo Lee’s family for their fellowship in Christ. Most of all, I really thank God

who has always been with me, showing His unfailing love.

Contents

Dedication
Acknowledgements
List Of Tables

List Of Figures

Abstract

1 Introduction
1.1 Motivation e e
L T
1.3 Contribution
1.4 Overviewof the Thesis

2 Background

2.1 Logic Programming . . v« ¢ s« o v - 4w ov s e w55 s s s wis s s
2.1.1 Concurrent logic programming
2.1.2 Constraint logic programming
2L3 Prolof o oo v o s 5 55 98 55 5.5 55 6 50 mw s s mm o s

2.2 Parallel Execution Models
2.2.1 Classification based on the parallelism
2.2.2 Classification based on the inference method
2.2.3 Classification based on the architectural platform

3 Analysis of Static Binding Environments

3.1 Introduction
3.2 Terminology i e
3.2.1 Search tree representation
322 Termimology . . = o o < v wn v v s o s wm v % W e w o s
3.3 Analysis Framework

i1
111
ix
xi

xXiv

-] =t =t

b=t]

13
13
15
16
19
20
23
27

29
29
31
32
33
35

3.3.] Performance eRleria = . ¢ s =% v 6 a5 5 8 5 5 ¥ 4 @ 8 9 & B
3.3.2 Attributes of conditional objects
3.3.3 Design space of the binding environment
3.3.4 The properties of conditional contexts
3.4 AnalysisResults.
3.4.1 Generic properties oL
3.4.2 Performance criteria
3.5 Application of Analysis Results
3.6 Synthesis.

Analysis of Dynamic Binding Environments

4.1 Infreduction .. . « vu ¢ v v v s w @ v s we v e e s e w s a e

4.2 Formal description of task switching.

4.3 Deinstallation-Free Task Switching
431 Defimifions : v o o o wim v v v w55 05 55 588 B @ g8 8
4.3.2 Chronological partial order ER
4.3.3 Description of canonical binding environment By
4.3.4 The modified thread table

4.3.5 M-level triangular scheduling
4.4 Installation-Free Task Switching
4.4.1 Description of canonical binding environment By
4.4.2 Algorithm to update the CANT
44.3 Incrementalschedule
4.5 Constant Time Task Switching
4.6 Synthesis.
The Parallel Execution Model
5.1 Introduction
5.2 The Tagged Binding Environment
521 Melivelion: . o v v s vsw 0 s s 5 908 8 5@ s 8 v s s
52.2 Review of the Binding Array . .« . . o« v o v v v v v w v s
5.2.3 Tagged Binding Array (TBA)

5.3 The Least Common Ancestor (LCA) based Scheduling Support
5.3.1 An analytic model of the tree-based scheduling.
5.3.2 Common ancestor based approach

L 01 = -

TCWAM: Translation-based Sequential Prolog Engine

6.1 Introduction
6.2 Issues in the Translation of Logic Programs
6.3 Previous Approaches

6.3.1 KLI

62
62
63
65
65
66
67
69
73
76
76
77
78
80
82

83
83
87
87
89
91
100
100
103
108

109
109
111
114
114

Vi

B.3.2 1C o e e e e e 115

6.3.3 Erlang 117
6.3 WAMOCC it i it e et et o e e e e e e s 119
6.4 Thread C-code WAM (TCWAM) 121
6.5 Qualitative Comparison oo 123
6.6 Performance Evaluation 126
6.7 Synthesis. . . v o v oo v v 0 s n mr e s § s HE T 8T 132
Flat indexing: an Indexing Technique for OR-parallel Logic Pro-
gramming 133
7.1 Introduction e 133
7.2 Review of the WAM indexing 135
7.3 Analysis of the WAM Indexing Scheme 141
T4 FlabIndexing < . . vv o 5 6 v v o v s v 55 wumes wweswaaoa 145
7.4.1 Description of the flat indexing 145
7.4.2 Analysis of the flat indexing “: s a 14T
175 Buvaluation Resulfs -n -« v 92 s 8 s s 26 @ o s waaumeass 150
B0 Oyitlesis. « w5 v« 5% v 2 5 OE ¢ 6 B F S E W T 8w S EE 5B 155
Implementation and Performance Evaluation 156
Bil IItroduetion .o o« v § 55 % f 8 5 29 € 5 % 5.5 88 W e L E W ¥ W 156
8.2 Overview of the Implementation 157
8.2.1 Exemplar SPPIXA-0016 157
8.2.2 Prototypical implementation 160
8.2.3 Scheduler 165
8.2.4 Runtime scheduler: Top-most Scheduling 169
8.3 Performance Evaluation 175
8.3.1 Description of benchmarks 175
8.3.2 The performance comparison of schedule A, B,ard C . . . 176
8.3.3 Analysis of performance of benchmarkset I 193
8.3.4 Analysis of performance of benchmarksset II 201
84 Bynthesiz, . . o o« v s c v v v mmos me v mw s s wmw s 206
Conclusions and future research issues 208
91 Conclusions: « « s s w5 85 5o 6 55 o 5§ 98 5 8 5466 9555 a 208
9.2 Future ResearchIssues 209
9.2.1 What needs to beachieved 209
9.2.2 Integration of independent AND parallelism 210
9.2.3 Advanced scheduling scheme 211
9.2.4 Performancemodel 212

Vil

Appendix A
Performance Dabta . . o . 5 5 66 5 ¢ 8 o 6 % et 5 8 w00 5 4 @ ow 5 5w o s 213

Bibliography 216

viii

List Of Tables

3.1

3.3

3.4
6.1

6.2

6.3
6.4

6.5
6.6
6.7
6.8

The classes of OR-parallel systems with static binding environ-
ments: “No” indicates the class number and “Ow”, “As”, “In”,

and “Ca” stand for attributes Owner, Association, Instantiation,

and Capacity, respectively. 44
Attributes and the properties: PRT, IN, DL, DA, PS, and PRS
stand for respectively protectedness, inheritedness, deterministic-
locatedness, deterministic-access, physical-sharedness, and preserved-
THBBE: « wom 5 & ww w3 m wE R e B K w @ e mm mie w s W o e w6 e e 54
The conditions for the constant operation: cths, cts, ctec, and

cva represent respectively constant time thread switching, constant

time task switching, constant time task creation, and constant time
variable access. L. Lo 57
Attributes and the performance criteria 58

The produced C-code for addressables. As noted earlier, a code
block refers to part of code inside a function. In case of the TCWAM,
the structure of the produced assembly code is explained as well. 125
Control mechanism: A computed label refers to a constant used as
a key for selecting the label, a recoded label refers to the content
of the global table, and an inlined label refers to a label created
through the assembly inlining. 125
Comparison of translation methods
Evaluation results of the TCWAM: assembly, object and executable
code are in Kbytes, compiler time is in seconds, and execution time

ismmilliseconds: « v 55 5 sc 5 s 0w 5 5 8w Fd S s e 127
Comparison: TCWAM versus WAMCC (WAMCC/TCWAM) .. 128
Comparison: TCWAM versus TCWAM-NCR. 129

Improvement rate of the execution speed for the generated code (a) 130
Improvement rate of the execution speed for the generated code
(b): the values of Sictus 2.1 and Aquarius are the improvement
over the TCWAM, which are indicated by stars. 131

1x

7.1 The maximum and minimum cases of the indexing tree, where p is
Oif m= 1;o0therwise, pis L. . . -« o v v i v v s cim s s om0 s 144
7.2 Parameters evaluated for the example predicate 145
7.3 The example: the maximum and minimum size 145
7.4 The analysis result: v» is the number of clauses whose key is a
variable and b, (resp. 0.) is the bucket whose clause size is the
largest among the buckets with a constant (resp. a structure). . . 149
7.5 The maximum and minimum size for match/2 under the flat index-
ing, where the numbers enclosed in parentheses are for the WAM

dexing SENEME. ¢ « & s 5 ¢ 39 5 55 B a s G a8 5 m 53 An g0 150
7.6 Comparison of the indexing treesize 152
7.7 The code size and execution time measured by the TCWAM (under
the flat indexing) 153
7.8 Comparison: each entry is the rate of the TCWAM-NFT over the
TCWAM (i.e., TCWAM-NFI/TCWAM) 154
8.1 WAM instructions used for the first appearance of variables . .. 163
8.2 Speedup of benchmark set I: Schedule A 178
8.3 Speedup of benchmark set I: ScheduleB 178
8.4 Speedup of benchmark set I: ScheduleC 179
8.5 Prolog rate versus task switching rate (%) of benchmark set I:
SehedilE & v b e e n s B e E S S F MR ES B F S WY F A 182
8.6 Prolog rate versus task switching rate (%) of benchmark set I:
Schedule B. e 183
8.7 Prolog rate versus task switching rate (%) of benchmark set I:
Schedule C. 184
8.8 Number of task switching and task granularity of benchmark set I:
Schedule A e e 189
8.9 Number of task switching and task granularity of benchmark set I:
Schedule B. e 190
8.10 Number of task switching and task granularity of benchmark set I:
Bchiatile © . w o 5 0 w0 s 0 o 5 58 B v e @ £ e m v w4 e 191
8.11 Speedup: berichmarkset IT. . : « « v v v v v s v v v vw v i w 205
8.12 Total number of nodes and speculative rate (%) 206
A.1 Execution time: Schedule A 213
A.2 Execution time: Schedule B 214
A.3 Bxecition time: Schedule © . . . v v v oo v v v v s u v v v w 215

List

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3

Of Figures

The execution tree of an example
Types of Parallelism

Designs resulting from different values of attribute “owner”
A pictorial representation of four designs of binding environments
with respect to attributes instantiation and capacity when at-
tribute finiteis 1.o R

An example of the chrononical partial order relation

The histogram of thread spans and its thread table
Three patterns of the thread span histogram
A thread span histogram with multi-triangle levels.
Algorithm to update the modified thread table
An example triangular schedule, 00
An example of the common ancestor node table
An example search tree for the incremental schedule and base pat-
GBEIE & v oo w2 @ o 2 r o mim om s muum o mom s e b ol w8 e s 3 Mo § A

Dereference algorithm in the Binding Array
Task switching and environment preparation
Data representation imnthe TBA ¢ . . o v v v ve v s an o s
A example VDAL .+ & w5 s 5 9w 5 8 G s @G 5 s B E § s @ b s
Thread spanstack < : 5 . ¢ 5 wo s o s o5 aw o5 58 55 a8 5 3
Dereference algorithm in the Tagged Binding Array
An example dereference L ...
The naive search tree and its corresponding common ancestor tree
The implementation of the common ancestor tree
Representation of workers’ relative positions under the common
BRELSHOT BB » « & o o w Wi v 5 s i e e S e s W s ww § e w8

A patch of Prolog predicate and its WAM code
Translated code in the KL1 system
Translated code in the jesystem

44

67
68
70
72
73
75
7

79

90
92
94
95
96
98
99
105
106

xi

6.4
6.5
6.6

6.7

7.1
7.2
7.3
7.4
7.5
7.6
(i

8.1
8.2
8.3
8.4
8.5

8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

8.16
8.17

8.18
8.19
8.20
8.21
8.22
8.23
8.24

Translated code in the Erlang system 118

Translated code in the WAMCC system 120
Prologue and epilogue code generated by gec 2.6.3 on a HP’s SPP

TAXCO01E - &« o v 2o vm vss wm wn wm v 0w o s s s s ww ks 122
Assembly code generated by gee 2.6.3 on a HP’s SPP IAX-0016 . 124
Clauses making up predicate “match/2” 136
Patitions and its structure in the generated code 137
A structure of the code for a partition which has k clauses 139
A code for partition Ps of “match/2” 140
Choice points and parallelism 141
A structure of the generated code 147
An structure of the produced code for “match/2” 148
Conceptual overview of the Exemplar system 158
Exemplar hypernode architecture 159
Exemplar SCI ring interconnect 160
The overview of the prototype implementation 161
An example clause and its compilation: the clause is from bench-

7

mark “browse.pl”. Variables ‘X’ and ‘Out’ belong to section (c)

and ‘Randl’, ‘Inl’, and ‘Lin’ belong to section (d). 166
Choice points and alternative pointers 167
The procedure of a task search 171
The finding public task from other workers 172
Exemplar hypernode architecture 173
The algorithm of “cut™ o L. 174
Average speedup of benchmark set I: schedule A, B,and C 179
Average prolog rate of benchmark set I: schedule A, B, and C . . 183
Average task switching rate of benchmark set I: schedule A, B, and C185
Average idle rate of benchmark set I: schedule A, B,and C 186
Average efficiency of computation of benchmark set I: schedule A,

B:iCG socisisasipmisimdis o 58 05 @ 5 & @ 5 188
Average granularity of benchmark set I: schedule A, B,and C .. 189
Speedup curves of benchmark set I: schedule A, B, C, Muse and

Aurora. L. e e e e 193
Search tree and its signature oL oL L. 194
Signatures of benchmarkset I'(a) 196
Signatures of benchmarkset I(b) 197
Speedup of benchmark set I: Schedule A 198
Granularity of benchmark set I: Schedule A 199
Prolog execution rate (%) of benchmark set I: Schedule A 200
Task switching rate (%) of benchimark set I: Schedule A 201

X1l

Idle rate (%) of benchmark set I: Schedule A
The speedup of benchmarkset II
The graph of speculativerates

xiii

Abstract

Logic programming has drawn growing attention as an important programming
paradigm due to its high programmability and implicit parallelism. Can logic
programs achieve high performance on general purpose large-scale parallel archi-
tectures? The answer consists in how to efficiently exploit parallelism in logic
programs subject to the architectural features of such systems.

Parallel execution models for logic programs developed so far suffer from the
lack of flexibility with regard to the optimizations which are essential in the stage
of task scheduling. In other words, some execution models put some restriction
on the types of scheduling algorithms which can be implemented in their runtime
scheduler. Besides, some parallel execution models are not efficient with regard
to such optimizations. In other words, even if a wide range of optimizations can
be implemented in the runtime scheduler, the lack of efficiency prevents us from
obtaining expected performance gain from such optimizations. Therefore, when
pursuing performance logic programming on large scale multiprocessors, we ought
to clearly address the issues of flexibility and efficiency in the design of the parallel
execution model.

In this dissertation, a new parallel execution model for logic programs and
its performance are presented. Qur execution model is designed particularly with
focus on high flexibility and efficiency of optimizations with regard to architectural
- features and scheduling algorithms. It is based on the findings obtained from an
analysis of ideal OR-parallel systems. Theoretically, an OR-parallel system is
considered ideal if it satisfies the constant time condition for all the following
three performance criteria: variable access, task creation, and task switching. It
has been known that the exploitation of OR-parallelism is fundamentally limited
because no ideal OR-parallel systems exist in the entire design space. In our

analysis, we, however, proved that ideal OR-parallel logic programming systems

X1v

exist in the theoretic design space. The result also reveals that an ideal OR-
parallel system is possible only when some semantic information is used in the
representation and management of conditional variables.

Our execution model utilizes two kinds of semantic information: (1) the in-
ference depth and (2) the least common ancestor relation between nodes in the
runtime search tree. The inference depth of a node refers to the number of choice
points allocated prior to the execution of the node. The utilization of such se-
mantic information enables the execution model to perform the scheduling with
respect to a common ancestor tree rather than an ordinary search tree. A com-
mon ancestor tree is a representation of a runtime program execution based on
the common ancestor node relation. It is quite simpler than the ordinary search
tree, consisting only of the least common ancestor nodes between those nodes on
which processors are standing. As a result, the scheduler can carry out various
scheduling activities with utmost efficiency.

Based on our execution model, we designed a parallel abstract machine for Pro-
log and subsequently implemented the abstract machine and its runtime system
in a HP’s SPP TAX-0016 distributed shared memory multiprocessor. The im-
plementation also incudes a front-end compiler, that produces abstract machine
code from a Prolog program, and a translator which generates from the abstract
machine code a parallel-C code executable on a SPP-IAX system. Moreover, to
show that a wide range of scheduling algorithms can be efficiently supported in
our execution model, we implemented both a top-most scheduling and a bottom-
most scheduling in the runtime scheduler. Furthermore, to show the efficiency
of optimizations tailored particularly toward architectural specifications, we im-
plemented an architectural optimization to reduce the amount of remote memory
accesses within a top-most tree-based scheduling strategy. The performance result
“and its analysis show that our execution model is highly flexible as well as efficient
for both algorithmic and architectural optimizations which are carried out by run-
time schedulers. Furthermore, the results clearly validate the hypothesis that the
architectural and algorithmic optimizations are crucial for expected performance

on large-scale parallel machines.

Xv

Chapter 1

Introduction

This chapter presents the motivation, goals, and the contributions of the disser-

tation.

1.1 Motivation

Logic programming has many advantages as a parallel programming paradigm
since it is very easy to program and retains high expressive power due to its declar-
ative semantics. Indeed, Prolog, the most popular logic programming language,
is accepted as one of the most important and widely used computer programming
languages and we have seen increasing use of Prolog for a wide range of appli-
cations in symbolic computing, particularly in natural language and knowledge-
based processing. As logic programs become more realistic and they frequently
require large amount of computation, parallel logic programming has been recog-
nized as a promising way to improve the performance of logic programs. Indeed,
many researchers have pursued the goal of designing efficient techniques for par-
allel logic programming systems.

Recently, we have seen a great opportunity for high performance parallel logic
programming. On the parallelism side, logic programs present many types of
parallelism, e.g., OR-, dependent AND-, independent AND-, stream AND-, and
unification-parallelism [10]. On the architecture side, a number of large-scale par-

allel architectures become realistic for the users. Indeed, some distributed memory

architectures are commercially available in which the number of processing ele-
ments (PEs) is over an order of hundreds. Researches to solve some fundamental
problems, that limit the number of PEs in a shared memory system, have also
yielded promising result {or scalable shared-memory systems. Also, as worksta-
tions have spread very rapidly and the trend is predicted to continue, clusters of
workstations also become a promising scalable parallel platform.

However, to get the expected speedup of logic programs on large-scale parallel
architectures is very hard. It is because the internal inference mechanism of logic
languages and their execution behaviors are quite different from the conventional

languages, as explained below:

e The internal inference mechanism of logic languages, more precisely the
principle of SLD refutation [61], requires the maintenance and traversal of
a search tree at runtime. The dynamic nature of the search tree makes
program partitioning and allocation very hard and demands highly efficient
runtime schedulers.

o The sequential nature of logic languages complicates their parallel execution.
For example, the selection rule, e.g., selection from left to right in PROLOG,
entails stricter control of parallelism.

o Logic programs, executed in parallel, show speculative behaviors for some
types of parallelism. The size of the search space depends on the parallel
search strategy used, which, in turn, influences the total execution time.
Search strategies efficient enough in the presence of such speculative aspects

are crucial for the minimization of the search space.

In spite of such difficulties, a number of parallel ezecution models (PEMs) have
been explored for logic languages. Such models are mostly geared toward uniform
memory access (UMA) small-scale shared memory multiprocessors. Among them,
the PPED [17], the Muse [5], the PEPSys [54], and the Aurora [15] have been quite
successful; they maintain high single thread performance, exploit a wide range of
parallelism of different kinds, and achieve reasonable speedup. However, within
a large-scale parallel environment, these execution models may not achieve the

same success due to the following reasons:

bo

e In most execution models, scheduling cost is very high. The real world
applications tend to exhibit search trees in quite irregular shapes and the
amount of scheduling activities grows rapidly as the size of system becomes
larger. In such situations, high scheduling cost becomes a barrier against
high performance.

o In some execution models [5], runtime scheduling strategies are tightly cou-
pled with the execution models such that only some specific types of schedul-
ing strategies are allowed. In other words, the algorithmic optimizations
which can be implemented in runtime scheduling are limited. For exam-
ple, in the Muse [5], the implementation of top-most scheduling strategies is
not practically possible. However, in large scale parallel logic programming
system, scheduling heuristics which employ several different scheduling al-
gorithms are advantageous. In such systems, a scheduler can accomplish
high performance by choosing an appropriate scheduling algorithm. For ex-
ample, when a system becomes abundant with fine grain tasks, a top-most
scheduling is rather advantageous than a bottom-most scheduling. On the
other hand, for logic programs retaining large amount of speculative work,
a bottom-most scheduling is more advantageous than a top-most one.

e Some models are limited in architectural optimizations such as the mini-
mization of the total amount of the remote memory accesses. It is because
such models fail to provide efficient support for these optimizations and thus

suffer from unacceptable overhead in the course of the optimizations.

As another line of research to achieve scalable parallel implementations of
logic languages, several models have been developed toward distributed memory
multiprocessors: the OM [51], the ROMP [52], the 3DPAM model [49]. The
ROMP model is practically implemented on a number of distributed memory
multiprocessors and shows very promising results [52]. However, these models have
some critical limitation in the realization of the expected scale-up in performance

due to the following reasons:

o The single thread performance is very low because the binding environments
designed for distributed memories incur intolerable overhead from side ef-

fects such as structure copying and closing operations [24].

e Distributed implementations rely on process based execution methods (ex-
ecution based on procedural interpretation) rather than thread based par-
allel execution methods (execution by multiple sequential engines). In such
implementations, the grain size cannot be flexibly controlled due to the exe-
cution behavior resulting {rom procedural interpretation, which, we believe,
will cause severe limitations to the design of an efficient scheduler.

e Compared with OR-parallelism, the exploitation of AND-parallelism is ex-
tremely inefficient. It is because AND-parallelism is antithetic to OR-
parallelism in that the environments referred to and created by AND-parallel

tasks are not independent.

From the above observation, we believe that distributed memory multiprocessors
with a non-single address space are effective merely for a small subset of logic
programs that show shallow and regular search trees as well as retain very large
amount OR-parallelism. In consequence, they would not be a prime choice as a
platform for large-scale parallel logic programming.

Accessed crudely, the previous parallel models have no restrictions but did not
clearly address the efficiency issues pertaining to their implementation on large-
scale multiprocessors, as summarized below: (1) As the size of system becomes
larger, the scheduling cost becomes higher and thus the expected speedup becomes
harder to obtain. (2) The study based on the implementation on true large-scale
multiprocessors is not available yet, even though the verification of performance
through practical implementation is essential. In these respects, many challenges
still exist for making parallel logic programming on large-scale parallel machines

realistic.

The rationale of the dissertation

When pursuing a large-scale parallel logic programming system, we ought to con-
sider a number of points. Especially, the following two points are noteworthy.
(1) Large-scale parallel machines present several architectural characteristics that
are not exhibited in small-scale parallel machines. As an example, the latency of
memory accesses becomes larger as more processors are added to the system. (2)

Logic programs, executed on large-scale parallel machines, present a number of

4

execution behaviors which are not shown on small-scale machines. For example,
scheduling activities such as task switching increase rapidly as the size of sys-
tem becomes larger [41]. These points lead us to make the following assertions.
To get any useful large-scale parallel implementation of logic programming, our
prime concern must consist in how to efliciently integrate the new architectural
characteristics of large-scale parallel machines with parallel logic programming
techniques. Moreover, our attention must be on the alert for how to efficiently
manage the behaviors of logic programs which appear newly on large-scale multi-
processors such as the rapid increase of scheduling activities.

To accomplish the eflicient integration of architectural features, a set of opti-
mizations , (which we will call architectural optimizations since they concern with
the architectural specifications), are mandatory. As pointed out earlier, in large-
scale multiprocessors, the latency of memory accesses usually changes depending
on the physical distance between processors. Indeed, for these systems, the ar-
chitectural optimization which will reduce the total amount of remote accesses is
crucial for the expected system performance. On the implementation side, these
architectural optimizations are mostly within the scope of runtime scheduling.
For example, to reduce the total amount of remote access, the task selection must
be carefully made by the runtime scheduler. In this sense, the scheduler must be
capable of implementing such optimizations.

To achieve the efficient management of program behaviors, a set of optimiza-
tions, (which we will call algorithmic optimizatlions since they are closely related
scheduling algorithms), are essential. For example, depending on the nature of
applications in terms of the amount of parallelism and speculative works, some
specific scheduling algorithm would be suitable for higher performance over the
others. Algorithmic optimization to choose the best one is essential for hinger per-

formance. Viewed from the perspective of the implementation, these algorithmic
optimizations are inherently the subject of runtime scheduling. In this respect,

the scheduler must be capable of implementing such optimizations as well.

Given a parallel execution model for a logic language, scheduling parallel tasks
relies heavily on a number of operational aspects presented by the parallel exe-
cution model. Only when the implementation issues of task scheduling are effi-
ciently addressed by the execution model, the task scheduler can contribute to
higher system performance by achieving efficient implementation of them. In this
sense, parallel execution models for large-scale parallel machines must be highly
flexible and efficient with respect to both architectural and algorithmic optimiza-
tions. Here, for an execution model to be flexible to an optimization means that
the execution model does not restrict the implementation of the optimization by
the runtime scheduler. Also, to be efficient to an optimization means that the ex-
ecution model provides enough parallel support such that the system can benefit
from the implementation of the optimization. .

In the exploration of our parallel execution model, we will primarily consider
OR-parallelism. OR-parallelism in logic programs has been one of the most im-
portant source of parallelism in the design of parallel logic programming systems
due to its relatively large granularity and simplicity of management. On large-
scale parallel machines, a parallel logic programming system needs to exploit a
combination of OR- and AND-parallelism to get sufficient amount of parallelism.
In such a system, the efficiency in exploiting AND-parallelism would be quite
tightly related to the way that OR-parallelism is managed. The reason is that
the binding environment employed in support of OR-parallelism usually affects
directly or sometimes indirectly the way that AND-parallelism will be managed.
This dissertation considers primarily OR-parallelism due to the limitation of avail-
able resources in terms of implementation efforts, while AND-parallelism will be
left as a future research. However, we believe that more robust OR-parallel logic
systems lead us to envision more efficient AND/OR parallel logic programming
implementations.

As an architectural platform for large-scale parallel logic programming, those
with a single address space are more viable than multiple address spaces, as dis-
cussed in the previous section. In this dissertation, distributed shared memory

multiprocessors have thus been chosen as the target experimental platform. The

main reason for this choice is that such architectures are readily available and ex-
hibit most inherent features of large-scale parallel machines such as the longer la-
tency of remote memory accesses. Besides, the stable programming environments

provided by those systems help us to build a robust experimental prototype.

1.2 Goals

In the previous section, we see that in order to fully materialize the expected
scale-up in performance on large-scale parallel architectures, much effort is still
needed both at the high level (model of execution, scheduling, etc.) and at the
low level (binding environment, etc.). The primary goal of this dissertation is
thus to explore a parallel execution model which is highly flexible and efficient
with respect to architectural and algorithmic optimizations, while ensuring the

following two points:
1. high single thread performance, and

2. low scheduling cost to adapt highly irregular shapes of the search tree on

real world application programs.

Besides, this dissertation will address the performance issues based on the

practical implementation of the proposed execution model.

1.3 Contribution

The research performed in this dissertation is briefly summarized as follows. To
begin with, a comprehensive analysis of OR-parallel systems has been conducted
within the context of large-scale parallel logic programming. As a main result of
the analysis, it has been proved that ideal OR-parallel logic programming imple-
mentations are theoretically possible in systems with finite numbers of processors.
The analysis has shown that an ideal OR-parallel system is possible only when
some semantic information is used in the representation and management of con-
ditional variables as well as in runtime scheduling. Based on the result, a parallel

execution model has been designed and its performance has been evaluated.

This dissertation contributes to identifying the complexity, exploring a method-
ology, and evaluating the performance of a parallel logic programming system on
large-scale parallel architectures, particularly on distributed shared memory mul-
tiprocessors. It also contributes to addressing various issues in relevant research
disciplines which include compiler construction, parallel execution models, and

runtime scheduling. These contributions are illustrated as follows.

Analysis of the ideal OR-parallel system

In the analysis, we provide a definition that allows us to classify the binding en-
vironments into two groups: static and dynamic binding environments. For each
class, we have developed an analytic framework that helps us analyze the perfor-
mance of OR-parallel systems. The framework consists of a set of definitions for
attributes which illustrate the organization of a binding environment. It also has
definitions for generic properties which illustrate the operational characteristics
of a binding environment. Given the attributes, each combination corresponds to
one design of a binding environment; all the set of the combinations represent the
entire design space of binding environments. Based on the framework, a compre-
hensive analysis has been carried out respectively of static and of dynamic binding
environments.

The analysis of static binding environments consists of the following two steps.
First, for each generic property, we have derived all the conditions, which guar-
antee the property. Each condition is represented by some combinations of par-
ticular attributes. Second, we have derived the constant time conditions for each
performance criterion, in which each condition is represented by a set of com-
binations of generic properties. The above two steps allow us to represent the
- constant time conditions for each performance criterion by some combinations of
attributes. From these steps, it is possible to identify the performance criteria for
each binding environment in the entire design space. The analysis results show
that no design of static binding environments exist which guarantees an ideal OR-
parallel system. Moreover, we have identified the constant time characteristics of
the performance criteria for some existing binding environments by applying the

analysis result.

The analysis of dynamic binding environments is performed differently from
that of the static binding environments. In the analysis, specific to each per-
formance criterion, the sources which result in the non-constant time operations
have been identified. By using some semantic information such as inference depth
we have explored some alternative implementations which avoid the non-constant
time operations. As the result, it have been proved that there exist ideal OR-
parallel systems under dynamic binding environments. It should be noted that
ideal OR-parallel systems found in the analysis are not necessarily more efficient
when they are practically implemented, than OR-parallel systems which fail to
satisfy constant time conditions [or some performance criterion. However, be-
cause an ideal OR-parallel system satisfies the constant time conditions for all the
three performance criteria, it will provide an invaluable theoretic foundation for

the design of efficient OR-parallel systems.

TCWAM: a translation based sequential Prolog implementation

The TCWAM (Thread-C code WAM) system is a Prolog compiler that translates a
Prolog program into a C language program. It uses the Warren Abstract Machine
(WAM) [78] as the intermediate representation for program compilation. The
primary motivation of the TCWAM is to provide an experimental prototype which
will be used as the sequential engine in our parallel logic programming system.
The TCWAM supports the standard Prolog syntax and libraries, and also supports
modules which allow modular program development.

The main feature of the system is that the execution speed is very high. It
is because the TCWAM is based on the translated execution of Prolog programs
instead of emulation. Compared with the other translation based approaches, it
- provides higher performance in terms of execution speed, generated code size and
compilation speed of the generated C code. Compared with the WAMCC [29],
which has been the fastest translation based Prolog system, the TCWAM is about

30 percents faster and the generated code is about 40 percent smaller.

Development of Flat indexing technique: an indexing technique for

OR-parallel logic programming

To find an optimal indexing is quite complex and also demands a large number of
abstract machine instructions for its implementation. In the indexing scheme of
the WAM, the first argument of a clause is used as a key. Viewed from the trade-
off between the efliciency and simplicity, the usage of the first argument as a key
for indexing is a quite reasonable choice. However, as for OR-parallel execution,
the indexing scheme of the WAM is ineflicient in terms of parallelism. The main
reason is that an invocation of some goal results in the creation of more than one
choice points. In this research, we have investigated the problem in detail and have
designed a new indexing scheme, which we will call flat indezing. Under the flat
indexing scheme, the maximum number of choice points created for an‘invocation
of a goal is always one. This makes it possible to expose parallelism earlier than
the indexing scheme of the WAM. As a result, the degree of parallelism of each
node becomes higher. The evaluation results show that one half of benchmarks
benefit from the flat indexing and the total number of choice points created for a
Prolog program is reduced by about 15 percents. As a side effect, the execution

speed of the TCWAM improves by about 22 percents.

Design of a parallel execution model

In this research, we have designed a parallel execution model of Prolog, particu-
larly suitable for large-scale parallel logic programming. In the execution model,
inference depth is used for the representation of bindings made for conditional
variables. Based on the representation, a new binding environment, which we will
call Tagged Binding Environment (TBA), has been developed. The TBA is aimed
at minimizing the overhead of task switching, while the cost of variable accesses is
kept low. It can thus be efliciently adapted to the situation in which the amount of
scheduling is very large. In the execution model, the search tree is represented in
a simple form, which we will call a common ancestor iree. The new representation
provides an opportunity of high efficiency for activities made by a runtime sched-

uler. The execution model provides a parallel support which enables a runtime

10

scheduler to manage parallelism efliciently with respect to the common ancestor
tree. The execution model helps a runtime scheduler to efficiently locate available
works in the search tree. Morcover, it allows a runtime scheduler to efficiently
identify the relative positions between processors with respect to the search tree.
This enables runtime schedulers to carry out a variety of optimizations renders

their implementations efficient.

Prototype OR-parallel implementation and performance evaluation

In order to verify the concept and performance of the proposed execution model,
we have built an experimental prototype on a HP’s SPP 1XA-0016 distributed
shared memory parallel machine. The prototype implements the execution model
designed in the previous research and employs the TCWAM as its sequential en-
gine as well as the flat indexing technique. The main components of the prototype
are a parallel version of the TCWAM compiler and a runtime scheduler which im-
plements several kinds of scheduling strategies. The prototype is so far the first
practical implementation of parallel Prolog on a distributed shared memory mul-
tiprocessor.

The performance evaluation has been conducted in an effort to identify the
performance, to verify the underlying hypothesis, and to validate the potential of
the execution model. The performance has been identified with the benchmarks
which have been widely used in other systems [7, 15] because their parallelism
and execution behaviors have been clearly understood. The underlying hypoth-
esis has been verified through the comparison and analysis of the performance
obtained respectively with three different scheduling strategies. The potential of
the execution model has been validated by comparing the performance with other

systems.

1.4 Overview of the Thesis

The rest of this thesis is organized as follows. Chapter 2 offers a review of logic
programming paradigms, Prolog, and parallel execution models of logic programs.

Chapter 3 presents out analysis result of OR-parallel logic programming systems

11

and its application to existing systems. Chapter 4 presents our analysis result
of ideal OR-parallel logic programming systems. Chapter 5 presents the parallel
execution model proposed in this dissertation for distributed shared memory mul-
tiprocessors. Chapter 6 presents the TCWAM, developed as the sequential Prolog
engine of our parallel logic programming system with focus on its new Prolog to
C translation technique and sequential performance. Chapter 7 presents our anal-
ysis of indexing schemes conducted with a view to identify the relation between
indexing schemes and OR-parallelism and illustrates our flat indexing technique
developed to enhance the exposition of OR-parallelism. Chapter 8 presents the
design, implementation, and evaluation of our OR-parallel logic programming sys-
tem of Prolog implemented on a HP’s SPP IXA-0016. Chapter 9 concludes the

dissertation and offers future research issues.

12

Chapter 2

Background

This chapter presents a review of logic programming which includes an intro-
duction to several prominent logic programming paradigms, a description of the
syntax and operational semantics of Prolog, and parallel execution models of logic

languages and their implementations.

2.1 Logic Programming

Logic programming, in general, is an attempt to implement Colmerauer and
Kowalski’s idea that logic can be used as a programming language [57]. The
key motivation for logic programming is to separate the specification of what the
program should do from how it should be done. Kowalski formulates this in an
equation: Algorithm = Logic + Control [57]. This section presents a set of promi-

nent logic programming paradigms.

2.1.1 Concurrent logic programming

- One of the major barriers to the implementation on parallel machines of logic
programming is the “binding of variables” which cause problems such as “consis-
tency” and “multiple environment handling”. In order to efficiently implement
logic languages by overcoming the barriers, concurrent logic languages nondeter-
ministically select one alternative clause and discard the others. They thus rely

on the exploitation of stream-AND parallelism.

13

Originally, concurrent logic languages resulling from the research in Relation
Languages [20]. They are featured with sharved logical variables and committed
choice nondeterminism (or don’t care nondelerminism).

In general, a concurrent logic program is a finite set of guarded Horn clauses

of the following form:
H +Giis. s il | Bricsn s Bas m > 0,n > 0.

where H and B;’s are atomic formulas defined in logic languages in general and the
predicates of G;’s are in fixed set T of guard predicates provided with concurrent
logic languages. Declaratively, the commit operator “|” is also a conjunction
operator.

Under the operational semantics, a machine state consists of a resolvent of
processes and a compiled program. The reduction process then chooses one of
these guards nondeterministically and commits to its clause. It aborts execution
of the other guards and executes the body of the selected clause. State transition
occurs upon the reduction of a process to the processes corresponding to goals in
the body of the clause which is committed among candidate clauses with successful
unification and guard evaluation. The computation is one of three states: success,
fail, and deadlock as a result of state transitions.

The semantics of the languages are somewhat concerned with implementation
details such as synchronization of shared variables (as required for stream manip-
ulation), multiple environments and a hierarchical computation structure during
execution. While concurrent logic languages in general contain many good oppor-
tunities for parallelism, the semantics of the languages depend on the operational
behavior of the programs. In spite of easy implementation and parallelism con-
trol, one major drawback of concurrent logic programming is the inability of the
completeness of search.

The example concurrent logic programming languages are Concurrent Pro-
log [72], Flat Concurrent Prolog [72], PARLOG [21], and Guarded Horn Clauses
(GHC) [75], and P-Prolog [83]. Flat Concurrent Prolog language [72] supports
the semantics of read-only annotation, i.e., any attempt to instantiate a read-

only variable with a non-variable object suspends until the writable counter-part

14

of the read-only variable is instantiated with a non-variable object, the standard
unification is extended to read-only unification where a unification that attempts
to instantiate a read-only variable suspends until the variable becomes instanti-
ated and a read-only variable points a writable variable when a read-only variable
is unified with a variable. In PARLOG, processes communicate through shared
logical variables and synchronize by suspending on unbound shared variables. It
provides a mechanism for specifying which processes may generate a binding for
a variable such that for every relation, a mode declaration must be given that
specifies which arguments are input and which are output. For reasons of sim-
plicity and ease of implementation, most of the recent efforts in concurrent logic

programming languages allow only “flat” subsets in the guards [72, 75].

2.1.2 Constraint logic programming

Constraint Logic Programming (CLP) is a merger of two declarative paradigms:
constraint solving and logic programming. Crudely stated, constraint logic pro-
gramming can be viewed as the incorporation of constraints and the constraint
“solving” method in a logic language. Work on CLP has mostly been devoted to
languages based on Horn clauses. CLP languages are featured with the domain of
constraints. In fact, Prolog can be said a CLP language where the constraints are
equations over the algebra of terms which are implicit in the use of unification.
Almost every CLP language employs Prolog-like terms along with other terms and
constraints. We briefly introduce some of the CLP languages with their domains
of constraints.
CLR(R) [47] has linear arithmetic constraints and computes over the real num-
bers. Nonlinear constraints are ignored until they become linear. CHIP [31] and
" Prolog III [22] compute over several domains: boolean, linear arithmetic and
strings; Prolog III computes over the well-known 2-valued Boolean algebra and
CHIP over a larger Boolean algebra that contains symbolic values. Both CHIP
and Prolog I1I compute and perform linear arithmetic overbounded subsets of the
integers (sometimes called “finite domain”). Prolog IIT also computes over a do-
main of strings. Several other languages, including clp(FD) [30], Flang [62], and

cc(FD) [76], also compute over finite domains in the manner of CHIP.

LOGIN [2] and LIFE [3] compute over an order-sorted domain of feature trees.
This domain provides a rather limited notion of object as in the object-oriented
ways. The term syntax supported by this languages is not first-order, although
every term can be interpreted through first-order constraints. Unlike other CLP
languages/domains, Prolog-like trees are essentially part of this domain, rather
than being built on top of the domain.

BNR-Prolog [67] computes over three domains: the 2-valued Boolean algebra,
finite domains, and arithmetic over the real numbers. Trilogy [77] computes over
strings, integers, and real numbers. CAL [1] computes over two domains: the
real numbers, and a Boolean algebra with symbolic values. Ly [63] and EIf [68]
are derived from A-Prolog [64] and compute over the values of closed and typed

lambda expressions.

2.1.3 Prolog

As the most popular logic programming language invented by Alain Colmerauer
and his associates in Marseilles ['rance around 1970, Prolog stands for PROgram-
ming in LOGic. Prolog implements a subset of the first order logic. Its theoretical
foundation came from Horn clauses and resolution, but Prolog quickly grew to in-
clude “extra-logical” features that made it a complete programming language with
more efficiency and programmability than just a pure logic theorem prover. A
Prolog program provides logical specifications of what should be done (the logic),
while it is executed through logical resolution (the control). This subsection pro-
vides an overview of the important syntax, semantics, common terminology, and
some implementation details of Prolog. A more in-depth discussion is found in
[61].

A program in Prolog, also called a definite program, is composed of a finite set
of definite clauses, or simply clauses which correspond to some form of a Horn
clause. Each clause contains a head followed by a body consisting of zero or
more positive literals (syntactically called <goal>). A goal normally consists of
a predicate symbol prefixed to argument lists surrounded by “()”. Each clause is
a logic sentence describing a single rule. That is, a head (consequence) is true if

all body goals (antecedents) can be shown to be true. As a particular instance, if

16

no goals exist in the body, the head is always true. A goal is true depending on
the operator in the goal. A positive literal is true if the predicate can be shown
to be true for some set of values bound to the variables in the atom. A negafive
literal is not true if the atom can be shown to be true; otherwise, the negative
literal is considered to be true. A predicate identified by the symbol and its arity
(the number of argument terms) is defined as the collection of all clauses with the
same predicate symbol and arity in their head. Each predicate defines a logical
relation such that a predicate is true if any clause in the predicate definition can
be shown to be true.

A variable in Prolog is logical. That is, it can refer to an (possibly unknown)
object of various types. A variable starts out uninstantiated. As more is known
about the object to which a variable refers, the variable is further instantiated.
For example, a variable X is instantiated with an object has_book(Student ,Book),
which means that a student, referred to as Student, has a book, referred to as
Book. Later, it might be determined that Student’s book is a text in the area
of computer science published in cs-publisher, thereby further instantiating the
value of X with has_book(Student, text(cs, cs-publisher)).

The instantiation of variables in Prolog is performed through unification that
is basically a form of pattern matching. The unification in Prolog finds the mgu
(the most general unifier) for given two terms, a goal and a clause head. Consider

the following two terms:

Goal: f£(X, g(Y,5), Y)
Head: (3, g(4,5), Z)

The unification of the two terms, Goal and Head, is performed by producing a

series of substitutions as below:

1 : Unify(Goal, Head) = Unify (£(X, g(¥,8),), £(3, g(4,5), Z))
=> substitution = {X/3, g(Y¥,5)/g(4,5), Y/Z}

2 : Unify(g(Y,5), g(4,5))
=> substitution = {Y/4}

After unification, Head and Goal become {(3,g(4,5),4). If a substitution cannot be
produced due to some conflict in pattern matching, the unification fails. Unifica-
tion may cause two or more variables to be bound to one another, e.g., Y and Z in
the above example. This is referred to as variable aliasing. They are implemented
with a chain of pointers such that only a single object exists as the binding for all
the aliased variables. Accesses to any of those variables thus entail traversing the
pointer chain. This is referred to as dereferencing.

