Vector Compaction Using
Dynamic Markov Models

Radu Marculescu, Diana Marculescu,
and Massoud Pedram

CENG 96-14

Department of Electrical Engineering - Systems
University of Southern
Los Angeles, California 90089-2562
(213) 740-4458

February 1996

Vector Compaction Using Dynamic Markov Models

Abstract
Evaluation of power dissipation is a critical step in the design of today’s 1Cs. Power disssipation is strongly input

pattern dependent and hence, to obtain accurate power values, one must simulate the circuit with a large number of
input vectors that typify the application data. The goal of this paper is to present an effective and robust technique
Sfor compacting a large sequence of input vectors into a much smaller input sequence so as to reduce the circuit/
gate level simulation time by orders of magnitude and mantain the accuracy of the power estimates. In particular,
this paper introduces and characterizes a family of dynamic Markov trees that can model complex spatiotemporal
correlations which occur during power estimation both in combinational and sequential circuits. This new
framework is very effective and flexible: the Markov model itself is derived through a one-pass traversal of the
initial sequence and it can be used after that with any available simulator to derive power consumption. As the
results demonstrate, large compaction ratios of 1-2 orders of magnitude can be obtained without significant loss

(less than 3% on average) in the accuracy of power estimates.

1. Introduction

CAD tools have played a significant role in the efficient design of the high-performance digital systems. In the
past, time and area were the primary concerns of the CAD community during the optimization phase. More recently,
circuit testability was added as yet another important consideration during the design process. With the growing need
for low-power electronic circuits and systems, power analysis and low-power synthesis have become crucial tasks
that must also be addressed. It is expected that, in the forthcoming years, power issues will receive increasing
attention due to the widespread use of portable applications and the desire to reduce packaging and cooling costs of
high-end systems.

Power estimation is in general a difficult problem; the key task in this process is the accurate and fast estimation
of average switching activity. To date, both simulative [1]-[4] and nonsimulative approaches [5]-[10] have been tried,
each one having its own advantages and limitations [11]. More specifically, general simulation techniques provide
sufficient accuracy, but at high computational cost; it is simply expensive to simulate thousands of vectors. On the
other hand, nonsimulative approaches (best represented by probabilistic power estimation techniques) are in general
faster, but less accurate than those based simulation; usually, the input correlations and the reconvergent fan-out in the
target circuit make things very complicated and simplifying assumptions (like input independence) become
mandatory. During the last years, the gap between simulative and nonsimulative approaches remained basically the
same, despite remarcable advances made in both directions.

As a conclusion, a number of issues appear to be important for power estimation and low-power synthesis. The
input statistics which must be properly captured and the length of the input sequences which must be applied are two
such issues. Generating a minimal-length sequence of input vectors that satisfies these statistics in not trivial. More

precisely, LFSRs which have traditionally found use in testing or functional verification [12], are of little or no help

here. The reason is that more elaborate set of input statistics must be preserved or reproduced during sequence
generation for use by power simulators. One such attempt is [13] where authors use deterministic FSMs to model
user-specified input sequences. Since the number of states in the FSM is equal to the length of the sequence to be
modeled, the ability to characterize anything else but short input sequences is severely limited. A more elaborate and
effective technique was presented in [14] where, based on stochastic sequential machines, the authors succeed in
compacting large sequences without significant loss in accuracy. However, in the present research, the limitations of
that approach are pointed out and overcome by the proposed technique.

The present paper improves the-state-of the art by providing an original solution for vector compaction problem
which potentially reduces the gap between simulative and nonsimulative approaches. Traditionally, data compression
techniques were aimed to lossless compression, that is the ability to encode a body of data, transmit it eventually over
a communication line and finally, decode it uniquely, without any loss of information during this process. Our
objective in this paper is slightly different: having an initial sequence (assumed representative for some target
circuit), we target lossy compression [15], that is the process of transforming an input sequence into a smaller one,
such that the new body of data represents a good approximation as far as total power consumption is concerned. We
use throughout the paper the term ‘compaction’ instead of ‘compression’, because we think it better suits our
intentions.

The foundation of our approach is probabilistic in nature; it relies on adaptive (dynamic) modeling of binary
input streams as first-order Markov sources of information and is applicable both to combinational and sequential
circuits. The adaptive modeling technique itself (best known as Dynamic Markov Chain or DMC modeling) was
introduced very recently in the literature on data compression [16] as a candidate to solve various compression
problems. From the very begining, this technique looked very promising and indeed, in most practical situations, has
been more effective than any other compression technique available to date. However, the original model introduced
in [17] is not completely satisfactory for our purpose. In this paper, we thus extend the initial formulation to manage
not only correlations among adjacent bits that belong to the same input vector, but also correlations between
successive input patterns.

As demonstrated and supported by practical evidence, this new framework is extremely effective in power
estimation. The basic idea is illustrated in Fig.1. To evaluate the total power consumption of a target circuit for a

given input sequence Ly (Fig. 1a), we derive first the Markov model of the input sequence through a one-pass traversal
technique and after that, having this compact representation, we generate a much shorter sequence L, equivalent with

Lg, which can be used with any available simulator to derive accurate power estimates (Fig.1b).

in out in out
target target
circuit — circuit
(initial
(initial input input
sequence Ly) sequence Ly) (compacted

sequence L« Ly)

(a) (b)

(randomly generated input sequence)

Fig.1

We point out here that the present approach can be used without any difficulty to generate benchmark data for
power estimation, that is, input sequences with different lengths that satisfy a set of user-prescribed characteristics in
terms of word-level transitions or conditional probabilities.

To conclude, both simulation-based approaches and probabilistic techniques for power estimation may benefit
from this research. The issues brought into attention in this paper are new and represent an important step toward
reducing the gap between the simulative and probabilistic techniques commonly used in power estimation. Finally,
the concept of DMC modeling itself may find useful applications in other CAD fields.

