
Constructing Lower and Upper Bounded
Delay Routing Trees Using

Linear Programming

Jaewon Oh, Iksoo Pyo and Massoud Pedram

CENG 96-05

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, California 90089-2562
(213) 740-4458

February 28, 1996

Constructing Lower and Upper Bounded Delay Routing
Trees Using Linear Programming

Jaewon Oh, Iksoo Pyo and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

February 28, 1996

Abstract

This paper presents a new framework for solving Lower and Upper Bounded
delay routing Tree (LUBT) problem using linear programming. LUBT is a Steiner
tree rooted at the source such that the delays from the source to sinks lie between
the given lower and upper bounds. It is shown that our proposed method produces
minimum cost LUBT under a given topology for linear delay model. Unlike some
recent works which control only the amount of skew, which is merely the difference
between the maximum and the minimum source-sink delay, we construct routing
trees with distinct lower and upper bounds on the source-sink delays. This extension
exploits all the flexibility that is present in low power and high performance clock
routing tree design.

Contents

1 Introduction 1

2 Terminology and Problem Definition 2

3 Topology and the Bounds 4

4 Edge-Based Formulation(EBF) 5

4.1 Steiner Constraints 6

4.2 Delay constraints 7

4.3 Summary of the Formulation 7

4.4 Optimally of Our Method 7

4.5 Example 8

4.6 Reduction of the constraints 9

4.7 The EBF Method is NOT for Euclidean Metric 9

5 Placement of Steiner points 10

6 Tolerable Skew Clock Routing 13

7 Extensions of EBF to other problems 13

8 Experimental Results 15

9 Conclusion 17

10 Appendix 21

10.1 Feasible Regions Revisited 22

10.2 Intersection of TRRs 22

10.3 Proof of Theorem 4.1 by contradiction 24

1 Introduction

Control of signal delays while minimizing the routing cost has been the major issue in
routing in the recent past. Routing affects various aspects of chip design such as chip
area, performance and power dissipation. In the global routing problem, the routing cost
is minimized while the maximum delay from the source to any sink is kept within a given
bound. Global routing algorithms for bounded path length minimum spanning trees and
Steiner trees are presented in [1]. In the clock routing, the routing cost is minimized
while the skew of the routing tree, which is the difference between the minimum and
maximum delay from the source to any sink, is minimized. A number of zero skew clock
routing techniques are presented in [2], [3], [4] [7] and [5].

In practice, exact zero skew is not an actual design requirement. We can allow some
tolerable skew with which the system can function correctly. Bounded skew clock routing
methods are presented in [8] and [9] to reduce the routing cost over zero skew routing.
Their method is based on the observation that with some skew bounds, the feasible
locations for Steiner points are octilinear convex polygons l. The topology is generated
by successively joining the two nearest feasible regions and placement of Steiner points
in the feasible region is done heuristically. These researchers however only considered
the skew bound and did not control the maximum source-sink delay. Excessively long
wires may require more buffers and cause slower rising and fall time. More buffers and
slower switching results in more power consumption, which is a primary concern in many
applications. A power optimal clock routing with bounded skew and bounded maximum
source-sink delay under the Elmore delay model was presented in [10]. However, delays
are controlled by buffer sizing, rather than by controlling the wire lengths. Their clock
tree is an equal source-sink path length Steiner tree (zero skew tree under linear delay)
regardless of skew bounds. Their routing cost may be unnecessarily high when non-zero
skew is required.

Our method also allows the user to specify different delay bounds for each individual
sink, which can lead to a further reduction of the routing cost. Consider a pipelined
design with L pipeline stages. If the combinational delay through each pipeline stage
happens to be different (which is often the case), then the lower and upper bound delays
on the clock source to input pins of the Flip Flopsin stage i can be different from those to
input pinsof the Flip Flops in stage j. This difference (which may besubstantial) can be
exploited to reduce the power consumption of the clock tree. Our proposed formulation
thus allows for distinct lower and upper bound delays for each Flip Flop/Sink of the
clock tree. Also, in case of global routing, if there is a path violating short path delay
constraints, a usual practice is to insert a delay buffer in the short path. Instead, we
can adjust wire length until the delay is larger than some lower bound which meets
the short path delay constraints. Since routing delays dominate gate delays these days,

In zero skew routing, feasible locations for Steiner points are line segments.

wire-length control is more effective in introducing delays than buffers. Also it will take
less area and consumes less power than buffer insertion method. These motivated us
to develop develop a method for controlling the path lengths such that any delays lie
between given upper and lower bounds.

Mathematical programming in Manhattan metric has not received much attention so
far. The main difficulty arises when the Manhattan distance is expressed in terms of
absolute valued functions. The Manhattan distance between two points (a.*i,yi), (a?2» 3/2)
is \xi —x2\ + \yi —2/21 and a mathematical programming problem with these absolute
valued functions is not easy to solve. These functions are not differentiable and the signs
of absolute terms in the formulation, whether they appear in the objective function or
in the constraints, must be maintained during the search for a solution. When we move
from a feasible solution to a better solution, we can only move as far as none of the
signs change. Once we reach a new solution, we update the signs of absolute terms
and continue the search with the new signs. This slows down the optimization speed
significantly. For this reason, many researchers have replaced Manhattan distance with
the less accurate Euclidean or Quadratic distance or other approximations.