Given a query, Prolog execution begins with an attempt to prove the subgoals
in the query with respect to facts and rules in the program. Proving a subgoal
is done by calling the predicate whose symbol and arity match with those of
the subgoal. To call a predicate, the goal literal is unified with the head of the
first clause, resulting in bindings of variables in the clause. If unification fails,
the clause fails, and Prolog moves on to the next clause. If all clauses fail, the
subgoal fails. On the other hand, if Prolog encounters a clause with successful
head unification, it attempts to prove the body goals of the clause, under the
variable binding done at unification. If it fails, Prolog again moves on to the next
clause, which is referred to as backtracking. The predicate call and backtracking
strategy in Prolog result in a depth-first traversal of the Prolog execution tree.

Consider the example program in Figure 2.1 (a). The query is to prove that
father-in-law(james, anna) is true, i.e., to prove that james is the father-in-
law of anna. To prove the query, Prolog first unifies the query with the head
of the clause for “father-in-law/2”. It then tries to show that the subgoals in
“father-in-law /27, “father/2”, and “husband/2" are true. Figure 2.1 (b) shows
the AND/OR tree for the program, where the numbers on the arcs indicate the
order in which Prolog will traverse the tree.

When backtracking, Prolog returns to the last point where the head unification
was successful (the most recent choice point) and resumes trying other clauses.
Indeed, in Figure 2.1, the failure of the unification at point 4 causes backtracking
to node P and fo proceed to point 5. At backtracking, Prolog should undo all
substitutions generated by the procedures associated with the goal that failed.
For this, whenever a variable is instantiated, the variable is trailed by placing

the name of the variable in an appropriate memory area. At backtracking, the

18

:- father-in-law (james, anna)
i Cqq: father-in-law (X,2) :-

father(X,Y), husband(Y,Z).

Co4: father (james, tonny).
i Gop: father (james, tomson).
{ Cg1: husband (tonny, jinny).
Cap: husband (tom, anna).

(a) An example program

OR nodo Initial goal
{or predicate P

@ AND nodo
for clause C

father-in-law(x,z) :-
father(x,y), husband (y,z)

father(james, tonny) husband(tonny jinny)
father(james,tomson) husband(tom,anna)

- father-in-law(james, anna).

(b) The Execution Tree

Figure 2.1: The execution tree of an example

instantiations of all variables trailed after the most recent choice point are erased.

In Figure 2.1, Y is trailed at point 2 so that when backtracking occurs at point

4, Y will be restored to be uninstantiated.

2.2 Parallel Execution Models

Parallel logic programming systems differ from one another. The differences range

from the types of parallelism exploited to low level implementation techniques.

The characteristics of a parallel logic programming system and the methodologies

employed in the system are collectively referred to as the parallel ezecution model.

Parallel logic programming systems are crudely featured with the types of par-

allelism to exploit, inference mechanisms, and the target architectural platform,

as explained below.

e Logic programs provide several types of parallelism derived inherently from

their language semantics. Most parallel logic programming systems exploit

only a subset of those parallelism. Bach type of parallelism raises distinct

19

issues in its exploitation. Morcover, the combined exploitation of different
types raises additional issues.

e The inference mechanism of logic languages is based on either goal stacking
or procedural interpretation. These two mechanisms are in many respects
quite different from each other.

e The implementation of logic languages on shared memory multiprocessors is
quite different from the one on distributed memory machines. This is mainly
because logic programs require the runtime traversal and management of the

search tree.

In this section, we use each of the features as a criterion to classify parallel exe-

cution models and presents a review of each class.

2.2.1 Classification based on the parallelism

Normally, a Prolog program is represented in an AND/OR tree because it has a
simple and regular syntactic structure. The AND/OR tree depicts the parallelism

which exists in Prolog programs as shown in Figure 2.2.

Rool task

Root task

Root task

And-parallal tasks

OR-parallel tasks OR-parallel tasks

(a) AND-parallel tree (b) OR-parallel tree {c) AND-OR parallel tree

Figure 2.2: Types of Parallelism

20

The types of parallelism of logic languages which are usually exploited in paral-
lel logic programming systems are OR-, independent AND-, and dependent AND-
parallelism. According to the types of the parallelism exploited, we classify parallel

execution models as follows.

OR-parallel model
Dependent AND-parallel model
Independent AND-parallel model

Combined AND/OR-Parallel model

Below, we discuss briefly each model with focus on the characteristics of the

parallelism exploited and the main issues pertaining to its implementation.

OR-Parallel Execution Model

In logic programs, the number of clauses which make up a predicate is usually
more than one. When the program execution is partitioned for each branch of
a predicate node (OR-branch), i.e., for each alternative clause, the parallelism
exploited is known as OR-parallelism. The task (OR-task) which executes one of
the OR-branches can continue with the next goal in the parent’s clause. In Figure
2.2 (b), the task completing the first clause of predicate father/2 continues with
the next goal husband (Y, Z), with Y then instantiated to value tonny. The results
are passed down the execution tree and the final solutions are available at the leaf
tasks, e.g., Ca; and Cs; in Figure 2.2 (b).

OR-parallel tasks may share a variable which appears in the head of an ancestor
node. When a binding is made to the variable by an OR-task, the bindings must
be effective only for the task. The main challenge in the exploitation of OR-

- parallelism is thus to resolve the binding conflicts in a space and time-efficient
manner. For example, the OR-tasks of the goal father(X,Y) might attempt to
bind Y at the same time. In this case, each of these OR-subtrees must maintain
a separate binding environment, as we will see further in chapter 3.

The example OR-parallel models are the Muse [7] and the Aurora [15]. These
models are featured with the multiple binding environments. The proposals of

the binding environments are the Binding Array [79], Argonne-SRI Model (81],

21

F4)

Manchester-Argonne Model [80], Hash Window Method [13], Argonne Model [14],
ECRC’s PEPSys [82], Virtual Memory Hashing Windows [33], Delphi Model
[9], Randomized Method [48], Version Vector Scheme [44], BC-Machine [4], Vir-
tual Memory Binding Arrays model [33], Kabu-Wake Model [58], Directory Tree
Method [19], Environment Closing Method [24, 53], Time-Stamping Model [74],

and Variable Importation Scheme [60].

AND-Parallel Execution Model

When program partitioning is made at a clause node and calls to the subgoals
are executed in parallel, the parallelism exploited is known as AND-parallelism.
Figure 2.2 (a) depicts a tree representation of parallel tasks partitioned accord-
ing to AND-parallelism, where tasks enclosed with a shadowed circle indicate a
spawned process. If the subgoals executed in parallel may share any variables, the
AND-parallelism is called as dependent AND-parallelism; otherwise, it is referred
to as independent AND-parallelism.

Dependent AND-parallelism: The main difficulty with dependent AND-
parallelism is the problem of inconsistent binding. It occurs when more than
one AND-subtrees being executed in parallel attempt to bind the same variable
differently with their own values, (e.g., variable Y in Figure 2.2). The key issue
is thus how to maintain consistent bindings across all dependent variables. The
most effective approach makes consumer subgoals suspend, provided the consumer
subgoals attempt to bind a dependent variable. Later, it awakes the suspended
subgoals when the dependent variable is instantiated. The relevant issues include
how to determine the producer and the consumer instances for a given dependent
variable and how to suspend and to awake the suspended subgoals. The example
dependent AND-parallel models are the Andorra Model [42], Pandora [11], and
P-Prolog [83].

Independent AND-parallelism: Independent AND-parallelism is easier to
implement than dependent AND-parallelism, because the subgoals being executed
in parallel do not share variables. A problem with independent AND-parallelism

is how to detect the dependencies among subgoals. The detection is made either

o2
(SN]

at compile time [16] or at runtime [28, 59]. The example independent AND-
paralle] models are Conery’s abstract parallel implementation [26], Restricted
AND-parallel (RAP) model [28, 65], and AND-Parallel Execution (APEX) model
[59].

As the set of subgoals associated with AND-parallelism is in a conjunctive
relation, the result of each subgoal will affect the success or failure of the clause.

Some relevant issues are as [ollows:
1. how to keep track of the success/failure of individual literals, and

2. how to determine when a clause fails as a whole.

Combined AND/OR-Parallel Execution Model

When OR-parallelism is combined with AND-parallelism, the results of the OR-
tasks may be passed back to the parent AND-task. In Figure 2.2 (c), goals
father(X,Y) and husband(Y,Z) are executed in AND-parallel. OR-tasks are
then spawned to execute the clauses of father(X,Y) in OR-parallel. The results
of these OR-tasks are passed back to the parent task. The OR-tasks do not
proceed to the next husband(Y,Z) because it is already being executed by an
AND-task.

The combined AND/OR parallel models have usually attempted to use either
independent AND- and OR-parallelism or independent AND-, dependent AND-,
and OR-parallelism. The former approach includes the Pepsys model [82], the
AO-WAM [39], the ROPM [52], the ACE [36], and the PBA models [40], while
the latter approach includes the IDIOM [36].

2.2.2 Classification based on the inference method

A search tree of a logic program best represents the amount and structure of
computation belonging to the logic program. Each node in a search tree stands
for a unit of computation and edges stand for the execution order between the
units. A number of logic OR-parallel execution models follow the WAM approach,

with each processor making a depth-first traversal of some portion of the search

23

tree. We refer to continuous search path traversed by each depth-first search as a
thread. The parallel execution models based on this approach will be called thread
based models.

Some parallel execution models are drawn from the procedural interpretation
of logic programs. Each clause is viewed as a procedure and a predicate call to
a subgoal is manipulated as a procedure invocation. These models are usually
implemented by processes which cooperate each other. The search tree is viewed
as a process tree, thereby, the parallel execution models based on this approach
will be called process-based models.

Below, we present the advantages and disadvantages of each approach along

with a review of existing implementations.

Thread-based execution models

The main advantage of the thread-based model is to be able to benefit from
optimizing techniques developed for sequential execution. Compared with the
process-based model, the thread-based model can achieve relatively high absolute
single processor performance. Therefore, for reasons of the high single processor
performance, most parallel implementations, made particularly on shared memory
multiprocessors, adopt this approach. They are the Muse [7], the Aurora [15], the
ECRC’s PEPSys [82], the Andorra Model [42], the Pandora [11], the P-Prolog
[83], the AO-WAM [39], and the ACE [36].

However, these models are not appropriate for message passing architectures.
The main reason for this is that OR-parallel execution entails a large amount of
fine-grain remote accesses on such architectures. In order to avoid remote accesses,
some implementations adopt stack copying. The problem with this approach is

_that the cost of remote scheduling is very high and the system utilization becomes
very low because processors frequently remain idle waiting for the completion of

stack copying operations.

Process-based execution models

In process-based execution models, the traversal of the search tree is different from

the one in thread-based models. This is because of the procedural interpretation

24

of logic programs; a node created for a subgoal is re-visited aflter the execution of
all the descendents nodes involved in the computation of the subgoal, and then
the node for the next subgoal is executed. As a result, a special management
of the biding environment is needed both in the forward execution and in the
backward execution. In the forward execution, which corresponds to expansion
of the process tree, the binding context must be constantly insulated to ensure
closed environments at every level in the tree. In backward execution, the back-
unification is repeated at every level toward higher levels.

This model is very suitable for distributed implementation because a closing
operation made for every unification and back-unification of each OR-task results
in the elimination of the remote accesses. One critical drawback of this model is
that the single thread performance is very low. This is because within an intra-
PE thread which is executed locally on a PE, all the OR-tasks are subject to
the closing operation. Moreover, in the distributed implementation, the closed
operation puts a limitation on the determination of the grain size. This limitation
is drawn from the property that the back-unification of a clause must be done on
the same PE where the unification takes place.

The example process-based execution models are the AND/OR process model
developed by Conery[23], the ROPM (Reduced Or-Parallel Model) by Kale [52],
and the OPAL machine by Conery [51]. In these models, a process created for
each goal communicates via messages bindings and control information with other
processors in order to finally produce a solution to the top-level query. The main
drawback of these models is high overhead caused by the creation and management
of processes. Moreover, it is quite difficult to support for stream-AND parallelism

in the models.

Data-Driven Approaches

A number of research projects have attempted to benefit from the potential of
the data-flow computation model in the parallel processing of logic programs(34].
These approaches can also be classified as process-based models because most of

them execute programs under the procedural interpretation.

o
o

Bic [12] presented a model for the parallel interpretation of logic programs
based on the idea of presenting logic programs as graphs and graph templates in
which resolution is viewed as a graph matching. A predicate is represented in
a directed arc connecting two nodes that map the arguments of the predicate.
Although the implementation exposes a high degree of parallelism on various
levels, it is not general enough.

Hasegawa and Amamiya [43] presented an interpretive execution scheme based
on a proof tree model. Fager evaluation and lazy evaluation were analyzed to
enhance OR-parallel execution as well as to control activation. The approach is
based on an interpreter using a high-level functional language. While functional
languages is suitable for data-flow architectures, the execution of logic languages
through an interpreter written in a high level language would not be a good option
due to high overhead.

Ito [46] presented an execution mechanism on a data-flow architecture both
for Prolog and concurrent logic languages. It represents in a data-flow graph the
generic functions inherent in the languages, e.g., unification and control of non-
determinism. The execution mechanism does not support the garbage collection
at its parallel unification and backtracking.

Rawling [69] reports the implementation of a concurrent logic language, the
Guarded Horn Clause (GHC), on the CSIRAC II data-flow computer. Although
a number of issues such as the consistency problem with parallel head unification
remains to be addressed, this work contributes to addressing the feasibility of
data-flow architectures for a logic programming language.

As an recent alternative approach, the 3DPAM [49, 50] applies the principles of
the data-flow model to the design of parallel models for “conventional” parallel ar-
chitectures, particularly distributed memory multiprocessors. The 3DPAM model
envisions the distributed implementation of Prolog by a systematic interpretation
of the AND/OR process model [23] from a data-flow point of view.

The Non-deterministic Data-Ilow (NDF) parallel execution model [41] uses the
data-flow execution paradigm. It is designed for large-scale parallel architectures,
particularly distributed memory multiprocessors. In the model, the operational

semantics of logic languages are represented by the Non-deterministic Data-Flow

26

graph. The NDF model includes the following distinguished features. (1) It pro-
vides a platform for distributed scheduling on top of the data-driven self-organizing
execution principle. (2) Fine-grain parallelism internal to OR-tasks is supported
by allowing multiple active tasks on a processing element, along with other types
of parallelism such as OR-, independent AND-, and stream AND-parallelism. (3)
The model also provides a binding method particularly well adapted to distributed

memory systems.

2.2.3 Classification based on the architectural platform

Due to the requirement of the maintenance and traversal of a search tree at run-
time, the memory organization of parallel machines affects the complexity of paral-
lel implementations of logic languages. In general, the implementationson parallel
architectures with a non single address space are relatively complex and inefficient.
Indeed, most parallel logic programming systems are designed specific to either of
the above two platforms. Parallel execution models developed for shared memory
multiprocessors will be referred to as shared ezecution models, and those developed

for distributed memory multiprocessors as distributed execution models.

Shared Execution Models

Efforts on the parallel processing of logic programs have mostly been devoted

to shared memory multiprocessors. With a view to maximally benefit from the

conventional sequential techniques, most of these models adopt thread-based ex-

ecution. The example shared execution models include the Muse [7], the Aurora
[15], the ECRC’s PEPSys [82], the Andorra Model [42], the Pandora [11], the
P-Prolog [83], the AO-WAM [39], and the ACE [36).

Distributed Execution Models

As opposed to the shared execution models, only a few distributed models have
been developed. These models explored a methodology which makes variable
accesses be restricted locally on each PE. They have been investigated mostly

within the context of process-based execution.

27

In process based approaches, restricted accesses are achieved by developing
some binding environments [24, 53, 55, 60]. The example execution models are
the 3DPAM [49], the OM [51], the ROMP[52], and the NDF model [41]. In
these models, the binding context has to be constantly insulated to ensure closed
environments at every level in the tree.

In thread-based approaches, each PIS has the same address spaces which im-
plements the conventional four stacks of the WAM. Besides, each PE executes
the program in the sequential WAM-like manner. With this approach, it is very
hard to efficiently implement the scheduling to another thread that occurs when
a processor completes its thread upon either its success or failure. In support of
the scheduling, some implementations import the environment through the envi-
ronment copying to provide the required environment for the new thread, while
some build the environment through the recomputation. For example, the Muse
[7] is based on the environment copying and the Delphi model [9] is based on the

recomputation.

28

Chapter 3

Analysis of Static Binding Environments

The binding environment is one of important issues in the parallel implementation
of logic programs. While it concerns primarily with OR-parallelism, it also affect
the performance of other forms of parallelism such as AN D-parallelism.. In pursuit
of an efficient design of a binding environment, we performed an analysis of binding
environments. In the analysis, we provide a definition that allows us to classify the
binding environments into two groups: static and dynamic binding environments.
In this chapter, we present the analysis of static binding environments. The
presentation includes a framework, which helps us analyze the characteristics of
binding environments, and the analysis result of binding environments obtained
by using the framework. It also includes the application of the analysis result to

existing binding environments.

3.1 Introduction

Traditionally, OR-parallelism has been very important source of parallelism in the
design of parallel logic programming systems due to its relatively large granular-
ity and simplicity in its management because OR-parallel tasks are independent
of each other. The binding environment, which is a memory model to handle
multiple binding problems associated with OR-parallelism, has been one of highly
important issues in OR-parallel logic programming systems. Indeed, many bind-

ing environments have been invented [18, 25, 40, 81, 82] for efficient OR-parallel

execution of logic programs and many rescarches have been conducted to evaluate
their performance [38].

It has been noted that the binding environment becomes more important when
logic programming systems exploit parallelism more extensively. It is because
binding environments affect directly or sometimes indirectly the ways that the
other types of parallelism are exploited. Indeed, Gupta shows that the binding en-
vironment has also crucial impacts on the eflicient exploitation of AND-parallelism
[40]. This indicates that in spite of the previous research effort, we still need to
explore the efficient design of binding environments when pursuing the parallel
implementations of logic programs on large scale parallel machines.

This chapter presents a comprehensive study on the analysis of binding envi-
ronments. The study is focused on the uncovering of the entire design space of
binding environments and the identification of the performance characteristics of
each design. We believe that the study will provide an invaluable insight into the
design of future binding environments. For the analysis, we develop a framework.
The framework consists of definitions for a set of attributes which illustrate the
organization of a binding environment. It also has definitions for a set of generic
properties which illustrate the operational characteristics of a binding environ-
ment. Given the attributes, all the set of the combinations represent the entire
design space of binding environments, in which each one corresponds to one design
of a binding environment.

The analysis of static binding environments is carried out through the following
two steps: Firstly, for each generic property, we derive all the conditions which
guarantee the property. Each condition is represented by some combinations of
particular attributes. Secondly, we derive the constant time conditions for each
performance criterion by a set of combinations of generic properties. Combining
these two steps, we can represent the constant time conditions of each performance
criterion by some combinations of attributes. Therefore, it is possible to identify
the characteristics of performance criteria for each binding environment in the
entire design space. The analysis results show that no design of static binding

environments exists which guarantees an ideal OR-parallel system. Moreover, we

30

have identified the constant time characteristics of the performance criteria for
the existing binding environments by applying the analysis results.

Gupta and Jayaraman’s work is one of the most comprehensive studies on the
theoretic analysis of OR-parallel logic programming systems [37]. They provide
a proof on the non-existent of ideal OR-parallel implementations. Regarding the
identification of performance characteristics, the result of our analysis coincides
with that of Gupta and Jayaraman’s work and thus identifies the fundamental
limitation of OR-parallel implementations of logic languages. However, our study
has a different goal from Gupta and Jarayaman’s. Our study pursues a practical
means which brings an insight into the design of future binding environments.
Hence, it is focused on the uncovering of the entire design space of binding en-
vironments and the identification of the operational as well as the performance
characteristics of each design. More specifically, it provides a framework which
illustrates the conceptual as well as physical aspects of the organization of binding
environments and their operational aspects. We thus believe that our analysis will
provide a theoretic foundation of building more efficient binding environments.

The rest of the chapter is organized as follows. Section 3.2 offers a brief
description about some terminology and definitions which we will use in later
sections. Section 3.3 presents the framework for the analysis. Section 3.4 presents
the analysis and its result. Section 3.5 presents the operational properties and
performance characteristics of some existing binding environments obtained from

the application of our analysis result. Finally, section 3.6 summarizes the chapter.

3.2 Terminology

A logic program is composed of a set of Horn clauses. Each clause has the form
[=ly,... 1, where [; is a literal. A literal consists of a predicate name followed
by a parenthesized list of terms. A ferm is defined recursively as a constant or
a variable or a function symbol followed by a parenthesized list of terms. In a
clause, [is the head of the clause, and ly,...,[, is the body. A clause with an
empty body is called a fact. A clause that is not a fact is called a rule. A set of

literals is called a query. With respect to a goal literal g, the body of a clause

31

¢, instantiated with the substitution that unifies a literal g and the head of ¢,

becomes a query for @ using clause ¢, which is frequently called the resolvent.

3.2.1 Search tree representation

A logic program P and a query () can be represented by a tree T' = (N, ££) in
which each node is associated with resolvent R. The root of T' is associated with
the initial query @. Each node n has a fixed number of child nodes unless its
resolvent I is empty. Fach child node corresponds to the clause which is in P
and successfully unifies with the first goal in R.

For two nodes ny and n; in tree T' = (N, E), if (n;,n;) is in E, then n; is the
parent of n; and n; is a child of n;. A path from n; to n; is denoted as path(n;, n;).
For path(n:,n;), n; is an ancestor of n;j and n; is a descendent of n;. Furthermore,
if 7 # 7, then n; is a proper ancestor of n; and n; is a proper descendent of n;. In
these cases, precedence relations exist between them and they are represented by
either n; < n; or n; = n; when n; is an ancestor of n; and by either n; < n; or
n; > n; when n; is a proper ancestor of n;. A node with no descendent is called
aleaf. A node n and all its descendents are called a subtree of T' and n is called
the root of the subtree.

Each child node n. of node n is associated with a new resolvent R,.. The
new resolvent is an ordered set of literals obtained by replacing the first literal of
R, with the body goals of the corresponding clause and then instantiating every
variable within each literal if the variable is substituted during the unification of
the first goal literal with the clause head. Formally, let clause ¢ be h:-by, ..., by,
n be the node with resolvent R,, n. a child of n. If R, is {l3,...,l,}, the new
resolvant R, becomes {(by,..., by, 0s,...,1,)0}, where 0 is the most general unifier
* (mgu) resulting from the successful unification between /; and the clause head h.
Notice that in the above search tree definition, the branching factor is fixed for
each node and depends on the logic program P. Therefore, for a query @ with
respect to a logic program P, an OR-parallel search tree 7' = (N, E) is defined
such that each node n (n € N) is denoted as n(V,o, R) where V is the local

environment variables, ¢ the substitutions, and R the resolvant.

3.2.2 Terminology

This section explains some terminology and definitions which will be used in later
sections. In the definitions, 7', V, N, and M indicate respectively the set of
threads, the set of variables, the set of nodes, and the set of memory in the

systemn.

Worker, thread, standing node: Parallel execution of a logic program is per-
formed by a set of workers. Bach worker is a sequential engine with its own
private memory and shares some memory with other workers. It computes some
portions of the search tree, each in the sequential WAM-like manner. The com-
putation that corresponds to the locus of the search tree traversed during each
depth-first search is viewed as a unit of computation and called a thread. Note
that a thread may include more than one tree paths of a search tree. When a

worker is computing a node n, node n is called the standing node of the worker.

Local environment, global environment: The local environment of a node n,
denoted as (n), is the set of variables that appear in the corresponding clause c.
The global environment of node n, denoted as g(n), is the set of variables obtained

by the union of [(n;) for all 7, where n; < n. Local environment l(n;) is disjoint

with I(n;) if 2 # 7.

Owner node, binding node, conditional variable, conditional binding,
binding environment: If a variable v belongs to the local environment of a node
T, N, is called the owner node of v. If v is bound in a node ny, ny is called the
binding node. For a node n, any unbound variable v is called a conditional variable
if the owner node of v is a proper ancestor of n. A binding made to a conditional
- variable is called a conditional binding. The set of conditional bindings that a
thread makes during the execution of path(n,ns) is denoted as cb(ny,nz). In this
chapter, we will sometimes refer to conditional variables and conditional bind-
ings respectively as “variables” and “bindings” without confusion. In OR-parallel
implementation of logic languages, some data structure is usually employed to
handle conditional bindings. The data structure and the associated manipulation

technique will be called the binding environment of the system.

Conditional object, conditional context, conditional environment: When
a thread ¢ being executed by a worker w makes a conditional binding for a variable
v and stores the conditional binding in a memory cell, the memory cell is called a
conditional object of v'. A conditional object of v is defined for each thread and is
associated with some node, usually either the owner node or the binding node. The
set of conditional objects used by a worker w; is defined as the conditional context
of w; and is denoted as c¢;. At the time when node n, has been computed by
thread ¢, the set of conditional objects associated with node n; for all i (n; < n,)
is called the global conditional context of n; with respect to n, and ¢, and is
denoted as gee(ny,ng, t). The set of conditional objects associated with node n;
for all 7 (ny =< n; =< ny) is called the partial conditional contezt between ng and
n1 with respect to ny and thread ¢ and is denoted as pec(ng, n1,n2,t). The set of
values stored in gee(ny,ng,t) is called the global conditional environment of node
ny with respect to ny and ¢ and is denoted as gee(ny,nq,t). As an example, let us
apply the definitions to the Binding Array scheme [79]. The binding array owned
by worker w is defined as the conditional context of w. A conditional object is
defined as a memory word in binding arrays. Given a thread ¢ being executed by
w, gee(ny, na,t) becomes the part of the binding array allocated by worker w until
the execution of n; in . Because a conditional object of a variable is associated

with the owner node, gec(ny,ny,t) and gee(ng, na,t) are always the same.

Static and dynamic binding environment: In a binding environment, if
the representation of a conditional binding in a conditional object is simply its
binding value without any semantic information such as the binding thread or the
binding node, the binding environment is defined as static; otherwise, it is defined
as dynamic. Under this definition, most of the existing binding environments
are static binding environments. The examples are the Binding Array [79], the
Hash Window [13], the Closed Environment [25, 53], and the Copy-Based OR-
parallel schemes [7]. On the other hand, the Time Stamp [74] is a dynamic
binding environment because a conditional binding carries some information on

the binding node in the form of a time-stamp.

"More precise definition is found in the next section.

34

3.3 Analysis Framework

In this section, we present the framework which we will use to analyze binding
environments. To begin with, we introduce a set of performance criteria which
have crucial impact on the performance of parallel logic program systems. We

then provide comprehensive discussion on the framework.

3.3.1 Performance criteria

Traditionally, variable access, task creation, and task switching have been recog-
nized as the performance criteria for OR-parallel systems [38]. It is because their
cost is normally the major factors which determine the performance of an OR-
parallel system. The criteria are characterized as follows. Suppose that a worker

w is executing a node n in a thread f.

1. Variable access refers to the operation that worker w reads (writes) the

binding of a variable from (into) the value cell of the variable.

[

Task creation refers to the operation that worker w prepares the global

environment of the next node in thread ¢ after computing node n.

3. Task switching refers to the operation that worker w takes an unexplored
node in a different search path after completing thread ¢. The task switching
always results in the creation of a new thread for worker w. Logically, it
corresponds to the worker’s move from a node n; to another node ng in

which n; and n, are not in the same path.

In addition to the above three performance criteria, we introduce another

performance criterion which we will call thread switching:

A thread switching refers to an operation that worker w suspends
thread t which has been executed by it and then chooses for execution

another thread being in suspension.

In systems which support multiple threads, a worker is capable of interleaved

execution of multiple threads. OR-parallel logic programming systems have a

35

great opportunity to benefit from multiple thread, particularly in the following

cases.

o When a worker encounters some extra-logical or side-effect causing pred-
icate, the worker cannot continue the execution before the branch, which
corresponds to the predicate in the search trees, becomes the leftmost. In
this case, the worker should either wait until the branch becomes the left-
most or suspend the running thread and then execute another available
thread.

e The interleaved execution of multiple threads allows the system to hide
communication latency caused by such activities as scheduling in distributed
memory multiprocessors and stack copying made between processors with

non-uniform memory accesses.

Some recent logic programming systems empirically show that suspension occurs
very frequently and efficient support for multiple threads is essential for higher
system performance [8]. This indicates that the cost of thread switching is one of
important factors which affect the system performance.

Both task switching and thread switching include a worker’s move from a node
to another. However, it should be noted that task switching always creates a new
thread whereas thread switching executes an existing thread without creating a

new one.

3.3.2 Attributes of conditional objects

In the implementation of OR-parallel systems, there are a number of issues per-
taining to the management of multiple bindings. How to address each of those
“issues determine various aspects of its operational characteristics and performance.
Those aspects include the data representation of a conditional binding, the data
structure to store conditional bindings, and the memory organization to imple-
ment the data structure.
In the previous section, we introduced a term conditional object as the unit
of storage which stores a conditional binding in a binding environment. In this

subsection, we present the precise definition of a conditional object and then

36

discuss the set of the attributes that illustrate conditional objects with respect to

binding environments.

Definition of conditional objects

A conditional object is defined only in association with accesses of conditional

variables. The precise definition of a conditional object is as follow:

Given a conditional variable, the conditional object is the minimum
set of memory cells each of which must be always accessed for the access

of the variable.

The definition dictates that a conditional object is essentially represented dis-
tinctively depending on the memory organization of a binding environment. For
example, a conditional object is represented as a single memory word in the Bind-
ing Array, as a hash entry in the Hash Window, and as a linked list in the Time
Stamp.

The design space of a conditional variable is very wide. For a conditional
variable, some systems provide one conditional object which is shared by multiple
threads. On the other hand, some systems provide more than one conditional
objects such that each thread accesses its own conditional object. When a thread
accesses in a node a conditional variable, it must always refer uniquely to a single
conditional object. In this regard, the conditional object of a variable v is defined
with respect to a node n and a thread ¢, which is denoted as co(v,n,t) where co
is a mapping such that co: VxNxT — M.

It should be noted that a conditional object is defined with respect to variable
accesses. When more than one instances of the conditional binding are kept in a
_system, only the instance that is related with the variable accesses is concerned
with the definition of the conditional objects. For example, the Binding Array
method keeps two instances for each conditional binding: one in the forward
list and the other in the binding array. The values in the forward list are used
in scheduling such as backtracking and task switching, while the values in the

binding array are used in the variable accesses made during computation such as

37

unification and argument generation. In this case, only the values in the binding

array are subject to the definition of conditional objects.

The attributes of conditional objects

The binding environments show different characteristics for the performance cri-
teria. Careful observation on a number of existing binding environments leads
us to an insight that given a binding environment, the characteristics are deter-
mined by the design of conditional objects in the binding environment. We thus
investigated the design space of conditional objects in binding environments and

identified that the design is characterized by the following questions:

e Among the worker, the thread, and the node, to which one does a conditional
object allocated? .

o Which node has the information that a worker will use to locate the condi-
tional object?

o How many instances of a conditional object are allocated along a single
search path?

e How many bindings is a conditional object able to contain?

e Is a binding represented by a simple data value or by a combination of a

data value and other semantic information?

In order to identify all the possible answers, we defined five attributes with regard
to conditional objects. The above questions are then reduced to the problem of
value assignment to the attributes. Each case of value assignment for the set of
attributes corresponds to one design of a binding environment. The set of all
possible cases represents the entire design space of the binding environment. In
other words, it corresponds to the design space of the OR-parallel system within
the domain of the multiple binding problem. We illustrate each attribute and

values assigned to it.

1. Owner

When a conditional variable is bound by a worker during the computation of a

node in a thread, the binding is kept in the conditional object allocated in the

38

memory. In the design, the allocation can be made in one of the following three
meaningful ways: allocation with respect to the worker, the owner, or the thread.
Attribute “owner” illustrates to which one a conditional object is allocated among
a worker, a thread, and a node. The three values, worker, thread, and node, are
thus defined for attribute “owner”. When a conditional object is allocated with
respect to the worker (resp. thread, or node), it is called that the conditional

object is owned by the worker (resp. thread, or node).

2. Assoclation

For a given conditional variable, attribute “association” illustrates which node
has the information that a worker will use to locate the conditional variable. It
has owner and binding as its values. In the WAM, the name of a.variable is
the address of a slot in the environment frame to which the variable belongs [78].
Some design of OR-parallel systemns maintains a piece of information in the slot
which a worker will use to locate the conditional object of the variable. The
information is usually either a direct or an indirect pointer to the conditional
objects. In this case, it is called that the conditional object is associated with the
owner node because the slot belong to the owner node. If the conditional object is
associated with a node other than the owner node, it is called that the conditional
variable is associated with the binding node. This is because the binding node can
best represent those nodes that are not the owner node. However, it should be
noted that the conditional object of this case is not necessarily associated with

the binding node and can be associated with any node except the owner node.

3. Instantiation

“ For a given conditional variable, some design of a binding environment may allo-
cate more than one conditional objects differently along a single path. In this case,
each one is called an instance of the conditional object. Provided that an instance
is allocated differently for every node of a path, the number of instances may
becomes infinite. On the other hand, in some design of a binding environment,
the maximum number of instances is always limited to a finite number. Attribute

“Instantiation” illustrates whether the maximum number of instances is restricted

39

to a finite number or not. Two values defined for attribute “instantiation” are

thus finite and infinite.

4. Capacity

In some design of an OR-parallel system, a conditional object may consist of more
than one value cells, where a value cell is a unit of storage which stores a single
conditional binding. Attribute “capacity” describes the amount of value cells
allowed for a conditional object. Two values, finite and infinite, are defined for
the attribute. In OR-parallel systems in which attribute “capacity” is assigned
to value finite (resp. infinite), a finite (resp. infinite) number of value cells
is allowed for a conditional variable. It should be noted that each value cell
in a conditional object does not necessarily keep a binding. For example, in
some binding environments [25, 60], even though a conditional object consists of
multiple value cells such that one value cell is allocated for each node along the
path between the owner and the binding node, only the last value cell may keep

the binding, while the others remain empty.

5. Content

In OR-parallel systems, a conditional binding is represented either by just a data
value for the binding or by the combination of the data value and some semantic
information such as the binding node and the binding worker. If the conditional
binding stored in a conditional object is just the data value, the conditional object
is called to keep a static data. Otherwise, the conditional object is called to
keep a dynamic data. Attribute “type” illustrates whether a conditional object is
designed for static or dynamic data. Two values, static and dynamic, are thus

defined for attribute “type”.

Remarks:

In the rest of the chapter, we use a notation attr-name[value] to represent the
assignment of attribute “attr-name” with its value “value”. The list of attributes
and their values will be denoted as {namel[valuel], name2[value2], ...}. When at-

tribute “attr-name” of a conditional object is always set to “value”, a conditional

40

object is called to have attr-name[value]. For brevity, we use the following short-
hand notation: attributes owner, association, instantiation, capacity, and
content are represented respectively by own, ass, ins, cap, and con, and values
worker, thread, node, owner, binding, infinite, and finite are represented

respectively by W, T, N, O, B, I, and F.

3.3.3 Design space of the binding environment

From the above five attributes and its values, 48 different designs of the binding
environments are enumerated. A half of them are static binding environments,
while the others are dynamic binding environments. This subsection discusses the

designs with focus on static binding environments.

(a) owner[worker] (b) owner[thread] (b) owner[node]
Figure 3.1: Designs resulting from different values of attribute “owner”

Figure 3.1 shows three cases of binding environments which result from differ-
ent values of attribute “owner”. Suppose that the least common ancestor node

between t; and 1, is n,.

e In a binding environment with owner[worker] (Figure 3.1 (a)), a condi-
tional context is provided for each worker. If worker w; executes both i
and t,, the conditional context is used for ¢; when w; executes t;, whereas it
is used for #, when w, executes t,. Notice that global conditional contexts
gcc(Tiey, s Meysy 1) and gee(ne,, Ny, , t2) are the same.

¢ In a binding environment with owner[thread] (Figure 3.1 (b)), a condi-

tional context is provided for each thread, i.e., gee(ney, s ey t1) N gee(ney,,

41

Mg,y la) = @. Notice that when worker w executes both ¢; and ¢,, interleaved
execution of ¢; and £, can be achieved more efficiently in this case.

e In a binding environment with owner[node] (Figure 3.1 (c)), a global con-
ditional context of a node is the collection of conditional objects associ-
ated with all the ancestor nodes. Given two threads, the global conditional
context for the shared part of the path is the same, i.e., gee(ney,, ey, t1)
= gcc(Teyy s Neyy,s t2) as the case of owner[worker]. However, conditional
contexts are defined differently for the private parts, i.e., gee(ng, ne, 1) N

gee(ng;, ey, ta) = @ (e, < ng and ng, < n;j).

Attribute “instantiation” and “capacity” have values either finite or infinite.
As an example, in a binding environment with {inst[F],cap[F]}, a finite number
of conditional objects, each of which consists of a finite number of value cells, are
allocated in a single path. Because the size of a search tree is not limited to a finite
number in terms of its node depth and the number of branches, any finite number
other than one is not normally a reasonable choice. Therefore, the discussion in
this chapter will be restricted to the case of “one” when the attribute value is
finite.

Figure 3.2 (a),(b),(c), and (d) depict the four cases of value assignment. In the
figure, a box denoted by a solid line stands for a conditional object and a square
separated by a dotted line inside a conditional object represents a value cell. A
dotted line between a conditional object and a node indicates the association.
According to the value of “association”, it can be either the owner node or the
other nodes such as the binding node. With association[owner], the above four

cases are briefly explained.

e In binding environments with {ins[F],cap[F]} (Figure 3.2 (a)), a condi-
tional variable has only one value cells and only a single instance is available
for a path.

e In binding environments with {ins[F],cap[I]} (Figure 3.2 (b)), a conditional
object is capable of keeping all the bindings made from descendent nodes
because its size is not limited to a finite number. For correct execution, each

binding must contain additional information regarding the binding node or

42

the binding thread. Therefore, the resulting binding environment is usually
dynamic.

For a given conditional variable, each node has an instance of the conditional
object in binding environments with {ins[I],cap[F]} (Figure 3.2 (c)). The
association of each instance does not concerned with either the owner or the
binding node of the conditional variable. As a matter of fact, this is viewed
as a special case that the association of each instance becomes the node to
which the instance belongs. Notice that it operationally corresponds to the
importation of the variable from a parent node to a child node [60], because
the child node becomes the owner node for the imported variable.

Two different types are possible with with {ins[I],cap[I]} (Figure 3.2 (d)).
Due to {ins[I]}, given a conditional variable, an instance of a conditional
object is defined for each node along a path. Type 1 is the same Ias the case
(c) except that a conditional object can have an infinite number of cells.
Type 2 is different from type | in that all the instances are associated with
the original owner node even though each of them is assigned to a different
node. One meaningful design of type 2 is that the conditional object of a
child node has one more cell than that of the parent node. For example,
Figure 3.2 (d) shows four instances defined respectively for nodes ny, na, na,
and ng. In this type, only a single instance will have a binding, because the
multiple instances are for a single path. Physical implementation of these
instances can be made by using a single array such that each cell is assigned
to a node and the instance assigned to a node amounts to the portion of
arrays which start from the first cell and ends at the cell allocated for the
node. The Variable Importation scheme [60] is one salient example of this
type. In type 1, each conditional variable is imported into each child node.
Under the principle of importation, the only reasonable way to manage the
binding is to make the binding be associated with the binding node. This
makes the conditional object always keep at most one binding, even though
it has an infinite number of cells. As a result, type 1 is always reduced to the

case of Figure 3.2 (¢) in terms of its functionality and operational principle.

43

Attributes Attribute Attribute |
No|[Ow |As|In|Ca|No|[Ow|[As|[In[Cal No|[Ow[As[In]| Ca
i F I? 9 I’ I Ilifs I F
2 0O | 10 O | 18 O I
3 L | I | 11 I F |19 I | F
4 W | 12| T [||20 | N I
5 F|F |13 F | F |21 F|F
6 B 1 14 B I || 22 B I
T I Sl 15 I | F | 23 I || F
8 I 16 I 24 I

Table 3.1: The classes of OR-parallel systems with static binding environments:
“No” indicates the class number and “Ow”, “As”, “In”, and “Ca” stand for at-
tributes Owner, Association, Instantiation, and Capacity, respectively.

In the rest of the chapter, the case of {ins[I],cap[I]} is always regarded as

type 2.

ig i3 1y
HD“" "
03
ny
type 1 type 2
(@) {ins[Fl,cap[F]} (b) {ins[Fl,cap[T]} (c) {ins(T],cap[F]} (d) {ins[I],cap(1]}

Figure 3.2: A pictorial representation of four designs of binding environments with
respect to attributes instantiation and capacity when attribute finite is 1.

3.3.4 The properties of conditional contexts

This section presents a set of properties which we identified with regard to condi-
tional contexts. These properties represent the operational aspects of the generic
operations (variable accesses, task creation, task switching and thread switching)

as well as the aspects of the physical organization of conditional contexts.

Intra-thread properties

Depending on the organization of conditional contexts, the bindings of conditional
variables may sometimes modify the environment of the ancestor nodes. If a bind-
ing modifies the environment of the ancestor nodes, the following two operations
are entailed: (i) the deinstallation of the conditional bindings made along the
path between the least conumon ancestor node and the standing node, and (ii)
the installation of the conditional bindings made along the path between the least
common ancestor node and the destination node. We therefore identified a prop-
erty which illustrates the effect that a conditional binding makes on the contents

of a conditional context.

Definition 3.3.1 (Protectedness) Given a conditional context, when a node n,
and ny (ny < nz) are executed in a thread t, if conditional bindings made in node
ny are not written in gec(ny,ny,t), the condilional context is defined to provide

protectedness.

The access of a conditional binding is logically viewed to have the following
two steps: locating the conditional object and accessing the value cell of the
conditional binding in the conditional object. Associated with these steps, the

following two properties are defined with respect to conditional contexts.

Definition 3.3.2 (Deterministic-locatedness) Given a conditional context, if
the conditional object of a variable is always located without involving with any
search of infinite sets, the conditional context is defined to provide deterministic-

locatedness.

Definition 3.3.3 (Deterministic-access) Given a conditional context, if the

conditional binding of a variable is accessed from its conditional object without

45

involving with any search of infinite sels, the conditional context is defined to

provide determinislic-access.

