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Abstract

With the growing complexity of VLSI circuits, automatic synthesis of digital
circuits has gained increasing importance. The synthesis process transforms an
abstract representation of a circuit into an implementation in a target technology
optimizing some objective function. One of the key steps in this process is logic
synthesis, which produces an optimal gate level design from a register-transfer level
description.

In this thesis, we describe a multi-level logic synthesis approach based on fune-
tion decomposition. In particular, we present Boolean methods for extracting
common subfunctions from multiple-output Boolean functions under different ob-
Jectives including area, delay, energy, and energy-delay product. The extraction
problem is cast as an encoding problem and a number of encoding methods are
proposed. These methods include column encoding, shared subfunction encoding,
and a graph-based approach for extracting logic with a large number of supporting
variables. We use ordered binary decision diagrams to represent Boolean functions
so that this approach can be implemented more efficiently.

Application of these methods to the synthesis of look-up table (LUT)-based field
programmable gate arrays (FPGAs) is presented next. In many instances, we had to
adapt the proposed extraction techniques to the FPGA architecture. For example,
we used a two-layer decomposition technique to map to Xilinx XC4000 device and
used variable input-size decomposition to map to Xilinx XC5000 device. These
techniques produce results which are much better than state-of-the-art techniques

in terms of area, delay, and power.
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Optimal Clock Period FPGA Technology Mapping
for Sequential Circuits*

Peichen Pan
Dept. of Electrical & Computer Eng.
Clarkson University
Potsdam, NY 13699

Abstract — In this paper, we study the technology
mapping problem for sequential circuits for LUT-
based FPGAs. Existing approaches map the combi-
national logic between flip-flops (FFs) while assum-
ing the positions of the FFs are fixed. We study in
this paper a new approach to the problem, in which
retiming is integrated into the technology mapping
process. We present a polynomial time technology
mapping algorithm that can produce a mapping so-
lution with the minimum clock period while assuming
FFs can be arbitrarily repositioned by retiming. The
algorithm has been implemented. Experimental re-
sults on benchmark circuits clearly demonstrate the
advantage of our approach. For many benchmark
circuits, our algorithm produced mapping solutions
with clock periods not attainable by a mapping al-
gorithm based on existing approaches, even when
it employs an optimal delay mapping algorithm for
combinational circuits.

1 Introduction

A look-up table (LUT) based FPGA consists of an array
of programmable logic blocks together with programmable
interconnections [17]. The core of a programmable logic
block is a k-input LUT (k-LUT) which can implement any
combinational logic with up to k inputs and a single output,
where k is a small positive integer. There are also several
flip-flops (FFs) in each programmable logic block which can
be connected to the inputs and outputs of its LUT to realize
sequential behavior.

The technology mapping problem for LUT-based FPGAs
is to produce, for a given circuit, an equivalent circuit com-
prised of LUTs. This problem has been studied extensively.
However, almost all proposed mapping algorithms are de-
signed for combinational circuits. Mapping algorithms for
combinational circuits (will be referred to as combinational
mapping algorithms from now on) have been proposed for
different optimization criteria: performance [2, 6, 9, 18], area

*The work was partially supported by the National Science
Foundation under grant MIP-9222408.

33rd Design Automation Conference®
Permission to make digital/hard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA
01996 ACM 0-89791-779-0/96/0006..$3.50
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[4, 5,7, 11, 16)], routability [1, 14], and combinations of these
[3, 13]. In particular, Cong and Ding [2] propesed an optimal
delay combinational mapping algorithm for the unit delay
model and Yang and Wong [18] proposed an optimal combi-
national mapping algorithm for the general delay model.

Existing approaches to technology mapping for sequential
circuits use combinational mapping algorithms to map the
combinational logic between FI's. These approaches have
two obvious shortcomings: (i) failing to consider signal de-
pendencies across FF boundaries, and (ii) not considering
the possibility of exposing the combinational logic between
FFs in different ways. Note that FFs in a sequential cir-
cuit can be repositioned by a technique called retiming [8].
Two recent sequential circuit technology mapping methods
[10, 15] also assume the initial positions of the FFs are fixed,
though retiming is used as a post-processing step in [15].

In this paper, we study a new approach to sequential cir-
cuit technology mapping, proposed in [12]. In this approach
the FF positions are assumed to be fully dynamic in the
sense that they can be arbitrarily repositioned by retiming.
Our main objective is to obtain mapping solutions with min-
imized clock period, which is the maximum number of LUTs
between any two successive FFs. We will present an efficient
(polynomial time) algorithm that produces a minimum clock
period mapping solution for any sequential circuit!.

2 The new approach

To further motivate the new approach, let us examine two
examples. Consider the circuit in Figure 1(a). Suppose that
we want to map it to an FPGA architecture in which each
LUT has at most 3 inputs. One possible mapping solution,
without repositioning the FFs, is shown in Figure 1(a), where
the gates enclosed by a dashed circle are mapped to one
LUT. Figure 1(b) shows the mapping solution in terms of
LUTs. This mapping solution uses two LUTs and has a
clock period equal to two. Also note that the clock period of
this mapping solution cannot be further reduced by retiming.
Actually, it can be shown that any mapping solution must
use at least two LUTs and have a clock period two no matter
what combinational mapping algorithm is used. However, if
gate b is retimed by a value one (the FF f at the output of b
is moved to its inputs) as shown in Figure 1(c), all the gates
can be mapped to one 3-LUT as shown in Figure 1(d). Note

IThe algorithm has been extended to the general delay model
in which case, it produces a mapping solution with a clock period
provably close to minimum.




that this mapping solution has a clock period of one.

Figure 1: Advantage of retiming.

To fully exploit the potential of retiming, logic replication
is necessary since replication can help produce mapping so-
lutions which are otherwise impossible to obtain. Consider
the circuit in Figure 2(a). Assume k = 4. It can be shown
that any mapping solution must use at least six 4-LUTs and
have a clock period at least two, even if retiming is used.
However, if we duplicate @ (to become a and a’), b (to be-
come b and b"), and ¢ (to become ¢ and c’), then retime the
FFs across gates a’, b, and ¢’ as shown in Figure 2(b), we
can map all the gates (including the duplicated ones) to a
single 4-LUT to obtain the mapping solution in Figure 2(c),
which has a clock period of one.

- --.."-
DD ™ .
[ 1l
y TR :
L: = G ‘:
O -
(=) =" W ()

Figure 2: Advantage of logic replication.

Based on the above observations, we study the technology
mapping problem in the most general setting in which the
techniques of retiming and replication are exploited. Con-
ceptually, the solution space that will be explored can be
described by the diagram in Figure 3. Namely, the mapping
solution space consists of all the circuits that can be ob-
tained by retiming and replicating the given initial circuit,
then mapping the combinational logic between F'Fs, followed
by another retiming and replication step?. It is obvious that
the solution space explored in this new approach is enor-
mous since there are too many ways to retime and replicate
a circuit.

3 Preliminaries and problem definition

A (synchronous) sequential circuit can be modeled as an
edge-weighted directed (multi-)graph. The nodes are the
primary inputs (PIs), the primary outputs (POs), and the

2A technology mapping algorithm based on existing ap-
proaches may try to alleviate its drawbacks by carrying out these
conceptual steps in sequence. However, as long as it actually em-
ploys a combinational mapping algorithm, the same drawbacks
are still there.
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Figure 3: Solution space explored in the new approach.

combinational processing elements (PEs) in the circuit. (A
PE is either a gate or a LUT depending on whether the
circuit is the initial one or a mapping solution.) The edges
are the interconnections. There is an edge ¢ from u to v
(denoted u =+ v) with weight ¢ if the output of u, after
passing through ¢ FFs, is an input to v. The clock period of a
circuit is the maximum number of PEs on the combinational
paths (paths without FFs) in the circuit.

Retiming is a technique of repositioning the FFs in a cir-
cuit without changing its functionality or the structure [8].
Retiming a node by a value i means removing ¢ FFs from
each fanout edge and adding 1 FFs to each fanin edge of the
node. [igure 4 shows the case in which 1 = 1 or —1. In
general, the nodes in a circuit can be retimed collectively
(referred to as retiming the circuit). It can be shown that
the retimed circuit and the original one have the same func-
tionality if no retiming is performed at the Pls and POs (i.e.,
the retiming values for the PIs and POs are all zero).

—0<_ g 0

Figure 4: Retiming a node.

+

0
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Refer again to Figure 3. We use N to denote the circuit
to be mapped. We assume that N is k-bounded, namely,
each node in N has at most k fanins. We will use w(e) to
denote the weight of an edge ¢ in N. Let N’ be a circuit
obtained from N by replication and retiming and N be a
mapping solution of the combinational logic of N'. Let S be
the circuit obtained from N” by putting the FFs back and
followed by another retiming and replication. (Note that the
PEs in N” are LUTs.) S is then a mapping solution of N.
The technology mapping problem addressed in this paper is
as follows:

Problem 1 Find a mapping solution with the minimum
clock period.

Finally, we list several graph-theoretic concepts. In a
directed acyclic graph with one sink but possibly several
sources, a cut (X,f) is a partition of the nodes such that
the sink is in X and all the sources are in X. The edge-set
E(X,X) of the cut is the set of edges from X to X, the node-
set V(X,X) is the set of nodes in X that are connected to
one or more nodes in X. If [V(X,X)] < k, (X, X) is called
a k-feasible cut, or k-cut for short.

4 TFormation of LUTs

In this section, we will present a method for forming LUTs
for nodes in a sequential circuit.




Although the formation of LUTSs is rather straightforward
for combinational circuits, it is complicated for sequential cir-
cuits because a circuit may be arbitrarily retimed and repli-
cated in the new approach. In other words, we are working
with a family of circuits. To overcome this difficulty, we
introduce the concept of ezpanded circuits. Our LUT forma-
tion procedure will be carried out on the expanded circuits.

An expanded circuit is constructed by replication and it
has the property that all paths from any given node to the
only output node have the same number of I'Fs.

The expanded circuits for a node v are defined recursively
as follows: As the base case, the circuit with one node v but
no edge is an expanded circuit. Suppose € is an expanded
circuit. Let I be the set of sources (nodes with indegree 0) in
£. We pick a node in I, say u®. Then, for each edge = A
in N, add a node z# where dy = d 4+ w(e) to £ if it is not

there, and add an edge z £ u? with weight w(e) to £. The
resulting circuit is also an expanded circuit.

An important class of expanded circuits consists of: £l
for i > 0. £ denotes the expanded circuit in which the
shortest distance (in terms of the number of edges) from
each source that is not a replicate of a PI, to v is 1.

For the circuit in Figure 1(a), Figure 5 shows five ex-
panded circuits for node c. From (a) to (e) each expanded
circuit is constructed from the preceding one by expanding
the shaded node. Actually, the circuit in (a) is £, in (b) is
£}, in (d) is £2, and in (e) is £7.

Figure 5: Expanded circuits.

We now show that a LUT for a node can be derived {from
a cut in the expanded circuits for the node. Let (X, X)bea
k-cut in an expanded circuit £ for v. We first notice that all
FFs inside X can be moved out by retiming. The retiming
is: for each node u? in X, its retiming value is d; for all

nodes in X, their retiming values are zero. Let u? £ 2 be
an edge in E(X,Y). (Note that u? is a replicate of node u
in N and ¢ is a replicate of edge e.) It can be verified that
the number of FFs on ¢’ is d after the retiming. The LUT
derived from this cut is simply the subcircuit induced by the
nodes in X with the FFs being removed. Let £ denote the
LUT. If »¢ is in the node-set V(X,X) of the cut, it means
that u after passing through d FFs is an input to £. As a
result, the number of inputs to £ is equal to the number of
nodes in V(X,f), which is k. Therefore, £ is a k-LUT.

As an example, for the 3-cut indicated in the expanded
circuit in Figure 5(d) as shown in Figure 6(a), Figure 6(b)
shows the corresponding 3-LUT. The inputs to this 3-LUT
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are 1y, ¢ passing through a F'F, and 1 passing through a FF,

3 < 5'2

(b)

Figure 6: Derivation of a LUT from a cut.

Moreover, we can show that for any k-LUT there is a k-
cut that can derive the LUT in this fashion, if the expanded
circuit is £5™, where n is the number of nodes in N. There-
fore, we have the following main result of this section:

Theorem 1 It suffices to examine the k-LUTs for v that
can be derived from the k-cuts in E™.

It can be shown the number of nodes in &) is O(ni) and
the number of edges is O(kni). In particular, the numbers
of nodes and edges in £ are O(kn?) and O(k’n?), respec-
tively.

5 An algorithm for finding an optimal
mapping solution

The way we solve Problem 1 is to solve its decision version
as stated in the following:

Problem 2 Given a target clock period ¢, determine a map-
ping solution with a clock period of ¢ or less, whenever such
a mapping solution exists.

If we can solve Problem 2, we can do a binary search on ¢
to find a mapping solution with the minimum clock period.

We describe our algorithm for solving Problem 2 in this
section. The algorithm has two phases: the labeling phase
and the mapping phase. In the labeling phase, we com-
pute a label (defined later) for each node in N. After we
have computed all the labels and determined that there isa
mapping solution with a clock period of ¢ or less, we then
generate one such mapping solution in the mapping phase.
In the next two subsections, we present the details of the two
phases, separately.

5.1 The labeling phase

Let S be a mapping solution. We define a value (called
I-value) for each LUT in S. To define the I-values, we use 2
graph whose topology is the same as that of 5, and assign a
weight —¢-wi(e)+1 to an edge e, where wi(e) is the number
of FFs on e in S. The l-value of a LUT in S is the maximum
weight of the paths from the Pls to the LUT according to
the new edge weights.

The label of 2 node in N is the minimum of the l-values of
the k-LUTs for the node, generated according to Theorem 1.



For a node v in N, we will use {°?*(v) to denote its label. We
determine {°P*(v) for each node v in N in this phase of the
algorithm.

Our method for computing the labels is quite similar to
a longest path algorithm. The approach is to compute a
lower-bound on the value of each label and to repeatedly
improve (increase) the lower-bound. The lower-bounds will
be equal to the actual labels when no further improvement is
observed for all the lower-bounds. Initially, the lower-bound
for all PIs are zero and the lower-bounds for all other nodes
are —oo. Figure 7 shows the overall algorithm, where I(v)
denotes the lower-bound on I°?‘(v). Improving the lower-
bounds is carried out by Procedure IMPROVE.

L_FIND(N, @)
// V denotes the set of nodes in circuit N,
/] w(e) denotes the number of FFs on edge ¢ in N

1. for each node vin V' // initialization

2 ifvisaPI

3 then I(v) « 0;

4, else I(v) — —o0;

5. updated — FALSE;

6 for i — 1 to |[V| // improve at most n times
7 for each node v in V

8. if ImprROVE(v) = TRUE, updated — TRUE;
9. if updated = FALSE, return success;

10. updated — FALSE;

11.  return failure;

IMPROVE(v)

a. Determine lnew;

b. if l(v) < lnew

c. then

d. 1(0) — lnew ;

e. return TRUE; // improved

. return FALSE; // not improved

Figure 7: Algorithm for computing the labels.

The purpose of Procedure IMPROVE is to test whether we
can improve the current lower-bound on the label of v, based
on the current lower-bounds on all labels, and if so, to update
the current lower-bound for v. lnew is the new lower-bound
for v computed from the current lower-bounds.

Now the remaining issue is to determine lnew. Based on
the discussion in Section 3, we have

lnew = min_ (1-na:{{l(u)—gé-d+1|1.:d is in V(X,Y}}),
X, X)

where the minimum is taken over all k-cuts in £5™.

We will use the above formula to compute lncw. Our
approach is to study the corresponding decision problem,
namely,

Problem 3 Check whether lnew < L for a given integer L.

We use network flow techniques to solve Problem 3. A
flow network G is constructed from £5" by applying to £;"

a standard network transformation, called node-splitting to
reduce the problem of finding a k-cut to that of finding a
cut with an edge capacity bound. To do so, each node in
£ except v° is split into two nodes with a bridging edge
between them. A supersource is added and connected to all
the sources. The bridging edge for node u® has capacity one
if f(u) —¢-d+1 < L. All other edges in G has infinite
capacity.

As an example, suppose for the circuit in Figure 1(a),
we currently have I(i1) = I(i2) = 0, I(a) = l(b) = 1, and
[(c) = —c0 , and the target clock period is one. In the
expanded circuit for ¢ in Figure 8(a), suppose we want to
test whether lyew < 1. For node b', I(b)—¢-1+1 = 1, so the
corresponding bridging edge has capacity one. On the other
hand, for node a°, l(a) — ¢ - 0 + 1 = 2, so the corresponding
bridging edge has infinite capacity. Figure 8(b) shows the
flow network, where the bridging edges for nodes 13, i3, ¢',
and b' have unit capacity and all other edges have infinite
capacity.

C.

"

®H @
(a)

e

Figure 8: Construction of flow network.

The edge capacity of a cut is the sum of the capacities of
the edges in the edge-set of the cut. The following result can
be shown for the flow network G:

Lemma 1 lhew < L iff G has a cut with edge capacily no
more than k. a]

Based on the classical Max-flow Min-cut Theorem, G has
a cut with edge capacily no more than k iff the maximum
flow in G is at most k. We can, therefore, use an augmenting
path algorithm for solving the max-flow problem to deter-
mine whether G has a cut with edge capacity no more than
kin O(k - |E(G)|) = O(k*n?) time. Thus, we can determine
whether lpew < L in O(k*n?) time.

Obviously, lnew is from the following set

(l(u) — ¢ -d+ 1] u®is in £}

whose size is O(kn?), the number of nodes in EE". We can
first sort all the values in the set , and then use binary search
to determine lnew. Overall, we have an O(k*n? log(kn))-time
algorithm for determining lnew.

L_FIND(N,¢) needs to call Procedure IMPROVE O(n?)
times in the worst case. In summary, we have the follow-
ing result:

——————

S

e




Theorem 2 The labels of all nodes in N can be determined
in O(k*n* log(kn)) time. u]

Remark: To guarantee that a mapping solution with the
target clock period can always be found whenever there ex-
ists one, we need to use the expanded circuit £5". This is the
worst case scenario. In practice, we may use an expanded
circuit £ for an i considerably smaller than kn. For instance,
for node c in the circuit in Figure 1(a), it can be shown that
it is sufficient to use £2 (in Figure 5(d)) for examining the
3-LUTs for ¢. To make our algorithm flexible and to save
computation time, we can use i as a control parameter so
that the expanded circuit £', instead of £5™ is used in Pro-
cedure IMPROVE.

5.2 The mapping phase

The purpose of this phase is to generate a mapping solu-
tion with a clock period of ¢ or less (if, of course, there is
one such mapping solution).

The first step is to assemble a mapping solution from the
LUTs corresponding to the cuts that realize the labels. To
do so, we trace from the POs backward and to include those
LUTs that are on paths from Pls to POs in the mapping
solution. Specifically, we keep two lists D and U. D is the
set of nodes in N whose k-LUT's have already been included
in the partial mapping solution and U is the set of nodes
whose k-LUTs are inputs to some k-LUTs in D and have
not yet been included in the partial mapping solution. At
the beginning, D consists of the PIs and U consists of the
POs. At each iteration, a node v in U is removed and added
to D. Let the k-LUT that realizes {°’*(v) be £, which is
determined in the labeling phase. Then, if u after passing
d FFs is an input to £ we create an edge from Ly to L,
with weight d in S, and add u to U if it is not in D or U.
This process stops when U becomes empty. Let S denote the
resulting mapping solution. After the process is finished, D
may not contain all the nodes in N. For those nodes not in
D, they disappear because they are contained in some of the
LUTs.

We now define a retiming r on S. For each LUT L, in S5,
the retiming value is as follows:

vis a Pl or PO

otherwise.

0
T(Cu) = { ['I°P;!u!-w1 o=

Let S, denote the circuit obtained from § by applying
retiming . Note that by definition S is also a mapping
solution of N. We have the following result:

Theorem 3 The following three statements are equivalent:

(i) N has a mapping solution with a clock period of ¢ or
less.

(ii) 1°**(v) € ¢ +1 for each PO v in N.

(iii) S. has a clock period of ¢ or less. o

Based on Theorem 3, we can check whether there is a
PO whose label is larger than ¢ +1 after the labeling phase.
If this is the case, the algorithm will not proceed to the
mapping phase because there is simply no mapping solution
with the target clock period ¢. If for each PO, its label is
less than or equal to ¢ + 1, the algorithm simply return Sr
since it meets the target clock period é.

6 Experimental results

Our optimal clock period mapping algorithm has been
implemented in the C language (referred to as SeqMaplI).
Experiments were carried out on sequential benchmark cir-
cuits in the LGSynth91 suite. In this section, we describe
our experiments and summarize the results.

For comparison, we also implemented a technology map-
ping algorithm based on existing approaches which will be
referred to as ComMap. ComMap maps a sequential cir-
cuit by mapping the combinational logic between FFs us-
ing FlowMap — a delay optimal technology mapping algo-
rithm for combinational circuits [2]. ComMap also uses re-
timing as a pre-processing step as well as a post-processing
step. Specifically, it retimes the initial circuit to the min-
imum clock period before applying FlowMap. It also re-
times the mapping solution to the minimum clock period
after FlowMap. The resulting circuit is then the output of
ComMap.

We tested both ComMap and SeqMapll on a set of bench-
mark circuits using 5-LUTs. The results are summarized in
Table 1. In Table 1, under column initial we list the number
of gates and the number of FFs of each benchmark circuit
(decomposed using tech.decomp -a 2 -0 2 in SIS). Under
column ComMap, we list the number of LUTSs, the number
of FFs, and the clock period (#) of the mapping solution
produced by ComMap. The same quantities are also listed
for SeqMapll. For SeqMapll, we set the control parameter
i, the depth of the expanded circuits used to form LUTs, to
be 6 in the experiments. (Therefore, the clock periods of the
mapping solutions produced by SeqMapIl might not be mini-
mum.) Even with such a small depth, SeqMapll consistently
produced mapping solutions with smaller clock periods than
that produced by ComMap as can be observed from the ta-
ble. This clearly shows the advantage of the new approach.
It can also be seen that the mapping solutions produced by
SeqMapll usually have fewer LUTs than that produced by
ComMap. This was also expected since SeqMapll can form
LUTs by extending across FF boundaries. Overall, the map-
ping solutions produced by ComMap use 10% more LUTSs,
33% larger clock periods, and 2% less FFs. For all the test
circuits except 538417, the CPU times of our current imple-
mentation of SeqMapll were less than two minutes and in
most cases only a few seconds on a SPARC 5§ workstation
with 32Mb memory. However, for s38417 it took SeqMapll
close to 30 minutes due to the large size of the circuit and a
larger reduction in the clock period. Overall, the CPU times
of SeqMapll are about 10 times that of ComMap for the test
circuits.

7 Conclusions

In this paper, we studied the FPGA technology mapping
problem for sequential circuits in the most general setting. In
our approach, retiming is fully integrated into the mapping
process. As a result, the mapping solution space explored by
our approach is much larger than what existing approaches
are able to explore. Another way to understand our approach
is that for our approach, there is no FF boundary at all, in
the sense that if one circuit is obtained from another one
by retiming, our aigorithm will produce the same mapping
solution for both circuits. In other words, where to place the
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test Initial ComMap SeqMaplI

circuit gates | FFs | LUTs | FFs [ ¢ || LUTs | FFs | ¢
exl 326 20 202 56 6 209 60 5
exd 105 9 72 29 4 58 24 3
multlGa 261 16 75 58 3 38 55 2
mult32a 533 32 153 202 3 78 207 2
s344 109 15 50 40 3 36 36 2
5349 112 15 49 39 3 33 33 2
s382 148 21 73 49 3 64 43 2
s400 158 21 72 47 3 66 46 2
sd44 169 21 iy 51 3 64 43 2
$526 252 21 166 84 3 127 89 2
s526n 251 21 166 85 3 140 97 2
5953 348 29 196 61 5 202 54 4
s1488 T34 6 339 63 5 266 25 4
$9234 2352 193 590 270 5 593 276 4
515850 3852 522 1670 704 9 1627 818 8
s38417 8709 | 1583 4170 | 2503 8 3761 | 2507 6
Total 8120 | 4341 69 7362 | 4413 | 52
Ratio 1.10 .98 | 1.33 1 i 1

Table 1: Experimental results.

F'Fs in a circuit has no effect on our algorithm. On the other
hand, for a mapping algorithm based on existing approaches,
there always exist FF boundaries and signal dependencies
across FF boundaries are severed. We further presented a
polynomial mapping algorithm which can produce mapping
solutions with the minimum clock periods.
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Mapping in LUT-based FPGA Design
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Abstract

In this paper, we study the problem of decomposing
gates in fanin-unbounded or K-bounded networks such that
the K-input LUT mapping solutions computed by a depth-
optimal mapper have minimum depth. We show (1) any
decomposition leads to a smaller or equal mapping depth
regardless the decomposition algorithm used, and (2) the
problem is NP-hard for unbounded networks when K23
and remains NP-hard for K-bounded networks when K25.
We propose a gate decomposition algorithm, named
DOGMA, which combines level-driven node packing
technique (Chortle-d) and the network flow based optimal
labeling technique (FlowMap). Experimental results show
that networks decomposed by DOGMA allow depth-
optimal technology mappers to improve the mapping
solutions by up to 11% in depth and up to 35% in area
comparing to the mapping results of networks decomposed
by other existing decomposition algorithms.

1. Introduction

The lookup-table (LUT) based FPGAs have been a
popular technology for VLSI ASIC design and system
prototyping. A K-input LUT (K-LUT) can implement any
function of up to K variables. The goal of LUT-based
FPGA technology mapping is to cover a given network
using LUTs such that either area or delay is minimized or
routability is maximized in the final LUT network. The
delay of a network can be estimated by the number of levels
(i.e. depth). Two factors affect the mapping solution depth:
the gate decomposition before mapping and the mapping
algorithm. Several LUT mapping algorithms have been
proposed for depth minimization [6,9,2]. In particular, the
FlowMap algorithm [2] guarantees a depth-optimal
mapping solution for any K-bounded network. However,
FlowMap can not be applied directly to unbounded
networks. Gate decomposition can be classified into
structural decomposition and Boolean decomposition. The
structural decomposition replaces multi-fanin (simple) gates
by fanin trees while the Boolean decomposition
decomposes the functionality of gates. This paper focuses
on structural decomposition for depth minimization in LUT
mapping.

33rd Design Automation Conference®
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Gate decomposition affects the mapping solution
depth significantly. For example, assume K =3, The
network N in Figure [(a) is not K-bounded. If node v is
decomposed in the way shown in Figure 1(b), there is no
way to obtain a mapping solution of depth less than 3,
However, if the decomposition shown in Figure 1(c) is
carried out for node v, a mapping solution of depth equal to
2 can be obtained. Even for K-bounded networks, the depth
of mapping solutions computed by FlowMap may decrease
if gates are further decomposed before mapping [4].

Several gate decomposition routines have been used
for LUT-mapping. The rech_decomp and the speed_up in
SIS [10] and the dmig in [l] focus on minimizing the
number of levels in the decomposed network. They do not
directly minimize the depth of the mapping solution.
Chortle-d [6] computes depth-optimal gate decomposition
and mapping solutions for tree networks (may be
unbounded) but produces suboptimal results for general
networks. In this paper, we study the structural gate
decomposition problem to decompose gates in a general
network such that a mapping solution of minimum depth
can be obtained.

The remainder of this paper is organized as follows.
Section 2 defines basic terminology, presents properties of
structural gate decomposition and formulates the problem.
Section 3 gives the complexity results. A novel gate
decomposition algorithm for depth-optimal mapping is
presented in Section 4. Experimental results are presented
in Section 5 and Section 6 concludes the paper.

Figure 1 Decomposition of node v (K =3). (a) initial net-
work, (b) decomposition yielding mapping depth = 3, (¢)
decomposition yielding mapping depth = 2.



2. Problem Formulation

Let K be the input size of an LUT. Let input(v) be
the set of fanin nodes of node v. A primary input (PI) node
has no fanins and a primary output (PO) node has no out-
going edges. A network N is K-bounded if every node
ve N satisfies |inpur(v)| £K.  Otherwise, it is an
unbounded network. Given a subnetwork H, we use
input (H) to denote the set of distinct nodes outside H which
supply inputs to nodes in H. Given a node v in network N,
let N, denote the subnetwork consisting of node v and all
the predecessors of v. The minimum mapping depth of v in
N, denoted MMDy(v), is defined as the minimum depth
among all possible K-LUT mapping solutions of N,. If N,
is unbounded, let MMDy(v)=e. PI nodes have a mapping
depth of 0. The minimum mapping depth of a network N,
denoted MMD (N), is the largest mapping depth among all
PO nodes. Given a K-bounded network N, the FlowMap (2]
algorithm computes MMDy(v) for every node ve N in
polynomial time. A cut in N, is a partition (X, X,) of nodes
in N, such that PI nodes are in X, and v € X,. The cutset of
a cut, denoted n (X,,X,), is defined as input(X,). A cutis
K-feasible if |n(X,,X,)| £K. The height of a cut, denoted
height (X,,X,), is the maximum mapping depth for nodes in
n(X,.X,). We have the following lemma based on results
in [2].

Lemma 1 A node v has MMDy(v)=p if there is a K-
feasible cut of height of p—1 in N, but no K-feasible cut of
height of p —2 or smaller exists.

