Statistical Design of Macro-models
for RT-level Power Evaluation

Qing Wu and Massoud Pedram

CENG 96-24

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213) 740-4458

June 1996

Statistical Design of Macro-models For
RT-level Power Evaluation

Abstract

This paper introduces the notion of cycle-based macro-models for RT-level power
evaluation. They provide us the capability to estimate power dissipation cycle by cycle at
RT-level. They give us not only the average power but also the distribution of the power
dissipation over the all cycles being simulated (e.g., the peak power). The mathematical
foundations of this macro-model technique are statistical sampling for the training set
design and regression analysis combined with appropriate statistical tests for the macro-
model variable selection and coefficient calculation. The statistical framework enables us
to both predict the power values without the need to invoke low level simulations and to
compute the error and confidence level for the predicted value (with respect to “actual”
power dissipation). The proposed macro-model generation strategy has been applied to a
number of RT-level blocks (adders, multipliers, etc.) and detailed results and comparisons
are provided, confirming that automatic generation of power macro-models for various
RT-level cores is feasible and the estimation reaches the acceptable accuracy at RT-level.

Section 1. Introduction and motivation

Due to rapid advances in the semiconductor manufacturing technology, the chip density
and operating frequency of today’s ICs are increasing. Consequently, power dissipation
has emerged as a major concern in today’s IC’s. Low power dissipation results in lower
packaging cost and higher circuits reliability. Portable electronic devices using batteries
are another important driving force for low power design. Low power design requires
accurate and efficient power estimation tools at various design abstraction levels.

Numerous power estimation methods have been developed at gate-level or circuit-level
estimation to achieve two goals: low computational cost and high accuracy. Although
real-delay gate simulator and circuit-level simulator can provide accurate results, we
cannot afford the time it takes them to simulate tens of thousands of vectors. Probabilistic
techniques were developed to increase the estimation speed. But the methods rely on
simplified circuit models and become inaccurate for real-delay power estimation.
Recently developed statistical techniques use survey sampling methods to get a
representative subset of the original sequence. The size of the subset is much smaller than
the original sequence. By simulating the subset using accurate simulator, an accurate
average power consumption can be obtained within a short time.

Power optimization at RT-level or higher level is crucial to achieve a short design period.
In hierarchical simulation techniques, circuit is simulated at RT-level functionally. The
input sequence for each module in the circuit is then collected and passed to various Kinds

of gate-level or circuit-level simulators. The modules are simulated in turn at gate-level or
circuit-level using the corresponding input sequences. Finally, the power consumption for
all the modules is added together to get the power consumption of the whole circuit.
Strictly speaking, hierarchical simulation is not an RT-level power estimation
methodology because it indeed uses gate-level or circuit-level simulator to do power
estimation. Power evaluation is actually done at lower level.

Most RT-level power estimation techniques use capacitance models for circuit modules
and activity profiles for data or control signals [1-3]. Such techniques are commonly
known as (power) macro-modeling. The simplest form of the macro-model equation is
given by:

Power =3V*-f-C, -SW (1.1)

where C,; is the effective capacitance, SW is the mean of the input switching activity,

and fis the clock frequency. The Power Factor Approximation (PFA) technique [1] uses
an experimentally determined weighting factor, called the power factor, to model the
average power consumed by a given module over a range of designs.

More sophisticated macro-model equations can be used to improve the accuracy. Dual Bit
Type model, proposed in [2], exploits the fact that the switching activities of high order
bits depend on the temporal correlation of data while lower order bits behave similarly to
white noise data in the data path or memory modules. Thus a module is completely
characterized by its capacitance models in the MSB and LSB regions. The break-point
between the regions is determined based on the applied signal statistics collected from
simulation runs. The Activity-Based Control (ABC) model [4] is proposed to estimate
the power consumption of random-logic controllers. All of the above macro-models
assume some statistics or properties about the input sequence.

Power macro-modeling formulations in general consist of generating circuit capacitance
models for some assumed data statistics or properties. The statistics of input data is
gathered during behavioral simulation of the circuit. Power macro-modeling problem is
defined as follows:

Given an input vector sequence of size N, an RT-level circuit with m modules, and
assuming N is large enough to capture the typical operation of the circuit, derive a simple
function such that the function value of the N vector inputs is as close as possible to the
power consumption of the N-vector sequence.