The cost of task creation depends on how to efficiently create the necessary
environment for the new node. In some conditional context, the creation of the
environment may sometimes involve with an infinite set of conditional objects.

Associated with task creation, another property is defined as follows.

Definition 3.3.4 (Inheritedness) Given a conditional context, when node n,
and its child node ny are executed in a threadt, if the difference between gee(ny, ny,t)
and gee(ng, na, t) s always a finite set, the conditional context is defined to provide

inheritedness.

A conditional context is physically organized by a set of conditional objects.
The way that a worker manages the conditional bindings is influenced by the way
that the conditional objects are organized in the conditional context. Associated

with the organization, a property is defined with respect to conditional contexts.

Inter-thread properties

Definition 3.3.5 (Physical-sharedness) Given two threads ¢, and t, working
on a conditional context, regardless of whether ty and ty are executed concurrently
or one thread is exvecuted after the completion of the other, if gce(n,n,t;) is equal
to gee(n, n,ta) for any common ancestor node n between t, and to, the conditional

context is defined to provide physical-sharedness.

Most recent parallel logic systems preserve the sequential semantics of logic
languages completely. They thus support side effects and extra-logical predicates
“as well as the pure logic predicates. In such systems, when a worker encounters a
side effect or an extra-logic predicate, the worker should not execute them until the
branch becomes the leftmost. In the mean time, (i) the worker either busy-waits
or (ii) switches to another thread to execute, suspending the previous thread. In
either case, the system should pay some overhead such that in case (i), the system
utilization will lower due to worker’s idling and in case (ii), the system may discard

the environment of the previous thread because of the switching. With respect

46

to conditional contexts, another property is defined which will characterize the

efficiency of the thread switching.

Definition 3.3.6 (Preservedness) (liven a conditional context, if a worker per-
forms thread switching from a thread t, to another thread ty, without causing any
change of gee(ny,my, 1), and also it does not destroy gee(ny, ny, t1) while executing

thread to, the conditional contexl is defined to provide preservedness.

3.4 Analysis Results

This section presents the analysis result. In the analysis, we derive the condi-
tions which will satisfy each property of conditional contexts. We also derive the
conditions which will satisfy the constant time requirement for each performance
criterion. Conditions for the properties of conditional contexts are represented by
a set of attribute-value pairs, whereas conditions for the constant time requirement
of each performance criterion are represented by a combination of the properties

defined with respect to conditional contexts.

3.4.1 Generic properties

Proposition 1 (Protectiveness) For the following combinations of attribute

and value pairs,

Case 1: {association[binding|}
Case 2: {association[owner],instance[infinite]}

Case 3: {association[owner],instance[finite]}

it is always possible to build u conditional context, which provides protectedness,

for case 1 and 2, whereas il is not possible for case 3.

(Proof) Let n, and n, be respectively the owner and the binding node of variable

v. Suppose that they are executed by thread {.

e Case 1: Due to n, < n; and association[binding], co(v,ns,t) & gee(no, no, t)
and co(v,ny,t) € gee(ny,ny,t). Therefore, the binding of v to be stored in

co(v, np, t) does not change gee(n,, n,,t).

o Case 2: Due to n, < ny and association[owner]|, co(v,n,,t) € gee(ng, no,t).
With instance[infinite], more than one conditional objects are defined in
path(ng,ny). (i) Suppose that the attribute “capacity’is finite. As for vari-
able v, a new variable is created in each node of path(n,,n;) and a condition
object is also created for the new variable, as explained in Figure 3.2 (c). In
node ny, the binding of v is stored in the new conditional object co(v,ny, 1)
(co(v,ny,t) & gee(ng, no,t)). (i) Suppose that the attribute “capacity’ is
infinite. As explained in Figure 3.2 (d), a conditional object is created in
each node of path(n,,n;). For a parent node ny and a child n, in path(n,, ny),
co(v,ny,t) is obtained by appending a cell to co(v,n;,t) and is associated
with the original owner node. If a binding is made in n,, it is stored in
the cell. Therefore, the binding of v made in the binding node n; is always
stored in the new conditional object co(v,ns,t) (co(v,ny,t) & gee(ngy,no,t)).
From in (i) and (ii), the binding of v in node n is not stored in gee(n,, n,, t).

e Case 3: Let a finite number 2 be the number of instantiations. Due to asso-
ciation[owner] and instance[finite], in path(n,, n;) at most z instantiations
can be defined for a conditional object and they are respectively associated
with 2 nodes in path(n,,n;). When the difference between the depth of the
binding node and that of the owner node is larger than z, the binding made
in the binding node must be stored in an instantiation which belongs to
gee(n,n,t), where n is an ancestor node of b(v). Therefore, it is not possible

to make a conditional context which provides protectedness.

Proposition 2 (Inheritability) For the following combinations of attribute and

value pairs,

Case 1: {instance[finite]}

Case 2: {instance[infinite]}

it is always possible to build a conditional context, which provides inheritedness,

for case 1, whereas it is not possible for case 2.

(Proof) Let ny be the parent node of n; and S be the set of conditional variables

for n,.

o Case 1: The difference between gee(ny, ny, t) and gee(na, ng,t) is the union of
the local environment of 14 and the conditional objects allocated both in n,
and n,. Because both the local environment and the number of conditional
objects allocated in cach node are finite sets, the difference is always a finite
set.

e Case 2:

Let S be the set of unbound conditional variables when node ny is computed.
Because of instance[infinite], for each variable v in S a new conditional
object is created as for co(v, ng, t) in node ny. Because S is an infinite set and
co(v,na,t) is always different from co(v,ny,t) for every variable v (v € 5),

gee(ny,ny, t) U gee(ng, ng, t) is not a finite set. O

Proposition 3 (Deterministic-locatedness) For the following combinations

of attribute and value pairs,

Case 1: {association[owner]},

Case 2: {association[binding]},

it is always possible to build a condilional context, which provides deterministic-

locatedness, for case 1, whereas it s not possible for case 2.

(Proof) Assume that a thread { accesses in a node n a conditional variable v.

o Case 1: Regardless of whether v is a bound or an unbound variable, ¢
can locate co(v,m,,1) without engaging any search of an infinite set since
co(v,n,,t) is associated with the owner node.

o Case 2: (i) If the variable v is not yet bound, ¢ has to scan pee(ng,n,n,t)
before it finds out that v is not yet bound. (ii) If the variable v is bound
in np, ¢ has to scan pee(n,, ny, n,t) before it can locate co(v, np,t). Because
pee(ng, n,n,t) and pec(n,, ny, n,t) are infinite sets in logic languages, ¢ must

always search a finite set in order to locate co(v,np,t). O

Proposition 4 (Deterministic-access) For the following combinations of ai-

tribute and value pairs,

49

Case 1: {dimension[finite|}

Case 2: {dimension[infinite],association[binding]}

Case 3: {dimension[infinite],owner[worker|thread],instance[finite]}
Case 4: {dimension[infinite],association[owner],instance[infinite]}

Case 5: {dimension[infinite],owner[node],association[owner],instance[finite] }

it is always possible to build @ conditional context, which provides deterministic-

access, for case 1, 2, and 3, whereas il is not possible for case 4 and 5.
(Proof)

e Case 1: Due to dimension[finite], a conditional object consists of a finite
number of cells; the access of a cell in a conditional object never engages a
search of an infinite set.

e Case 2: A conditional object may have an infinite number of cell due to
dimension[infinite]. Because the conditional object is associated with b(v)
due to association[binding], it is accessed by some descendent nodes of
b(v). The variable will not be bound in the descendent nodes of b(v) on
account of the single assignment property of logic languages. Hence, it
is possible to always put the binding in the first cell, that conforms to
association[binding]. In this case, the access of the conditional binding
does not include any search of an infinite set.

e Case 3: In spite of capacity[infinite], at most one binding is stored in a
conditional object, provided attribute “owner” is either worker or thread
and “instantiation” is finite. In this case, it is always possible to store the
binding in the first cell. Hence, the access of the conditional binding does
not involve with any search of an infinite set.

e Case 4: A conditional object may have an infinite number of cells due to
dimension[infinite]. As explained in Figure 3.2 (d), a conditional variable
is stored in a cell which cannot be determined beforehand. Therefore, the
access of the conditional binding in a conditional object involves with a

search of an infinite set.

e Case 5: {dimension[infinite],owner[node],association[owner],
instance(finite]} As discussed in section 3.4, this case always results in a
dynamic binding environment. Although a dynamic binding environment is
beyond the scope of this chapter, a briel discussion is offered to illustrate
the Time Stamp method. Suppose that a binding of a variable is placed in
the next free cell of the conditional object with some semantic information
which will be used to identify the binding node. Because a conditional object
for a variable v has {association[owner],instance[finite]}, it is accessed
by descendent nodes of o(v). Moreover, the variable can be bound in the
descendent nodes of o(v) other than those of b(v). Because the number of
the descendent nodes of o(v) is not finite in logic languages, it is not possible
to use a specific cell as does in case 2. The access of a conditional binding

always involves with a search of an infinite set. O

51

Proposition 5 (Physical-sharedness) For the following combinations of at-

tribute and value pairs,

Case 1: {owner[node]}
Case 2: {owner[worker]}

Case 3: {owner[thread]}

it is always possible Lo build a conditional context, which provides physical-

sharedness, for case 1, whereas il is not possible for case 2 and 3.

(proof) Given a node n and its two child nodes n; and n,, suppose that threads ¢,
and t, execute respectively n; and n,. Consider a conditional variable v (o(v) X n)

and its conditional object.

o Case 1: Because co(v,n,t,) and co(v,n,t;) are defined as the same condi-
tional object, gee(n,n,t,) is always equal to gee(n,n,ts).

o Case 2 and 3: Suppose that workers w; and w; execute respectively ¢; and
ty. Because co(v,n,t;) and co(v,n,t,) are defined as different conditional

objects, gec(n,n,ty) is not equal to gee(n,n, i;). O

Proposition 6 (Preservedness) For the following combinations of attribute and

value pairs,

Case 1: {owner[node]|}
Case 2: {owner[thread]}

Case 3: {owner[worker]}

it is always possible to build a conditional context, which provides preserved-

ness, for case 1, whereas it is not possible for case 2 and 3.

(Proof) Consider a thread switching from a node ny of a thread ¢, to a node n,

of a thread ;. Let the least common ancestor node be n..

e Case 1: Because of {owner[node]}, gec(ny, n1, 1) N gee(ng, na, ty) =
gee(ne, ne, t). For correct execution, the system must be organized such that
gee(ne, e, ty) is not written by either ¢, or ¢, in any node n (1 X nand

ny =X n). Therelore, gee(ny,ny,t,) is preserved while thread ¢, is executed.

32

o Case 2: Because of {owner[thread]}, gec(ny,n,t1) N gee(ny,na,ta) = &
gee(ny,ny,) is preserved while thread ¢ is executed.

o Case 3: Suppose that a worker is executing t; and {2 in a interleaved fashion.
For a conditional variable v (o(v) = n.), co(v,0(v),t1) and co(v, o(v), t2) are
always defined the same. Some conditional objects in gee(ny,ny,ty) are thus

written by t2; gee(ny,ny, ty) is not preserved while thread ¢, is executed. O

3.4.2 Performance criteria

In this subsection, we derive the constant time condition for each performance
criterion by using the properties defined for conditional contexts. In the discussion,

a binding environment B implementing some conditional context cc is denoted as

B(ec).

Lemma 1 The variable accesses are constant time operations in an OR-parallel
logic programming system with a binding environment B(cc) iff cc provides both

deterministic-locatedness and deterministic-access.

(Proof) Variable accesses occur either for private or for conditional variables.
(i) The bindings of private variables can always be accessed in a constant time
because the value cells can be directly located by its name. (ii) If cc provides
deterministic-locatedness and deterministic-access, the variable accesses of condi-
tional variables do not involve with any search of an infinite set; otherwise, they
involve with a search of some infinite set. From (i) and (ii), variable accesses
are always constant time operations, iff cc provides deterministic-locatedness and

deterministic-access. O

Lemma 2 The task creation is always a constant time operation in an OR-parallel
logic programming system with a binding environment B(ec), iff cc provides in-

heritedness.

(Proof) Suppose that node n; is the parent of node ny and thread ¢ is about to

create a task for na after completing ;. Normally, task creation for ny consists

53

"ssoupoatesard pue ‘ssouporeis-jeorsfyd ‘sseode-orjsiururajop
‘$89UPoJeOO[-01)STUTUIIS)OP ‘ssoupajiiatul ‘ssaupajoajord Kparyoadsar 10] puess

SUd PU® ‘Sd ‘VA “IA ‘NI ‘I¥d :senaadord oyy pue soynquyyy :g'g o[qe],

A | A L u|ul £ 1 7T

I o A P Y o I | d £c

L IR T L L S I I (&4

MH A Ak o] L] (A B R 1%

1A £ Al u | Alu] £ I 0%

d04 ‘HO I’(1‘{ Z.'IK IX 7Y z‘(oA I 0] N 61

oT, A | o0 | 18 | L] L0 I 81

X X X % | % X A Jq A

A A LK u | A 1 a1

Aol u| A qu | Lu A Jd I e1

A fu] AL u] A A I | ¥1

Kol u | h] u | L] 4 o A X 1 &l

Ll u] u| L u A I 71

A lu| L] L] u] K A I 11

Ao lu| A L] L] eu [0 01

Aol | A L] L] U J A 6

U | A | LU | H L I Q

20 | o0 | gk | G0 | u A J I L

|| A Gu | A A I q 9

M| U pqh] u | A L A J M| g

U M| u | (A | A I i

A gt | (K| A u| A A 1 ¢

il Il I R T IR B I 0 4

€D AA VA | 0 [0] & | £] 8] gu A A I
odwrexyy || S | §d | v | Td [NI | Jad || g [sug|ssy [nv
sotadol g euorjerad(SOINALIY)Y [RUOL}IPLO))

of the creation of the global conditional environment gee(ny,ns,t) and the local
environment {(ny). (i) Because gee(ng, na,t) is an infinite set in logic languages,
the only way to create gee(ng,ny,t) in a constant time is to reuse gce(ng,ny,t)
and to create only the difference between gee(ng,ny),t) and gee(ng,ng,t) in a
constant time. If ec provides inheritedness, the difference between gee(ny,n,t)
and gee(na,ng,t) is always an finite set; otherwise, it is not an infinite set. (ii)
Creation of a local environment is alway a constant time operation since the local
environment [(ny) is a finite set in logic languages. From (i) and (ii), the task

creation is always a constant time operation, iff ec provides inheritedness. O

Lemma 3 A task swilching is always a constant time operation in an OR-parallel
logic programming system with a binding environment B(cc), iff cc provides pro-

tectedness and physical-sharedness.

(Proof) Suppose that a worker performs a task switching from a node n; in a
thread t; to a child of a node ny in a thread ¢; and in consequence of the task
switching, thread ¢, is created for the worker. Let the least common ancestor of
the two nodes be node n.. The task switching is reduced to the problem of creating
gee(ny,na, ty) on gee(nz, ny, t,) to be the same with gee(ny, na,t2). Note that it is
not possible to create gce(ng, ng,t,) in a constant time by copying gee(ng, n2,t2)
because gec(ng,n2,t7) is an infinite set.

We will divide the creation of gee(riz, n2,1,) into two parts: gee(n.,n.,t,) and
the remaining part. (i) Suppose that ce provides physical-sharedness. Thread ¢,
shares with ¢, the global conditional context of n. and also ¢, shares with ¢, the
global conditional context of ns, i.e., gec(na,na,t,) = gee(ng, ne,ta). Therefore,
the creation of gee(ne, ne,t,) is inherently a constant time operation. However,
cc must always provide protectedness; otherwise, it is impossible to construct
a binding environment which functions correctly. (ii) Suppose that cc does not
provides physical-sharedness. Threads ¢, and ¢, do not share a conditional context,
and thus t, will have its own conditional context. There are two ways to create
gee(ng, na, t,), either (a) by newly allocating gee(ng, na, t,) and copying the values

stored in gee(ng, na, t2) into it, or (b) by converting gee(ne, na, ty). In case (a), the

creation takes a non-constant time, because gee(nz, ng, t3) is an infinite set. In case
(b), the conversion of gee(n., ny,t;) into gee(na,ng,t,) consists of the following

parts:
1. (deinstallation:) repealing e¢b(n.,,n,) from gee(ng, ne, t1), and
2. (installation:) installing e¢b(n.,,n,) into gee(na, na, ty).

Now that ¢b(n.,,n;) and cb(n.,,n;) in the above steps are infinite sets and the
conversion thus always takes a non-constant time, the task switching always takes
a non-constant time. From (i) and (ii), the sufficient and necessary condition for
a constant time task switching is that cc must provide physical-sharedness and

protectedness. O

Lemma 4 A thread switching is always a constant time operation, if cc provides

preservedness.

(Proof) Assume that a worker w suspends the execution of a thread ¢; after
computing a node n;.

(i) Consider a thread t; being suspended and to be computed from a node
ny by any worker. Suppose that w switches from ¢; to ¢,. If cc provides pre-
servedness, gce(ni,ny,t;) is preserved without involving with any non-constant
time operation both at thread switching and during the execution of thread ¢,. If
b does not provide preservedness, the contents of gee(ny,ny,t;) must be saved in
some other place. Now that gec(ny,n;,t;) is an infinite set, the thread switching
becomes a non-constant time operation. Therefore, thread switching is always

a constant time operation, iff ce provides preservedness. (ii) Suppose that there
is no thread being suspended and thus a worker must take an unexplored child
node of a node ny on a thread #,%. Because a new thread must be created as a
result of the worker’s move, the move includes both task switching and a thread

switching, i.e., creation of #,, in task switching and thread switching from ¢; to ¢,

?Under an infinite number of processors, a new thread ¢, must be always created as a result
of the thread switching.

cths | cts | ete | cva

Protectedness

Inheritedness

Deterministic-locatedness

Deterministic-assess

Physical-sharedness

Preservedness

Table 3.3: The conditions for the constant operation: cths, cts, ctc, and cva
represent respectively constant time thread switching, constant time task switch-
ing, constant time task creation, and constant time variable access.

while keeping ¢; being suspended. Provided the task switching is done by creating
gee(ng, na, t,), 1, will be executed without destroying gee(ny,ny,t1) if and only if
cc provides preservedness. I'rom (i) and (ii), thread switching is always a constant

time operation, iff cc provides preservedness. O

The analysis result is summarized in Table 3.3 and 3.4.

3.5 Application of Analysis Results

In this section, we apply the analysis result in section 3.4 to a set of binding
environments. In the selection of the binding environment, we exclude optimized
versions of some binding environments. However, we believe that the discussion
on the unoptimized ones can be mostly applied to the optimized versions of the
selected subset. For example, the discussion on the Binding Array [79] can be
applied to the Paged Binding Array [40].

The Binding Array (BA) [79] provides a binding array for each worker. A
conditional object is defined as a word in the binding array. Attribute “owner”
is worker because all the threads, which are scheduled in sequence with re-
spect to a worker, use the binding array belonging to the worker. The rest
of the attributes are very straightforward. The attribute-value pairs become

{owner[W],association[O],instantiation[['],capacity[F]}

Conditional Attributes

Performance Criteria

All | Ass | Ins | Dim || cths | cts | ctc | cva Example

1 1 F n n |y y VA,VV,CB
2 0] I n n y n

3 [F n n n y

4 | n n n n

5 W F F n n y n

6 B I n n y n

7 | I n n n n

8 [n n n n

9 F [y n y y

10 0 I y n y y

11 I F y n n y

12 I y n n

13| T F F y y n

14 B [y 1 y n

15 I I? ¥ n n n

16 l y n n n

17 I F X % | % X

18 I y n |y n TS
19 0 | F y y n y CE,RCE,DT
20| N I y y n n VI
21 F F y y y n HW
22] y y | ¥ n

23 B | F y y n n

24 1 y Yy n n

Table 3.4: Attributes and the performance criteria

In the Version Vector (VV) [44], an array called a version vector is allocated
for each conditional variable and its size is the same with the number of workers.
According to the definition of a conditional object, a version vector itsell is not
defined as the conditional object. Instead, a conditional object is defined as a word
in a version vector because only one cell is always accessed during the accesses
of a conditional variable. It is straightforward to note that the attributes of the
conditional object are the same with the Binding Array.

In the Copy-Based (CB) OR-parallel systems [5], a program is executed by
a fixed number of workers in which each worker is a sequential engine with con-
ventional four stacks and does not normally have any additional data structure
for conditional objects. A conditional object is thus defined as a memory cell in
the environment or the heap stack. Because such stacks are allocated for each
worker, attribute “owner” is worker. The cells of a conditional variable are as-
sociated with the owner node, only one cell exists for each path with respect to
a thread, and each cell contains only one binding. The resulting attribute-value
pairs become {owner[W],association[O],instantiation[F],capacity[F]}.

According to the above discussion, the Binding Array, the Version Vector, and
the Copy-Based schemes have the same attributes. It indicates that they are
inherently based on the same theoretic foundation and only differ from each other
in their implementations.

In the Hash Window (HW) [13], a conditional object is defined as a hash
entry associated with the binding node. Each hash entry keeps only a single value
that will not be updated by other threads. The attribute-value pairs become
{owner[N],association[B],instance[F],capacity[F]}.

In the Variable Importation (VI) [60], a conditional object is defined as an
infinite array. Given an array defined for a variable v in a node n, a cell is
provided for each node in path(n,,n) if v is not yet bound; otherwise for each node
in path(n,, b(v)), where n, and n, are respectively the owner and the binding node
of variable v. It should be noted that given a parent node n, and its child node n,
the conditional object of v is defined differently unless it is not yet bound, although
an infinite array is allocated for v. It is because the variable access of v in n. needs

always to access one more cell than in n,. The array is associated with the owner

59

node and each array is written at most once. The resulting attribute-value pairs
become {owner[N],association[O],instance(l],capacity[l]}.

In the Closing Environment (CE) [24], the ROPM’s Closing Environment
(RCE) [53] and the Directory Tree (DT) [18], a conditional variable is renamed in
each node n and a conditional object is created for the new variable. Because the
owner node of the newly created variable is n, attribute “association” becomes
the owner node. Each conditional object has only one cell. The atiribute-value
pairs thus become {owner[N],association[O],instance[l],capacity[F]}. It should be
noted that these binding environments have capacity[F] whereas the Variable Im-
portation has capacity[l]. The difference causes that the Closing Environment has
a constant time variable access and the Variable Importation has a non-constant
time variable access. ‘

The Time Stamp (TS) [74] is a dynamic binding environment. As it is one of
well-known binding environments, we discuss in this chapter. In the Time Stamp,
a conditional object is defined as an infinite array associated with the owner node.
FEach cell in a conditional object is privately used by a single thread. A conditional
object may have infinite cells as each of a non-deterministic number of threads
may add one cell to it. For all nodes in a single path, the infinite array is always
defined as their conditional object because the variable access in a node always
needs to access all the cells which contain bindings regardless of the depth of
the node. Therefore, the Time Stamp has instance[F] and capacity[I]. The final
attribute-value pairs become {owner[N]association[O],instance[l],capacity[F]}.

With respect to the attribute-value pairs identified for each binding environ-
ment, we derived the performance criteria and listed them in Table 3.4. The
performance criteria identified for the above binding environments are identical

with the results obtained by Gupta [38].

3.6 Synthesis

This chapter presents a comprehensive study on the analysis of static binding en-
vironments. However, our study has a different goal from Gupta and Jarayaman’s.

Our study pursues a practical means which brings an insight into the design of

60

future binding environments. Ilence, it is focused on the uncovering of the entire
design space of binding environments and the identification of the operational
as well as the performance characteristics of each design. More specifically, it
provides a framework which illustrates conceptual as well as physical aspects of
the organization of binding environments and their operational aspects. We thus
believe that our analysis will provide a theoretic foundation of building the more

efficient binding environments.

61

Chapter 4

Analysis of Dynamic Binding Environments

Along with the analysis of the static binding environment, we carried out an anal-
ysis of the dynamic binding environment. As the main result of the analysis,
it is proved that ideal OR-parallel logic programming implementatiohs are the-
oretically possible in a system with a finite number of processors. Qur analysis
also shows that some semantic information must be used in the representation
and management of multiply bound variables for the design of ideal OR-parallel

systems. This chapter presents an analysis of the ideal OR-parallel system.

4.1 Introduction

With regard to the performance criteria, the ideal OR-parallel system is defined
as the OR-parallel implementation of logic programs in which the variable access,
task creation, and task switching are performed in a constant time not influenced
by the size of the search tree and the number of variables [38]. Regarding the
ideal OR-parallel system, Gupta and Jayaraman provide in a very comprehensive
and theoretic analysis a proof that the design of an ideal OR-parallel system is
‘not possible [38].

As well as to pure OR-parallel systems, the efficient design of a binding en-
vironment is still an important issue if the logic programming system exploits
parallelism more extensively. This is mainly due to the fact that binding environ-
ments affect either directly or indirectly the way that other types of parallelism can

be exploited [40]. This chapter revisits the issue of the ideal OR-parallel system

62

and presents an analysis result that ideal OR-parallel systems exist theoretically.
The main goal of the analysis is to benefit the parallel logic programming systems,
which exploit other forms of parallelism with the OR-parallelism, as well as pure
OR-parallel systems.

In this chapter, we present the analysis result mainly on the ideal OR-parallel
system with a dynamic binding environment. The rest of the chapter is organized
as follows. In section 4.2, a briel explanation on some theoretic concepts of task
switching is offered. In section 4.3, the analysis result on one part of task switch-
ing, to be called the deinstallation, is presented. In section 4.4, the analysis result
on the other part of task switching, to be called the installation, is presented. In
section 4.5, the analysis is presented on the existence of the ideal OR-parallel
obtained by combining the results of the previous two sections. Finally, section

4.6 summarizes the chapter.

4.2 TFormal description of task switching

Assume that workers w, and w, are respectively executing threads t; and t,, and
w; attempts to perform task switching from a node ny on thread ¢; to a child node
of node n, on thread t,. Further, let the new thread to be created for worker w; be
t,.. The task switching is denoted as [ny, 1, ccr, wi, (ng) =5 (ney), N2, ta, CCoy W2 =
t,], where n. is the least (most recent) common ancestor between n; and ng, n,
and n., are the child nodes of n. respectively in path(n.,n;) and in path(n.,n2),
and cc; and cc; are the conditional contexts owned respectively by w; and ws.
During the task switching, because gee(na,na,t,) must be available for w; to
execute t,, the task switching is reduced to the problem of preparing gce(na, na, ty)
on gee(na, ng, t,) to be the same as gee(na, na, t,). Below, the problem is describe
respectively for the following cases: (I) gec(ne,ne,t1) = gee(ne, ne, ty) and (II)
gee(ne, e, t1) # gee(ne, i, ta)-

Case I: In this case, threads ¢; and t, share the same conditional context. The
bindings made in path(n.,n) are never stored in gee(ng,ne, 1) but always in
pee(ne, ,m1, 11, t)- An example of this case is the Hash Window [13]. This indi-

cates that thread t,, can share gee(its, ng, to) with thread ¢y for gee(nz, no,). The

63

preparation of gce(ng,na,t,,) is thus always a constant time operation. However,
the design of an ideal OR-parallel system is not possible since the variable ac-
cesses are always non-constant time operations, regardless of whether the binding

environment is static or dynamic [38, 56).

Case II: In this case, threads ¢, and ¢, do not share a conditional context, and thus
t, will have its own conditional context. An example of this case is the Binding Ar-
ray. In a static binding environment, there are two ways to prepare gce(ng, n2,t,),
either (a) by newly allocating gee(nq, n2,1,) and then copying the values stored
in gee(ng, ng, ty) into it or (b) by converting gee(ne, na, t1) into gee(na, ng, t,). In
case (a), the creation takes a non-constant time, since gce(ng, nq,13) is an infinite
set'. In case (b), the conversion of gee(n.,na,t) into gee(ng,na,t,) consists of

the following parts:
1. (deinstallation:) repealing cb(nc,,n;) from gee(ne,ne,t1), and
2. (installation:) installing cb(n.,,n2) into gee(na, na, t1).

In this case, the variable access and task creation can be realized as constant time
operations [38, 56]. However, since ¢b(n,,,n;) and cb(n.,,n) in the above steps
are infinite sets and the conversion thus always takes a non-constant time, the

task switching always becomes a non-constant time operation.

Remarks: Except for a dynamic binding environment in case II, all other cases
cannot be the candidates to realize an ideal OR-parallel implementation. In follow-
ing sections, the ideal OR-parallel system is explored with respect to the dynamic
binding environment in case II. In the analysis, the task switching and variable
accesses are mainly concerned, since it is very straightforward to assess that the
task creation is a constant time operation according to the findings in [38]. It
should be noted that the only way to achieve the constant time task switching
is to eliminated both the deinstallation and the installation parts from the task

switching, while not introducing any new non-constant time operation.

MIf the cardinality of a set cannot be limited to a fixed number, it is defined as an infinite
set.

64

4.3 Deinstallation-Free Task Switching

In this section, it is proved that a task switching can be performed in a dynamic
binding environment, in which gee(n, ne, £;) is not equal to gee(ne, ne, t2), without

the deinstallation part while not introducing any new constant-time operation.

4.3.1 Definitions

Associated with a thread, some definitions are explained. Note that the definitions
are applied to the last path when a thread executes more than one path of the

search tree.

Span: Consider a task switching [12), 1y, cey, wy, (12,) =5 (1e,), N2, L2, CCoy W2 = L),
After the task switching, thread {,, executes path(ny,ny). In this case, <ng,,n;>
is defined as the span of thread t, and is denoted as span(t,). Note that the
starting node of the ¢,’s span is not defined as the starting node, ny, which will
be actually executed by ¢,. If the thread backtracks to an ancestor node n of n.,,

the starting node will also be replaced with node n.

Valid span between two subsequent threads: Consider two subsequent
threads ¢; and ¢, scheduled on a conditional context?’. The bindings made by
thread t; are either valid or invalid for the subsequent thread t;. The part of
span(t;) that makes valid bindings is defined as the valid span of ¢; with re-
spect to t; and is denoted as vspan(ty,ts). If ¢, is the last thread scheduled on
a conditional context, span(t,) itself becomes the valid span and is denoted as
vspan(tn,-)

Consider a thread ¢, created by task switching [ny, 1, ce1, w1, (e,) =5 (e,)yn2,
ty,cea,wq = t,]. Let the spans of threads ¢, and %, be respectively < ng,,ne, >
and < n,,mn., >. In case of n,, < n, and nc X n,,, the cb(n,,,n.) is valid for
thread t,, whereas the cb(n., ,n.,) is not valid for thread ¢,. Therefore, the valid

span vspan(t,t,) becomes <y, n.>.

2In this chapter, in order to make the presentation more clear, we assume that each worker
has only one conditional context. However, the discussion will be applied to the system in which
a worker has multiple conditional contexts.

65

Subsumption, live thread, and dead thread: Consider two threads ¢; and
ty scheduled on the same conditional context. Let #; be scheduled prior to ¢, and
let their spans be respectively < ny,,ne, > and < ng,,ne, >. Il n, = ng,, then
thread ¢, is subsumed by thread ty. A thread (; is defined as a dead thread, if there
exists at least one thread which is scheduled later than ¢; on the same conditional
context and subsumes ¢;. On the other hand, if ¢, is not subsumed by any thread

scheduled later than ¢y, thread {; is defined as a live thread.

4.3.2 Chronological partial order

For a given conditional context, the live threads are in a special relation. Consider
an ordered set of threads T, ={11, t2, ..., t»} scheduled consecutively by a worker
with respect to the same conditional context. Let Ti.={t1, t5, .. .,tl,} (m <n) be
the set of live threads and the span of thread ¢ be <ng,,ne;>. Then a relation,
to be called the chronological partial order relation, is always maintained among

the threads in Tj;ye, as described below:

o Nodes, n} ,n} ,...,n} , have the following relation: ng, Xnj,...<n;

o The valid spans, vspan(t}, 1)), vspan(ty,13), ..., vspan(t,, i), vspan(t. ,_),

my 1 m

correspond to path(n} ,n.).

b} [

In Figure 4.1, four threads, t,, 5, 13, and {4, are scheduled for the same worker
wy by task switching from n; to ns, from n., to nj, and than from n., to ng,
where ne; (2 <2 < 3) is the last node in the threads ¢;’s span. Figure 4.1 (b)
depicts the span of each thread and it is noted that thread ¢, is subsumed by ¢3. In
this situation, Tye, and Ty are thus determined respectively as {t1,12,t3,t4} and
{t1,13,14}. Figure 4.1 (c) shows the chronological partial order relation among the
live threads, in which the starting nodes of live threads, n,, , n,,, and n,,, appear
ordered in the same path (n,, < n, < ng,) and the valid spans of the live threads,
vspan(t,ta), vspan(ts, ty), vspan(ts,-), constitute path(n,,, n,).

The chronological partial order has the following two properties.

e Property 1: the valid spans of all the live threads constitutes the current

search path, and

66

vspan(ty i3)

vspan(ty ty)

Lvsrwm,.)

() (®) ()

Figure 4.1: An example of the chrononical partial order relation

o Property 2: due to the single assignment property of logic variables, the
bindings made in the valid spans of live threads are not destroyed during
the exection of all the previous threads and are maintained in the conditional

context.

The two properties indicale that the deinstallation part of task switching can be
avoided if it is possible to maintain the information on live threads and their valid

spans in the sytem.

4.3.3 Description of canonical binding environment B,

In this section, we define a canonical binding environment Bj to explain constant
time deinstallation-free task switching. In By, each worker w; has a private con-
ditional context cc;. That is, gee(n,n,t;) is not equal to gec(n,n,t;) for a node n
when thread #; and t; are executed by different workers. A conditional object of a
variable is associated with its owner node. The organization and management of
a conditional context are assumed the same with the Binding Array [79] except

the data representation and variable dereference.

Data representation: Each entry in the conditional context has a conditional
binding represented by two tuples <tag,data>. The tag is a value with two
components <TID, BOL>,in which the TID is the thread identifier that made the

binding and BOL is the or-level® of the binding node. The data is the conventional

data term as in the WAM.

Thread table and task switching: Associated with each conditional context,
a table, to be called a thread table, is provided. The thread table is an array
in which each element contains some information on a thread. Whenever a new
thread is created from a task switching with respect to a conditional context, the
information on the thread is recorded in the next free element of the thread table
and the offset to the thread table hecomes the identifier of the thread.

Each element of the thread table has three components <LDflag, SOL,IOL>.
LDflag indicates whether the thread is live or dead. SOL (Starting Or-Level) is
the or-level of the starting node of the corresponding thread’s span. IOL (Invalid

Or-Level) is the or-level of the first invalid node after the starting node.

OR-level
1425357 45137 8

1
3 ADflag| |D D|D|D|D|D|D
5 soL (14| 2|5|3]| 5] 7[4] 5 3[7] 8
7
5 1 | oL |2 3 7\ 8|9
l [—1
Wl gty ts t5 17 tg tg tiplyy Y2 Wl 3 lts 515 9oty by
The input treads Thread table

Figure 4.2: The histogram of thread spans and its thread table

Figure 4.2 depicts the histogram of thread spans for twelve threads scheduled
on a conditional context, and the contents of the thread table when thread ¢, has
been executed. The blank LDflag in the thread table indicates that the thread is
“live”. TOL is recorded only for the “live” thread. The LDflag and the IOL field

- of some live threads are updated for each task switching. For example, when the
task switching occurred for thread ts, the IOL value of thread ¢5 was set to 3 and
the LDflag of thread t4 was set to “D”.

Under By, in a task switching [ny, 11, cer, wy, (ne,) =% (ng,), na, ta, cca, wo = tal,

the deinstallation of cb(n,,n,) from ce; is not performed, whereas the installation

3The or-level of a node refers to the depth in terms of choice points created for the evaluation
of ancestor nodes.

68

of eb(ne,,n2) into cey is still performed. Instead, the update of the thread table
is needed to record the newly dead threads and to adjust the valid spans of live

threads allected by the task switching.

Task switching and conditional variable accesses: As the deinstallation is
not performed during task switching, some bindings in a conditional context are
not valid. In the dereferences of conditional variable accesses, the validity of data
is checked as follows: for a binding in a conditional context, the information on
the thread that made the binding is retrieved from the thread table by using the
TID of the binding as the index to the thread table. When the LDflag indicates
that the binding thread is alive, the binding is accepted as valid if the IOL is
smaller than the BOL of the binding. In terms of the constant time condition, the
variable access in B is the same as in the Binding Array [79] and is a constant

time operation.

4.3.4 The modified thread table

In By, the thread table must be updated at each task switching, whereas dein-
stallation is not needed in task switching. In the update, the LDflag of some
live threads, which will be subsumed by the newly scheduled thread, is marked
“dead”, and the IOL of some live threads are adjusted. In fact, if the update is
made through the inspection of each thread in the thread table, the update of
thread table is not a constant time operation as the number of threads sched-
uled for a worker is not theoretically limited to a finite number. In other words,
instead of the elimination of the deinstallation part from task switching, a new
non-constant time operation is introduced. Therefore, we slightly modify B to
have a different form of the thread table with which the constant time update of
the thread tables can be achieved.

In the modified thread table, an entry does not have the LDflag and the IOL
as before. Instead, the subsumption relation regarding a group of threads are
maintained in the table. The idea behind the modification is based on the fact
that a group of subsequent threads scheduled on a conditional context do not have

to be inspected in the update of the thread table when they show monotonously

69

increasing values in their starting or-levels. Consider the three cases which show
different patterns of the thread span histogram depicted in Figure 4.3. In all
the three cases, the sequence of threads, t5,1,,...,1,_, shows increasing values
of their starting or-levels before a new thread ¢, is scheduled, which is hereafter
referred to as a triangle (in the thread span histogram) since the shape of the
histogram looks like a triangle. In case (a), when {,, is scheduled, the sequence of
threads including t,, still shows increasing values of the starting or-level, i.e. forms
another triangle. As ¢, does not subsume any previous thread, it is not necessary
to update the thread table. In case (b), ¢, has a smaller starting or-level than the
previous one. [t is not needed to inspect each entry of the thread table of the whole
previous threads since it is enough to update the previous entry. It should also
be noted that the sequence of new live threads, which does not contain ¢,_; and
includes ¢, forms another triangle, as depicted in the right-hand side of Figure 4.3
(b). In case (c), the starting or-level of thread ¢, is the smaller than the previous
¢ threads (i > 2), more precisely SOL(t,) > SOL(;) (j=s or 1 < j < n —1)
and SOL(%.) < SOL(#) (n —i 41 < k < n), for some i (i > 2), where SOL(%)
represents the starting or-level of ¢. In this case, SOL(%,) is stored in the entry of
t; in the thread table, as depicted in the small box in Figure 4.3 (c). Note that
thread ¢, is the first thread in the triangle formed by the previous threads and is

later denoted as the owner thread of the triangle.

OR-level % 1
OR-level OR-level OR-level OR-level
1 1 1 1 2 p 115 "
3l [« 3 ([~ 3 S 3 5 3 \5
s| (] LIS 5 S s|lIve 2 s A
7 & 7 A 7 s T 7 N
o LU Toe s LR o LU s LU o U
stz tn-én~1trl lst‘l tz 1n-énd[n stz tn-énqtn tstity ‘n-érmtn ‘éti f2 tn-én-gln
(a) Caset (b) Case2 (c) Case3

Figure 4.3: Three patterns of the thread span histogram

The triangle, a group of live threads with the increasing starting or-levels, is

recursively defined as follows: a single live thread span is defined as a 0*-level

70

triangle. The n'*-level triangle consists of a set of triangles, where each one is an
arbitrary [-level triangle pattern (0 < [< n) and at least one of them is a (n—1 ®
level triangle. [Figure 4.4 shows au example represented in a shorthand notation
such that a triangle is a group of threads. It shows five triangles, T\, 75,...,Ts,
and the first three 1%¢-level triangles form a 2"%-level triangle, and the next two
forms another 2%¢-level triangle. Furthermore, these two 2"¢-level triangles form
a 3"-level triangle.

The first thread of each triangle is defined as the owner. The starting or-level
of the owner thread is defined as the starting or-level of the trtangle. The owner
thread keeps in the thread table the starting or-level of the subsequent triangle of
the same triangle level. For example, the first thread of triangle T, becomes the
owner respectively of the 1%-level triangular T and the 2nd_evel triangle formed
by triangles Ty, Ty, and T3. 1t thus has two values 4 and 3, the starting or-levels
respectively for the subsequent 1¥-level triangle Ty and for the subsequent ond._
level triangle formed by T4 and Ts. The values stored in an owner thread are
used in identifying the subsumption relation between the threads in the related
triangles. Consider the triangular Ty in Figure 4.4. At the execution of the last
thread in Ts, the threads in Ty belong to two triangles, the 1¥-level triangle T,
and the 2"¢-level triangle formed by T;,T,, and Ts. In the 1%¢-level, the threads
in the area marked as region C' are dead, since they are subsumed by the first
thread in Ts. In the second-level, the threads in region B are dead, subsumed by
the first thread of the 2"¢-level triangle formed by T4 and T;. Threads in region
A remain alive since their starting or-levels are smaller than 3 (the minimum of 3

and 4). Thus, their IOLs become 3.

The modified thread table and variable access: In the access of a conditional
* variable, if the conditional object has a binding, we must determine (i) whether
the thread which made the binding is alive or dead and (ii) whether the binding
binding is valid or not if the thread is alive. For a conditional binding, the TID
of the binding is used to find the entry of the binding thread in the thread table.
Each entry in the thread table has a field that keeps pointers to each owner thread
of the triangles to which the thread belongs. The BOL of the binding is compared

with the value kept in each owner thread for every triangle level. As the result of

71

B B @ 0O

Figure 4.4: A thread span histogram with multi-triangle levels

the comparison, if the BOL is equal to or larger than any of the values, the binding
is invalid since the binding thread is dead; otherwise, the binding is valid. Here,
the complexity of a variable access becomes O(L) since a maximum L comparisons
are required, where [is the number of triangular levels created by the live threads

scheduled on the conditional context.

Algorithm to update the modified thread table: The simplified version
of the algorithm to update the information on some threads in a thread table
is shown in Figure 4.5. The algorithm has four input parameters; Table is the
modified thread table, Tid is the thread identifier of the newly created thread
and is used as the index to the thread table, input is the starting or-level of the
thread, and Level is the current triangular level created by the live threads. An

entry of the modified thread table is represented by the following components:
1. MyOrLevel contains the starting or-node level of the thread.

2. LevelOwner is an array that keeps the identifiers for the owner thread of

each triangle level.

3. NextTR contains the starting or-levels of subsequent triangles of each tri-

angular level.