The paper is organized as follows: Section 2 reviews the basic concepts of DMC modeling technique. Section 3
formalizes the power-oriented vector compaction problem and discusses parameters which makes this approach
effective in practice. Section 4 presents a DMC-based procedure for vector compaction. In sections 5 and 6, we give
some practical considerations and experimental results, respectively. Finally, we conclude by summarizing our main

contribution.

2. Background on Dynamic Markov models

Modeling for data compaction in digital systems involves essentially the derivation of certain source-string events and
their contexts (the set of bits or words surrounding some bit or word under consideration), which uniquely describe
the original source string. We consider therefore the model as having two parts: 1) the structure which is the set of
events and their contexts and 2) the parameters which are probabilities assigned to the events. The structure is
intended to capture the characteristics of the entire set of sequences under consideration while the parameters are
tailored to each individual sequence.

Without loss of generality, in what follows we restrict ourselves to finite binary strings, that is, finite sequences
consisting only of 0’s and 1’s. The set of events of interest is the set S of all finite binary sequences on k bits. A
particular sequence S; in S consists of vectors vy, v,,..., v, (Which may be distinct or not), each having a positive

occurence probabi[ity'. Indices 1, 2,..., n represent the discrete time steps when a particular vector is applied to a

1. Throughout the paper, we may refer occasionally to vectors v, vs,..., v, as ‘symbols’ or ‘states’.

target circuit. Imposing a total ordering among bits, such a sequence may be conveniently viewed as a binary tree (for
reasons that will become obvious later on, let’s call it DMT, from Dynamic Markov Tree of order zero) where nodes
at level j correspond to bit j (1 < < k) in the original sequence; each edge that emerges from a node is labelled with a
positive count (and therefore with a positive probability) that indicates how many times the substring from the root to
that particular node, occured in the original sequence. For clarity, let’s consider the following example.

Example 1: For the following 4-bit sequence consisting of 8 non-distinct vectors: (v, v9, v3, V4, Vs, Vg, V7, vg) = (0000,
0001, 1001, 1100, 1001, 1100, 1001, 1100) the construction of the tree DMTy, is shown step-by-step in Fig.2a.
Obviously, the whole Markov tree that models this sequence must have four levels because the original sequence is a
4-bit sequence. Without any loss in generality, we assume a left-to-right order among bits that is, the leftmost bit in
any vector vy to vg is considered as being bit number one (and consequently represented at level one in DMT} as
shown in Fig.2a), the next bit is considered as being bit number two and so on. Every time when a vector is
completely scanned (that corresponds to reaching the level four in the tree), we come back to the root and start again
with the next vector in the sequence. While the input sequence is scanned, the actual counts on the edges are
dynamically updated (as shown in Fig.2a for the first three vectors) such that, for this particular example, they finally
become as indicated in Fig.2b. The Markov tree in Fig.2b contains in a compact form all the spatial information about
the original sequence vy, v,..., vg. We point out that this sparse structure is possible only by using the dynamic

(adaptive) fashion of growing the tree DMTy, just illustrated. Another approach would have been to consider a static

binary tree capable to model any 4-bit sequence and just to update the counts on the edges while scanning the original
sequence (Fig.3). By doing so, we would end up with the obvious disadvantage of having 15 instead of 9 nodes in the
structure for the same amount of information; this reason alone is sufficient for considering from now on only

dynamically grown models.

o]
o
o

e
o
o

processing of v,

firstbitinv; second bit in v, third bit in v,)
is processed is processed is processed fourth (last) bit in v,
is processed

processing of v,

first bit in v, second bit in v, third bit in v, fourth bit in v,
is processed is processed is processed is processed

processing of v3

first bit e second bit in vy third bit in v3 fourth bit in v3
is processed is processed is processed is processed
Fig.2 (a)

®)
/ 0 3 3

o7 o L9 o
1/é\I "/®\° i <5\‘J °/® é @ N 3/6\0 °/@\

/ p ol il Yh i

Fig.3

Definition 1. We define the information source, to be the pair <S,P>, where P is a function from S into [0,1] satisfying

the condition:

P(v) = Y P(vx) (1)
xe S
for all v in S, where vx represents the event corresponding to the joint occurence of the strings v and x.

The above condition, simply states that the sum of the counts attached to the immediate successors of node v
equals its own value P(v). As we can easily see in Fig.2, condition (1) is satisfied at every node in this representationl.
In addition, based on the counts of the terminal edges, we may easily compute the probability of occurence for a
particular vector in the sequence. For instance, the probability of occurence for string *1001” is 3/8 (because the count
on the terminal edge that corresponds to ‘1001” is 3 and the length of the sequence is 8) while the probability of string
‘11117 is zero, ‘1111 being a ‘forbidden’ vector for this particular sequence.

Traditionally, data compression algorithms (e.g. Huffmann, Ziv-Lempel, Cleary-Witten) [16] have been targeted
to work at byte- or word-level. In contrast, DMC is normally used to process one bit of the input at a time rather than
one symbol at a time. In principle, there is no reason why a symbol-oriented version of the method can not be used.
However, for practical reasons (less storage required and more efficiency in computations), the bit version of DMC is

preferred.

1. This is actually similar to Kirchoff's law for currents.

3. Power-oriented data compaction

In this section, first we review the main concerns about preserving the input statistics to obtain accurate power
estimates. Second, we present a new approach based on DMC by generalizing the model introduced in Section 2.
3.1 Problem formulation

Input pattern dependence has a dramatic impact on power dissipation estimates. If one ignores the input statistics
(which give the actual correlations among the primary inputs), power estimation results can be seriously impaired.
Capturing only signal probabilities at the primary inputs of the circuit is not enough for accurate estimates therefore,
for power estimation purposes, it is critical to distinguish between sequences which exhibit the same signal
probabilities on different bit lines, yet showing very different spatial and temporal correlations.