Our method, Edge-Based Formulation (EBF) overcomes this problem. The variables to
the mathematical programming are not the positions of the Steiner points. Instead, the
variables are the edge lengths of the tree, eliminating any absolute terms in the formula
tion. The proposed formulation leads to a simple linear programming problem under the
linear delay model which can be solved optimally in polynomial time. Our formulation
results in a nonlinear programming problem under the Elmore delay model which can
be solved heuristically using any general purpose nonlinear programming solver. Once
the edge lengths are determined, the position of Steiner points are determined using
geometric considerations.

The remainder of this paper is organized as follows. Section 2 gives our terminology and
defines the LUBT problem. Section 3 describes the relationship between the topology
and the bounds. Section 4 formulates the EBF problem. Section 5 describes our method
for embedding the tree with given topology and edge lengths in the Manhattan plane.
Section 6 describes tolerable skew clock routing using LUBT. Section 7 describes some
of extensions of our method. Section 8 shows our experimental results and Section 9
concludes the paper. Finally the Appendix proves the correctness of our proposed
algorithm.

2 Terminology and Problem Definition

Let T(S, E) be a. given rooted tree topology. Let S = {s0, sus2,..., sn} be the vertices
of T. Among these vertices, s0 is the root (source) of T whose location may or may not
be given. {si}s2,..., sm} are the sinks whose locations are given, and {sm+i,..., sn}

are the steiner points whose locations are to be determined, points refer to the source,
sinks and Steiner points. Since T is a tree, there is a unique path between any two
points. We say s,- is the parent of Sj if in the path from s0 to Sj, Si comes immediately
before Sj. Inversely, Sj is a child of 8%.

Let E = {ei, e2,..., e„} be the set ofedges in the tree. We identify each point s,-, except
s0, of the rooted topology T with edge e,\ So e\ connects s; to its parent in T. When
there is no confusion, we use e; to refer to the ith edge or to refer to the edge length of
the iih edge. Also we use s,- to denote the ?'th point or the location of the ith point.

Let dist(s{,Sj) be the Manhattandistance between Sj and Sj. As mentioned in section 1,
we determine the edge lengths of the tree first and then find the locations of Steiner
points. Suppose sp is the parent of st- and we know the edge length of e,-. It is clear that
S{ and sp must be placed such that:

e,- > dist(si,sp)

If a = dist(s{,sp), we say e,- is tight. If e,- > dist(si,sp), we say e,- is elongated. When
e,- = 0, e; is said to be degenerate. In this case, s,- and sp coincide on the same location.
We allow wire elongation in the routing tree. So it is possible that e,- > dist(si,sp) in
the final tree embedding.

The cost of a tree T is the sum of the edge lengths, i.e. cost(T) = XZILi ei-

Let path(si,Sj) be the set of edges in the path from s,- to Sj in T. We define the delay
of a sink S{ as the delay from the source to that sink and denote it as delay(si). Since
we are using linear delay model, delay(si) is defined by:

delay{si) = J^ ek (1)
e/t€ path(sQ,si)

Under linear delay model, diameter is the distance between the farthest two sinks. If the
source location is not given, the radius is defined as the half of the diameter. Otherwise,
the radius is the distance from the source to the farthest sink.

ske-w(s{,Sj) is the difference between the delays ofsinks S{ and Sj. skew(T) is the skew
of the tree T and is the maximum of skew(si, Sj) for all the sinks s,-, Sj. We now define
Lower/Upper Bounded routing Tree (LUBT) problem.

Definition 2.1 Lower/Upper Bounded routing Tree (LUBT) Problem: Given
a rooted tree topology T(S,E) and two sets of bounds L = {hifa, -••»!»} C 71, U =
{%,%,..., um] C %, find a tree embedding in the Manhattan plane, i.e., find the loca
tions of Steiner points and the values of ee- 's, such that the tree cost is minimal and the
delay from the source sq to any sink S{ satisfies thefollowing inequalities:

li < delay(sj) < U{ i= 1,..., m (2)

where /,• 's are lower bounds and U{ 's are upper bounds satisfying the following:

0 < /;• < U{ and w,- > dist(so,S{) or (3)

0 < /,- < U{ and Uj > radius (4)

Equation 3 holds when the source location is given and Equation 4 holds when the source
location is not given.

So LUBT is a tree whose source to any sink delay is no less than the given lower bound
and no more than the given upper bound.

3 Topology and the Bounds

When we say topology, we mean the connectivity between the points. The final em
bedding of the tree may look very different since some points may overlap on the same
location or some edges may degenerate. In any case, the topology of the tree is preserved
regardless of the tree embeddings.