The complexity of the above algorithm is O(L), where L is the number of
triangle levels created by the input threads. This is the same with the conditional
variable access, as explained earlier. However, it should be noted that the algo-

rithm takes the starting or-level of the new thread. It requires that the scheduler

72

Marking(Table,Tid, Input, Level)

Begin
1 Table[Tid] .MyOrLevel := Input;
2% for (k=1; k < Level+l; k++)
; Get pointer of owner nodes
B Table[Tid] .LevelOwner[k] := Table[Tid-1].LevelOwner [k]
..... ; Case (b) in figure 3 is omitted

4: if (table[Tid-2].MyOrLevel > Input) {; Case (c) in figure 3 (i=2)

5: Table[Table[Tid-2] .LevelOwner [0]].NextTR[0] = Input;

6: Table[Table[Tid-2] .LevelOwner[Levell] .NextTR[Level]l = Input;

7: Table[Tid] .LevelOwner[0] = Tid;

8: Level = Level + 1; ; Increase triangle level
}

End.

Figure 4.5: Algorithm to update the modified thread table

has to find the common ancestor node between thread ¢; and thread ¢, in a task
switching from ¢; to a node in ;. Although this will introduce a non-constant
time operation in every task switching, it is at this point assumed that the sched-
uler can find the common ancestor node in a constant time. In order to avoid
digressing from the deinstallation issue, the problem will be answered in section

4.5.

4.3.5 M-level triangular scheduling

Previously, it is shown that both the update of the thread table and variable ac-
cesses have the complexity O(L), where L is the maximum value of the triangular
level created by the live threads. However, if the scheduler manages program exe-
cution such that the maximum triangular level created by the live threads on each
conditional context in the system is not the larger than a constant number m, the
complexity will become O(1). In this case, both the update of thread tables and
variable accesses are reduced to constant time operations. In this section, such an
OR-parallel schedule will be called an m-level triangle scheduling. We will provide

a clue that such a schedule is feasible by proving the following proposition.

Proposition 7 For a given logic program, there exists always an m-level trian-

gular schedule that produces the correct answer.

(Proof) Consider the search tree for a given logic program. Suppose that the
system has only one worker w;. [urther, assume that w, executes the left-most
path first when there exists one or more unexplored paths. In this case, when w,
finishes a path p and ny,n.,..., and n, (n; < ny < ... < n,) of the path have
at least one unexplored child node, w; visits the nodes from n, to n,. At each
visit it chooses the thread for the lelt-most child node. In the resulting thread
span histogram, the first one, which corresponds to path p, is always the tallest
and the height of remaining ones increase monotonously. Hence, the first thread
and the last one remain alive since each thread inside the two is subsumed by
the subsequent one. They thus form one-level triangular schedule. If the above
principle is applied recursively to the entire search tree, the final schedule is always
a one-level triangular schedule. Therelore, in a system with a single worker, there
always exists an m-level triangular schedule. Suppose that an m-level triangular
schedule exists each in a system with k workers, wy, wa, . .., w,. Now, a new worker
w1 1s added to the system. It then executes the last triangle of the m-level
schedule executed by w; (1 <i < k) and w; executes the remaining part except
the last triangle. The other workers execute the same task which they execute in
the system with k workers. In this case, both w; and w4, have m-level triangular
schedules since the schedule resulting from the removal of the last triangular from
an m-level triangular schedule is still an m-level triangular schedule and also the
last triangle is also a m-level triangular schedule. Therefore, all the k + 1 workers
have m-level schedules. By induction over the number of workers, it is proved that
in a parallel system with more than one workers there always exists an m-level
schedule for each worker that produces the correct answer. O

For clarity, we provide an example for which the case of a single worker is

examined in Figure 4.6 (without explanation).

74

OR-level

3| R IH||||_. :

Y talatats 61748 tg tygtyg by blatty s tg 7 te tg tiptysty
Threads

(a) (®)

Figure 4.6: An example triangular schedule

4.4 Installation-Free Task Switching

ng

In a task switching [ny, ¢y, cer, wy, (ng) = (ng,), na, ta, cea, we = t,] the eb(ng,, ng)
needs to be installed into gec(ng,ny, i) under the binding environment with
gee(ne,ne, ty) # gee(neg, ne, ta). In this case, the installation is inherently a non-
constant time operation. In this section, it is proved that the installation part
of the task switching is eliminated from task switching without introducing any
non-constant time operation. To this end, another canonical binding environment

B, is defined on which the following analysis will be based.

4.4.1 Description of canonical binding environment B;

B is defined to be the same as B except that instead of the thread table provided
for each conditional context, one globally shared table, to be called the common
ancestor node table (CANT), is provided. Consider two workers w; and w; exe-
cuting respectively threads ¢; and ¢; with respect to conditional contexts cc; and
ccj. Let the least common ancestor node of the two threads be n.. Suppose that
cb(nr,nep) has m elements, where n, is the root node and n,, is the parent node of
ne. Then, entries c¢;[k] and c¢;[k] (1 < k < m) B, are always assigned to the same
variable for w; and w;. Hence, the bindings in the entries are always the same.
The main idea behind B, is to maintain the information on the common ancestors
between all the threads currently being executed by the workers in the system. It
is used to determined whether an entry in a conditional context of a thread is for
the same variable or not as to the other threads. Even if the installation is not
made during task switching, we can obtain the conditional bindings from another

conditional context by using the information on the common ancestors.

Common ancestor node table (CANT): The common ancestor node table
is a two dimensional array. Its size is determined by the number of conditional
contexts in the system. Consider a parallel system in which n workers, wy, w,, . ..,
and wy, cooperate to execute a logic program. CANTI[i][j] (1 < 4,5 < n), the
element on i* column and j** row, contains the or-node level of the least common

ancestor node between ¢; and ¢;, where {; and {; are the threads being executed

76

respectively by w; and wj. Figure 4.7 (a) shows an example CANT in a system

with four workers.

or-level 1 i

2 2
", Wy X 3 2 2

3 W x| 2|2 3 lf\
4 W X 4 4 X
< w3
w, W2 .f W, « Wa wi) 3 »

W3 PE,4 W3 Wa

(a) (b)

Figure 4.7: An example of the common ancestor node table

Task switching and conditional variable access: Consider an n-worker
system with B, as its binding environment. In the system, the installation of
cb(ne,, 1) is performed from gee(ne, nc, t1) is normally performed in a task switch-
ing [n1, %1, cer, wr, (ne,) 2% (N), M2, o, cCaywe = to]. But, the installation of
cb(ney,m2) to gee(nz,na, ty) is not performed. Instead, it is newly needed to up-
date CANT[1][j] with the or-levels of the common ancestor nodes between the
new thread ¢, and thread ¢; for all j (2 < j <n).

In this system, some bindings concerned with worker w; are not available in the
conditional context c¢;. Suppose that a system has n workers and the k" entry of
conditional context ce; is assigned to a conditional variable v. In the access of v
by w;, if cc;[k] contains a binding, it becomes the value of v. Otherwise, w; scans
the other n-1 entries cc;[k] (j # ¢ and 1 < j < n). If it finds a binding whose
BOL is smaller than the CANTi][k], it becomes the value of v; otherwise, v is an
“unbound variable. In this cse, the variable access becomes always a constant time

operation in a system with a finite number of workers (processors).

4.4.2 Algorithm to update the CANT

Under B,, the common ancestor node table must be updated at each task switch-

ing in order to record the or-levels of the new least common ancestor nodes between

the new thread and the other threads being executed by other workers. Below,
an algorithm to update the the common ancestor node table is briefly outlined.
Before a task switching [ny, {1, cer,wy, (g,) =3 (Ney), 2, ta, €Coywa = ty], all
the least common ancestor nodes (lean) between ¢y and other threads are in the
path p,, being executed by wy. After the task switching, the lean between t,, and
other threads are also in path p,,. Therefore, the new entries of CANT for w,

can be calculated directly from the entries for w, as follows:

e Case I: if the or-level of the lecan between w, and wy (B # 1, k # 2) is
smaller than or equal to the or-level of n., it becomes the entry between w,
and wy;

o Case 2: if the or-level of the lcan between w, and wy (k # 1, k # 2) is larger
than the or-level of n., the or-level of n, becomes the lcan between w; and

W

Figure 4.7 shows the application of the above procedures to a task switching
preformed with respect to a search tree being executed by four workers. It depicts
the contents of the CANT before and aflter a task switching. Worker w; performs
the task switching to the thread being executed by ws. According to case 1,
CANTI[1][2] is set to 2, while CANT[1][4] becomes 3 according to case 2.

The complexity of the update procedure is O(n), where n is the number of
workers (processors). The update thus becomes a constant time operation in a

system with a finite the number of workers.

4.4.3 Incremental schedule

Under B, after a task switching [n, 11, cep, w1, (ng) =5 (ne,), na, ta, ccaywy =
 t,] is performed, gee(ng, na,ty) does not have eb(n,,,n,) since since cb(ne,,ns) is
not installed in gee(ng,na,t) in the task switching. Instead, w; uses cb(ne,,n2)
in gee(ng,ng,ta) of wy. In order for w; to execute #; correctly, ¢b(ne,,n2) in
gee(na, n2, t2) must be preserved until the evaluation of ¢; by w;. We will analyze
how the requirement of the preservation affects the scheduling, and provide a proof
that it does not violate the correctness of program execution and also does not

cause any non-constant time operation.

OR-level OR-level

Threads Threads
(a) (b) (©)

Figure 4.8: An example search tree for the incremental schedule and base patterns

Consider an example search tree depicted in Figure 4.8 (a). It contains four
threads, ¢y, ta, ts, and 4. Suppose that w; has finished ¢, and is considering task

switching to another unexplored thread. Let us consider the following two cases:

o Case (a): thread ¢4 is being executed by a worker other than w;.

e Case (b): thread ¢4 has not been executed and w; selects thread t4.

In case (a), wy must not perform task switching to a node n (n = ny). Otherwise,
bindings cb(n,n1) on gee(ny,n,t1) will be destroyed, and then thread 4 will
not find some bindings in ¢b(n,n;) when it tries to access them. In case (b),
the bindings cb(ny,ns) will be destroyed. Later, when any worker including w;
attempts to execute t, or i3, it cannot find the bindings and fails to correctly
execute the threads.

The above discussion indicates that the scheduling must be performed such
that any shared bindings (bindings to be used by other threads) are not destroyed.
To this end, we examine a special scheduling strategy which we will call an incre-
mental schedule. The main idea of the incremental schedule is that each worker
executes the bottom-most one among available threads. Under the incremental
~ schedule, each worker has a thread span histogram which shows a specific pattern,
called an incremental patiern. An incremental pattern is defined recursively as
follows. A single thread span is defined as a 0th_level incremental patten. The
nth_level incremental pattern consists of a set of other incremental patterns. The
first one is always a 0%*-level incremental pattern showing the highest span. The
remaining incremental patterns are ordered by increasing height, where each one

is an arbitrary [-level incremental pattern (0 < m < n) and at least one of them is

79

a (n— 1)" incremental pattern. Figure 4.8 (b) shows a 1t*-level incremental pat-
ten. When a schedule results in an (m)“-level incremental patten, it is called an
m-level incremental schedule. Figure 4.8 (c) shows a 2-level incremental schedule,
in which a 0*-level incremental pattern and three 1%-level incremental pattern
makes a 2t-level incremental pattern.

With respect to the incremental schedule, the problem is to determine whether
there always exists an incremental schedule for a logic program. We answer the

problem by proving the following proposition.

Proposition 8 For a given logic program, there always exist an incremental
schedule that produces the correct answer in a parallel system with an arbitrary

number of workers.

(Proof) In the proof of Proposition 1, we introduced a specific scheduling
strategy in order to prove that for a system with one worker, there always exists
an m-level triangular schedule. Suppose that the same strategy for the case of
one worker is applied. In the proof, it is shown that in terms of thread spans,
the first one, which corresponds to path p, is always the tallest and the height of
remaining ones increase monotonously. According to the definition of the context
of the increment schedule, it is clear that the resulting thread span histogram
is exactly an incremental schedule. Therefore, it is proved that for one worker,
there always exists an incremental schedule. As the other part of the proof is very
straightforward with almost the same induction used in Proposition 1, we do not
expose the exact proof procedure in this chapter. O

The example in Figure 4.6 is also used to examine the proof procedure.

4.5 Constant Time Task Switching

In the previous sections, it has been found that under B, a task switching is per-
formed without the deinstallation and under B,, without the installation. Neither
case introduces any non-constant time operation, provided the m-level triangular
schedule for the former and the incremental schedule for the latter are ensured

in a system with a finite number of workers (processors). This section presents

30

the analysis result regarding the task switching to be performed without both the
deinstallation and installation at the same time.

First, a new binding environment By is delined that combines By and Bs. Be-
cause the semantic information maintained in the thread tables of By does not
conflict with the information in the common ancestor table of Bj, it is always
possible to combine them. However, the problem with the unified binding envi-
ronment Bs is to determine whether both the m-level triangular schedule and the
incremental schedule are satisfied at the same time. The problem is answered by

the following two propositions.

Proposition 9 For a given scarch tree, an incremental schedule on a conditional

context is always reduced to an m-level triangular scheduler.

(Proof) As discussed earlier, the thread span histogram of an incremental
schedule is composed of an n'*-level incremental patten. (i) First, a 0-level in-
cremental schedule is alway$ a triangle since both are defined as a single thread
span. (ii) Now, consider an n-level incremental schedule. It consists of a 0*-level
incremental pattern s, and a set of incremental patterns, 1py,ipa, ... ,ip,. In the
incremental pattern, the first thread span ts, and the last one ip,, remain as the
live threads since the or-level of ip_) is larger than ip; (2 <1 < m), i.e., iP(i-1)
is subsumed by ip;. and the or-level of ¢s, is smaller than ipy,. The ip,, results in
two live threads, the first one ts(,_;) and the last incremental pattern. Together
with ts,, they form a triangular. If the reduction process is applied recursively,
the final thread span histogram obtained is reduced to a triangle. From (i) and

(ii), an incremental schedule is always reduced to a 1-level triangle. O

Proposition 10 Under Bs, for a given logic program, there always exists a sched-
ule which violate neither the m-level schedule nor the incremental schedule in a

system with a finite number of workers.

(Proof) Under Bs, there always exist an incremental schedule according to
Proposition 2 since Bs is the superset of By, The incremental schedule is always
reduced to an m-level triangular schedule according to Proposition 3, where m is

1. O

81

According to Proposition 3, the task switching can be performed in By without
both the deinstallation and installation at the same time, while not introducing
any new non-constant time operation. In section 4.3, it is noted that the common
ancestor node n. needs be found in every task switching [ng, ¢, cer,wy, (ne,) =3
(Tey)y M2y Lo, €C2, we =+ Ly]. 1t is not a constant time operation in By, as opposed
to in By. However, in B, it does not cause any non-constant time operations,
since the scheduler can now use the CANT discussed in section 4.4. Consequently,
in Bs, the task switching and variable accesses are constant time operations in
a system with a finite number of processors. The task creation is inherently
a constant time in a binding environment like Bz, as was proved in [38]. In
consequence, it is concluded that the ideal OR-parallel logic programming system

exists theoretically.

4.6 Synthesis

This chapter has shown a proof that ideal OR-parallel logic programming imple-
mentations are theoretically possible in a system with a finite number of proces-
sors. Our analysis has shown that an ideal OR-parallel system was possible only
when some semantic information is used in the representation and management
of conditional variables. Indeed, in the analysis, the inference depth of a bind-
ing node and a thread identifier are used in the data representation. We believe
that our finding will provide a theoretic foundation for more efficient parallel logic

programming systems.

Chapter 5

The Parallel Execution Model

In the previous chapter, we have found that the ideal OR~parallel execution sys-
tems exist in the theoretic design space. According to the result, the ideal OR-
parallel systems are possible only when some semantic information is ﬁsed in the
representation of conditional bindings. We have applied the findings to the design
of an OR-parallel execution model. The main objective of the design is to de-
velop a parallel execution model which is not only highly flexible to make runtime
schedulers be able to implement a variety of scheduling algorithms and architec-
tural optimizations but also is highly efficient to make runtime schedulers be able
to obtain the expected performance from the implementation of such algorithms.

This section presents the design of our parallel execution model.

5.1 Introduction

In the presence of parallelism, one of important issues is the allocation of paral-
lelism. The allocation can be made before execution, provided the parallelism can
be identified at compile time. Usually, this will turn out more efficient than doing
the allocation at runtime. Unfortunately, the parallelism in logic programs is very
difficult to analyze at compile time. Indeed, almost every parallel logic system
relies on dynamic allocation made by runtime schedulers. The runtime schedulers
play an important role in the parallel execution of logic programs and greatly
affect the parallel performance. Therelore, the design of an efficient scheduler is

one of the most important issues in building parallel logic programming systems.

83

In the implementation of parallel logic systems, the design of the low level
software is tightly coupled with a number of system components. The runtime
behavior of logic programs has been frequently represented by search trees [5;
15]. These search trees describe in a conceptual level the behavior of program
execution. In this respect, the program execution is viewed as a parallel traversal
of the search tree. In an OR-parallel system, when each worker executes a node,
the global environment of the node must be provided for the worker as discussed
in the previous chapters. To this end, a specific memory model is employed in
an OR-parallel system. The memory model determines the cost of task switching
and variable accesses. As task switchings are originated from the scheduling in a
parallel logic programming system, the scheduling framework is strongly coupled
with the memory model employed for the management of multiple bindings. In
this respect, in the design of a runtime scheduler, the interaction between the
memory model and the scheduler must be thoroughly investigated in order to
obtained high system performance.

In parallel logic systems, the design of low level system software has additional
dimensions of complexity. In the parallel execution of conventional programs, the
high system utilization has been one of the major performance criteria. This is
because higher utilization normally results in higher performance. In this respect,
the system state is assessed as either busy or idle and the design of low level
software is focused on making each processor as busy as possible. In the parallel
execution of logic programs, high system utilization does not necessarily present
high performance. This is because logic programs rely heavily on speculative com-
putation. For example, almost all the PROLOG programs use “cut” for reasons
of efficiency. Its main function is pruning some portion of computation and thus
making it unnecessary in the execution. The speculative computation is caused
by “cut” because before the execution of “cut”, it is not possible to determine
whether a given portion of computation will be pruned away or not. That is, in
order to avoid losing the parallelism, if the system will execute a portion before
it is found out that the portion will not be pruned, the system may waist system
resources for unnecessary computation. In this respect, logic programming system

have one additional state of exccuting unnecessary work and in the design of a

84

runtime scheduler, a special concern must be made with regard to the speculative
aspect of logic programs.

On the architectural side, the design of low level software must consider the ar-
chitectural specification. For example, in large-scale parallel machines, the latency
of memory accesses changes according to the physical distance between processors.
In such systems, an architectural optimization which reduces the total amount of
remote accesses is crucial for performance enhancement. In this respect, the de-
sign of the runtime scheduler must be highly flexible with regard to architectural
optimizations and provide some support which makes such optimizations efficient.

In the above discussion, we delined within the context of logic programming
systems three important requirements for the design of low level software as fol-

lows.

1. The efficient interaction must be achieved with the low level components in
P

the execution model
2. The speculative aspects of logic programs must be considered.
3. The architectural specification must be optimized.

In order to achieve the expected performance, the parallel execution model must
satisfy the above requirements. This is accomplished by providing some parallel
support which help the low level software in general and the runtime scheduler in
particular to efficiert!y achieve their functions in their implementation. Upon the
requirements, we have designed a parallel execution model. Our parallel execution
model satisfies the first requirement by providing the Tagged Binding Array. In
order to address the other two requirements particularly for the design of the
“runtime scheduler, our execution model provides a parallel support which we will
called least common ancestor based scheduling support. Overall, assessed in terms

of the performance criteria, our execution model has the following characteristics:
1. high single thread performance, and

2. low scheduling cost to adapt highly irregular shapes of the search tree created

in real world application programs.

85

Other than the Tagged Binding Array and the common ancestor tree based
scheduling support, as the other important components, our execution model
provides the flat indexing scheme and a translation based execution mechanism
of Prolog programs. Below, we introduce them briefly and the detailed discussion

will be offered in the following chapters.

The flat indexing scheme

To find an optimal indexing is quite complex and also demands a large number
of abstract machine instructions for its implementation. In the indexing scheme
of the WAM, the first argument of a clause is used as a key. Viewed from the
trade-off between the efficiency and simplicity, the usage of the first argument as
a key for indexing is a quite reasonable choice. However, viewed from OR-parallel
execution, the indexing scheme of the WAM is inefficient in terms of both paral-
lelism and scheduling efficiency. The main reason for this is that an invocation
of some goal may result in the creation of more than one choice points. After
investigating the problem in detail, we designed a new indexing scheme, which
we will call flat indezing. Under the flat indexing scheme, the maximum number
of choice points created for an invocation of a goal is always one. Therefore, it
makes parallelism be exposed earlier than the indexing scheme of the WAM. As
a result, the degree of parallelism of each node becomes bigger. The details will

be discussed separately in chapter 7.

Translated execution of PROLOG prolog programs

In terms of execution speed, compiling PROLOG programs into low-level assembly
language code is the most efficient way. Due to low portability, this approach is
very expensive when the prototype is re-targeted to other platforms. To enhance
the portability, two other approaches have been explored elsewhere. One consists
in an emulation of the WAM (Warren Abstract Machine) code in C-code and the
other is based on the translation of PROLOG programs into C language programs.
In spite of its simplicity, the emulation approach is less advantageous since it is
quite slower than the translation approach. However, the translation approach is

difficult due to some problems. For example, the translation of the flat structure

86

of PROLOG programs into the [unction calls in the C language causes much
inefficiency in terms of execution speed. To solve those problems, we developed
an eflicient Prolog to C translation method. We then applied it to the design of
the sequential engine of our parallel logic programming system. The details will
be discussed separately in chapter 6.

Behind the design of a new parallel execution model, we selected the OR-
parallelism as the main source of parallelism to exploit. The reason for this choice
is that the efficient exploitation of the OR-parallel is important for the other
types of parallelism such as AND-parallelism. This is particularly true when the
execution chooses the binding euvironment which has been opted for the high
single single thread performance over low cost scheduling [5, 15].

The rest of the chapter is organized as follows. Section 5.2 presents the method-
ology to manage the multiple environments of our execution model. Section 5.2.3
presents the components of our execution model which supports runtime schedul-

ing. Section 5.4 summarizes the chapter.

5.2 The Tagged Binding Environment

As one of important compounents in our parallel execution model, we have de-
veloped the Tagged Binding Environment. The key objective of the design is
to reduce the cost of task scheduling by making a task switching efficient. This

section presents the Tagged Binding Environment.

5.2.1 Motivation

The binding environment has been a highly important issues in the parallel im-
" plementation of logic programs. In the past few years, many schemes for the
binding environment has been proposed [18, 7, 25, 40, 81, 82] for efficient OR-
parallel execution of logic programs. However, Gupta shows that the binding
environment has also crucial impacts on the efficient exploitation of the other
forms of parallelism[40]. The binding environment has thus increasing impor-
tance as the logic programming systems exploits the parallelism more extensively.

In spite of high efficiency of existing binding environments in the implementation

87

of logic languages on small-scale parallel machines, the performance scalability of
the schemes on large-scale machines is not clear; some binding environments such
as the Binding Array cause very high overhead in task scheduling, while the closed
binding environment method canses very poor single thread performance due to
intolerable parallel overhead and inability to control scheduling. Therefore, along
with advanced research in the high level, the research on the binding method is
essential for expected scale-up in performance on large-scale parallel architectures.
The organization ol a binding environment determines the single thread per-
formance and the cost of scheduling. In logic programming languages, the ideal
single thread performance and ideal low cost task scheduling cannot be obtained
simultaneous by one binding environment. Hence, one of them is sacrificed in the
design of the binding environments. In the design of the popular binding envi-
ronments, the single thread performance is chosen over the low cost scheduling.
The decision is based on the argument that for a given binding environment, sin-
gle thread performance, determined mainly by the cost of the variable accesses,
cannot be optimized since the amount of variable accesses is program dependent,
but the amount of scheduling can be minimized by the highly advanced scheduler.
Within the context of the small-scale multiprocessors, this has been a reasonable
choice since the requirement of scheduling is usually small. But, it is observed
that the requirement of task switching in scheduling increases more rapidly as
the system becomes larger-scale. Therefore, the issues of task scheduling need
to be more highly considered for the design of the binding environments in the
large-scale parallel machines.
In order to access the issues of task scheduling pertaining to the design of
binding environment, we have performed a comprehensive analysis of binding
_environments as presented in chapter 3 and 4. As a result, in the design of a
multiple binding method suitable for the large-scale parallel architectures, we set

the following two goals:
1. high single thread performance, and

2. low scheduling cost to adapt highly irregular shapes of the search tree on

real world application programs.

To achieve the goals, we applied the findings obtained from the analysis of the
ideal OR-parallel systems. The binding environment thus developed is the Tagged
Binding Array.

The rest of the section is organized as follows. Subsection 5.2.2 presents a
review of the Binding Array method to provide a frame for the discussion of the
proposed binding environment. Subsection 5.2.3 presents the Tagged Binding

Array.

5.2.2 Review of the Binding Array

The Binding Array was proposed by D.S. Warren [79]. The Binding Array was
subsequently adopted in the Gigalips project as the SRI model [81] and in the
implementation of the parallel logic language BRAVE [70]. A

Memory organization

The Binding Array uses two auxiliary data structures. the forward list assigned to
each node and the binding array assigned to each PE. The forward list of a node
is an ordered list which keeps the conditional bindings made in the node. It is the
modified version of the trail stack in the conventional sequential WAM. Different
from the trail stack in which each entry contains only the variable address, each
entry of the forward list is represented by <variable address, binding>. The
forward lists of the search tree serve as the globally shared binding tree. The
forward lists is used to repeal some bindings at backtracking and to restore some
bindings in at scheduling.

The binding array of a PE is an order list which keeps all the conditional
bindings made in the search path being computed by the PE. It assumes the role
of a cache for conditional bindings. Each cell of the binding array is assigned to

a conditional variable and keeps its binding.

Variable binding and dereferencing

Associated with each node of the search tree, a counter is provided to manage the

binding array. Initialized to 0 at the root node, the parent node’ counter is copied

89

into its children nodes whenever a branch takes place. When a conditional variable
is created in a branch, the value of the counter is stored in the environment frame
slot which is assigned to the variable and the counter is incremented. The value
serves as the name of the binding array cell assigned to the variable.

The reference of variable hindings is supported via a link between the environ-
ment frame slot and a binding array cell. When a binding is made for a conditional
variable on a PL, the binding is written into a binding array cell which is assigned
to the variable. The index stored in the environment frame slot is used to address
the binding array cell. In order to access the binding, we read the index from
the environment frame cell and then retrieve the data from the binding array cell.

The precise algorithm is described in Figure 5.2.2.

algorithm dereference(V)
input
A% : input term
begin
if (V.tag == Var) {
if (V.ovalue==V)
return V;
else
return dereference(V);

else

e

if (V.tag!= NON-VAR);
return V;
else {
Bdata = BA[i];
if (Bdata.value != value)
return dereference(Bdata)
else
return Bdata;

end

Figure 5.1: Dereference algorithm in the Binding Array

Compared with other binding methods, the Binding Array provides very cheap
variable accesses. Indeed, a variable access includes just one additional level of
indirection, compared with the one in the sequential WAM. Moreover, the man-
agement of the binding array is very simple because a binding array is organized
as a stack. The efliciency of variable accesses and the simplicity of binding array
management originate from the property that the contents of each binding array
reflect the environment of a path. However, this causes a disadvantage that the
cost of task switchings is very high. When a worker switches its task from one
node to another, the binding array must be adjusted to make the contents re-
flect the environment of the destination node. The update consists of two steps:
(1) the deinstallation of bindings made between the current node and the least
common ancestor node and (2) the installation of bindings made between the
common ancestor node and the destination node. As both the deinstallation and
the installation must be performed in sequential, task switching becomes very

expensive.

5.2.3 Tagged Binding Array (TBA)

This section presents its motivation, memory organization, and operations of the

Tagged Binding Array.

Overview of the Tagged Binding Array

Figure 5.2 depicts the relation between a task switching and the contents of the
environment. In the figure, a task switching occurs for a worker w; from a node
ny4 to another node ns located in a different path being executed by worker w,.
Before the task switching, the global environment of the least common ancestor
node n3 between w; and w, contains the bindings made both in path(n;,n3) and
in path(ns,nq). It is depicted in Figure 5.2 (a).

In a normal task switching, the bindings made in path(ns,ns) are removed (de-
installed) from the environment of w; and also the bindings made in path(nsz,ns)

are imported (installed) into the environment. In consequence, the environment

91

keeps only the bindings made in path(n,,n;) and path(ng,ns), as depicted in

Figure 5.2 (b).

Env(wy)

bindings(n1,n3)
bindings(n3,n4)

Wity wall)

(a) Before task switching

Env(w)) Env(w,;)

bindings(nl 03) bindings(nl-n3):
e Hi bindings(n3.n3)

Alter deinstallation Alter installation After installation

(b) After normal task switching (c) After deinstallation free task switching

Figure 5.2: Task switching and environment preparation

In order to reduce the cost of task switching, we developed a new binding
environment which we will call Tagged Binding Array. The Tagged Binding Array
is aimed at reducing the cost of task switching, while preserving the constant
time variable accesses. In order to preserve the constant time variable accesses,
it uses a data structure which is similar to a binding array in the Binding Array.
To realize cheaper task switchings, it removes the deinstallation part from task
switchings. As a matter of fact, this principle originates from the concept of
the deinstallation-free task switching explained in chapter 4. The reason for not

removing the installation part is that without specific hardware support such as

92

associated memory, the removal of the installation part would rather cause harmful
influence on the system performance due to the newly introduced overhead.

If the deinstallation step is omitted, the contents of the environment will be
different from the one resulting from a normal task switching. That is, the en-
vironment contains the bindings made in path(ng,ny) as well as those resulting
from the normal task switching. This is depicted in Figure 5.2 (c). In this case,
the bindings made in path(rs,ny) must be ignored in variable accesses because
they are not the part of the environment. In the next subsection, we present the

design of the Tagged Binding Array and illustrate how such bindings are handled.

Organization of the Tagged Binding Array

In the previous subsection, it was noted that the principle of the Tagged Bind-
ing Array originates from the concept of the deinstallation-free task switching. In
other words, the Tagged Binding Array is the implementation model of the canon-
ical binding environment B; described in chapter 4. However, the Tagged Binding
Array is quite different because the conceptual representation of B is transformed
to an efficient form in its implementation. As a main difference, the thread table
provided for with each binding array (conditional context) is replaced with the

following two data structure: the tagged binding array and the thread span stack.

Tagged binding array: Except the data representation and its variable deref-
erences, a binding array in the Tagged Binding Array, which we will call tagged
binding array, is exactly the same with the Binding Array in terms of its role and
operations.

In its data representation, each entry in the tagged binding array has a con-
ditional binding represented by two tuples <stag,data>. The stag is a value
with two components <tid, bol>, in which tid is the name of the thread that
made the binding and bol is the OR-level of the binding node. The data is the

conventional data term of the WAM.

IThe OR-level of a node refers to the depth in terms of choice points created for the evaluation
of ancestor nodes.

93

OR node depth

TID OLB DATA
t [2 [d |

D I G S PR <
K—— == ==

Figure 5.3: Data representation in the TBA

Figure 5.3 shows a thread which executes a path. It depicts the OR-level
assigned to each node and a binding made by the node with its OR-level as “2”.
The binding is represented by <t,2,d>, where ¢ is the name of the thread, 2 is the

OR-level of the binding node, and d is the data term.

Task span stack and the TSP register: In chapter 4, we discussed that a
thread table is provided with respect to each worker to maintain the valid span
of threads. At each task switching, the thread table must be adjusted for all the
previous threads whose valid spans are influenced by the task switching. In terms
of the implementation, the update of the thread table is somewhat expensive even
though it can be performed in a constant time. Therefore, we introduce the thread
span stack in order make identification of valid spans simple and efficient.

Like the thread table, the thread span stack is based on the chronological
partial order relation discussed in chapter 4. The chronological partial order is
- maintained among the live threads. Let Tj,.={t{, t5,...,¢,,} (m <n) be the set
of live threads and the span of thread t} be <n, n,;>. The chronological partial

order relation is summarized as {ollows:

e The nodes, n'

1 / RN e N ' /
510 Ty - - -y g, have the following relation: nf = Ny, o X

o The valid spans, vspan(t},t}), vspan(th,t3), .. ., vspan(t,, ,t,.), vspan(t,,,_),
correspond to path(n’ ,n!).

510 em

94

vspan(ty)

vspan(ls)

vspan(ty)

Figure 5.4: An example vspan

Figure 5.4 shows an example chronological partial order when the worker is
executing thread ¢4. In the example, before thread ¢4, three task switchings, s/,
ts2, and ts3, occurred in sequence with respect to threads, t1, t2, and 3. In
consequence of the task switching, the three threads ¢,, ¢3, and {4 constitute the
path. The figure shows the valid spans for the path.

In chapter 3, we used a thread table to maintain the information on the valid
span of each thread; the thread table provides an entry for each thread. The
drawback of this approach is that it is not efficient to update the table for each
task switching because we need to inspect each entry of the table. In order to avoid
the drawback, we can use a different representation of the valid spans. Whereas
in the thread table, the information on a valid span is maintained for each thread,
we can keep the information on the valid span in each node to accomplish a more
compact and efficient representation. This is possible because according to the
chronological partial order, a node in a path always belongs to a single valid span
~of a thread.

The implementation thus obtained is the thread span stack. A thread span
stack provides an entry for each node in the current path such that all the entries
are ordered by the OR-node depth. Each entry of the thread span stack is the
name of the thread whose valid span the node belongs to. The TSP register has a

pointer to the current top of the thread span stack. When the worker is executing

95

a branch of the n** node from the root, the thread span stack contains n entries
and the TSP register points to the n'* element. It should be noted the the thread
table and the thread span stack use respectively the thread and the node as a
carrier of the valid span. In the thread table, each thread keeps the information
of its valid span via nodes, while in the thread span stack each node keeps the

name of thread whose valid span it belongs to.

vspan(t;) 4

vspan(ty)

ty | <— TsP

Figure 5.5: Thread span stack

Figure 5.5 shows an example valid span and the thread span stack. In the
figure, it is shown that the first three entries of the TSS are filled with #;, the next
four entries with ¢, and finally the next 3 entries with ¢, and the TSP register

points to the last element of the TSS.

The relation between the tagged binding array and the thread span
stack: If a binding was made by any thread other than the live threads, it is not
valid. Hence, data values in the tagged binding environment have either one of
the two states: valid or invalid. In order to check if a binding in a tagged binding
array is valid or not, we use the the thread span as follows.

Consider a binding D represented in <D.tid,D.bol,value>, where D.tid is
the thread which made the binding, D.bol is the binding OR-level, and value is

the data term. Using the thread span stack, we can identify live threads which

96

constitute the current valid spans. If D.bol is less than or equal to the value of
the TSP register, the node in the D.bol*" depth is available in the current path;
otherwise, the binding is by default not valid. The content of TSS[D.bol] is a
thread ¢, to which the node in the D.bol™ depth of the valid span belongs. If
binding thread D.tid is different from ., binding [is invalid because it is made

by a thread which is not alive.

Operational principle of the Tagged Binding Array

This subsection presents the management of the thread span stack, dereference

mechanism, and finally the task switching.

Management of the tagged binding array: As we pointed out earlier, the
management of the thread span stack is very simple since the stack reflects exactly
a search path with its entries. The only operations pertaining to the management
are normal “push” and “pop”, and the TSP register serves as the stack pointer.

These are summarized as follows:

o At each creation of a choice point, the name of the current thread is pushed
onto the thread span stack.

o At each backtracking or task switching, the top of stack is popped out.

Variable dereference: In the Tagged Binding Array, the procedure to derefer-
ence a variable is an extension of the one in the Binding Array. The extension is
made for checking the validity of a binding. Once a binding is found out valid, the
rest of the procedure is the same with the one in the Binding Array. Otherwise,
" the dereferenced variable is regarded as an unbound variable. As an optimization,
we remove the invalid binding from the tagged binding array in order to avoid the
validity check in the subsequent dereferences. The complete dereference algorithm
is depicted in Figure 5.6.

To make the dereference procedure clear, we provide an example in Figure
5.7. The example shows three bindings in a tagged binding array. According to

the contents of the binding array, the binding in the first entry was made by 23

97

algorithm dereference(V)
input
A%
begin
if (V.tag == Var) {
if (V.alue!=V)
return V;
else
return dereference(V);
)
else {
if (V.tag != NON-VAR);
return V;
else {
Bdata = BA[i];

: input term

if (Bdata.value == value)

return Bdata;

if (V.bol < TSP and TSP[V.bol] == V.tid)

return dereference(V);

else {
V.value = V;

return V.value;

end

Figure 5.6: Dereference algorithm in the Tagged Binding Array

98

TSS BA

1 L)
vspan(t;) 2L 51s|D
N 3 . 1
- T b ~_ 31 7| D
_
vspan(ls) s | t3 ~ P12
A . T §
vspan(ly) & ”
Ly
0]l <— TSP

Figure 5.7: An example dereference

at OR-level 5. The binding in the second entry was made by t3 at OR-level 7.
The binding in the third was made by t; at OR-level 8. Among them, only the
first one is valid because it is made within the current valid span by a live thread.
Even though the second one was made by a currently live thread, it is not valid
because the binding was made out of the valid span of the thread. The third one
is not valid because it wad made by the thread which does not belong to the set

of live threads.

Task switching: As discussed earlier, a task switching in the Tagged Binding
Array is performed without the deinstallation part. Consider a task switch from
a node n, to a node ng which occurs with respect to a worker w;. Let the least
common ancestor node be n. and let the OR-node levels of ng, ng and n. be Ol,
Ol,, and Oly, respectively. Let us define the new thread in the worker be ¢,. The
task switching consists of the following major parts: the installation of bindings

and the update of the thread span stack and the TSP register, as described below.

e Install the binding made between nodes n. and ng in the trail stack. (Note
that the thread name of the binding is changed to “t,,”.)

o Fill TSS[O1.+1] to TSS[Ol,] with .

e Set the TSP register to Oly.

89

In the above steps, it is noted that each binding has a new thread as its
binding thread. Task switching always causes the creation of a new thread. The
installation is inherently an importation of variable bindings from another worker.
When a binding is installed, although the binding OR-level is still effective for the
new worker, the binding thread cannot be recognized by the new worker. To
solve this problem, it is viewed that the bindings to be installed are conceptually
imported from the original binding thread into the new thread. Therefore, the
bindings to be installed into w; are regarded as those made by ¢, and thus their

tid field is set to ¢, during the installation.

5.3 The Least Common Ancestor (LCA) based
Scheduling Support |

The parallelism in logic programs is very difficult to analyze at compile time.
Indeed, almost every parallel logic program system depends on dynamic allocation
by runtime schedulers. The schedulers play an important role in the parallel
execution of logic programs and greatly affect the parallel performance. Therefore,
the design of an efficient scheduler is one of the most important issues in building
parallel logic programming systems.

In order to get efficient implementations of low level system software in general
and the runtime scheduler in particular, the parallel execution model must provide
appropriate parallel supports. This supports ranges from low level components
such as the binding environment to high level execution principle such as efficient
runtime search tree representation. Our execution model provides a parallel sup-
port which we will called least common ancestor based scheduling support. The

rest of the section presents the parallel support in detail.

5.3.1 An analytic model of the tree-based scheduling

In the previous chapter, we showed the runtime behavior of a Prolog program
in the form of a OR-parallel search tree. The OR-parallel search tree clearly

represents the execution behavior and provides a sound basis for the scheduling.

100

Most parallel logic programming systems which take the approach to thread-based
execution exploit the WAM as their sequential engine. In such systems, the search
tree is implicitly constructed by means of the internal data structure such as choice
points. In the search tree, the OR-parallel tasks are represented as the unexplored
branches and the scheduling is described as the assignment of a processor to a node
which has some unexplored branches. Scheduling in such systems is in principal
performed with information associated with the search tree. Such schedulers is
frequently called tree-based schedulers.

Some parallel logic programming systems take the approach to process-based
execution. In such systems, a program is executed in the absence of the globally
shared search tree. Instead, they use queues which keeps the available tasks. The
scheduling is performed by using the information associated with the queue, e.g.,
the number of the elements of a queue. Schedulers based on this approach are
called queue-based schedulers.

The scope of the research is restricted to tree-based schedulers and hereafter
we refer to a tree-based scheduler just as a scheduler. For the design of an high

performance scheduler, the following two issues must be clearly addressed:

1. how to efficiently identily and manage the load of each worker which changes

dynamically almost at each creation of a node (choice point).
2. how efficiently for an idle worker to locate the available tasks.

As a matter of fact, the two issues conflict with each other. Different from con-
ventional programs, logic programs require the larger amount of the scheduling
activities. Moreover, the parallel load changes very frequently almost at every
creation of a node. To identify and keep the accurate load is frequently prone to
introduce high overhead. Without accurate information on the parallel load, to
find the best node to explore becomes in turn a very complex and causes severe
performance penalty. In this regard, the trade-off between accuracy and overhead
which occurs in the identification of parallel load must be carefully assessed to
achieve high performance scheduling. In the following discussion, we present a

concise analytic model which provides a framework to analyze such overhead.

101

The analytic model is aimed at explaining the cost of scheduling within a tree
based schedulers. In the parallel execution, a worker interacts with the others
mostly in association of task switching. It is mainly because the position of a
work in the search tree serves as valuable information in the scheduling and this
information is in general maintajned privately in each worker. Suppose that a
worker w; performs a scheduling and as a result, it finds an available work in the
path being taken by wy. The scheduling of w; consists of a set of operations which

can be explained in terms of their cost as follows:

1. A locating time (7}) refers to the time spent in finding an available task

from wy.

o

A publishing time (7},) refers to the time spent in making some private nodes
public such that other workers can take some unexplored branches from the

nodes.

3. An environment preparation time (7,) refers to the time spent in making

the environment of the new task for w,. It is further classified as follows:

e moving back time (7}) refers to the time spent in making the environ-
ment of w; be the same with that of the least common ancestor node
between n. and n;,.

o moving forward time (7)) refers to the time spent in updating the
environment for the path between n. and ny in the memory of w;.

e synchronization time (7}) refers to the time spent by either w, or wy in

waiting until the other finishes the moving back or forward operation.

Depending on the parallel system, some of these activities are not necessary
~and the time spent in the activities are defined as zero. Under the model, the

total overhead T" for each instance of scheduling becomes
T'=Ti+T,+T.=Ti+T,+ T+ Ty + T..