Assuming that a gate level implementation is available, to estimate the total power dissipation, one can sum over
all the gates in the circuit the average power dissipation due to the capacitive switching currents, that is:

Felk

2 . ;
s = VDD : Z(Cn : sw”) where f.;. is the clock frequency, Vpp is the supply voltage, C, and sw,, are

n

the capacitance and the average switching activity of gate n, respectively. From here, the average switching activity
per node (gate) is the key parameter that needs to be correctly determined, mostly if we are interested in a node-by-
node basis power estimation. However, this parameter is highly sensitive to the input statistics, namely it depends
significantly on transition and conditional probabilities among different signal lines.

Having these issues in mind, the vector compaction problem can be formulated as follows: for a k-bit sequence
of length n (consisting of vectors vy,v5,...,v,,), find another sequence of length m < n (consisting of the subset
U], lg,...lt,, Of the initial sequence), such that the average transition probability on the primary inputs is preserved
wordwise. More formally, for any generic input v and u (seen as a collection of bits) in the original and in the

compacted sequence, respectively, the following holds:

PO =Xav T =¥)-Pu =Xau T =1)<e 2)

In relation (2), v, v* (i, «*) denote the current and the next vector, respectively, in the original (compacted) sequence
and X, Y are any two patterns that appear in the initial sequence. This condition simply requires that the joint
transition probability for any group of bits is preserved within a given level of error.

3.2 A DMC-based approach

An attempt to solve the vector compaction problem for power estimation was recently presented in [14]. In that paper,
the authors use elements from probabilistic automata theory to synthesize stochastic machines which can be used in a
standalone mode for sequence compaction. From a practical point of view, however, this approach has two inherent
limitations:

e The values in the initial transition matrix themselves are important in the decomposition process: some distributions
of transition probabilities tend to favor a small number of degenerate matrices, as opposed to others which result in

much longer decompositions. In these cases, the decomposition becomes the critical step as far as running time is

concerned and one should therefore allow limited precision in the calculations to simplify the decomposition process.
o The compaction technique on stochastic machines is a multiple-step compaction technique. An initial pass
through the sequence is performed to extract the statistics of interest; after that, the stochastic machine is
synthesized and then the new sequence is generated. This is especially disavantageous for large sequences when the
on-line computer memory and time requirements become prohibitive.

The disavantages mentioned above can be eliminated by using DMC modeling. To this end, in what follows we
introduce an original framework for power-oriented data compaction.

From Section 3.1, it follows that the spatiotemporal correlations that characterize a particular sequence are the

key factor in power estimation. Differently stated, not only a particular vector v; in a given sequence is important,
but also its relative position in that sequence matters. More precisely, different interleavings among the vectors
belonging to the same initial set (v|, vo,..., V) (€.8-(ViseesVip Vju VooV (V] oV Vo Vi wensVpp) OF (V[cooyVio Vi Vo
..wVy)) define completely different input sequences. Coming back to the model presented in Section 2, we observe
that DMT, alone cannot capture this property; we say that DMT, has no memory and therefore the relative order of
vectors in the initial sequence is irrelevant for DMTy’s construction. Obviously, DMT, is a poor structure for §

because it does not preserve properly the order of events. In Fig.2b for instance, the value of 3/8 is the probability to
see the particular string (state) ‘1001’ in the original sequence but this gives us no indication at all about the
sequencing of this vector relative to another one, say ‘0001°.

To solve properly the compaction problem, we refine now the above structure by incorporating in it first-order
memory effects. Specifically, we consider a more intricate structure, namely a tree called DMT| (Dynamic Markov
Tree of order 1), where from the node representing any vector v there is an emergent arc to each value x connecting v
to the successor node, associated with the string vx.

Example 2: For the same sequence in Example 1, suppose we want to construct its corresponding tree DMT;. We
begin as in DMTj and for each leaf that represents a valid combination in the original sequence, we construct a new
tree (having the same depth as DMT{) which is meant to preserve the context in which the next combination occurs.
For instance, the vector v, = 0001 follows immediately after v = 0000; consequently when we reach the node that
corresponds to v; (the leftmost path in Fig.4a), instead of going back to the root (and therefore ‘forgetting’ the
context), we start to build a new tree (rooted at the current leave of DMTy) as indicated in Fig.4a. Basically, we added
a new path which corresponds to ‘0001°. The newly constructed tree will preserve the context in which v, = 0001
occurred that is, immediately after v; = 0000 (denoted by v — v,). After processing the pair (v|,v;), we come back to
the root and continue with (v,,v3) as shown in Fig.4b; v, alone lca&s us to the second leftmost edge of DMT|, from
where, to construct DMT), we have to add the path ‘1001" which corresponds to v3. In this way, we indicate the

sequenting between v, and vq that is, v, — v3.

Fig.4
What is important to note here, is that all vectors in the original sequence are processed that is, none of them is
skipped during the construction of DMT. This is the theoretical basis for accurate modeling of the input sequences as
first-order Markov sources of information. Similarly, continuing this process for all leaves in DMT; in Fig.2b, we end

up by building the whole tree DMT) as shown in Fig.5.

upper subtree

lower subtree

Fig.5
In Fig.5, we separated by a dashed line the two subtrees that constitute DMT. The upper subtree (levels 1 to 4)
represents DMT, that is, it sets up the state probabilities for the sequence; the lower subtrees (levels 5 to 8), give the

actual sequencing between any two successive vectors. To keep the counts in these subtrees consistent, while we
traverse the lower subtrees and update the counts on their edges, we also accordingly increment the counts on the
paths in the upper subtree (in fact, all vectors except the first and the last are processed exactly twice, once in the

upper DMTy and next in the lower DMTp). In practice the counts of these two subtrees may differ by one, due to the

finite length of the sequences. This aspect can be seen in Fig.5 at level 5 on the rightmost path at the border between

10

the upper and lower subtree. A practical solution to this issue is to consider the input sequence as being cyclic that is,
to link the last combination in the sequence with the very first one or simply add two dummy states, one before and

one after the initial sequence.
Obviously, DMT, provides more information than DMT,. To give an example, string ‘1001 can follow only
after *0001” or *1100", information that cannot be gathered by analyzing DMTy, alone.