It can be easily shown that for a given topology T, the solution to a LUBT problem
may not exist depending on the bounds. Figure l-(a) is a simple example where it has
no solution. However, when the topology is (b) or (c), there is a solution.

However, if every sink is a leaf node in the topology, then there is a solution for any
lower and upper bounds.

Lemma 3.1 Given a tree topology where every sink is a leafnode of the tree, it is always
possible to find a LUBTfor any lower and upper bounds given in Equation (3), (4) under
linear delay model.

Proof When all the sinks are leaves of T, in the path from the source to a sink, there are
only Steiner points if there are any. One can obtain a Shortest Path Tree (SPT)
by placing all the Steiner points to the source and making em+\ = em+2 —••• =
cn = 0. SPT already satisfies the upper bound. The lower bound can be met by
elongating eu ..., em until they areequal to the lower bound (These elongation do
not violate the upper bound constraints since the upper bounds are higher than
the lower bounds). The tree so formed is a valid LUBT. •

Although our method applies to any topology, we will mainly consider topologies in
which every sink is a leaf node since they guarantee the existence of solutions.

s0 (root)

SiX-

s0 (root)
q

s2 X
(b)

s0 (root)

X -- Sinks

• —Steiner points

Figure 1: Three topology variations for the same source and sinks locations. Assume the lower
bounds are zero and upper bounds are 6 for all the sinks, (a) has no Steiner point and the tree
shown is the only possible tree. The path length from the source to «2 cannot be less than 6.
So no LUBT with those bounds can be made. However, (b) and (c) can have LUBTs with such
bounds.

In Manhattan space, every Steiner point has degree 3 or 4. When a Steiner point S
has degree 4, we split S into S\ and 52- We attach two edges of S to Si and the other
two edges to 52. Then we join Si and 52 with a new edge e and fix edge length of e to
zero (Figure 2). If we do this for all the Steiner points with degree 4, then every Steiner
point in T can be made to have degree 3. This conversion does not affect the solution to
our LUBT problem. Its purpose is to make every Steiner point has exactly one parent
and two children for the convenience of the following sections. In particular, if the root
location is not given, it has twochildren and no parent. If the root location is given, the
root is of degree one and has only one child. In the remainder of this paper, we assume
that every Steiner point in T has degree 3.

4 Edge-Based Formulation(EBF)

We present an EBF formulation for the LUBT problem. The edge lengthsare determined
such that they satisfy both the Steiner constraints and the delay constraints as described
next.

e = 0

W (b)

Figure 2: Splitting of Steiner point 5 of degree 4 in (a) into two Steiner points S\ and 52 of
degree 3 in (b). The edge length of e is set to zero.

4.1 Steiner Constraints

When we determine the edge lengths, it is important that there exist valid locations for
Steiner points that achieve those edge lengths. The following is a necessary condition
for edge lengths.

y^ e/j > dist(s{,Sj) for every pair ofsink S(,Sj (5)
eke patli(si,Sj)

Otherwise, the twosinks sj, Sj will get separated, breaking the tree into two components.
We will prove that the above equation is a sufficient condition also. The following
theorem is the key feature of this paper.

Theorem 4.1 Let ej,..., e* be a solution to the following set of linear inequalities.

y^ ei- > dist(s{,Sj) for every pair of sink S{,Sj (6)
eke path(si,Sj)

Then there exist placements of steiner points sm+i,..., sn such that

cl>dist{sk,Sp) fe = l,...,n (7)

where sp is the parent of s^.

Proof The proof is provided in the Appendix.

4.2 Delay constraints

The delay constraints dictate that the delays from the source to any sink is bounded.
Under linear delay model, we have:

/, < Y^ efc < ttj for all sinks si (8)
efcg path(sQ,si)

4.3 Summary of the Formulation

Our objective is to minimize the total sum of edge lengths. Together with the Steiner
constraints and the delay constraints, we have the following mathematical formulation.

n

Min ^efc

Subject to 2_J ek > dist(si1Sj) for every pair ofsink S{,sj w)
ekE path[si,sj)

li < delay(si) < itj for all sinks st-

Depending on the value of /,- and m$, the LUBT problem reduces to many different
problems.

• [/,- = 0, U{ = oo] This is an unbounded delay tree problem. So LUBT is an optimal
Steiner tree under given topology.

• [/,• = 0, u,- < oo] This is an upper bounded delay tree problem. So LUBT is a
general global routing problem.

• [li > 0,U{ < oo] This is a lower/upper bounded delay tree problem. So LUBT
is equivalent to a bounded skew clock routing tree problem with a specific upper
bound.

• [l{ = m = c < oo for some constant c] This is equivalent to a zero skew clock
routing problem. It was shown in [7] that under linear delay, an optimal zero skew
tree under a given topology has /,- = m = radius.

4.4 Optimality of Our Method

Our method constructs minimum cost LUBT as described next.

Theorem 4.2 Our method gives minimum cost LUBT for a given topology.