Most tree-based schedulers have similar cost for T}, T, and T},. However, the cost

of the other activities is very different from each other depending on the memory

102

model in the system. For example, 7. is very small in the Aurora because only the
contents of the binding array are involved with the scheduling. In the Muse, as
the entire stack is involved with the scheduling, the 7, is usually the larger than
the one in the Aurora. In particular, the Aurora has 7% which is almost zero. This
is because the moving operation (more precisely, deinstallation and installation of
bindings in the binding) can be performed independent of other workers. On the
other hand, the Muse must pay some cost when moving forward because wy must

wait during w, copies the necessary portions of environments.

5.3.2 Common ancestor based approach

According the analytic model, our execution model eliminates the cost of the
moving back operation by providing the Tagged Binding Array. As in the Au-
rora, the synchronization time is almost ignorable in our execution model. The
publication time is almost the same in parallel logic systems because the opera-
tion is inherently independent of execution models. In these respects, only the
location time becomes the objective of the optimization. Indeed, associated with
runtime scheduling, the parallel support of our execution model is geared toward

the minimization of the location cost.

Motivation and objectives

From the perspective of the tree based scheduling, one of important issues is how
to efficiently identify relations which exist at runtime between workers. In the
naive tree based scheduling framework, the information on the relative position
is maintained in each node as a bitmap in which a bit is assigned to each worker.

For example, when a worker is below the node, its bit in the bitmap contains '17;
| otherwise, it contains ’0’. This representation provides only the relative position
between the workers, i.e., below, same, and above. However, it does not provide
such information as distance between workers. On the other hand, implementing
some specific scheduling strategy is likely to incur high overhead because the

scheduler have to examine some nodes. For example, a worker must examine all

103

the live ancestor nodes and then visit a set of nodes for each worker to find any
available task in the path being executed by the worker.

In the naive tree based scheduling, the overhead becomes severe because the
size of the search tree is usually very large. When a worker tries to find some avail-
able work, it usually needs to walk around some nodes of some path. Also, when it
needs to find the relative position in support of speculative scheduling heuristics,
it also needs to walk around some nodes in search of the nodes below which the
workers are executing. Without some global information, these procedures incur
nontrivial overhead which may become larger as the search tree becomes larger.

In order to reduce the location cost, a more advanced scheduling framework is
necessary which employs more ellicient representation of the search tree other than
the naive representation. This is particularly important for large-scale parallel
logic programming systems since the total overhead to be paid for scheduling
grows increasingly [8]. The underlying objective of the scheduling support in our
parallel execution model is thus to explore a representation of the search tree
which allows the scheduler to flexibly implement a variety of scheduling strategies

with low overhead.

The least common ancestor relation between two workers

In order to achieve the objective, we use a new information, the least common
ancestor relation between workers. When two workers w; and w; lie respectively
on nodes n; and ns, the common ancestor node between two workers w; and
wy is defined as the least (youngest) common node n, between nodes n; and n,.
Hereafter, we will call the least common ancestor node just the common ancestor
for brevity. The main advantages of using the common ancestor node between

. two workers are as follows:

e The relative positions between workers are readily available.
o The distance between workers (or nodes in the workers) are directly avail-

able.

In order clarify the above argument, we provide an example. Consider three

workers wy, w,, and wy which respectively stay on ny, ns, ns. Let the common

104

ancestor node between wy and wy be nyy and the common ancestor node between
wy and w3 be ny3. Provided that the OR-level of ny5, OL(n12), is smaller than the
OR-level of ny3, OL(n13), ws is in the above of ws. The distance between w; and

wy becomes OL(ny) - 20L(n42) + OL(ny).

The common ancestor tree

With this advantages, the problem is how to identify the common ancestor nodes
among the workers and how to represent them in the abstract machine level. One
possible way will be to provide a table which is similar to the CANT (common
ancestor node table) discussed in chapter 4. However, this is not absolutely suit-
able, because the common ancestor node table must be updated for each task
switching and during the update, other workers must not access the table.

As an alternative, we represent the information in the form of a tree to be called
a common ancestor iree. I"igure 5.8 (a) shows an example common ancestor tree
on which five workers are working. Under this representation, when a worker needs
to extract information associated with other workers, it is sufficient to consider
only a few nodes in the common ancestor tree. In this respect, the representation

provides very high efficiency for general scheduling activities.

Ny
nz
—_—
wio P Wi Wy Wy Wg o Ws
2 3wy g
(a) a runtime search lree (b) Theleast commn ancestor tre

Figure 5.8: The naive search tree and its corresponding common ancestor tree

Parallel support for the common ancestor tree

The implementation of the common ancestor tree is done on top of the search
tree. It is depicted in Figure 5.9. The only change in the ordinary search tree is
that each node in the comimon ancestor tree has a pointer to the parent node and
each worker has one register which keeps the pointer to the youngest node in the

cominon ancestor tree.

Figure 5.9: The implementation of the common ancestor tree

Figure 5.10 (a) provides a snapshot which depicts how the relative position
between workers are implemented on top of the common ancestor tree. Associated
with each common ancestor node, a bitmap is provided in which a bit is assigned
to each worker and each bit indicates whether the corresponding worker is below
or on the node.

Figure 5.10 (b) shows how the distance between two workers is calculated. It is
very efficient since nodes in the common ancestor tree are inherently the common
ancestor nodes between workers and the OR-node depths are readily available in

“our execution model.

Figure 5.11 shows how the leftmost checking is implemented on top of the
common ancestor tree. Associated each worker, a branch stack is provided. Each
entry of the stack has the branch number for the corresponding node. By com-
paring the values between two workers, the worker can identify which one is to

left of it in the tree.

106

ENEIENERER

0 I
Wy Wo Wg W Ws
(a) (B)

Figure 5.10: Representation of workers’ relative positions under the common an-
cestor tree

Branch Stack (W1) Branch Stack (Ws)
0 0
= -
0 1
= —] <— BSR5
0
0
BSP1 — Wy Wz W3 Wy WS

Figure 5.11: Left-right check under the common ancestor tree

107

5.4 Synthesis

This chapter presents our execution model. The objective underlying the design is
to accomplish high flexibility and efficiency for the architectural and algorithmic
optimizations in the runtime scheduling. The main components of the execu-
tion model are the Tagged Binding Array and a scheduling support based on the
representation of the common ancestor tree. Compared with the Binding Array,
the Tagged Binding Array is much efficient. Under the multiple binding envi-
ronment based on our Tagged Binding Array, schedulers can accomplish low cost
task scheduling because they do not have to carry out the deinstallation step in
each task switching. On the other hand, the common ancestor tree provides a
highly efficient representation of the runtime execution state of a program. It
has an extremely simple form, maintaining only the essential part of the ordi-
nary search tree. With the parallel support for the representation of the common
ancestor tree, schedulers can flexibly implement a wide range of scheduling algo-
rithms with minimal overhead. For reasons of these efficiency and flexibility, we
believe that our parallel execution Model provides a good opportunity for high

performance logic programming on large scale parallel machines.

108

Chapter 6

TCWAM: Translation-based Sequential Prolog

Engine

This chapter presents a technique developed for the implementation of the sequen-
tial Prolog engine, named the TCWAM. The primary motivation of the TCWAM
is to provide an experimental prototype which will be used as the sequential engine
of our parallel logic programming system. In the TCWAM, we use a translated
execution of Prolog programs rather than the emulation to obtain improved speed.

This chapter presents the TCWAM and its performance.

6.1 Introduction

Despite of the efforts over the last decade, the implementation of Prolog is still an
important issue in logic programming. Among a number of innovations, the WAM
(Warren Abstract Machine) was one of breakthroughs which have contributed
to the efficient implementation of logic languages. It has been a backbone in
the implementation of many languages derived from the logic paradigm. Indeed,
- almost all the concurrent, constraint, and functional logic languages as well as
Prolog, have been implemented by virtue of either a direct or an extended version
of the WAM.
In the history of language implementation, the virtual machine approach is
not new for logic languages. It is frequently used for the implementation of lan-

guages in several programming paradigms. The P-code for Pascal and the SECD

109

machine for functional languages are the prominent examples. More recently, the
implementation of Java language is also made via a well-defined virtual machine.

The process of compiling a program into code for a virtual machine and then
converting it into the machine specific naive code usually provide an efficient
means which facilities the language implementation on a target architecture. As
the process of compilation is decoupled from the architectural specification, the
compilation techniques and optimizations applied to the generation of the virtual
machine code can be fully reused for all the architectures. Relieved of the concern
about front-end compilation, language implementors can concentrate on the code
generation.

The efficient naive code generation for modern RISC processors is still challeng-
ing. The performance of the generated code depends heavily on the optimizations
applied to the code generation, while the code optimization has been a very hard
and complex task. Most systems provide some high level languages compilers.
Particularly, almost all the systems provide C compiler which can produce a very
highly optimized code. Executing logic languages via C languages is thus an ef-
ficient way to achieves high performance with minimal effort. Along this line,
the emulation of virtual machine instructions via C language has been most fre-
quently used. With precise description of the virtual machine and the clean-cut
instruction set, the implementation of an emulator in C is very simple.

However, software emulation of virtual machine instructions is absolutely slower
compared with the the naive code. As an alternative, translating the virtual ma-
chine code into C code and then executing it after compiling by the C compiler
have also been recognized as a promising way. By this, we can avoid the complex-
ity of efficient code generation while obtaining very efficient code [29, 32]. It will
be called a translation based approach and this chapter presents a new technique
which addresses a variety of issues pertaining to the translation of PROLOG into
C via the WAM.

The rest of the chapter is organized as follows. Section 6.2 provides an outline
of the issues pertaining to the translation of PROLOG to C. Section 6.3 provides a
review of the previous approaches. Section 6.4 presents the techniques developed

for our TCWAM. Section 6.5 compares the TCWAM approach with others by

110

means of some efficiency measures. Section 6.6 presents the performance of the
TCWAM and its comparison with other implementations. Finally, section 6.7

concludes the chapter.

6.2 Issues in the Translation of Logic Programs

Code translation from a high level language into another language usually raises
a number of issues which affect the performance of the generated code. Even
though the language is compiled into well defined virtual machine code, provided
the virtual machine instructions cannot be directly converted into a set of the
high level language constructs, the procedure of the translation would become
very complex. Besides, the produced code may become slower than the emulated
version. This is very acute for the translation PROLOG to C via the WAM
because the WAM code is flat with no procedural linkage. In this section, we thus
identify the unit of instructions which needs to be addressed in the WAM code
and the types of branches which transfer execution control, and briefly describe
the issues associated with the translation.

We provide a patch of Prolog code along with its WAM code in Figure 6.1.
Notice that in order to distinguish between the code for a predicate and the code
for the first clause in the predicate, two different labels are used in the figure.

The sequence of instructions which need to be addressed in the WAM will be
called an addressable and four kinds of addressables are defined without precise

definitions as below:

e Predicate unit: A predicate call needs to address the starting location of the
predicate code.

o Clause unit: Inside a predicate code, it is required to address the stating
location of each clauses for recording the next alternative clause try (line
12).

e Indexing unit: The part of the predicate code which is responsible for index-
ing contains some branches either to the locations of clauses or some other

locations inside itselfl. These are defined as indexing units.

111

a(X,z)
b(1,2).
b(2,2).
c(2,3).

= BilX,¥),e(¥,2). (1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(18)
(17)
(18)
(19)
(20)

a: allocate

b:
b0

bi:

get_var
get_var
put_val
put_var
call

: put_val

put_val
deallocate
execute

! retry_me_else

get_int
get_int
proceed

get_int
get_int
proceed

Y1,A1

Y2,A2
Y1,A1
Y2,42

Y2,A1
¥Y3,A2

b1l
1,A1
2,42

2,A1
3.A2

; Predicate ‘a’
; Unification
; code
; Argument
; generation

; Predicate ‘b’
; clause bl

; clause b2

; Predicate ‘¢’

Figure 6.1: A patch of Prolog predicate and its WAM code

112

e Continuation unit: Given a predicate call, when the call succeeds, the control
is transfered to the next instruction (for example line 7 after “call b” in
line 6). The destination of the control is referred to as a continuation and
the sequence of instructions not containing any branches or calls is denoted

as the continuation unit. In Figure 6.1, line 7 - line 10 is an example.

In a program consisting of multiple modules', the scope of a branch will be
sometimes made across modules. For example, a predicate call in a module, (i.e.,
a reference to a predicate unit), is made to a predicate in another module. As
to clause units, indexing units, and continuation units, the references are made
always within a module.

In runtime, branches are carried out explicitly by a specific instructions such
as “call” and “proceed” or implicitly by execution control such as “backtracking”.
As their destination locations, these branches use either the addresses offered as
their operands or the contents ol some registers. The former case corresponds
to the direct addressing, while the latter corresponds to the indirect addressing.
We will refer to the former as direct branches and the latter as indirect branches.
The branches made to the above [our addressables are classified according to the

addressing type as follows:

e Branches to predicate units or indexing units are always direct branches.
e Branches to continuation unit are always indirect branches.

e Branches to clause units can be either direct or indirect.

With the existence of multiple modules, direct branches to predicates may
occurs globally to other modules. The direct branches to indexing units or clause
units always occur locally within a module. Indirect branches to continuation
units or some clauses units are either local or remote. Therefore, four types of

branches are classified as follows:

e Remote Direct Branch (RDB) to remote predicate units,

e Local Direct Branch (LDB) to indexing units or clause units,

1A module is defined as a part of program which is in a separate file and compiled separately
from other modules.

113

e Remote Indirect Branch (RIB) to predicate, clause, or continuation unit,
and

e Local Indirect Branch (LIB) to predicate, clause, or continuation units

The translation methods are mainly concerned with how to handle the above
addressable units and branches. The main issues of translation are thus how to
represent addressables in € and how to implement branches in C.

Representing an addressable and a branch respectively by a function and by
a function call is a correct and will be the simplest way. However, it cannot be a
satisfactory solution due to the following reason. The stack allocated at each entry
of a function will grow exponentially because most C compilers do not perform
tail-call optimization and call forwarding [27], which eventually limits the use of

the system to only small toy programs.

6.3 Previous Approaches

A number of logic language systems are based on the translation approach. This
section briefly reviews them with focus on the issues pertaining to execution con-
trol. In order to make the review clear and self-contained, we will provide the
code resulting from the translation of the example Prolog program shown in the
previous section. In the translated code, variable CP refers to the CP register in
the WAM and variable ALT refers to the slot which contains the address of next

alternative in a choice point.

6.3.1 KL1

KL1 is a stream AND-parallel logic programming language based on Flat GHC
[75]. It has been implemented on a non-shared memory multiprocessor Multi-
PSI/V2 [66].

As shown in the example code, each unit in a module is compiled uniformly into
a function. Each function returns the address of the next function. Each module
provides a control function which invokes a function returned by the previous

function call. Now that a function, as a first class object, can be addressed in C

114

language, at least all the addressables are correctly implemented. On the other

hand, all the branches are uniformly performed via function calls.

module() { void pred_b() {
while (PC) (*PC()); ALT b1;
} return CP;
}
void pred_a(){
push (CP) void b1() {
CP=a01; return CP;
return pred_b; }
}
void pred_c {
void a01() { return CP;
pop (CP) }
return pred_c;
¥ void backtrack ()
pop (ALT)
return ALT
}

Figure 6.2: Translated code in the KL1 system

This method is simple to implement. However, it is not satisfactory due to the
following reasons. The overhead of C function calls caused from the allocation of
stacks in the prologue of a function and deallocation in the epilogue is relatively
large, compared with the very small code size of each function. In order to avoid
the overhead, the later implementations of KL1 use a slightly different method

which is similar to the one adopted by jc in the next subsection.

6.3.2 jc

jc [35] is a potable sequential implementation of Janus [71] which is designed for
distributed constraint programming. As shown in the example code, each module

is compiled into a single function in which each unit is defined as a code block?.

2In this chapter, a part of a function in a C program is denoted as a code block.

main() {

begin:
switch(PC) {
case a0:
pred_a: push(CP);
CP = a01; goto pred_b;
case a01:
pop(CP); goto pred_c;
case bO:
pred_b: PC = CP;
ALT = b1, push(ALT); goto begin;
case bl:
clause_b1l:
PC = CP; goto begin;
case cO:
pred_c: PC = CP; goto begin;
}
backtrack: pop(ALT); PC=ALT; goto begin;

Figure 6.3: Translated code in the jc system

116

Some local direct branches are implemented via goto statement which takes
a label as its destination address. Indirect branches are implemented via switch
statement. Both remote direct and indirect branches requires a specific interface
between modules because goto statement of a function must take a label in the
function. To provide the interface, each module has a table which keeps the
address of each switch key. The tables are initialized at the start of the execution
of a program. Because an address stored in the table is calculated dynamically
with respect to its switch key, this method is referred to as “computed goto”
[29]. In addition to the initialization cost, the remote branches becomes more
expensive than the local branches. It should be noted that local branches are
not also efficient because the cost of executing switch statement is more than 10

cycles in RISC machines.

6.3.3 Erlang

Erlang is a concurrent logic programming language designed for prototyping and
implementing real-time systems [45]. The implementation translates each predi-
cate unit into a function in which the other units appear as code blocks. Different
from the previous approaches, Erlang system uses GNU C compiler, which benefits
PROLOG to C translation with the following features. (1) The register clobbering
makes it possible to declare some global variables as a set of machine registers.
(2) Labels are treated as a first class object and thus it is possible to obtain the
address of a label. (3) Goto statement is able to take a pointer, which allows an
indirect branch to the content of a pointer. (4) Inlining an assembler code in C
source programs is supported.

The translated code resulting from Erlang partially shows the potential GNU
C languages as a vehicle for PROLOG translation. Each function is addressed
through a reference to a label to support such units that are always locally ad-
dressed.

In order to avoid the allocation when a function called is made to a predicate
unit, Erlang provides a global table which will contain the starting address of the
code part for each predicate unit. To make such a table, each function is composed

of an initialization part and a code part. The initialization part of a function is

117

a() {

pred_a:

alil:

b)) {

pred_b:
clause_b1:
+
c() {

pred_c:

}

backtrack() {

table[a_id] = &&pred_a; return;
push(CP) ;

CP = &%&a01; goto *table[b_id];

pop(CP); goto *tablel[c_id];

table[b_id] = &&pred_b: return;

ALT = clause_bi_id, push(ALT); goto *CP;
goto *CP;

table[c_id] = &&pred_c; return;

goto *CP;

table[backtrack_id] = backtrack_id; return;

backtrack_id: pop(ALT); goto *ALT;

Figure 6.4: Translated code in the Erlang system

responsible for updating the global function table with the starting address of the
code part. When the initialization part have been executed, the function will just
return.

Although remote branches are efficient thanks to the global function table,
one major drawback of the method is that the update of the global table must be
carried out for all the exported predicates. Besides, because of the optimization of
C compiler, a function may not be compiled in the code in which the initialization
and the code part are physically separated. For example, due to some prevalent
access of the global table in a function, the compiler may carry out an optimization
such that some part of code is compiled into a common expression which will be
executed both in the initialization and the code part. Consider that a compiler
will place the common expression in front of the initialization part and pass the
result in a register such that both the initialization part and the code part work on
the value in the result. In this case, the register remains uninitialized when a code
part is executed and causes incorrect execution. Some other problems associated

with the global table are explained in some other paper [29].

6.3.4 WAMCC

The WAMCC [29] is one of the most complete and efficient translation based Pro-
log system. The code resulting from the translation is similar to the one resulting
from KL1 in that all the addressables are compiled into separate functions. How-
ever, the branches in the WAMCC are not made to the entries of the functions.
Assembly label is inlined just after the prologue with a function declaration in the
header of the C source program. The branches are made to the position of the
label to skip the prologue part.

The compiler then generates assembly code in which the label appears in the
entry of a procedure call. Branches to a predicate unit are made through function
calls whose function name is the label. It is implemented through assembly inlining
of a bogus function name which is textually the same with the label. As a result,
the control is always transferred to the entry point, skipping the prologue part.

Even though branches are implemented via a function call, it does not usually

cause overhead because the function call in RISC machines are as efficient as jump

119

void pred_a();

void a01();

void pred_b();

void clause_b1();
void pred_c();

void 1_backtrack();

void a() {
asm("pred_a:");
push(CP);
CP=a01;
pred_b();

}

void goal_a01() {
asm(‘“a01:");
pop(CP) ;
pred_c();

void b() {
asm(‘‘pred_b:");
ALT = clause_bi;
push (ALT); %}

(*CP) () ;

}

void b1() {
asm(‘‘clause_bi:");
(*CP) () ;

+

void c() {
asm(‘ ‘pred_c:";
(xCP) () ;

}

void backtrack () {
asm(‘‘1_backtrack:??);
pop (ALT) ;
(xALT) Q) ;

Figure 6.5: Translated code in the WAMCC system

120

instructions. Now that all the addressables are compiled into separate functions,
each module consists of a large number of functions. As a result, the object code
contains relatively large amount of instructions which are compiled for prologues
and epilogues for the functions. Besides, adopting to translate all the addressables
by using direct branches, the WAMCC does not optimize some direct branch,
which, implemented by a direct bhranch assembly instruction, will take less cycles

than a function call.

6.4 Thread C-code WAM (TCWAM)

The TCWAM is a translation based Prolog system which we designed to use as
the sequential engine of our parallel logic programming system. Its prototype was
implemented on a PARISC machine and GNU C is used for the target language.

In the design of the TCWAM we use the following three efficiency criteria

1. the speed of executable code
2. the size of produce object code

3. the time of compilation

The first criterion is the execution speed which should be a prime concern in
the translation based execution. The second criterion is based on the following
observation. Figure 6.4 depicts an assembly procedure for a C function with only
one C statement, “printf(“a”)”. In this code, it is noticed that seven instruction
are used as for the prologue and epilogue of the function. As they are not executed
at runtime, it is desirable to remove the prologue and the epilogue part from
“the produced assembly code. This can be accomplished by compiling the entire
module into a single function. Finally, the time spent in compiling the produced
C code is also considered. As noted in [29], the compilation time rapidly becomes
larger as the size of a function becomes bigger. To reduce the compile time, it is
essential to compile addressables into several functions rather than into a single
function. A trade-ofl occurs between the object code size and the compilation

time because criteria 2 and 3 cannot be satisfied at the same time.

121

.PROC

.CALLINFO FRAME=128,CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=3 ; Prologue
stw %r2,-20(0,%r30)

copy #4r3,ri

copy 4r30,%r3

(code for printf(a))

ldw -20(0,%r3),%r2
ldo 64(Y%r3),%r30
ldum -64(0,%r30),%r3
bv,n 0(%r2)

.ENTRY
-EXIT
.PROCEND

Figure 6.6: Prologue and epilogue code generated by gec 2.6.3 on a HP’s SPP
IAX-0016

In the presence of the trade-off between object code size and compilation time,
we opted for the smaller code size due to the following reasons. In a system which
translates an entire module into a single function, the size of a function can be
controlled by making a Prolog program in multiple modules. Indeed, according
to our experiment, the compilation time does not show much difference for a C
function whose size is in the order of hundred lines of a C function.

In the TCWAM, in order to reduce the compile time and the required space,
the produced object code for each addressable unit is compiled into an assembly
procedure. To this end, two macro are defined which correspond to the assembly
directives for the entry and the exit of an assembly procedure. Besides, two more
macros are provided to define labels. In C programs, each occurrence of such a
label makes the previous code as an assembly procedure and provides a procedure
head to make the subsequent code become a new assembly procedure.

Figure 6.4 shows the contents of directives and the C program resulting from a
translation. In this code, the remote branches are implemented via function calls
as in the WAMCC. The global addressables are implemented with the inlining
assembler labels. The local branches, many of which appear in relation with
indexing, are translated into “goto” statements. As noted earlier, because they are
translated either to direct “branch” or “jump” instructions, the “goto” statement

is slightly more efficient than function calls.

6.5 Qualitative Comparison

In this section, we compare the translation methods with focus on implementation
techniques and their performance impact.

Table 6.5 shows a summary of how a module, a predicate, and a clause are
mapped into C functions and a summary of how branches are implemented.

Table 6.5 shows the result obtained from qualitative comparison of the systems
made in terms of the three efficiency criteria. The efficiency of code is defined as
“low” if a module is compiled into a single function because each function in the
produced code contains the Prologue and epilogue code; otherwise, it is defined

as “high”. The compilation time is defined as “low” if a module is compiled into

123

#define M_Proc_Head
asm(".PROC");
asm(".CALLINFO FRAME=128,CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=4");
asm(" .ENTRY") ;
#define M_Proc_Tail
asm(".EXIT");
asm(" .PROCEND") ;
#define M_Global_Label(name)

__name:
asm(".EXPORT " _name " ,ENTRY,PRIV_LEV=3,RTNVAL=GR");
M_Proc_Tail
asm("\x0a" _name);

M_Proc_Head

asm(" "::"g"(M_C_ASymbol(name,c)));
#define M_Local_Label (name)

__name:

M_Proc_Tail

asm("\x0a'" _name);

M_Proc_Head

asm(" "::"g"(__name,c)));

void pred_a(); void pred_b()

void pred_c();

void modulel () void module_2()

{ {
asm("pred_a:"); M_Global_Label(pred_b)
push(CP) ; ALT = &&clause_b1l;
CP=&&a01; push (ALT); }
pred_b(); (xCP) ();

M_Local_Label (a01) M_Local_Label(b1l) {
pop(CP); (xCP)();
pred_c();
+ M_Global_Label(pred_c)
(*CP)();
Global_Label (backtrack)
pop (ALT);
(*ALT)) ;
}

Figure 6.7: Assembly code generated by gee 2.6.3 on a HP’s SPP TAX-0016

124

| System |

Module {

Predicate

Clause

-

Janus

One function

One code block

One code block

KLI

Multiple functions

Multiple functions

Multiple functions

Erlang

Multiple functions

One function

One code block

WAMCC

Multiple functions

Multiple functions

Multiple functions

TCWAM

assembly procedure)

One function
(multiple

One code block
(multiple

assembly procedure)

One code block
(multiple
assembly procedure)

Table 6.1: The produced C-code for addressables. As noted earlier, a code block
refers to part of code inside a function. In case of the TCWAM, the structure of
the produced assembly code is explained as well.

System || RDB] GIB/LIB | LDB
Janus Jump to label Swith to Switch to
computed label | computed label
KL1 Function call Function call Functional call
Erlang Indirect jump to | Indirect jump to | Indirect jump to
recorded label recorded label recorded label
WAMCC || Function call Functional call Function call
(inlined label) (inlined label) (inlined label)
TCWAM Function call function call Function call
(inlined label) (inlined label) label

Table 6.2: Control mechanism: A computed label refers to a constant used as a
key for selecting the label, a recoded label refers to the content of the global table,
and an inlined label refers to a label created through the assembly inlining.

System || Code size | Compilation | Inter-modular
elliciency time efficiency
Janus Low Low Low
KLI Low High High
Frlang Higl Low Low
WAMCC Low High High
TCWAM ITigh Low High

Table 6.3: Comparison of translation methods

a function; otherwise, it is delined as “high”. If the remote branches are more
expensive than the local branches, the inter-module efficiency is defined as “low”;
otherwise, it is defined as “high”.

According to Table 6.5, no one translation method satisfies all the three effi-
ciency criteria; they sacrificed al lease one criterion.

However, it should be noted that the three criteria do not directly determine
the execution speed. In terms of execution speed, which is the most important
criteria, the technique employed in the WAMCC and the TCWAM result in the
highest speed [29].

6.6 Performance Evaluation

The previous sections presents issues pertaining to the translation and the tech-
niques developed in the implementation of logic languages. This section presents
the performance of the translation technique developed and implemented in the
TCWAM.

In order to frame the evaluation of the performance, we ported the WAMCC
on a HP’s SPP IAX system. Originally, the TCWAM is developed on a SPP IAX
system as the sequential Prolog engine for use in our parallel logic programming
prototype. Because both the WAMCC and the TCWAM are Prolog compilers
based on the WAM, we can make a reasonable comparison to identify the advan-

tageous and disadvantageous of the two translation methods.

Prolog Lines | Assciibly | Object | Executable | Comp. | Exe.
Program code size | code size | code size time | time
boyer 395 283 63 266 55 | 1374
browse 111 79 20 237 12 | 1662
cal 202 75 19 237 11| 180
chat_parser | 1184 794 182 356 619 | 333
crypt 96 59 15 237 8 13
ham 90 Gl 16 233 8 | 1875
meta_gsort 146 71 18 238 9 21
nand 574 131 95 299 191 60
nrev 105 41 11 233 51 277
poly_10 112 71 18 238 8| 109
queen(16) 95 28 8 229 4| 1321
queens_8 79 41 11 233 6| 331
queens_10 79 4] 11 233 6 | 6018
reducer 388 217 51 262 37| 100
sdda 327 141 34 250 21 6
sendmore 66 59 14 233 8 139
tak 35 20 6 229 4| 298
tak_gvar 54 26 8 229 5 10
zebra 57 42 12 233 7] 112

Table 6.4: Evaluation results ol the TCWAM: assembly, object and executable
~code are in [Kbytes, compiler time is in seconds, and execution time is in millisec-
onds.

Prolog Assembly | Object | Executable | Compilation | Execution
Program code size | code size | code size time time
boyer 1.48 1.72 1.43 1.04 1.41
browse 1.40 1.48 1.37 1.25 1.38
cal 1.75 1.91 1.38 1.45 1.23
chat_parser 1.63 1.97 1.61 0.54 1.20
crypt 1.78 1.95 1.37 1.62 1.00
ham 1.52 1.59 1.37 1.50 1.23
meta_qgsort 1.44 1.58 2.05 2.11 1.48
nand 1.57 1.95 1.48 0.82 1.37
nrev 1.44 1.51 1.35 2.00 1.32
poly-10 1.56 1.G9 1.36 1.75 1.50
queens(16) 1.43 1.34 1.36 1.50 1.29
queens.8 1.34 1.34 1.35 1.50 . L2
queens_10 1.34 1.34 1.35 1.50 1.21
reducer 1.63 1.91 1.44 1.43 1.26
sdda 1.62 1.89 1.39 0.62 1.67
sendmore 1.68 1.81 1.39 0.62 1.37
tak 1.30 1.15 1.34 1.75 1.15
tak_gvar 1.34 1.23 1.34 1.20 1.50
zebra 1.43 1.39 1.35 1.43 1.11
average 1.51 1.62 | 1.43 | 1.35 | 1.31 |

Table 6.5: Comparison: TCWAM versus WAMCC (WAMCC/TCWAM)

Table 6.4 shows the evaluation results for the TCWAM. The assembly code
size is obtained with the compiler option “-S” in gee version 2.6.3. The object

“w »
-G .

code is the output of the “gec” compiler obtained with the compiler option

Table 6.6 shows the results of comparison between the TCWAM and the
- WAMCC. For almost all the evaluated items, the TCWAM shows improvement
over the WAMCC. In the assembly code size, object code size, and the executable
code size, the TCWAM shows improvements respectively by 51, 62, and 43 per-
cents. Also, the average improvement of the execution speed is 31 percents. The
TCWAM shows the improvement of compilation time by 35 percents. However, a

close examination of the values shows that for all the Prolog programs with bigger

128

Prolog Asscmbly | Object | Executable | Execution
Program code size | code size | code size time
boyer [.23 1.14 1.14 1.29
browse {32 1.15 1.14 1.47
cal 113 1.05 1.12 1.15
chat_parser 127 1.19 1.16 1.40
crypt 1.37 1.13 1.12 1.00
ham].20 1.00 1:.12 1.41
meta_qsort 1.24 1.06 1.12 1.43
nand .37 1.26 1.16 1.35
nrev 1.29 1.09 1.12 1.45
poly_10 1.29 [.11 1.12 1.39
queens(16) 1.28 [.01 1.13 1.25
queens_S 1.29 1.09 1.12 1.45
queens_10 1.29 1.09 1.12 1.48
reducer 1.32 1.19 1.14 1.41
sdda 1.35 1.23 1.13 2.17
sendmore 1.32 1.14 1.43 1.30
tak 1.25 1.01 1.16 1.27
tak_gvar 1.27 0.90 1.42 1.30
zebra 1.26 1.08 1.39 1.32
| average] 1.28] 1.10 | 1.18 1.38 |

Table 6.6: Comparison: TCWAM versus TCWAM-NCR

sizes, the compilation of the TCWAM shows roughly two times slower than the
WAMCC.

Table 6.6 shows the result of comparison between the version with clobbered
registers (TCWAM) and a version without clobbered registers (TCWAM-NCR).
_In the version with clobbered registers, total 10 registers, (r10, r1l, r12, r13, rl4,
rl5, r16, r17, r18,, r19), are mapped to the WAM registers. For all the evaluation
items, the TCWAM shows improvement over the TCWAM-NCR. With regard
to the assembly code size, object code size, and the executable code size, the
TCWAM shows improvements respectively by 28, 10, and 18 percents. Besides,

the average improvement of the exccution speed is 38 percents.

129

Prolog TCWAM | WAMCC | BinProlog | XSB-Prolog | SWI-Prolog
Program 1.00 2.21 3.0 1.4.0 1.8.11
boyer 1.00 1.41 2.74 4.68 8.66
browse 1.00 1.38 2.72 4.07 6.24
cal 1.00 1.23 3.78 5.84 21.05
chat_parser 1.00 1.20 1.47 2.19 2.51
crypt 1.00 1.00 1.06 2.50 6.25
ham 1.00 1.:23 1.50 2.51 3.59
meta_qsort 1.00 1.48 3.28 4.59 4.26
nand 1.00 1.37 3.64 0.00 4.78
nrev 1.00 1.32 1.15 2.29 7.38
poly_10 1.00 1.50 2.09 3.59 5.98
queens(16) 1.00 1.29 2.46 3.41 16.45
queens_8 1.00 1.21 1.60 2.71 5.99
queens_10 1.00 1.2] 1.42 2.53 4.98
reducer 1.00 1.26 2.57 0.00 4.34
sdda 1.00 1.67 3.33 5.56 3.33
sendmore 1.00 1.37 6.54 3.98 15.33
tak 1.00 1.15 2.92 2.98 13.58
zebra 1.00 1.11 1.70 2.26 2.47
laverage | 100 [130 [255 [348 | 762 |

Table 6.7: Improvement rate of the execution speed for the generated code (a)

130

Prolog TCWAM | Sictus 2.1 | Sictus 2.1 | Quintus | Aquarius
Program 1.00 emulated native 2.0.1
boyer 1.0 2.43 1.047 1.16 0.89~
browse 1.0 2.28 1.44~ 1.15 2.11*
cal 1.0 3.66 0.45" 2.06 0.84*
chat_parser 1.0 1.38 1.64* 0.79 2.347
crypt 1.0 1.69 123" 1.06 1.60™
ham 1.0 1.43 1.69* 0.85 3.71*
meta_qsort 1.0 1.57 1.45" 1.64 2.03"
nand 1.0 2.28 1.05" 1.48 2.20"
nrev 1.0 1.39 2.39" 0.55 2.847
poly_10 1.0 1.60 1.34~ 1.25 2.87"
queens(16) 1.0 2.12 1.48~ 1.49 3.11*
queens.8 1.0 1.70 1.56~ 1.01 4.43*
queens_10 1.0 1.61 1.56" 0.95 5.02"
reducer 1.0 1.26 1.79* 1.26 2.14*
sdda 1.0 2.56 0.56~ 1.89 0.90~
sendmore 1.0 3.98 0.99* 1.66 2.10%
tak 1.0 213 1.23* 3.38 1.99*
zebra 1.0 1.28 1.02* 0.98 1.47*
average | 1.0 | 2.02 | 1.33" | 1.37 2.70* |

Table 6.8: Improvement rate of the execution speed for the generated code (b):
the values of Sictus 2.1 and Aquarius are the improvement over the TCWAM,
which are indicated by stars.

131

6.7 Synthesis

This chapter presents a technique developed for the implementation of the sequen-
tial Prolog engine which we call TCWAM. With regard to the translated code size
and the execution time of the code, the TCWAM shows about 30 percents im-
provement over the WAMCC, which is up to now the most efficient translation
based sequential Prolog system.

The comparison of the execution speeds between the TCWAM and some aca-
demic and commercial Prolog system indicates that the TCWAM is faster than
the most sequential Prolog system except Sictus 2.1 (naive) and Aquarius. Con-
sidering that Scitus 2.1 (naive) generates the naive code and Aquarius is the
fastest sequential Prolog system, the translation technique which we developed

and implemented for the TCWAM is apparently quite successful.

132

Chapter 7

Flat indexing: an Indexing Technique for

OR-parallel Logic Programming

Indexing is a method which prunes away unnecessary inferences in the evaluation
of logic programs. Usually, it is implemented by a set of abstract instructions.
To find an optimal indexing is quite complex and also demands a large number
of abstract instructions for the implementation. In the indexing scheme of the
WAM, the first argument of a clause is used as a key for indexing. Viewed from
the standpoint of a trade-off between efficiency and simplicity, using the first ar-
gument as a key is quite a reasonable choice. However, in the indexing scheme,
an invocation of a predicate sormetimes results in the creation of two contiguous
choice points in a search path. In this case, the OR-parallelism is expressed in
the two choice points. Therelore, viewed from the OR-parallel execution stand-
point, the indexing scheme of the WAM is not efficient in terms of parallelism
exposition. In order to enhance the parallelism exposition, we developed a new
efficient indexing scheme which we call flat indezing. This chapter presents the

flat indexing scheme.

7.1 Introduction

Logic languages based on the SLD refutation [61] impose a strictly sequential
search over the list of clauses which make up a predicate. In the search, all the
clauses in the list are tried for a given goal. In each clause try, unification occurs

between the clause’s arguments and the goal’s arguments. If all the arguments of

133

the goal are unbound variables, all the clauses must be tried because every clause
will be successfully unified. When some of the arguments are partially instanti-
ated, the information can be used to prune away some clauses from the list of
clauses to try, because it allows us to determine that some clauses always produce
unification failure. The technique is usually called indezing and the indexing is
clearly a good way to improve the performance when the number of clauses mak-
ing up a predicate is large. Therelore, most logic language compilers produce a
code which supports indexing [29].

The WAM has been dominantly used as the sequential engine in parallel imple-
mentations of logic languages [5, 15]. By doing that, parallel systems can benefit
from the optimizations developed for the WAM and thus preserve high single
thread performance. In such systems, the virtnal machine structure and instruc-
tions provided in the WAM are slightly modified or extended in association with
parallelism. The indexing scheme of the WAM and its associated instruction set
are also slightly modified.

In the execution of a WAM code, a choice point is created in memory as a unit
of information used for the management of the execution of a predicate [78]. It
keeps the next alternative and some other information such as goal arguments. In
parallel execution, all the OR-parallelism available for a predicate is thus exposed
in a choice point. However, close observation shows that two choice points are
sometimes created for a predicate in a search path. This phenomenon is rooted
from the indexing scheme. In the sequential execution of a WAM code, it is a very
trivial issue because the indexing scheme produces very compact code, which is
in fact one of the design objectives of the WAM.

However, within the context of parallel execution, the indexing scheme in the

WAM is inefficient in terms of parallelism and scheduling. In this chapter, we
investigate the problem in detail and suggest a new efficient indexing scheme which
we will call flat indexing. Moreover, in order to verify the performance, we have
implemented both indexing schemes in a sequential Prolog system and evaluated
the number of choice points created for a set of benchmarks. This chapter will
thus presented the evaluation result both for the indexing scheme of the WAM

(which will be called the WAM indexing) and for the flat indexing. The rest of

134

this chapter is organized as lollows: Section 7.2 gives a brief introduction of the
logic languages and the principles of the WAM indexing scheme as a background.
Section 7.3 presents the analysis [ramework for indexing schemes and the analysis
result of the WAM indexing scheme in terms of parallelism. Section 7.4 presents
the flat indexing scheme. Section 7.5 reports the evaluation results. [Finally,

section 7.6 concludes the chapter.

7.2 Review of the WAM indexing

To make this chapfer self-contained we introduce the principles of the WAM in-
dexing scheme along with some terminology and definitions for indexing.

In spite of the research efforts expended over the last decade, the implementa-
tion of Prolog is still an important issue in logic programming. Among a number
of innovations, the WAM (Warren Abstract Machine) was one of breakthroughs
which have contributed to the efficient implementation of logic languages.

Indexing is a method which prunes away unnecessary inferences in the evalua-
tion of logic programs. Usually, it is implemented by a set of abstract instructions.
To find an optimal indexing is quite complex and also demands a large number of
abstract instructions for implementing it. In the WAM indexing scheme, the first
argument of a clause is used as the key. According to the usual programmers’
tendency, clauses making up a predicate are usually defined differently depend-
ing on data types. The differentiation is mostly reflected in the first argument.
Considering the trade-off between efficiency and simplicity, the usage of the first
argument as the key for indexing is a quite reasonable choice.

The WAM supports four data types: variable, constant, list, and structure.
When the key is a variable, the key will always unify with an input argument of
any type. The WAM indexing schieme is applied to each predicate. For the set of
clauses, (¢, ...,¢,), which make up a predicate, it starts with grouping them into
a set of contiguous partitions, Py, ..., P, (1 < m < n), where each subsequent P;

is

e (type a) either a single clause whose key is a variable or

135

o (type) a maximal subsequence of contiguous clauses whose key is not a

variable.

cl: match(sum(A,B), sum(C,D)) - match(sum(A+D-1), sum(C+B-1)) .
c2: match(sum(A,B), C) :- match(B-1, sum(C,B-1)).

c3: match(a, b) ;- match(numeric(a), numeric(b)).
c4: match(X, ascii(Y)) :- match(ascii(X), digit(Y)).

ch; match(a, b) ;- match(ascii(a), ascii(b)).

c6: match(a, b) :- match(digit(a), digit(b)).

cT: match(b, X) := match(digit(b), digit(X)).

c8: match(sum(A,B), sum(C,D)) :- equal((A-C), equal(D-B)).

c9: match(sum(A,B), C) :- match(sub(C-A), B).

cl0: match([A,B], [C,D]) - match(4, C), match(B,D).

cli: match([a,A], [C,b]) - match(a,C), match(A,b).

cl2: match(X, numeric(Y)) - match(numeric(X), numeric(Y)).