Let node ve N satisfies |input(v)| >2. Given a
decomposition algorithm D, we define a decomposition step
at v by D, denoted D,, as follows: Decomposition step D,
(i) chooses two nodes u; and wu, from input(v), (i)
removes edges (1,v) and (u3,v), (iii) introduces a new
node w and new edges (uy,w), (1o, w), (W,v) and adds them
to N. The resulting network is denoted as D, (N). For
example, Figure 2(b) shows the result of one decomposition
step at node v from Figure 2(a). Obviously, the introduced
node w have the same gate type as v. We present 1wo
properties of the structural gate decomposition.

up; up uj uy Us

Up Uz ug uy Usg Uy up ujz Uy usg
w X
w
y
(a) (b) (©)

Figure 2 Decomposition of node v. (a) Before decomposi-
tion, (b) D,(N) after one decomposition step of D,, (¢) after
a sequence of decomposition steps.

Lemma 2 Given a network N, any decomposition algorithm
D, and any node ve N, it must be true that
MMD (D, (N))<MMD (N).

Lemma 3 If MMDy(u)=MMDy(v) for all 1 € input(v) in a
K-bounded network N, then MMD (N)=MMD (D, (N)) for
any decomposition algorithm D.

According to Lemma 2, the further a network is
decomposed, the smaller the mapping depth might be.
Therefore, we decompose every gate into a binary fanin
tree. Figure 2(c) is a complete decomposition of node v.
Every decomposition step introduces one intermediate node
and it requires |input(v)| —2 steps to decompose v. We
formulate the following problems.

Structural Gate Decomposition for K-LUT Mapping
(SGD/K) Given a simple-gate unbounded network N..,
decompose N, into a 2-input network N, such that for any
other 2-input network decomposition N5 of N,
MMD (N,)SMMD (N'3).

Structural Gate Decomposition for K-LUT Mapping of
K-bounded Network (K-SGD/K) Given a simple-gate K-
bounded network Ny, decompose Ny into a 2-input network
N, such that for any other 2-input network decomposition
N’y of N, MMD (N2) SMMD (N',).

There are two issues related to the problem of gate
decomposition. (1) A smaller depth might be obtained
when several gates are decomposed simultaneously instead
of independently [4). This is because the intermediate
nodes could be shared during the decomposition of multiple
gates of the same functional type. (2) Gate decomposition
can be performed before the mapping phase in a two-step
approach or embedded into the mapping process being part
of an integrated approach. For example, Chortle-d [6] is an
integrated approach (since it decomposes gates and maps
LUTs in an interleaving manner) while dmig + FlowMap in
[2] uses a two-step approach. We can show that the best
two-step approach produces the same optimal mapping
depth as that by the best integrated approach [4]. In this
paper, we consider only independent gate decompositions
in a two-step approach. Nevertheless, our gate
decomposition algorithm takes into account the impact of
gate decomposition on mapping to obtain a decomposed
network which is most suitable for FlowMap to achieve a
minimum mapping depth.

3. Complexity of SGD/K and K-SGD/K Problems

In this section, we only state our complexity
theorems. Complete proofs can be found in [4].

Theorem 1 The SGD/K problem is NP-hard for K 23.
Theorem 2 The K-SGD/K problem is NP-hard for K 25.

4. Gate Decomposition Algorithm for Depth-Optimal
LUT Mapping

Qur decomposition algorithm, named DOGMA
(Depth-Optimal ~ Gate decomposition for MApping),




combines the level-driven node packing technique in
Chortle-d and the network flow based labeling technique in
FlowMap. Given a network N, DOGMA decomposes
nodes from Pls to POs in a topological order. Let N(v)
denote the network after decomposing the node v.
DOGMA labels each node v by MMDy,,(v) as follows.
Nodes in input(v) are grouped in such a way that each
group consists of nodes with the same label (i.e. minimum
mapping depth). Groups are processed in an ascending
order according to their labels. For a group of nodes
labeled p, nodes are packed into a minimum number of bins
such that a K-feasible cut of height p — 1 exists for the nodes
in each bin (checked based on Lemma 1). Such a bin is
called a min-height K-feasible bin. A node u; is created for
each bin B; with fanins from nedes in B; and a fanout to v.
Node «; will be given a label p. Note that according to
Lemma 3, no matter u; is further decomposed or not, the
minimum mapping depth of the network is always the same.
We then proceed to the group of a next higher label p+1.
For each node «; created in the previous step, a buffer node
w; (with label p+1) is created with w; as input. (All the
buffer nodes will be removed after decomposition). These
buffer nodes together with nodes in the group of label p +1
are again packed into a minimal number of min-height K-
feasible bins. We continue this process until all nodes are
packed into one bin which corresponds to the node v.

DOGMA is similar to Chortle-d in that
decomposition is done by packing nodes into a minimal
number of min-height K-feasible bins. However, Chortle-d
integrates gate decomposition with technology mapping,
and computes mapping depth based on the partially
generated LUT network. Since the fanin constraint is not a
monotone clustering constraint [2], Chortle-d may obtain
inaccurate node mapping depth. Besides, Chortle-d
enumerates all packing combinations for nodes on
reconvergent paths, which is quite expensive. In contrast,
DOGMA computes mapping depth as well as packs nodes
into bins (to be discussed) using the network flow based
computation. The mapping depth is always accurate and
the reconvergent paths are taken into account naturally.

The problem remains to be solved is the min-height
K-feasible bin packing problem defined as follows.

Min-Height K-Feasible Bin Packing Problem Given a set
S, cinput (v) of nodes of minimum mapping depth p when
decomposing node v, partition S, into a minimal number of
bins such that there is a K-feasible cut of height p—1 for
nodes in each bin.

We shall give three heuristics and one exact method
to solve the problem. Our heuristics are based on the max-
flow algorithm and bin-packing heuristics. We define the
total cut size TC,(S) of a set S of nodes with label p to be
the size of the min-cut of height p—1 which separates §
from all PIs. A set X of nodes of label p can be packed into
one bin as long as TC,(X)sK. Nodes are packed in a
decreasing order of individual cut sizes. The first two
heuristics, named MC-FFD and MC-BFD, to the min-height

728

K-feasible bin packing problem are based on the first-fit-
decreasing (FFD) and best-fit-decreasing (BFD), which are
two heuristics for the bin packing problem [8]. The third
method is  the maximal-share-decreasing (MC-MSD)
heuristic which packs nodes that can maximally share a cut
together. The fourth method is inspired by the dynamic
programming approach for the number partitioning problem
[7]. Instead of partitioning numbers, we ask whether there
is a way to partition the nodes in §, into k subsets
X1, X2, -, Xy such that TC,(X;) <K (1=i<k). We can
solve the problem by dynamic programming. By searching
the minimal k (k=2,3, -~ - ), the min-height K-feasible bin
packing problem can be solved optimally. We refer to this
method as the MC-DP algorithm, The details of these
algorithms can be found in [4].

5. Experimental Results

We have implemented the DOGMA algorithm with
MC-FFD, MC-BFD, MC-MSD, and MC-DP packing
methods using the C language and incorporated our
implementation into the RASP FPGA synthesis system [5].
In our experiments, we optimize the MCNC benchmark
circuits for area using standard SIS scripts, decompose them
into simple gate networks, apply gate decomposition
routines to obtain 2-input networks, and obtain the final
LUT networks using a depth-optimal technology mapper.
We choose K =5 in the experiments.

We compare the performance of our four methods for
the min-height K-feasible bin packing in DOGMA and
observe that the impact of the four methods on mapping
results is almost the same. Since MC-FFD is faster than
other three methods, DOGMA employs MC-FFD to solve
the packing problem. We compare DOGMA with two
decomposition routines: the tech_decomp in SIS [10] and
the dmig in [1]. The tech_decomp routine is based on a
balanced-tree heuristic which only minimizes the gate level
locally. The dmig routine minimizes the gate level of the
decomposed networks. The decomposed networks by the
three algorithms are all mapped by CutMap [3], an
enhancement of FlowMap. The results are shown in Table
1. We see CutMap produces the same or smaller depth for
circuits decomposed by DOGMA. On average, DOGMA
allows CutMap to achieve 10% and 4% depth reduction
comparing to tech_decomp and dmig, respectively.

We compare DOGMA + CutMap with existing gate
decomposition and depth-oriented mapping algorithms.
The tested circuits are area-optimized MCNC benchmarks.
The mappers TechMap-D [9], FlowMap [2], and CutMap
[3] are used for comparison. The dmig was used in [2]
while the speed_up was used in [9] and [3] to prepare 2-
input networks for technology mapping. The results are in
Table 2. Comparing results from [2,3] with ours, we see
gate decomposition routines speed_up, dmig, and DOGMA
decompose gates equally well in terms of mapping depth.
However, networks decomposed by DOGMA allow
CutMap to reduce 16% of LUTs in the mapping solutions.



tech_decomp dmig DOGMA
Circuit || LUT d LUT | d ||LUT | d
5xpl 24 3 23 3 24 | 3
Osym 66 5 66 5 59 5
apex2 154 6 155 5 151 | 5
apexd 770 7l 792 6 770 | 5
clip 37 4 37 4 38 |3
conl 3 2 3 2 3 2
duke2 160 5 173 4 177 | 4
e64 108 9 108 9 108 | 9
misex| 18 2 18 2 16 | 2
misex?2 32 3 31 3 36 | 2
misex3 179 17 174 | 16 || 176 | 16
rd73 25 3 27 3 23 |3
rd84 52 4 52 4 54 | 4
sao2 47 4 44 4 42 | 4
vg2 23 4 29 3 29 | 3
Total 1698 78 |[1732| 73 || 1706 | 70
-0.5% | +11% || +2% | +4% || | 1

Table 1 Comparison of tech_decomp, dmig and DOGMA.

In [9]. TechMap-D obtained the smallest depth because it
integrated logic synthesis into technology mapping.
However, 35% more LUTs are generated comparing (o
DOGMA + CutMap.

91 [2] (3] Ours
speed_up dmig speed_up | DOGMA
TechMap-D| FlowMap | CutMap | CutMap
Circuit | LUT(d) LUT(d) | LUT(d) | LUT(d)
Sxpl 17 2) 22 (3) 2303) | 243)
9sym 9(3) 60 (5) 62 (5) 59 (5)
9symml| 9(3) 55(5) 58 (5) 50 (4)
C499 148 (4) 68 (4) 143 (5) 68 (4)
C880 213 (7) 124 (8) 205 (8) 98 (8)
alu2 197(8) | 155(9) | 144(8) | 138(9)
apex6 252 (5) 238 (5) 233(4) | 231(5)
apex’ 86 (4) 79 (4) 80 (4) 68 (4)
count 71 (4) 31(5) 69 (3) 31(5)
des 1395 (8) | 1310(5) | 986(5) | 938(5)
duke2 175 (4) 174 (4) 178 (4) 173 (4)
misex | 18 (2) 16 (2) 15(2) 16 (2)
rds4 16 (3) 46 (4) 45(4) | 53 (4)
rot 315 (6) 234 (7) 239(6) | 210(7)
vg2 36 (4) 29 (3) 39 (4) 27 (3)
z4ml 9(2) 5(2) 12 (3) 5(2)
Total 2966(69) | 2646(75) | 2531(73) | 2189(74)
| +35%(-7%)21%(+1%)+16%(-1%)] 1 (1)

Table 2 Comparison of DOGMA + CutMap with previous
results.
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6. Conclusion

In this paper, we study the structural gate
decomposition for depth-optimal LUT mapping. We show
gate decomposition leads to a smaller or equal mapping
depth regardless the decomposition algorithm used, and the
problem is NP-hard for unbounded networks when K23
and remains NP-hard for K-bounded networks when K 25.
We propose a gate decomposition algorithm (DOGMA) for
depth-optimal mapping. Experimental results show a
reduction of up to 10% in mapping depth. Together with
CutMap, we achieve comparable mapping depth with up to
35% reduction in area comparing to previous results.
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Abstract — This paper presents a novel, Boolean approach to LUT-
based FPGA technology mapping targeting high performance. As the
core of the approach, we have developed a powerful functional decom-
position algorithm. The impact of decomposition is enhanced by a pre-
ceding collapsing step. To decompose functions for small depth and area,
we present an iterative, BDD-based variable partitioning procedure. The
procedure optimizes the variable partition for each bound set size by it-
eratively exchanging variables between bound set and free set, and finally
selects a good bound set size. Our decomposition algorithm extracts com-
mon subfunctions of multiple-output functions, and thus further reduces
area and the maximum interconnect lengths. Experimental results show
that our new algorithm produces circuits with significantly smaller depths
than other performance-oriented mappers. This advantage also holds for
the actual delays after placement and routing,

1 INTRODUCTION

An important class of FPGAs is based on the lookup-table (LUT)
as the basic programmable logic block. A k-LUT implements any
Boolean function of up to k variables. The LUTs are wired by vari-
ous kinds of programmable interconnects [1]. Minimizing the delay
of LUT-based FPGA designs is an important task because the pro-
grammable interconnects introduce extra delay compared with con-
ventional gate array or standard cell technologies. The performance
of an FPGA design is determined by the number of LUTSs and the
interconnect delays on the critical path.

Performance-driven technology mapping for LUT-based FPGAs
is to transform a Boolean network, which has been produced in the
technology independent logic optimization phase, into a functionally
equivalent LUT network with minimum circuit delay. Technology
mapping of a Boolean network is usually performed in two steps: The
first step is the decomposition of nodes with more than & inputs into
smaller nodes with & or less inputs. The resulting network is called -
bounded. A subsequent covering step finds a circuit of LUTs covering
the k-bounded network.

A variety of technology mapping algorithms tackle performance
optimization by minimizing the depth of k-bounded networks.
Chortle-d, which is based on tree decomposition and bin-packing, is
depth-optimal for trees [2]. DAG-Map heuristically minimizes the
depth of a general k-bounded network [3]. The FlowMap algorithm is
a significant advance since it guarantees a depth-optimal covering for
general k-bounded networks [4].

However, minimizing the network depth does not consider the in-
terconnect delays. Since the maximum interconnect length on the
chip is correlated with the circuit area, minimizing the area also con-
tributes to delay minimization. This is considered in the FlowMap-r
[5) algorithm, which achieves depth-optimal mappings as FlowMap
but reduces the number of LUTs. Recent algorithms improve on the
FlowMap algorithm by modeling interconnect delay more accurately.
This is done by assigning different delays to different nets (nominal
delay model [6]) or even to the different interconnections of the same
net [7]. The combination of the technology mapping and layout syn-
thesis phases has been proposed to achieve small interconnect delays
and improve routability [8, 9].

Another class of performance-directed algorithms performs
Boolean operations during the covering step. Collapsing of criti-
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cal nodes and re-decomposition are employed in MIS-pga(delay) [8],
TechMap-D [10] and FlowSYN [11]. The FlowMap-based FlowSYN
algorithm, which uses an efficient functional decomposition method,
outperforms FlowMap-r in terms of circuit depth and area.

All these performance-directed mapping algorithms concentrate on
the covering step. To obtain a k-bounded network in the decom-
position step, the DMIG algorithm [3] and SIS-algorithms [12] like
xl_k_decomp, speed_up, and tech_decomp are used. The decomposi-
tion step typically yields a network in which each gate has at most two
inputs. This maximizes the flexibility during the covering step. A rea-
son for the little attention given to the decomposition step is the fact
that technology independent logic optimization generates Boolean
networks with relatively small nodes. Thus, decomposition has only
local effect, whereas a state-of-the-art covering step can deal with the
entire network and therefore dominates the final result.

In this paper, we present a novel, Boolean approach to
performance-directed technology mapping. As a first step, delay-
driven collapsing is performed. In contrast to previous mapping ap-
proaches, large network portions are collapsed such that the decom-
position step can have a significant impact. As the core of our ap-
proach, we have developed a powerful, functional decomposition al-
gorithm that creates k-bounded networks with small depth and area.
The main components of the decomposition algorithm are: First, a
BDD-based, iterative variable partitioning procedure that efficiently
evaluates a large number of variable partitions for their effect on cir-
cuit depth and area. Second, we have developed cost functions that
estimate the delay and area of Boolean functions after decomposition
and determine the effectiveness of the variable partitioning procedure.
Third, we use a multiple-output decomposition approach which ex-
tracts common subfunctions.

The rest of the paper is organized as follows. Section 2 reviews the
state of the art in functional decomposition. In Section 3, we present
our performance-directed variable partitioning procedure. Section 4
describes the overall approach. We show experimental results in Sec-
tion 5, and conclude the paper in Section 6.

2 REVIEW OF FUNCTIONAL DECOMPOSITION

Single-output decomposition. ~ We first review the functional
single-output decomposition which is based on the theory of Cur-
tis [13], Roth and Karp [14]. Functional single-output decomposition
breaks a function f(x,y) into the composition function g(v,y) and
the subfunction vector d(x) = (dj(x),...,dc(x)) such that f(x,y) =
2(d(x),y). We deal with disjoint decompasitions, where the bound
set BS = {xi,...,xp} and the free set FS = {yy,... Vn—p} are disjoint
sets where b is the size of the bound set and n is the number of in-
puts of /. In non-trivial decompositions, composition function g as
well as the subfunctions d; have fewer inputs than the original func-
tion /. Therefore, functional decomposition can be recursively used
to compute k-bounded networks.

Two problems must be solved to perform functional decomposi-
tion. First, the input variables of / must be partitioned into the bound
set and the free set. This is the variable partitioning problem. Sec-
ond, given a variable partition, a minimum number ¢ of subfunctions
d; must be computed. This number ¢ depends on the variable partition.

We deal with the second problem first. To compute subfunctions d;,
the notion of compatible BS-vertices was introduced [14]. Two BS-
vertices &, € {0, 1}" and &, € {0, 1}? are compatible, denoted by &, ~
%, if and only if ¥§ € {0,1}"? : f(&y,¥) = f(Rw,¥). For completely
specified functions, compatibility is an equivalence relation, which
partitions the set of BS-vertices into compatible classes. The number
of compatible classes is denoted by ¢. The decomposition condition
states that a decomposition with the subfunction vector d exists if and

only if Vi, &w € {0,1}0: & 7 R => d(Xy) # d(%w), i.c., different
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codes d(X) must be assigned to incompatible BS-vertices. Thus, the
minimum number ¢ of subfunctions is ¢ = [loga £]. A simple method
to compute subfunctions and to fulfill the decomposition condition is
to assign a unique code of length ¢ to each compatible class.

It is obvious that the computation of £ is an important subtask of
functional decomposition. Roth and Karp [14] described how £ is
computed using a SOP representation of the function f. Lai et al.
showed that the computation is significantly sped up if the function
[ is represented by a BDD in which the bound set variables are or-
dered before the free set variables [15]. Lai introduced a set of BDD
nodes called cur_set(f,b) comprising all BDD nodes that have a level
greater than b and a predecessor with a level less than or equal to b.
Each node v € cut_set(f,b) is in a one-to-one correspondence to a
compatible class. Thus, the number of compatible classes is given by
the cardinality of cut_set(f,b).

We now give a brief review of previous approaches to the variable
partitioning problem. Note that all these approaches target area. Dur-
ing technology mapping for k&-LUT architectures, usually BS cardi-
nality & is chosen. The SOP-based functional decomposition method
implemented in SIS either selects the first variable partition with
BS size k that yields a non-trivial decomposition [16], or enumer-
ates all partitions of fixed size [17]. The enumerative approach was
adapted for BDD-based functional decomposition by Lai et al. [15]
and Sasao [18]. Since enumeration is very expensive, it is not appli-
cable for functions with many variables. Recently, a heuristic was pro-
posed which directly constructs a BS of fixed size from the SOP rep-
resentation of /" [19]. In contrast to the approaches mentioned above,
Schlichtmann proposed a BDD-based variable partitioning approach
that also selects a good BS size [20]. Our new performance-directed
variable partitioning presented in Section 3 is based on this approach.

Multiple-output decomposition. ~We briefly summarize func-
tional multiple-output decomposition. Its goal is to compute sub-
functions d; that can be used for several outputs. Functional
multiple-output decomposition breaks a multiple-output function
f(x,y?: (fi,---yfm) into the composition function vector g(v,y) =
(21,---,2m) and the subfunction vector d(x) = (d\,-..,dq) such that
f(x,y) = g(d(x),y). Each composition function output g depends
on a subset of the g subfunctions d;. Precisely, g depends on
¢ = [logy & ] subfunctions d;, where £ is the number of compati-
ble classes of function fi(x,y). This guarantees that multiple-output
decomposition of a vector f is at least as good as single-output decom-
position of each output of f with respect to a given variable partition.

Multiple-output functional decomposition has the advantage that
by extracting common subfunctions it performs a task that is typically
confined to the logic optimization stage before technology mapping.

The problem faced during multiple-output decomposition is the
usually very large number of possible subfunctions for each output.
To cope with this problem, we use the multiple-output decomposition
approach as described in [21]. Additionally, we compute subfunctions
with minimal support [22].

3 PERFORMANCE-DIRECTED VARIABLE
PARTITIONING

For ease of explanation, we first describe the variable partitioning
procedure for a single-output function /. Our goal is to partition the
variables of f into bound set variables x and free set variables y such
that the arrival time at(g) at the output of composition function g is
minimal. We use the unit delay model, i.e., each LUT has a delay of |
unit. The second goal of our variable partitioning procedure is to re-
duce the LUT count needed to implement function f. Minimizing the
LUT count reduces the maximum interconnect length on the FPGA
chip and thus also affects performance.

We illustrate the variable partitioning problem with an example.
To obtain a small arrival time af(g), one might intuitively assign early
arriving inputs to the bound set, and inputs with large arrival times to
the free set.

Example 1 Figure | shows an example with the bound set size 3,
Please assume that we want to achieve a 3-LUT implementation. The
numbers at the inputs denote arrival times. Each of the resulting sub-
functions @ and d5 has 3 inputs and can be implemented by a single
3-LUT, thus we have propagation delays dt(d;) = 1 and at(d;) = 3.
Since the composition function g has 4 inputs, it has to be decom-
posed further, and we have an estimated propagation delay dt(g) = 2

and arrival time ar(g) = 6. Note that we must assume a propagation
delay of 2 for each path through g since we do not know at this point
how g will be decomposed.

It is easily recognized that using
the variable with arrival time 3 in the
bound set and one of the inputs with
arrival time 2 in the free set would not
increase the maximum arrival time of
the inputs of g, which is 4 anyway.
Thus, there are several variable parti-
tions of bound set size 3, all of which

222 34
should be evaluated to possibly re-  Figure 1: Delay oriented

duce the number ¢ of subfunctions
d;. Note that a variable partition for
which ¢ = 1 reduces the number of inputs of g to 3, thus decreasing
the arrival time at(g) to 5. o

The example shows that the variable partition must take into ac-
count the arrival times of the input variables, the number e=[log; £]
of subfunctions, and the estimated propagation delays of the resulting
functions &; and g, which depend on the BS size and c, respectively.

We separate the variable partitioning problem into two subtasks.
First, we determine an optimal variable partition VP; for each bound
set size i. Then we select the best partition among all FP;. A solution
of the two subtasks requires proper cost functions.

To solve the first subtask, we propose an iterative heuristic. Each
iteration step involves a cost-reducing exchange of a BS and a FS
variable. Note that the BS size is given and is not allowed to change. A
greedy method would require |BS|- |[FS| tentative variable exchanges
in an iteration step to find the best exchange of a BS and a FS variable.
This is too expensive if the number of variables is large. Therefore, we
compute the BS variable that yields the lowest costs if moved to the
FS, and similarly we compute the FS variable that yields the lowest
costs if moved to the BS. The best BS and the best FS variables found
in such a way are exchanged if this reduces the costs. An iteration
step then requires only |BS]+|F5| tentative variable exchanges to find
a good (and possibly suboptimal) exchange.

We employ cost functions for delay and area to evaluate tentative
variable exchanges and to solve the second subtask mentioned above.
The cost functions estimate the arrival time of the composition func-
tion g and the total LUT count of the resulting functions d; and g. The
only information used as input of the delay and area cost functions
is the BS size b, the number of compatible classes £, the maximum
arrival time among the BS variables, denoted by a@fmux(x), and the
maximum arrival time among the FS variables, denoted by @fmax(Y).
Let us first introduce the function propagation delay estimate FDE
and the function area estimate FAE of a Boolean function /(x).

Definition 1 The function propagation delay estimate FDE is a
measure of the propagation delay of a Boolean function h(x) in the
unit delay model, It is defined by

x| <k

FOEGON ={ f_ks1 © B>k &

where |x| denotes the number of variables that h depends on, and k is
the number of inputs of a LUT.

The FDE is the depth of a LUT network obtained by the Shannon
decomposition of i and thus is a worst-case estimate of the function’s
propagation delay in the unit delay model.

For area we have examined various estimates that are linear,
quadratic or exponential in the number of variables. Our experiments
have shown that the best results are obtained using the same linear
estimate as for the function propagation delay estimate.

Definition 2 The function area estimate FAE is a measure of the
area of a Boolean function h(x) in terms of LUTS. It is defined by
P N
We define the delay cost function as
DC = max [(@tmax(X) + FDE(Q)), atmax(y)] + FDE(g),  (3)
which is a simple computation of the arrival time at(g) as described

in standard literature.
The area cost function

AC= Zj-=1 FAE(d;) + FAE(g) 4

decomposition.
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sums up the area estimates for the resulting functions. Note that we
must know the number ¢ = [logs £] of subfunctions to compute the
delay and area estimates FDE(g) and FAE(g).

It has been shown in Section 2 that computing the number £ of
compatible classes is simple if f is represented by a BDD and the BS
variables are ordered before the FS variables. In this case, we have
£ = |cutset(f,b)|. Thus, the delay and area cost functions can be
evaluated very fast for a given variable partition. Representing func-
tion / by a BDD additionally has the advantage that variable moves
and thus variable exchanges can be performed rapidly. If, e.g., a vari-
able on level i shall be moved to level j, j — i adjacent variable swaps
must be performed. Adjacent variable swaps modify the BDD only on
the levels of the swaped variables and are therefore carried out rapidly.

Let us resume the discussion of our variable partitioning procedure.
We now describe in more detail the computation of the besr BS and the
best FS variable for a bound set size b. To find the best BS variable,
the topmost BS variable is tentatively moved to the FS. This is done in
the BDD by a variable move (a sequence of adjacent variable swaps)
from level 1 to level b. Thus, the variable previously on level 2 is
on level | now, the variable previously on level b is on level b — 1
and the variable previously on level | is now on level 5. The BDD
is then traversed to compute cut_set(f,b—1); delay and area costs
are evaluated and stored. The variable move from level 1 to level b is
repeated for the remaining & — 1 BS variables. The best BS variable
is the variable with minimal arca cost among all BS variables with
minimal delay cost. The best FS variable is computed similarly by
a sequence of variable moves (from level n to level b+ 1) and BDD
traversals. After exchanging the best BS and FS variable, the BDD is
traversed once again to compute cuf _set(f, b) and to check if the costs
have actually been reduced by the exchange.

Example 2 We illustrate the computation of the best BS and FS vari-
able for the function f(z) = z)z;2324 +Z) Z5 and a bound set size of 3.
Figure 2 a) shows the initial BDD of function /" where the variables z;
are ordered according to their arrival times ar(z{,-), which are indicated
by the numbers next to the corresponding BDD nodes. First, we have
to compute the costs for the initial variable partition BS = {z|,23,23}
and FS = {z4,25}. For ease of explanation, we only consider delay
costs. In Figure 2 a), all nodes that have a level greater than 3 and
a predecessor with a level less than or equal to 3 are shaded. These
nodes comprise the cut_set(f,3). We need ¢ = 2 subfunctions, as
I = |cutset(f,3)] = 3. Note that we have the same decomposition
structure and the same arrival times of the BS and the FS variables as
in Figure 1 of Example 1. Therefore, we have a delay cost of DC = 6.
Now, we have to compute the best BS variable. We move z; from
level 1 to level 3. The obtained BDD is shown in Figure 2 b). The
delay cost after moving z; to the free set is determined by evaluat-
ing the delay cost function DC for the BS = {z3,z3}. As there are 2
nodes in cut_set(f,2), only one subfunction is needed, which can be
implemented by a single 3-LUT. Therefore, the estimated propagation
delay of this subfunction is FDE(d) = 1. The resulting composition
function g depends on 4 variables. Thus, FDE(g) evaluates to 2. Us-
ing Equation (3) and the maximum arrival times of the BS and FS
variables, we obtain DC = max[2+ 1, 4]+ 2 = 6. [f z; and z3, respec-
tively, are moved to the free set, we get delay costs of 7. Thus, the
best BS variable is z;.

The computation of the best FS variable is done similarily. Moving
z5 to the bound set yields a delay cost of 7, whereas moving z4 to the
bound set yiclds a delay cost of 6. Thus, the best FS variable is zy4.

Now, the best BS and FS variables are exchanged as shown in the
BDD of Figure 2 c) in order to check if a cost reduction is achieved.
The resulting BDD has 2 nodes in cur_set(f,3) so that we need one
subfunction. The number of inputs to the composition function g is 3.
Thus, FDE(d) and FDE(g) evaluate to 1. We obtain DC = 5. Thus,
the delay costs are reduced from 6 for the initial partition to 5 for the
new variable partition 8S = {z5,23,24} and FS = {zy,z5}. o

Iterative variable exchanges are performed for a given BS size b to
find an optimal variable partition ¥P;,. However, a closer look reveals
that we can gather information that is useful for other BS sizes dur-
ing the iterative procedure. Note that the BDD is completely traversed
|BS|+|FS|+ 1 times for cach variable exchange. Although each BDD
traversal is carried out to compute the cut set for a specific BS size
b, we can gather all cut sets cut_set(f,i), i = 2,...,n— |, with only
small additional computational effort. For cach BS size {, we com-
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Figure 2: BDDs of Example 2.
pare the delay and area costs, as computed using the current variable
order, with delay and area costs stored for FP;. If a cost reduction is
achieved, then VP; is replaced by the variable partition determined by
the current variable order. This method yields a coupling between the
iterative procedures performed for each BS size.