Proof Let T be a LUBT solved by EBF. Suppose T' is an another LUBT whose cost
is lower than T. Then T' should satisfy the Steiner constraints and the delay con
straints since these constraints are necessary conditions for LUBT. Since cost(T)
is obtained by a mathematical programming which should produce optimal cost
for a given set of constraints, cost(T') cannot be lower than cost(T). •

4.5 Example

Consider the topology of Figure 3. We want to find a LUBT for lower bound of 4 and
upper bound of 6 for all the sinks. Assuming the source position is not given, we have
the following formulation.

S4(8,5)Si(1,5)

s2(9,1)

Figure 3: A 5 point example

X -- Sinks

• -- Steiner

Min

Subject to
e\ + e2 + e3 -f- e4 + e5 + e6 + e7 + e8

B] + e6 + e8 + e2 > 12
e, + e6 + e8-|-e7 + e3 > 7

ei + e6 + e8 -(- e7 + e4 > 7

ei + e5 > 5

e2 + e7 + e3 > 5

e-2 + e7 + e,j > 5
e2 + e8 + e6 + e5 > 7

e3 + e., > 2

e3 + e7 + e8 + e6 + e5 > 6

e.i + e7 + e8 + e6 + e5 > 8

4 < ei + ee < 6

4 < e2 + e8 < 6

4 < e3 + e7 + e8 < 6

4 < e4 + e7 + e8 < 6

4 < e5 + e6 < 6

- Steiner Constraints

Linear delay Constraints

4.6 Reduction of the constraints

There are
m

Steiner constraints in EBF where m is the number of sinks. Together

with the 2m delay constraints^ constraints for lower bounds and m constraints for

upper bounds) , there are
m

+ 27??. constraints in total. However, many Steiner

constraints can be deleted using geometric considerations. Also the delay constraints
help delete some of the Steiner constraints. For zeroskew clock routing, it can be shown
that all the constraints are reduced to only n linear inequalities where n is the number
of edges. Besides, with zero skew, inequalities can be replaced with equalities. The
constraints are reduced to n linear equations, so no optimization is necessary. Simply
solving the ??, linear equations gives the optimal solution. The reduction of constraints
speeds up the execution of our algorithm.

4.7 The EBF Method is NOT for Euclidean Metric

Our method does not work for Euclidean metric. A simple counter example is shown in
Figure 4. The sinks are located at the vertices of an equilateral triangle with each side

is of length one. We have the following inequalities.

c\+e2> 1
e2 + e3 > 1

<-\ +e3 > 1

si

v
/f\

Figure 4: Example where EBF does not work in Euclidean space. Three sinks are located on
the vertices of a unit length equilateral triangle.

An obvious solution is ei = e2 = e3 = 1/2, but there is no feasible location for the root
which would satisfy these edge lengths.

5 Placement of Steiner points

Once the edge lengths are determined, the actual positions of Steiner points (and the
root if its position is not given) should be determined. Our method for placement of
Steiner points is similar to Deferred Merge Embedding (DME) [7] algorithm exploited
by most zero skew and bounded skew clock routing algorithms. In DME algorithm,
the feasible regions for Steiner points and the edge lengths are found in bottom up
fashion, and then Steiner points are placed in the feasible regions in top down fashion.
Our method is different in that edge lengths are predetermined and the feasible regions
are rectangular regions instead of simple line segments as in zero skew algorithms or
octilinear regions as in bounded skew algorithms.

We revise the DME algorithm along with our own definitions. Let Rectangular Region,
or RR, be a set of the points on the boundary and the interior of a rectangle in a
Manhattan space. When RR is rotated by +45 degrees from its center, we call it Tilled
Rectangular Region, or TRR (Figure 5-(a)). The set of points within a fixed distance
from a TRR is also a TRR (Figure 5-(b)). We denote TRR{TRRa, r) as a TRR whose
points are within distance r from TRRa. Formally,

TRR(TRRa,r) = {t € 1l2\s € TRRa,dist{s,t) < r}

10

The intersection of two or more TRRs is also a TRR (Figure 5-(c)).

(a) (b) (0

Figure 5: (a) A TRR, (b) TRR* = TRR(TRRa, r), (c) TRRC = TRRa n TRR6

The boundary of a TRR. has four sides. If the length of every side of a TRR is equal,
then it is called a Square TRR. A Square TRR is analogous to the circle in Euclidean
space, and has a center and the radius defined as the distance from the center to the
TRR's boundary. The width of TRR is defined as the length of smaller sides. When
the width of a TRR is zero, it looks like a line segment. Nevertheless, it is still a TRR.
Also, a singleton set of one point, such as {sk} is also a TRR.