Figure 7.1: Clauses making up predicate “match/2”

Figure 7.1 presents an example Prolog program. It shows twelve clauses which
define predicate “match/2”. According to the partitioning rule discussed above,
the clauses are grouped into four partitions, P, = {¢1,¢2,¢3}, P2 = {ca}, and

P = {Cs, C6, C7, Cs, Cs),(:[o,fin}, Py = {C12}-

Partitioning is introduced just for making a compact code by excluding the
clauses, whose key is a variable, from indexing. Partitioning is just a preliminary
step for indexing; as a matter of fact, they are always visited regardless of the data
type of the input key. In the WAM code, these partitions are chained such that
each subsequence is visited consecutively whenever the predicate is called. The

“code which implements the chaining of the partitions is based on “try_me_else”,
“retry_me_else, and “trust_me_clse_fail” [78]. Figure 7.2 shows a skeleton of the
code which contains the chaining of those partitions defined for match/2.

The actual indexing is implemented for each partition. A partition of type o
does not have any indexing because it has only one clause which must always be
tried because its key is a variable. A partition of type 3 consists of one or several

clauses. The key of each clause can be only one of the following three data types:

136

match /2 try-me_clse Py label
[indexed code for I'y]
Py _label retry_me_else Ps_label
[indexed code for 17,]
Ps_label retry_me_else Py label
[indexed code for 174]
Py label trust_me_else_fail
[indexed code for 174]

Figure 7.2: Patitions and its structure in the generated code

constant, list, and structurc. They are grouped into four subpartitions, S., Si, Ss,
and S, where S, (resp. Sy, Ss) is an ordered set of clauses whose key is a constant
(resp. a list, a structure) and S is the set of all the clauses which belong to the
partition.

For each partition of type 4, the WAM indexing produces code which will
work as follows. For a given input argument, according to its data type, one
of the subpartitions is selected. If the input argument is a constant (resp. list,
structure, variable), then S, (vesp. Sy, Sy, Si) is selected. When either S; or S;
is selected, all the clauses in the subpartition will be tried because both a list
and a variable do not have any specific value. In case of either subpartition S or
S.,, one more level of indexing is still possible, because multiple different values
can be defined as a key for clauses in subpartitions S. or S,. In this case, only
those clauses in the subpartition whose key value matches with the value of the
input argument are selected. The subpartition or a subset selected in the above
procedure will be referred to as a bucket. S; and S, are always defined respectively
as a bucket since no more indexing is made for them; however, a subset of S. or
S, can be defined as a bucket according to the above discussion.

The selection and dispatching of a subpartition is implemented by instruction
switch_on_term. The four arguments of the instruction specifies the destination
of dispatching for the input argument respectively of variable, constant, list, and

structure data type, as explained below.

137

e Variable: the designation becomes the first clause and eventually all the
clauses in S, will be tried.

e List: the destination hecomes

o the clause whose key is a list if only one such clause exists, or

e the starting location of the bucket for list data type if more than one
clauses are defined whose key is of list data type, or

o the starting location of the failure code if no clause exists with its key

of list data type.
¢ Constant (resp. Structure): the destination becomes

e the clause whose key is a constant (resp. structure) data type if only
one such clause exists, or

o the location of swilch_on_constant (resp. switch_on_structu-re) if more
than one clauses are defined whose key is of constant (resp. structure)
data type, or

e the starting location of the failure code if no clause exists with a key

of constant (resp. structure) data type.

S; is implemented in the same way which was used for implementing partitions.
For S. or S, more than one buckets may exist. Instruction switch_on_constant
or switch_on_structure selects a bucket. In these instructions, the selection of a
bucket is made by using a hash table in which a hash entry is provided uniquely for
each value and has the address of the corresponding bucket. If a bucket consists
of more than one clauses, it is implemented by instructions try, retry, and trust.
Figure 7.3 depicts the structure of the code for an emample partition with %
clauses. Figure 7.4 shows the corresponding code for partition P of predicate
match/2 shown in Figure 7.1.

Before we proceed to the next section, let us briefly describe the relation be-
tween the WAM indexing scheme and the choice points created for each invocation
of a predicate. The principal role of a choice point is to keep the information re-
quired for the execution of a predicate. It is thus rather natural to provide one
choice point per each invocation of a predicate. However, sometimes two choice

points are allocated under the WAM indexing.

138

P; code:

C_Switch:

L_Bucket:

S_Switch

Cill
C,‘gt

Cip:

switch_on_term Cjy, Ciy | CSwitch | fail, Cy
| L_Bucket | fail, C;. | S-Switch | fail

switch_on_constanl [poinlers to buckets]
Lists of buckets for constants

A bucket for lists

switch_on_strueture [poinlers to buckets]
Lists of buckets for structures

Code for clause Cj
Code for clause Cp

Code for clause Cjp

Figure 7.3: A structure of the code for a partition which has k clauses

139

P2 code:

C_Switch:
C_a_Bucket:

L_Bucket:
S_Switch:
S_sum_Bucket:
C5_Label:

C5_Code:

C6_Label:
C6_Code:

C7_Label:
C7_Code:

C8_Label:
C8_Code:
C9_Label:
C9_Code:
C10_Label:

C10_Code:

Ci1_Label:
C11_Code:

switch_on_term C5_Label, C_Swich, L_Bucket, S_Switch

switch_on_constant 2, {a: C_a_Bucket, b: C7_Code)
try C5_Code

trust C6_Code

try C10_Code

trust C11_Code

switch_on_structure 1, {sum/2 : S_sum_Bucket}
try C8_Code

trust C9_Code

try_me_else C6_Label _
Code for ‘match(a, b) :- match(ascii(a), ascii(b)).’

retry_me_else C7_Label
Code for ‘match(a, b)

match(digit(a), digit(b)).’

retry_me_else C8_Label
Code for ‘match(b, X)

match(digit(b), digit(X)).’

retry_me_else C9_Label
Code for ‘match(sum(A,B), sum(C,D)) :- equal ((A-C),
equal(D-B)).’

retry_me_else C10_Label
Code for ‘match(sum(A,B), C) :- match(sub(C-A), B).?

retry_me_else Cii_Label
Code for ‘match([A,B], [C,D]) :- match(A,C),
match(B,D).?

trust_me_else_fail
Code for ‘match([a,A], [C,b]) :- match(a,C),
match(A,b).?

Figure 7.4: A code for partition Py of “match/2”

140

P

Figure 7.5: Choice points and parallelism

In the WAM, instructions {ry_me_else and try create respectively a choice point.
When more than one clause is defined for a predicate, the code for the first clause
always starts with instruction try-me_else. In this case, if a bucket with more
than one clause exists in any of the partitions, its code starts with ¢ry instruction.
Therefore, if the bucket is selected at runtime, two choice points are created in
memory respectively by try_me_else and iry instructions.

For example, in the exccution of match/2, instruction try-me.else creates a
choice point for which four partitions are exposed as alternatives branches (Figure
7.5). In the sequential execution, the four partitions are executed sequentially from
left to right. In parallel execution, they can be executed in parallel respectively
by other processors. The figure also depicts the case that a new choice point is
created in partition Py by try instruction in C_a_Bucket (Figure 7.4), when the

W, n
.

input argument, which matches with the key, is “a

7.3 Analysis of the WAM Indexing Scheme

In this section, we present an analysis which aims at identifying the influence
that the WAM indexing has on the OR-parallelism of a Prolog program. The
analysis consists of the identification ol the shape of a search tree created under
the WAM indexing scheme and also a quantitative evaluation of the amount of

OR-parallelism.

141

In the sequential execution of a WAM code, the creation of two contiguous
choice points for a predicate can be regarded just as a variance of an implementa-
tion since it does not cause any notable performance penalty. In parallel execution,
however, it has very harmful influence on the performance by affecting the amount
of parallelism per choice point and the efficiency of task scheduling.

For a predicate P defined by more than one clauses, we now provide some
notations and definitions associated with the WAM indexing. Let the set of clauses
which make up the predicate be ¢,...,¢,. Suppose that the indexing scheme
produces m partitions, P, Py, ..., P,. Let us define a mapping N such that
N(S) be the number of elements of a set S. The number of clauses in partition
F; is then denoted as N(F;), i.e., 1it, N(P) = n. For a partition P;, let the
buckets to be defined for an input argument be by,, by, b, and by;, respectively
for a variable, a list, a constant, and a structure. According to the definition of
a bucket, a bucket created for either constant or structure data is for a specific
value and it does not normally contain all the clauses whose key is of the type.

The partition and its buckets thus have the following relation.
N(F) 2 N(by;) + N(be;) + N(bs;)

In this chapter, we will represent a predicate by a tree called an indezing tree.
The indexing tree for the execution of a predicate is informally defined as follows.
Choice points resulting from the execution of a predicate are defined as nodes in
the tree. These nodes will be called ep-nodes. In the execution of a predicate, if
m, the number of partitions, is larger than one, a choice point is always created
at the beginning of the execution. In this case, the cp-node becomes the root of
the predicate’s indexing tree and it will have m edges. To each edge, an indexing
- tree defined for the corresponding partition is connected as a subtree. For each
partition, one of the following three case may occur as the result of switch_on_term,

switch_on_constant, or switch_on_structure:
1. No one clause is tried.

2. One clause is tried.

3. A bucket is chosen which has more than one clauses.

For each case, a new node is connected to the edge. The node for case 1 or 2 is
called a terminal node (t-node) and does not have any subftree below it. On the
other hand, a choice point will be always created in case 3 because the number of
clauses in the chosen bucket b; is more than one. As a result, a subtree is attached
to the edge which consists of a new cp-node with N(b;) t-nodes as its child nodes.
Shown from the above discussion, the indexing tree of a predicate can have two
levels, each respectively for partitions and for buckets in each partition. Table 7.1
illustrates the form of an indexing tree for a predicate.

Given a predicate, the indexing tree will be in a different form depending on
the data type of an input argument because the form of an indexing tree of a
predicate depends on which clauses will be executed at runtime. If the input
argument is a variable or a list, the number of cp-nodes for the indexing tree will
be always the same. On the other hand, if the input argument is a constant or
a structure, the indexing tree has a different form depending on the value of the
input argument. In this case, we can derive the maximum case and also minimum

case of the indexing tree.

e The maximum case occurs when the number of cp-nodes is the maximum. It
is defined as follows. Given an input argument, let B; be the bucket chosen in
the partition P;. Also, let the number of bucket b; for alli (1 < i < m), which
has more than one clause, be ». The number r is always uniquely defined for
an input value. When the input is the constant (resp. the structure) which
produces the maximum number of 7, let us denote its corresponding bucket
in a partition P; (1 < ¢ < m) as b, (resp. b5;). In this case, the number
of cp-nodes in the resulting indexing tree will be defined as the maximum
number of cp-nodes.

e The minimum case occurs when the number of cp-nodes is the minimum. It
is defined as the indexing tree created when the input value, whose type is

either a constant or a structure, does not match with any of the key values.

Table 7.1 summarizes both the maximum and minimum cases for each data

type. In the table, p stands [or the number of choice points created with respect to

143

partitions. Therefore, it becomes “0” if the number of partition is “1”; otherwise,
it becomes “1”. Defined respectively for the data type of the input argument,
r is the maximum number of buckets which have more than one clauses. Now
that a choice point is ereated for cach such bucket, the total number of cp-nodes
becomes p plus . The number t-nodes is calculated as follows: The total number
of partitions minus the number of ¢p-nodes (i.e., m-r) becomes the number of
t-nodes in the first level, and the summation of clauses in all the buckets of each
partition (e.g., Y12, N(0.,) for constant data corresponds to the number of t-
nodes in the second level. The summation of the t-nodes of the two levels thus
becomes the total number of t-nodes. As discussed earlier, the table shows that

the maximum and minimum cases are the same when the input argument is either

a variable or a list.

Maximui case Minimum case
Input Number of Number of Number of Number of
Argument cp-node l-nodes cp-node t-nodes
Variable p n P n
Constant p+r m-r+ 30, N(V,) P m
List p+r m=r 4 30 N(by,) p+! m-r + 3, N(by,)
Structure ptr m-r + 30 N(U) p m

Table 7.1: The maximum and minimum cases of the indexing tree, where p is 0 if
m = 1; otherwise, p is 1.

As an example, we evaluated the size of the indexing tree for predicate match /2
discussed in section 7.3. In this case, the number of clauses n is 12 and the number
of partitions m is 4. Also, r, the maximum number of buckets which have more
- than one clauses, are defined as 1, 1, and 2 respectively for the constant, structure,
and list data type. The other parameters are listed in Table 7.2. The result is
shown in Table 7.3. According to the table, up to three choice points will be

created for the execution of a predicate when the input argument is structure
“sum/2”.

144

| 1 J] N(P;) | N(be,) | N(by,) | N (b))] N (D)]
1 3 3 0 1 2
2 1 | 0 0 0
3 7 7 2 2 2
4 | | 0 0 0

Table 7.2: Parameters evaluated for the example predicate

Maximum tree Minimum tree
Input Number of | Maximum no. | Number of | Maximum
Argument || cp-node of t-nodes cp-nodes of cp-nodes
Variable 1+0=1 12| 1+0=1 12
Constant 14 1=2]|4-1+2=5]|14+0=1 .4
List l1+1=2|4-142=5|14+1=2[4-1+2=5
Structure || 1+2=3|4-24+4=6|14+0=1 4

Table 7.3: The example: the maximum and minimum size

7.4 Flat Indexing

The analysis of the WAM indexing shows that the WAM indexing has a harmful
influence on the parallelism exposition because up to m + 1 choice points will
be created when a predicate has m partitions. With a view to enhance the par-
allelism exposition, we proposed a new indexing scheme, which we will call flat
indezing. This section presents the flat indexing scheme along with our analysis

of its parallelism exposition.

7.4.1 Description of the flat indexing

In the WAM indexing scheme, a set of subsequent clauses with a variable key is
defined as an independent partition. It is because a variable key is always unified
with the input argument of any type. By doing this, the WAM can produce very
compact code since each bucket always includes the clauses whose keys are of

the same data type. However, as discussed earlier, one critical drawback of this

145

approach is that more than one choice points are sometimes created in a search
path.

The flat indexing scheme is based on the idea that all the clauses are looked
upon as one partition and a specific bucket is chosen according to the type of
the input argument. The key feature of the flat indexing scheme is that only a
single choice point will be created for every predicate. For this, we have made the

following modifications:

o A bucket is an ordered set of clauses whose key matches with the input
argument or is a variable.
e A specific bucket, to be called a failure bucket, is introduced such that it is

an ordered set of clauses whose key is a variable.

For example, among the twelve clauses making up predicate match/2 in section
7.3, c10 and ¢y have a list as their key, and clauses ¢4 and ¢;5 have a variable as
their key. The bucket for the list is thus defined as {c4, c10, €11, c12} and the failure
bucket as {c4, c12}.

Using the new form of a bucket and the failure bucket, the flat indexing works
as follows. Asin the WAM indexing, a bucket is prepared for list data type, and a
list of buckets are prepared for data types constant and structure. In the beginning
of a code, swich_on_term instruction dispatches the control to a destination. The
semantics of the instruction is the same as the one in the WAM indexing except
that the destination for each data type becomes the failure bucket when there
exists no clause whose key matches with the data type. For constant or list data,
instuctions switch_on_constant and switch_on_strcuture dispatch the control to the
appropriate bucket depending on its data value. These instructions are the same
as those in the WAM indexing except that they have an additional pointer to the
failure bucket. If no bucket exists for the data value, the control is transfered to
the failure bucket.

Figure 7.6 depicts the structure of code produced for a predicate by the flat
indexing scheme. In principle, it is very similar to the code produced for a par-
tition by the WAM indexing . However, as discussed previously, arguments of
instructions switch-on_term, switch_on_constant, switch_on_strucutre are slightly

different from those in the WAM indexing.

146

Instruction switch_on_term is slightly different from the one in the WAM
indexing. When an input argument is not matched with the entry, in the WAM
the control is dispatched to a failure service routine. However, in the flat indexing
scheme, the control is dispatched to a failure bucket and then the clauses in the
bucket will be executed. This is because the flat indexing has only one partition
and any non-variable argument will be always matched with the variable key even

if no clauses exist whose key matches with the argument.

predicate:
Switch_on_term Start, C_Switch | C; | Fail_bucket,
L_Bucket | C_i | Fail_bucket, S_Switch | Ci | Fail_bucket

Fail_bucket: code for failure bucket

C_Switch: Switch_on_constant [pointers to buckets,Fail_bucket]
lists of buckets for constants

L_Bucket: a bucket for lists

S_Switch Switch_on_structure [pointers to buckers,Fail_bucket]
lists of buckets for structures

Start: Code for clasuses

Figure 7.6: A structure of the generated code

In order to clearly show how a predicate is coded by the flat indexing scheme,

we provide in Figure 7.7 the structure of the code for predicate match/2.

7.4.2 Analysis of the flat indexing

As we did for the WAM indexing scheme, we have derived the number of the
cp-nodes and the t-nodes in an indexing tree under the flat indexing scheme. The
results are reported in Table 7.4. As shown in the table, the number of cp-nodes,

that corresponds to the number of choice points, is always one.

147

C_Switch:

Fail_Bucket:

C_a_Bucket:

C_b_Bucket:

L_Bucket:

S_Switch:

S_sum_Bucket:

Ci_Label:
Ci_code:

Cii_Label:

Ci1i_Code:

C12_Label:
C12_Code:

switch_on_term Ci1_Label, C_Swich, L_Bucket, S_Switch
switch_on_constant 2, {a: C_a_Bucket, b: C_b_Bucket)

try C4_Code
trust C12_Code
try C4_Code
retry C5_Code
retry C6_Code
trust C12_Code
try C4_Code
retry C7_Code
trust C12_Code
try C4_Code
retry C10_Code
retry Cl1_Code
trust C12_Code

switch_on_structure 1, {sum/2 : S_sum_Bucket}

try Ci1_Code
retry C2_Code
retry C4_Code
retry C8_Code
retry C9_Code
trust C12_Code

try_me_else C2_Label

Code for match(sum(A,B), sum(C,D))
match(sub(A+D-1), sum(C+B-1))

; Codes for C5 - C10

retry_me_else Cii_Label

Code for match([a,A], [C,b]) :-
match(a,C), match(A,b).

trust_me_else_fail
Code for match(X, numeric(Y)) :-
match(numertic(X), numeric(Y))

Figure 7.7: An structure of the produced code for “match/2”

148

Input Number of | Maximum | Mininum
Argument created | number of | number of
cp-node t-node t-nodes
Variable 1 n n
Constant] v+ N(O) | v
List 1 v+ N(b) | v N(by)
Structure 1 v+ N | v

Table 7.4: The analysis result: v is the number of clauses whose key is a variable
and b, (resp. b)) is the bucket whose clause size is the largest among the buckets
with a constant (resp. a structure).

key

Table 7.5 shows the values which we obtained by applying the analysis result
in Table 7.4 to predicate match/2. It also shows the values taken from Table
7.3. From the table, we can clearly see the principal difference between the WAM
indexing and the flat indexing; the number of choice points created for each predi-
cate is always one in the flat indexing, while it can be three in the WAM indexing,.
Interpreted within the context of OR-parallelism, the reduction of choice points
corresponds to the increase of the amount of OR-parallelism exposed for each
choice point. In other words, the flat indexing contributes to the reduction of the
non-leaf nodes the search tree, thereby, it increases the amount of OR-parallelism
per node.

In addition, a close examination of the t-nodes in the table reveals a strange
result. The size of the indexing tree is different in terms of the number of t-nodes.
For example, when the input is a list, the number of t-nodes is five for the WAM
indexing scheme and four for the flat indexing scheme. We will explain the reason
by using their indexing trees created when the input argument is a list. Among the
five t-nodes for the WAM indexing scheme, it is found that the first t-node is for the
failure (case 1) resulting from switch_on_term instruction in the first partition and
the remaining ones are for clause tries (case 2) respectively for ¢y, €10, €11, and c;a.
On the other hand, all the four nodes for the flat indexing scheme are for clauses
tries. As a matter of fact, in the flat indexing scheme, all the terminal nodes are

always for clause tries and their number is always smaller than or equal to the

149

one in the WAM indexing scheme. Interpreted within the context of the parallel
execution, the removal of terminal nodes caused by case 1 corresponds to the
reduction of task switching by a scheduler. In general parallel logic programming
systems, the task switching is a very expensive operation because the scheduler
must prepare the environment for the destination node. When a scheduler task
switches to a terminal node in case 1, it will finish the task right after the task
switching, just wasting expensive system resource. Therefore, the reduction of
terminal nodes caused by case 1 enhances the system performance by eliminating

unnecessary context switching for the node.

Maximum tree Minimum tree
Input Number of | Maximum no. | Number of | Maximum
Argument | cp-node of t-nodes cp-nodes | of t-nodes
Variable 1(1) 12 (12) 1(1) 12 (12)
Constant 1(2) 5 (5) 1 (L) 2 (4)
List 1(2) 4 (5) T (L) 4 (5)
Structure 1(3) 6 (6) 1 (1) 2 (4)

Table 7.5: The maximum and minimum size for match/2 under the flat indexing,
where the numbers enclosed in parentheses are for the WAM indexing scheme.

7.5 FEvaluation Results

In previous sections, we showed that the size of the indexing tree generated in the
flat indexing scheme is always smaller than that in the WAM indexing. The re-
duced number of choice point creation is the primary benefit. With the absence of
some terminal nodes caused by failure from switch_on_term (_constant, _structure),
the total number of instructions executed for a benchmark will be also reduced.
On the other hand, some more instructions are required in the implementation
of the flat indexing scheme, particularly for implementing the bucket. Therefore,
the code size may be larger than that in the WAM indexing. With respect to the

above qualitative estimation, questions still remain:

o What fraction of Prolog programs benefit from the flat indexing?

o How much will the flat indexing aflect the size of the indexing tree for the
benchmarks which benefits from the flat indexing?

e How much will the flat indexing affect the size of the code?

As discussed earlier, the reduction of the indexing tree directly contributes to
the enhancement of OR-parallelism per each node of the search tree as well as the
removal of bogus task switching by a scheduler. Therefore, the first and second
questions are to see how much effective the flat indexing will be for practical
applications. On the other hand, compared with the WAM indexing, the flat
indexing may generate less compact code. Therefore, the third question is to see
how less compact the code will be under the flat indexing.

In order to answer the question, we conducted an experiment. The experiment
is based on the TCWAM Prolog system. The normal TCWAM Prolog compiler
produces the WAM code in which the indexing part is based on the flat indexing
scheme. Linked with an emulation engine, the WAM code has been executed on
a HP’s SPP-IAX system. By modilying the TCWAM, we implemented another
version that supports the WAM indexing scheme. This version will be called the
TCWAM-NFI (non-flat indexing), We selected 17 benchmarks which have been
frequently used in the evaluation of Prolog systems [6, 29]. Respectively for each

version, we measured the following three performance criteria:

e the size of the indexing tree,
e the code size of assembly source, object, and executable code, and

e the execution time.

Table 7.6 shows the size of the indexing tree for each benchmark. Over 50
% of the 17 benchmarks benefit from the flat indexing. In the table, those are
indicated by asterisks. Overall, 8 % more choice points have been created and 19
"~ % more switch_on_term, switch_on_constant, or switch_on_structure failures occur
under the WAM indexing. For the set of benchmarks which are affected by the
flat indexing, 15 % more choice points are created and 35 % more switch_on_term,
switch_on_constant, or switch_on_structure failures occur under the WAM index-
ing.

Table 7.7 shows the size of the code and execution time measured for the

TCWAM system. Since the TCWAM translates Prolog code into C code via

151

Flat indexing Wam indexing Comparison

Prolog cp-nodes | t-nods || cp-nodes | t-nodes | cp-node | t-node

Program number | number || number | number | ratio ratio
fl 2 wl w2 wl/fl | (w2/f2)

boyer* 179476 | 89157 282097 | 194437 1.57 2.18
browse* 274714 | 271400 278387 | 281873 1.01 1.04
cal 30019 | 22641 30019 22641 1.00 1.00
chat_parser® 32620 | 39539 35845 | 40354 1.10 1.02
crypt 81 222 81 222 1.00 1.00
ham 359736 | 359734 359736 | 359734 1.00 1.00
meta_gsort™ 2725 3598 2725 4405 1.00 1.22
nand* 8142 8566 8142 8665 1.00 1.01
nrev 580 578 580 578 1.00 1.00
poly_10~ 14039 12531 18975 30733 1.35 2.45
queens10* 533231 | 533217 634592 | 634578 1.19 1.19
reducer™ 10433 | 15986 11904 15986 1.14 1.00
sdda* 568 709 568 744 1.00 1.05
sendmore 12071 | 26128 12071 26128 1.00 1.00
tak 63625 15916 63625 15916 1.00 1.00
tak_gvar 790 418 790 418 1.00 1.00
zebra 14498 17315 14498 17315 1.00 1.00
average 1.08 1.19

average” 1.15 1.35

Table 7.6: Comparison of the indexing tree size

the Warren Abstract Machine, we have measured the assembly code size which
obtained by “gcc -S -02 program-name”. We used “gec” version 2.6.3 and the

optimization level “-027.

Prolog Assembly | Object | Executable | Execution
Program code size | code size | code size time
KBytes [KBytes KBytes msec

boyer~ 283 63 266 1374
browse* 79 20 237 1662
cal 75 19 237 180
chat_parser® 794 182 356 333
crypt 59 15 237 13
ham 61 16 233 1875
meta_qgsort” 71 18 238 21
nand* 431 95 299 60
nrev 41 11 233 277
poly_10* 7l 18 238 109
queens10*® 4] 11 233 6018
reducer® 217 51 262 100
sdda* 141 34 250 6
sendmore 59 14 233 139
tak 20 6 229 298
tak_gvar 26 8 229 10
zebra 42 12 233 112

lable 7.7: The code size and execution time measured by the TCWAM (under
the flat indexing)

Table 7.8 shows the ratio of the TCWAM-NFI to the TCWAM. On average,
the assembly code size and object code size in the flat indexing are respectively
2 and 10 % larger than those in the WAM indexing, while the executable code
sizes are the same. For the benchmarks which are affected by the flat indexing,
the assembly code size and object code size in the flat indexing are respectively
5 and 10 % larger than those in the WAM indexing. This indicates that the flat

indexing scheme does not lose much in terms of code compactness.

153

Prolog Assembly | Object | Executable
Program code size | code size | code size
boyer™ 0.95 0.94 1.00
browse” 0.94 0.86 1.00
cal 0.99 0.95 1.12
chat_parser® 0.93 0.91 0.98
crypt 1.00 0.88 0.98
ham 1.00 0.89 1.00
meta_qsort” 0.94 0.84 1.00
nand*® 0.97 0.95 1.00
nrev 1.00 0.92 1.00
poly_10* 0.97 0.90 1.00
queens10* 0.95 0.84 1.00
reducer® 0.95 0.92 1.00
sdda” 0.99 0.94 1.00
sendmore 1.00 0.94 1.00
tak 1.05 0.87 1.00
tak_gvar 1.04 0.90 1.00
zebra 1.02 0.93 1.00
average 0.98 0.90 1.00
average® 0.95 0.90 1.00

Table 7.8: Comparison: each entry is the rate of the TCWAM-NFI over the
TCWAM (i.e., TCWAM-NFI/TCWAM)

7.6 Synthesis

In this chpater, we have presented a new indexing technique, which we have called
flat indexing, and its implementation. In the flat indexing, the number of choice
points is not more than one [or every invocation of each predicate. Therefore, a
choice point represents all the available parallelism, i.e., the number of available
alternatives, in itself. By this, the parallelism can be more readily available in the
parallel execution. Moreover, the bogus branches which will fail right after being
taken has been removed in the flat indexing.

Our evaluation is based on a canonical representation of the execution tree
called indexing tree. By comparing the indexing tree for a set of benchmarks, we
have proven that the number of choice points and of bogus branches are reduced
when the flat indexing is applied. The evaluation results show that one half of the
benchmarks benefit from the f{lat indexing and that the number of choice points
is reduced by 15 %. Moreover, the number of t-nodes is reduced by 35 %. We
believe that the reduction will contribute to higher parallel performance due to

the enhanced parallelism per node as well as to the reduction of task switching.

Chapter 8

Implementation and Performance Evaluation

In the previous chapters, we discussed our parallel execution model and its rele-
vant implementation techniques. To verify the performance, we implemented the
execution model on a distributed shared memory multiprocessor syster'n. The im-
plementation incudes a front-end compiler, that produces abstract machine code
from a Prolog program, and a translator which generates from the abstract ma-
chine code a parallel-C code executable on the SPP-IAX system. It also includes
a runtime scheduler which supports the following three scheduling algorithms: a
top-most scheduling, a bottom-most scheduling, and a top-most scheduling with
an architectural optimization. This chapter presents the experiment which ranges
from an introduction of the target architecture to the performance evaluated for

a set of benchmarks and its analysis.

8.1 Introduction

A parallel execution model of logic programs consists of a set of abstract specifi-
cations which illustrate the execution mechanism. Even though the specifications
are clear and accurate, the implementation study is essential for the identification
of implementation issues as well as the verification of the performance due to the

following reasons:

o The interaction between the sequential engine and its associated extension

for parallel support cannot be clearly defined in parallel execution models,

156

because they are usually dependent upon the characteristics of the target
sequential engine.

e There are a number of implementation issues which cannot be identified in
the layer of the parallel execution model but have crucial impact on the
performance because they are usually dependent upon the characteristics of
the target parallel architecture.

e Prediction of the performance of parallel execution is not practically possible
because the dynamic nature of logic programs prevents us from developing

an appropriate performance model.

Upon the requirement, it is essential to make a prototypical implementation
of our parallel execution model on a target parallel architecture. Although the
prototype does not have to be complete in that it can support the complete list of
Prolog library in commercial Prolog systems, it must be stable and robust enough
to evaluate almost every benchmarks used in other research cites. This chapter
presents the prototypical implementation of our parallel execution model and the
result of the performance evaluation. The rest of the chapter is organized as
follows. Section 8.2 presents the implementation of our parallel execution model.
Section 8.3 presents the performance evaluated for a set of benchmarks and its

analysis. Section 8.4 summarizes the chapter.

8.2 Overview of the Implementation

This section presents an overview of our target machine, the Exemplar system

architecture, and discusses the details of the implementation.

8.2.1 Exemplar SPP IXA-0016

Exemplar SPP IXA-0016 is a multiprocessor system. The model we used has 16
CPUs, each of which is a PA-RISC 1.1, and runs under the SPP-IX 3.1 operating
system. Figure 8.1 shows a conceptual diagram of the Exemplar system. The
system is a distributed shared memory system with two tiers of memory latency.

The hypernode crossbar constitutes the first tier, and the SCI rings constitute the

157

second. Interhypernode accesses take longer than intrahypernode accesses but are

transparent to the process because of using shared memory.

[(7 (7] () 3]]

4“% x-bar G
hypernode 0

) (5 (51 (3163)

e x-bar G e > T/0

hypernode n

Figure 8.1: Conceptual overview of the Exemplar system

The Exemplar SPP-1200 system consists of 1 to 16 hypernodes as shown in
Figure 8.2. Processors in a hypernode are arranged in functional blocks (FB), each
containing two processors, 128 Mbytes to 512 Mbytes of memory, and some con-
trol devices. There is one memory unit in the block that holds hypernode-private
memory data, global memory data, and network cache data. Four functional
blocks constitute a hypernode. Functional blocks within a hypernode communi-
cate with each other, with memory, and with peripherals viaa 5 port non-blocking
~cross bar. Functional blocks communicate across hypernodes via four SCI rings.

CPUs communicate directly with their own instruction and data caches, which
are 1 Mbyte in size and are located 1 clock away from the CPU. The functional
block’s two CPUs communicate with the rest of the machine through the CPU
agent. The Convex Coherent Memory Controller (CCMC) provides the interface
between the functional block’s 2 memory banks and the rest of the machine.

All intrahypernode memory accesses take 50 clocks, even though they can be

158

fulfilled from the functional block’s own memory block. This is because they
must traverse the crossbar, which gives equal accesses to all hypernode memory
from all functional blocks.

Each hypernode contains one or more hypernode-private memories that can be
accessed from any CPU within the hypernode. Hypernode-private memory is not
accessible from other hypernodes. Multiple hypernode-private memories operate
independently and may be hardware-interleaved to provide greater bandwidth.
Besides, each hypernode contains one or more global memory blocks. Global
memory blocks provide global memory accessible by all hypernodes in the system,
including the one containing it, a network interface used to connect to other
hypernodes, and a network cache. The network cache en-caches all global memory

data imported by this network interface from other hypernodes on the network.

TUS poE
tl . 1t

SCI k] coMC] Agent Agenl Il CCMC|—» SCI
: 5 port
x-bar
C]
] utility
SCI | coMC o] port >
- H— Agenl Agenl ccMC[SCI

T HJT Pﬁ il
I?E?I CPU CPU CPU CPU lﬁE?l

Figure 8.2: Exemplar hypernode architecture

The Exemplar system uses four SCI rings attached to each hypernode as the
interconnection network between hypernodes, as shown in Figure 8.3. Four rings
provide higher interconnection bandwidth, lower interhypernode latency, and re-

dundancy in case of ring failure. Sequential memory references to global memory

159

N TN

; — - s :) 3 ; 10
MEM MEM MEM MEM interface

+—— SCIRings

¢ | € c|C c|C c|cC
3 SRR B 5 Py Z =) e UD
MEM MEM MEM MEM interface
SCI SCI SCI SCI

r? | St hd NS

Figure 8.3: Exemplar SCI ring interconnect

are interleaved across the four rings. This is accomplished using the ring in the
same functional unit as the target memory, because the memories are interleaved
on a 64-byte basis. The four SCI network is interleaved on this basis as well;
the network cache size is 64 bytes. This ring interleaving tends to balance the
traffic across all four rings. (Global memory references from a CPU to the global
memory on the same hypernode do not use the hypernode interconnect network

and are not en-cached in the network cache.)

8.2.2 Prototypical implementation

Figure 8.4 shows a diagram of our experimental prototype built on an Exemplar
SPP IXA-0016 system. The main components of the prototype are the front-end
TCWAM compiler and a runtime system. This subsection presents the implemen-
tation.

The front-end TCWAM compiler takes an input Prolog program and produces
the C code which consists of a sequence of C macros. The main features are as

follows:
o Fast C translation scheme described in chapter 6 is used.

160

Prolog program

TCWAM compiler

C-macro dilinitions

Prolog library
Parallel WAM engine

Runtime scheduler

aH
ild

WAM code in C

Gnu C compiler

A
(Executable)

Figure 8.4: The overview of the prototype implementation

o The compiler supports multiple modules for modular program development.
e The compiler supports the ISO standard Prolog syntax.
o The compiler supports most built-in predicates which include the following

functions.

o Input and output of terms
e Arithmetic operators

e Term comparison

e Constant processing

o Term processing

o Test predicates

e Control

e Modification of the program

e All solutions

Linked with the runtime system, the C code produced by the front-end com-
piler is compiled into the executable. The runtime system consists of the following

components:

161

e a C macro module,
e a TCWAM engine with some extension for parallel support, and

e a scheduler.

The macro module consists of a set of macros which support C code translation,
define the extended TCWAM instruction set, and support the engine and the

scheduler interfaces.

Parallel extension of the WAM

As noted earlier, the original WAM is extended in our prototypical implemen-
tation in support of the parallel model. The extension includes some additional

instructions and registers to provide the following functions:
1. the flat indexing,
2. the manipulation of conditional variables, and
3. the interface of the engine and the scheduler.

Now that the instructions and its operational aspects of the flat indexing method
has been discussed in chapter 7, this subsection is devoted to the discussion only
on the second issue, while the third issue is remained to be discussed in the next
subsection.

Regarding the manipulation of the conditional variables, the most important
issue is how to identify the condition variables. To this end, we provide two
instructions in association with the creation of conditional variables. We begin

the discussion by presenting the definition of conditional variables.

Definition 8.2.1 (Conditional variables) Given a clause variable, regardless
whether it is a permanent or a temporary variable, the variable is defined as a

conditional variable, if it does not get bound during unification.

From the above definition, we can observe that the place in which a variable
appears in the clause has to do with whether it is a conditional or a non-conditional

variable, as summarized below.

Variable First Appearance

type HIEAD GOAL
@)
Temporary unily _x_vvariable | put_x_variable
variable unify x_variable

(c) (d)
Permanent unify_y_variable put_y_variable
variable unify_y_variable

Table 8.1: WAM instructions used for the first appearance of variables

o If a variable does not appear in the head, it is always a conditional variable.

e Otherwise, it can be either a conditional or a non-conditional variable.

Variables in the first case are always subject to the initialization as conditional
variables. As for variables in the second case, we can divide them into two classes

as follows:

e Class A: If a variable is a singleton which appears in a head of a clause,
it always gets bound in the unification 1‘égardless of the type of the input
argument term.

o Class B: If a variable is a non-singleton, i.e., it belongs to to a compound
term in a head of a clause, it remains unbound only for some input argu-
ment. As an example, consider a head term of a clause, head (f (X), If the
input argument is A, variable X remains unbound because £ (X) is bound to
variable A. On the other hand, given an input argument £ (1), variable X is

bound to 1.

Variables in class B are subject to the initialization as conditional variables only
when they remain unbound after unification. This indicates that we must examine
variables in the class B after the unification to find out whether it is bound or

not.

163

For the implementation of the initialization of conditional variables, we intro-
duce two new instructions and modify some existing WAM instructions. The new

instructions are as follows:

e Instruction “check_y_cv V” inspect variable V whether the variable is bound
or not. If the variable is not bound, it is initialized as a conditional variable
in the Tagged Binding Array.

e Instruction “create_y_cv V” initializes variable V as a conditional variable.

In the detection and initialization of a conditional variable, the compiler uses
the variable’s type and the place of its first appearance in the clause. Table 8.1
shows a summary of such WAM instructions associated with variables. It contains
four sections, (a), (b), (¢), and (d). They are different from one another in terms of
the variable’s type and the place of the first appearance. For example, section (a)
contains the WAM instructions which will be used to compile temporary variables
that appear in the head of a clause.

The compilation of each section is processed as follows.

e For each variable which will be compiled into the WAM instructions in (c),
instruction check_y_cv Vis produced just after the code for head unification.

o For each variable which will be compiled into the WAM instructions in (d),
instruction create_y_cv V is produced just after the unification code.

e Variables which will be compiled into the instructions in (b) must initialized
as conditional variables. But, we cannot use instruction create_y_cv V and
check.y_cv V because they are temporary variables which use argument
registers instead of regular environment slots. Therefore, the instructions in
(b) are modified so that they are able to initialize their operand variables
as conditional variables.

e For variables which will be compiled into the instructions in (a), it is the
most efficient to create them as conditional variables only for those which
are not bound after the unification, as does in the case of (c). However, it
is not possible because instruction unify x_variable in (a) appears as well
in (b). Instead, we treat them as in the case of (b) just for reasons of the

consistency.

164

In order to make the compilation process more clear, we provide an example
Figure 8.5. The figure depicts the code for the head unification which results from

the compilation.

8.2.3 Scheduler

Our system uses the WAM [78] as the basis of its sequential engine. It extends the
WAM with some instructions and data structures in support of OR-parallelism. In
the previous subsections, we discussed the extension related with the management
of conditional variables. In this subsection, we discuss the part of the extension

which is associated with runtime scheduling.

Private and public nodes

Choice points, called nodes when discussed in the context of a search tree, are
classified into the following two Lypes: private and public nodes. As a matter of
fact, this has been used in other OR-parallel models [15]. The main difference
between private and public nodes consists in the representation and management
of available work. A private node belongs to only a single worker. Because only
the worker can take alternatives from the node, the data structure and its man-
agement are in principle identical to those in the sequential WAM. A public node
is shared by the workers in the system. Because more than one workers would
take the alternatives, a node possesses a slightly modified representation of the
data structure and its management. During execution, only a subset of the nodes
in the search tree are made public because some operations, particularly back-
tracking, are expensive when carried out for public node. An in-depth discussion

will be offered shortly.

Public node and the management of its alternatives

The extension of the data structure and instructions made for a public node
consists in the representation of the alternative clauses.
Chapter 7 discussed the flat indexing which is a compilation method to produce

code for indexing alternative clauses of a predicate. The code produced through

165

[(Example clause]

randomize(In, [X|0ut] ,Rand) :-
length(In,Lin),
Randl is (Rand * 17) mod 251,
N is Randl med Lin,
split(N,In,X,Inl),
randomize(In1,0ut,Randi).

[A part of the generated code]
Begin Clause

allocate(7)
get_y_variable(4,0) ; Unification code
get_list(1)
unify_y_variable(3)
unify_y_variable(1)
get_y_variable(6,2)
; Creation of conditional variables

check_y_cv(3) 7 ¥
check_y_cv (1) ¢ Y0ut?
create_y_cv(0) ; ‘Randil’
create_y_cv(2) ; ‘Int?
create_y_cv(5) : ‘Lin*

put_y_value(4,0)
put_y_variable(5,1)
call(length/2,2)

*

*

End clause

Figure 8.5: An example clause and its compilation: the clause is from benchmark
“browse.pl”. Variables ‘X’ and ‘Out’ belong to section (c) and ‘Rand1’, ‘In1’, and
‘Lin” belong to section (d).

166

the flat indexing is efficient in terms of the size of the search tree. The flat
indexing technique is implemented by means of the WAM indexing instructions,
“try”, “retry”, and “trust”. In a compiled code resulting from the flat indexing,
the subset of alternative clauses chosen for some indexing key is expressed by
“try”, “retry”, and “trust” instructions, providing it consists of more than one
clauses.

As we pointed out earlier, the representation of alternatives in choice points
for private nodes is the same with the one implemented in the sequential WAM.
It is because only one worker handle the alternatives. On the other hand, the
choice points for public nodes are represented differently mainly for reasons of
the mutual exclusion among workers which attempt to take alternatives from the

choice point.

try (3)
Public C) . et allernative shared_alternative retry (2)
meoadfpe lock l retry (1)
clause pointer trust (0)

try (3)
Private g) st |_DEXE alternative retry (2)

retry (1)
trust (0)

choice points

Figure 8.6: Choice points and alternative pointers

Figure 8.6 shows a diagram which depicts the representation of alternatives
in choice points. It shows that the next alternative field in the choice point for
a private node keeps the address of the next alternative clause as does in the
sequential WAM. In the choice point for a private node, the next alternative field

contains a pointer to an auxiliary data structure which consists of three fields: a

167

special instruction shared alternative, a variable to be used as a lock, and an
alternative clause pointer.

When a worker attempts to take an alternative from a public node, it executes
automatically instruction shared_alternative. The instruction takes the next
location as its operand and uses it as the lock variable for maintaining the mutual
exclusion among multiple workers which attempt to access the alternative clause
pointer. If the content of the variable indicates that the next alternative pointer
1s not being accessed by any worker, the instruction sets the lock variable to an
appropriate value to prevent other workers from accessing the alternative clause
pointer.