A simple power macro-model equation for the jth module in the circuit could be
expressed as:

Pj:%[/l.f.zlcﬁ.gpyﬁ (1.2)

where f is the clock frequency, »; is the number of inputs for the jth module, C; is the
effective capacitance for input pin i, and SW; is the switching activity for the ith pin of
the jth module. Note that the above equation is only a typical form of macro-model and is
not unique. For example, we can include the spatio-temporal correlation coefficients
among circuit inputs[5] to improve the power prediction results (this will however
significantly increase the number of variables in the macro-model equation and thus the
evaluation overhead).

Let P, denote the power consumption of the jth module at cycle &. We can also write the
macro-model equation in a cycle-based form as follows:

5,‘=%V2-fv;q.,-s% (1.3)
where SW, is the switching activity (0 or 1) for the ith input of jth module at cycle £.
The above equation also illustrates that macro-modeling can be used to estimate the
power consumption at each cycle, this ability is critical to our statistical approach. We
thus distinguish between one-shot macro-models (such as eqn.(1.2)) and cycle-based
macro-models (such as eqn.(1.3)). The total power based on one-shot or cycle-based
macro-models can be expressed as:

P=_ZPj or B,=) P, (1.4)

where M is the number of modules used in the circuit. To calculate S}, behavioral
simulation is performed from cycle 1 to cycle N and the mean values of random variates
SW,, are tabulated. Let ¥}, denote the input vector for module j at cycle k, 0Sk<N. A

more general macro-model equation for modulej at cycle k can be expressed as:
Rik = Fj(V,".k-l’Vj,k) (1.5)

where F; could be any function of input vector pairs. Let V; denote the collection of input
vectors, derived from simulation, for m modules at cycle k&, 0 <k < N . Then total power
equation for cycle k is:

szF(Vk—l’Vk) (1.6)

where F = ZFJ . In general, the three basic criteria for effective macro-model design
j=1

are:

1. The space and time complexity for collection of parameter values for F and for each
evaluation of this function should be small.

2. The accuracy of the macro-model should be high.

3. The error sensitivity of the macro-model to variations in population behavior should
be small.

In this paper we propose a statistical design methodology for developing a good cycle-
based macro-models for modules (simple or complex cores). The macro-model is built
and analyzed based on the theory of regression analysis. A systematic design flow is
proposed for model development and verification. Two different variable selection
methods are discussed. In one approach, detailed information about module (core)
structure and functionality is used to derive'a specialized closed form capacitance
~ equation with a relatively small number of variables. This approach leads to macro-model
equations with high accuracy and low evaluation cost. However, it requires detailed
knowledge of the module structure and functionality and cannot be fully automated. In
the second approach, we start with a general-purpose macro-model equation with a large
number of variables (for example, all pairwise spatio-temporal correlation coefficients
among the module inputs). This technique leads to less accurate macro-models with
higher evaluation costs, but the advantage is that it can be fully automated. A variable
reduction algorithm is then applied to eliminate as many variables in the general-purpose
equation as possible without incurring large errors. In the paper we discuss the various
sources of error due to insufficient training of the macro-model and propose a training set
design methodology to make our macro-model universal (error be less sensitivity to
variation in population characteristics). Because of our macro-model, which is a
multivariate linear regression model, we are able to compute the confidence interval for
the estimation of model coefficients. The confidence interval for power prediction of any
vector pair can also be evaluated for the purpose of error control. This is a very important
and useful feature which is absent from all other power macro-modeling techniques.

The cycle-based macro-model is a Section of our power estimation framework shown in
Figure 1.1. '

The estimation framework is a multi-level co-simulation environment which is
constructed by RT-level, gate-level and circuit-level simulation. Firstly the circuit is
simulated functionally using an RT-level functional simulator. The input information for
all the modules in the circuit is collected. Input sequences for modules are passed to
macro-models immediately to evaluate power consumption without the need to invoke
low-level simulators (i.e., circuit or gate level simulators). Statistical sampling techniques
also take the input sequences for each macro-model and output a subset to the simulators
to do partial simulation for power. Our cycle-based macro-model can be used in

conjunction with statistical sampling techniques to provide a highly effective and
accurate RT-level power estimation methodology.