Multiple-output decomposition of function vector f(x,y) =
(/15---,/m) requires a slight modification of this algorithm. First, we
have a BDD with several roots, one for each output f;. Second, the
delay and area cost functions must be modified:

We use the multiple-output delay cost function

MDC = max[DC,,...,DCp], (5)

where DC; denotes the delay cost for output f;. The multiple-output
area cost function sums up the area estimates AC; for each output f}:

MAC =37 AC;. (6)

4 ALGORITHM OVERVIEW

In this section we describe the overall algorithm for performance-
directed technology mapping. The algorithm consists of three steps,
i.e., collapsing, decomposition, and covering.

We first try to completely collapse the circuit within a given limit
of CPU time. If collapsing is possible, the decomposition step starts
from the obtained flattened circuit. Otherwise, a depth-oriented partial
collapsing is performed by applying the SIS-command reduce_depth
-r -d d_value [23]. This command, which is based on Lawler’s clus-
tering algorithm, first clusters nodes and then collapses each cluster
such that the resulting network has the specified depth d_value and
the cluster size is minimal. Since this command should only be used
on a network with nodes of comparable complexity, we first decom-
pose the nodes of the original network into nodes with at most & inputs
using our performance-directed decomposition approach. We then ap-
ply reduce_depth to the decomposed network to obtain a network with
depth 3 or 4. These networks are used as the starting point for the final
performance-directed decomposition.

For the decomposition step, functional multiple-output decomposi-
tion as described in Section 2 and the variable partitioning algorithm
of Section 3 are used. Only nodes of the network with more than &
inputs arc decomposed. As candidates to be decomposed we select
only these nodes for which all nodes in the transitive fanin have at
most & inputs. This guarantees accurate arrival times at the inputs of
the considered nodes.

After all nodes in the network have been decomposed into nodes
with at most k inputs, we do a simple covering step. A node is col-
lapsed into its successors if each successor does not have more than &
inputs after collapsing.

5 EXPERIMENTS

Depth and Area Results. We implemented our new approach
called BoolMap-D and integrated it into the synthesis tool TOS™, We
compared BoolMap-D with two other performance-directed technol-
ogy mappers, i.e., FlowMap-r [5] and FlowSYN [11]. We used the
same set of benchmark circuits as in [5, 11], which are given in the
first column of Table 1. In columns 2 to 5, we repeat the LUT count
and depth results for FlowMap-r and FlowSYN from [5, 11]. The
columns titled BoolMap-D show the results of our algorithm as de-
scribed in Section 4. CPU times of column 8 are measured on a
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DEC AlphaStation 250 4/266. All circuits that have been partially
collapsed are marked with an asterisk in Table 1. For the marked cir-
cuits, the CPU times include initial decomposition, partial collapsing
(reduce_depth), the final performance-directed decomposition, and
covering. For the other circuits, CPU time is spent for collapsing,
performance-directed decomposition, and covering.

BoolMap-D outperforms FlowMap-r and FlowSYN with respect
to the circuit depth by 24.1% and 12.5%, respectively. Further-
more, a reduction in LUT count of 32.3% and 24.4% compared
to FlowMap-r and FlowSYN is achieved. There is only one cir-
cuit, duke2, for which BoolMap-D produces a larger depth than
FlowMap-r or FlowSYN. Compared to FlowMap-r, BoolMap-D pro-
duces 12 circuits with smaller depth and 4 circuits with equal depth.
Compared to FlowSYN, BoolMap-D produces 8 circuits with smaller
depth and § circuits with equal depth. For all circuits except for
alud and duke2, BoolMap-D produces circuits with fewer LUTs
than FlowMap-r and FlowSYN, respectively.

Delay after Placement and Routing, To show the cffectiveness
of BoolMap-D in reducing the circuit delay after placement and rout-
ing, we implemented all designs (except apex6, des, and rot)
obtained with BoolMap-D on Xilinx XC3000 FPGAs. The circuits
apex6 and rot have too many 1/O pins to be implemented on a sin-
gle XC3000 FPGA, and circuit des has too many CLBs [1]. We used
the Xilinx tool apr for placement and routing. For each design, we
selected a Xilinx XC3000 chip which yields about 80% cell utiliza-
tion as proposed in [1]. The circuits obtained with BoolMap-D could
be routed easily. In fact, all designs were routed in the first routing
attempt.

We compare our results with the results of a FlowMap-type algo-
rithm that aims at minimizing the nominal delay of a circuit [6]. We
used the same set of benchmark circuits as in [6]. Column 2 of Ta-
ble 2 shows the type of the used Xilinx XC3000 chip. Columns 3
and 4 repeat the number of CLBs and the actual delay after placement
and routing for the Nominal Delay Algorithm [6]. The columns titled
BoolMap-D show the results for our approach. As in [6], we mea-
sured the actual circuit delays using the Xilinx tool xdelay. The last
column gives the relative reduction of the circuit delay achieved by
BoolMap-D. The circuit delay is reduced by 27.8% on average.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented Boo/Map-D, a Boolean approach
to simultaneously minimize depth and area during LUT-based FPGA
technology mapping. In the first step, large network portions are col-
lapsed. Collapsing is motivated by the idea that decomposition has
then a greater potential to determine a new network structure with
small depth and area.

Functional decomposition is applied to the collapsed networks. We
have presented an effective heuristic solution of the variable partition-
ing problem targeting small circuit depth in the first place and small
area in the second place.

Compared to the mapping algorithms FlowMap-r and FlowSYN,
BoolMap-D reduces the depth of LUT networks by 24.1% and 12.5%
on average, and the number of LUTs by 32.3% and 24.4%, respec-
tively. We also placed and routed Xilinx FPGA designs, and achieved
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Chapter 1

Introduction

1.1 CAD Systems

Computer-aided design (CAD) systems have been used since the inception of the
integrated circuits. The goal of these systems is to automatically transform the
high level (behavioral) description to physical description while producing near-
optimal results that meet the specifications set by the designer. CAD techniques
have reached a fairly high level of maturity in many areas, but reduction in device
feature size, increase in circuit integration, introduction of new design styles such
as FPGAs, and renewed emphasis on alternative objective functions such as circuit
power demand CAD tools with increased capability.

A CAD program can be divided into three steps, behavioral synthesis, logic
synthesis, and physical design. Behavioral synthesis transforms an algorithmic or
behavioral description into a set of interconnected modules and control logic. Logic
synthesis, which fits between behavioral synthesis and physical design, takes the
register-transfer level description and provides automatic synthesis of gate-level
netlists. Physical design provides automatic circuit partitioning, placement and

routing, gate and wire sizing, power and ground distribution, and clock routing.



1.2 Logic Synthesis

The goal of logic synthesis is to convert a register-transfer level specification into a
gate-level implementation. Logic synthesis is divided into two-level synthesis and
multi-level synthesis.

Two-level synthesis has mainly been used to synthesize programmable logic
arrays (PLAs). Because the nature of PLA architecture, the optimization methods
are focused on minimizing the number of product terms and literals. Minimum-
area two-level synthesis has been well developed and is considered to be well-
understood [13].

In contrast, multi-level synthesis is less structured, more difficult, and relatively
new. Because multilevel logic can often result in a faster and smaller implemen-
tation of a function than two-level logic, synthesis of multi-level logic has received
considerable attention over the past decade (e.g., [10, 12, 9, 6]).

Most multi-level synthesis systems contain two steps: a technology-independent
step that manipulates and optimizes Boolean functions and a technology-mapping
step that maps Boolean functions info a set of gates in a specific target technology.
The technology-independent phase is further divided into two sub-steps: logic re-
structuring that identifies common sub-logic to produce a near-optimal structure
and logic minimization that optimizes the logic with respect to the structure ob-

tained in the previous step.

1.2.1 Logic Restructuring

There are two methods for identifying common sub-logic: algebraic and Boolean.
The algebraic method is fast because the logic function is represented and manip-
ulated as an algebraic expression. Some optimality may however be lost because
Boolean identities are not exploited by the algebraic method. In comparison, the

Boolean method is slow, but tends to produce better results.
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The algebraic approach is based on the division operation, namely, rewriting
a function f as qd 4 r where ¢, d, and r are the quotient, divisor and remainder,
respectively. The theory of division was studied by Brayton and McMullen [14]
and well developed in the MIs package [11]. The identification of common sub-logic
is to extract common subexpressions as divisors. Because the number of divisors
is huge, usually only a subset of the divisors are used. For example, kernels (cube-
free primary divisors) are used in [11] while double- and single-cube divisors are
used in [63]. Division can be also carried out by coalgebraic [32] and Boolean [11]
methods.

The Boolean approach is based on the decomposition operation, namely, rewrit-
ing a function f(X,Y) as f'(¢(X),Y) where the number of inputs of f’ is smaller
than that of f. The theory of decomposition was pioneered by Ashenhurst [4],
Curtis [21] and Roth and Karp [51]. For representing functions, Karnaugh maps
are used in [4, 21, 30], cubes are used in [34, 36, 52] and ordered binary decision
diagrams (OBDDs) [15] are used in [16, 43, 55]. Most of these methods, except [36]
and [30], only address single output functions.

A Boolean method for extracting common subfunctions was proposed by Karp
[36]. He presented an algorithm for identifying a common subfunction between
two functions based on the partitioning of compatible classes [52]. This approach
has two shortcomings: first, it does not apply to more than two functions and
second, it does not identify more than one shared subfunction. A new Boolean
extraction algorithm based on Karnaugh maps was recently proposed in [30].
Because of the size complexity of the Karnaugh map representation, this approach
is only applicable to functions with small number of inputs. Compared to [36],
our proposed methods in this thesis can identify multiple (> 2) shared functions
among multiple (> 2) functions. Complexity of our methods depends on the size

of the bound set while that of the approach in [36] depends on the number of



compatible classes. In practical applications, size of the bound sets considered are
much smaller than the number of compatible classes.

Shen and McKellar [61] proposed an algorithm for obtaining all simple dis-
junctive decompositions of a Boolean function. They construct a decomposition
graph based on a necessary condition for the existence of simple disjunctive de-
compositions. Only the k-complete subgraphs of the decomposition graph need to
be checked for decomposability. The construction of the decomposition graph is
based on a mod 2 map rather than a Karnaugh map. The mod 2 map uses the
Reed-Muller canonical form of a Boolean function. Even though a small number

of bound sets are to be examined, their method still requires O(2") computations.

1.2.2 Technology Mapping

Technology mapping is a process of transforming an optimized Boolean network
into a netlist of gates or devices that are available from a semiconductor vendor.
For application specific integrated circuits (ASICs vendor, a technology-based gates
is a collection of standard cells; for field programmable gate arrays (FPGAs), a
technology-based gates is a collection of basic logic blocks.

Translating a netlist of generic components into a cell library or logic blocks is
straight forwards. But the challenge lies in maximally utilizing the components in
the library such that the resulting netlist realizes its area, delay and power goals.

The early stage of technology mapping for FPGAs used the basic logic blocks
as a library of basic cells and mapped the circuits as a conventional library-based
mapper 38, 22]. However, it has been observed that these techniques are not suit-
able for technology mapping to FPGA architectures [24]. In recent years, several
approaches for the FPGA technology mapping have been proposed [24, 45, 2, 25, 37,
23, 64, 46, 58, 20]. chortle [24] divides the Boolean network into a forest of tree and

determines an optimal mapping of each tree. chortle-crf [25] employs bin-packing



to choose gate-level decompositions and exploits re-convergent paths and repli-
cation at multiple-fanout nodes. Xmap [37] use if-then-else dag as a decomposi-
tion of function and uses a covering procedure to map it. mis-pga (new) uses
set of decomposition techniques, cofactoring, AND-OR decomposition, disjoint
decomposition, cube-packing, to optimizing the mapping results. FlowMap [20] is
based on a topological labeling algorithm to minimize the depth of the mapping

results.

1.3 Overview

In this thesis, we describe OBDD-based algorithms for function decomposition of
Boolean functions. We then present methods for identifying common subfunctions
of multiple-output functions. We use OBDDs to represent functions so that our
methods can be concisely and effectively carried out. Finally, these methods are
applied to Look-Up Table (LUT) based FPGA synthesis.

The remainder of the thesis is organized as follows. Section 2 gives overview
of function decomposition, OBDD, and some previous works. Section 3 presents
0BDD-based algorithms for identifying common sub-logic among multiple Boolean
functions. In Section 4, we present the decomposition techniques that minimize
the delay of the network and the switching activity (energy) of resulting network.
We also present the decomposition techniques that decompose function into special
classes functions (symmetric and unate functions). Section 5 shows the application
" of these ideas and algorithms to the synthesis of different architecture of LUT-based
FPGA devices. Experimental results and contributions are given in Section 6 and

Section 7.



Chapter 2

Background

Terminology and definitions related to function decomposition and Ordered binary
decision diagram (OBDD) data structure are given in this section. In addition, a

brief description of previous work [39] performed on this subject is given.

2.1 Function Decomposition

The function decomposition operation is rewriting a function f(X,Y) as f'(g(X),
Y') where the number of inputs of f’ is smaller than that of f. The theory of
decomposition was introduced by Ashenhurst [4], Curtis [21] and Roth and Karp
[51]. The motivation for using function decomposition in logic synthesis is to reduce
the complexity of the problem by a divide-and-conquer paradigm: A function is
decomposed into a set of smaller functions such that each of them is easier to

synthesize.

Definition 2.1.1 A function f(zg,...,2,-1) is said to be decomposable under
bound set {zo,...,2;_1} and free set {zi—g,...,2n-1},0 < 1 < n,0 < sif f can
be transformed to f'(go(za,---+Tiz1)s--+1Gi=1(Z0s - - » Tiz1)s Tizsy - - -y Tu—1), where
0 < j <it—s. If sequals 0 then it is disjunctively decomposable; otherwise, it
is non-disjunctively decomposable. Function f’ is referred as the f-function and

each g; is referred as a g-function. The reduction in variable support is equal to
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Figure 2.1: Function decomposition

i — (J + s). The above transformation is referred as decomposition. If only some

of the g-functions are formed, then f is partially decomposed.

A graphical representation of function decomposition is shown in Figure 2.1.

The decomposition chart of a Boolean function is an arrangement of the Kar-
naugh map where columns correspond to the variables in the bound set and rows
correspond to the variables in the free set [3, 21]. The number of distinct column

vectors is referred as the column multiplicity.

Definition 2.1.2 Given a Boolean function f, a bound set B, and a decomposi-
tion chart C with respect to f and B, the column_vector V/ of f with respect
to B is defined as V/ = (vgsi_y,-.-,v0) where vo = 0 and v; = j if v; is the
j distinct column from the right of the decomposition chart. Each v; is called
column_id. The column.set ST of f with respect to B is {0,...,k — 1} if there
are k distinct columns in the decomposition chart. The k is referred to as the
number of compatible classes in [51]. The bit_size of V/ is defined as bit_size(V/)
= [log, | 8/ |] and equals the number of g-functions needed in the decomposed

function f'. Furthermore the bound set size is defined as bset_size(V/) = | B |.
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Figure 2.2: The Karnaugh map and the decomposition chart

Theorem 2.1.1 [21] A function f(zg,...,Zs-1) can be transformed to f’(go(zo,
cey @ic1)y -3 Gi—1(T0y « -y Tiz1), Ty« . ., p1) if and only if its decomposition chart

has at most 27 distinct column vectors.

We use V; ; to denote a column_vector with bound set size 7 and bit_size j, and

Si,; to denote the column_set of Vt-{ i

Example 2.1.1 Let f = 2021 T283+ ToT12223+ To21T2T3+ ToT1TaT4+ ToT1TaTa+
ToT1T2Ta+ ToT1T2T4+ ToT1T2T3+ T3y, the corresponding Karnaugh map is shown
in Figure 2.2.A and the decomposition chart of f(zg, 21,22, z3, z4) with respect to
the bound set {zo,z1, 22} and the free set {z3,z4} is shown in Figure 2.2.B. Since
there are three distinct columns, namely [1100]%, [1011]* and [1010]¢, it requires
two g-functions. Thus, V/ = [12202010], S/ = {0, 1,2} with bset_size(V’) = 3,
bit_size(V/) = 2 and the number of compatible classes (column_set size) is | S |
= 3. Since the bit_size(V/) = 2, we use two variables gy and g; to encode each
column.id in V/. If we encode column.id 0 as gog; = 00, column_id 1 as gog; =

01, and column.d 2 as gpg; = 11, then we have
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Figure 2.3: Function decomposition

Vi = 12202010
g = [01101000]
g = [11101010]

Then the decomposition chart can be reduced with two charts that map bound
set variables zg,2;,z3 to go and g; as shown in Figure 2.3.A. These charts can

transform to their Karnaugh maps (Figure 2.3.B), then we have function f decom-

posed into:
1 = = = = —
" = Gqi1%3+ §1T4 + Jog123
go = ToT1T2+ ToT1T2 + ToT1T2
g1 = T2+ ToTy

2.2 Ordered Binary Decision Diagrams (OBDDs)

OBDDs are a graphical representation of Boolean functions which are compact and
canonical. Because of these properties, many Boolean operations (e.g., function

decomposition) can be carried out effectively using OBDDs.



Definition 2.2.1 [15] An OBDD is a directed acyclic graph consisting of two types
of nodes. A nonterminal node v is represented by a 3-tuple (variable(v), child(v),
child.(v)) where variable(v) € {zg,...,Zn-1}. A terminal node v is either 0
or 1. There exist an index function indexz(z) € {0,...,n — 1} such that for
every nonterminal node v, either child)(v) is a terminal node or index( variable
(v)) < index( variable( childi(v))), and either child.(v) is a terminal node or
indez(variable(v)) < index( variable( child.(v))). There is no nonterminal node
v such that child;(v) = child,(v), and there are no two nonterminal nodes u and
v such that u = v. The function denoted by (z,vi,v,) is zf; + Zf, where f; and
fr are the functions denoted by v; and v,, respectively. The functions denoted by

0 and 1 are the constant function 0 and 1, respectively.
We use the following notation.

1. The left edge of a node represent 1 or the true edge and the right edge

represents 0 or the false edge.
2. v represents both a OBDD node and the OBDD rooted by node v.

3. indez(v) : the index of the variable associated with node v. If v is a terminal

node, then indez(v) = n.

I_child(v,i) = {C"“df(") if indez(v) = 1,

v otherwise.

r_child(v,1)

{ child.(v) if indez(v) =1,

v otherwise.

5. When B = {z,...,z;_1} represents a bound set, index(zy) < ... < index(
zi-1), head(B) = xq and last(B) = z;_;.

10



6. new_bdd(z,l,r) returns a BDD node v such that variable(v) = z, child)(v) =

I and child,(v) =r.

Definition 2.2.2 Given an 0BDD node v representing f(xg,...,2Z,—1) and a bit

vector (bp, ..., bi_1), the function eval is defined as

eval(v,()) = v,

eval(v, (b, - - -, bi—1)}) = V/,

where v’ is the OBDD representing function f(bo,...,bi—1,%i,...,Zn—1). When 1 is
known, we also use eval(v,p) for eval(v, (by,...,b;i—1)) where p = 277 by + ... +

200;_;.

2.3 OBDD-based Function Decomposition

The function decompositions can be solved more efficiently by using the OBDD-
based representation [43]. In this section, the function decomposition that based

on the OBDD data structure is described.

Definition 2.3.1 Given an OBDD v representing f(zo,...,Zn—1) with variable

ordering zq, . .., ,_1 and bound set B = {zo, ..., i1}, we define
cut _set(v,B) = {u|u=eval(v,p),0<p< 2'}.

In the above definition, each element in cut_set(v, B) corresponds to a dis-
tinct column in Ashenhurst-Curtis decomposition charts [4, 21]. Furthermore,
[log, | cut_set(v, B) || determines the minimum number of g-functions required
for a decomposition of f under B. The result of cut_set(v, B) is S84 which is the
column_set in the decomposition chart. We use S¥ to denote a cut_set of f with

bound set size bset_size(SY) and bit size bit_size(S’).
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Figure 2.4: A function represented in (a) OBDD and (b) decomposition chart.

Example 2.3.1 The OBDD representation and decomposition chart of the func-
tion in Example 2.1.1 are shown in Figure 2.4 (a) and (b) respectively. In the
OBDD representation, cut_set(f, {zo, 21, z2}) = {a, b, c}. Nodes a, b, and ¢ corre-
spond to distinct columns 1100, 1010, and 1011 respectively. Since there are three
distinct columns f is not simple decomposable under bound set {z¢,z;,z,} and

free set {3, z4}. o

When the bound variables are on the top of the OBDDs, the computation of
the cut_set is straightforward as shown next. The time complexity of computing

cut_sets depends on the size of the OBDD representation.

cut_set(v, B) /* B is on the top of the OBDD */

{
if (index(v) > index(last(B))) return({ v });
else return( cut_set(child)(v), B) U cut_set(child.(v), B) );
}
To move a bound variable z to the top of an OBDD, we carry out new_bdd(z,

fx, fx) where f, and fx are the cofactors of f with respect to z and T, respectively.

12



In the worst case, both fy and fi have about the same size as that of f. Thus,
moving a variable to the top may double the size of an 0OBDD. To move the bound
variables to the top is therefore practical only for small bound set size.

It is clear that the computation of cut_sets of all 2" bound sets is very expensive.
However, in practical applications, we need compute the cut_sets of C}} bound sets
where k is a small number such as 4 or 5. The time complexity of computing the
cut_sets of C} bound sets is then O(n*m) while the space complexity is O(2%m)

where m is the size of an OBDD.

Definition 2.3.2 Given an OBDD v representing f(zo,...,Zn—1) with variable

ordering o < ... < ©,—; and bound set B = {o,...,%i-1}, we define
V/ = cut vector(v,B) = [eval(v,2' —1),...,eval(v,0)].

In the following procedure for cut.vector(v,B), we assume that the bound
variables B are on top of the oBDD. In addition, if B = {z0,...,Ti-1}, then

indez(z0) < ... < index(i-1), head(B) = o, and rest(B) = {1,. .. s By ke

cut vector(v, B)
{
if (B == ¢) return((v));
if (index(v) == indez(head(B)))
return(concatenate(cut vector(childi(v), rest(B)),
cut _vector(child,(v),rest(B)));
else [+ index(v) > index(head(B)) +/

return(concatenate(cut vector(v, rest(B)), cut vector (v, rest(B)));

}

We use V! to denote a cut_vector of f with bound set size bset_size(V!) and

bit size bit_size(V!); the cul_vector is the same as the column_vector, the only

13



Figure 2.5: An example for operator cut_vector and cut_set.

difference being that the former is based on the OBDD representation while the

later is based on the decomposition chart representation.

Example 2.3.2 The OBDD representation of a multiple-output Boolean function
is shown in Figure 2.5. With the bound set B = {aq, 21,22}, we have the following

cut_vectors and cut_sets:
Vérf’g = cutwector(fy, B) = [a,a,a,a,a,0,0,0],

ViY, = cut vector(fy, B) = [b,b,b,b, b, b, c, c], and
Vs » = cut_vector(f, B) = [d,d,d,d,d,0,d,0].

532 = cut_set(fo, B) = {a, 0},
814 = cut_set(fy, B) = {b,c}, and
832 = cut_set(fz, B) = {d, 0}.

2.3.1 Disjunctive Decomposition

We show how to perform the disjunctive decomposition of a function f(zo,...,2n_1)

= f'(go(z0y ... Tiz1)s- -, Gi-1(Z0y - . .y Tiz1), Tiy - . ., Tny ) directly on its OBDD rep-

resentation.

14



Algorithm decomp:
Given a function f represented in an OBDD v¢ and a bound set B, a disjunctive

decomposition with respect to B is carried out by the following steps:
1. Compute the cut_set with respect to B. Let cut_set(v, B) = {ug,...,ux_1}.

2. Encode each node in the cut.set by [log, k] = j bits. Let the encoding of ugq
be gq.

3. Construct vg to represent function f’ by replacing the top part of v¢ by a
new set of variables go, ..., gj—1 such that eval(ve,q) =uq for0 < g < k-1,

eval(ver,q) = ug_y for k—1 < g < 27.

4. Construct vg,’s to represent g,’s, 0 < p < j by replacing each node u with

encoding by, . ..,b;—; in the cut_set by terminal node by.

Example 2.3.3 Consider a function [ = 71232526 + 1238587 + 1032478 +
T T3 T4T + T1T2TaTs + T129T4Tg + T T2 10. Let bound set B = {x1, 2, 23, T4, Ts}
We construct the oBDD for function [ with variable ordering z; < @3-+ < Z10
(Figure 2.6.A). Function f can be decomposed to functions f" and go,91,92 by
cutting the OBDD between the bound set and free set. The resulting functions are
(Figure 2.6.B):

"= gog192T6 + Gog1 G227+ Gog192Ts + Gog1g2%9 + JoT10

go = T1 + T2

g1 = T1T3 + T1%3

g2 = T1T3%5 + T1T3T4 + T1T2Tq + T1T2

2.3.2 Nondisjunctive Decomposition

Before describing how to perform non-disjunctive decomposition based on OBDD

representation, we extend the concept of cut_set in the following definition.
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Figure 2.6: 0BDD function decompositions, B = {x1, x2, x3, x4, x5}
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Definition 2.3.3 Let R = {zq,...,2,21}, S = {24,..., 71}, and T = {a;,.

ey

Zno1}, 0 < s <1< n. Given an OBDD v representing f(zo,...,Zu-1), a bound set
RUS, and a free set SUT, we define

cut_set nd(v, R, S,p) = {eval(w,p) | w € cut_set(v, R)},

where 0 < p < 2151,

With the above definition, cut_set(v, B) can be represented by cut_set nd(v, B
$,0).

¥

Example 2.3.4 The OBDD in Figure 2.4 (a) has

cut_set nd(f,{zg, 2.1}, {z2},0) = {a, b},
cut_set nd(f,{zo, 21}, {22},1) = {b,c},
cut_set nd(f, {zo}, {z1,22},0) = {a},
cut_set nd(f,{zo},{z1,22},1) = {b,c},
cut_set nd(f,{zo},{z1,22},2) = {a,b}, and
cut_set nd(f,{zo},{z1,22},3) = {b,c}.

O

The non-disjunctive decomposition algorithm [41] (decomp_nd) is carried out in
a similar fashion to the decomp algorithm (see [41] for details), but uses cut_set_nd

instead of cut_set to construct the f* and g-functions.

Example 2.3.5 One possible non-disjunctive decomposition of the OBDD in Fig-
ure 2.4 (a) with respect to the bound set {zo, 21,2} and the free set {22, 23,24}
is shown in Figure 2.7. In this decomposition, we use the following coding:
{a = ugp,b = ugs} = cut_setnd(ve,{zo, 21}, {z2}, 0) and {c = uz1,b = Uio}

= cut_set nd(vg, {zo, 1}, {22}, 1). O



Figure 2.7: An example of non-disjunctive decomposition.
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Chapter 3

Common Subfunction Extraction

In this section, we present four methods to extract common subfunctions from
multiple Boolean functions. The first method (column encoding) is based on the
stacking of the decomposition charts of the individual outputs; the second method
(uni-code shared subfunction encoding) is based on the examination of all possible
g-functions that can be generated; the third method (multi-code shared subfunc-
tion encoding) is the extension of the second method to allow the multi-code as-
signment to each g-function; the fourth method (graph-based shared subfunction
encoding) is based on graph bipartitioning technique and can handle decomposition

with respect to large bound sets.

3.1 Column Encoding

Our first method is called column encoding which is carried out as follows: we first
stack up the decomposition charts for individual functions and then encode the

distinct column patterns. This is equivalent to finding a common encoding for all

functions.

Example 3.1.1 Consider a multiple-output function F: fo = zoT4+ 212284, fL =

ToTs + :'!31:'!7_3 + 520531334 and fz = .'L‘ofg(f,; + :'ng,gf‘; with bound set B = {.’IJQ.,I], 1132}.
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We stack the decomposition charts of I as shown in Figure 3.1 (a). Since there
are four distinct column patterns, we use two bits to encode each column pattern.
This is shown in Figure 3.1 (b) which defines the two g-functions gy and g,. The
f-functions are determined from the map of Figure 3.1 (c¢) which is obtained by
combining identical columns of Figure 3.1 (a).

To see the decomposition of fi(zq, 21,22, 23, 24) as fi.(go(T0, 21, 22), g1(T0, T,
T3), ¥3,24), kK = 0,1,2, consider the following evaluation: when go =1 and g; =0
(the sixth column from the left in Figure 3.1 (b)), the corresponding columns of
fo, f1, and f; are [0000], [1100], and [0000], respectively (the sixth column from
the left in Figure 3.1 (a)), and the corresponding columns of fj, fi, and f; are
also [0000], [1100], and [0000], respectively (the second column from the left in
Figure 3.1 (c)).

Thus, after multiple-output decomposition with respect to the bound set {zo,

*1, T2}, we have the following g- and f-functions:

go(zo, 1, 22) = To + 21,

g xﬂsmlaxQ) = g + T2,

fi(go, 91,3, 24) = goT3 + Gozs, and

(
(
fo(g0s 91,23, 24) = gog1 %4,
(
Ja

go, 91, T3, 3:‘1) = 1T3Ty.

O

Note that the above method can identify common subexpressions that algebraic
division based methods cannot. After the above decomposition, the literal count
of the resulting circuit is 14. On the other hand, the best we could achieve by the

algebraic method, is 16 as shown next:
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Figure 3.1: An example of multiple-output decomposition.
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Yo = To + Ty,

Y1 = xg + To,

Jo = ToTy + x 1728y,
J1 = YoZ3 + Yor4, and

1 _ e
3 = 1Ty,

Lemma 3.1.1 Given a multiple-output Boolean function F' = (fo,..., fm-1) on
variable set X and bound set B C X, if the column multiplicity of the stacking
of individual decomposition charts is k such that 2~' < k < 27, then I can be

transformed to the following:

(fo(go(B); .., gi-1(B), X — B), ..., fr,_1(g0(B),- . .,g;-1(B), X — B)).
Proof: Omitted. 0

Definition 3.1.1 Given cut_vectors [vggi_1,...,%00];-- - [Vm_12i_15- -+, Um—1,], the
operator column_encode is defined as:

column_encode([vogi—1, - - - ,v0,0]; - - - [Vm—1,2i15+ - -y Vm=1,0]) = [Vm.2i-1s -+ » Um0
where vy 0 =0 and vmp = ¢ if [Vop, - - -, V1] is the ¢'* distinct m-tuple of these

cut_vectors.