Once a worker is allowed to access the next clause pointer in the auxiliary data
structure, the control of the worker is transferred to “try”, “retry”, or “trust”
instruction depending on the content. In the beginning of the execution, the
instruction sets the next clause pointer to the address of the next alternative
clause and resets the lock to allow other workers to access the alternative field in

the choice point.

Management of load information

From the viewpoint of load balancing, when a worker becomes idle, it is generally
the most efficient for the worker to share some tasks with the most heavily loaded
worker. For this, the parallel system must provide an accurate measure for the
available work. Moreover, it must be able to identify the accurate amount of the
avaliable work which keeps changing under dynamic scheduling. The amount of
available work associated with a worker is usually called load and in most parallel
implementation the number of unexplored branches has been used as its measure.

In our system, the load is divided into two classes: public and private, according
as the search tree is divided into a public and a private part. The public load refers
to the number of unexplored branches in the public choice points. The private
load refers to the number of unexplored branches in private choice points. The
amount of public load associated with a worker is influenced by the scheduling
activities of the other workers. However, the amount of private load is not affected

by the others.

168

It is prone to cause large overhead to trace the private load upon necessity
during execution. To avoid the overhead, the current implementation provides a
global register for each worker which contains the amount of the private load. Be-
sides, “try”, “retry”, and “trust” instructions are extended to have an additional
operand which is the number ol alternatives following the instructions. It is shown
in Figure 8.6. Each choice point has an additional field, parent_private node, to
have the summation of the private load for all the ancestor private nodes. When a
node is created, the summation of parent_privatenode in the parent node and
the number of unexplored branches in the parent node is made as the value of
its parent_private load. In consequence, the current private load amounts to
the summation of parent_private load of the current node and the number of
unexplored branches in the current node and it is maintained in the global load

register.

8.2.4 Runtime scheduler: Top-most Scheduling

In our system, the scheduler is implemented on top of the common ancestor based
representation of the search tree discussed in chapter 5. This subsection presents

a brief description of the runtime scheduler.

The procedure of a task search

Whenever a worker exhausts its private work, it looks for some avaliable work.
Subject to the scheduling policy and its associated data structures, a task search
refers to finding a node which has at least one unexplored branches. Once a worker
succeeds in locating a node, which we will call the destination node, it performs
task switching from its standing node to the destination node.

In the procedure (Figure 8.7), the worker attempts to search the public ances-
tor nodes for nodes which haves any available task. When more than one nodes
are found in the public nodes, the top-most one is selected as the destination
node. If no such nodes are found, the worker tries to find some public work from
workers which lies relatively in the upper part of the search tree. If the worker

fails to find any work from them, it also tries to get some public work from workers

169

which resize relatively in the lower part of the search tree. If it fails again to find
available work, it selects the worker which has the largest private work and asks

the worker to publicate some of the private work.

The procedure of executing cut

“Cut” is a built-in predicate. It puts a side effect on the procedure of the back-
tracking usually to prune away some branches which do not contribute to the
solution or are redundant. The current implementation of “cut” is based on the
approaches which have been shown effective in some other implementations [8).

Concerning the implementation of “cut”, it should be noted that the execution

of “cut” is subject to pruning operations of other “cut”. Hence, the pruning to
be made for some public node which belongs to the scope of a “cut’‘is possible
only when the current branch executing the “cut” is the leftmost one for the
node. Figure 8.9 shows an example. The figure depicts the situation in which a
cut is encountered in branch b5. Assume that the scope node of the “cut” be na,
where the scope node refers to the node created for the predicate which contains
the “cut”. In this situation, branch by, bs, and by are in the scope of the “cut”
and subject to pruning. As bs is in the left of b5, we can prune away branch b,.
However, as b, and b3 are affected by the “cut” only if branch b7 does not contain
another cut, the processing of the pruning must be either (1) postponed until it

becomes the leftmost or (2) delivered to another left branch.

Our implementation of “cut” chooses the second option just for reasons of
efficiency. Figure 8.10 shows the algorithm, in which BC corresponds to the
register which contains the scope node of a cut. The information on the delayed
cut is stored in the public frame which is allocated for each public node. The
function cut_prune() is called inside a cut instruction and its arguments are
respectively the name of worker which executes the cut and the scope of the
cut. The function delegate.cut() is called whenever a worker backtracks and
attempts to take a branch from a public node and its arguments are respectively

the name of the worker and the node.

170

task_search(w, cp)
worker w;
choice point cp;
{

choice point wcp;i

for (wep=cp ; ;) {
if (public work found in the current choice point in wep) {
take a branch;
return;
¥
wep = find_public_work (w, wcp);
if (wep is not null) /# public work is found */
make_up_worker (w, wcp)
take a branch;
return;
e
else if ((wcp=worker_with_work(w, wcp, ABOVE)) != NULL or
(wep=worker_with_work(w, wcp, BELOW)) != NULL) {
make_move(w,wcp)
return;
}
else if ((wcp=publish()) != NULL) {
make_move(w,wcp) ;
return;

¥
¥
}

Figure 8.7: The procedure of a task search

171

worker_with_work (w, flag)

worker w;
int flag;
i
choice point cp;
workers wl[worker_num] ;
for (i = 0; i<worker_num; i++) {
switch (flag) {
case ABOVE:
if (cant(w->name,i) < w->cp->cp_depth) {
if ((wecp = find_public_work (w, wcp)) !'= NULL)
return wcp;
}
case BELOW:
if (cant(w->name,i) < w->cp->cp_depth) {
if ((wcp = find_public_work (w, wcp)) != NULL)
return wcp;
}
¥
return NULL;
}

Figure 8.8: The finding public task from other workers

172

Figure 8.9: Exemplar hypernode architecture

173

cut_prune(w, BC)
{
if (BC->cp_depth >= w->private_top) { /* private node %/
sequential _cut(BC);
return;
sequential _cut (w->private_top);
for (cp := parent of w->private_top; cp< BC; cp := parent of n) {
if (w is not the leftmost) {
cp->pframe->cut_branch = my branch;
cp->pframe->delayed_cut = BC;
cp->pframe->delegate_cut = the live left branch;
break;
¥
sequential _cut(cp);
kill workers between BC and cp;
by
}

delated_cut(w, cp) {
if (cp->pframe->delegate_cut == my branch) {
if (any live left branch) {
cp->pframe->delegate_cut;
return;
¥
scope = top->delated_cut;
n = parent of cp;
while (n->cp_depth <= scope) {
if (w is not the leftmost) {
n->pframe->cut_branch = my branch;
n->pframe->delayed_cut = scope;
n->pframe->delegate_cut = the live left branch;
break;
}
sequential_cut(n);
kill workers in the right of cp->pframe->cut_branch;
T
}
¥

Figure 8.10: The algorithm of “cut”

8.3 Performance Evaluation

The main objectives of this performance evaluation are to identify the perfor-
mance, to verify the underlying philosophy, and to validate the potential of the
execution model. The performance is identified through practical execution of a
set of prominent benchmarks which have been widely used because their paral-
lelism and execution behaviors are clearly understood. The underlying philosophy
is verified through the comparison and analysis of the performance under the three
scheduling policies which have diflerent characteristics in terms of the scheduling
algorithm and scheduling optimization. Finally, the potential of the execution
model is validated by the comparison of the performance of other systems.

The rest of section is organized as follows. In subsection 8.3.1, we describe the
benchmark programs. In subsccltion 8.3.2, we analyze the average performance
of benchmark set I obtained respectively schedule A, B, and C. In subsection
8.3.3, we analyze the performance of benchmark set I obtained by schedule A.
In subsection 8.3.4, we analyze the performance of benchmark set II obtained

respectively by schedule A, B, and C.

8.3.1 Description of benchmarks

The benchmarks used in the experiments are divided into two sets: set I and
set II. Benchmarks in set 1 are relatively well understood with their granular-
ity and execution behavior. It includes 8-queensi (queensl_8.pl), 8-queens2
(queens2.8.pl), tina (tina.pl), salt-mustard (sm.pl), parse2 (parse2.pl), parse4
(parsed.pl), parse5 (parse5.pl), db4 (db4.pl), db5 (db5.pl), house (house.pl),
parsel (parsel.pl), parse3 (parse3.pl), and farmer (farmer.pl). In this set, all
- the benchmarks except 8-queensi, 8-queens?2, tina and salt-mustard have a
repetition by some numbers. To indicate the repetition, the numbers are specified
in their names. For example, benchmark parse4_5.pl is a program which repeats
parsed.pl by five times.

Benchmark set I is used very often in many parallel logic programming systems

[5, 15]. As a matter of fact, as the benchmarks have either no or little speculative

work, they are highly suitable for the performance evaluation of non-speculative
computation.

Benchmark set I1 consists of three programs 8-queens, zebra, and chat_parser.
These benchmarks are chosen to evaluate the performance of the computation
which includes speculative work to some degree. Note that the 8-queens pro-
gram in this set is a version implementing a different algorithm from those in the

first set.

8.3.2 The performance comparison of schedule A, B, and
C

The current implementation has the [ollowing three different modes of scheduling.

e Schedule A: top-most scheduling with architectural optimization in which
the scheduler usually takes the top-most work among the available work,
while it sometimes chooses the nearest task to the worker.

e Schedule B: pure top-most scheduling in which the scheduler always takes
the top-most task among the available tasks.

e Schedule C: bottom-most scheduling in which the scheduler always takes the

bottom-most task among the available tasks.

The schedule B and schedule C enable us to evaluate the performance of the
algorithmic optimization, while schedule A and schedule B enable us to evaluate
the performance of architectural optimizations.

In this section, the performance of the system under the scheduling mode A,
B and C is compared with the following three performance parameters: speedup,

system utilization, and granularity of tasks. The performance comparison and
" analysis are based on average values calculated for all the first set of benchmarks.
Throughout the section, an average refers to an arithmetic mean. Although the
performance comparison based on the mean can never be complete, we believe
that the mean value provides a very reasonable way. The reason for this is that
the benchmarks in the first set have granularity balanced in terms of their size

and have little or no speculative computation.

176

The performance comparison and analysis are aimed at identifying and show-
ing how much our execution model is cfficient and flexible in supporting algorith-
mic and architectural optimizations. On the algorithm side, we will show that a
wide range of scheduling policies can be efliciently implemented in our execution
model with a very small variance in scheduling overhead between them. On the
side of architectural optimizations, the optimization in task allocation to archive
higher locality in memory accesses is efficiently implemented in our model with
minimal overhead during the process of locating an appropriate worker.

In this subsection, we first discuss the speedup which is one of the most im-
portant performance parameters within parallel computing. We then provide the
analysis result on the system utilization and the task granularity and discuss the
effect which such parameters have on the speedup. Finally, the performance com-
parison is made with other systems developed under the same rationale as the one

under which our model is developed, i.e., constant-time variable accesses.

Average speedup

Table 8.2, 8.3, and 8.4 show the results of the speedups respectively for schedule A,
schedule B, and schedule C. Each table contains the speedups of all benchmarks in
benchmark set I, in which each row is the speedup of a benchmark. Each column in
the table is one instance of system configurations. For a benchmark, the speedup
is measured for seven different configurations, which contain respectively 1, 2, 4,
6 8, 10, and 12 workers. The average speedup of all the benchmark is listed in the
last row for each configuration. (Note that the execution time corresponding for
these tables is found in the appendix A.)

According to Table 8.2, 8.3, and 8.4, the speedup values are quite different
depending on benchmarks. In the configuration of 12 workers, the highest val-
ues reach about 10, while the lowest ones are about 1.5. The characteristics of
benchmarks such as the amount of parallelism has a dominant influence on the
magnitude of the speedup over the system characteristics such as scheduling poli-
cies. The degree of influence which scheduling policies has on the speedup differs

from each other depending ou benchmarks.

17T

Prolog Number of workers
Program I [2] 4] 6] 8]10 12
queensl.8 | 1.00 | 1.95 | 3.75 | 5.55 | 7.03 | 8.52 | 9.47
queens2.8 || 1.00 | 1.96 | 3.73 | 5.61 | 7.34 | 8.78 | 10.39
tina 1.00 | 1.87 | 3.60 | 5.25 | 6.95 [8.24 | 9.46
sm 1.00 | 1.91 | 3.57 | 5.04 | 6.56 | 6.92 | 7.35
parse2_20 1.00 | 1.88 | 3.47 | 4.96 | 5.40 | 6.06 | 7.29
parsed_5 1.00 | 1.90 | 3.56 | 5.15 | 5.09 | 6.76 | 7.43
parsed 1.00 | 1.90 | 3.68 | 5.26 | 6.71 | 7.62 | 8.21
db4.10 1.00 | 1.92 | 3.45 | 4.38 | 5.20 | 5.32 | 6.24
db5_10 1.00 | 1.92 | 3.59 | 5.05 | 5.33 | 7.09 | 6.02
house_20 1.00 | 1.95 | 3.56 | 5.27 | 6.73 | 7.95 | 9.08
parsel .20 1.00 | 1.77 | 2.48 | 3.17 | 3.46 | 2.79 | 3.17
parse3_20 1.00 | 1.78 | 2.19 | 2.92 | 3.54 | 3.00 | 3.43
farmer_100 || 1.00 | 1.72 | 1.72 | 2.24 | 1.97 | 2.36 | 2.69

average | 1.00 | 1.88 | 3.26 | 4.60 | 5.49 | 6.26 [6.94 |

Table 8.2: Speedup of benchmark set I: Schedule A

Prolog Number of workers

Program I | 2] 4] 6] 81012
queensl_8 [1.00 | 1.95 | 3.63 | 5.11 | 6.54 | 7.47 | 8.57
queens2_8 [1.00 | 1.96 | 3.68 | 5.35 | 6.81 | 8.05 | 8.94
tina 1.00 | 1.87 | 3.49 | 4.85 | 5.97 | 7.03 | 7.83
sm || 1.00 | 1.92 | 3.54 | 4.73 | 5.89 | 6.42 | 7.39
parse2.20 | 1.00 [1.88 | 3.03 | 3.88 | 4.15 | 4.77 | 4.94
parsed_b 1.00 | 1.90 | 3.50 | 4.86 | 5.09 | 5.50 | 6.78

parsed 1.00 | 1.90 | 3.58 | 5.05 | 6.35 | 7.37 | 8.54
db4_10 1.00 | 1.92 | 3.43 | 4.66 | 5.85 | 5.20 | 6.18
db5_10 1.00 | 1.92 | 3.44 | 4.88 | 5.41 | 5.30 | 6.02

house_20 1.00 | 1.94 | 3.60 | 4.99 | 5.94 | 7.08 | 8.15
parsel_20 1.00 | 1.74 | 1.92 | 1.89 | 2.20 | 2.44 | 2.64
parse3-20 || 1.00 [1.76 | 1.95 | 1.84 | 2.24 | 2.48 | 2.47
farmer_100 || 1.00 | 1.66 | 1.67 | 1.52 | 1.72 | 1.84 | 1.89

average || 1.00 | 1.87 [3.11 [4.12 [4.94 [5.46 [6.18 |

Table 8.3: Speedup of benchmark set I: Schedule B

178

Prolog Number of workers

Program I [2 [4] 6 [8 |10 | 12
queensl_8 1.00 | L.96 | 3.84 | 5.42 | 6.76 | 7.85 | 8.56
queens2_8 || 1.00 | 1.98 | 3.83 | 5.46 | 6.92 | 8.25 | 9.19
tina 1.00 [1.97 | 3.69 | 5.13 | 6.26 | 7.13 | 7.02
sm 1.00 | 1.98 | 3.64 | 4.93 | 6.30 | 5.20 | 7.34
parse2_20 1.00 | 1.91 | 2.52 | 3.17 | 3.83 | 3.27 | 3.35
parsed_5 1.00 | 1.97 | 3.50 | 4.27 | 4.55 | 5.31 | 5.68
parsed 1.00 | 1.98 | 3.77 | 5.34 | 6.60 | 7.76 | 8.80
db4_10 1.00 | 1.93 | 3.45 | 4.17 | 4.89 | 4.36 | 5.13
db5.10 1.00 | 1.95 | 3.45 | 4.48 | 4.45 | 4.57 | 5.27
house_20 1.00 | 1.96 | 3.56 | 4.85 | 4.61 | 4.35 | 4.80
parsel 20 || 1.00 | 1.49 | 1.43 | 1.58 | 1.84 | 1.85 | 1.89 |.
parse3_20 || 1.00 | 1.40 | 1.40 | 1.50 | 1.76 | 1.77 | 1.86
farmer_100 || 1.00 | 1.37 | 1.11 | 1.40 | 1.38 | 1.65 | 1.79

| average 1.00 [1.83] 3.01 [3.98 [4.63 | 4.87 | 5.44 |

Table 8.4: Speedup of benchmark set I: Schedule C

8.0 =

7.0 il A NIOGE A\ |iscssmstiississcvsissisiiisssismansss

G——OMode B

*——¥kMode C

4

Number of workers

6

8

10

12

Figure 8.11: Average speedup of benchmark set I: schedule A, B, and C

179

Figure 8.11 shows the average speedup of all the benchmarks in benchmark
set L. It contains three speedup curves in which each corresponds respectively
to schedule A, B, and C. Schedule A provides the highest speedups for all the
configurations over the other two. Between schedule B and schedule C, schedule
B produces the higher speedup.

The growth rate of speedup over the number of workers decreases as the num-
ber of workers becomes larger. This results from a number of factors such as task
scheduling overhead. To some degree, it reflects the architectural features of the
target architecture. The SPP [AX-0016 is a distributed memory system. As the
number of processor becomes larger, the remote memory access would take longer.
Therefore, the growth rate can never be maintained the same as the size of the
system become larger. Comparison between schedule A and schedule B provides a
clear explanation. The two scheduling policies results in similar execution behav-
ior in terms of task granularity because they are based on the top-most scheduling.
The only difference between the two schedules is that schedule A includes an opti-
mization which reduces the total amount of remote memory accesses. The result
reported in Figure 8.11 shows that schedule A produces the higher growth rate
over schedule B.

The performance gain of schedule A over schedule B results from the opti-
mization made for architectural feature, particularly the reduction in the amount
of remote accesses. The performance gain of schedule B over schedule C results
from the optimization made for scheduling algorithm, particularly for larger task
granularity. In the setting of 12 workers, the performance gains amount to the
increase of speedups respectively by 0.76 and 0.74. These performance gains in-
dicate that the optimizations are effective in both cases. On the other hand, the
performance gain of schedule A over schedule C reflects the combined effect with
respect to the scheduling algorithmic and architectural optimization. The results
shows that the two types of optimizations are almost orthogonal. Therefore, the
performance gain of the combined case amounts almost to the summation of the
performance gains which can be obtained separately from each type.

Besides, Figure 8.11 shows that the difference of speedup among three schedule

A, B, and C becomes bigger as the number of workers becomes larger in the system

180

configuration. For example, the difference is about 0.1 under 4 workers and it
becomes about 0.7 under 12 workers. It provides a proof that the optimizations
both for the scheduling algorithm and architectural features are important for

large scale parallel machines.

System utilization

Workers in parallel Prolog systems need to compute the code which will be com-
puted in the sequential implementation. Besides, the schedulers need to execute
some code associated with scheduling. As a matter of fact, the schedulers is em-
bedded in workers and invoked by the workers upon necessity for such activities
as finding available work and switching a task. Sometime, workers remain idle
due to the lack of parallelism. Therefore, the system utilization will be discussed
differently with respect to the following three classes of system time: prolog time,

task switching time and idle.

o Prolog time refers to the execution time spent by a worker in executing the
part of code which will be executed by the sequential system.

e Task switching time refers to the time spent by a scheduler in locating a
task and preparing the environment for the task before executing the task.

e Idle time refers to the time in which a worker remains idle.

The measurement of prolog time is done by the instrumental code inserted in
the entry and exit point of a prolog engine. The entry point refers to the location
of the code which starts executing a new task and the exit point refers to the
location of the code which fails to find a work through public backtracking, thus
invoking a scheduling code to find a work. The task switching time is measured (i)
- in an entry and exit of functions for finding a public work and (ii) in an entry and
exit of functions which prepare the environment. The idle time is not measured
and is just calculated from the execution time minus the summation of the prolog
and task switching time.

It should be noted that the time is measured by some instrumental code in-
serted in the code. Clearly, it is not as accurate as the values obtained through

hardware support. When the instrumental code is inserted, the execution time

181

Prolog Number of workers
Program 2 4 6 8 10 12
PIT|P|T]P]IT| | P]T|P]T|P]T
queens]_8 99 | 1|96 | 295 3[92] 4|90 5 83| 8
queens2.8 || 100 | O [{ 96 [2 96| 295 2/ 92| 491 5
tina Q91 196 2194 394 3 90| 4|87| 6
sm 98| 1192 4| 87| 68| 7| 73|12]| 65|12
parse2_2() 98 1|91 | 4|87 7| 72| 8|65| 9 65| 9
parsed_H 99 | 1|93 | 49| 5|67 8| 73| 8|67 8
parsed 99 1|96 292 48| 6|82| 6 74| 8
db4_10 98| 1190 5| 75| 96710} 56|11 | 55|11
db5.10 98 | 1|92 4|87 6|69 |10 75| 9] 53|13
house_20 98 | 1]92| 491 5| 87| 68| 8| 79|10
parsel_20 92| 4|65 9|56 |12 |46 |15 30|14 | 29|14
parse3.20 92 | 4|58 |11 | 51 |12 (47|14 | 32|12 | 31 | 13
farmer 100 || 88| 7| 45 [16 (|39 [20 || 26 | 17| 25|17 || 24 | 18
laverage || 96 [1[[84] 5] 80] 772 8] 66] 9]61[10]

Table 8.5: Prolog rate versus task switching rate (%) of benchmark set I: Schedule
A

increases on average by 4 to 5 percents. The summation of utilization rate for all
the three activities (prolog rate, task switching rate, idle rate) becomes about 95
percents. In order to make the utilization rate more understandable, the values
are interpolated to be 100 percents.

Respectively for schedule A, B, and C, the prolog time and task switching
time measured for each benchmark are listed in Table 8.3.2, 8.6, and 8.7. The
last row of each table contains the average task switch time and prolog time for
all the benchmarks calculated respectively in each of the seven configurations as
‘did for the speedup. As shown in the tables. In the setting of 12 workers and
scheduler A, the prolog rate ranges from 18 percents (farmer_100) to 88 percents
(queens2_8). The prolog time of a benchmark reflects the task granularity and
the nature of the inherent parallelism of the benchmark. The higher value usually

indicates the higher speedup.

Prolog Number of workers
Program 2 4 G 8 10 12
PIT|P]JT|[P[T|P|T]|P [T|P]|T
queensl_8 99 | 096 294 3(94| 3|9 | 5| 88| 6
queens2.8 || 100 [O (|97 | 1|97 2] 97| 2| 94| 3||91] 4
tina 99 | 01| 97| 11 95] 392 493| 3|9/ 5
sm 99 | 11|93 38| 68| 7| 76| 8| 76|10
parse2_20 98 | 1 || 82| 6| 74| 7 61| 91 60]|10]| 54|10
parsed_5 99 | 1 (94| 3)192| 4||75| 6|69 7|73| 7
parsed 99 | 1 ({96 | 2196 2|[94| 3(92| 4|92 4
db4_-10 98 | 1][91| 4|8 | 7|8 | 8| 62|10 64| 9
db5-10 98 { 191 49| 5| 77| 8| 63| 9] 62|10
house_20 981 1194 318 | 58| 8|8 | 9|80 | 9
parsel_20 91 | 415212 (36|11 (33|12 31|13 29|15
parse3d_20 91 | 3|[A3 1035113312 31|13 27|14
farmer_100 || 85| 6 |44 | 15| 28 | 15| 25| 17| 22| 19| 20 | 19
average || 96| 1[[83] 5[76] 6] 71] 7[[66] 8[[65] 9]

Table 8.6: Prolog rate versus task switching rate (%) of benchmark set I: Schedule
B

100.0

90.0
80.0
70.0

60.0

50.0 &——2A Mode A -
G—— Mode B
P, [0 J o J L ro— F——k Mode C

Prolog rate (%)

GO0 frormmmeeeeemsersmnmsss s

20.0
100 [

0_0 1 1 1 A 1 1 I
1 2 4 6 8 10 12
Number of workers

Figure 8.12: Average prolog rate of benchmark set I: schedule A, B, and C

183

Prolog Number of workers
Program 2 4 6 8 10 12
PI|T|P|T|P[T]JP |T|P|T]P]T
queensl 8 (|98 | 197 195 3|92 4{90| 5|8 | 7
queens2.8 [[99 | 1 ([97| 2 96| 2 94| 3| 94| 4|389] 6
tina 98 | 196 2|94 391| 5|89 6 76| 6
sm 99| 01 93| 4(8 | 78| 7 60f111| 72|10
parse2.20 [96| 2| 65| 7|57 |10 | 54 |11 || 39] 10| 35|12
parse4d_5 99| 1190| 5| 76| 6| 64| 8|63 8|59]| 8
parsed 99| 0|97 1195 2(92| 4(92| 4|91| 5
db4_10 9 | 2| 88| 6| 73| 7|67 8| 50|12 51|12
db5_10 98| 18| G6|79| 7| 61| 9| 83|11] 52|11
house_20 98 | 11|89 | 6| 84| 9| 62|11 49|14 46 |16
parsel 20 || 75| 6|37 |11 (|29 | 14| 26|16 | 22|18 | 20|19
parse3_20 |[70| 6| 36|11 | 27|15(25|16 | 21 |18 20|19
farmer_100 || 69 | 10 || 28 | 15 (|25 |17 || 19 [19 || 19 |19 | 18| 19
average |91] 2]/ 77| 5] 70] 7] 64] 9[57]10]54]11]

Table 8.7: Prolog rate versus task switching rate (%) of benchmark set I: Schedule
C

184

30.0

H——4A Mode A
O—Mode B
¥——% Mode C

&

@ 20.0 [

®

oD

£

=

]

=

7

«©

-

0.0 . + | I N

1 2 4 6 8 10 12
Number of workers

Figure 8.13: Average task switching rate of benchmark set I: schedule A, B, and

C

The average values of the prolog rate, the task switching rate, and the idle
rate are depicted in Figure 8.12, 8.13, and 8.14. Each figure contains three curves
respectively for schedule A, B and C.

According to Figure 8.12, the average prolog rate decreases as the number
of workers increases. Indeed, the average prolog rate in a single worker system
is 100 percents because no task switching occurs, whereas it becomes about 60
percents in the configuration of 12 workers. The decrease is mainly due to the
increzse of task switching as well as some idle time which occurs due to the lack
of parallelism. The prolog rate of schedule A and schedule B is higher than that
of schedule C. It is mainly due to difference of the granularity. The prolog rate
is almost the same between schedule A and B. In the discussion which follows
shortly, it will be shown that the task switching of schedule A is higher than that
of schedule B. It means that the prolog rate of schedule B must be smaller than
that of schedule A. However, due to the architectural optimization, execution time
of schedule A becomes smaller than the one of schedule B and consequently the
prolog rate becomes relatively larger in the total execution time.

As opposed to the average, the average task switching rate increases as the

size of the system becomes larger (Figure 8.13). On average, the task switching

185

50.0
AS——24 Mode A
O—O Mode B
40'0 e :k-Mode C
< 30.0
Q
©
3 20.0
10.0
0.0

1 2 4 6 8 10 12
Number of workers

Figure 8.14: Average idle rate of benchmark set I: schedule A, B,—and C

rate is about 10 percent of the total execution time in the configuration of 12
workers. The task switching rate of schedule C is higher than those of schedule
A and B due to the smaller granularity. Compared with schedule B, schedule A
has a higher task switching rate. It is because the architectural optimization may
cause the selection of younger nodes which are not chosen in schedule A; since the
younger nodes result in usually smaller granularity than the older nodes does, the
granularity of tasks of schedule A is relatively smaller than those of schedule B.
The idle rate increase as the number of workers becomes larger (Figure 8.14).
On average, the idle rate of schedule C is the larger than those of schedule A and
C. It should be noted that the idle time in the figure is not exactly the time spent
without any other work. It may include the time spent in some activities by sched-
uler other than the task switching and environment preparation. For example, it
- may include the time spent by a worker waiting for another worker to publish
available work. This case occurs when another worker has some private work that
can be shared with the idle worker. For this reason, the idle time becomes to some
degree larger as the number of publications becomes lager. However, as the size
of the system becomes larger, the increase rate of the idle rate becomes higher
than that of task switching rate, because most of idle time is due to the lack of

parallelism.

Computation efliciency

Workers in the parallel execution involve with some computation which cause par-
allel overhead. For example, task switching belong to such computation. Besides,
they sometimes remain idle, if they fail to find some available work. These indi-
cate that among the three classes of execution time, only the prolog time directly
contributes to the speedup.

Let us define the prolog rate U, as the rate of prolog time over the total
execution time and then consider a system with N workers. Assuming that the
instruction execution rate of the system is the same with that of the single worker

system, the maximum possible speedup Sy becomes
Sy = N +U,.

For example, in single worker system, the value of Sy is 1 because the instruc-
tion execution rate is 1 and the prolog rate is 1 (100 percents). In a system with
more than one workers, the instruction execution rate is usually smaller than 1
mainly because of the latency of remote memory accesses. As a matter of fact,
the instruction execution rate indicates how fast a worker executes an instruction.
For a given system with N workers, in order to identify the effectiveness of ar-
chitectural optimization implemented in schedule A, we compute the instruction
execution rate within the prolog time respectively for schedule A, B, and C.

Let us first define computation efficiency E, as the rate of the speedup 5 with
respect to the ideal speedup S;. The computation efficiency in a system with N

workers is expressed as follows:

&

S
Ec‘:_:___'
S (N=Up)

The computation efficiency E. provides a measure to evaluate the performance
of the architectural optimization because the higher is the E., the faster is an
instruction executed.

Figure 8.15 depicts £. measured for schedule A, B, and C. The computation

efficiency degrades as the number of workers increases. This is because the rate

187

N |

Efficiency of computation

7 : : : - :
1 2 4 6 8 10 12
Number of workers
Figure 8.15: Average efficiency of computation of benchmark set I: schedule A,

B, C

of remote accesses becomes higher. Schedule A has the highest computation
efficiency among the three. The decreasing rate is smaller than those of the
other two. In the setting of 12 workers, the values E, measured for schedule
A, B, and C are 0.94, 0.84, and 0.79, respectively. The result indicates that
the architectural optimization works effectively in reducing the amount of remote

accesses in program execution.

Granularity

A task is defined as a continuous work performed by a worker. The execution of
a task is carried out by the depth-first search as in the sequential execution. The
granularity of a task refers to the number of choice points created by a task. The
‘number of task switching and its granularity are listed in Table 8.8, 8.9, and 8.10
respectively for schedule A, B, and C. Overall, the average granularity of a task
varies from 5 to 154 for the entire benchmarks. The detailed discussion about the
granularity of each benchmark will be made in section 8.3.3.

The average granularity of schedule A, B, and C is depicted in Figure 8.16.
The task granularity decreases as the number of workers becomes larger. For

schedule B and C, the decrease rate of task granularity becomes lower as the size

188

Prolog Number of workers
Program 4 G 8 10 12
T | G T | G T | G T | G T | G
queensl_§ 102 | 580 || 147 | 402 || 236 | 250 || 290 | 204 || 498 | 118
queens2_8 391 | 319 || 314 [397 || 402 | 310 || 712 [175 || 841 | 148
tina 158 | 382 || 240 | 252 || 231 [261 || 395 [153 || 560 | 108
sm 58 | 269 97 | 161 97 | 161 || 214 | 73 || 242 | 64
parse2.20 254 | 120 || 389 | 78| 557 | 55| 645 | 47 || 643 | 47
parsed_5 355 [129 | 475 | 96| 991 | 46| 855 | 53 | 946 | 48
parsed 1183 | 228 || 2593 | 104 || 3673 | 73 || 3988 | 67 || 4908 | 55
db4_10 95 | 147 | 204 | 68| 270 | 51| 348 | 40| 379 | 36
db5_10 93 | 184 | 172 | 99| 317 | 54| 277 | 61| 543 | 31
house_20 206 | 242 | 235|212 | 310 | 160 || 427 | 116 || 575 | 86
parsel_20 147 | 49| 222 | 32| 338| 21| 499 | 14| 489 | 14
parse3_20 226 | 34| 278 | 28| 339 23| 450 | 17| 474 | 16
farmer 100 || 899 | 29| 1270 | 21 | 1558 | 17 || 1688 | 15 || 1860 | 14
[average || 320] 208 | 510|150 716|114 829 | 79[996 | 60 |

Table 8.8: Number of task switching and task granularity of benchmark set I:

Schedule A

Granularity

500

400

200

&—aA Mede A
S——EMode B

*—¥ Mode C

1

4 6

8

10

Number of workers

12

Figure 8.16: Average granularity of benchmark set I: schedule A, B, and C

189

Prolog Number of workers

Program 6 8 10 12

T G T | G T | G T | G T | G
queens]_8 141 | 419 || 178 | 332 || 197 | 300 || 295 | 200 || 382 | 154
queens2_8 259 | 482 || 321 | 389 || 296 | 422 || 532 | 234 (| 835 | 149
tina 119 | 508 || 248 | 243 || 350 | 172 || 331 | 182 || 477 | 126
sm 41 | 381 98 | 159 || 121 [129 || 163 | 96 | 197 | 79
parse2_20 472 | 64| 571 | 53| 862 | 35| 952 | 32| 1158 | 26
parse4_5 318 | 144 || 424 | 108 || 816 | 56 || 929 | 49 || 844 | 54
parse) 1221 | 221 || 1529 | 177 || 2192 | 123 |[2692 | 100 || 2518 | 107
db4.10 94 | 149 || 160 | 87| 188 | 74| 322 | 43| 279 | 50
db5_10 118 | 145 || 145 [118 || 251 | 68| 352 | 48| 393 | 43
house_20 180 | 277 || 292 | 170 || 471 | 105 || 484 [103 || 546 | 91
parsel_20 312 | 23| 387 | 18| 490 | 14| 541 | 13| 658 11
parse3_20 205 | 26| 472 16| 498 | 15| 568 | 13| 721 10
farmer 100 | 982 | 27 | 1574 | 17| 1924 | 13] 2287 | 11 || 2632 | 10

laverage [350220 [492 [145] 665] 117]| 803] 86 895] 70 |

Table 8.9: Number of task switching and task granularity of benchmark set I:

Schedule B

190

Prolog Number of workers
Program 6 10 12
T | G T | G T | G T G T |G
queensl_8 123 | 481 200 | 295 || 282|209 || 406 | 145 || 619 | 95
queens2_8 379 | 329 || 504 | 247 || 770 | 162 || 798 | 156 || 1255 | 99
tina 244 | 247 || 366 | 165 | 661 | 91| 776 | 77 | 1038 | 58
sm 771203 || 147 | 106 || 143 | 109 || 352 | 44 || 237 | 66
parse2.20 757 | 40 || 1130 | 27 || 1387 | 22| 1574 | 19 | 2152 | 14
parsed_5 632 | 721 797 | 57| 1327 | 34| 1351 | 34 | 1508 | 30
parsed 1016 | 266 || 1681 | 161 || 2926 | 92 || 2866 | 94 || 3587 | 75
db4_10 179 | 78 || 230 | 60| 275 | 50| 580 | 24 | 544 | 25
db5.10 202 | 841 277 | 61| 443 | 38| 596 | 28| 655 | 26
house_20 436 | 114 || 672 74 || 1132 | 44 | 1783 | 27 || 2127 | 23
parsel_20 393 | 18| 679 | 10| 799 9 || 1069 6| 1283 | 3
parse3_20 473 | 16 || 876 8| 1012 7| 1297 6| 1471 | 5
farmer_100 [1738 | 15 || 2133 | 12 | 2941 9 || 2875 9 || 3061 | 8
[average || 511151 [745] 98] 1084 | 67 [1255 [51 [| 1502 | 40 |

Table 8.10: Number of task switching and task granularity of benchmark set I:

Schedule C

191

of the system becomes larger. [t is because the effect which a scheduling policy
has on the size of the granularity decrease as the number of workers increases.
As pointed out earlier, the granularity of schedule C is the smaller than that
of the other two schedules. Although the average task granularity of schedule A
and B are almost the same, the granularity of schedule A is smaller than that
of schedule B. It is because the architectural optimization affects the top-most
scheduling such that sometimes the younger nodes are chosen in task scheduling,
which otherwise are not chosen in the top-most scheduling. The rate of difference
between average granularity of schedule A and B increases slightly as the number
of workers becomes larger. It reflects that the influence of architectural opti-
mization on the top-most scheduling increases as the number of workers becomes

larger.

192

Speedup Curves
10.0

A——n Moda A
G—O Mode B
‘W——i Moda C
8.0 il oMuse
O—=¢ Aurora

Speedup

0.0

1 2 4 6 8 10 12

Number of workers
Figure 8.17: Speedup curves of benchmark set I: schedule A, B, C, Muse and
Aurora.

Comparison of the performance with other implementation

This subsection presents the performance comparison of our implementation
with other prominent implementations. The performance of the Muse and the
Aurora is reported in papers [5, 15]. Now that benchmarks used in Muse and
Aurora are exactly the same with benchmark set I, a reasonable comparison can
be made between their performance and ours.

Figure 8.17 shows the speedup curves for five cases. According to the figure,
the Muse shows the best performance. Overall, the performance of the Aurora is
better than that of our system. However, our system executing schedule A shows

better performance over the Aurora when the number of workers is larger than

10.

8.3.3 Analysis of performance of benchmark set I

In the previous subsection, the average performance of benchmark set I has been
analyzed. This subsection presents the performance of each benchmark in bench-
mark set I and its analysis. The primary objective of the analysis is to identify

the relation between the parallelisin of benchmarks and the performance of the

193

0 1 2 3 4 (%)

Figure 8.18: Search tree and its signature

system. The discussion will be limited to the case of schedule A, since schedule A

generally provides the best performance.

Qualitative analysis of parallelism: signature of the search tree

In an effort to identify the amount of parallelism and to understand execution
behavior of a benchmark, we developed a visualization technique which displays
runtime search trees. The technique is implemented in our experimental prototype
and is used to visualize the search trees of the benchmarks.

In the visualization technique, the search tree is represented by an image called
the signature of a search tree. For almost all the benchmarks, a search tree consists
of an order of ten thousands nodes. It is thus very difficult to represent a search
tree in a visual image through which the user can understand the overall shape of
the search tree. The signature provides a very accurate visualization of the search
tree, while it is very simple and direct. Figure 8.18 shows an example explaining
how the signature is represented. In the signature, the nodes of a search tree are
represented through a two dimensional grid with two axes X and Y, in which each
cell can be mapped to a node. The root of the search tree is mapped onto the
upper left corner of the grid. Its child nodes are mapped onto the following row.
The X coordinate of a child node is determined by the size of the subtree of the
previous child node such that the subtrees of two adjacent child nodes are not
overlapped between them. In the example, the two child nodes of the root are

mapped respectively onto (1,1) and (1,3). The size of a signature is defined as

194

(x,y) in which “x” and “y” refer respectively to the maximum X and Y values
among the coordinates which are occupied by nodes.

In the signature representation, the level of the search tree is preserved. Also
the size of subtree which reflects the parallel grain is clearly depicted because the
maximum values of X and Y coordinates represent the size of the search tree and
the density of the grid cells onto which nodes are mapped is depicted in the image.

For the implementation of the signature, the trace containing the search tree
information is generated in each worker. After the execution of a benchmark, the
trace is manipulated to create the search tree and then they are converted into a
bit map data corresponding to the signature. The signature is then converted into
an image in the PBM image format which can be displayed or converted into a
postscript file through general display software such as “xv” in X window systems.

Figure 8.19 and Figure 8.20 present the signatures of all the benchmarks in
benchmark set 1. The signature exhibits parallelism whose amount is reflected
from the size, shape, and density of a signature. The size of the signature for
queeni 8.pl is (13600,94) and the density in the grid is very high. The size of
the signature for parse2.20.pl is (24102,99) and the density in the grid is not so
high as that of queens1.8.pl. Compared with the signature of queens1.8.pl, the
signature of parse2.20.pl shows less parallelism due to lower density. Indeed,
the experiment result shows that the average grain size of queens1.8.pl is about
two times larger than that of parse2.20.pl. The signature of farmer_100.pl
is different from the previous two. The parallelism is not significant because the
shape of its signature is vertically long and the number of nodes in each level
is absolutely smaller than the previous two. Indeed, the experiment shows that

farmer_100.pl has the smaller grain size than the previous two.

Speedup

Figure 8.21 shows the speedup curves of the benchmarks in set I. The benchmarks
can be crudely classified into three groups in terms of the size of the speedup. The
first group includes five benchmarks (queens1, queens2, tina, parses, and sm)
which show high speedup ranging from 8 to 10. The second group includes six

benchmarks (parse2, parse4, db4, dbs, and house) which show medium speedup

195

g b _E < i
1 ‘l'ﬁ !i” l{' !,, Ay ,lll;* ‘:|§ S o S l'1j |
Eeh rri‘ u""ﬂ‘l"‘lﬂ':’ ?%Q‘IE '!f) I
HEMTIR RN l H[! Hi'.:? fz‘i" L T | P ..T oo
il Tl
(a)queensl.pl (b) tina.pl: X=21361, Y= 154
| |)
I"I II '1‘.1:',_' ‘l"' "
_?.'.f“”n-.' !!'{i.‘l”"- i 'l“ TTa 1 '-Il"‘"'
'.‘llH ey g i !"'f"l'-'I)-’.'j-!f“d?_'\u
b e Bl f"-"'_"\!ﬁfp_'i,;_f![i;j,'..]_‘,-,-_.,"g,_'e"‘
-..t"ilfii}:%:.’lﬁﬁ'-3':!'{‘"-'_,]" ll|'.:-I-:l§|".;‘l_l_lii:::t}',ll!-ll;l‘;l‘;-’;l,l’l‘—

(c) sm.pl: X=6594, Y= 45 (d) parse2_20.pl: X=24102, Y=99

(e) parsed_5.pl: X=36187, Y= 211

:‘:‘.'{:‘,x.'uw::::';'-.44#:-,.iu;.‘aa?;-;.'t:ﬂ.irz}'.».’.‘ﬁ-':‘é_*:ﬂ;f!f-re':ﬁmi'-‘

(f) db4-10.pl: X=11659, Y= 29

Figure 8.19: Signatures of benchmark set I (a)

196

M. |’le_{t 4 gl '{, I'"{ 'q gJ «“rr v

s gp,uzf;"' ey i m i

(a) db5_10.pl: X=13859, Y= 44 (b) house_20.pl: X=13207, Y= 72
\ '
I‘I‘l, . .:'”|I';1[.‘|_"' s
b, R
il -"--.'r.r.\-'rr.-:u : -‘L'.E_:.-!:‘:'f

(c) parsel_20.pl: X=5772, Y= 58 (d) parse3_20.pl: X=6002, Y= 71

(e) farmer_100.pl: X=10201, Y= 142

Figure 8.20: Signatures of benchmark set I (b)

m
11.0 ¢—> quesns2_8
U ¢ lina ;
oL S CEEEEE TSy
10.0 frrommssn oarsaB. i
“——dparsed_5
Q.0 |eeeeens VRS | il 2 e
: b——bdbd_10
+——+db5_10)
8.0 [—XNOUSO20 | A A
) o - - o parsal_20 _
<& — = & parse2_20 o ~§
7.0 |l = = <farmer 100/ ANl
L g o S ‘
)
@
UQJ- 5.0 [
L O AN 4
3.0 [t BB T TSRS = T
2.0
L
0.0 : L 1 L '

1 2 4 6 8 10 12
Number of workers

Figure 8.21: Speedup of benchmark set I: Schedule A

ranging from 6 to 7.5. The third group includes the rest of the benchmarks
(parsel, parse 2, and farmer) which shows low speedup ranging from 2 to 3.5.
The main reason for low speedup of the third group is identified by the lack of
parallelism, which will be discussed in more detail shortly.