Circuit Simulator Methodology
RT-Level RTL/Behavioral Probabilistic
Description Simulator(ArchSim) Techniques
A 4
Gate-Level Gate-Level Simulator™ | Macro-modeling
Module Library (Verilog-XL)) Techniques Power
v
Circuit-Level Circuit-Level IR Statistical
Module Library Simulator(Powermill) /= Sampling

Figure 1.1 Power estimation framework
Section 2. Definitions and basic knowledge of regression analysis
Power consumption of a combinational module is solely determined by the transition
activities of its primary inputs. Specifically, from the time when primary input transitions

occur until all internal nodes and primary outputs become stable, the energy consumed by
a particular module can be defined as a function of two consecutive input vectors,

Energy = f(V,V") (2.1)
where ¥ =(v,,v,,--,v,) and V' =(v{,v;,"--,v,) are two consecutive vectors applied to
the » primary inputs. In synchronous circuits, input vector application is synchronized by

a clock. Hence, the power consumption by the module in clock cycle i can be defined as,

1

F=g(Vi,V)= SVias¥) (2.2)

TC!_OCK

where V., and ¥, are input vectors at clock cycles i-1 and i, respectively. We call any

1

two consecutive vectors in the input sequence a vector pair.

In general, function g is a complicated and highly non-linear function of input vector pair.
It is determined by the detailed structure of the module and its actual implementation in a
given technology. In some sense, g can be viewed as gate-level or circuit-level simulator
which is evaluating power consumption of the module in a cycle. Obviously, we cannot
get a closed form of g which is exact.

Our goal is to build a cycle-based macro-model which takes a vector pair as its inputs and
produce a power estimate as its output. The method of linear regression analysis is
applied to achieve our purpose.

The statistical relationship between power dissipation and an input vector pair can be
defined as,

P=p,+B X, +B,X,+ +B, X, (2.3)

where P is the power dissipation variable, B,,B,,-:-,, are constants called the regression
coefficients or parameters of the macro-model, and X,,X,,---,X, are charactenstic
variables extracted from the input vector pair.

Regression model is a formal means of describing a statistical relation between a set of
variables and the characteristic under study. Unlike a functional relation, the statistical
relation is not perfect. This means that in general, observations for a regression model do
not fall directly on the curve defined by the relationship. There are two essential
ingredients of a statistical relation which are expressed by a regression model:

1. Tendency of the dependent variable P to. vary with the independent variables

X,,X,,-. X, inasystematic fashion,
2. A scattering of points around the surface of statistical relationship.

These two characteristics are embodied in a regression model by postulating that:

1. There is a probability distribution of P for each distinct value of (X, X,, -, X,).

2. The expected values of these probability distributions (distribution means) vary in
some systematic fashion with X, X,,---, X, .

Assume that we have been give the equation form of the macro-model and have done
simulation (observation) on m randomly sampled vector pairs so that we have obtained m
simulation results (observation values) of power consumption. The power linear
regression model can be defined as,

P. =By + Byx;, + Byxipt By Xy +E;, i=12,-,m (2.4)

where:
P;’s are random variates corresponding to observations : (X, X,,..., X) = (x;,,%;, sissigl)

Bos By, -+, B, are the regression coefficients

X; 13X 5, ", X;, are known values derived from the input vector pair (V,,,V,,)
g;’s are independent random variates representing deviation from the mean value of
power.

The multivariate regression model can also be expressed in matrix terms as,

P=Xp+e (2.5)
where:
" 1 x, X, Xk By €
P, Lox,y Xy, X2k B, €,
P = .) =] - . i - B = .], € =
nxl > nx(k+1) . 2 : " B (k+1)xl 5 nxl
Pm 1 xm.l Im.z o xm.k Bk Em

Consequently, the random vector P has an expected value of E[P]=Xp and the
variance-covariance matrix of P is COV[P] = o °I, where I is the identity matrix.

Because the “real” values of B and € in the regression model are unknown, we apply the
method of least squares fit to obtain their estimates b and e. We denote the vector of

estimated regression coefficients as,

=[b0,b|,.._,bk]T (2.6)

(k+1)x1
The least squares estimator for the coefficients B are:
b=(X"-X)"-X"-P (2.7

It has been proved[6] that the least square estimator is an unbiased estimator for f, which
means E[b]= B.

The estimated (fitted) power from macro-model is given by the multiplication of input
variables and estimated coefficients:

~

B=[B. 5. |= XB (2.8)

and the residual terms are defined as the difference between the fitted power and observed
pOwer:

e=[e.e;0m0e,]=P—B =P—Xb 2.9)

It’s necessary to point out that b, e, and P are all random variables of certain distribution.
We will discuss their statistical properties in Section 3.