Proposition 1 [19]. We write the probability of a vector string v = vy, as follows:

P(v) = P(vl) . P(v2

vl)-...-P(v”|vlvz...v”_1) (4)

where the conditional probabilities are uniquely defined by: P(xlv) = P(vx) / P(v).
This property, used in connection with the counts on the edges, allows a quick calculation of the transitions

probabilities that characterize a particular sequence. For example, if we want to calculate the transition probability
‘1001" = *1100" we have from Proposition | P(v) = P(vlvz) = P(vl) : P(vzlvl) = 3/8 which is exactly the

count on the path ‘10011100 in the tree DMT divided by the sequence length.
Theorem 2. Any sequence in S can be modeled as a first-order Markov source using the structure DMT| and
parameters P. We call this process Dynamic Markov Chain (DMC) modeling.
Sketch of proof: If v = v, v, is a string in the structure DMT such that v; is in the upper tree and v, is in the
lower tree, then P (v, | v{) = P (v) / P (v). Thus, the parameters stored on the edges of DMT structure
provide the conditional probabilities that characterize the lag-one Markov chain for the sequence in 5. M
Theorem 3. The structure DMT) and parameters P are equivalent to a stochastic sequential machine.
Sketch of proof: DMT) defines a Markov source (based on Theorem 2). Any Markov source is characterized by a
stochastic matrix A. According to the decomposition Theorem 1 given in [14], this matrix is uniquely associated to a
stochastic machine (a finite-state machine with randomly generated inputs). Thus, DMT} is equivalent to a SSM. B
Generally speaking, the theory of stochastic sequential machines is far more developed than the theory of DMC
modeling. However, the DMC modeling technique based on DMT) seems to be more effective as it offers a much
more compact structure and generally outperforms the compaction techniques based on stochastic machines.
Specifically:
e Sequence compaction based on DMT| avoids the time consuming decomposition process necessary in stochastic
machines” synthesis.
e Using DMT one can avoid the need for partitioning the input vectors into groups of bits. Therefore, one can expect
to improve the accuracy, especially in those cases when the input patterns are highly correlated.
o DMT is constructed dynamically (new nodes are added only ‘on demand’) therefore it offers a much more compact
data structure than matrix A does.
The DMC modeling technique can be successfully used to model such complex spatiotemporal correlations. The

structure DMT just introduced is general enough to capture completely the correlations among all bits of the same

input vector and also between successive input patterns. Indeed, the recursive construction of DMT | by considering
successive bits in the upper and lower subtrees completely captures the word-level (spatial) correlations for each
individual input vector in the original sequence. Furthermore, cascading lower subtrees for each path in the upper
subtree, gives the actual sequencing (temporal correlation) between successive input patterns. This model captures
completely spatial correlations and first-order temporal correlations. However, it has conceptually no inherent
limitation to be further extended to capture temporal dependencies of higher orders. For instance, if we continue to
define recursively DMT; (as a function of DMT)), we can basically capture second-order temporal correlations

(Fig.6).

) 3
p(‘,j) DMTO
> DMT,
DMT,
Plvjivy)
4
l
P(vilvivy) : Vi
1
J

Fig.6
Theorem 4. The general structure DMT,, and parameters P can model spatiotemporal correlations of order n.
Sketch of proof: Let v = v{ v5 ... v, be a string in DMT,, (the substring v; belongs to the i-level tree). Using Proposition
1, we have P (v, | v| v5 ... v 1) = P (vy vy .. v,) | P (v v5 ... v,.)) and thus the lag-n Markov chain characterizing the

input can be fully modeled by the DMT),, structure. l

4. A DMC-based vector compaction procedure

A practical procedure to construct DMT) and generate the compacted sequence is given in Fig.7a. During a one-
pass traversal of the original sequence (when we extract the bit-level statistics of each individual vector v|,v5...,v, and
also those statistics that correspond to pairs of consecutive vectors (viva), (Vav3),....(VpaVp1):(Vyo V) we grow
simultaneously the tree DMT). We continue to grow DMT) as long as the Markov model is smaller than a user-

specified threshold (model_size), otherwise we just generate the new sequence up to that point and discard (flush) the
model. A new Markov model is started again and the process is continued up to the end of the original sequence. The
generate_seq procedure called by the DMC program is detailed in Fig.7b. Each generation phase is driven by the

user-specified compaction parameter ratio that is, in order to generate a total of m = n/ratio vectors, we have to keep

the same compaction ratio for every dynamically grown Markov model.