Example 3.1.2 column_encode( [11111000],[11111100],[22222
100])=[22222100).

Definition 3.1.2 Operator select is defined as
select(], [vogi—yye V00, -+ o 5 [Vme12ic15 0« o s Um=1,0]) = [Vok, + + - —_—
where [Vok, ..., VUm-1,] is the 7 distinct m-tuple of [vo, ..., Vm-10], -- -, [Vo2ii,
++s Um—12i_1]- If 7 is greater than the number of distinct m-tuples, then [vgy, . . .,

Vm—1,k) is the last distinct m-tuple.

Example 3.1.3 Let V2 =[22111000]and V' =[22222110], then

we have the following;:



column_encode(V®, V) =[33222110],

select(0, Vo, V1) = [0,0],

select(1, V1o V) = [0,1],

select(2, V0o, V1) = [1,2], and

select(3, V0, /1) = [2,2]. ®

Given a multiple output function (fo,..., fr_1) represented by a vector of
OoBDDs and a bound set {zq,...,z;_}, after the computation of cut_vectors and
column encoding, the g- and f- functions are constructed as follows: For any input
pattern b = by, ..., b1, if the evaluation of b on fi, 0 < k < m, ends at node v
with encoding eo,...,ej_;, then we let go(b),...,g;—1(b) produce function values
€0y - - - €j—1 and fi(go(b),...,g;-1(b),ziy...,2y—1) result in node v. Consequently,
I8 {0ty e s Bty Bty » crgBnmi) = JlgalBoy e 50ty « « o5 i By wvws BictDi By « e
z,_1) for every input pattern by, ...,b;_; and 0 < k < m. The following procedure

gives the details of our algorithm.

Algorithm decomp_mo_ce:
Given a vector of OBDDs (va, ..., Vi—1) representing { fo(2gy . -« y Znz1)s - - - 3 frn—1(2Z0,

.-+ Tp_1)) With variable ordering zq, ..., 2,1 and a bound set B = {zo,...,zi-1}.

1. Compute Vi = cut_vector(vy, B) = [ugi_1,..., k0], 0 <k < m.

(3]

. Compute V = column_encode(Vp, ..., Vm-1). Encode each element v,, (0 <

p < 29) of V by j bits dpp...dpj-1 such that v, = 20=1d, o + ... + 2°d, ;.

3. Construct each g-function g,(zq,...,2i-1),0 < g < g, as
9o(zoy .-y zic1) = [dai_y 4...dog) (truth table of g,)
where g,(bo, ..., bi_1) = dpgq if 277 0o + ... + 2%,y = p.

4. Compute select(r, Vo, ..., Vinm1) = [Wossry+ vy Wim—t,s,], 0 S 7 < W O0< s <

2 s, is any [ such that v, = r.



5. Construct each f-function fi(go,...,gj—1,%iy...,@n-1), 0 <k < m, as
f;‘:.(bg, > o e ,bj—l-, Ligonoy 34'11—-1) = [llk_sw_l ‘e le's(}].,
where fl(bay... b5 1, Tiy. .oy Taoy) = g p if 20709 + ... + 205 =1
Example 3.1.4 The application of decomp_mo_ce on the multiple-output function

in Ex. 3.1.1 is summarized as follows:
1. cutvector( fo, B) = [aaaaa000] = 1,

cut_vector(f1, B) = [bbbbbbec] = V,
cutvector(f2, B) = [ddddd0d0] = V; (see Figure 2.5),

2. column_encode(Vo, Vi, V) =[33333210] = [11, 11, 11, 11, 11, 10, 01,
00 ],

3. go(zo,21,22)=[11111100],
g1(zo,1,22)=[11111010],

4. select(0, Vo, V1, V3) = [0, ¢, 0],
select(1, Vo, Vi, Va) = [0, ¢, d],
select(2, Vo, V4, V2) = [0, b, 0],
select(3, Vo, Vi, Va) = [a, b, d],

5. fo(g0,91,23,24) = [@ 000 ],
fi(g0,91,23,24) = [b b c ¢ ], and
J2(g0,91,%3,24) = [d 0 d 0 ].
The resulting g- and f-functions are shown in Figure 3.2 (a) and (b), respectively.
To see fi(xo,21,22,%3,24) = fi(g0(2o, 21, 22), 91(20,21,22), T3, 24), consider the
evaluation of 29 = 0, z; = 1, and =, = 0 on fi, go, g1, and f! as an example:
f1(0,1,0,23,24) = b = z3,
90(0,1,0) =1,
¢1(0,1,0) = 0, and
(

fi(1,0,z3,24) = b = 23.
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(b)

Figure 3.2: An example of multiple-output decomposition in OBDD representation.

O
The following lemmas prove the correctness of decomp_mo_ce.

Lemma 3.1.2 function_encode([vogi_i,---,V00)s- s [Vm—1.2i-1- -3 Vm=-10]) = [
Ugi_y, ..., Ug] where ug = 0 and u, = ¢ if [vop,...,Vm-1,] is the ¢"* distinct

m-tuple of [vo0,.- -y Vm—1,0; -+ -» [Vo2i—1, Um—1,2i—1]-

Proof by contradiction: If vg; # ve for some £, then [voj,-..,ve,- -+ Vm-1,] i8

distinct from [vg g, ..., Vek,- - -, Um—1,k] Which implies that v; # vj. ]

Lemma 3.1.3 The decomp_mo_ce algorithm performs the following transforma-
tion
fk(l‘g, . aiag .‘L‘n_l) = fé(gg(:l:o, ey :C,‘_I), = ol ,gj_l(.'llo, . ,.’B,'_l),.?.‘,', iy :L‘n_l),

where 0 < k <m,0 <1< n.
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Proof: What we need to show is for all by, ...,b;_; € {0,1}, 0 < k < m, fi(bo, ...,
bie1sTis- - - y&n—1) = J[i(ga(bos- - -2 bi=1)y- s gi-1(B0y -+ ybi=1), iy -y Tn—1). Let
cut vector(vi, {zo, ..., izt }) = [Urziz1, ..., Ukp) and p = 2710 + ... + 2%;_, for
an arbitrary bit vector bg,...,b_;.
From Definition 2.2.2, fi.(bo, ..., bi—1, iy ..y Tne1) = eval(vi, [boy . . ., biz1]) = gy
From step 3 of decomp_mo_ce:

Galboy -+, bict) = dpgy0 < g < j, and

2071 go(boy - -y bim1) + ... 4+ 20951 (o, . . .y bizy)

=20 +...+ 2% ;-

= Yy
From step 5 of decomp_mo_ce:

fi(go(boy- -y biz1)y . oy Gi—1(boy - -y bim1), Ty e ooy Tpy)

= Pl s yBggons B s o 5Bt )

= Ups, (27 o + ... + 2%, 51 = w,),
where s,,, = £ such that v, = v,.

From Lemma 3.1.2 v = v, implies that uy,,, = ug,. O

3.1.1 Output Grouping

In practice, it is unlikely that a multiple-output function is decomposable. For
example, if we directly apply column encoding to every output, then the result-
ing column_vector for the stacked decomposition chart will often be V;;. Output
partitioning is thus useful to improve decomposability. We partition the outputs
into groups such that the column_vector of the stacked decomposition chart for
each group corresponds to a decomposable function (i.e., the number of required
g-functions required is less than size of the bound set) and the total number of
g-functions required to implement all groups is minimum. This problem is formu-

lated as follows.
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Definition 3.1.3 Given a set of column_vectors V,I’fk’s with respect to m Boolean
functions ' = (fo, ..., fm—1) and bound set B, partition this set into Py, ..., Py
such that the resulting column_vector V,-"zjq of each P, satisfies ¢ > 7, and Zf?;t, T
1s minimum.

We use the following greedy algorithm to solve this problem.

Algorithm output_grouping:

Assume every column_vector V,-{ A satisfies 1 > jp.

1. Order V¢ in non-increasing order of | S

fe % |- Initialize V9. to the null set.

1,J0

2. Starting from the first element of the above list, merge as many column_vec-

as long as column_encode(V} VY=V,

I : : 0
tors V/% s as possible into V; s Vi,

1,0k 1,Jo
satisfies 7 > j.. As soon as i < j,, initiate a new group of outputs. Repeat

until all column_vectors are processed.

The above algorithm is based on the following observation: A V,{ % with larger S5

‘sjk

has better chance to contain another V,{‘k[ with smaller S;':‘,q. For example, if we
have column_encode([22211000],[33322110])=[33322110], then
all the g-functions required for the first Vs, are contained in those for the second
Va2 Thus, by putting these two column_vectors into the same set, we only need

two g-functions for both functions.

Example 3.1.5 Given a set of column_vectors as following:
Yh=[22221100],
Vhi=[33222210],
Vk=[22111100],
Ve =[22211000],
Vhi=[22222210],
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Vi =[22211100]

If we apply column_encode on every outputs without using output_grouping
algorithm, then column_encode(V%,..., V) =[6654 321 0] which is Vy3.
If we apply output_grouping algorithm, then three groups will be produced.
group 1: column_encode(V/1, /) =[33222210] = V.
group 2: column_encode(V/,V/2) =[33221100] = V5.
group 3: column_encode(V2, V%) =[33322100] = V3. a

3.2 Uni-code Shared Subfunction Encoding

After computing the column vectors of a multiple output function with respect to
a bound set B, it is possible to develop a decomposition scheme that minimizes
the number of required g-functions by sharing these functions among the original

functions as described next.

Example 3.2.1 Given two Boolean functions f; = £334%5 + £15223%5 + T1T2T324
+ T1T3T4T5 + T1T2T4Ts + 01838y + ToxaxyTs and fo = T3 To2384T5 4+ T1T22384 +
TT3T4Ts + ToT3T4Ts + T1T9T3T4Ts + T1T9T3T4Ts + T1T274%5, let bound set B =
{z1, 22, 23} and free set {z4, 25} Decomposition charts for these two functions are
shown in Figure 3.3. The column_vectors are 32 =[(23201210] and Vaz =
[10132110],and column_encode(V{,, V%) =[25243210]= Vs,
If we encode 0 as 00, 1 as 01, 2 as 10, and 3 as 11, then we have
23201210 10132110

[11100100] [00011000]

[01001010] [10110110]
which requires four g-functions: ¢y =[11100100],9o=[01001010],
93=[00011000]and g4=[10110110]. The resulting functions are:



f1 = 192%4 + G2%4%5 + G192T4 + Q12475 + G aTaTs
g1 = T223 + T T3

g2 = 21T3 + T1T23

f2 = G3GaTaTs + g3GaTas + gaT4Ts + g3gaTs + GaT4Ts
g3 = 21T2T3 + T3

ga = 2133 + T1T9 + T2¥3 + 21 T3

If we encode 0 as 00, 1 as 11, 2 as 01, and 3 as 10 for V:{fz, and 0 as 00, 1 as
01, 2 as 11, and 3 as 10 for V;{fz, then we have
23201210 10132110
[01001010] [00011000]
[10101110] [10101110]
which requires only three g-functions: ¢ =[01001010],¢.=[1010111
0Jand g3=[00011000]. The resulting functions are:

f1 = §234T5 + g1T4%5 + §192%4%T5 + G1G2T4
g1 = T1T203 + X173

g2 = T3 + 2122

f2 = §3Ga®4®s + g3gaT4Ts + G2TaTs + GagaTa
g3 = T1T2T3 + T122T3

O

To achieve the above type of subfunction sharing, we present a shared sub-
function encoding scheme as follows: For each output function, we compute all
g-functions which can be produced from every possible encoding. We then iden-
tify the minimum number of g-functions which produce valid encodings for every
function with respect to the given bound set.

The optimum g-function sharing can only be found if we allow the assignment

of multiple function values (codes) to the same pattern (multi-coding). This is,
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(a) Decomposition chart of f;  (b) Decomposition chart of f,

Figure 3.3: Decomposition charts of f; and f,

however, very expensive. We trade some optimality for computational efficiency
by requiring that a unique function value (code) be assigned to each pattern (uni-
coding). In this case, for §; ; with set size k, there will be CZ k! different encodings.
In this section, we only consider uni-coding.

Although there are many different encodings, the number of different g-functions

which can be generated from these encodings is small as described next.

3.2.1 Permissible G-functions

Definition 3.2.1 Given column_vector V;; and column_set S;; for some bound
set, let S;; be partitioned into Sy and S; such that 0 € Sp, | So |< 29! and
| Sy |[< 2771 A permissible g-function encoding (pg-code) of V;; with respect to
So and 51, denoted by pgy, ; s,,s,, is defined as:

pgvi,j,So,S; = [bzi_l & woa bo],

where b, = 0 if v, € Sy and b, = 1 otherwise, 0 < p < 2°. If Sy N S; = ¢ then
Pgv;;,5,,5, 18 a uni-code assignment, otherwise it is a multi-code assignment.
The uni-code pg-set of V; ; is the set of all pg-code’s of V; ; obtained by enumer-

ating all two-way partitions of S;; into Sy and S satisfying the conditions stated
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above. The restrictions on | Sy | and | S | are needed to ensure that a valid j-bit

encoding of the nodes in the column_set of [ with respect to B can be found.

Example 3.2.2 Let V35 = (2,2,1,1,1,1,0,0], then

PYvs, foy,(1,2y = [11111100],
POVya 401342y = [11000000] and
PGvsao,2),013 = [00111100].

The pg-set of Vs, is {[11111100],[11000000],[00111100]}. Note that we need not
consider pgy, , {1}.{0,2) because it is equal to pgy,, {0.2}.{1} and that is why we force

0 € Sp at &;; partition in definition 3.2.1. o

The cardinality of the pg-set of V;; is given by the following equation:

221
) _ k=l k-1 k-
| pgset| = Cigim+...+Coti_, = >, CfF
I=k-21—1
where 2771 <| S;; |= k < 2. Because neither | So | nor | Sy | can exceed 2771, the
minimum and maximum sizes of Sy are k —2/~! and 277!, respectively. k — 1 and

[ — 1 are used because 0 € Sp.

Example 3.2.3 For | S;3 |= k = 3,4,6, and 8, the cardinalities of their pg-sets

are computed as follows:

k=3 C2+Cl=1+2=3,

k=4 OF=3;
k=6: C;+C;+C3=5+10+10=25, and
k=8 ©Of =35

O

Note that there are Cﬁjkl = 40,320 different encodings for | S;3 |= 8 while
only 35 different pg-codes can be generated.
Because each pg-code defines a partial (1-bit) encoding, a complete encoding

of S;; is determined by selecting exactly j pg-code’s. However, not every subset
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of a pg-set, forms a valid partial encoding. This leads to the following definition

of compatibility of pg-code’s.

Definition 3.2.2 A k-bit partilion P¥ of S;; is defined as a partitioning of S; ;
into P* = {So, ..., Syx_1 }, k < j such that VS, € P*| S, |< 27-F.

Definition 3.2.3 A partial k-bit encoding of P* is defined as follows:
if s € Sy, then s is encoded as by ...bg_12k...2j1
where 2='bg + ...+ 2°%y_; = p and =z,...,z;_; are unassigned bits.

Thus, a k-bit partition defines a k-bit encoding of the S; ;. Note that if there
is a S, such that | S, |> 2°~%, then we cannot find a j — k bit encoding of S, and,

therefore, cannot generate a valid j bit encoding of &; ;.

Definition 3.2.4 Given k- and [-bit partitions P* = {So,...,S_,} and Q' =
{To,..., Tyi_1} of &;; and assuming k + [ < j, we define a merge operator M as

follows:
M(Pk, Ql) = {RQ, sy Rzk-l—l_l },

where Rypy, = S, N T, S, € PE,T, € Q. If M(S*,T") is a (k + [)-bit-partition
of S;;, then P*¥ and Q' are compatible. That is, if every R, € M(P*, Q") satisfies
| R, |< 28! then P* and Q' are compatible.

In other words, if P* and @' are compatible, then they can be used together

- to produce a (k + [)-bit encoding of S; ;.

Example 3.2.4 Let S54 = {0,1,2,3,4,5,6,7,8,9}. some of 1-bit partitions of

Ss 4 are:
P' = {{0,1,2,3,4},{5,6,7,8,9}},
Q' = {{0,1,2,5,6,7},{3,4,8,9}},
= {{0,1,2,3,4,5},{6, 7,89}

vto= {{0,2,4,6,8},{1,3,5,7,9}}.
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We have:

JM(PlsQl) = {{01112}:{3!4}={51617}1{8!9}} = P?
M(Qlel) = {{0519215}a{657}1{314}1{819}}:

M(PlaUl) = {{0:112’354}1{}1{5}:{6»71&9}}1
M(szvl) = {{012}’{1}${4}1{3}1{6}:{5= 7},{8},{9}},
M(P%LUY) = {{0,1,2},{},{3,4},{}, {5}, {6, 7}, {}, {8,9}}.

P'and @', @' and U', and P? and V! are compatible, but P' and U, and P? and
U' are not compatible. Note that this example shows that compatibility relation
is not transitive.

P' defines the following encoding:

0,1,2,3 and 4 are encoded by 0g;9293,
5,6,7,8 and 9 are encoded by 1¢¢2¢3.

P? defines the following encoding:

0, 1 and 2 are encoded by 00g293,
3 and 4 are encoded by 01g29s,
5, 6 and 7 are encoded by 10g2g3,
8 and 9 are encoded by 1lg,gs.

3.2.2 Minimum Subfunction Covering Problem

After generating the pg-sets for individual Boolean functions, we select a minimum
number of pg-functions which produce valid, complete encoding of each function.

This decision version of this problem is formulated as follows:

Definition 3.2.5 Minimum subfunction covering problem:

Instance: Collection PGS of pg-sets {pgsi, pgsa,..., pgsn} and G = UL pgs;
and positive integer J. Question: Does G contain a subset G’ with | G [< J and
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such that G* contains at least a subset of size j which induces a j-bit-partition of
pgs; whenever bit_size(pgs;) = 77

Note that when bit_size(pgs;) = 1, for all pgs; € PGS, then the compatibility
requirement (that is, the requirement that the j elements within G' induce a j-bit-

partition of pgs;) is automatically satisfied.

The hitting set problem is an NP-complete problem and is defined as:

Definition 3.2.6 [28] Hitting set problem:
Instance: Collection C of subsets of a set S, positive integer {'. Question: Does
S contain a hitting set for C of size K or less, that is, a subset S C S with

| S |< K and such that S’ contains at least one element from each subset in C?
Lemma 3.2.1 The minimum subfunction covering problem is NP-complete.

Proof: We transform the hitting set problem to a restricted version of the minimum
subfunction covering problem where bit_size(pgs;) = 1 for all pgs; € PGS. Let
collection C' of subsets of a set S and positive integer K constitute an arbitrary
instance of hitting set. The basic unit of the instance of hitting set are the elements
of C. For each element : of C, create a pg-set pgs; of PGS. The instance of

subfunction covering problem is completely specified by

Subfunction covering problem Hitting set problem
PGS = C
G = S
J K

It is easy to see that this instance can be constructed in polynomial time and
that S contains a hitting set for C of size K or less if and only if a subset G’ of
G exists with | G’ |< J and such that G’ contains at least one element from each

subset in PGS. O

We use the following greedy algorithm for solving the minimum subfunction

covering problem.
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Algorithm decomp_mo_sse:

Given a vector of OBDDs (vy, ..., Vi_1) representing {(fo(@o, ..., Tne1)se vy frnos

(1‘0, s

.y Tn—1)) with variable ordering wg,...,2,—_; and a bound set B = {zo,..

9

"17[_1}.

o

. Compute Vi = cut vector(vi, B) = [u9i_y,...,ur0), 0 < k < m.

Compute V; ; = column_encode(Vo, ..., Vin_y).

Compute the pg-set corresponding to each V; ;. Annotate each pg-set with a
value count initialized to its bit_size (this is for indicating when a function
has a complete encoding) and a 0-bit-partition bp initialized to its column set

(this is for checking compatibility).
Find a pg-code, g, that occurs in the pg-sets most frequently.

For each pg-set that contains g, decrease its count by 1. If count = 0, remove

this set.

. For each pg-set that contains g, perform bp = M (bp, g) and remove any pg

that is not compatible with M (bp, g).

Repeat steps 4-6 until every pg-set is removed. Then, return the set of bp’s,

which defines the encoding for each pg-set.

3.2.3 Minimum Support for G-functions

A g-function encoding scheme that minimizes the number of support variables for

individual g-function is described in this section. This scheme reduces the logic

complexity of individual g-functions.



Definition 3.2.7 Given a function f(zg,...,2n-1) = f(go(z0, ..., Tiz1), ...,
Gi—1(T0oy -« vy Tiz1), Tiy - .., Tuo1), the total support size of the g-function is given
by:
i1
supp-size.g_func({go, ..., gi-1}) = > | supp(gr) | (3.1)
k=0

By properly choosing the g-function encodings, this support size can be mini-

mized, thus minimizing the logic complexity of the g-functions.

Example 3.2.5 Consider a function f = zgzi232475 + T123T426+ 132427 +
T1T3T4Ts+ T12T284T7 + T1T2TaTs+ T1Tag. Let bound set B = {zy, 22,23, 24}. We
construct the OBDD for function f. Function f can be decomposed to functions
f' and go, g1, g2. Figure 3.4 shows two different g-function encoding schemes that
result in different supp_size_g_func({go,01,92}). The OBDD representation of re-
sulting functions in first encoding scheme (scheme I) is shown in Figure 3.4.A Their
Boolean representation is given as:

J'= gog1%s + og1Te+ gogig227 + gog1G2s + Gogdi e

Jo = 1T + X1 T3 + Ty

g1 =TTy + 1T3 + T129

g2 = T1X3T4 + T1T3T4 + T 1T2T4

Then,
supp-size_g_func({go, g1,92}) = |{z1,22, 23,74} | + | {z1, 22,23, 24} |
+ | {z1, 22, 23, 24} |
= 44444=12

The OBDD representation of resulting functions in second encoding scheme (scheme
IT) is shown in Figure 3.4.B with reduced support g-functions. Their Boolean
representation is given as:

"= Goges + gofome+ Godi g7 + GodiGos + Gogi 2o

Jo = 123

g1 = 21T3 + T T2

36



) . :
® &
@ 9 & ® & ©
() ) (%) o (X9
1 01! 1L 0 9o 11 1 0 O 11 0 0

{X{, X9, X3, Xa} {X1, X2, X3, Xa}  {Xq, X2, X3, X4}

(A) g-function encoding scheme |

{X1, X3} {x4, Xo, X3} {X1, X, X4}

(B) g-function encoding scheme Il
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g2 = T1&3 + &4

Here,

| {z1, @3} | + | {zr, 2o, 23} | 4+ | {z1, 22, 24} |
= 2+3+4+3=8

supp-size_g-func({go, 91, 92})

The problem of finding the g-function encoding so that supp_size_g_func is
minimized can be formulated as the minimum subfunction covering problem (Def-
inition 3.2.5) with a new cost function, supp(pg), for each pg-code, pg. The algo-
rithm decomp_mo_sse described in Section 3.2 can be used here with line 4 modified

as follows:

4. Find a pg-code, g, that occurs in the pg-sets most frequently.

If there is a tie, then choose the pg-code with minimum supp(g).

3.3 Multi-code Shared Subfunction Encoding

More shared subfunctions can be found by allowing multi-code assignment (“07

and “1”) on a same column_id.

Definition 3.3.1 Given a column.vector V;; with column_set S; ;, the residue of

Vi (denoted by R(V;;)) is 29— | Sij |-

-Lemma 3.3.1 Column_vector V‘-{ ; has a j-bit multi-code assignment if and only

if R(VL;) > o.

Proof: Omitted. (]
Note that the number of shared elements between Sy and S; must be less than
or equal to R(V;;), that is, | So N Sy |< R(V:;), in order to produce a valid j-bit

encoding.
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Example 3.3.1 Given a Boolean function I! with two outputs f; and fa, let

V{i=03355004033223210] S{}=1{0,1,2,3,4,5)
V{i=[1077556454003210] S{3=1{0,1,2,3,4,5,6,7)
under some bound set B. Because | S/ |= 6 and | §/2 |= 8, R(V]3) =22 —6 =2
and R(V{3) = 2° —8 = 0. Since R(V{}) > 0 and R(V{3) = 0, only V{} has the
potential for admitting a multi-code shared subfunction encoding.
There is no uni-code shared subfunction encoding for V,{; and V{% for the
following reason. By inspection, column.id 3 in V/! aligns with column.id’s 0, 1,

3, 4 and 5 in V/2.

Vii=[38-—-—-——- 38— —3 — ——]
Vii=[10--—~~— = = = =]

In order to produce a uni-code shared g-function encoding, column.id’s 0, 1, 3, 4
and 5 of V/? must be assigned either all “1” or all “0” code in order to match the
code for column_id 3 in V/!. However, assigning the same code to these column_id’s
violates the permissible g-function encoding constraint as 5 distinct columns cannot
be encoded by the remaining two bits.

Instead if we partition V/? into Sy = {0,1,4,5} and S; = {2,3,6,7} which
produces encoding [ 11 0011011111001 1] and assign this code to
VI1 then we obtain a non-disjoint partitioning of V/! into S = {0,1,2,3} and
Sy = {2,3,4,5}. By assigning columns in Sp to 0 and columns in S; to 1, we

achieve a multi-code shared subfunction encoding between V/! and V/2. O

Lemma 3.3.2 [51] Given column_vector V;; and column_set S;; with | S;; |[= E,

the number of possible multi-code assignments is

212=8  y(2)

iy 2 —(Qf — (3.2)
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where p(z) is the number of ways of partitioning S; ; into z nonempty sets.

Example 3.3.2 Given column_vector V{; =[3355004033223210], here
p(6) = 1, p(7) = 26, p(8) = 228. The number of possible multi-code assignments
is 1,535,520. The number of uni-code assignments for V,{'S is however only 25 [40].

O

Because of the exponential number of different multi-code assignments for each
column_vector, it is impractical to find possible subfunction sharing directly. We
thus use following lemma to relax the multi-code shared subfunction encoding

problem into the uni-code shared subfunction encoding problem.

Lemma 3.3.3 Given column_vector V/! and a one bit encoding pg of V/2, the
multi-code shared subfunction encoding of V/! is equivalent to the uni-code shared

subfunction encoding of U/* where U/* = column _encode(V!*, pg).
Proof: Omitted. L

Example 3.3.3 Given column_vector Vf,la= [3355004033223210]and
pg=[1100110111110011]:

Uiy = column_encode(V{ 4, pg)
=([3355004033223210],[1100110111110011])
=[5577006055443210].

Subsequently, pg = [110011011111001 1] partitions U,{3 into
So=1{0,1,4,5} and 5; = {2,3,6, 7} which is an uni-code assignment (SoNS; = ).
O

We use the following algorithm to find multi-code shared subfunction encodings

among Vs,
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Algorithm multi_code_shared_subfunction_en codings:

Given a list VLY of Vs:

1. Calculate R(V/) for each V/ in VLY.

o

Order VL in increasing order of R(V/).

3. Pick the first column_vector V,{”‘ j, from the V L?, produce the uni-code as-

signment pg-set of vi{:jp and remove V;;” j, from V Lf. Denote this pg-set by

Pgs,:

4. For each pg, in pgs, do
{

For each Vt-f:'jq in VLY that has R(V!"- ) > 0do

i
{

Divide V,-‘:",jq into Sy and S according to pgy.

/* Check if this leads to a permissible g-function code of V,-J;",jq *4
if (| So |[< 27" and | Sy |< 2%¢7!) then

{

v:;q‘jq = COlumn_GnCOdE(Vf?,jq: PYy)

Update R(V,{;‘Jq) value and reposition V:‘{ﬁjq in VL!.

}

5. Repeat steps 3 - 4 until all V/’s are processed.

6. Use the minimum_subfunction_covering algorithm to find a minimum set

of pg-sets such that each V;'; !, has a Jq-bit encoding.
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3.4 Common Subfunction Extraction for Large

Bound Sets

The common subfunctions with large variable support sizes have more logic shar-
ing compared with the common subfunctions with smaller variable support sizes.
To extract common subfunctions with large variable support sizes using function
decomposition, a shared subfunction encoding scheme that can handle the encod-
ing problem for subfunctions with large support size is needed. We first discuss
the complexity of the shared subfunction encoding for various bound set sizes,
then introduce a new graph-based encoding scheme which can deal with any size

of common subfunctions extraction.

3.4.1 Encoding Complexity

In the previous section, the shared subfunction encoding scheme first generates
the uni-code pg-set for each individual Boolean function. Next, it searches for the
common subfunctions among these pg-sets. This method is practical only when
either the bound set size is small (< 5) or the compatible class size | S | is small

(< 8). The following paragraphs describe the complexity of this scheme.

Lemma 3.4.1 Given column._vector V and column.set § with bit_size(S) = j
and the number of compatible classes | § |= k, the number of different g-functions
which can be generated is equal to the cardinality of the uni-code pg-set of V which

is given by the following equation:

i

|pgsel | = CF L. +.:4+C052 = > CF}

I=k—21-1



where 227! <| § |= k < 27. Because neither | Sy | nor | Sy | can exceed 27-!, the
minimum and maximum sizes of Sy are k — 27~! and 29-!, respectively. k& — 1 and

[ — 1 are used because 0 € Sy (Definition 3.2.1).