Some important statistical properties of regression model[6] are:

m
error sum of squares: SSE = Zef
i=1

error mean squares: MSE = SSE[/(m—k —1)

regression sum of squares: SSR = Z(ﬁ' - P)?
i=l

regression mean squares: MSR = SSR/k
coefficient of multiple correlation: R = JSSR/(SSR + SSE)

Section 3. Building the regression model

Our workflow of building a good cycle-based macro-model is shown in Figure 3.1.

3.1 Variable selection

Variable selection is the first important step for building a good macro-model.

When detailed information about the module (core) structure and functionality is
provided. They can be used to derive the macro-model form with relatively small number

of variables and high accuracy. We call it specialized macro-model. As an example, when
we are selecting variables for MUL16, which has the structure shown below:

L | A

MUL16

B | OUTPUT

The structure of MULI16 is basically a plane of 256 AND gates integrated with 1-bit full
adders. The power dissipation of those adders is determined by the transition situation on
their inputs. We divided the plane into two symmetric part as shown above. Eight basic
variables are selected representing the number of four transition type (00, 01, 10, 11) on
the outputs of 120 and 136 AND gates in part [and part II, respectively. To capture the

Design Entrance

v

A 4 A A

Variable Selection Date Collection Powet Sinitlator
General/Specialized and Processing
v b 4
G ti
Variable Reduction ene.:rz_n Lo
Training Set

Least Square
Data Fitting

r 3

Model Verification : Doé
the macro-model meet our
requirement?

NO
(Improving
the model)

END

Figure 3.1 The workflow of developing a macro-model

nonlinear relationship between transition number and power, Second order terms of basic
variables are added to the macro-model equation. In total, the number of variables in a
specialized MUL16 macro-model is 44.

However, the procedure for generating a specialized macro-model cannot be fully
automated because it requires intellectual analysis on the structure and functionality of a
module. While the variables of a general purpose macro-model are input transition
situation and the spatio-temporal correlations between inputs. The procedure of
generating a general purpose macro-model can be fully automated without knowing any
information about the module.

In our approach, the original variable set contains the variables that, reflecting the
transition situation of each input, and reflecting the pairwise spatial correlation between
every two of them. The variable reduction algorithm is then applied to choose a “best”
subset (of size below 80) from the original variables as the final selected variable for the
macro-model.

3.2 Variable reduction

There are a number of algorithms to do variable reduction. The all -possible-regression
selection procedure [6] calls for a consideration of all possible regression models
involving the potential X variables and identifying a few “good” subsets according to
some criterion. But the exponential relation between spatial/time complexity and the
number of variables makes the procedure inappropriate for a regression model with a
large number of variables. The “best” subsets algorithms [6] are developed to investigate
only a small fraction of all possible regression models. However when the number of
variables is larger than 60, they also require excessive computer time.

In our application, the number of variables in the original macro-model could be in the
hundreds. The forward stepwise regression procedure [6] is the most suitable automatic
search method for a regression model with this many variables. The search method
develops a sequence of regression models, at each step adding or deleting one X variable.
The criterion used for adding or deleting variables is the F~ statistics [6] in regression
analysis. The algorithm is described below:

Input : Given are a set of candidate variables {Xan:---:XN}: a training set, a low
threshold 7,, a high threshold ¢,, and an adjustment step size A. S is a set of selected
variables.

Step0:Set §=¢ and C= {X,,...XN}.

Step 1(start) : Fit a one-variable linear regression model for each of the X; variables. The
F’ statistic for each model is obtained by:

. MSR(X,)

i =12,..,N 3.1
‘T MSE(X)')

Assume that X; is the variable with the maximum F~ value. If F > ¢, then move X; from

C to S and denote it as X, go to Step 2. Otherwise decrease ¢, by A and redo Step 1.

Step 2(add variable) : Assume § = {X,',XZ',...,X;} , for each X, remaining in C, fit the
regression model with a+1 variables X, X;,...,X - and X, . For each of them, the partial
F test statistics is:

. MSRUX)X Xy i X)) B

S MSE(K XXX sy (3.2)

where b, is the estimated coefficient for variable X; and s{b;} is the standard deviation of
b.. Let X; be the variable with the maximum F~ value. If F; > ¢, then move X; from C'to §

and denote it as X

.., increase a by 1, and go to Step 3. Otherwise the algorithm
terminates.