4ocedure DMC (input_file, ratio, model_size) { \ mocedure gencrate_seq (upper_tree, lower_trees, rau‘om

initial_state = new_slate (); cri_symbol = generate_random ();
symbol = read_input (input_file); lower_tree_node = last_node (upper_tree, cri_symbol);
update_tree (symbol, upper_tree, initial_state); upper_tree_node = rool (upper_tree);
cri_state = last_state (symbol, upper_tree); do {
while (!EOF (input_file)) | for each bit in the current vector |
symbol = read_input (input_file); generate ‘07 or ‘1’ to maximize the decrease in
if (number_of _states < model_size) { absolute error;
update_tree (symbol, lower_trees, crt_state); if (07 is generated) |
update_tree (symbol, upper_tree, initial_state); lower_tree_node = left (lower_tree_node);
cri_state = last_state (symbol, upper_tree); upper_tree_node = left (upper_tree_node),
})
else | else {
generate_seq (upper_tree, lower_trees, ratio), lower_tree_node = right (lower_tree_node);
flush_model (upper_tree, lower_trees), upper_tree_node = right (upper_tree_node);
initial_state = new_state (); 1
symbol = read_input (input_file);)
update_tree (symbol, upper_tree, initial_state), lower_tree_node = upper_tree_node;
crt_state = last_state (symbol, upper_tree); upper_tree_node = root (upper_tree);
} }
} while there are still vectors to be generated;
generate_seq (upper_tree, lower_trees, ratio); & /
_ J
(a) (b)
Fig.7

In all our experiments we used the DMC modeling technique based on the structure DMT,. We also note that this
strategy does note allow ‘forbidden’ vectors that is, those combinations that did not occur in the original sequence,
will not appear in the final compacted sequence either. This is an essential capability needed to avoid ‘hang-up’
(‘forbidden’) states of the circuit during simulation process for power estimation.

Example 3: Assume that we are given the following 3-bit sequence consisting of 17 non-distinct vectors: (v, vy, v3,
Vigs Vs, Vs V1o Vg Vo, Y11y V12 V13s V1ds Vi5e Vi Vi) = (001, 100, 001, 110, 111, 111, 101, 110, 011, 000, 101, 001,
100, 000, 110, 110, 011); our objective is to compact this sequence with a compaction ratio of 2.

We start building the Markov model that characterizes the initial sequence. For clarity, the construction of the
tree DMT) is shown in Figs.8-9 for two different scenarios. First, in Fig.8, we assume that the parameter model_size
is set by the user to the value 35; this means that the model can be grown dynamically (without any need for flushing)

until this limit is reached.

Fig.8

Once we built the Markov tree in Fig.8, we start the procedure generate_seq with parameter ratio = 2 and
generate a subset of 8 vectors which best approximate the original sequence. To this effect, we use a modified version
of the dynamic weighted selection algorithm [20]. In that approach, a similar structure with DMT is built; more
precisely, a full tree having on the leaves the symbols that need to be generated. The counts on the edges are
dynamically updated and the symbols are generated according to their probability distribution. For this, a single
random number generator is required in order to divide the interval [0,1] into subintervals that correspond to symbols’
probabilities. At each level, the random number is compared to the left probability: if lower, a zero value is generated;
if greater, a one value is generated and the number is decreased by the left probability. In our case, this strategy is
used only to generate the first vector. After that, to ensure a minimal level of error, we use an error controlling
mechanism in a greedy fashion. More precisely, at each level in the lower Markov tree, in order to decide whether a
zero or one has to be generated, we compute the transition probabilities for both alternatives and choose the one that
minimizes the absolute error accumulated up to that point . Simultaneously, the upper tree is parsed from the root to
the leaves, according to the bits generated in the lower subtree. The procedure is then resumed until the needed
number of vectors is generated.

In our example, if we assume that x = 0.23 is the first randomly generated number, based on the tree in Fig.8,
since 0.23 < 7/17 we take the left edge, generate a value 0 and x remains unchanged. At the second level, x=0.23 <5/
17 so again we generate a ‘0" and leave x unchanged. Now x=0.23 >2/17 so a ‘1" is generated and x becomes x =
0.23 - 2/17 = 0.11. For the lower subtree rooted at the node denoted by the vector ‘001° (that is , we parse the upper
subtree according to the already generated bits 0, 0, 1), to produce the second vector, we use the error controlling
mechanism. Specifically, at node N, in Fig.8, the only choice is to take the right edge, generating a *1”. Next, at node
N, the absolute error made for the transition probabilities becomes 12/17-1/81 +11/17 - 0l = 0.066 if we take the left
edge, and 12/17 - O +11/17 - 1/81 = 0.183 if we take the right edge (8 is the length of the sequence to be obtained). The
first choice is preferred and therefore a ‘0’ is generated. At the last level, at node N3, the decision is quite simple as we
have only one descendent. Thus, after the first vector ‘001°, we generate *101” as the second vector. The generation

procedure continues for the lower subtree rooted at the node denoted by the vector “101° until the desired length m =

nlratio is achieved. Despite its locality, this decision strategy performs very well in practice; as we'll see in the
experimental part, the overall level of error is very small in all practicas cases.

In the second scenario, illustrated in Fig.9, the model_size parameter is set by the user as being 30 therefore the
tree in Scenario | cannot be grown as such because the limit of 30 nodes is reached before the whole sequence is
scanned. As a consequence, once we reach this limit (this actually happens immediately after processing the
subsequence vy, vy, ..., Vg), We stop growing the tree and call generate_seq procedure with parameter ratio = 2
(Fig.9a). This will produce a subsequence of 4 vectors which best approximate the first ‘segment’ (v}, v, ..., vg) of the
original sequence. After that we flush the model (keeping only the very last processed vector vg) and start a new
Markov tree as shown in Fig.9b. When the whole sequence is exhausted, based on this new Markov tree, we generate

a new subset of 4 vectors which best approximate the second ‘segment’ (vq, vy, ..., v;7) of the original sequence.
pp 2 100 V11 17 2 q

(a)

(b)

Fig.9

In general, by alternating the generation and flush phases in the DMC procedure, the complexity of the model can be

effectively handled. The issue of accuracy in the context of these repeated flushes is discussed in the subsequent

section.

5. Practical considerations

5.1 Complexity related issues
The DMC modeling approach offers the significant advantage of being a one-pass adaptive technique. As a one-pass

technique, there is no requirement to save the whole sequence in the on-line computer memory. Starting with an

initial empty tree DMT), while the input sequence is scanned incrementally, both the set of states and the transition
probabilities change dynamically making this technique highly adaptive.