Example 3.4.1 Let V=[22111100], then

Pav.{0},{1,2} = [ 11111100 ],
Pgvonif2y = [11000000], and
Pgvoz2yi1y = [00111100].

The pg-set of Vis {{11111100],[11000000],[00111100]}. Note

that we need not consider pgy (1},(0,2) because it is equal to PGy (0234 1} O

Example 3.4.2 For | S |=k = 3,4,5,06,7, and 8, the cardinalities of their pg-sets

are:

k=3 Ci+Ci=1+2=3,

k=ds CF=3,

k=5 Cd+Cl+C3+Ci=1+4+6+4=15,

k=6: CY+C5;+C;=5+10+10 =25,

k=7 C§5+C5=20+15=35,

k=8 €F =35 o

Given a bound set B of size i, | B |= ¢, function f and the corresponding

compatible class size (column.set size) | S |= &, & must be less than or equal

to 21 (k < 2i-1) for function f to be decomposable. Table 3.1 shows that size
of the pg-set is exponential in the column.set size. Generating the pg-set for
each individual function prior to searching for the shared subfunctions is therefore

impractical for large k.
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| Bl | k=][S8]|] pg-set size
1 3 39
5 9 25
5 10 501
5 11 957
5 12 1749
5 13 3003
D 14 4719
5 15 6435
5 16 6435
6 17 65535
6 27 50,480,055
6 28 87,922,215
6 29 145,422 675
6 30 222,981,435
6 31 300,540,195
6 32 300,540,195
7 64 9.16 x10'7

Table 3.1: pg-set size versus column_set size k

3.4.2 An Encoding Scheme for Large Compatible Class
Size

The problem with large column set size is that the number of pg functions in
their corresponding pg-sets becomes exponentially large. A graph-based encoding
scheme which can find shared subfunctions without generating the pg-sets will be

described in this section.

Definition 3.4.1 A bipartite graph G = (V*,V*, E) is a graph where the vertices
can be partitioned into two sets, V* and V* such that edges of G exist only between

vertices of V° and V*.

We can use a bipartite graph to represent the compatibility relation between

two column_vectors.

Definition 3.4.2 Given column_vectors V/' = (vi1,v19,...,01n), V2 = (vgy, va9,

...,vzn ) and the corresponding column.sets S/1, Sf2, we construct a bipartite

graph G = (V*, V' E) as follows: V* = §/t, V! = S/ and there exists an edge
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Figure 3.5: (Code) dependency graph

between s; € V* and s; € V* exactly if there is a column index k such that the Eth
element of V! is s; and the k* element of V/2 is s;. This graph will be referred to

as (code) dependency graph.

Example 3.4.3 Given column_vectors Y/ and V/2 |

Vi = [6555544433432100]8”-{0,1,23 4,5,6}

Ve = [7667654213210000]872={0,1,2,3,4,5,6,7}
the dependency graph G is described as V* = {041,151, 2/ 3/ 45 5/ 641}, V! =
{0]2’ 1!2’ 2f2, 3f2’ 4f21 51’2‘ sz, 7f2}1 E = {(Ofl’o.h)’ (1f110f2)’ (2}'1’0;’2) (3f1 1f2
(3!1’3&)’ (4]1’212), (4f1’4f2), (41‘1’5&)1 (5f1,5h), (51’1’712), (6-“,7f"-)} (cf. Fig-
ure 3.5). ]

The significance of the dependency graph is that for any g-function that is
shared between f; and f, the elements of V/1 and V/2 which correspond to con-

nected vertices of this graph must be assigned the same code (logic value “0” or

ul”)'

Lemma 3.4.2 Given the dependency graph G = (§1,8%, E) corresponding to
two column_vectors, Y/t and V/2, if G is connected, then f; and f, do not have a

uni-code shared subfunction with respect to the given bound set.

Proof: Pick any vertex v; from one of the sets, if we assign this v; to “0”, in
order to produce shared code between S/t and S§2, the elements that are equal

to v; in V1t and the corresponding (same index) elements in V/2 must be assigned
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to “0”. Let’s assume these elements are wuy,...,u,. Now all entries of V/2 that
contain an element of wy,...,u, must be assigned to “0”. But this implies that
the corresponding (same index) elements of /' must be assigned to “0” and so
on. Therefore, if the graph is connected and for uni-code assignment, then the
encoding of §/t and §% will be all “0” vector, which is not valid. Thus f; and f,

have no uni-code shared subfunction. 8]

Lemma 3.4.3 Given column_vectors V*, V* with their column sets ¢, S* and the
corresponding dependency graph G = (&7, 8%, E), if there exists a partitioning that
divides G into Gp = (§%,8%, Ey) and Gy = (§%,8%, E;) such that each subset
of vertices fulfills the size constraints: | $% |< 2bit-size(S)=1 | Ga1 | < gbit_size(5%)-1
| Sto | hit-size(ST)=1 and | Sh |< 2bit-si=e(8)~1 then a uni-code shared subfunction
between §° and §* can be found by giving “0” (“1”) code to elements of V* that
appear in §% (§°!). Similarly, elements of V' that appear in §% (§%) are assigned

to “0” (“1”), respectively.
Proof: Follows from Lemma 3.4.2. 0

Example 3.4.4 Continuing with example 3.4.3, the dependency graph G' can be
divided into two sub-graphs (Figure 3.6.(a)) where each sub-graph satisfies the size
constraints. Thus there is a uni-code subfunction encoding [0 0000111001
01111] by assigning the {3, 5, 6} elements of V' to “0” and the {0, 1, 2, 4}
elements of V' to “1” Similarly, the {1, 3, 6, 7} elements of V2 are assigned to
“0” and the {0, 2, 4, 5} elements of V2 to “1” (Figure 3.6.(b)).

Vi = [6555544433432100]
Vi = [7667654213210000]
sharedcode = [0000011100101111] 0

Definition 3.4.3 The Dependency Graph Partitioning Problem

Given column_vectors V*, V' and the corresponding dependency graph G = (S°,
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Figure 3.6: Partitioned graph

St, E), find a two-way partition Gy = (§%,8%, Ey), G, = (§%,8", E;) such
that l S0 |S 2b£t_size(’b’")—l, | St IS zbit_sizc(V’)—-l, I Sto IS 2bit._s:'ze(V‘)—l’ ] St |£

obit-size(V)=1 an( there are no edges between Go and G).

Assume each connected sub-graph sg; = (V*, V"%, E) in G as an item and the
final partitions Gy and G; as two bins, bing and bin;, each with a capacity of
(2bit-size(V)—1 obit-size(V))=1) (Figure 3.7). The problem is to put all sg;’s with size
(| V¥ |,] V% |) into these two bins while satisfying the two-dimensional capacity
constraints. This is exactly the two-dimensional bin-packing problem which is NP-
complete in the strong sense [29]. We use the following greedy algorithm to solve

this partitioning problem.

Algorithm bipartition_dependency_graph:
Given a graph G = (V*,V*, E), and let C, = 2([l22lV*N1-1) and C, = o [teg2|VH1-1)

47



Go Gy

jSD ®® 3O
ry 1# :
nEITREIEEIRY
— bing bin

Figure 3.7: Conversion to bin packing problem

bin capacity = [ j ]

size_s

item size =

size_t

. Separate G into N sub-graphs SG = (sgi, 892, ..,sgn) where each sg; is a
connected graph but every pair of sub-graphs are disjoint. If there is only

one graph in SG, then return ¢. /* No solution (lemma 3.4.2) */

. Fori=1to N do

{
Let sg; = (V*, V4% E) € SG;
If (size(V*) > C || size(V4) > C}), then return ¢. /* No solution */

}

. Set By_size_s = 0, By_size_s = "N | size(V*)

Set By_sizet = 0, By.sizet = YN | size(V4)

. Pick sg; which has maz(size(V*) + size(V%)— | size(V®) — size(VH) |)
and (By-size_s + size(V*)) < O, (Bo-sizet + size(V4)) < C,

. Put sg; into By and update

By_size_s = By_size_s + size(V*),
By_sizet = By_sizet + size(VY),
B, _size_s = By_size_s — size(V*),

By sizet = By _sizet — size(V4).
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6. Repeat steps 4 and 5 until no such sg; exists in SG.
7. Put the rest of sg’s in SG into B,.

8. If (Bysize_s < C, and Bj_sizet < ) then
return { By, B} . /* partition result */
else

return ¢ /* No solution */.

Step 1 can be performed in time linear in the number of edges in G. Step 2
checks the feasibility of each sub-graph generated in step 1. Step 3 initializes the
size constraints for the two parts (bins). We start by putting all sg;’s into Bj.
Next, we pick sg; from B; and move it to By. The selected sg; is the one that
maximizes the minimum of | V* | and | V* |. This approximately corresponds to
picking a sg; with maximum vertex count, yet minimum difference between its two
vertex sets.

We update the size constraints in step 5 after we move sg; to By and repeat the
process until no more sg;’s can be moved to By. We check if B, also satisfies its
constraints in the end. If so, we have a valid partition, otherwise no solution has
been found. Steps 4 to 6 can be performed in O(N?) where N is the number of
disconnected sub-graphs in G. Since other steps can be performed in linear time,
this algorithm has time complexity of O(N?). The worst case of N is equal to
| S |, thus the worst case time complexity of this algorithm is still polynomial in
terms of the compatible class size | S |.

We use the following algorithm, generate_pg_sets, to generate the pg-sets for
all Boolean functions. This algorithm will produce exactly the same results as the
shared subfunction encoding algorithm described in Section 3.2 for small compat-
ible class size (| S |< 8), but will use the bipartition_dependency_graph algorithm

to search for common subfunctions when | & |> 8.
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Definition 3.4.4 Operator Complete_encoding is defined as follows:
Complete_encoding(V; ;,S: i, p01) = {pga,-..,pg;} where {pgi,...,pg;} partitions
S;; into P4 = {Sg, ..., Szi_1} such that ¥S, € P,| S, |< 1.

Algorithm generate_pg_sets:

Given a set of column_vectors V!, V2,... V" and their column_sets S!, S8...SV.

1. Separate columnsets into two groups, Group_l has all S's with | ' |< 8
and Group_2 has all §'s with | §* |> 8.

2. For each &' in Group_l, generate its pg;-set. J¥ | 8% |< 8%/

3. For each pair of (S, 87) in Group_2, do /Y18 |>8,]8|>8%
{
3l Create G = (Si,Sj, E),C, = 2(“””'5‘”“1), C, = 2([log2|S7[1-1)
3.2 Let G_set = bipartition_dependency_graph(G, C;, C);
3.3 If Gset = {Gy, G} then
/* G was divided into two subgraphs Gy and G, */
{
3.4 pg-code = [eg, €1, ..., cN]
where ¢, = “0” if the £ element of V' is in S,
otherwise ¢ = “1”.

3.5 Insert this pg-code into pg;-set and pg;-set.

1
}

4. For each pair of (§*,87) such that S' € Group_1, § € Group_2, do
{

4.1 For each pgy code in pg;-set,
4.2 If pgr is a permissible g-function encoding of 87,

then insert pg; into pg;-set.
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5. For each §' in Group_2, do [¥ |8 |>8*/
{
Set complete_code_set = ¢
For each pgi in pg;-set, do
{
5.1 new_codes = Complete_encoding(V*,S*, pgy)

5.2 complete_code_set = complete_code_set + new_codes,

}

Append complete_code_set to pg;-set.

O

In step 1, column_sets are put into two groups according to their size (> 8 or

< 8). In step 2, we produce all possible encodings for S%’s whose column.set size

is < 8. Step 3 produces shared codes between S*, S when | St |> 8 and | §7 |> 8.

In steps 3.1 and 3.2, we prepare the dependency graph, constraints C;, C; and call

on the bipartition_dependency_graph algorithm to find a bipartitioning solution.

If such a solution exists, we produce the shared code and insert it in the pg-sets

of St and S’ in steps 3.4 and 3.5. Step 4 finds shared codes between V' and V7

when | S* |> 8 but | §7 |< 8 by searching through pg;-set for possible shared codes

between Vi and V4. In step 5, we produce the complete encodings for each shared
code in the pg-set obtained in steps 3 and 4.

After generating the pg-sets for all functions using generate.pg-sets algorithm,

we select a minimum number of pg-functions which produce valid, complete encod-

ing of each function. This problem is formulated as Minimum subfunction covering
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problem (Definition 3.2.5) described in Section 3.2. We use the following greedy

algorithm for solving the minimum subfunction covering problem.

Algorithm shared_subfunction_encoding_covering:
Given a collection of pg-sets in which each pg-set is annotated with a value count
initialized to its bit_size (this is for indicating when a function has a complete

encoding) and a code set es initialized to ¢.

1. Find a pg-code, g, that occurs in the pg-sets most frequently. If there is a
tie, then choose the pg-code with minimum supp(g) and put it in the code

set cs.

2. For each pg-set that contains g, decrease its count by 1. If count = 0, remove

this set.

3. For each pg-set that contains g, remove any pg-code that can not produce

the valid encodings with ¢ for corresponding column_vector V.

4. Repeat steps 1-3 until every pg-set is removed. Then, return the code set cs,

which defines the encoding for all pg-sets.

3.4.3 Graph-based Encoding Using Multi-code Assignments

In this section, we focus on solving the dependency graph non-disjunctive parti-
tioning problem to find multi-code shared subfunction encoding. More shared sub-
functions can be found by allowing multi-code assignments. The following example
shows that shared subfunctions can be found by using multi-code assignments, but

not using uni-code assignments.

Example 3.4.5 Given column_vectors Y/ and V2 |

Vi = [6555544433432100]8=4{0,1,2,3,4,5,6}
Ve = [7667653413210000]8/2=1{0,1,2,3,4,5,6,7}
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Figure 3.8: Dependency graph with large subgraph

The dependency graph G with three connected sub-graphs, sg; = (V*', V" E),
sga = (V®2,V2 E), sgs = (V*,V* E), is shown in Figure 3.8. It is clear to
see that there is no such partitioning that divides G into Gg = (§°°,8%, Ey) and
Gy = (8%,8", F;) such that each subset of vertices fulfills the size constraints:
| S%0 [< 4, | 8 < 4, | S |< 4, and | 8" |< 4, because the size of connected
sub-graph, sgs, alone has excess the size constraints ( | V*2 |=5 £ 4 ). Thus there
is no uni-code assignment shared subfunction can be found in these two functions.

If we divide sub-graph sg, into two connected sub-graphs sgs and sgs by du-
plicating vertex “4”, then a partitioning that divides G into Go, Gy (Figure 3.9)

and also fulfills the size constraints can be found (e.g., Go = {sgs,sgs}, G1 =

{591,595})- 0

' Lemma 3.4.4 Given a dependency graph G and connected sub-graph sg; =
(Vs, V4, E) within it, dividing sg; into two connected sub-graphs sg;, and sgi,
by duplicating vertex v € V* or € V% will allow possible multi-code assignment

in this column_id v in the given column_vector.

Proof: If in the final solution of bin packing, sg;, and sg;, are assigned to different

bins (e.g., bing and bin,), then the duplicated vertex v which corresponds to the
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Figure 3.9: Divisible item (multi-code assignment)

column.id v in the column_vector can be assigned to “0” or “1” according to the
bin it belongs to. @]

The number of different multi-code assignments for a given column_vector is
exponential as we described in Section 3.3. Since most of the connected bipartite
graphs in our experiment benchmark circuits have tree structure, we only discuss
the partitioning problem for connected acyclic bipartite graphs (tree structures)
here.

The number of different ways to partition a connected acyclic bipartite graph

is given as follows:

Lemma 3.4.5 Given a connected acyclic bipartite graph G with vertex vy, . .., v,_;
and degree(v;) is the number of edges connected to v;, the number of possible ways
to partition this graph into two graphs by duplicating any one vertex is given by:

n—1 degree(v;)—1

Z C;.iegr'ee(v.') (3.3)

i=0 j=0

num_partition(G) =

B | =

Proof: For each vertex v;, the number of ways to duplicate this vertex is the

number of ways to partition the edges that connect to this vertex which is % >
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Figure 3.10: A connected acyclic bipartite graph

degree(v; . 5 ¥
Cci9e (%) where j runs from 0 to degree(v;) — 1. The summation over all vertices
in the graph gives the number of possible ways to partition it. a

Example 3.4.6 Given a connected acyclic bipartite graph in Figure 3.10, the

number of possible two-way partition is 7.

We use a heuristic algorithm to find a two-way partition on the large con-
nected acyclic bipartite graph (larger than the bin size constraints). This algo-
rithm is called only when the uni-code graph-based algorithm (steps 1, 2 and 8 in
bipartition_dependency_graph) fails to find a solution.

The basic idea of this heuristic algorithm is to search through graph G and
find the connected subgraphs which are oversized and then separate the oversized
subgraphs into two connected subgraphs. This is in turn performed by splitting
each vertex in the subgraph into two vertices with about equal number of incident
edges. If the resulting partition fulfills the size constraints, then we proceed to the
next oversized subgraph, otherwise we look for another vertex to split. If every
vertex splitting fails to produce the desired property, then we exit the procedure
with a FALSE flag. This algorithm can be performed in time linear in the number

of edges.

3.4.4 Extending Graph-Based Shared Subfunction Encoding

The graph-based shared subfunction encoding scheme solved the problem of finding

shared subfunctions between two functions. This scheme can be extended to find
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shared subfunctions among functions (more than two functions). In general, ex-
tending the two-dimensional bin-packing problem into /N-dimensional bin-packing
problem can solve this problem.

Given column_vectors V/1, V%2, ... VIV of functions fi, fa, ..., fn, the corre-
sponding N — 1 code dependency graphs, Gy 9, G2, ..., Gn-1,n, can be builded.
One single graph can be builded by sharing the vertex of f; to fy_; among each
of the code dependency graphs. This single graph is called N-connected depen-
dency graph. In this graph, each connected subgraph has N size associate with
it. Packing these connected subgraphs (N-dimensional items) into two-bins with
N-dimensional size constraints is exactly the N-dimensional bin-packing problem.
The following example illustrates the case of finding shared subfunctions among

three functions, fi, fo and fs.

Example 3.4.7 Given column_vectors, V! = [6555544433432100],
Vi =[7667654213210000]and V2 =[6666544311210000]
of functions fi, f3, fa, a 3-connected dependency graph G is builded (Figure 3.11).
For each connected subgraph in G, three sizes are associated with it. For example,
the subgraph sg; has size of (2, 2, 2). These subgraphs can be packed into two
bins that Bing = {sgi, sgs} and Bin; = {sgs,sg4}. This resulting code = [000
001110010111 1]isshared among V1, V/2 and V. a

3.4.5 Output Partitioning for Graph-based Encoding

Given N-outputs function, if we directly build N-connected dependency graph
when N is large, then usually no solution can be found in this N-dimensional bin-
packing problem. Partitioning the outputs into groups before applying the graph-
based encoding is thus necessary in order to find a solution. This partitioning
problem, which is similar to the output grouping problem for column_encoding

described in Section 3.1.1, is formulated as follows.
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Definition 3.4.5 Given a set of column_vectors V;': % ’s with respect to m Boolean
functions F' = (fo, ..., fm-1) and bound set B, partition this set into Fo,..., P,
such that there is a graph-based encoding solution for each set P and [ is mini-

mized.

We use the following greedy algorithm to solve this problem.

Algorithm output_partition_for_graph_based_encoding:

1. Order V¥

;% in increasing order of residue of ik R(V-f’“' )-

1,5k 1,7k

2. Starting from the first element of the above list, put as many column_vectors
V,—‘f’;k ’s as possible that dependency graph for these column_vectors still can
find shared subfunctions. As soon as dependency graph can not result in
finding shared subfunction, initiate a new group of outputs. Repeat until all

column_vectors are processed.

The above algorithm is based on the observation that a V/* with larger residue,
R(V/¥) has larger number of column_ids that multi-code assignment is allowed, so
it has higher chance finding shared subfunction code with other column_vectors.
Thus choose the column_vector with smaller residue first can lead to fewer number

of groups that maximize the sharing.

Example 3.4.8 Given a set of column_vectors as following:
Vh=[7766554433221100],
VR=[7776655443322110],

Ve =[6666554433211000],and
VA =[4444322111100000].

If we build dependency graph on all column_vectors without using output_par-
tition algorithm, then the resulting graph is a single connected graph and can not

be partitioned. There is no shared code can be found.



If we apply output_partition algorithm, then two groups will be produced and
the shared pg-code can be found.
group 1:
yh = |
1%& = |
[

shared pg-code =

T766554433221100]
6666554433211000]
1111111100000000]

group 2:

[l

\ZE [7776655443322110]
%8 =[4444322111100000]
shared pg-code =[1111100111100000]

3.5 Summary

In this chapter, we described four methods to extract common subfunctions from
multiple Boolean functions. The first method (column encoding) is based on
the stacking of the decomposition charts of the individual outputs; the second
method (uni-code shared subfunction encoding) are based on the examination
of all possible g-functions that can be generated; the third method (multi-code
shared subfunction encoding) is the extension of the second method to allow the
multi-code assignment to each g-function; the four method (graph-based shared
subfunction encoding) is based on graph bipartitioning technique and can handle
decomposition with respect to large column set size.

In next chapter, we will apply these extraction techniques on different objective

functions (e.g, minimum delay, minimum energy).



Chapter 4

Other Objective Functions

4.1 Decomposition for Minimum Delay

The problem of technology mapping of FPGA for minimum delay has been studied
by [47, 26, 17, 19, 20]. These include mis-pga-d by Murgai el al. which combines
the technology mapping with layout synthesis [47], Chortle-d by Francis et al.
which minimizes the depth increase at each bin package step [26], and FlowMap
by Cong et al. which is based on a topological labeling algorithm [20].

Our FGSyn_d [49, 50] is based on function decomposition for achieving mini-

mum network depth as described next.

4.1.1 Minimum Delay Decomposition Using Unit Delay
Model

We assume each node in the mapping result contributes to a constant delay
(unit delay model) and each node can be direct mapped to a look-up-table (LUT)
based logic block of FPGA. Thus, delay is determined by the maximum number of

nodes (LUTs) on the path from primary inputs to primary outputs and is referred to
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Figure 4.1: Upper and lower bound delay estimation

as LUT delay. Our delay minimization algorithm FGSyn_d is based on the Huffman
algorithm for constructing minimum average code length [33].
Definition 4.1.1 Given a Boolean network N and a node y € N, if y is a primary

input, then the unit delay of y is given by:
u_delay(y) =0 (4.1)

If y is an internal node or a primary output with support size < K (K is the

number of inputs of LUT), then the delay of y is given by:
udelay(y) = maz{udelay(z;) | z: € fanin(y)} + dunit (4.2)

where dn:: which represents the intrinsic delay parameter is know for the given

FPGA device.
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For each g-function g;, the the cost function for delay is:

pg-cost(g:) = u-delay(g:) (4.3)

The delay calculation becomes more involved at the output of node f which
is being decomposed since the new node f" (cf. Definition 2.1.1) may have an

immediate fanins size > K (fi_ent(f) > K). This is discussed next.

Lemma 4.1.1 Given a Boolean network N, the lower-bound and upper-bound
delay on the combinational delay at the output of node y € N when fi_ent(y) > K
are given by (Figure 4.1):

lower bound_lut_u_delay(y) = [logg | fi-ent(y) |] X dunit (4.4)

upper bound_lut_u_delay(y) = maz(1, fient(y) — K + 1) X dynis (4.5)

where K is the number of inputs of LUT and d,.;; is a constant. Note that the

lower bound and upper bound delays are equal to dyni when fi_ent(y) < K.

Proof: A lower bound on the delay at the output of y is obtained by assuming
maximum reduction in variable support of y for each decomposition (that is, K —1
variables are eliminated after each decomposition). This leads to a balanced K-ary
tree decomposition of y as shown in Figure 4.1.A. It is easy to see that Equation 4.4
hold.

An upper-bound on the delay of node y is obtained by assuming minimum
reduction in variable support of y per decomposition (that is, 1 variable reduction)
as shown in Figure 4.1.B. Note that at least one variable must be eliminated per

decomposition, otherwise we cannot call the transformation a decomposition (cf.
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Figure 4.2: Delay estimation

Definition 2.1.1). This leads to a chain-like K-ary tree decomposition as shown in

Figure 4.1.B. It is easy to see that Equation 4.5 hold. O

Definition 4.1.2 Given a Boolean network N and a variable y, if y is an internal
node or a primary output, then the u_delay(y) is estimated as the maximum delay
of immediate fanins, plus the estimated LUT delay of y (the upper-bound LUT delay

is used as estimated LUT delay). The maximum delay of immediate fanins of y is:

magz_fanin_u_delay(y) = maz{u_delay(z;) | z; € fanin(y)} (4.6)

The delay of y is given by (Figure 4.2.A):

u_delay(y) = upper_bound_lut u_delay(y) + maz_fanin_u_delay(y) (4.7)
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Consider a function f(zq,...,%,-1) that is decomposable under bound set B
= {@g,..., Tk-1} and can be transformed to f'(go(o,...,Tx-1)s---, gi-1(o0, .- -,

TK-1)y TKy «+ - Tn—1), one can see that (Figure 4.2.B):

u_delay(f,B) = u_delay(y')

= upper_bound_lut u_delay(y') + maz_fanin_u_delay(y'(4.8)
where the upper-bound delay is:
upper_bound_lut u_delay(y') = maz(1, fi_ent(y') — K 4+ 1) % dynis (4.9)

where fi_ent(y') = fi_ent(y) — K + j. The maximum delay of immediate fanins of

Yy is:

maz_fanin_u.delay(y') = maz( max {u_delay(g:)},
l lJ—

max {u_delay( )} (4.10)

tel,...,n—1

Example 4.1.1 Given a partially decomposed network (Figure 4.3.A), some of
the possible bound sets for next decomposition are:
By = {ws, v6, 27,75, T0}  with column set S5, and u_delay(f, By) = 2

(f,Bo) =
By = {go, %5, z6, z7,x5}  with column.set S5, and u.delay(f, B)
B, = {zg, 27,25, %9, 210} with column.set Ss 4 and u_delay(f, B;) =
(f,Bs) =
(f, Bs) =

B3 = {5, x7, Ts, T9, z10} with column_set 853 and u_delay(f, Bs

3
2
2
By = {go, x5, 6, T7,29}  with column set Ss, and u_delay(f, By) = 3

By results in minimum area but a network delay of three (Figure 4.3.B) whilst
By leads to minimum delay and then maximum variable support reduction (Fig-

ure 4.3.C). 0
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Definition 4.1.3 Given a multiple-output function F' = (fo,..., fu—1) and bound

set B, | B| = K, the average support reduction is defined as:

n—1

1
suppred(F, B) = = > suppred(fi, B). (4.11)
1=0

and the maximum u_delay of function F' decomposed under bound set B is defined
as:

delay_cost(F, B) = maz{udelay(f;, B) | f: € I'}. (4.12)

In the case of multiple-output Boolean functions, we use the following heuristic
algorithm to find the best bound set for next decomposition.
Algorithm minimum_delay bound_set_selection:

Given a collection of bound sets B for function F' = (fo,..., fa1):

1. Create K — 1 empty lists as follows:
Fori=1to K —1do

{

List i (denoted by L;) for K —1 —1 < supp_red(F,B) < K —1

}

2. For each B in B, put B in the appropriate list.

3. Sort each list in the increasing order of delay_cost(F, B); If there is a tie,

then sort it again in the decreasing order of supp_red(F, B).

4. Return the first bound set from the non-empty list in the following order L;,
Ligs s+ 4 Bipy

This minimum delay decomposition scheme has been incorporated into our

system as FGSyn.d. Our results show an average 8% reduction in the network

delay over the FlowMap-r [20] results.
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4.1.2 Minimum Delay Decomposition Using Unit Fanout

Delay Model

Delay minimization has been an important optimization problem in FPGA technol-
ogy mapping. Most of delay minimization mapping algorithms mis-pga(delay) [47],
FlowMap [20], FlowSyn [18] and including FGSyn_d [49] use depth of the mapping
results as a measure of delay. This is based on the unit delay model However, the
delay calculated using the unit delay model is very inaccurate. In LUT-based FPGA
designs, although the delay of each LUT is constant, the interconnect delay of each
net may vary considerably. Experiments in [59] have shown that the interconnect
delay in an FPGA is closely related to the number of fanouts of the net.

In this section, delay optimum decomposition under a unit fanout delay model
is considered. Note that this model is accurate for small to medium number of
fanouts. For large fanout counts, unit fanout delay becomes a sub-linear function
of number of fanouts. This is not considered in here, it can be easily handled by

our method.

Definition 4.1.4 Given a Boolean network N and a node y € N, if y is a primary
input, then the unit fanout delay of y is given by:

uf_delay(y) = fo-ent(y) X dunit_fanout (4.13)

where dynit_fanout Which represents the extrinsic delay parameter is know for the
given FPGA device and fo_cni(y) is the number of fanouts of y.

If y is an internal node or a primary output with support size < K, then the

unit fanout delay of y is given by:

uf-delay(y) = maz{uf delay(z:) | x; € fanin(y)} + dunit + fo-ent(y) X dunit_ganout
(4.14)

67



where dyni; which represents the intrinsic delay parameter is also know for the

given FPGA device.