Bottom Up Feasible Region Build-Up

Suppose Si and Sj are two sinks and their parent Sk is a Steiner point. The intersection
of TRR({si},ei) and TRR({sj},cj) defines the feasible region of Sk. That is, sk cannot
be placed outside this feasible region. We refer to the new TRR as the Feasible Region
of sk, or simply FRk. The TRR for sk is constructed by TRR(FRk,ek). This TRR is
again used for construction of the FT? of the parent of ek. So we can denote TRRk =
TRR(FRk,ek). Starting from the leaves of the tree, this process of constructing FRs
and TRRs goes up the tree until we meet the root (Figure 6). When FRk is a simple
line segment, both e; and ej are tight. When FRk has non zero width, at least one of
the edges should be elongated.

Top Down Placements

Once the feasible regions of all points are found, the actual placements of steiner points
are found in a top-down fashion. If the position of the source(root) is not given, we

11

X -- Sink

• -- Steiner

Figure 6: Bottom up feasible regions (shaded area/bold lines) and TRR (solid lines) creations
in the order (a) through (c). The locations of Steiner points are not necessarily their actual
positions.

choose any position in FR0. Note that FRs for sinks are simply their given locations.
Let sp be a Steiner point whose location is determined and si, sr be the two children
of sp. Make a Square TRR which is centered at sp and has a radius of e/, i.e., make a
TRR({sp}, e{). The intersection of FRi and TRR{{sp], e/) gives the possible placements
of 5/. This intersection is not empty. Then we place s/ anywhere within the intersection.
Do the same for sr. Starting from the root, this procedure is repeated in top down
fashion until we meet leaves of the tree (Figure 7).

12

Figure 7: Placement of Steiner points in their respective feasible regions in the order (a) and
(b). In (a), sq is placed somewhere within FRo and the location of sg is determined (s3 is a sink,
so its location is fixed). In (b), the locations of sg, sio, sn are determined. For example, the
placement of sio is within the intersection of TRR({sc,},eio) and FR\q

6 Tolerable Skew Clock Routing

An important application of LUBT is the tolerable skew clock routing. A common
design requirement in clock routing is to have a common delay upper bound u for all
the sinks and to bound the skeiv(si,Sj) by some constant d. That is,

delay(si) < u for all sinks s,-
\delay(si) —delay(sj)\ < d for all sinks Sj,Sj

By letting Ui = u and /,- = I for / - u = d in the delay constraints of EBF, we have

/ < delay(si) < u for all sinks sj

delay(si) in Equation (11) satisfy the design requirement of Equation (10). Thus LUBT
is a bounded skew clock routing with an upper bound on all sink delays.

7 Extensions of EBF to other problems

In this section, we consider extensions of the EBF method to some other problems. In
all cases, the Steiner constraints remain the same. We can only make modifications to
the delay constraints or the objective function to obtain other problems.

13

The Elmore delay

The Elmore delay is defined as follows [4], Let Tk be the subtree of the routing tree
rooted at %. We use C'k to denote the effective tree capacitance at Sk, namely the sum
of sink and edge capacitances of Tk. Let the unit resistance and unit capacitance of
routing wire be rw and cul respectively. Then the delay at a sink Sj is defined by:

delay(Sj)= £ rwek (^ +C,) (12)
efc€ path(s0,Sj)

The delay equation is quadratic with respect to e^.'s (Note that Ck is also a function of
edge lengths). With this delay function, our delay constraints becomes:

/,- < ^ rwek (-(+ C'k) < Ui for all sinks Sj
e^G path(so,Sj)

Since the Elmore delay function is quadratic and the sum of the quadratic terms is
positive (or posynomial), the delay function is strictly convex (positive definite [12]).
The feasible set defined by a convex function with both lower and upper bounds is
however not a convex set. So the EBF with Elmore delay constraints is not a convex
programming problem. However if we don't have lower bounds (/,- = 0), then our
formulation is a convex programming.

Different weights on edges

In the EBF method, the objective is the cost of the tree where the weight of each edge is
equally weighted to one. However, some edges may be given higher weights to account
for wire-ability concerns, blockage, type of metals used, crosstalk or switching activities.
In that case we can give different weights w\,w2,...,wn to edges. The objectivefunction
for the EBF thus becomes:

Min ^Wkek
k=i

Our resulting problem can still be solved efficiently.

14

8 Experimental Results

The EBF is a Linear Programming problem which can be solved efficiently using a
number of commercially available LP solvers. Especially we have chosen LOQO as
our solver [11]. LOQO uses the interior point method2 which is known to be faster
than Simplex method for large problems. We have implemented our algorithm in C for
SPARC and HPPA workstations.

The topology generator is adopted from [9]. Their topology generator is based on nearest
neighbor merge [5] technique and the topology changes dynamically during the construc
tion phase based on the skew. The topologies are full binary trees in which every sink
is a leaf node. So by Lemma 3.1, a solution exists for any lower and upper bounds. We
tested our method on benchmark data priml, prim2 [2] and rl, r3 [4]. Our results are
compared to those reported in [9] in Table 1. Note that the bounds are normalized to
the radius. Algorithm of [9] produces optimal solutions for infinite skew bounds and
suboptimal solutions for small skew bounds. Since [9] accepts only the skew bounds and
does not allow the user to specify lower/upper bounds, we first ran their algorithm with
a skew bound and extracted the topology and the actual shortest/longest sink delays
from the solution. Then we ran our algorithm with those shortest/longest sink delays
as our lower/upper bounds of LUBT for the same topology.