Step 3(delete variable) : Assume S = {X,',XZ',...,X'}, and X is the latest variable

i

added in Step 2. Compute the partial F test statistics for all other variables in §:

o MSROKIX] X X0 X Ko XD

i %2 :_ 3 .
i MSE(X;,X,,....X,) —(s{bj})’ i=12,.,a=1 (3.3)

Let X; be the variable with minimum £~ value. If F; <t, then remove X; from S, else

retain it.

Step 4 : Repeat Steps 2 and 3 until algorithm terminates in Step 2 or there is no variable
in the candidate set C.

With user defined thresholds ¢, and ¢,, the above algorithm will help find the “best”
variables for the macro-model from the candidate set. The number of “best” variables
retained in the model is controlled by assigning appropriate threshold values.

3.3.Training set design
[Definition] Population is the set of all possible input vector pairs applied to a module.

[Definition] Training set is a representative subset of the whole population which is used
to estimate coefficients of the macro-model.

The general requirement for generating the training set for a macro-model is that it should
create the ranges of all possible values of independent variables X; and dependent variable
P in the original population. When either of these ranges is not sufficiently covered by the
training set, we say that the macro-model is not well trained or, more precisely, is
insufficiently trained. According to the source of insufficiency (range of X;’s versus range
of P), insufficiently trained macro-models can be classified into type I versus type IL

When applying the macro-model to new subsets of the population (i.e., subsets other than
the training set), the insufficiently trained macro-model of type I will, in most cases,
results in larger errors. Normally this problem can be solved by doing more experiments

and collecting more fitting data from the available population. Table 3.1 shows the error
values caused by the C1908 macro-model (66 variables) using training sets of different
sizes. The units in the training sets are randomly sampled from the population. Using the
training sets of different sizes, macro-models with different coefficients were obtained
and applied to estimate the power of whole population.

In the table, the average error and sum error is computed by:

SO

A

average error = and, sum error = ————— (3.4)

M=
o
|

L
N 4

i=

where N is the size of the population, P, is the estimated power for unit 7 , and P, is the
correspondent “‘actual” power value.

Table 3.1 The error caused by the macro-model trained by training sets of different sizes

Size of Training Set average error sum error
100 33.54% 4.90%
200 19.74% 1.07%
500 14.90% 1.29%

The results show that, when the size of the training set is too small, the range of value of
variables in the macro-model equation is not exercised sufficiently. It results in larger
error. However, after the size of training set passes the lower bound of efficient training,
the accuracy of the macro-model can hardly be improved by using more training units.

The magnitude of the error caused by insufficiently trained macro-model of type II
depends on the difference in the characteristic under study (for example, power range)
between the new sequence and the training set. This problem, which is called the
population-sensitive error problem, is more difficult to overcome. Indeed it is a major
problem that no macro-modeling technique can completely avoid. The problem is
depicted graphically in Figure 3.2.

Table 3.2 shows experimental results of the population-sensitive error problem. In the
experiment, we used three different training sets and their union to train and get four
MUL16 macro-models with different coefficients. Then we applied each one of these
macro-models to all three sets and their union separately to evaluate the errors. The three
training sets {A, B, C} correspond to input sequences going through a MULI16 in three
different applications. Training set A is digitalized music waves. Training set B is random
white noise input. Training set C is obtained from a filtering application in which one of
the data operands is fixed. Because the sizes of set A and set B are much larger than set
C, the union set is dominated by sets A and B.

12

total population

Macro-model Equation

Least-square
Fitting

Training set »| Macro-model

Applicable ?

Sub-population Sub-population Sub-population
A B C

Figure 3.2 The population-sensitive error problem

Table 3.2 Experimental results for population-sensitive error problem

Training Power A B C A+B+C
Set Size Range Ave. | Sum. | Ave. | Sum. | Ave. | Sum. | Ave. | Sum.
(LW) Err Err Err Err Err Err Err Err.
A 3000 | [13.5,122] | 10.7% 0’ 11.0% | 6.43% 67.4% 6.7%
B 3500 | [16.1,143] | 12.8% | 1.21% | 10.5% 0’ - 97.2% | - 3.0%
C 630 [0, 56.7] 870% | 660% | 390% | 205% - 0’ - 378%
A+B+C | 7130 [0, 143] 11.7% | 2.39% | 10.8% | 1.45% 335% | -7 0

* When the regression macro-model is applied to its training set, the sum error is always zero.
** Equation(3.4) is not applicable for average error computation because there are units
in set C with zero power dissipation.