Input sequences having a large number of bits & are very common in practice; the success of DMC models for
sequence compaction when £ is large is based on two key observations:

o The larger the value of k is, the sparser the structure of DMT| will be.

To motivate this, assume a finite input sequence of length n (n « 2"). Intuitively, in a worst-case scenario when DMT;
is completely skewed (that is, all vectors are distinct), DMT| will have a number of nodes proportional to 2nk (in all

other cases, due to the sharing of paths among nondistinct vectors, the number of nodes will be smaller). On the other

hand, the corresponding full tree (statically constructed) with the same depth, will have a number of nodes

proportional with 2%, Therefore the sparsity of the tree DMT, (compared to the corresponding full tree) will

22k

increase with k as: Sparsity o< . Assuming for instance an input sequence on 60 bits having a length of 100,000

vectors, then the sparsity of DMT) is about 10", The DMC modeling technique exploits this observation by starting

with an initially empty model and dynamically growing the Markov tree that characterizes the input sequence. By
doing so, one can expect to build much smaller trees than the ones otherwise obtained by using a static model based
on an initial full tree. Indeed, in practice the dynamic growing of the Markov model performs very well and the
experimental results presented in the next section will support this claim.

e Biased sequences which usually occurs in practice as candidates for power estimation, contain a relatively small
number of distinct patterns which arise in many different contexts in the whole sequence therefore a probabilistic
model is ideally suited for modeling them.

We point out that both these observations can be efficiently exploited only by a probabilistic technique such as
DMC modeling; a deterministic technique (e.g. [13]) has no such inherent capability and therefore cannot avoid all
the difficulties that arise from this type of complexity.

However, a natural question still remains: when should this growing process be halted ? If it is not halted, there is
no bound on the amount of memory needed. On the other side, if it is completely halted we lose the ability to adapt if
some characteristics of the source message change. A practical solution is to set a limit on the number of states in the
DMC [17] as we actually did in Example 3. When this limit is reached, the Markov model is flushed and a new model
is started. Although this solution may appear as too drastic, in practice it performs very well. The intuition behind this
property is the capability of DMC model to adapt very fast to changes that occur while the input is scanned. A less
extreme solution to limit model growing is also possible; we can keep a backup buffer that retains the last p vectors
emitted by the source and whenever the model should be discarded, we may reuse this information to avoid starting

the new model from the scratch.

5.2 Accuracy related issues

To see how the flushing technique affects the accuracy, let’s assume that an input sequence of length 7 is modeled

by the DMC approach. Suppose that during the building of the Markov model, flushing occurs after the first n
vectors, then after the next n; vectors, and so on. If the number of flushes is f, then n; + ny + ... + ny=n. Let v; (u;) be

a vector from the initial (compacted) i-th subsequence (obtained due to successive flushes) and v (1) a vector from the

initial (compacted) sequence. We note that:

f
-~ +
2 i P(l-'i =XA Vi = ¥)
¥) = &= and

n

Il

Plv =XAv

= + i =1 . :)
Plu =XAu =Y) = 1 where r is the compaction ratio.

€= _—— < r:tax(si) . &)

Therefore, as long as the partial DMC models accurately the transition probabilities for the initial subsequences, the
transition probabilities for the entire sequence are preserved up to some €. Differently stated, we do not have to worry
about the number of flushes needed to manage complexity if the individual Markov models capture accurately the
characteristics of the subsequences.

An extreme case may occur when all patterns in the original sequence are distinct that is, there are no two
identical vectors in the whole sequence. In such a case all terminal edges in the upper subtree of DMT) will have only
one successor in the lower subtree, therefore the probabilistic choices during the generation phase will degenerate
into a pure deterministic generation of a subsequence from the initial sequence. To avoid this, we propose to use a
random pairwise generation phase that is, to select randomly the first vector in the upper subtree of DMT, and
generate deterministically the second vector from the lower subtree of DMT}. An alternative solution would be to
partition the initial sequence into disjoint groups of bits and apply the DMC modeling technique to each individual
group separately. As partitioning criteria we may use either functional considerations (e.g. separation between control
bits and data-path bits) or the level of correlations among individual bits as was originally proposed in [14]. By
partitioning, we increase the chances for repeated patterns in each group of bits therefore making probabilistic
arguments more reasonable. The disadvantage however, is that this solution will ignore correlations across group

boundaries.

6. Experimental results

The overall strategy is depicted in Fig. 10,

Initial sequence Ly One-step DMC modeling;
of length n build DMT, and dynamically | 2> Generate compacted

. e
update counts on its edges EEusce L

feee ol - Gate-level logic simulation; :
Gate-level logic simulation; ' gic simulation; Compacted sequence
total power estimation total power estimation of length m (L «

N

Comparison

Fig.10
Basically, we verified our ability to compact large input sequences which may also be used as power benchmarks in
the design process. We assume that the input data is given in the form of a sequence of binary vectors. While this is a
valid assumption at the logic level, it requires some justification at the architectural level. An instruction stream at the
architectural level can be converted to a binary stream using the information about opcodes and dynamic instruction
traces that resolve memory references and ambiguities. The obtained binary stream can be then subjected to any
compaction technique developed for bit-level specifications.

Starting with an k-bit input sequence of length n, we perform a one-pass traversal of the original sequence and
simultaneously build the basic tree DMT)|; during this process, the frequency counts on DMT)’s edges are
dynamically updated.

The next step in Fig.10 does the actual generation of the output sequence (of length m). As explained in Section
4, to generate the new sequence we use a modified version of the dynamic weighted selection algorithm presented in
[20]. If the initial sequence has the length n and the new generated sequence has the length m < n then the outcome of
this process is a compacted sequence, equivalent to the initial one as far as total power consumption is concerned; we
say that a compaction ratio of r = n/m was achieved.