For each g-function g;, the the cost function for delay is:

pg-cost(g:) = uf -delay(g;) (4.15)

Lemma 4.1.2 Given a Boolean network N, the lower-bound and upper-bound
delay on the combinational delay at the output of node y € N when fi_ent(y) > K

are given by:

lower_bound_lut_uf_delay(y) = [loglf | fz_cni(y) H X (dum't + dunit_fanout)

-I—(fo_cnt(y) - 1) X d:mit-fanouf (416)

upper_bound_lut_uf_delay(y) = maz[l,(fient(y) — K +1)]
X(dunit + (I( - 1) X dunit_fanout)
+(fo-ent(y) — K + 1) X dunit_fanout(4.17)

where K is the number of inputs of LUT, fi_ent(y) is the number of immediate
fanins of y and fo_cnit(y) is the number of fanouts of y. Note that the lower
bound and upper bound delays are equal to dunit + fo_cnt(y) X dynic_ fanout When
fient(y) < K.

Proof: Same as Lemma 4.1.1.
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Definition 4.1.5 Given a Boolean network N and a variable y, if y is an internal
node or a primary output, then the uf_delay(y) is given by (the LUT delay of y is

estimated as the upper-bound delay):

uf-delay(y) = upper_bound_lut uf_delay(y) + maz{uf delay(z;) | z; € fanin(y)}
(4.18)

Theorem 4.1.1 Consider a function f(zg,...,2,_;) that is decomposable under
bound set B = {2q,..., zx_1} and can be transformed to f'(go(zo,-..,Tx_1),---,
gi—1(Toy ++ vy TK-1)y TKy - .., Tn-1), then the upper-bound delay at the output of

f, is given by:

uf_delay(f,B) = upper_bound lut uf delay(f") + ma:v[_eéna,x l{uf_delay(g,r)},
t€0,...,7—

iefi,l}ii_l{uf_delay(m;)}] (4.19)

Proof: Follows from delay calculation equation and definition of upper bound delay
(see Figure 4.2).

There are two selection decisions which affect the fanout count of a mapped
node. The first decision variable is the g-function encoding. The objective function
used for g-function encoding in Section 3.2 and Section 3.3 is generally not suitable
for delay-minimal decomposition under the unit fanout delay model as shown by

the following example.

" Example 4.1.2 Given a function f that is decomposable under bound set B =
{a,b,c,d, e}, two of the possible g-function encodings for this decomposition are
shown in Figure 4.4. Assume that c is a late arriving signal compared to a, b, d,
and e. Both encodings result in three g-functions. Encoding I has a total of 11
fanins for ¢1, g2, and g3 whilst encoding II has a total of 14 fanins. Encoding I is

better than encoding Il under unit delay model, but under the unit fanout delay
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model, encoding II is a better choice because it leads to fewer fanouts for signal c.

O

The second decision variable is the bound set selection. The objective of bound
set selection for minimum delay under the unit delay model may not be suitable
for minimum delay under the unit fanout delay model as shown by the following

example.

Example 4.1.3 Given a multiple output, partially decomposed network I =
(f1, f2) (Figure 4.5.A), two of the possible bound sets for next decomposition are:
bound set By = {z4, Ts, Ts, x7, 23} with u_delay(f, Bo) = 1, uf_delay(f, Bo) = 2.8
bound set By = {zs, xs, 27, Ts, o} with udelay(f, B,) = 1, uf_delay(f, By) = 2.6

Since both bound sets By and B; results in the same delay under unit delay
model, assume bound set By is used for minimum delay decomposition under unit
delay model (Figure 4.5.B) while use By as next decomposition leads to minimum

delay under unit fanout delay model (Figure 4.5.C). O
We modify Definition 4.1.3 as following and use it to select the best bound set.

Definition 4.1.6 Given a multiple-output function F' = (fo, ..., fu-1) and bound
set B, the delay_cost is defined as:

delay_cost(F, B) = maz{uf_delay(fi, B) | fi € F'}. (4.20)

If there is a tie between two bound set By and Bs in terms of their delay.cost,
then we pick the bound set B* that maximizes the supp_red(F, B*). This choice
results in an algorithm that first minimizes the network delay and then maximizes
the LUT utilizations. This minimum delay decomposition scheme using unit fanout

delay model has been incorporated into our system as FGSyn_ufd.
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4.2 Decomposition for Minimum Energy

Dissipation

Low energy VLSI design can be achieved at various levels. Once these system
level, architectural and technological choices are made, it is the switching activity
of the logic (weighted by the capacitive loading) that determines the energy con-
sumption of a circuit. FPGA devices are often used for prototyping and designed
to implement any functionality, therefore by design, they are not low energy de-
vices. It is however still noteworthy to minimize the energy dissipation in FPGA
design once a decision has been made to use these devices (for reasons of field pro-
grammability, fast turnaround time and cost). In fact, in some cases, designers are
using FPGAs to replace low-end ASICs as FPGA speed and density approach those
of low-end ASICs. Under this scenario, low energy consumption becomes an impor-
tant design consideration. Even in cases where FPGAs are used as fast prototyping
devices, excessive energy consumption can pose serious problems in terms of in-
creasing circuit delays, reducing circuit lifetime and increasing packaging/cooling
cost.

A decomposition procedure for minimizing the switching activity in general at
the outputs of decomposed blocks or in specific at the LUT outputs of FPGA device

will be described next.

4.2.1 Energy Consumption Model

The energy consumption can be separated into static and dynamic components.
The dominant source is dynamic consumption which refers to the energy involved
in the charging/discharging of circuit node capacitances. The dynamic energy
consumption in FPGAs can be divided into logic, clock, and 1/0 pads. This paper

focuses an energy consumption in the combinational logic blocks in an FPGA device.



The average energy consumption of a look-up-table (LUT) in an FPGA device
is calculated by the following equation:

BT = % X Vi x CET » sw(LuT) (4.21)

where CEYT is the load capacitance seen at the output of the LUT, Vyq is the supply
voltage and sw(LUT) is the average number of transitions per clock cycle at the
output of the LUT. Here, we have ignored the energy consumption within the LUT
itself. Indeed, any time a new input pattern is applied to an LUT, the values on
exactly two lines within the LUT change, and so

BEYT = Vi, % Con, (422

int.

where Cj,. is the internal capacitance seen by any line within the LUT. Therefore
as long as there is some change at the inputs of the LUT, the same amount of
internal energy is dissipated independent of how big or small the change is. Here
we assume Cin, << CEYT and hence EXVT << ELUT. Under fixed clock cycle
time, power minimize and energy minimize problems coincide. This is precisely
the problem we are considering in this section.

We also adopt a non-glitch delay model where signal transitions due to haz-
ards/glitches are ignored. Primary inputs are assumed to be uncorrelated, but

spatial correlations among internal lines (due to re-convergent fanouts) are taken

into account.

4.2.2 Enmnergy Consumption and Function Decomposition

There are many different g-function encoding schemes that can be used to decom-
pose a function, each resulting in a different set of f' and g; functions with different

energy costs. The following example illustrates this point.
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1 H 3 : o . L o 3
Example 4.2.1 Consider a function f = z 232516 + 2 23527 + 21832478 +
T1T3Tyy + T1T2TaTs + T1 02849 + Ty Tox 0. Let bound set B = {xy, 22, 23, 74, 5 }.
Encoding I: Function f can be decomposed to functions f’ and go, g1, ¢2. The

resulting functions are (Figure 2.6.B):

' = 909192%6 + gog1 G274+ Godh 9228 + Gogi1GaTo + GoT1o
Jo =21 + T2
g1 = T123 + T122

g2 = T1T3T5 + T1T3T4 + T129T4 + T122

Encoding II: Function f can also be decomposed into different f" and go, g1, 92

(Figure 4.6 whose boolean equations are given below:

' = go%e + Gog19227+ Gog1G27s + Gog192T9 + Gog1G2T10
Go = T1X375
g1 = T123T5 + T183T4 + T1T2%4

g2 = T1T3Ts5 + 18384 + T12204.

Without loss of generality, let us assume that circuit inputs are uncorrelated
and each has a signal and transition probability of 0.5 (corresponding to pseudo
random input statistics).

The switching activities of go, g1, g2 are 0.375, 0.500 and 0.469 for the g-functions
in the encoding I, but are 0.219, 0.469, and 0.469 for the g-functions in the en-
coding II. Thus the total switching activity for the 3 g-functions in the second
encoding scheme is 14% less than that in the first encoding scheme.

Alternatively, assume the following signal probabilities for the primary inputs:

Ty | 2| T3 | T4 | Ts | Te | Tr | T | To | T10

0.3/103(01(02]01(05]05]0.5(0.5]0.5
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Figure 4.6: 0BDD function decompositions with different encoding
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The switching activities of go, g1, g2 are 0.4998, 0.4992 and 0.4842 for the g-
functions in the first encoding, but are 0.0060, 0.2157, and 0.4842 for the g-
functions in the second encoding. Thus the total switching activity for the 3
g-functions in the second encoding scheme is 52% less than that in the first encod-

ing scheme.

4.2.3 Minimum Energy Decomposition

CLUT =

ext.

The input loading of each LUT is assumed to be Cp, and therefore,
fo_ent(LuT) xCo where fo_cnt(LUT) is the number of fanouts of the LUT. As-
sume V7 x C, = 1, then the energy consumption of each permissible g-function pg

contributes to the energy consumption by:

AE(pg:) = sw(pg:) x fo-cnt(pg:) + > sw(z;). (4.23)

m;Gsuppart(pg;)

The number of fanouts of a pg; is > 1 only when the g-function has been
shared among the outputs. At the same time, the larger this number, the smaller
the number of g-functions required to produce a valid encoding. Therefore, the
energy contribution of each pg; is divided by its number of fanouts to yield the

cost of a pg; as:

pg-cost(pg;) = f%g%—ig)r.) (4.24)

- Example 4.2.2 Using the function in Example 4.2.1, function f can be decom-

posed to f’ and go, 91,92 With respect to the bound set {z1, z2, T3, T4, To }:

f' = gog192%5 + G091 527 + God192Ts + Gog192T9 + JoT10
go =1+ T122
g1 = T1T3 + T122

g2 = T1TaT6 + T1E3T6Tq + T1T2T4T6 + T1T3T4T6 + T1T9T4T6 + T122.
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In Example 4.2.1, according to equation 4.24:
pg-cost(go) = 1.3398,
pg-cost(gy) = 1.5192,
pg-cost(gz) = 2.0042

In Example 4.2.2, according to equation 4.24:
pg-cost(go) = 1.0260,
pg-cost(gy) = 1.3157,
pg-cost(gz) = 2.0042

The pg_cost reflects both the energy contribution of the pg; and its sharing
potential. After generating the pg-sets for individual Boolean functions, we must
select a set G' of pg’s with minimum total pg_cost such that this set produces a

valid, complete encoding of each function. This problem is formulated as follows:

Definition 4.2.1 Low energy subfunction encoding problem:
Given a collection PGS of pg-sets {pgsi, pgss,...,pgsn} and G = UL pgs;, find a
set G C G with minimum total pg_cost such that for each pg-set pgs, with bit_size

J, there is a subset of G’ with size j which induces a j-bit-partition of pgs..

This problem is NP-hard and we resort to the following greedy algorithm for

solving the minimum energy subfunction covering problem heuristically.

Algorithm Low_energy_subfunction_encoding [48]:
Given a collection of pg-sets in which each pg-set is annotated with a value count
initialized to its bit_size k (this is for indicating when a function has a complete

encoding) and a 0-bit partition bp initialized to its column_set,

1. Find a permissible g-function g that has the lowest pg_cost.
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2. Ior each pg-set that contains g, decrease its count by 1. If count = 0, remove

this set.

3. For each pg-set that contains g, remove any pg-code that can not produce

the valid encodings with g for corresponding column_vector V.

4. Repeat steps 1-3 until every pg-set is removed. Then, return the set of bp’s,

which defines the encoding for each pg-set.

Theorem 4.2.1 Given a multiple-output function F' = (fy,..., fu—1) and bound
set B, the energy_cost which is calculated as the difference of energy consumption

before and after decomposition is given by:

energy-cost(F, B) st (gi)fo-ent(gi)+>. > sw(z;)

9i z;esupp(gi)

-3 >, sw(z;). (4.25)

Ik zj€[supp(fir)NB]

Proof: The energy consumption before decomposition is:

energy(F) = ( > sw(z;) + sw(fr) x fo_ent(fi)) (4.26)

Ik zy€[supp(f)nB]

and the energy consumption after decomposition is:

energy(F') = st gi)foent(gi)+ >, >, sw(z;)+ > sw(f) x foent(fy)
9i zjesupp(gi) I
(4.27)
But global function and output connections of fj and f} are the same, thus sw( f})
= sw(fi), foent(f}) = fo-ent(fi), thus we get Equation 4.25. ]
In Example4.2.1, energy_cost(F, B) = 3.3432; In Example 4.2.2, energy_cost(F,
B) = 2.8259. It is clear to see that the encoding in Example 4.2.2 has produced

less energy_cost(F, B) compared to encoding in Example 4.2.1.

79



We have developed an algorithm for the low-energy decomposition as follows.
Our goal is to minimize the total energy consumption in the circuit. Given a
multiple-output function F' = (fo, ..., fa-1), our algorithm is carried out recur-

sively as follows.

Algorithm fg_synthesisle:

1. For each bound set B of size k do

2. Partition F into N groups (Hy,..., Hy_1) such that each group 1is
decomposable with respect to bound set B and N is as small as possible;

3. For each group H,, generate all its pg functions and store them in pgs,;

S

Ezxtract common pg;’s according to their assigned cost so as to produce

a minimum cost valid encoding of all f,,’s;

e

Compute and store the supp_red and energy_cost of the final encoding;

(=]

. Pick the bound set B* with mazimum supp_red and minimuwm energy_cost;

-1

. Decompose I' with respect to B* and generate F' for next iteration.

In step 1, we choose the bound set size as the input size k of a LUT so that each
g-function can be directly mapped to a single LUT. Step 2 is carried out as described
in Section 3.1.1. Steps 3 and 4 are performed as described in Section 3.2. The cost
of a pg; is given by Equation 4.24. In step 5, the supp_red of a decomposition is
defined in Definition 4.1.3.

In step 6, we pick the bound set with the maximum variable reduction first. If
 there is a tie, then we use the energy cost as a tie-breaking rule. This scheme is
used as we don’t want to reduce the energy consumption at the cost of an increase
in the LUT count. Step 7 is carried out in a straight forward fashion as described

in Section 2.3.1.

Example 4.2.3 Consider two-output Boolean function F = (fo, f1) shown in

Figure 4.7. Switching activity on each input signal, z; is 0.5. Furthermore, assume
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Function F Function F decomposed under B = {x,, X5, X3, X4, X5)

Figure 4.7: Example of multiple-output function decomposition

that sw(g;) = 0.32, sw(gz) = 0.18 and sw(gs) = 0.255. Then,
suppred(F,B) = (3 +2) =25

energy.-cost(F, B) = 0.9354+ 6 — 4.5 = 2.435 where B = {z,, 2,3, 24,75}

This minimum energy decomposition algorithm have been incorporated into
our system as FGSyn_e. The results show 18% reduction over mis-pga(new) in

terms of energy consumption.

4.3 Emnergy-Delay Optimum Decomposition

Logic decomposition changes both the switched capacitance and delay of the over-
all circuit. The product of C, and E(sw) which is offen referred to as the switched
capacitance describes the average capacitance switched during each data period
1/far. Minimizing the switched capacitance may however adversely affect the
maximum clock frequency in the circuit, which may or may not be acceptable de-

pending on the design constraints. The key question is therefore what objective
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function should be used for low power design. The answer varies from one ap-
plication domain to next. If extending the battery life is the only concern, then
energy (that is, the power-delay product) should be minimized. In this case the
battery consumption is minimized even though an operation may take a very long
time. On the other hand, if both the battery life and the circuit delay are im-
portant, then action (that is, the energy-delay product) must be minimized [31].
The energy-delay product allows a designer to find optimizations that provide the
largest reduction in energy for the smallest change in performance.

The objective function in many scenarios is to minimize energy and maximize
performance. In these cases, one should really minimize the energy-delay product.
This is precisely the problem we are considering in this section. We motivate this

section with an example.

Example 4.3.1 Given a function f = z; 25 x3 24 a5 zg, we decompose function
[ using only 2 inputs LUT. Figure 4.8.A shows the delay minimum decomposi-
tion result and Figure 4.8.B shows the energy minimum decomposition. The delay
minimum decomposition gives minimum delay but produces higher switched ca-
pacitance while the energy minimum decomposition gives minimum switched ca-
pacitance but produces worse circuit delay. The energy-delay products for delay
minimum and energy minimum decompositions are 3 x 5.243 = 15.729 and 5 x
4.771 = 23.855, respectively. Thus the delay minimum decomposition is a better
solution from energy-delay product perspective. The energy-delay product mini-

mum decomposition produce the same result as delay minimum decomposition in

this case. a

The objective function of minimum energy-delay decomposition was thus mod-

ified as follows.
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delay =3 delay =5
energy =5.243 energy = 4.771

(A) Delay minimum decomposition (B) Energy minimum decomposition

Figure 4.8: Delay minimum vs. energy minimum decompositions

Definition 4.3.1 Given a multiple-output function F' = (fs,..., fu—1) and bound

set B, the pg_cost is calculated as:

pg-cost(g;) = % x uf _delay(g:) (4.28)

The energy.delay._cost is calculated as:
energy_delay_cost(F, B) = energy-cost(F, B) x delay_cost(F, B) (4.29)

where energy_cost(F, B) is from Equation 4.25 and delay_cost(F, B) is from Equa-
tion 4.20.

This minimum energy-delay product decomposition algorithm have been in-
corporated into our system as FGSyn_ed. The results show 10.1% reduction over

FGSyn_e and 28.8% reduction over mis-pga(new) in terms of energy-delay product.
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4.4 Decomposition into Special Classes of
Functions

Functions that possess certain properties, such as being symmetric or unate,
tend to have smaller size OBDD [15] representation. A decomposition scheme that

decomposes a function f into symmetric or unate function f" will be thus useful.

4.4.1 Decomposition and Symmetric Functions

Definition 4.4.1 [27] A function f(=zy,z,...,2,) is symmetric in variables z;, z;

denoted by @; ~&; if f(Z1,...,@t5. 00y @gyoeey®n) = FlB1y0mny Bigeny Biyee sy Tn).

Lemma 4.4.1 [27] A function f(z,®,,...,2,) is symmetric in variables ;, z; if

and only if fg e = fo; ;-

Definition 4.4.2 Given a function f(z1,2s,...,2,), if f can be decomposed into
(91,925 s Gy Tng1y -« -, Tp) such that ' is symmetric in variables i, gj for some
1,7 € {1,2,...,n}, then we say that f admits a partially symmetric decomposition.
If f'is symmetric in variables g;,g; for all ¢,5 € {1,2,... ,n}, then we say that f

admits a totally symmetric decomposition.

Definition 4.4.3 Given column_vector V = [v0,.-.,vs] and a one bit encoding
pg = [bo,...,bn] of Vi;, bit_cover(V,pg) is defined as {v | b; = 1,0 < i < n}.
Similarly, bit_cover(V,pg) = {v | b; = 0,0 < i < n}.

Example 4.4.1 Given column vector V43 =[3344004033223210]
and pg =[000011000100000 1], bitcover(Vss, pg) = {0,3}, while
bit_cover(Vs 3, 57) = {1,2,4}. O

Definition 4.4.4 bit_cover(V, (pgi, pga)) = bit_cover(V, pg1) N bit_cover(V, pgs),

where (pg1, pga) is (pg1 && pgs).



Lemma 4.4.2 Given column_vector V;; and two one-bit encodings, pg, and pgs,,
if bit_cover(V;;, (pg1,992)) = (Vij, (PG1,pg2)), then the decomposed function f
is symmetric in pg; and pg,. Note that such pg; and pg, can only be found by
multi-code assignment because of non-tree structure of OBDD that caused by pg;

and pg,.

Example 4.4.2 Given column_vector V‘{.;; =[3344004033223210],ifwe
encodepg; =[0000110101011111),pg2=[1100110110100011]
and pg3 =[0000110100110101], then bit_cover(V,{s, (pg1,P92)) = {2, 3}
= bit_cover(V,{ﬁ, (Pgr, pg2)). This leads to a partially symmetric decomposition of
f into f’ where g; ~ g. O

Definition 4.4.5 Given a Pascal triangle (Figure 4.9.c), the k' row of triangle

(denoted by Psy) is referred as the Pascal signature for k symmetric variables.

The symmetric property of any given function f can be easily verified using
its OBDD representation as follows. For a given bound set B = {g1, 92,93, 94}, if
all 4 variables in B are symmetric, then the multiplicity of the distinct columns of
column_vector of f with respect to bound set B will match the corresponding Pas-
cal signature Ps4. If only a subset of the variables (e.g. gi,92,9s) are symmetric,
then only the column_vectors with respect to these variables, in this case, ({a1},
{91,902}, {1, 92, g3}) will have the corresponding Pascal signatures (Psy, Psa, Ps3)
(see Figure 4.9).

Based on this observation, we can use the following operators to perform par-

tially or totally symmetric decomposition.

Definition 4.4.6 The column_groups G/ is a set of column groupings of {so, s1,

..., 8n}, such that each set s; is a collection of v; € Y/ with the same index.

Example 4.4.3 Given column_vector V*{.:’- = [v15,V145.--500] =[33440040
3322321 0], the corresponding column_groups G’ is {{ve,v12, 13}, {v3, Ve, V7,
V14, V15}, {2, V4, Us}, {v1}, {vo, vs, vio, vi1}} o
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Figure 4.9: Symmetric property in OBDD

Definition 4.4.7 Given column_groups G/ and Pascal signatures Ps;, operator
match_psp (match th Pascal signature property) is defined as follow:
match_psp(G, Psi) = {(si,p;) | For each set s; € G and each p; € Psy, there is a
one-to-one correspondence from s; to p; such that | s; |[> p; }.

If this one-to-one correspondence cannot be found, then match_psp(G, Psy) = ¢.

Example 4.4.4 From example4.4.3, match_psp(G/, Ps3) = { ({v1,vo, vs, v10,v11},

1), ({‘Uz,W; 05}1 3), ({1’9,1?12,'013}, 3), ({v3)v51971 U14}U15}1 1) }; mﬂtCh-}JSP(gf, PS4)
= qﬁ. O

Lemma 4.4.3 Given a column.vector V/, the maximum number of symmetric
variables (g-functions) that can be produced as a result of decomposition is given
by

maz{i | match_psp(G/, Ps;) # ¢}
where Ps; is the Pascal signature for bound set size i.
If the maximum number of symmetric variables that can be produced for V! is
equal to | G/ | —1, then a totally symmetric decomposition can be performed,

otherwise, only partially symmetric decomposition can be performed.
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Definition 4.4.8 Given a match_psp(G/, Ps;.) result (denoted as P{), the oper-
ator divide(P}) is defined as: Sort each (si,b;) € P{ in increasing order of j; for
each (s;,b;) € PL, divide s; into b; groups ({si1, sz, - . - , Sib; 1) and put them into a
list G.

We use following procedure to carry out the symmetric decomposition.
Algorithm Symmetric_.decomposition_procedure:

Given a column_vector V/ and column_groups G/

—_

. Find K = maz{i | match_psp(G’, Ps;) # ¢}.

o)

. Do P{ = match_psp(Gf, Psx) and G' = divide(Pf).

3. Annotate each s; € G' with (bg,...,b;) where j = 9K-1p, 4 ... 4 2%,

(For example, s5 — s(1,0,1) for K = 3).

i

. For j =1 to K do /* Assign K symmetric g-functions */

{

.....

g; code = V/ = [vy,...,vo] with each v; assigned “0” or “1” from G

5. Assign rest of non-symmetric g-functions using shared subfunction encodings

scheme in Section 3.2.

The symmetric decomposition technique may not be able reduce the total num-
ber of g-functions needed in the final solution since totally symmetric decomposi-
tion always use more g-functions than the non-symmetric decomposition (except
when | 8/ |= 3 decomposition). Partially symmetric decomposition also has the
tendency to increase the number of g-functions. However, the f' function is simpler
to implement for symmetric decompositions. Thus, this symmetric decomposition

technique can be used for special purpose decomposition.



4.4.2 Decomposition and Unate Functions

Definition 4.4.9 [27] A logic function f is positive unate (negative unate) in a
variable z; from 0 to 1 causes all the outputs of f that change, to increase also
from 0 to 1 (from 1 to 0). A function that is either positive unate or negative
unate in z; is said to be unate in ;. A function is unate if it is unate in all its

variables.

Lemma 4.4.4 [27] Given a function f, if f; D fz (or fo + fz = 1), then function
f is positive unate in variable z; if f, C fi (or f; + fz = 1), then function f is

negative unate in variable z.

Definition 4.4.10 Given a function f(zy,22,...,2m,), if we decompose f into
(91,92, -, Gny Tnt1,-..,2Tm) such that f’ is unate in variables g; for some i €
{1,2,...,n}, then we say that f admits a partially unate decomposition. If f' is
unate in variables g; for all ¢ € {1,2,...,n}, then we say that f admits a totally

unate decomposition.

Each distinct column in column_vector of function f with respect to bound set
B corresponds to a sub_0BDD. To check the unateness of each pg-code, we simply
take the “or”of every sub_OBDD that corresponds to “1” (“0”) in the pg-code to
produce f, (f). The complexity of checking unateness of each pg-code is linear to
the number of OBDD nodes. We use the following algorithm to check unateness of

~each pg encoding in column set.

Algorithm Unate_decomposition_encoding:
Given a column.vector V/ and sub-OBDD set SB-set that corresponds to each

distinct column in V7.

1. Produce the uni-code assignment pg-set of V7.
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2. For each pg, in pg-set do
{
Divide sub-0BDD set into By and B according to each bit (“0” or “17)
in pgy.
Let B; equal to the result of “or” operation on each sub-0BDD in Bo;

Let B, equal to the result of “or” operation on each sub-0BDD in B,.

If (B, + B;) = 1, then annotated this pg code with positive unate (“17).
If (B, + Bz) = 1, then annotated this pg code with negative unate (“-1”).

Otherwise annotated this pg code with binate (“07).

Finding a minimum set of pg-sets with maximum number of unate variables (pg)
can be formulated as the minimum subfunction covering problem as in Section 3.2.
We use the minimum subfunction covering algorithm with a lexicographic cost
function where the first objective minimizes the number of g-functions and the

second objective maximizes the unateness of f" with respect to the g-functions.

4.5 Summary

In this chapter, we described the decompositions for minimum delay using two
different delay models (unit delay model and unit fanout delay model), minimum

energy, minimum energy-delay product, and special classes functions (symmetric
| and unate functions). In next chapter, we will apply these techniques to look-up

table based field programmable gate arrays synthesis.
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Chapter 5

Application to LUT-Based FPGA Synthesis

5.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are ASICs that can be configured by the
user. They combine the logic integration benefits of custom vLsI with the design,
production, and time-to-market advantages of standard logic ICs. FPGAs can be
viewed as an evolution of PALs where size is increased by an order of magnitude,
or a refinement of mask-programmed gate arrays, where the reprogramming time
and cost are drastically reduced. Figure 5.1 shows the structure of a FPGA which
consist a matrix of logic block with routing resource around the blocks. Each logic
block consists sequential (latch) and combinational logic parts. In this thesis, we
only use the combinational logic for random logic mapping.
There are mainly two types of FPGA architecture: one is Look-Up-Table (LUT)
based FPGAs, and the other is multiplexers based FPGAs. The LUT-based FPGA is
| a popular architecture used by several FPGA manufactures, including Xilinx and
AT&T. In a LUT-based FPGA device, the basic programmable logic block is a K-
input lookup table (K-LUT) also called a configurable logic block CLB which can
implement any Boolean function of up to K variables.
A K-input lookup table is a digital memory that & inputs are used to address

a 2% by 1-bit digital memory that stores the truth table of the Boolean function.
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LUT

Configurable Logic Block (CLB)

Interconnection area

Figure 5.1: The FPGA structure

For example, Figure 5.2 illustrates the function gy = 2oz 132 + ToT122 +ToT122
Karnaugh map implemented in the 3-input LUT. The Karnaugh map is stored in
an 8 by 1-bit memory, and an 8 to 1 multiplexer, controlled by the variables g,
x; and z,, selects the output value go.

In a LUT-based FPGA device (e.g., XC3000 device from Xilinx Inc [35]), the basic
programmable logic block is a K-input lookup table (K-LUT) which can implement
any Boolean function of up to K variables.

The technology mapping problem for LUT-based FPGA designs is to transform
a Boolean network into a functionally equivalent network of K-LUTs. There are
several different approaches for solving the FPGA mapping problem [24, 23, 25,
37, 64, 46, 58, 1, 55]. All of these works are based on the algebraic decomposition
“method. Our works [42, 40, 41, 48, 49, 50] are based on the function decomposition

which is Boolean method.
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Overview of FGSyn

on the theory presented in the previous chapters, we have developed an

OBDD-based decomposition program, called FGSyn, for LUT-based FPGA synthesis.

FGSyn is based on the multiple-output function decomposition theory.

Given a multiple-output function F' = (fy, ..., far—1), the FGSyn algorithm is

carried out recursively as follows.

Algorithm fg_synthesis:

1. For

each bound set B of size K do

/* K is the maximum number of inputs of each LUT */

Partition /' into N groups (Hp,..., Hy_1) such that each group is
decomposable with respect to bound set B and N is as small as possible;
For each group H;,
if its compatible class size | S |< 8, then generate all its pg functions;
else use the bipartition_dependency_graph algorithm to generate the
common pg functions;

Extract common pg;’s according to their assigned cost function (pg_cost)
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so as to produce a minimum cost valid encoding of all f,,’s;

S'JI

Compute and store the specified cost function (decomp_cost) of the final
encoding;

6. Pick the bound set B* with the best decomp_cost;

7. Decompose I’ with respect to B* and generate I’ for next iteration.

In step 1, we choose the bound set size as the input size k of a LUT so that
each g-function can be directly mapped to a single LUT. Step 2 is carried out as
described in Section 3.1. Steps 3 and 4 are performed as described in Sections 3.2
and 3.4. Note that pg_cost in step 4 and decomp_cost in steps 5, 6 are defined
according to the objective function that is being minimized during synthesis. For

minimization of the number of LUTs, we used:

pg-cost(g:) = supp(g:) (5.1)

decomp_cost(F, B) = supp_red(F, B) (5.2)

Step 7 is carried out in a straight forward fashion as described in Section 2.3.1.