Because set A and set B have similar power characteristics, the macro-model trained by
one of them has good accuracy when applying to another. But set C has quite different
characteristics from set A and B. As a result, the macro-model trained by set C caused
large error on set A, B and the union set which is dominated by A and B. The macro-
model trained by set A or B is not applicable to set C either. However, the macro-model
trained by the union set, which covers all the power range of set A,B,C, has very good
accuracy on all the sets. '

It is desirable to have a macro-model which remains accurate regardless of the specific
subset of the population it encounter in practice. One way of doing this is to build
different macro-models for different subpopulations. In practice, we will first analyze the
characteristics of the input data applied to the module, then apply the appropriate macro-
model. This methodology is similar to the population-partition method in building

13

specialized macro-models. However in most cases, the population characteristics varies
widely and it is not possible to define some well-behaved population partition. Even in
the same application, different instances of a module may encounter very different
population characteristics based on the circuit context in which they are embedded. As a
result, designers prefer to having a single static macro-model that can be used in all kinds
of applications, in other words, a universal macro-model.

Generation of the training set is also an important stage to design a good universal macro-

model. In this paper, we generate the training sequence through population stratification
and random sampling.

'PMIN PMAX

Stratification

- s L —
Population

"""""""""" Random Sampling

Figure 3.3 Generating the training set using stratified random sampling

In the first step, data is collected from all applications in which the module is instantiated
(for example, during architectural or behavioral simulation of the system which contains
the module) or it is generated by automatic sequence generation techniques[7] (which
take signal and/or transition probability and generate short sequences satisfies the
specified behavior). Assume that this data covers the whole range of the power consumed
by the module. Let Py and Py« denote the minimum and maximum power among all
the units. We divide the region between Py and P,y equally into M sub-regions. Thus
we form M strata. According to its power consumption, every unit may fall in one and
only one of these strata. Next, we randomly sample k units from each stratum to put into
the training set. Finally, we get the training set of size m=Mxk. By using stratified
random sampling technique[8], the size of the training set is largely reduced while the
property of the population is captured by the training set. In this way, we ensure that the
macro-model will be sufficiently trained to counter (if not eliminate) type II error.

3.4 Inferences and verification

As we defined in Section 2, a power macro-model should be viewed as a statistical
relation between selected variables and power consumption. The least-square estimated

coefficients b, the fitted power values f’, , and the error terms e, are all random variables
with certain distribution functions. The statistical inferences on these variables is a formal
way of inspecting the quality of the macro-model.

3.4.1 Inferences about the estimated coefficients b,

When defining the linear regression model, we assume the error terms g; in eqn.(2.4)
follow the normal distribution with mean 0 and variance o, that is, N(0,c7%).
Consequently, P’s follow the normal distribution. According to eqn.(2.7), b,’s are the
linear combination of P,’s, thus b,’s also follows the normal distribution. In practice, the
error terms could not be strictly normal distributed, neither could the P,’s. But according
to central limit theory[9], when the data number m is large enough, once the error terms
do not differ from normal distribution too much, the distributions of 4,’s are still normal.

The least square estimators for b are unbiased:
E[b]=p (3.5)
The variance-covariance matrix o’[b] is given by:

Gz[bn] G[boabI] Gz[b{)!bk]

o[b,b,] o’[b] - olb,b,]

o’[b] = =¢’-(X"X)" (3.6)

o[b,.b,] olb,b] - o’[b,]
The estimated variance-covariance matrix s’[b] is given by:

Sz[bo] slbe,0,] -+ Sz[bmbk]

sipy=| Torbed 0] b e (xx) (3.7)
's[b,‘-,bo] slb, b1 -+ s'[b,]
For the normal error regression model, we have:
4_—!3"~z(m—k—l), = Dilssask (3.8)

s[b;]

Where 1(m-k-1) is the ¢ distribution with degree of freedom of (mm-k-1). Figure 3.4 shows

the shape of the ¢ distribution. In the follow, #(1-c/2; m-k-1) denotes the (1-ct/2)x100
percentile of the appropriate ¢ distribution.