Finally, a validation step is included in the strategy; for short sequences we used the commercial tool PowerMill
[2] whilst for long sequences we resorted to an in-house gate-level logic simulator developed under SIS. The total
power consumption of some ISCAS’85 and ISCAS’89 benchmarks has been measured for the initial and the
compacted sequences, making it possible to assess the effectiveness of the compaction procedure (under both zero-
and real-delay models).

In Tables 1-2, we provide only the real-delay results for two types of initial sequences. Sequences of type 1
are large input streams having the same initial length n =100,000 and being then prime candidates for compaction;
type 1 refers to biased sequences obtained by doing bit-level logical operations on ordinary pseudorandom
sequences. The sequences of type 2 (having the length 4,000) are highly biased sequences obtained from real

industry applications. As shown in Table 1, sequences of type 1 were compacted with two different compaction

ratios (namely » = 50 and 100); we give in this table the total power dissipation measured for the initial sequence
(column 3) and for the compacted sequence (columns 4, 5). In the last column, we give the time is seconds (on a
Sparce 20 workstation with 64 Mbytes of memory) necessary to read and compress data with DMC modeling. Since

the compaction with DMC modeling is linear in the number of nodes in the structure DMT, the values reported in
the last column are far less than the actual time needed to simulate the whole sequence. During these experiments,

the number of states allowed in the Markov model was 20,000 on average.
Table 1: Total Power (bW @20MHz) for sequences of type 1

T Number of Power for Power for Power fi
e inputs initial seq. r=50 r= IO({JJr Piigie ST DMC (5ec)
C432 36 1816.32 1838.89 1779.60 42
C499 41 3697.84 3546.65 3622.26 48
C880 60 3314.07 3229.85 332931 75
C1355 41 3205.27 3044.20 3109.18 48
C3540 50 10876.22 9910.08 10687.32 6l
C6288 32 110038.69 114199.50 109077.42 37
5344 9 751.58 748.54 719.53 10
5386 7 818.11 844.58 848.80 3
5838 34 1052.05 1061.73 1091.14 41
51196 14 3687.47 3702.32 3580.63 16
59234 36 9192.75 9157.31 9209.75 43

Average relative 2.80 2.93
error (%)

As we can see, the quality of results is very good even when the length of the initial sequence is reduced by 2
orders of magnitude. Thus, for C432 in Table 1, instead of simulating 100,000 vectors with an exact power of
1816.32 uW, one can use only 2000 vectors with an estimate of 1838.89 uW or just 1000 vectors with a power
consumption estimated as 1779.60 uW. This reduction in the sequence length has a significant impact on speeding-
up the simulative approaches where the running time is proportional to the length of the sequence which must be
simulated.

The sequences of type 2 were compacted for two compaction ratios (r = 5 and r =10) using PowerMill [2]; to
asses the potential of efficiency of the approach, for both original and compacted sequences, we report also the actual
running time required by PowerMill to provide power estimates. The number of states allowed for the Markov model

construction, was 5,000 on average; the CPU time for DMC modeling was below 3 seconds in all cases.

Table 2: Total Current (mA) for sequences of type 2

Initial sequence Compacted sequence
Circuit Nulmber of CurrenrimA) | . Time to Current (mA) Curr_cnt (mA) sin;rt:l?tit((;cc)
inputs simulate (sec) r=5 r=10 r=10
C432 36 0.4135 1186 0.4352 0.4066 120
C499 41 0.8188 2675 0.8337 0.8290 235
C880 60 0.7907 2289 0.7995 0.8023 274
C1355 41 1.1375 2993 1.1549 1.1461 284
C1908 33 1.2976 4034 1.2821 1.2833 367
C3540 50 3.4490 9467 3.3582 3.5719 1082
C6288 32 14.5749 88032 14.8020 13.3095 5005
Average rela- 2.15 2.63
tive error (%)

19

As it can be seen in Table 2, the average relative error is below 3% while the speed-up in power estimation is
about one order of magnitude on average. For example, using the original sequence of 4000 vectors, PowerMill took
for C432 about 1186 seconds to estimate a total current of 0.4135 mA. On the other side, using the sequence
generated with DMC of only 400 vectors (r = 10), PowerMill estimated a total current of 0.4066 mA in only 120
seconds. This speed-up in power estimation becomes more significant for larger modules (e.g.C6288). We note also,
that the results presented both tables 1 and 2, are significantly better than those reported in [14] in terms of accuracy,
running time and memory requirements.

Finally, we compare our results with simple random sampling of vector pairs from the original sequences [21]. In
simple random sampling, we performed 1,000 simulation runs with 0.99 confidence level and 5% error level on each
circuit!. We report in Table 3 the maximum and average number of vector pairs needed for total power values to
converge [11]. We also indicate the percentage of error violations for total power values, using as thresholds 5%, 6%
and 10%. Using different seeds for the random number generator (and therefore choosing different initial states in the
sequence generation phase), we run a set of 1,000 experiments for the DMC technique. In Table 4, we give the DMC

results for the same thresholds as those used in simple random sampling.