5.2.1 Node Clustering

An important issue is how to come up with the input F = (fo, ..., fm-1) to
the fg_synthesis algorithm. One option is to use the whole Boolean network as
F. This is sometimes infeasible as size of the OBDD representing F' becomes too
large. In addition, the output partitioning performed in step 3 of fg_synthesis
algorithm may lead to a large number of output groups, and thus, a lot of logic
may be duplicated among various output groups. A better technique is to run the
rugged script [57] on the network, and then do some node clustering where each
cluster is a complex multi-input, multi-output Boolean function. Each such node

then becomes the input to the fg_synthesis algorithm.
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Definition 5.2.1 Node clustering problem: Given a collection of nodes NN =
{No, N1,...,Nn}, find a partition that divide A into { Mo, MVy,..., N ) such that
the total supports size of nodes in each A; is minimized and the common supports

size among nodes is maximized.

Node clustering is currently performed by the following greedy algorithm:
Algorithm node_clustering:

Given a set of nodes N' = {Ng, Ny,...,N,,}. Set k = 0.
1. Start with a seed node N, and insert it into the first cluster C*.

2. Find a new node N; that maximizes the | supp(N;)Nsupp(N;) | and minimizes

| supp(N:) U supp(N;) |-

3. If | supp(N;)Usupp(C*) |< a and 1+ | C* |< B for some specified parameters
a, 3, then merge N; with C°; otherwise pick a new seed node and increase k

by 1 and initialize C*;
4. Repeat the above until all nodes are assigned to some node cluster.

In step 1, a random seed node is chosen from A into cluster C*. In steps 2 and
3, nodes that maximizes the common supports of nodes in C* and minimizes the
total supports of C* are chosen. Some constraints, o, 3 are set to limit the total
support of C* and the size of C*. Instead of a single seed node, one may start

with multiple seed nodes and grow them into clusters simultaneously.

Example 5.2.1 Given a Boolean network
fi = abe + cd + Gex;
f2 = agh + kn + mz;
f3=be+ Bdg + eT;
fa = bg + hmn + hy;
T = apq + rs;
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Yy =dqg+rs+ tu;

a

”gh + mn;

If f, is selected in step 1, then in step 2

| supp(fo) Usupp(f1)| =11
| supp(fs) Usupp(fr)| =7

| supp(fa) Usupp(fi)| =11
| supp(z) U supp(fr)| =10
| supp(y) Usupp(fr) | =11
| supp(z) Usupp(fi)| =11

| supp(f2) N supp(fi) |
| supp(fs) N supp(f1) |
| supp(fa) N supp(fi) |
| supp(z) N supp(f1) |
| supp(y) N supp(f1) |
| supp(z) N supp(f1) |

I
T e T = Y = R S =

node f3 will be picked into cluster C°. In step 3 for given a = 10,3 = 5, no more
node can be put in cluster C? after C° = {1, f3}.
The node_clustering algorithm leads to the following clusters:
C° ={f, fs},
C' = {fa, fs,2} and
C? ={z,y}. 0

5.2.2 Generating the Subject Network

We use standard scripts, script.rugged, script.algebraic [10, 57], to generate the
initial network which then becomes the input to FGSyn. These scripts extract all
possible common sub-expressions from the given Boolean equations to reduce the
number of literals since the literal count is directly related to the gate area after
technology mapping using standard cell libraries. Literal count however does not
correlate to the LUT count in FPGA mapping. For example, extracting common
sub-expressions from the Boolean equations that have lees than or equal k variable
supports will only increase the number of FPGA logic blocks (LUTs) used in the
mapping result. Thus partial collapsing on some of the nodes become necessary.

The following example illustrates this point.
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Example 5.2.2 Given a Boolean function ' = (fi, f,)
f[ = T1T9T3Ty + T1T2T4Ts + Ll’llfzﬂlgifgg + 21 ToT s + 19T Ty + T ToT4T5+
T1T9T3T4 + T1T2T4Ts & ToT3T4Ts + ToT3TyTs + ToTaTyTs + ToTaT4Ts

fa = 12375 + 318385 + T123T5 + 17325

fi and f, have variable supports {z;,2q, 23, 24,25} and {z, 23,25}, respec-
tively. If we implement function F' using 5-inputs LUT, only two LUT’s are needed.
After running script.rugged, function F' becomes:
fi = z1fong + E1foniy + Tazeng + TaFstiy
J2 = asn3 + 50
Ny = Ta%4 + T84

ng = r1x3 + 123

The script extracts two internal nodes (ng, nz) from function F. If we imple-

ment this new set of functions using 5-inputs LUTs, we will need four LUT’s instead.

O

We use following rules to partially collapse nodes into their fanout nodes. These

rules will adjust the script result to better fit the LUT-based FPGA mapping.

Rule 1 K-bounded_support_collapse:

Given an internal node v and its immediate fanout nodes oy, ..., 0,, if all o, ...,
0, nodes have less than or equal to K supporting variables and if after collapsing
node v into its fanout nodes, oo, ..., 0, will result in less than or equal to K

variable support, then collapse v into its fanout nodes.

Rule 2 Support_reduction_collapse:
Given an internal node v and its immediate fanout nodes oy, ..., o,, if collapsing

node v into its fanout node o;, reduces the support of node o;, then collapse v into
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0;.

Rule 3 0BDD._size_reduction_collapse:
Given an internal node v and its immediate fanout nodes og, ..., 0n, if collapsing
node v into its fanout node o;, preserves the support size of o; but reduces the

number of OBDD nodes needed to represent o;, then collapse v into o;.

Example 5.2.3 From the example 5.2.2, after applying these three rules with K

= 5, function F is transformed back to its original representation. a

5.3 Mapping for XC3000 Device

A typical LUT-based FPGA device is Xilinx XC3000. The configurable logic block
(cLB) in the XC3000 series FPGA is shown in Figure 5.3 which consist of the two
flip-flops and a look-up table. Since we are targeting only combinational logic in
this thesis, we can ignore the flip-flops. This CLB has a maximum of 5 inputs

and can implement any 5-input function or two 4-input functions fy and fo with

| supp(fi) U supp(f2) |< 5.
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5.3.1 Look-up Table Merge

Because of this special property of XC3000 that allow 4-input functions to merge
under the total support constraint. The 4-input LUTs (functions) are packed into
CLBs by a greedy heuristic that merges pairs of LUTs with combined support of K
or less inputs by trying out all such pairs. Ties are broken by merging the pair

that maximizes input utilization in each LUT.

5.4 Mapping for XC4000 Device

The new generation of the Xilinx FPGA devices, i.e., XC4000, contains a number
of architectural and technological improvements that allows densities up to 20K
equivalent gates and support clock rates up to 60MHz. Among the important
architectural improvements that contribute to the XC4000 family’s increased logic
density and performance is a more powerful and flexible configurable logic block
(cLB). A simplified block diagram of the combinational logic part of this CLB is
shown in Figure 5.4. One key issue in synthesis for XC4000 device is to obtain
maximal utilization of the CLBs provided on the device.

Nine different patterns of XC4000 device are recognized for mapping to different
types of functions (Figure 5.5). Among these patterns, the first two patterns are

the most interesting and cost effective. Note that the part enclosed by dotted
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box in the second pattern of Figure 5.6 can be interpreted as an instance of non-
disjunctive decomposition. To have such an interpretation, consider the following

decompositions:

FXp Xponso) = R GX,) 2. )
= Nz, zg,2h,- )
fa(H(zyp,xg,xh) 2y ..)

In the first decomposition (f to f,), variables X; and X, are bound variables with
respect to the functions /" and G. In the second line of the above equation, we re-
place F'(X;) and G(X,) by variables z; and &,. Then, in the second decomposition

(f1 to fa), variable @ is both a bound variable and free variable.

5.4.1 Direct Decomposition

We show how to use the techniques introduced in this paper to map Boolean
functions to the first two patterns of Figure 5.5. Given an OBDD Vv representing
f(zoy...,&n-1), two sets of variables X; and X, each containing at most 4 vari-
ables, and a variable z, the algorithm match_pattern(v, Xy, X,, z3) returns 1 if
{Xy, X,,zs} can be mapped to the pattern in Figure 5.5 (a); returns 2 if it can be
mapped to the pattern in Figure 5.5 (b); otherwise it returns 0.
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Figure 5.6: the non-disjunctive decomposition view of pattern (b).
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match_pattern(v, Xy, X,, zp)

{

1 for (=01 <| Xf |1 44)
2 v = rotate(v, Xy,);

3 cset = cut_set(v,| Xy | —1);
4 if (| eset |> 2) return 0;

5 v = decomp_f(cset,{zs});
6 for (i=0;i<| X, |;i4++)
7 v = rotate(v, X,,);

8  cset = cutset(v,| X, | —1);
9 if (] eset |> 2) return 0;

10 v = decomp_f(cset,{z,});
11 v = rotate(v,zp);

12 cset = cut_set(v,2);

13 if (| eset |> 4) return 0;

14 if (] eset |< 2) return 1;

15 if (| cut_setnd(v,2,2,0) |< 2 && | cut_set nd(v,2,2,1) |< 2)
16 return 2;

17  else return 0;

}

The algorithm match_pattern [41] is straightforward. The first stage is to move
the variables X to the top and compute the cut_set with respect to X;. If the
cut_set size is greater than 2, X; cannot be mapped to a single LUT. The second
stage is the same as the first stage except the variables in X, is used. The third
stage is simple because z;, is a single variable. It computes the cut_set with respect
to variables zj, z, and z;. If the cut_set size is greater than 4, then it requires
more than two outputs. Neither patterns can be mapped. On the other hand, if

the cut_set size is less than or equal to 2, the first pattern is detected. Finally, if
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the conditions imposed in line 15 for non-disjunctive decomposition are satisfied,
then the second pattern is detected; Otherwise no pattern has been found.
To cover the case of non-disjunctive decomposition such as the pattern shown

in Figure 5.7, lines 3-5 in pattern are modified as follows:

3 cset[0] = cut_setnd(v,| X; | =1, Xy | —1,0);
cset(l] = cut_set nd(v,| X; | —1,| Xy | —=1,1);
4" if (| eset[0] |> 2 ||| eset[1] |> 2) return 0;

5 v = nd_decomp_f(cset, {z});

Note that line 3’ assumes that there is only one variable (the last one in X) that
is both in the bound set and the free set. Modifications to allow more than one
shared variable pose no difficulty.

Instead of the above direct decomposition, one could perform a device-specific

decomposition that recursively finds matches to the XC4000 pattern as shown next.

- 5.4.2 Two-Layer Decomposition

Definition 5.4.1 Given a function f(X,Y, Z) and a decomposition f'(g(X),Y, Z),
if f* is simply decomposable under bound set {g(X),Y} and free set {g(X),Z }
(e.g., f' = f"(Mg(X), Y), g(X), Z)), then f is type I two-layer decomposable.

The graphical representation of type I two-layer decomposition is shown in

Figure 5.8 and is also the pattern (d) in Figure 5.5.
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Figure 5.8: Graphical representation of type I two-layer decomposition.

Lemma 5.4.1 Given a function [ represented by OBDD vy and two bound sets
X and Y, the necessary and sufficient conditions for f to be type I two-layer

decomposable with respect to X and Y are:
1. | cut_set(ve, X) |< 2 (let cut_set(ve, X) = {u,v}), and

2. | cut_set(u,Y) |< 2 and | cut_set(v,Y) |< 2.

Proof: Sufficiency: If both conditions are satisfied, then we have the case shown
in Figure 5.9 (a). With the encoding adopted in Figure 5.9 (a), we have the two
g-functions ¢ and A shown in Figure 5.9 (b). After reduction, the reduced OBDD
g is shown in Figure 5.9 (c). Thus, the supporting variables of g and h are X and
X UY, respectively.

Necessity: If | cut_set(u,Y) |> 2 or | cut_set(v,Y) |> 2, then there is no encoding

such that either g or h can be reduced to the one shown in Figure 5.9 (c). a

Definition 5.4.2 Given a function f(X,Y,Z) and a decomposition
F(9o(X)y v vy Gim1(X)sho(Y), ..., hj—a(Y), Z), if f' is simply decomposable under
bound set {gx(X), i(¥Y)}, 0 <k <i,0 <[ < j, and free set consisting of Z and

all g and h functions except for gi and hy, then f is type II two-layer decomposable.
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Figure 5.10: Graphical representation of type II two-layer decomposition.

The graphical representation of type II two-layer decomposition is shown in

Figure 5.10 and is also the pattern (c) in Figure 5.5.
One way to see if a function v¢ is type II two-layer decomposable under

the bound set X UY is the following: If [log, | cut_set(ve,X) |] +[log, |
cut_set(ve,Y) || > [log, | cutset(vy,X UY) ] and there exists an encoding

of cut_set(ve, X UY) such that each g-function g satisfies the following conditions:
1. g is a function of variables X, or

2. g is a function of variables Y, or
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3. g is simply decomposable under bound sets X and Y.

Therefore, to detect type II two-layer decomposition under bound sets X and Y,

one must first compute:

Cx = cutset(vy, X)={ug,...,ux_1},
Vi = cutwector(u;,Y) = (Vig,...,Vigivi_1), Ui € Cx,
Cy = column_encode(Vp,...,Vi_1), and

Cxy = cutset(vy, XU Y)= {WQ, . ,W]_l}.

If [log, | Cx |] + bit_size(Cy) > [log, | Cxy |], then type II two-layer decomposi-
tion is possible. We then compute a set of compatible bit-partitions of C'yy such
that for each bit-partition S* = {5,591} and associated permissible g-function g
satisfies one of the following conditions:
Let W; = (bio,...,b; 2iv_;) where

bi; =0 if vij € S and

bij =1 ifvi; €5,

1. W; = (0,...,0) or W; = (1,...,1), 0 < ¢ < k. Then, g is a function of
variables X (Figure 5.11 (a)).

2. Wi = W;,0< 14,5 <k. Then, gis a function of variables Y (Figure 5.11
(b)).

3. There exist only two distinct W’s, say W; and W;, and bit_size(coding(W;,
W;)) = 1. Then, g is a function of variables XUY and is simple decomposable
under bound sets X and Y (Figure 5.11 (c)). The former condition ensures
that it is simple decomposable under X and the latter condition ensures that

it is simple decomposable under Y.

If fis type I two-layer decomposable under gi(B1), hi(B;), and V; = ¢, then
gx(B1) and hy(B;) can be mapped to pattern (c). If f is type I two-layer decom-
posable under gi(B;), hi(B2), and V; = {z}, then gi(B:), hi(B:) and z can be
mapped to pattern (a). If f is type II two-layer decomposable under gi(B,) and
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Figure 5.11: Conditions for type II two-layer decomposition.

Vi, and | supp(gr(Bi1)) | + | V |< 4, then gx(B:) and V; can be mapped to an
LUT.

This process may be viewed in two ways. First, it is viewed as the size of bound
set being | By | + | V; | and the number of g-functions remaining 7. Second, it is
viewed as a case of non-disjunctive decomposition, that is, supporting variables in
gk(Bi) are both in the bound set By and in the free set.

A straightforward way to detect type II two-layer decomposability under two
bound sets X and Y is the following: We start with the decomposition of f given by
“ = et X )y <o gt X BolY oo o Rgaal¥ oo o = FMtfosince « 5 Viay 805 555 250
...). We then test if f’ satisfies simple decompositions under bound set {yy, z1, Vs },
for0 <k <iand 0 <! < j. The result of this test depends on the binary encodings
for yx and z. Using a wrong encoding causes the test to fail when indeed type

IT two-layer decomposition was possible. Trying all possible encodings is clearly
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nonviable. On the other hand, using an arbitrary encoding may cause too many
false failures.

Given a function f and a bound set | B [< 4, we can use | decomp_g(f, B) |
LUTs to map the g-functions. However, this may not be the best results we can
achieve. For example, let | decomp_g(f, B) |= 2, under one encoding we may have
two g-functions go and g; such that the true support of each function is 4 and 2. In
this case, it is possible that we can map g, and two other free variables to a single
LUT. Furthermore, the new LUT may be combined with the one of gy to match
the first two patterns. The effect of this process has two different interpretations.
First, it is viewed as the size of bound set is 6 and the number of g-functions for this
bound set is 2 or 1. Second, it is viewed as a case of non-disjunctive decomposition:

supporting variables in g; are both in bound set B and in free set.

5.5 Mapping for XC5000 Device

The latest generation of LUT-based FPGA, Xilinx XC5000, is similar to XC4000.
Both families use cM0OS SRAM technology. Both families use 4-input look-up tables
with unshared inputs. There are however some differences between the two fami-
lies. XC5000 cLBs are roughly equivalent to two XC4000 cLBs. Each XC5000 cLB
contains four 4-input function generators and four registers, which are configured
as four independent Logic Cells (LCs). The architecture of logic cell is shown in
Figure 5.12. It uses a 4-input LUT as the basic cell and allows two basic cells to

“form one 5-input LUT or four basic cells to form one 6-input LUT (cf. Figure 5.13).

5.5.1 Mapping Using Fixed Input Size LUTSs

Technology mapping for XC5000 type of FPGA is more complex and challenging due

to the possibility of using different sizes of LUTs. The problem becomes problem
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Figure 5.12: The Xilinx XC5000 logic cell

whether one should decompose the circuit into large LUT’s or into smaller ones in

order to minimize the number of CLBs used.

5.5.2 Mapping Using Variable Input Size LUTs

We modified step 1 of the FGSyn algorithm in Section 5.2 to enumerate all bound
sets of size K = 4, 5 and 6 and used the following cost function to determine which
of the input variable sizes gives the best results.

Given a g-function g;, the pg_cost of g; is defined as:

0.25 if supp(g:) <4
pg-cost(g;) = { 0.50 if supp(g;) =5
1.00 if supp(g:) =6

In this equation, if the g-function supports size is less than or equal to 4, then
this function can fit into ; of cLB (Figure 5.13.A); if the g-function supports size is
equal to 5, then this function can fit into  of cLB (Figure 5.13.B); if the g-function

supports size is equal to 6, then this function can fit into one cLB (Figure 5.13.¢)

]
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Figure 5.13: The different configurations of XC5000 CLB

supp.red(F, B)
Emin.coner _gis pg—COSt(gi)

decomp_cost(F, B) = (5.3)

where the min_cover_g;’s refers to the minimum cover of the pg-sets for the given
bound set B. This decomp_cost is simply the support reduction per g-function

cost.

5.6 Summary

In this chapter, we described the synthesis for different FPGA architectures, XC3000,
XC4000, and XC5000 using our decomposition techniques. In next chapter, we will

show the experimental results for all the techniques we described.

109



Chapter 6

Experimental Results

The LUT-based FPGA synthesis algorithm FGSyn has been implemented in C and
incorporated into the SIS environment. We used FGSyn to synthesize and map a

number of benchmark circuits to the various LUT-based FPGA devices.

6.1 Description of Benchmarks

The benchmark circuits used in this thesis are from the 1991 McNc logic synthesis
benchmark set [65]. Table 6.1 provides some information about these benchmarks.
In this table, “P1” is the number of primary inputs; “P0” is the number of pri-
mary outputs; “nodes” is the number of internal nodes in the optimized network:

“lits(fac)” is the number of literals in factored form in the optimized network.
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name PI [ PO | nodes [ lits(fac)
oxpl 71 10 10 163
9sym 9 1 1 283
9symml 9 1 1 285
alu2 10 6 6 683
alud 14 8 69 296
apex2 39 3 75 285
apex6 135 | 99 210 854
apex7 49 | 37 45 253
b9 41 | 21 46 140
bw 5| 28 28 296
C499 41 | 32 90 610
C880 60 | 26 116 473
C1355 41 | 32 162 552
C1908 33| 25 124 548
C2670 233 | 140 100 872
CH315 178 | 123 271 2002
C7552 | 207 | 108 348 2430
c8 28 | 18 29 141
cml62a | 14 5 12 48
cmé?2a 41 10 13 34
comp 32 3 12 107
clip 9 5 5 264
count 351 16 23 151
decod 5| 16 18 68
des 256 | 245 410 3621
duke2 221 29 115 429
e64 65 | 65 84 274
f51m 8 8 3 169
frg2 143 | 139 172 934
misexl 8 i 7 49
misex?2 25 18 26 103
mux 21 i 6 92
pml 16 | 13 17 49
rd73 7 3 3 247
rd84 8 4 4 482
rot 135 | 107 124 694
sao2 10 4 9 139
vda 171 39 165 615
vg2 25 8 8 92
zdml T 4 4 77

Table 6.1: Description of benchmark circuits
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name cube-based | oBDD-based

(sec.) (sec.)
oxpl 299 2.7
Osym 541.3 3.7
9symml 529.8 3.8
alu2 446.7 224.4
alud 138.7 16.6
apex2 321.4 35.0
apex’ 72.6 11.8
b9 10.3 2.0
bw 19.8 3.3
C880 250.8 38.5
C1908 466.8 108.3
cml62a 7.0 0.7
clip 255.1 14.1
count 48.6 4.2
duke? 303.0 32.5
f51m 33.7 2.7
misex] 11.8 1.2
misex?2 26.1 3.0
rd73 116.7 2.5
rd84 612.1 6.2
rot >1500 469.4
sao2 334.6 19.4
vg2 92.0 8.1
z4ml 27.0 1.5
Total 4695.8 546.2
speed-up —~ 3.6

Table 6.2: Comparison between cube-based and OBDD-based decompositions
6.2 OBDD-based Function Decomposition

The 0BDD-based decomposition procedure described in this thesis has been imple-
mented and compared with the Roth_Karp decomposition algorithm implemented
in sIs [60]. In particular, we used “xl_k_decomp -n 4 -e -d -f 100” which for every
node in the Boolean network finds the best bound set of size < 4 that reduces the
node’s variable support after decomposition, and then decomposes the node and
modifies the network to reflect the change.

Results are shown in Table 6.2. Our OBDD-based decomposition approach

obtains significant speed-up over Roth_Karp approach by an average factor of 8.6.

112



In Table 6.3, we present the results (in LB count of XC3000 FPGA) obtained
by using different options of FGSyn [40]: column encoding with output grouping
(-¢), shared subfunction encoding (-s), and minimum g-function support encoding
(-n). The best results are obtained with the -csn option. The LUTs are packed
into CLBs by a greedy heuristic that described in Section 5.3.1. In Table 6.4, we
compare the run time (CPU seconds) of each options from Table 6.3. The “bx

-csn” option is about 3 time slower than “bx”.
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name bx bx-c bx-cs bx-csn

5xpl 6 0] 375 9 43| 9| 438
9symml 6 6
alu2 65 59

0.0 :
9.2 :
alud 59 59 0.0 56 5.1 56 5.1
apex2 60 60 0.0 59 | B 60 0.0
apex6 189 | 182 3.7 182 3.1 | 181 4.2
apex7 55 47 14.5 44 20.0 43 21.8
b9 28 28 0.0 28 0.0 28 0.0
bw 27 27 0.0 27 0.0 27 0.0
C499 54 54 0.0 54 0.0 54 0.0
C880 93 91 202 87 6.5 87 6.5
C1908 75 74 1.3 74 1:3 73 2.0
C2670 136 | 128 5.9 | 127 6.6 | 122 10.3
C5315 364 | 335 8.0 | 328 9.9 | 316 13.2
C7552 348 | 346 0.6 | 331 4.9 | 317 8.9
clip 23 20 13.0 18 21.7 18 21.7
cml162a 9 9 0.0 9 0.0 9 0.0
count 29 29 0.0 24 17.2 23 20.7
duke2 87 86 1.] 85 2.3 85 2.3
eb4 44 44 0.0 44 0.0 44 0.0
f51m 12 9 25.0 8 33.3 8 33.3
misex] 9 10 -11.1 10 -11.1 8 11.1
misex2 22 22 0.0 22 0.0 22 0.0
rd73 7 6 14.3 5 28.6 5 28.6
rd84 12 9 25.0 8 33.3 8 33.3
rot 150 | 161 -7.3 | 142 5.3 | 136 9.3
5202 26 33 -26.9 21 19.2 25 4.0
vg2 27 23 14.8 22 18.5 17 37.0
zdml 5 4 20.0 4 20.0 4 20.0
Total 2037 | 1971 - | 1890 - | 1847 -
Average — - 9.2 = 10.0 = 11.6

Table 6.3: Experimental results of FGSyn for XC3000 device
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name bx bx-c bx-cs bx-csn
Time | Time [ % Inc. | Time [ % Inc. | Time | % Inc
oxpl 3.8 3.8 0.0 12.8 230.8 13.0 242.1
9symml 6.4 6.3 -1.6 24.7 | 285.9 25.0 | 290.6
alu2 90.0 96.2 6.9 | 140.4 56.0 | 123.3 37.0
alud 29.2 30.1 3.1 108.5| 271.6 | 108.1 | 270.2
apex2 42.3 41.8 -1.2 | 166.0 | 292.4 | 167.9 | 296.9
apexb 170.7 | 212.4 244 | 508.8 | 198.1 | 509.7 | 198.6
apex’ 21.1 27.9 32.2 64.7 | 206.6 65.5 | 210.4
b9 1.9 1.9 0.0 2.0 5.3 2.0 5.3
bw 2.2 2.1 -4.5 2.1 -4.5 2.1 -4.5
C499 3.9 3.7 -5.1 3.8 2.6 3.8 -2.6
C880 47.8 53.1 11.1 | 148.9 | 211.5| 149.6 [ 213.0
C1908 17.9 17.9 0.0 33.8 88.8 31.2 74.3
C2670 132.0 | 149.5 13.3 | 396. 200.2 | 394.0 | 198.5
5315 341.1 | 488.4 43.2 | 9714 | 184.8 | 977.1 | 186.5
C7552 450.5 | 523.5 16.2 | 1209.2 | 168.4 | 1263.1 | 180.4
clip 39.6 46.5 17.4 182.3 360.4 180.7 356.3
cml62a 1.0 0.9 -10.0 15 50.0 1.5 50.0
count 4.8 6.9 43.8 15.1 | 214.6 14.6 | 204.2
duke2 48.2 49.1 1.9 159.8 | 231.5 | 162.7 | 237.6
eb4 2.7 2.6 -3.7 2.7 0.0 2.6 -3.7
f51m 4.8 5.0 18.8 26.9 | 460.4 26.7 | 456.2
misex] 1.6 7.1 | 343.8 20.4 | 1175.0 21.9 | 1268.7
misex2 4.0 4.2 5.0 6.5 62.5 6.4 60.0
rd73 2.5 2.3 -8.0 2.3 -8.0 2.4 -4.0
rd84 7.1 6.4 -9.9 14.7 107.0 15.0 11713
rot 187.7 | 227.9 214 675.6 | 259.9 | 689.3 | 267.2
sao2 40.2 62.2 54.7 207.2 415.4 263.5 555.5
vg2 19.0 19.1 0.5 745 | 292.1 83.4 | 338.9
z4ml 2.0 Hiaf -15.0 4.7 135.0 4.7 135.0
Total 1726.0 | 2101.2 — | 5187.6 - 1 5310.8 -
verage - - 20.6 - | 212.3 - | 221.7

Table 6.4: Runtime Comparison of FGSyn for XC3000 device
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name FGSyn |  FGSyncs
CLB | CLB [ % Red.
C499 54 51 5.6
(880 87 73 13.8
C1908 73 66 9.6
C2670 104 | 103 1.0
C5315 298 | 300 -0.7
C7552 317 | 317 0.0
alu2 49 41 16.3
alud 56 55 1.8
apex2 60 61 -1.6
apex6 178 | 157 11.8
apexT 42 41 2.4
b9 28 25 10.7
clip 15 10 33.0
count 23 23 0.0
des 643 | 643 0.0
ebd 44 43 2.3
frg2 188 | 183 2.7
misex2 22 22 0.0
sao2 25 18 28.0
Vg2 16 16 0.0
Total 2322 | 2248 -
Average - - 7.4

Table 6.5: Large size benchmarks results for XC3000 device.