Our algorithm has a flexibility to control the upper bounds for the same skew. For
example, algorithm of [9] returns a tree cost of 206140.0 for prim2 with skew bound
of 0.5. The [shortest, longest] sink delays are [0.741, 1.241]. This algorithm however
cannot produce other solutions that have the same skew bound but prescribed lower and
upper bound delays. For example, [0.5, 1], [0.6, 1.1] or [0.9, 1.4] cannot be generated by
the algorithm of [9]. Our algorithm can do this and the results are presented in Table 2
for priml and prim2 with skew bounds 0.3 and 0.5. Note that for the same skew, the
longest delay can be reduced with little increase in the tree cost.

In addition, [9] cannot produce solutions with zero lower bound except the case when the
skew bound is infinite. Trees with zero lower bounds and some finite upper bounds are
useful for global routing. Table 3 shows results for some other interesting bound combi
nations useful for global routings and bounded skew - bounded longest delay routings.
Note that as the skew bound is tightened, the tree cost increases.

A trade off curve of various [lower, upper] bounds versus the tree cost of prim2 bench
mark is shown in Figure reftradeoff.

Also known as Kamakar's method.

15

9J LUBT

skew shortest longest tree tree

bench bound delay delay cost cost

priml 0.000 1.000 1.000 132565.0 132539.75

0.010 0.995 1.005 130060.2 129872.23

0.050 0.968 1.018 122779.0 122020.00

0.100 0.910 1.020 113805.0 112887.03

0.500 0.648 1.148 93650.0 93647.38

1.000 0.439 1.439 84915.0 84915.00

2.000 0.029 2.029 79860.0 79840.03

oo 0.000 oo 79810.0 79810.00

prim2 0.000 1.000 1.000 315630.0 315628.20

0.010 0.990 1.000 305332.0 303963.30

0.050 0.945 1.000 268497.0 267062.90

0.100 0.954 1.054 251540.0 249448.30

0.500 0.741 1.241 206140.0 205783.60

1.000 0.382 1.382 182490.0 182457.20

2.000 0.114 2.114 179040.0 179040.00

oo 0.000 oo 173200.0 173200.00

rl 0.000 1.000 1.000 1312498.0 1311913.38

0.020 0.996 1.023 1356429.8 1343863.00

0.060 1.000 1.059 1867170.0 1839234.60

0.100 0.947 1.032 1797884.9 1750177.80

0.500 0.714 1.214 932256.5 931271.69

1.000 0.444 1.444 848555.5 847653.00

2.000 0.053 1.884 780289.0 780289.13

oo 0.000 oo 780100.0 780100.25

r3 0.000 1.000 1.000 3331097.5 3330921.00

0.010 0.996 1.006 3227565.5 3212405.00

0.050 0.984 1.034 2960921.5 2930180.00

0.100 0.918 1.018 2732S20.5 2709491.30

0.500 0.741 1.241 2261973.0 2254S20.50

1.000 0.566 1.566 2137096.0 2135432.00

2.000 0.336 2.336 2028338.0 2027412.00

oo 0.000 X 1929421.0 1929421.00

All bounds are normalized to the radius.

Table 1: Routing costs for [9] and for the LUBT method

LUBT

skew lower upper tree

bench bound bound bound cost

priml 0.3 0.70 1.00 103219.5

0.80 1.10 102122.9

*0.89 *1.19 103051.8

0.95 1.25 103671.0

0.5 0.50 1.00 98120.7

0.60 1.10 93152.0

"0.65 *1.15 93647.4

0.75 1.25 94700.0

prim2 0.3 0.70 1.00 247834.4

0.80 1.10 237720.3

*0.85 ""1.15 225650.0

0.95 1.25 230756.0

0.5 0.50 1.00 212068.8

0.60 1.10 211034.6

-0.74 *1.24 205783.6

0.85 1.35 207344.5

All bounds are normalized to the radius.

*: bounds produced by [9].

Table 2: Routing cost of LUBT for the same skew but different upper bounds

9 Conclusion

We proposed a new method of solving lower/upper bounded delay routing tree (LUBT)
problems. The method is based on linear programming in which the variables are the
edge lengths of the tree. The LUBT problem is a generalization of global routing and
clock routing. Our method produces optimal LUBT for a given topology under the linear
delay model. Due to optimality of our method, we can immediately know the existence
of a solution for a given topology and bounds since, in case there is no solution, there
will be no initial feasible solution to EBF.

Implementation of the EBF method under the Elmore delay model is currently being
investigated. Under the Elmore delay, the optimality of the LUBT cost is assured only
when the lower bound is zero. When the lower bound is not zero, a sequential quadratic
optimization is needed to solve the EBF.