Table 3: Results obtained for Simple Random Sampling Table 4: Results obtained for DMC Approach
Number f’f vector Errar vidldtois (%) Error violations (%)

Pt . .| Number 4 »

Circuit Max. Avg. > 5% > 6% >10% Clrekit of vectors = 3% 6% i
C432 3300 2176 1.1 0.7 0.2 C432 2000 6.7 1.9 0.0
C499 1500 862 1.4 1.3 04 C499 800 0.3 0.0 0.0
C880 3990 2705 1.8 0.4 0.7 C880 2000 1.4 0.1 0.0
C1355 1380 814 1.7 1.0 0.2 C1355 800 0.2 0.0 0.0
C1908 1620 846 1.9 1.3 0.2 C1908 800 1.9 1.2 0.0
C6288 7470 5422 1.4 1.4 0.3 C6288 2000 0.0 0.0 0.0

Once again, the results obtained with DMC modeling technique score very well and prove the robustness of the
present approach. As we can see, using fewer vectors, the accuracy of DMC is higher than the one of simple random
sampling in most of the cases. Noteworthy examples are benchmarks C499, C880, C6288 where less than 60% of the
maximal number of vector pairs needed in random sampling for convergence are sufficient for DMC to achieve

higher accuracy and confidence levels.

7. Conclusion

In this paper, we addressed the vector compaction problem from a probabilistic point of view. Based on dynamic
Markov Chain modeling, we proposed an original approach to compact an original sequence into a much shorter
equivalent one, which can be used after that with any available simulator to derive power estimates in the target
circuit.

The mathematical foundation of this approach relies in Markov models; within this framework a family of

1. This means that the probability of having a relative error larger than 5% is only 1%.

20

dynamic Markov trees is introduced and characterized as an effective and flexible way to model complex

spatiotemporal correlations which occur during power estimation. The results obtained both on combinational and

sequential benchmarks show that large compaction ratios of 1-2 orders of magnitude can be obtained without much

loss in accuracy in total power estimates.

The issues brought into attention on this paper represent an important step to reduce the gap between simulative

and nonsimulative techniques which are currently the norm.

References

1
(2]
3]
(4]
(5]
(6]
(7]
[8]
[9]
(10]
(11
[12]
[13]
[14]
[15]
(16]
[17]
[18]

[19]
(20]

(21]

S.M.Kang, ‘Accurate Simulation of Power Dissipation in VLSI Circuits’, in IEEE Journal of Solid State Circuits, 21
(5), pp. 889-891, Oct.1986.

C.X.Huang, B.Zhang, A.-C.Deng, and B.Swirski, ‘The Design and Implementation of PowerMill’, in Proc. Intl.
Workshop on Low Power Design, pp. 105-110, April 1995.

B.J.George, D.Gossain, S.C.Tyler, M.G.Wloka, and G.K.Yeap, ‘Power Analysis and Characterization for Semi-Custom
Design’, in Proc. Intl. Workshop on Low Power Design, pp.215-218, April 1994.

FE.NN. Najm, ‘A Monte Carlo Approach for Power Estimation’, IEEE Transactions on VLSI Systems, Vol.1, No.1, pp. 63-
71, Mar.1993.

A. Ghosh, S. Devadas, K. Keutzer, and J. White, ‘Estimation of Average Switching Activity in Combinational and
Sequential Circuits’, in Proc. ACM/IEEE Design Automation Conference, pp. 253-259, June 1992.

F. N. Najm, ‘Transition Density: A New Measure of Activity in Digital Circuits’, IEEE Transactions on CAD, Vol. 12,
No.2, pp. 310-323, Feb.1993,

R. Marculescu, D. Marculescu, and M. Pedram, ‘Efficient Power Estimation for Highly Correlated Input Streams’, in
Proc. ACM/IEEE Design Automation Conference, pp. 628-634, June 1995.

A. Chandrakasan, et, al, ‘HYPER-LP: A System for Power Minimization Using Architectural Transformation’, in Proc.
IEEE/ACM Intl. Conference on Computer Aided Design, pp. 300-303, Nov.1992.

P. Landman, J. Rabaey, ‘Power Estimation for High Level Synthesis’, in Proc. Euwropean Design Automation
Conference, pp. 361-366, Feb.1993.

D. Marculescu, R. Marculescu, and M. Pedram, ‘Information Theoretic Measures for Energy Consumption at Register
Transfer Level’, in Proc. Intl. Workshop on Low Power Design, pp. 81-86, April 1995.

M. Pedram, ‘Power Minimization in IC Design: Principles and Applications’, in ACM Transactions on Design
Automation of Electronic Systems, vol.1, no.1, pp.1-54, Jan.1996.

P. H. Bardell, W. H. McAnney, and J. Savir, ‘Built-in Test for VLSI: Pseudorandom Techniques’, J. Wiley & Sons Inc.
1987.

J. Monteiro and S. Devadas, ‘Techniques for Power Estimation of Sequential Logic Circuits Under User-Specified
Input Sequences and Programs’, in Proc. Intl. Workshop on Low Power Design, pp. 33-38, April 1994.

D. Marculescu, R. Marculescu, and M. Pedram, ‘Stochastic Sequential Machine Syntesis Targeting Constrained
Sequence Generation’, in Proc. ACM/IEEE Design Automation Conference, pp. 696-701, June 1996.

1. Storer, *Data Compression: Methods and Theory’, Ch.1, Computer Science Press, 1988.
T. Bell, J. Cleary and 1. Witten, ‘Text Compression’, Prentice Hall, 1990

G.V.Cormack and R.N.Horspool, ‘Data Compression Using Dynamic Markov Modelling’, in Computer Journal, Vol.
30, No. 6, pp. 541-550, 1987.

A. Davis, ‘Markov Chains as Random Input Automata’, in American Mathematical Monthly, Vol.68, pp. 264-267,
1961.

A. Papoulis, ‘Probability, Random Variables, and Stochastic Processes’, McGraw-Hill Co., 1984,

J.W.Green and K.J.Supowit, ‘Simulated Annealing without Rejected Moves’, in Digest. of Inil. Conference on
Computer Design, pp. 658-663, Oct. 1984
.R. Miller, J.E. Freund and R. Johnson, ‘Probability and Statistics for Engineers’, Prentice Hall, 1990.

21