1.38879€-0 SELa
1(A;v)
Figure 3.4 The ¢ distribution

The confidence interval for single coefficient 3, with a confidence level of (1-a) is:
[b,-t(l-a/2;m—k=1)-5[b], b +t(1-a/2;m—k—1)-5[b;]] (3.9)

which means that, after the estimated value b; is given, the probability that the “real”

coefficient f; is in the confidence interval is 1-c.. Given a confidence level(e.g., 95%),

small confidence intervals for coefficients implies that the macro-model is well designed
and well trained.

At a certain confidence level 1-ot, we can also make the decision that 3; is not zero if

>t(l-o/2;n—k—1) (3.10)

b
s{b;]

This is yet another test for variable reduction. If we have already used the variable
reduction algorithm to select the variables, it is not necessary to do this test.

3.4.2 Inference about prediction of new observations

Information about the estimation error is the key factor for us to improve the accuracy.
When we apply the macro-model to predict the power of an input vector pair, we like to
know not only the estimated power value, but also the estimation error. One major
advantage of using regression analysis as described above is that the regression macro-
model can predict the power consumption for an input vector pair and give confidence
interval of the prediction for a given confidence level as detailed next.

16

Values of regression variables, X, are extracted from each input vector pair (V,,, V).

These variables are then plugged into the macro-model equation to yield the power

estimation result f’w for the vector pair. At this point, we do not know the actual value
of this observation, that is the “real” simulation result for the vector pair. What we are
able to do however is to derive a confidence level for the unknown observation.

Given a confidence level 1-a, the confidence interval of the observation P, is given by:

[Py —t(1=0/2; m=k=1)-5[P,), B, +1(1=0t/2; m=k=1)-5[R,,]] (.11)

where s[P,,,] is standard deviation of the new observation which is given by:

P, 1= MSE-(1+ XT (X"X)™" X, (3.12)

new

In simple terms, the probability that the absolute value of the difference between P, and
P,,. exceeds #(1-a/2; m-k-1)-s[P,.,], 1s ct.

Introducing the notion of the confidence interval into high-level power estimation
provides us the means to control the error and improve the accuracy of the estimates as
shown below.

Predefine a confidence level (1-o)(for example, 95%) and a tolerance limit for error(for
example, 10%). For each clock cycle, we use the macro-model to estimate the power
consumption of the module in that cycle. At the same time, the confidence interval is
computed by equation(3.11). According to the estimated power and the error tolerance
limit, we can also compute the tolerable region for error (we call it error tolerance
interval). If the confidence interval totally falls within the error tolerance interval, then
the error is tolerable at this confidence level and we accept the macro-model estimate.
Otherwise, the error is not tolerable at this confidence level and we must use a more
complex and more accurate macro-model to estimate the power. Table 3.3 gives the
experimental results of error computation for C1908 general purpose macro-model at
confidence level of 95%.

Table 3.3 Experimental results of error confidence interval prediction (mW)

Vec. Pair| Fitted Power | Confidence Interval | Actual Power | Correct Error Prediction?
1 1.302 [0.737, 1.868] 1.537 YES
2 1.323 [0.78, 1.867] 1.944 NO
3 1.329 [0.764, 1.895] 1.213 YES
4 1.274 [0.703, 1.845] 1.499 YES
5 1.765 [1.23, 2.299] 1.676 YES
6 3.095 [2.561, 3.63] 2.808 YES
7 1.994 [1.46, 2.528] 2.325 YES

Since the fitted power value follows normal distribution, the average error is
approximately 1/4 of the confidence interval.

3.4.3 Model verification

After the model is fitted to all the training units, we must go back and check the
foundation of the methodology. The correctness of the form of macro-model is the aspect
we need to look into. Whether a linear macro-model is appropriate for the training
sequence being analyzed can be studied in several ways. One of them is a residual plot
against the fitted power values. The following are two typical prototype residual plots.

e (a) e (b)

P P

Prototype(a) suggests that the macro-model is appropriate for the training set, which
means that macro-model power P is a linear statistical relation of the variables we have
chosen. However prototype(b) doesn’t suggest the linearity of the macro-model.

The residual plots for some of our macro-models are shown below.

MULI16 specialized macro-model C1908 general purpose macro-model

20 T T T 4 T T T
z z
E £
E of- & 3 o[=
=2 =2
3 g
o =

‘20] 1 1 v4 1 1 1

2 7 12 17 22 0 1 2 3 4
Fitted power value (mW) Fitted power value (mW)

The plots show that the macro-models we have built, both specialized and general
purpose, exhibit a linear statistical relation.