The EBF method is a general framework for optimization problem in Manhattan space.
We are also considering an application of the EBF to the placement problems and other
related problems.

Ourmethod requires input tree topology. Thetopology generator we adopted [9] uses the
amount of skew to guide the topology generation, rather than the explicit lower/upper
bounds. So future work will include better topology generation which is guided by both
the lower and the upper bounds, and at the same time, results in lower tree cost.

17

LUBT

lower upper tree

bench hound bound cost.

priml 0.99 1.00 129818.3

0.98 1.00 127570.2

0.95 1.00 121833.6

0.90 1.00 113728.9

0.50 1.00 98120.7

0.00 1.00 97234.1

0.00 1.50 85240.0

0.00 2.00 79840.0

prim2 0.99 1.00 304058.7

0.98 1.00 291532.9

0.95 1.00 269495.2

0.90 1.00 248388.0

0.50 1.00 212068.8

0.00 1.00 213276.0

0.00 1.50 179340.0

0.00 2.00 173300.0

rl 0.99 1.00 1284095.9

0.98 1.00 1262461.9

0.95 1.00 1218575.8

0.90 1.00 1215419.9

0.50 1.00 963928.4

0.00 1.00 1099360.8

0.00 1.50 789926.9

0.00 2.00 780288.8

r3 0.99 1.00 3211281.5

0.98 1.00 3125272.0

0.95 1.00 2924382.0

0.90 1.00 2707221.8

0.50 1.00 2374080.0

0.00 1.00 2197381.0

0.00 1.50 2113469.5

0.00 2.00 2025446.0

All bounds are normalized to the radius.

Table 3: Routing cost of LUBT for various other bounds

Tree Cost vs Bounds Tradeoff

33U "

300 -

250 -

200 -

^"Ss"*—♦—

150-

100 -

50 -

n 1 1 1 1 1 1 ! ! !
•

1.00- 0.99- 0.95- 0.90- 0.85- 0.50- 0.00- 0.74- 0.00- 0.24- 0.00- 0.00-

1.00 1.00 1.00 1.00 1.15 1.00 1.00 1.24 1.50 1.74 2 infinite

lower - upper

Figure 8: Trade off curve between the tree cost versus bounds for prim2

References

[1] Jingsheng Cong, Andrew B. Kahng, Gabriel Robins, Majid Sarrafzadeh, C. K. Wong, "Provably
Good Performance-Driven Global Routing," IEEE Transactions on Computer Aided Design , Vol.
11, NO. 6, pp. 739-752, June, 1992.

[2] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, "Clock routing for high-performance ICs," 27th
Design Automation Conference , pp. 573-579, 1990.

[3] A. Kahng, J. Cong, and G. Robins, "High-performance clock routing based on recursive geometric
matching," 28th Design Automation Conference , pp. 322-327, 1991.

[4] R-S Tsay, "Exact zero skew," International Conference on Computer-Aided Design , pp. 336-339,
1991.

[5] M. Edahiro, "A clustering-Based Optimization Algorithm in Zero-Skew Routing," 30th Design Au
tomation Conference , pp. 612-616, 1993.

[6] M. Borah, R. Owens and M. Irwin, "An edge-based heuristic for Steiner Routing," IEEE Transac
tions on Computer Aided Design, Vol. 13, No. 12, pp. 1563-1568, December 1994.

[7] Kenneth D. Boese and Adrew B. Kahng, "Zero-Skew Clock Routing Trees With Minimum Wire-
length," Proc. IEEE International Conference on ASIC, pp. 1.1.1-1.1.5, 1992.

[8] Jason Cong and Cheng-Koh Koh, "Minimum-Cost Bounded-Skew Clock Routing," International
Symposium on Circuits and Systems, pp. 215-218, 1995.

19

[9] Dennis J.-II. Huang, Andrew B. Kahng and Chung-Wen Albert Tsao, "On the Bounded-Skew Clock
and Steiner Routing Problems," Proc. ACM/IEEE Design Automation Conference, pp. 508-513,
1995.

[10] Joe G Xi, Wayne W.M. Dai, "Buffer Insertion and Sizing Under Process Variations for Low Power
Clock Distribution," 32nd Design Automation Conference, pp. 491-496, 1995

[11] Robert J. Vanderbei, "LOQO User's Manual," Program and the manual are available for free for
academic users at ftp://elib.zib-berlin.de/pjib/opt-net/softwarc/loqo.

[12] David G Luenberger, "Linear and Nonlinear Programming," Addison- Wesley, 1989.

20

10 Appendix

Proof of Theorem 4.1

To prove Theorem 4.1, some additional definitions and lemmas are needed.

Let Tk denote the subtree rooted at Sfc. We define pathlenght(sx, sy) as:

pathlength{sx,Sy) = ^J e/-
eke path(sx,stJ)

side 2

(b) (c)

Figure 9: (a) Labeling of sides in TRR, (b) Various intersections of TRRs, (c) Definition of
closest sides

A TRR, has four sides. We will label them sidel through side4 starting from the side
in the first quadrant and proceeding counterclockwise as shown in Figure 9 -(a). Even
when a TRR is a line segment or a single point, we assume that it has four sides.