The SPP IAX system consists of a set of hypernodes connected via SCI rings.
The memory access of inter hypernodes is longer than that of intra hypernodes.
In the system, when the number of workers becomes larger than eight, the latency
of memory accesses becomes longer. Indeed, for most speedup curves, it is noticed
that the increase rate of speedups slightly decreases when the number of workers

is over eight. It is believed that the decrease reflects the memory organization of
the SPP IAX system.

198

~ ~— quaenl_8
600 o——o queens?2_8

——e {ina

o—o Sm

6——a parse2_20
<—aparsed_5
| ¥——¥ parseS
p——dbd_10
+——+dbS5_10

| ¥——x house_20
o — — o parsel_20
@ == © parse2_20
< = — <larmer_100

550

350

300

Granularity

250 RS0 SRy

200

150

100

Number of workers

Figure 8.22: Granularity of benchmark set I: Schedule A

Granularity

In the previous subsection, the parallelism of benchmarks was observed by means
of a specific representation scheme, signatures. Figure 8.22 depicts the curves
for the grain size of each benchmark in the seven configuration. The grain size
decreases as the number of workers becomes larger. The decrease rate differs from
one another. In general, the decrease rate of benchmarks with larger granularity
is larger than that of benchmarks with smaller granularity. For the third group
of benchmark, the decrease rate of the granularity is hardly noticeable. It is
because the amount of parallelism is not sufficient enough to maintain high system
litilization when the size of the system is relatively large.

It is also interesting to compare the task granularity between two versions
of 8-queens programs, i.e., queensi_8.pl and queens2.8.pl. As for the sig-

natures of the two program, queens1.8.pl has a quite smaller signature than

199

a——= gueeni_8
¢—oqueens2 8

100.0

+—= tina
0——o0 §m
90.0 |t 2 e s 9——=a parse2_20
; <“—aparsed_5
V——~% parse5
b——odb4_10
80.0 [MY db5 10
*——x house 20
o — - o parsel_20
70.0 frommmmicondpd o - - o parse2 20
o ==~ <farmer 100
’_..6 ‘\ ‘\ s ~
o 60.0 ._.ib-.,\
[0} \ < >
© Ve ™
— A ‘-"'-0 \\
[. ..,..\.x.,‘_hx_.....A
§ 500 ¢ S
=1 < 8.
(&) ~T % \:‘\
@ T
> 40_0 ... b a) Nt st e s s s
(10} <\ \:\
N AN
\\ \:‘o.-
~ _-_———-—
30.0 \\\,.__u___g
~
4_""“""*———-._.4
10.0 |-

0.0 M
12 4 6 8 10 12

Number of workers

Figure 8.23: Prolog execution rate (%) of benchmark set I: Schedule A

queens1.8.pl. The decrease rate of the granularity of queens1.8.pl is larger

than that of queens1.8.pl, because the size reflects the amount of parallelism.

Utilization

Figure 8.23 shows the rate of prolog time over the execution time of each
benchmark. The values ranges from abut 25 percents to over 90 percents. They
differ from one another depending on the characteristics of benchmarks. The
prolog rate is closely related the available parallelism as well as the task switching
réte which will be discussed shortly. Particularly, it is shown that the prolog rates
of benchmarks in the third group decrease rapidly.

Figure 8.23 shows the task switching rate of each benchmark in set I. In the
setting of 12 workers, task switching rates ranges from 5 percents to 18 percents.

In general, the task switching rate continues to increase for benchmarks in the

200

a——a quesnl_8
30.0 quesns2 8
—e N3
e——e=m
D——a parse2_20
+——aparsed 5
VY—~% parseS
D 4 _10
+——i+ dbS5_10
W———=x housa_20
& — - s parsel_20
o & — =0 parse2_20
20.0 e st | g (armer 100

Switching rate (%)

10.0 4 e il i

0.0

1 2 4 6 B 10 12
Number of workers

Figure 8.24: Task switching rate (%) of benchmark set I: Schedule A

group one and two, while it stop increasing for benchmarks in the third group
when the number of workers reaches some number. The stopping of the increase
is because of the lack of parallelism; in the situation of insufficient parallelism,
even though the number of workers becomes larger, the total number of task
switching remains almost the same since the number of task switching remains
the same.

Figure 8.25 shows the idle rate of each benchmark. In the setting of 12 workers,
the idle rate of benchmarks in the first group reaches about 60 percents of the
execution time. As for the benchmarks in the other two groups, the idle rates are

relatively smaller than those for the first group.

8.3.4 Analysis of performance of benchmarks set II

This subsection presents the performance of benchmark set II. As opposed to
benchmark set I, benchmark set Il contains speculative work to some degree.
The objectives of the performance evaluation with benchmark set II are to verify

the functionality of our implementation in the presence of speculative work, to

201

»——a queent_8

queens2 8
70.0 * 2
ot M
o——a parse2_20
+—aparsed_5
60.0 v——F parsa$
== @ m 223 lo—sdbd_10
/’ P e tans 10
. / —m= housa_20
il / it & = = @ parsel_20
[14 10) S gt vt
A I/ + - — < farmer_100
—_ o /
-
Q - T
E 40.0 s .o__.—':""
s ¥ - g
[-
§ 300 fol
2, 7ok 2
@ ‘ J,Ir
f‘ "l‘ /
20.0 {7 s
:‘ "'
I
'y
,J,” i
.
10.0
¥
'l
A
'0
0.0 =—% + " .
L 4 6 8 10 12

Number of workers

Figure 8.25: Idle rate (%) of benchmark set I: Schedule A

evaluate the performance, and to suggests directions to accomplish the higher
speedup.

The speculative work is defined as the work which will be executed in the OR-
parallel execution, whereas it will not be executed in the sequential execution.

The speculative works are in general produced from the following two sources.

e Single solution problem: The OR-parallel execution is inherently based on
a breadth first search. Therefore, it may include the portion of the search
tree which is right to the path of the first solution. Because the portion will
not be executed in the sequential execution, the work corresponding to the
portion becomes speculative work.

e Pruning operation: Even though the portion of the search tree executed
by a worker is left to the solution path, it may not be executed during the
sequential execution, providing it is pruned out by some “cut” or “commit”.

In this case, the work corresponding to the portion becomes speculative
work.

202

The benchmark set II has three programs queens.pl, chat_parser.pl, and
zebra.pl. Queens.pl is a single-solution version of the 8-queens problem imple-
menting an algorithm which differs from those in benchmark set I. The program
does not have “cut” or “commit™ and the speculative work with the program re-
sults from the breath-first search. (The all-solution version of the program has 92
solutions.)

Chat_parser.pl is a program made by extracting the part of sentence parsing
from the natural language system developed by Fernando C. N. Pereira and David

H. D. Warren. The program parses the following list of sentences.

What rivers are there 7

Does afghanistan border china ?

What is the capital of upper_volta ?

Where is the largest country 7

Which country’s capital is london 7

Which countries are european 7

How large is the smallest american country 7

What is the ocean that borders african countries

and that borders asian countries ?

What are the capitals of the countries bordering the baltic 7
Which countries are bordered by two seas 7

How many countries does the danube flow through 7

What is the total area of countries south of the equator

and not in australasia 7

What is the average area of the countries in each continent 7
Is there more than one country in each continent 7

Is there some ocean that does not border any country 7

What are the countries from which a river flows

into the black_sea ?

The speculative work of chat_parser.pl results from the pruning operation

by the “cut” in the following clause.

determinate_say(X,Y) :-
say(X,Y), !.

203

In the sequential execution, once a sentence is parsed, it is accepted. The
other instances of syntactic parsing are not tried. As a matter of fact, this is
implemented through the “cut”. In the parallel execution, before the “cut” is
executed, other workers may take some branches which may result in the other
instances of parsing. The work of this case clearly amounts to speculative work.

Zebra.pl is a puzzle solution written by Claude Sammut. It solves the puzzle
of “Where does the zebra live?”. It contains one “cut™ which results in most of
speculative work of the program.

Table 8.11 shows the speedups of the above three benchmarks obtained by
schedule A, B, and C. The corresponding speedup curves are depicted in Figure
8.26.

In Figure 8.26, the upper three curves are for chat_parser.pl, obtained for
schedule A, B, and C. The next three curves are for zebra.pl.. The lower three
curves are for queens8.pl.

Different from the speedup curves for benchmark set I, the curves for bench-
mark set II show highly irregular shapes. Moreover, the scheduling policy does
not have any persistent and significant influence on the speedup. For example,
in the system with some number of workers, some scheduling policy results in
the highest speedup, whereas in the system with another number of workers, a
different scheduling policy results in the highest speedup.

Table 8.12 shows the total number of nodes executed for each configuration
and its speculative rate. Given a system configuration, the speculative rate refers
to the rate of the number of the nodes executed in the configuration minus the
number of nodes to be executed in the single worker configuration over the number
of node executed in the single worker configuration.

Figure 8.27 depicts speculative rates in curves. Compared with the other
two programs, the speculative rates of chat_parser.pl are very low. In the
configuration of 12 workers, they are respectively 15, 6, 9 percents respectively
for schedule A, B, and C. The speculative rates of zebra.pl are 79, 63, and 77

percents. They are 342, 202, and 346 percents for queens8.pl.

204

Scheduling Prolog Number of workers
type Program I [2] 4] 6] 8]10] 12
queenss 1.00 | 0.94 | 1.13 | 1.73 | 2.32 | 1.70 | 2.43
Schedule | zebra 1.00 | 1.64 | 2.35 | 2.69 | 4.54 | 5.08 | 5.78
A chat_parser | 1.00 | 1.82 | 3.52 | 4.95 | 5.00 | 5.22 | 5.72
average 1.00 | 1.47 | 2.33 | 3.12 | 3.95 | 4.00 | 4.64
queenss 1.00 [0.94 { 1.09 | 1.50 | 2.95 | 0.98 | 2.89
Schedule | zebra 1.00 | 1.64 | 2.99 | 3.08 | 3.37 | 3.99 | 5.44
B chat_parser | 1.00 | 1.85 | 3.41 | 4.49 | 5.86 | 5.59 | 6.35
average 1.00 | 1.48 | 2.50 | 3.02 | 4.06 | 3.52 | 4.89
queens8 1.00 | 1.00 | 1.13 | 1.49 | 1.65 | 1.99 | 2.06
Schedule | zebra 1.00 | 1.74 | 2.25 | 3.49 | 4.39 | 4.19 | 4.51
C chat_parser | 1.00 | 1.92 | 3.21 | 4.63 | 5.70 | 6.11 | 5.91
average 1.00 | 1.55 | 2.20 | 3.20 | 3.91 | 4.10 | 4.16
Table 8.11: Speedup: benchmark set II
8.0 AN——4 Mode A queensg
AL\ Mode A: zebra
/— — AMode A: chat_parser
7.0 |- G——©Mode B: queens8
: O-----<>Mode B: zebra
- —ESMode B: chat_parser|
¥——¢-Mode C: queens8 o
Koo Mode C: zebra N S
6.0 1% —3kMode c: chat_parser| ™ ﬁ;{ /V‘:jg
K A

0.0

6

8 10

Number of workers

Figure 8.26: The speedup of benchmark set II

]
ot

90¢

150W-Wo110q 23 1040 snooJejueape st Juin payos jsowr-doy a1y, “Surmperyps jsot
-urogjoq ' pue ‘uorjeziwydo [einjoejippie ue 1M Surnpayos jsout-doy e ‘Sur
-[npayos gsouwr-doy aand = ‘suryj1103)e 9911]) pojuawddur om “uaurrrodxe 1no uy
Sujy1108[e Surnparas yons Suryuowapduu
UL JUSIOIga ST se [[om se wijirofe Suimperps jo oFuer 9PIM B 2)RPOLITIOIDE 0]
y8nous a[qrxay s [PPOW UOIINIDXD B ey} SMOYS J[nsal stsA[eue ayJ, pazz([mre
U994 SBY [9pOW TOTINIXa 91} JO [RIjuajod a1} ‘ooururiojiod pajen|ess 9} Uo pasegy

‘uoryenyeAs soururIofrad Jo J[nsal o) pue uorjejuswa|durt o1y sjussard rojdeyo Y,

SISOUIUAS '8

‘oAT)R[NOdS
2q 03 9[qrqoId ssa] SI Y2IYM JIoM SUI0S 199es 0} surow aulos opiaoid 0y pue aary
-e[noads 2q 0} syse) owos Jo £4111qeqoad ayy ajeuiyss o) dppy [[im suryjrroSye yong
"sfem juanyo ur yiom aArjemoads a1y a[puey uwo [orgm [eronao st wyyiodre Sur
“[MPAYOS [2A0U B ‘UIDY[) JO AUO Sy “YI0M oAlje[noads jo souasaxd a1 ur oourwIoLIDd
(31 10] wOY®) 9q JSNUI SAINSLAUL [eroads geryy sageorpur UOI1RATOS(O DA0qR O],

1om aarje[noads jo qunowe 2y uo 2ousnyur
juedyrugdis oAey jou op sarod Jurinpeaypos o1} ‘sdnpoads 10) pip sy -dnpeads

TR[NFDIIL DY) UI SHNSIT YOIM “Ie[ngai jou st oyl aa1je[noads 1]} Jo saSueyd ay,

(%) =@ye1 aaTyRMOOdS pue Sapou jo raquint [ejo], :g1°8 2[qr,
(6) z1se [(6) govee | (L1) 9s0se | (¢) esvee | (0) €00z | -rew
(2L) 18992 | (¥¥) 8080z | (02) 8¥Svz | (1) verOT | (0) T8FFI vz || o
(9re)er1Lser | (918)862LT1 | (g¥2) 97996 | (1) 01987 | (0) 2818z | gsuoonb
(9) 86eve | (z) covee | (v) 0g6ge | (¢) 61oge | (0) £092€ | vewo
(€9) 209¢z | (68) 2IvLe | (92) S1e8l | (02) 0£VLT | (0) 1SKPl | wiqez | g
(202) 086v8 | (£a1) 69229 | (8¢2) 9¢es6 | (1) 9198z | (0) 28187 | gsuvenb
(gr) vrele | (o1) szsse | (v) svore | (¢) L8zve | (0) £09ze e
(62) se6ge | (69) 12622 | (29) L1see | (02) 0gvll | (0) T8PPI viqez |y
(cre)L89v31 | (812) v¥s68 | (vee) 60r6 | (1) 91982 | (0) @818z | gsuoonb
¢l I 8 | 4 I z I [wesgoag [odfy
SIDNIOM JO JaquUIny Sojo1g ‘g

&—aA Modo A” queanss
1A A Moda Az zabra
400 & —AMods A chal_parsor]
KO—OMoos B quaenss
1o~ Mods B: zebra
Ko~ — G Mods B: chat_parsar
350 |-p—Mods CiqueensB |-
Ao % Motk C: zebra

i— —# Moda c: chat_parsar

300 o

250

200

Rate of speculative work (percent)

100

50 s e il

1 2 4 6 8 10 12
Number of workers

Figure 8.27: The graph of speculative rates

scheduling due to larger granularity for all solution problems with little or no
speculative work. However, because of the overhead caused from such operations
as finding the top-most nodes, it is difficult to obtain substantial performance gain
from the top-most scheduling. In our system, the top-most scheduling produces
substantial performance gain over the bottom-most scheduling, which gives us a
clue that our execution model is very efficient in supporting a wide range of al-
gorithmic optimizations. Moreover, the architectural optimization to reduce the
remote memory accesses shows significant performance gain, even though such
optimization may introduce severe overhead which may even cause the risk of
performance degradation. This indicates that our execution model efficiently sup-
_ports such optimizations. The performance evaluation and its analysis validate
that our execution model is efficient and flexible for both algorithmic and archi-

tectural optimizations.

Chapter 9

Conclusions and future research issues

This chapter concludes the dissertation and offers future research issues.

9.1 Conclusions

In this dissertation, we investigated and addressed a variety of issues pertaining
to the design and implementation of parallel logic programming systems on large-
scale parallel machines.

Within the context of large-scale parallel logic programming, we noticed that
the scheduling issue becomes more important. Normally, the activities performed
by a scheduler are tightly coupled with the components provided in the parallel
execution models. For example, the cost of task switching depends on the binding
environment of the parallel execution model. For high performance in such sys-
terns, schedulers must be capable of optimizing architectural features as well as
scheduling strategies. Such optimizations include selection of scheduling strategies
specific to the characteristics of application programs and also enhancement of lo-
cality by reducing the amount of remote accesses. In this dissertation, we have
argued that for high performance logic programming on large scale multiproces-
sors, the issues of flexibility and efficiency associated with scheduling activities
must be clearly addressed in the design of the parallel execution model.

In order to validate the argument, we have designed and implemented a par-
allel execution model on a HP’s SPP IAX distributed shared multiprocessor. In

an effort to show that a wide range of scheduling algorithms can be implemented

208

with minimal overhead on the execution model, both a top-most scheduling and
a bottom-most scheduling have been implemented. Moreover, an architectural
optimization particularly to reduce the amount of remote memory accesses has
been implemented within a top-most tree-based scheduling strategy. The per-
formance result and its analysis have shown that our execution model provides
high flexibility and efliciency both for algorithmic and architectural optimization
in the runtime scheduling. Moreover, the result provides a validation that the
architectural and algorithm optimization are crucial for expected performance on

large-scale parallel machines.

9.2 Future Research Issues

This section presents the directions of future parallel logic programming systems

and research issues.

9.2.1 What needs to be achieved

The general directions for future parallel logic programming system are summa-

rized as follows:

1. The usage of a wider range of parallelism: In order to get an appreciable
speedup on large-scale parallel machines, parallel logic programming sys-
tems need to integrate other types of parallelism such as AN D-parallelism

in addition to OR-parallelism.

9. High performance scheduler: The scheduling problem needs to be investi-
gated in the presence of different types of parallelism, particularly AND-
and OR-parallelism.

3. Implementation study: Beyond simulation studies, the implementation study
based on a robust parallel implementation of the OR/AND model on prac-
tical large-scale parallel machines is essential for a thorough investigation of

the parallel execution behavior and the system performance.

4. Inter-operability: In spite of almost a decade of research efforts, commer-
cial parallel logic programming implementations are not yet available. On
the parallel software techuology side, it is partly because developing parallel
software is extremely expensive. The software to be developed in the parallel
logic programming implementation must therefore provide enhanced porta-
bility and inter-operability. For this, research eflorts are needed to establish
a framework that makes some sofltware components, e.g., schedulers, readily

available to other systems which require the same functionality.

Under the above directions, future research issues are discussed in the following

sectlons.

9.2.2 Integration of independent AND parallelism

The parallel execution model developed in this dissertation deals only with OR-
parallelism. As a future research, it is suggested to integrate independent AND-
parallelism on top of the current implementation. The issues associated with the

integration are outlined as follows:

Investigation of AND/OR parallel model

The addition of AND-parallelism to the OR-parallel execution model brings out
several new issues associated with the maintenance of consistent bindings, inter-
action between AND- and OR-parallelism, and scheduling AND- and OR-tasks,
etc. Therefore, it is necessary to investigate a parallel execution model which will

address such issues and provide a specification of an parallel abstract machine.

‘Static analysis of AND-parallelism

For a more efficient implementation of independent AN D-parallelism of parallel
logic programming systems, it is necessary to detect as much AND-parallelism
at compile-time as possible. Static data-dependency analysis, another approach
which is most frequently used for the detection of AND-parallelism, is not sufficient

to fully detect the AND-parallelism because it has a limitation in dealing with the

210

propagation of groundness. Abstract interpretation provides a great opportunity
for more complete detection of AND-parallelism. However, the full-blown abstract
interpretation is not efficient because it inherently employs operations which are
very complex and not necessary for gathering the information of AND-parallelism.
In other words, it generally require very large computation which can be hardly
afforded just for the detection of AND-parallelism. For gathering only the infor-
mation that is essential for detection of AND-parallelism, the approach will be
more effective which combines the simplicity of static data-dependency analysis
and the completeness of abstract interpretation. To provide a precise and effi-
cient way of the abstract interpretation, it is necessary to investigate an efficient
abstract domain and its primitive operations which can be applied universally to

PROLOG programs for the detection of AND-parallelism.

9.2.3 Advanced scheduling scheme

Search trees created at runtime for PROLOG programs can be classified into
several types. Depending on the characteristics of each type, there exists a specific
scheduling strategy which will outperform the other scheduling strategies. To get
high performance, we need to identify the characteristics of search trees as well as

the interaction between the characteristics and scheduling strategies.

Static analysis of scheduling information

Previous schedulers perform the allocation of tasks only with the information
extracted at runtime [14, 15, 17]. Although these schedulers have proven very ef-
fective regardless of speculative or non-speculative tasks, higher performance can
be achieved by utilizing some information extracted at compile time. For exam-
ple, if we can predict at compile time the subtrees which will become speculative
work and estimate the shapes of search trees, the schedulers can make an efficient
selection of scheduling policies. For this, we need to identify the required infor-
mation and also to investigate methodologies which help analyze the information

at compile time.

211

Speculative and multi-paradigm scheduling

For a given shape of the search tree, a particular scheduling policy may produce the
higher performance. For example, the top-down scheduling policy, which would
be inferior to the bottom-up scheduling policy for a number of general bench-
mark programs, would produce better performance for the all-solution problem
without “cut” or “commit” predicates because of larger task granularity. [For
high performance logic programming system, particularly on large-scale parallel
machine, multiparadigm scheduling is essential. Mutiparadigm scheduling refers
to a scheduling paradigm which uses both runtime and compile time information
as well as employs more than one scheduling strategies. In other word, multi-
paradigm scheduling exploits both static and dynamic information for task allo-
cation. Moreover, it is capable of choosing a specific scheduling strategy adaptively

at runtime according to the execution behavior or dynamic information.

9.2.4 Performance model

A performance model of a Prolog program which enables us to quantify the ideal
and worst case parallel performance for a PROLOG programs is useful. For
example, we can use it as a guide to evaluate the quality of a schedule. The ideal
performance refers to the performance when no PE computes the speculative work,
while the worst case refers to the performance when the entire speculative work
is computed. The suggested methodology toward such a performance model is to
develop a trace tool which generates the execution trace of a PROLOG program
such that the trace will include all the speculative as well as non-speculative work.
From the trace, we calculate the amount of speculative as well as non-speculative

work, and then we calculate the ideal and the worst case performance.

Appendix A

Performance Data

Benchmark Prolog Number of workers

class Program 1| 2 4 6] 8 LIO | 12
queens].8 839 | 425 | 222|156 | 118 | 104 | 92
queens2.8 | 1917 | 965 | 501 | 343 | 265 | 228 | 197

tina 1481 | 775 | 402 | 283 | 222 | 192 | 168

sm 197 | 102 55| 42 30| 26| 25

parse2_20 576 | 302 | 165|112 96| 81| 71

Benchmark || parse4.5 847 | 436 | 240 | 164 | 135 | 112 | 101
set I parsed 4904 | 2515 | 1322 | 937 | 738 | 646 | 559
db4_10 321 | 165 92| 69| 52| 49| 52

db5_10 370 190 | 108 | 74| 62| 53| 49

house_20 535 | 274 | 144101 | 80| 67| 58
parsel_20 140 79 58 | 53| 49| 44| 41
parse3_20 148 83 62 43| 43| 45| 41
farmer_100 | 321 | 184 | 156 | 144 | 146 | 128 | 133
Benchmark || queens8 642 | 662 | 562 | 376 | 286 | 402 | 285

set 11 zebra 181 | 109 77| 60 41| 35| 34
chat_parser | 3727 | 1970 | 1028 | 765 | 674 | 572 | 524

Table A.l: Execution time: Schedule A

213

Benchmark Prolog Number of workers
class Program 1 2 4 | 6 [8 |10] 12
queens]_8 831 | 421 | 225 | 161 | 123 | 109 | 95
queens2.8 | 1925 | 969 | 514 | 352 | 273 | 234 | 216
tina 1547 | 808 | 432 | 311 | 250 | 219 | 193
sm 189 96 82| 37| 32| 27| 26
parse2_20 592 | 309 | 170 | 123 | 107 | 111 | 118
Benchmark || parsed_5 839 | 431 237 | 165 | 135 | 125 | 111
set 1 parsed 4904 | 2516 | 1321 | 946 | 747 | 639 | 566
db4_10 329 | 169 93| 69| 56| 48| 45
db5_10 370 | 190 | 103 | 77| 63| 55| 50
house_20 527 | 268 | 148 | 103 | 81| 69| 64
parsel_20 140 78 70| 63| 54| 57| 55
parse3d_20 156 87 66 | 70| 58| 52| 55
farmer_100 | 329 | 202 | 196 [183 [184 [173 | 166
Benchmark || queens8 634 | 653 | 568 | 595 | 208 | 609 | 159
set II zebra 181 | 110 77| 45| 46 | 40| 26
chat_parser | 3711 | 1961 | 1061 | 816 | 715 | 577 | 488

Table A.2: Execution time: Schedule B

Benchmark Prolog Number of workers
class Program 1 2 | 4 6 | 8 [10 | 12
queens]_8 831 | 420 | 218|152 | 122|106 | 98
queens2.8 | 1884 | 946 | 489 | 344 | 269 | 230 | 202
tina 1432 | 725 | 384 | 280 | 223 | 196 | 176
sm 206 | 104 57| 40| 35| 31| 27
parse2_20 576 | 302 | 173 | 154 | 174 | 156 | 141
Benchmark || parse4_5 831 | 420 | 231 | 162 | 136 | 113 | 126
set 1 parseb 4887 | 2459 | 1283 | 908 | 730 | 620 | 535
db4_10 304 | 157 84| 64| 51| 45| 60
db5.10 370 | 189 | 103 | 77| 60| 56| 73
house_20 518 | 267 | 146 | 109 | 86| 79| 107
parsel_20 132 71 83| 79| 72| 73| 71
parse3_20 148 36 921 84| 81| 81| 74
farmer_100 | 313 | 176 | 237 | 212 | 196 | 172 | 163
Benchmark || queens8 625 | 625 | 553 | 567 | 324 | 300 | 237
set 11 zebra 181 | 104 74| 44| 43| 34| 32
chat_parser | 3694 | 1920 | 1133 | 801 | 616 | 544 | 489

Table A.3: Execution time: Schedule C

215

Reference List

[1]

2]
[3]

(4]

[5]

[6]

[8]

A. Aiba, K. Sakai, Y. Sato, D Hawley, and R. Hasegawa. Constraint Logic
Programming Language CAL. In Proceedings of the 2nd International Con-
ference on Fifth Generation Compuler Systems, 1988.

H. Ait-Kaci and R. Nasr. LOGIN: A Logic Programming Language with
Built-in Inheritance. Journal of Logic Programming, 3:185-215, 1986.

H. Ait-Kaci and A. Podelski. Toward a Meaning of LIFE. Journal of Logic
Programming, 16:195-234, 1993.

K. Ali. OR-Parallel Exccution of Prolog on BC-Machine. In Fifth Interna-
tional Conference and Symposium on Logic Programming, pages 1531-1545.
MIT Press, 1988.

K. Ali and R. Karlsson. Full prolog and scheduling or-parallelism in muse.
International Journal of Parallel Programming, 19:445-475, 1990.

K. Ali and R. Karlsson. The muse approach to or-parallel prolog. Interna-
tional Journal of Parallel Programiming, 19:129-162, 1990.

K. Ali and R. Karlsson. The Muse OR-Parallel PROLOG Model and its
Performance. In Proceedings of the North American Conference on Logic
Programming, pages 757-776. MIT press, 1990.

K. Ali and R. Karlsson. Scheduling speculative work in muse and perfor-
mance results. International Journal of Parallel Programming, 21:449-476,
1992.

H. Alshawi and D. Moran. The Delphi Model and Some Preliminary Experi-

ments. In Fifth International Conference and Symposium on Logic Program-
ming, pages 1578-1589. MIT Press, 1988.

B. The Performance of Parallel ProLOG Program. IEEE Transactions on
Computers, 39:1434-1445, 1990,

R. Bahgat. Non-Deterministic Parallel Logic Programming. PhD thesis,
Dept. of Computing, Imperial College of Science and Technology, Feh. 1991.

216

[12]

[13]

[14]

(17]

18]

[19]

[20]

21]

22]

(23]

L. Bic. A Data-Driven Model For Parallel Interpretation of Logic Programs.
In Proceedings of the International Conference on Fifth Generation Computer
Systems, pages 517-523, 1984.

P. Bosco, C. Cecchi, C. Moiso, M. Port, and G. Sofi. Parallel PROLOG using
Stack Segments on Shared-Memory Multiprocessors. In 1984 Symposium on
Logic Programmaing, pages 2-11, I'eb. 1984.

R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek, and R. Stevens. Schedul-
ing OR-Parallelism: An Argonne Perspective. In Fifth International Confer-
ence and Symposium on Logic Programming, pages 1590-1605. MIT Press,
1988.

A. Calderwood and P. Szeredi. Scheduling OR-parallelism in Aurora - the
Manchester Scheduler. In Proceedings of the sizth International Conference
and Symposium on Logic Programming, pages 419-435, 1989.

J. Chang, A. Despain, and D. DeGroot. And-Parallelism of Logic Programs
based on Static Data Dependency Analysis. In Digest of Papers of COMP-
CON Spring 1985, pages 218-225, 1989.

C. Chen. Scheduling Heuristics and Runtime Data Structures for the Parallel
Ezecution of PROLOG Programs. PhD thesis, Dept. of Computer Science,
University of California at Berkeley., 1991.

A. Ciepielewski and S. Andrzej. A Formal Model for OR-Parallel Ezecution
of Logic Programs. Information Processing 83. Elsevier-North Holland, 1983.

A. Ciepielewski, S. Haridi, and B. Hausman. OR-Parallel PROLOG on Shared
Memory Multiprocessors. Journal of Logic Programming, 7:125-147, 1989.

K. Clark and S. Gregory. A Relation Language for Parallel Programming. In
Proceedings of ACM Conference on [Functional Programming Languages and
Computer Architecture, pages 171-178, October 1981.

K. Clark and S. Gregory. PARLOG: Parallel Programming in Logic. In ACM
Transactions on Programming Languages and Systems, volume 8, pages 1-49,
1986.

A. Colmerauer. Prolog 11l Reference and Users Manual, Versionl.1. Mar-
seilles, 1990.

J. Conery. The AND/OR Process Model for Parallel Interpretation of Logic
Programs. PhD thesis, Dept. of Computer Science, University of California
at Irvine, June 1983.

(24]

[26]

[27]

(28]

29]

[30]

[31]

(32]

[33]

[34]

[35]

J. Conery. Binding Environments for Parallel Logic Programs in Non-Shared

Memory Multiprocessors. lu PProceedings of the International Symposium on
Logic Programming, pages 159-170. 1EEE Computer Society Press, Septem-
ber 1987.

J. Conery. Binding Environments for Parallel Logic Programs in Non-Shared
Memory Multiprocessors. [International Journal of Parallel Programming,
17:125-152, April 1989.

J. Conery and D. Kibler. AND parallelism in Logic Programs. In Proceedings
of the International Joinl Conference in Al, 1983.

5. Debray, K. Bosschere, and D Gudeman. Call Forwarding: A Simple Low-
Level Code Optimization Technique. Kluwer, 1993.

D. DeGroot. Restricted AND-Parallelism. In Proceedings of the International
Conference on Fifth Generation Computer Systems, 1984.

C. Diaz and D. Diaz. wamcc: Compiling Prolog to C. In Proceedings of the
Joint International Conference and Symposium on Logic Programming. MIT
Press, December 1995.

D. Diaz and P. Codognet. A Minimal Extension of the WAM for clp(FD).
In Proceedings of the 10th International Conference on Logic Programming,
pages 774-790, 1993.

M. Dincbas, P. van Hentenryck, H. Simonis, and A. Aggoun. The Constraint
Logic Programming Language CHIP. In Proceedings of the 2nd International
Conference on Fifth Generation Computer Systems, 1988.

F. Henderson and T. Conway and Z. Somogyi. Compiling logic programs to C
using GNU C as a portable assembler. In Proceedings of the JICSLP’95 Post
conference on Implementation Techniques for Logic Programming Languages.
MIT Press, December 1995.

Virtual Memory Support for Parallel Logic Programming Systems. A. Veron
and J. Xu, et al. In Proceedings of Conference on Parallel Architectures and
Languages Europe. Springer Verlag, June 1991.

J-L. Gaudiot and H. Kim. Concurrent Logic Programming Language on
Data-Driven Architectures. In Proceedings of FGCS’92 workshop on Future
directions of Parallel Programming and Architecture, June 1992.

D. Gudeman, K. De Bosschere, and S. Debray. jc: An Efficient and Potable
Sequential Implementation of Janus. In Proceedings of Joint International
Conference and Symposium on Logic Programming. MIT Press, 1992.

218

[36]

[37]

[42]

[43]

j44)

[45]
 [46)

[47]

G. Gupta and V. Costa. IDIOM: A Model for Integrating Dependent-AND,
Independent-AND and OR-parallelism. In Proceedings of the International
Logic Programming Symposium, pages 152-166. MIT press, 1991.

G. Gupta and V. Costa. A Systematic Approach to exploiting Implicit Par-
allelism in Prolog. In Procecdings of 26" Hawaii International Conference
on System Science, 1993.

G. Gupta and B. Jayaraman. Analysis of Or-parallel Execution Models.
ACM Transactions On Programming Languages and Systems, 15:659-680,
Sep. 1993.

G. Gupta and B. Jayaraman. AO-WAM : A WAM Execution for Compiled
And-Or Parallelism. Journal of Logic Programming, 17:59-89, Oct. 1993.

G. Gupta, E. Pontelli, and V. Costa. Shared Paged Binding Array: A Uni-
versal Data-Structure for Parallel Logic Programming. In Praceedings of
NSE/ICOT workshop on Parallel Logic Programming, 1994.

H. Exploitation of Fine-grain Parallelism in Logic Languages on Massively
Parallel Architectures. In Proceedings of international conference on Parallel
Architectures and Compilation Techniques, August 1994,

S. Haridi. A Logic Programming Language Based on the Andorra Model.
New Generation Computing, 7:109-125.

R. Hasegawa and M. Amamiya. Parallel Execution of Logic Programs based
on Dataflow Concept. In Proceedings of the International Conference on Fifth
Generation Computer Systems, 1984,

B. Hausman, A. Ciepielewski, and A. Calderwood. OR-parallel PRoLOG
Make Efficient on Shared Memory Multiprocessor. In 1987 Symposium on
Logic Programming, pages 69-79. IEEE Computer Society Press, August
1984.

B. Haussman. Turbo Erlang: Approaching the Speed of C. Kluwer, 1993.

N. Ito, H. Shimizu, M. Kishi, E. Kuno, and K. Rokusawa. Data-flow Based
Execution Mechanisms of Parallel and Concurrent PROLOG. In New Gen-
eration Computing, volume 3, pages 15-41. OHMSHA,LTD. and Springer-
Verlag, 1985.

J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The clp(r) languages and
system. ACM Transactions on Programming Languages, 14:339-395, 1992.

219

[48] V. Janakiram, D. Agarwal, and et al. R. Malhotra. A randomized parallel
backtracking algorithm. [EFLL Transactions on Computers, 37, December

1988.

[49] P. Kacsuk. Ezecution Models of PROLOG for Parallel Computers. The MIT
Press, 1990.

[50] P. Kacsuk. Execution of PROLOG on Massively Parallel Distributed Systems.
Technical report, Center for Parallel Computing, Queen Mary and Westfield
College, 1991.

[61] P. Kacsuk and M. Wise, editors. Implementations of Distributed PROLOG.
Parallel Computing. WILIEY, 1992.

[52] L. Kale. The Reduced-OR Process Model for Parallel Execution of Logic
Programs. Journal of Logic Programming, 11:55-84, 1991.

[53] L. Kale, B. Ramkumar, and W. Shu. A Memory Organization Independent
Binding Environment for And and Or Parallel Execution of Logic Programs
Programs. In Fifth International Conference and Symposium on Logic Pro-
gramming, pages 1223-1240. MIT Press, August 1988.

[54] J. Kergommeaux. An Abstract Machine to Implement OR-AND Parallel
ProLoG Efficiently. Journal of Logic Programming, 8:249-264, 1990.

[55] H. Kim and J-L. Gaudiot. QCE: A Binding Environment for Parallel Logic
Programming for Large-Scale Multiprocessors . Technical Report Number:
CENG-94-09, EE-system, University of Southern California, January 1994.

[56] H. Kim and J-L. Gaudiot. Analysis of Static Binding Environment for Large-

Scale Parallel Logic Programming. Technical report, EE-system, University
of Southern California, August 1995.

[57] R. Kowalski. Logic for Problem Solving. Elsevier North-Holland, 1979.

[58] K. Kumon, H. Masuzawa, and A Itashiki. Kabu-Wake: A New Parallel
Inference Method and its Evaluation. In The Twenty-first IEEE Compule:
Society International Conference (COMPCON’ 86), pages 168-172, 1986.

[59] Y. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on e

Shared-Memory Multiprocessor. Journal of Logic Programming, 10:155-178,
1991.

[60] G. Lindstrom. OR-Parallelism on Applicative Architectures. In Second In-
ternational Logic Programming Conference, pages 159-170, 1984.

\

[61] J. Lloyd. Foundation of Logic Programming. Spring-Verlag, 1987.

[62] A. Mantssivoda. lang and its hnplementation. In Proceedings of the sym-
posiwm on Programming Language Implementation and logic programming,
pages 151-166. LNCS 714, 1993,

[63] D. Miller. A Logic Programming Language with Lambda-abstraction, Func-
tion Variables, and Simple Unilication. In Proceedings of the International
Workshop on the Ixtension of Logic Programming, pages 253-281. Springer-
Verlag LNCS 475, 1991.

[64] D. Miller and G. Nadathur. Higher-Order Logic Programming. In Proceed-
ings of the 3rd International Conference on Logic Programmaing, 1986.

[65] K. Muthukumar and M. Hermenegildo. Complete and Efficient Methods
for Supporting Side-effects in Independent/Restricted AND-parallelism. In
Proceedings of the sizth Inlernational Conference and Symposium on Logic
Programming, pages 80-97, 19389.

[66] A. Nakajima, Y. Inamura, N. Ichiyoshi, K. Rokusawa, and T. Chikayama.
Distributed Implementation of KL1 on the Multi-PSI/V2. In Proceedings of
the sizth International Conference and Symposium on Logic Programmang,
pages 436-451, 1989.

[67] W. Older and F. Benhamou. Programming in CLP(BNR). In Proceedings of
the Workshop on Principles and Practice of Constraint Programming, 1993.

[68] F. Pfenning. Logic Programming in the LF Logical Framework, in Logical
Frameworks. G. Huet and G Plotkin (eds) Cambridge University Press, 1991.

[69] M. Rawling. GHC on the CSIRAC II Dataflow Computer. Technical Report
TR-DB-91-05, Division of Information Technology, CSIRO, Australia, July
1991.

[70] T. Reynolds and S. Delgado-Rannauro. BRAVE - A Parallel Logic Language
for Artificial Intelligence, volume 4. Kluwer Academic, 1989.

" [71] V. Saraswat, K Kahn, and J. Levy. Janus: A step towards distributed con-
straint programming. In Proceedings of North American Conference on Logic
Programming. MIT Press, 1990.

[72] E. Shapiro. Concurrent PROLOG: A Progress Report. IEEE Transactions
on Computers, 19:44-58, August 1936.

221

[73]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Z. Somogyi, FF. Henderson, and T. Conway. The implementation of mercury,
an efficient purely declarative logic programming language. In Proceedings
of the ILPS’94 Post conference Workshop on Implementation Techniques for
Logic Programming Languayes.

P. Tinker and G. Lindstrom. A Performance Oriented Design for OR-parallel
Logic Programming. In Procecdings of the fifth International Conference on
Logic Programming, pages 601-G15, May 1987.

K. Ueda. Guarded Horn Clanses. In Logic Programming’85, volume 221,
pages 168-179. Springer-Verlag, October 1986.

P. van Hentenryck, V. Saraswat, and Y. Deville. Design, Implementations
and Evaluation of the Constraint Language cc(FD). Technical Report CS-
93-02, Brown University, 1993.

P. Voda. The Constraint Language Trilogy: Semantics and Computations.
Technical report, Complete Logic Systems, 1988.

D. Warren. An Abstract Prolog Instruction Set. Technical Report Technical
Note 309, SRI, October 1983.

D. Warren. Efficient ProLo Memory Management for Flexible Control
Strategies. In New Generalion Computing, volume 84, pages 361-369, 1984.

D. H. D. Warren. OR-Parallel Execution Models of Prolog. In Proceedings
of the International Joini Conference on Theory and Practice of Software
Development (TAPSOFT'87), pages 243-259. Springer-Verlag, March 1987.

D. H. D. Warren. The SRI Model for OR-parallel Execution of PROLOG
- Abstract Design and Implementation Issues. In Proceedings of the Inter-
national Symposium on Logic Programming, pages 92-102. IEEE Computer
Society Press, September 1987.

H. Westphal, P. Robert, J. Chassin, and J-C. Syre. The PEPSys Model:
Combining Backtracking, AND- and OR-parallelism. In Proceedings of the
International Symposiumn on Logic Programming, pages 436-448. IEEE Com-
puter Society Press, September 1987.

R. Yand and H. Aiso. P-Prolog: A Parallel Logic Language based on Exclu-
sive Relation. In Proceedings of the 3rd International Conference on Logic
Programming, pages 255-269, July 1986.

8]
[
W}