Section 4. Experimental results and discussion
Some experimental results are shown in Table 4.1.

Table 4.1 Experimental” results for some specialized and general purpose macro-model ™

Module Type #of var.’s | Average Error Sum Error
MULI16 | Specialized 24 10.6% 4.3%
C6288 Specialized 44 7.9% 3.1%
ADDI16 Gen. Purp.” 64 8.0% 1.0%
MUL4 Gen. Purp.” 80 9.4% 1.2%
C1355 Gen. Purp.’ 82 13.3% 10.9%
C1908 Gen. Purp.” 66 15.4% 2.3%
C3540 Gen. Purp.” 78 15.5% 5.2%

* “Gen. Purp.” Stands for “General Purpose”.

#* In experiments, the training sets are subsets of the whole populations for different
modules. The average error and sum error are computed on applying the macro-model to
whole population.

*** We are currently in the process of generating the specialized macro-models for more
complicated cores such as Kalman Filter and Viterbi Decoder. The results will be
presented at the final submission.

When the user only wants to estimate the average power dissipation of a module, one-
shot macro-model will be applied. Transforming the cycle-base macro-model to one-shot
macro-model for estimating average power is very simple. Assume that the cycle-based
macro-model is:

P=p,+B X, +B,X,++B. X, (4.1)
Then the one-shot macro-model for average power estimation is:
P =B, +BE[X,]+B,E[X, [+ +B,E[X,] (4.2)
If X,,X,,, X, are all 0-1 variables, the one-shot macro-model becomes:

P =B, + B,Prob(X,) + B,Prob(X,)+ --+p,Prob(X,) (4.3)

19

There exist difficulties to build one-shot macro-model directly using the signal/transition
probability as variables. Because a long input sequence is only one unit in the training set.
That will cause problems such as lack of information, insufficient training, analysis
difficulty, etc. Comparing to it, cycle-based macro-model has advantage in the aspects of
larger design space of variable selection, adequate data for training set design, available
methodology for error control, etc.

Section 5. Conclusions

In the paper, we introduced the cycle-based macro-model for RT-level power estimation.
In this way we are able to estimate not only the average power consumption at RT-level,
but also the power distribution over all the cycles that being estimated. The macro-model
is built on the basis of regression analysis. Two variable selection strategies were
discussed: specialized and general purpose. The number of variables can be reduced using
statistical tests. The statistical methodology enable us to not only predict the power
values at RT-level without invoking low level simulators, but also compute the error and
confidence level for our prediction. The technique was applied to generate macro-models
for various RT-level cores and achieved certain accuracy.

References

[1] S.Powell and P. Chau, Estimating power dissipation of VLSI signal processing chips: The PFA
techniques, Proceedings of IEEE Workshop on VLSI Signal Processing IV, volume IV, p.250-259,
1990.

[2] P.Landman and J. Rabaey, Power estimation for high-level synthesis, Proceedings of IEEE European
Design Automation Conference, p.361-366, Feb. 1993.

[3] D. Liuand C. Svensoon, Power consumption estimation in CMOS VLSI chips, IEEE Journal of Solid
State Circuits, volume 29, p.663-670, Jun. 1994

[4] Jan M. Rabaey, P. Landman, Activity-sensitive architectural power analysis for the control path,
Proceedings of International Symposium on Low Power Design, p.93-98, Apr. 1995.

[5] R.Marculescu, D. Marculescu, and M. Pedram, Logic level power estimation considering
spatiotemporal correlations, Proceedings of the IEEE International Conference on Computer Aided
Design, p.294-299, Nov. 1994.

[6] John Neter, W. Wasserman, M.H. Kutner, Applied Linear Regression Models, Second Edition,
Richard D. Irwin, Inc., 1989.

[7] D.Marculescu, R. Marculescu, and M. Pedram, Stochastic sequential machine synthesis targeting
constrained sequence generation, Proceedings of the Design Automation Conference, p.696-701, Jun.
1996.

[8] C.Ding, etal., Stratified Random Sampling for Power Estimation, to appear in ICCAD 96.

[9] Allen T. Craig Robert, V. Hogg, Introduction to Mathematical Statistics, Fourth Edition, Macmillan
Publishing, 1978.

20