Two sides are said to be overlapped when they have the same slope and intersect. When
a TRRC is created from the intersection of two TRRs, we can uniquely determine which
side of TRRC overlaps with which TRR. In the Figure 9 -(c), sides2,3 of TRR5 overlap
with TRRi and sidesl,4 of TRR5 overlap with TRR0. Also sidel of TRRio overlaps
with TRR0 and sides2,3,4 of TRR10 overlap with TRR9. Even when the intersection
is a line segment or a point, the overlap relation is uniquely determined. For example,
sides3,4 of TRRS overlap with TRR0 and sidesl,2 of TRR8 overlap with TRR4. Likewise
sidesl,2 of TRR6 overlap with TRR0 and sides.3,4 of TRR6 overlap with TRR2. Also
sides2,3 of TRR7 overlap with TRR0 and sidesl,4 of TRR7 overlap with TRR3.

21

When two TRRs are separated, we can define the distance between the two TRRs as
the minimum Manhattan distance between the two points belonging to their respective
TRRs. Formally,

dist{TRRi, TRRj) = M\N{dist(sx,sy)\sx e TRR{,sy g TRRj}

Clearly, sx and sy are located at the boundaries of the TRRs when their distance is
minimum. The two sides that have minimum distance from one another are called

closest sides (see Figure 9 -(b). The closest sides can be found be extending one TRR
until its boundary abuts the boundary of the other TRR. In the Figure 9 -(b), the
closest side in TRRa from TRR\, is sidel. Likewise, the closest side in TRRb from TRRa
is side3. Depending on the relative position of the two TRRs, there can be one or two
closest side(s) of a TRR from the other TRR.

These overlap relationships and the definition of closest sides will be used in later sub
sections.

10.1 Feasible Regions Revisited

Weconsider feasible regions from a different point of view. As discussed in section 5, the
feasible region of a Steiner point is found by intersecting the TRR's of its two children.
The feasible region is indeed the only possible locations for the Steiner point. So any
location sx in the Manhattan plane that satisfies

dist(si,sx) < pathlength(si,Sk) for all sinks Si € Tk

should be a feasible location for the Steiner point Sk- In other words, the feasible region
of Sk is the intersection of square TRRs that are centered at sinks .?,• € Tk and have
radius equal to pathlength(si,Sk). Formally,

FRk= f] TRR({si},pathlength(si,sk)) (13)

where s;'s are sinks. For example, in Figure 6, FR9 is the intersection of TRR{{s4},
e4 + cio), TRR{{s5}, e5 + e10), TRR{{sG}, e6 + en) and TRR{{s7}, e7 +e»).

10.2 Intersection of TRRs

Intersection of TRRs has an important property as will be described in the followinj
Lemma.

22

Lemma 10.1 Suppose there are n TRRs. If pairwise intersection of every pair of TRRs
are non- empty, then these TRRs have a common non-empty intersection. 3.

for n = k. Let TRRC
1, we introduce a new
.,k. Suppose however
a TRR which does not

TRRC and TRRk+l are
from TRRk+i is side3.
ary overlaps with side3

th TRRk+i • 0

Proof The case n = 2 is trivial. Suppose the Lemma holds
be the common intersection of k TRRs. When n = k +

TRRk+i. This must intersect with every TRRi, i = 1,..
TRRk+i does not intersect with TRRC. Then we can find
intersect TRRk+i as follows. Consider Figure 10 in which
non-intersecting. In the figure, the closest side of TRRC
Then there is a TRR which includes TRRC and its bound
(TRRS in the figure). Clearly, TRR3 does not intersect wi

Figure 10: Acounter example that TRRk+i intersect with every other TRRs except the common
intersection TRRa.

This lemma is not true in Euclidean space. One can easily draw three circles that have non-empty
pairwise intersections but no common intersection. That is why the EBF method does not work in the
Euclidean space.

23

10.3 Proof of Theorem 4.1 by contradiction

Suppose we cannot find the placements of Steiner points that satisfy Equation 7 for a
set of edge lengths that satisfy Equation 6. Then while constructing feasible regions in
a bottom up fashion, for some Steiner point %, its feasible region becomes empty. Note
that the feasible region is the intersection of square TRRs defined in Equation 13. By
Lemma 10.1, there should be a pair of square TRRs that do not intersect. Let the two
square TRRs, TRR({si},pathlength(si,Sk)), TRR({s,.},pathlength(sr,Sk)) be two such
TRRs. Since they are separated, the sum of their radii is smaller than the Manhattan
distance between the centers (i.e. the locations of sink s/ and sr) of the two TRRs. That
is,

pathlength(si,Sk) + palhlength(sk, sr) < dist(si,sr)

or

pathlength(s[,sr) < dist(si,sr)

contradicting the Steiner constraint given in Equation 6. This concludes the proof. •

24