Our algorithm FGSyn_lcs (“les” stands for large common subfunctions which
described in Section 3.4), has been implemented in C and incorporated into FGSyn.
We ran FGSyn_lcs on a number of benchmarks for XC3000 and XC5000 devices.
In Table 6.5, we compared FGSyn_lcs with FGSyn on the large benchmarks. For
FGSyn lcs, we decomposed the circuit into 8-input nodes and then re-decomposed
to 5-input LUTs; for FGSyn, we directly decomposed the circuit to 5-input LUTS.
FGSyn_lcs does 7.4% better than FGSyn. Obviously, the two-step decomposition
approach, which is made possible by FGSyn lcs, captures more of the logic sharing

in the circuit.
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name Chortle-crf [ ASYL | mis-pga(new) FGSyndes
Run Run Y% Reduction

CLB | CLB | CLB Time | CLB Time [ Chortle | ASYL | mis-pga
oxpl 20 I3 IT7 16.6 9 13.0 5.0 308 47.1
9sym 42 8 7 331.6 T 253 83.3 | 125 0.0
9symml 41 8 7 207.6 T 25.0 | 829 125 0.0
C499 50 = 66 738.0 51 84.0| -0.2 = 22.7
C880 69 = 78 648.8 73 1496 | -5.8 - 6.4
C1908 ~ - 85 264.8 66 31.2 = - 22.4
C2670 = - 111 796.9 | 103 394.0 - = 7.2
C5315 = - 306 | 1285.7| 300 977.1 - — 2.0
C7552 ~ - | 340 | 2288.0 | 317 | 1263.1 - = 6.8
alu2 83 60 84 304.1 41 123.3 | 50.6 | 3L.7 51.2
alud 138 | 254 | 149 | 2381.8 55 108.1 | 60.1 | 78.3 63.1
apex2 93 69 54 491.1 61 167.9 | 344 | 116 -13.0
apex( 161 156 | 147 144.3 | 157 509.7 25| -0.6 -6.8
apex7 42 44 43 16.0 41 65.5 2.4 6.8 4.7
b9 ~ 18 27 10.5 27 2.0 -1 -50.0 0
bw = 27 27 3.3 27 2. = 0 0
clip - 33 23 86.6 10 180.7 - 69.7 56.5
count 27 28 28 8.5 23 146 | 148 | 179 17.9
des 743 —| 750 | 3186.3 | 643 | 4789.9 | 13.5 = 14.3
duke2 89 82 108 325.0 85 162.7 4.5 -3.7 21.3
e64 54 54 55 12.7 43 26 | 204 | 204 21.8
f51m = 14 11 14.5 8 26.7 - 429 27.3
misex1 14 13 9 1.7 8 21.9 42.9 | 38.5 11.1
misex?2 = 24 23 3.2 22 6.4 - 8.3 4.3
rd73 = 8 7 19.6 5 2.4 -1 375 28.6
rd84 53 14 12 119.5 8 15.0 | 84.9 | 429 33.3
rot 131 - 139 175.6 | 136 689.3 -3.8 - 2.2
sao? = 30 28 58.8 18 263.5 - 40.0 35.7
vg2 18 20 20 5.7 16 834 | 11.1| 20.0 20.0
zdml 3 4 6 6.0 4 4.7 | -33.3 0.0 33.3
Total = — 12021 [ 13952.8 | 2371 [ 10204.7 = - =
Average = = = = = - 286 [ 222 18.8

Table 6.6: Experimental results for XC3000 device.

In Table 6.6, we compared FGSyn results with the mis-pga(new) [46]. As seen
in Table 6.6, FGSyn_cs does 28.6% better than Chortle-crf, 22.2% better than

ASYL and 18.8% better than mis-pga (new).
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6.3 Other Objective Functions Decomposition

In Table 6.7, we compare FGSyn_d results with FlowMap [20] and mis-pga(delay)
[47]. FGSyn_d does 7.9% better than FlowMap and 8.9% better than mis-pga(delay).
The number of LUTs used in FGSyn.d is 2.3% smaller than that of the mis-
pga(delay) but 6.7% larger than that of FlowMap-r. Totall reflects the total
number of LUTs and depths for results reported by mis-pga(delay) and Total2

reflects the same for those reported by FlowMap.

name FlowMap-r | mis-pga(delay) FGoyn_d
LUT | Delay | LUT [ Delay | LUT | Delay 70 Reduction
FlowMap-r | mis-pga(d)
oxpl 23 3 21 2 13 2 33 0
9sym 61 5 ¥ 3 7 3 40 0
9symml 58 5 7 3 7 3 40 0
C499 134 5 199 8 76 4 20 50
C880 206 8| 259 9 173 9 -13 0
C1355 - — - - 128 6 - -
C5315 - - | 643 10 | 550 11 - -10
alu2 149 8| 122 6 70 5 38 17
alud 253 10 | 155 11| 316 9 10 18
apex2 - - 116 6 71 9 - -50
apex6 232 4 274 5| 227 5 -25 0
apex7 83 4 95 41 110 4 0 0
b9 - - 47 3 45 3 - 0
bw - - 28 1 28 1 - 0
clip - = 54 4 15 2 - 50
count 76 3 81 4 40 3 0 25
des 1109 5| 1397 11 | 1588 5 0 55
duke2 188 4| 164 6| 124 6 -50 0
eb4 - -1 212 5| 366 4 - 20
f51m ~ - 23 4 12 3 - 25
misex1 15 2 17 2 17 2 0 0
misex2 - - 37 3 34 3 - 0
rd73 — — 8 2 6 2 - 0
rd84 47 4 13 3 9 3 25 0
rot 246 6 322 7 277 7 -17 0
sao2 - - 45 5 25 3 - 40
vg2 38 4 39 4 A 4 0 0
zdml 13 3 10 2 5 2 33 0
Totall — — [ 4395 133 | 4238 II7 - -
Total2 | 2931 33 — — | 3086 i - —~
Average = - - - - — 7.9 8.9

Table 6.7: Experimental results of FGSyn_d
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In Table 6.8, we compare FGSyn_ufd, which is the minimum delay decomposi-
tion algorithm under unit fanout delay model, with FGSyn.d. FGSyn_ufd does
5.9% better than FGSyn_d under unit fanout delay model. Unit and Unit Fanout
columns in table 6.8 are the delay calculated under unit delay model and unit

fanout delay model, respectively.

name FGSyn_d I'GSyn_ufd
Delay Delay

CLB [ Unit | Unit Fanout | CLB | Unit | Unit Fanout | % Red.
axpl 14 2 4.0 15 2 4.2 8.7
Osym 7 3 4.2 7 3 4.2 0.0
C880 175 9 19.8 | 178 9 19.4 2.0
alu2 70 6 14.0 55 6 12.0 14.3
alud 366 9 30.2 | 313 9 26.8 11.3
apex6 227 3 24.0 | 241 6 18.2 24.2
b9 27 3 6.8 28 4 6.6 2.9
clip 23 3 5.8 21 3 5.6 3.4
count 28 4 7.8 23 4 74 5.1
f51m 11 3 5.4 8 3 5.2 3.7
rot 200 7 16.8 | 207 9 16.6 1.2
vg2 21 4 6.4 20 5 6.4 0.0
z4dml 5 2 3.0 5 2 3.0 0.0
Total 1174 | 60 148.8 | 1121 65 135.6 =
Average = —~ — — = - 2.9

Table 6.8: Delay minimum decomposition (unit delay vs. unit fanout delay model)
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In Table 6.9, we compare FGSyn_e results with the mis-pga(new). FGSyn_e
shows 18.1% energy reduction over mis-pga(new). About half of the energy reduc-
tion is due to the reduction in the number of cLBs while the other half is due to

the reduction in switching activities of the g-function outputs.

name mis-pga(new) I’GSyn_e

CLB | Energy | Time | CLB | Energy [ Time | % Red.
oxpl 17 43.1 9.8 9 23.4 1 15.7 45.8
9sym 7 16.8 | 126.2 7 15.5 | 15.9 7.9
9symml 7 16.8 | 46.1 7 15.5 | 15.8 7.9
C499 66 148.0 | 738.0 54 120.0 2.9 18.9
C880 78 169.0 | 648.8 87| 198.4 | 116.2 -17.4
C1908 85 171.0 | 293.1 74 138.7 | 416.4 18.9
alu2 84 160.9 | 54.7 55 | 127.1 | 67.6 21.0
alud 149 | 265.3 | 17.3 57 | 136.2 | 55.1 48.6
apex2 54 112.5 | 83.9 59 | 107.5| 75.5 4.4
apex’ 43 105.2 | 13.8 41 99.7 | 26.3 5.2
b9 27 67.1 9.9 28 62.8 3.6 6.6
clip 23 55.0 | 29.6 13 31.1 | 81.1 43.4
cm162a 10 19.5 3.7 10 17.5 3.7 10.2
cm42a 5 20.0 3.5 7 15.5 2.6 22:5
comp 23 55.4 | 11.9 23 48.4 | 39.2 12.6
count 28 59.9 5.5 23 49.7 1 13.3 17.0
duke2 108 180.5 | 62.8 86 139.2 | 88.6 22.9
efd 55 112.8 | 18.7 48 97.5 7.7 13.5
f51m 11 26.0 6.3 8 20.7 | 19.9 20.6
misex1 9 22.6 2.3 9 21.0 8.7 1.9
misex2 23 49.2 3.7 21 39.0 6.8 20.5
pml 12 27.1 3.2 11 22.2 4.4 18.0
rd73 7 18.0 8.3 5 12.9 4.0 28.0
rd84 12 29.5 | 24.0 8 19.5 | 19.9 33.7
rot 139 | 324.0 | 125.7 | 135 | 306.8 | 410.3 5.3
sao02 28 62.1 8.9 26 45.7 | 152.0 26.5
vg2 20 42.9 3.2 18 374 | 472 12.8
z4dml 6 13.5 2.6 4 9.5 6.0 24.0
Total 1136 | 2393.6 - [ 933 | 1978.3 - -
Average = = - - — - 181

Table 6.9: Energy comparison between mis-pga(new) and FGSyn_e
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No other FPGA synthesis minimize the energy-delay product or even the energy.
So it was difficult for us to compare results with other tools. Fortunately, we have
the mis-pga(new) program and could generate the energy and delay results with
this program using the same set of capacitance values, delay model, and input
data activity profile. These results are depicted and compared with our results
in Table 6.10, FGSyn_e shows 28.8% energy-delay product reduction over mis-
pga(new). This reduction is mainly due to reduction in both energy and delay
compared to mis-pga(new). There are however a few cases in which our results are
somewhat worse that those of mis-pga(new). This is due to the heuristic nature
of the proposed synthesis algorithm where locally optimal solution do not need to

be a better solution in the end.

name mis-pga(new) FGSyn.ed

CLB | Delay | Energy E-D | CLB | Delay | Energy E-D %
oxpl 17 43.1 5.4 232.7 9 234 4.2 98.3 | 57.8
9symml 0 16.8 4.4 73.9 7 15.6 4.4 68.6 | 7.2
C499 66 | 148.0 12.4 | 1835.2 68 | 124.4 94 1169.4 | 36.3
C880 78 | 169.0 23.6 | 39884 85 | 192.8 21.0 | 4048.8 | -1.5
C1908 85| 171.0 21.4 | 3659.4 75| 141.1 24.2 | 34146 | 6.7
alu2 84 | 160.9 27.4 | 4408.7 57 | 131.2 12.8 | 1679.4 | 61.9
alu4 149 | 265.3 36.4 | 9656.9 57| 137.0 29.2 | 4000.4 | 58.6
apex2 57 | 112.5 14.8 | 1665.0 60 | 108.9 16.4 | 1786.0 | -7.3
apex6 147 | 335.1 25.0 | 8377.5| 192 | 373.5 16.6 | 6200.1 | 26.0
clip 23 55.0 13.8 759.0 15 32.1 6.2 199.0 | 73.8
cml162a 10 19.5 5.8 113.1 9 19.6 5.0 98.0 | 134
comp 24 51.5 13.8 710.7 20 41.9 5.8 243.0 | 65.8
count 28 59.9 9.8 587.0 29 63.8 7.4 472.1 | 19.6
duke2 108 | 180.5 23.6 | 4259.8 86 | 141.2 16.0 | 2259.2 | 47.0
ebd 55| 112.8 31.8 | 3587.0 44 97.5 37.8 | 3685.5 | -2.7
f51m 11 26.0 7.6 197.6 8 20.7 5.2 107.6 | 45.5
frgZ 192 | 389.8 21.6 | 8419.7 | 171 | 341.9 21.6 | T7385.0 | 12.3
misex1 9 22.6 1.2 162.7 9 22.3 4.8 107.0 | 34.2
misex2 23 49.2 7.4 364.1 22 39.2 9.6 376.3 | -3.4
rd73 7 18.0 3.2 57.6 5 12.9 3.0 38.7 | 32.8
rd84 12 29.5 5.0 147.5 8 19.5 4.6 89.7 | 39.2
rot 139 | 324.0 24.0 | 7776.0 | 177 | 394.0 21.2 | 83528 | -7.4
sao2 28 62.1 17.0 | 1055.7 27 48.6 9.6 466.6 | 55.8
vg2 20 42.9 T2 308.9 20 40.6 7.8 316.7 | -2.5
z4ml 6 13.5 4.2 56.7 4 9.5 3.0 28.5 | 49.7
Total 1385 | 2878.5 | 373.8 | 62460.8 | 1264 | 2503.2 | 306.8 [ 46691.3 —
Ave — — - - — — - — | 28.8

Table 6.10: Energy-delay product comparison between mis-pga(new) and
FGSyn_ed



In Table 6.11, we compare FGSyn_e with FGSyn_ed which objective is to min-
imize the energy-delay product (“E-D” column). FGSyn_ed shows 10.1% energy-

delay product reduction over FGSyn_e.

name I'GSyn_e F'GSyn_ed

CLB | Energy | Delay E-D | CLB | Energy | Delay 5D | % Red.
oxpl 9 234 4.2 8.3 9 234 4.7 U8.3 0.0
9symml T 15.6 4.4 68.6 7 15.6 4.4 68.6 0.0
C499 b4 120.0 11.8 1416.0 68 124.4 9.4 1169.4 17.4
C880 85 1929 | 21.0 | 4050.9 85 192.8 | 21.0 | 4048.8 0.1
C1908 75 141.1 24.2 3414.6 75 141.1 24.2 | 3414.6 0.0
alu2 60 140.9 12.6 1775.3 57 131.2 12.8 16794 54
alud 56 137.1 29.2 | 4003.3 57 137.0 29.2 | 4000.4 0.1
apex2 60 107.9 17.6 1899.0 60 108.9 16.4 1786.0 6.0
clip 23 50.4 8.0 403.2 15 32.1 6.2 199.0 50.6
cml62a 9 19.6 5.0 98.0 9 19.6 5.0 98.0 0.0
comp 23 55.5 10.6 588.3 20 41.9 5.8 243.0 58.7
count 30 57.1 15.2 867.9 29 63.8 7.4 472.1 45.6
duke2 86 141.2 | 16.0 | 2259.2 86 141.2 16.0 | 2259.2 0.0
eb4 44 97.5 37.8 3685.5 44 97.5 37.8 3685.5 0.0
f5Im 8 20.7 5.2 107.6 8 20.7 5.2 107.6 0.0
frg2 222 400.6 | 23.0 | 92138 | 171 3419 | 21.6| 7385.0 19.8
misex1 9 214 6.0 128.4 9 22.3 4.8 107.0 16.7
misex2 22 39.2 9.6 376.3 22 39.2 9.6 376.3 0.0
rd73 5 12.9 3.0 38.7 5 12.9 3.0 38.7 0.0
rd84 8 19.5 4.6 89.7 8 19.5 4.6 89.7 0.0
rot 139 317.5 | 28.0 | 8890.0 | 177 394.0 | 21.2 | 8352.8 6.0
sao2 27 48.6 9.6 466.6 27 48.6 9.6 466.6 0.0
vg2 19 40.7 9.2 374.4 20 40.6 7.8 316.7 154
zdml 4 9.5 3.0 28.5 4 9.5 3.0 28.5 0.0
Total 1084 | 2230.8 | 318.8 | 44342.1 | 1072 | 2219.7 | 290.2 | 40491.2 -
Ave > = = = = = = = 10.1

Table 6.11: Comparison of FGSyn_e and FGSyn_ed



In Table 6.12, we compare FGSyn, FGSyn_d and FGSyn_e.

The trade-off

among area, delay and energy can be clearly seen. FGSyn_d has the least delay

but higher number of CLBs and higher energy consumption compared to FGSyn or

FGSyn_e while the FGSyn_e has the least energy consumption but higher number

of CLBs and delay compared to FGSyn and FGSyn_d. Totall is the total number

of cLBs and total depth for all circuits. Total2 is the total number of CLBs, total

depth and total energy consumption for all circuits except for C'5315 and des. Our

current switching activity estimation program [62] requires building global OBDD’s

for all internal nodes of the network. These OBDD’s cannot however be build for

the above mentioned circuits due to excessive memory requirement.

name FGSyn FGSyn.d FGSyn_e

CLB T Delay | Energy | CLB [ Delay | Energy | CLB | Delay | Energy
oxpl 9 2 234 4] 2 234 9 2 234
9sym 7 3 16.5 7 3 16.5 7 3 15.5
9symml 7 3 16.5 7 3 16.5 7 3 15.5
C499 54 T 120.0 68 4 124.4 54 7 120.0
C880 87 14 200.2 | 125 9 369.3 87 14 198.4
C5315 298 14 - 550 11 — - - -
alu2 49 5 127.9 50 5 127.0 55 6 127.1
alud 56 18 1374 | 272 9 702.6 57 19 136.2
apex2 60 11 108.5 71 9 130.3 59 11 107.5
apex6 178 10 354.5 | 174 5 402.4 | 257 10 347.4
apex7? 42 7 104.6 58 5 136.3 41 7 99.7
b9 28 6 62.4 30 3 73.6 28 6 62.8
bw 27 1 69.0 27 1 69.0 27 1 69.0
clip 15 3 37.0 17 2 37.8 13 3 3.1
count 23 9 49.7 32 3 71.8 23 9 49.7
des 643 7 - | 1130 5 - - - -
duke2 85 9 140.1 | 123 6 217.2 86 9 139.2
e64 44 21 97.5 | 248 4 432.2 48 21 97.5
f51m 8 3 20.7 8 3 20.7 8 3 20.7
misex1 8 ] 21.8 9 2 30.3 9 6 21.0
misex2 22 6 39.5 25 3 58.3 21 6 39.1
rd73 5 2 12.9 5 2 12.9 5 2 12.9
rd84 8 3 20.8 8 3 19.8 8 3 19.5
rot 136 13 316.6 | 172 7 453.2 | 135 16 306.8
sao2 25 4 46.1 25 3 45.9 26 4 45.7
vg2 16 5 38.9 20 4 46.4 18 6 374
z4dml 4 2 9.5 4 2 9.5 4 2 9.5
Totall 1944 193 - | 3274 118 5 = = =
TotalZ | 1003 1721 2192.1 ] 15%4 102 | 3647.3 | 1092 179 [ 2152.4

Table 6.12: Comparison of FGSyn, FGSyn.d, and FGSyn_e
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6.4 Decomposition for Other Architectures of

FPGA

In Table 6.13, we present the results obtained by using direct decomposition,
type I two-layer decomposition (-T' 1) and type II two-layer decomposition (-T 2).
In general, type I decomposition produces somewhat better results.

In Table 6.14, we compare FGSyn results on XC4000 with ASYL [1] and
PPR [35]. For these benchmarks, we achieved 13.4% cLB reduction over PPR
and 12.4% cLB reduction over ASYL.
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name bx4 bx4d -T 1 bx -T 2

CLB| Time | CLB[% Red. | Time | CLB [ % Red. | Time
oxpl 15 1.5 15 0.0 1.5 15 0.0 1.5
9sym 6 2.3 6 0.0 2.8 6 0.0 2.2
9symml 6 2.3 6 0.0 2.7 6 0.0 %0
alu2 55 38.3 53 3.6 43.9 53 3.6 38.8
alud 52 72 51 1.9 6.5 51 1.9 6.6
apex2 55 13.8 55 0.0 13.6 53 3.6 13.1
apex6 136 | 157.9 | 138 -7.0| 150.2 | 128 0.8 | 153.2
apex7 39 3.5 37 5.1 3.0 39 0.0 3.5
b9 25 3.0 24 4.0 2.6 24 4.0 2.9
C880 75 13.7 78 -4.0 12.7 72 4.0 12.3
C1355 49 1.6 47 4.1 1.6 47 4.1 1.6
C1908 68 10.6 67 1.5 10.2 67 1.5 10.0
c8 20 1.9 20 0.0 1.7 18 10.0 1.6
clip 26 10.0 24 7.7 10.9 25 3.8 9.7
comp 18 6.9 18 0.0 6.6 17 0.0 6.8
count 21 1.3 19 9.5 1.2 19 9.5 1.3
decod 9 0.2 9 0.0 0.2 9 0.0 0.2
duke2 84 | 825.6 77 8.3 | 806.7 76 9.5 825.9
eb4 43 0.8 43 0.0 0.9 43 0.0 0.7
f51m 11 1.7 10 9.1 i 10 9.1 1.6
misex] 3 0.4 8 0.0 0.5 9 -12.5 0.5
misex2 20 1.4 20 0.0 1.5 19 5.0 1.3
mux 6 0.7 5 16.7 0.7 5 16.7 0.7
rd73 6 1.2 6 0.0 1.2 T -16.7 1.2
rd84 10 2.9 10 0.0 3.0 10 0.0 2.4
rof 127 | 205.0 | 119 6.3 | 189.5| 120 55| 194.9
sao2 31 15.3 29 6.5 21.4 31 0.0 16.3
vda 121 | 2785.0 | 116 4.1 | 2481.7 | 111 8.3 | 2267.7
vg2 16 2.9 15 6.3 3.3 16 0.0 2.7
z4ml 6 0.7 6 0.0 0.7 7 0.0 0.6
Total 1164 — [ 1131 - — | 1113 - -
Average = - = 3.3 = = 2.4 =

Table 6.13: Experimental results of FGSyn options for XC4000 device

125



name ASYL [ PPR | FGSyn % Red.
CLB CLB CLB | ASYL PPR
oxpl 13 - I5[-154 -
9sym 9 - 6| 33.3 -
9symml - 36 6 - | 83.3
alu2 51 71 52| -2.0| 26.8
alud 211 - 51| 75.8 -
apex6 140 ~ 128 8.6 -
apex’ 38 38 37 26| 2.6
b9 - 20 23 - | -15.0
C1355 - 91 47 - | 48.4
c8 - 17 18 - -5.9
clip 29 - 23 | 20.7 -
comp - 17 17 -1 0.0
count 22 21 19| 13.6 9.5
decod - 10 9 - | 10.0
duke2 73 - 70 4.1 -
eb4 52 - 43 | 17.3 -
f51m 12 - 10 | 16.7 —
misex] 9 - 9 0.0 -
misex2 21 - 19 9.5 -
mux - 5 5 - 0.0
rd73 10 - 71 30.0 -
rd84 14 - 10 | 28.6 -
sao2 23 - 29 | -26.1 -
vda - 97 109 -1-124
vg2 15 - 16 | -6.7 -
Totall 742 - 044 - -
Total2 423 342 - -
Average — — - | 1247 134

Table 6.14: Experimental results for XC4000 device
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name LUT XCH000 CLB
4-in T 5-In | 6-in [ mix | 4-in | 5-in | 6-1n | mix

oxpl 21 13 14 13 2 D N D
9symml 10 7 4 8 3 4 4 3
C499 98 90 90 90| 25| 25| 25| 25

C880 148 | 142 | 131 | 134 | 37| 43| 47| 37
C1908 135 130 | 131 ] 131 | 34| 35| 39| 34
C5315 468 | 469 | 332 | 454 | 109 | 133 | 166 | 119
alu2 112 65 35 35| 28| 27| 23| 28
alud 98 85 82 85| 25| 27| 30| 24
apex2 105 93 90 91| 27| 29| 35| 26
apex6 206 | 232 | 209 208 | 74| 83| 99| 74
apex’7 68 65 50 62| 17| 20| 27| 17

b9 54 49 47 49 13 13 14 13
bw 61 28 28 28 16 14 14 14
clip 44 24 12 18 11 11 9 5
cmlb62a 13 11 9 9 4 4 5 3
count 40 31 30 31 10 10 16 10
e64 85 34 84 84 22 22 22| 22
f51m 15 12 10 12 4 4 5 4
frg? 289 | 305 | 239 | 265 rdl 90 | 105 70

misex] 18 10 11 10 5 4 6 4
misex?2 o7 32 29 31 10| 11 12° 9

rd73 10 6 7 6 3 3 5 3
rd84 14 9 8 9 4 4 6 4
rot 251 | 204 | 182 | 195| 63| 64 77| 58
sa02 40 32 16 25 10 14 13 14
vg2 35 24 20 24 9 8 10 8
z4ml 8 5 6 ) 2 2 4 2

Total o573 2257 | 1906 | 2112 [ 641 | 709 [ 876 [ 635

Table 6.15: Experimental results of various bound sets for XC5000.

In Table 6.15, we show the results of FGSyn_lcs decomposition under bound
set size, 4, 5 and 6 on LUT count, CLB count and energy consumption for XC5000
device. Decomposition with a bound set size of 4 (column 4-in) gives the smallest
number of CLBs, but has the highest energy consumption. This is because that
decomposition with smaller bound set size tends to fit several smaller LUTs instead
of one into one CLB, this will increase the number of output lines for each CLB which

leads to higher energy consumption.
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name Energy Consumption

4-in d-1n 6-1n mix
oxpl 34.3 23.4 AT 23.4
9symml 17.1 16.6 11.9 15.7
C499 120.9 | 120.0 | 120.0 | 120.0
C880 189.2 | 200.2 | 183.5| 181.9
C1908 139.1 | 139.1 | 142.0 | 139.1
C5315 680.9 | T718.7 | 613.8 | 679.5
alu2 183.4 | 131.3 80.3 86.0
alud 1383 | 1374 | 137.7 | 131.0
apex2 111.2 | 108.5 | 111.4 | 105.5
apex6 425.6 | 397.2 | 410.2 | 376.9
apex’ 101.5 | 104.3 | 100.7 | 100.5
b9 64.5 62.4 61.4 62.2
bw 94.1 69.0 69.0 69.0
clip T2.7 52.5 28.9 34.1
cml62a 20.7 19.3 19.0 17.4
count 55.3 49.7 49.2 49.7
e64 97.7 97.5 97.5 97.5
f51m 22.8 20.7 19.4 20.7
frg2 352.2 | 381.3 | 352.8 | 340.1
misex1 29.3 214 24.0 20.3
misex?2 40.9 39.5 38.7 39.1
rd73 172 12.9 15.9 13.1
rd84 21.0 19.8 18.5 18.5
rof 329.2 | 3144 | 310.0 | 298.4
5202 55.5 52.7 33.1 43.1
vg2 49.5 41.7 38.0 39.2
zdml 12.6 9.5 12.4 9.5
Total 3476.9 | 3360.9 | 3126.5 [ 3131.2

Table 6.16: Energy comparison of various bound sets decomposition for XC5000.

128



CLBs

70

60

50

40

30

20

10

Figure 6.1: Selected benchmarks CLBs count for fix and variable bound set
decomposition

In Figure 6.1 we show 6 typical benchmarks over fix bound set size of | B |
=4, 5, 6 and variable bound set sizes decomposition result of CLBs count. The
variable bound set decomposition has similar result of fix bound set | B | = 4 but
slight better than that. The alu2 has smallest CLB count on fix bound set | B |
= 6 decomposition due to special logic structure that most of 4-input of 5-input
decomposition will have small variables reduction or undecomposable but not the

case of 6-input decomposition.
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Chapter 7

Conclusion and Future Work

In this thesis, we described techniques for OBDD-based decomposition of multiple-
output Boolean functions and presented Boolean methods for extracting common
subfunctions from these functions. We also described a heuristic, graph-based
approach for extraction of common subfunctions when these subfunctions have
large (> 5) input variable support. We considered different objective functions,
including area, delay, power, and energy-delay product and developed appropriate
decomposition scheme for minimizing each objective function. Detailed comparison
of results for each objective function was presented.

Application of these methods to the synthesis of LuT-based FPGAs was pre-
sented. We showed that the synthesis problem for FPGA architectures is very dif-
ferent from that for the conventional, standard-cell based designs. In same cases,
we developed special decomposition schemes (e.g. two-layer decomposition for
XC4000 device) to fully explore the intricacies of the FPGA architecture. Results
indicate that Boolean techniques produce results that are much better than alge-
braic techniques which are commonly used, while the efficiency can be maintained
by using appropriate techniques.

Techniques presented in this thesis can be further improved. First, don’t cares
can be used to increase logic sharing among multiple Boolean functions, or to

reduce the size of OBDD’s [6, 8, 7, 54, 5, 44, 56]. Second, the Boolean mapping
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technique presented in this thesis can be also applied to the cell library-based
technology mapping. It is yet to be seen whether the increased computational effort
is justified in light of the potential for improved mapping results. A related question
is to determine what subset of gates in a standard-cell library are most useful in
producing high quality mapping results using our Boolean mapping technique.
Finally, most of the CPU time used by FGSyn is spent on finding a good bound set
for decomposition. A key problem is that of finding a “good” bound set quickly.
Ideas taken from the work performed on dynamic OBDD variable ordering [53] seem

to be particularly promising here.
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Appendix A

FGSyn

The techniques described in this thesis are implemented as command “bx” with

options in SIS. The command options are listed as following:

usage: bx [-x #] [-1 #] [-e #| [-p #] [[M model] [-w prob] [-bfrlncsgdV] [-v #]

-x 3-10
-1 5-20
-b

-e 0-4

Specify the bound set size (default = 5)

Specify the maximum size of the input sets (default = 9)
Build the global BDD if it is smaller than local BDD
Apply node collapsing rule (default = 0)

0: Do not apply any rule

1: Apply rule 1, k-bound support collapse

2: Apply rule 2, Support reduction collapse

3: Apply rule 3, BDD size reduction collapse

4: Apply rules 1-3 above

Do minimum energy-delay product decomposition

Pick a node clustering strategy (default = 4)

1: Put all nodes in one cluster

2: Each node is assigned to a unique cluster

3: Use greedy clustering with parameters a=1.3, b=10

4: Use greedy clustering with parameters a=2, b=20
Recompute the best bound set after each decomposition
Do decomposition for variable-size LUT’s (XC5000)
Decompose to minimize sum of the g-function supports
(Note that this may lead to non-disjunctive decomposition)

132



-m
-8
=d
-M model

-w prob

Use column encoding

Use unit-code shared subfunction encoding

Use multi-code shared subfunction encoding

Use graph based encoding

Do minimum delay decomposition

Set delay model (default = unit)

unit: Use unit delay model

unit-fanout: Use unit fanout delay model

Do minimum energy decomposition (default prob = u)
u: Use uniform 0.5 signal probability for primary inputs
r: Use pseudo-random signal probability for primary inputs
Verify network after fg synthesis

Print debugging info (default = 0)
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