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Abstract

A series of studies have shown that local area net-
work traffic can be modeled by a fractional Brownian
noise (fBn) process. In this work, we compare the stat-
istics of an ATM queueing systems driven by v) an fBn
process and ii) an auto-regressive (AR) source, to a
system driven by real network traffic. We show that
the ATM queue system fed by realistic traffic suffers
larger cell losses than the AR system’s predictions. In
this case, the fBn model is able to give more accur-
ate performance results. Moreover, we verified that
the unfinished work of the realistic queueing system
exhibits long-range dependence (LRD) and the infinite
variance syndrome (IFV). We also show that the busy
period distribution has a heavy tail. We conclude that
those phenomena are responsible for the large volume
of cell losses experienced by this queueing system. Our
results are obtained by a trace-driven simulation of an
ATM gqueueing system.

1 Introduction

Bellcore researchers showed that local area network
traffic can be better characterized by a self-similar
process [1], e.g. a fractional Brownian noise (fBn),
since they are able to reproduce the long-range de-
pendence (LRD) exhibited by real network traffic. !
In this work, we want to investigate if this better rep-
resentation of the arrival traffic leads to more accur-
ate queueing models. We compare the performance
of an ATM queueing system driven by three different
traffic sources: i) real network traffic, ii) a fBn pro-
cess, and iii) an Auto-Regressive (AR) process. The
real network traffic is a publicly available trace of ac-
tual Bellcore Ethernet traffic and has been shown to
exhibit LRD. ? The fBn sample was generated by an
algorithm proposed by Chi [2, 3, 4]. The AR process is

1The real valued-process X (t) is self-sirniler with index H >
0 if for all @ > 0, X(at) = o X(t).

2The samples are available with anonymous FTP from
[tp.bellcore.com.

commonly used to model network traffic sources and is
only able to model short-range dependence (SRD). All
three arrival processes have the same mean and vari-
ance, the most distinguished feature among them is
the strength of their long-range correlation structure.

Moreover, it has been shown that LRD can cause
large cell losses in ATM systems [5, 4]. In fact, Duf-
field [6, 7] showed that the tail distribution of an ATM
queue driven by a fBn process follows a Weibull dis-
tribution, i.e. it differs from standard Markov results.
Here, we investigate the dynamics of this ATM system
in order to explain these unexpected cell losses.

2 A Trace-Driven Simulation

We simulate a discrete-time, deterministic service,
queueing (ATM) system, driven by three different ar-
rival samples containing 1,000,000 points each. We
changed the departure rate in order to achieve differ-
ent utilization levels. We computed the cell loss prob-
ability and the average cell delay in the system.
2.1 Cell Loss Probability

In the first experiment, the buffer size is equal to
100 cells. Figure 1 shows that at lower utilization val-
ues, the AR system achieves similar results to the real
system. In this case, we conclude that the SRD is re-
sponsible for the cell losses, i.e Markov models can
be used to compute queueing statistics. On the other
hand, the fBn generator is able to accurately repro-
duce the level of cell losses at higher utilization values.
In this scenario, the AR system clearly underestimates
cell losses. Therefore, the LRD is responsible for the
cell losses at higher utilization.

In the second experiment, we increased the buf-
fer size to 1000 cells. Figure 2 shows that the in-
crease of the buffer was able to significantly reduce
cell losses in the AR system. The buffer accommod-
ates the SRD component of the arrival processes, so
that the LRD (low-frequency) component is respons-
ible for cell losses [9],. Therefore, although the real
system achieves significant cell losses, the AR system



clearly underestimates it. In this case, the fBn system
can accurately predict the cell loss probability.
2.2 Average Delay

In this section, we measured the average cell delay
in the system. The AR process is able to reproduce
accurate cell delay for utilization levels below 45%.
For higher utilization values, the AR queueing system
clearly underestimates the average cell delay, see figure
3. In this case, the fBn queueing system gives more
accurate results. In figure 4 we increased the buffer
size to 1000 cells. The AR system underestimates the
delay increase experienced by the real traffic. Again,
the fBn system results in better delay prediction.

2.3 Matching Delay and Cell Losses

The fBn queueing system gives optimistic results
because the covariance structure of the fBn artificial
sample decays faster than the real data’s covariance
structure, i.e. it has a weaker LRD component. In
order to get more accurate results, we tried to get a
better match of both covariance structures. We defined
Yj(t) = kX;(t) where X (t) is the original fBn pro-
cess and k is a constant, i.e. the covariance of Y7 (t)
is given by k* times X(t)’s covariance. We choose
k empirically so that both covariance structures have
similar values up to a certain lag s. Figure 5 shows
that both queueing systems achieve similar cell loss
probability. Therefore, the fBn model can accurately
reproduce cell losses. Moreover, it is clear that the
arrival model does not need to reproduce the entire
tail of the real traffic’s covariance structure in order to
reproduce similar queueing behavior.

2.4 Explanation for the Cell Losses

Mandelbrot described a infinite variance (IFV)
syndrome associated to a self-similar process [8]. Here,
we show that if the arrival traffic suffer from the IFV
syndrome, so does the queueing system. Let Q(t) be
the number of cells in an infinite buffer system at time
t, i.e. the unfinished work. Let X (t) represent the
aggregate arrival process at time t, z.e. the number
of packets that joined the system until time ¢ Let
A = E[X(t)] be the average arrival rate, ¢ be the con-
stant departure rate, and p = Afe < 1 be the utiliza-
tion. We can write [10]

Q(t) =X(t) —ct (1)

Therefore Var[Q(t)] = Var[X(t)] — Var[ct] =
Var[X(t)], i.e. the unfinished work has similar vari-
ance to the arrival traffic. We measured the variance
of Q(t) for a 1000 cell queueing system. Figure 6
shows that the unfinished work of the system fed by
real traffic presents much higher variability than the
AR system’s unfinished work.

We also investigate if Q(t) exhibits LRD. We can
compute the autocorrelation function by using equa-
E%JOD [11 E[Q(tl)Q(f;})] = E[X(tg);‘r(t-g)]"c)\(ti+t2)+
c“tita. Therefore, whenever eA(t; + t2) < ¢*#1to the
autocorrelation of the unfinished work is even stronger
than the autocorrelation of the arrival process. We cal-
culated the correlation coefficient of Q(t) for the real
system and for the AR system at 60% utilization for a
1000 cell buffer. We can see in figure 7 that the real
system has indeed LRD. In fact, its correlation struc-
ture decays even slower than the original arrival pro-
cess’s correlation. The explanation is that when the
system is idle, the unfinished work does not change,
generating this strong correlation structure. This phe-
nomena has strong implication on queueing perform-
ance, i.e. we might experience very long busy/idle
periods. Therefore, congestion might persist for very
long periods of time. We ought to be able to re-route
traffic from a busy link to another available link, on-
demand. Another possible solution is to allocate band-
width to Virtual Paths dynamically .

We also computed the unfinished work for a
queueing system with different buffer sizes fed by the
real traffic at 60% utilization, see figure 8. We veri-
fied that when massive cell losses occur the unfinished
work presents very similar correlation coefficient to the
arrival process’ coefficient. In fact, for a 20 cell buf-
fer, the correlation structure of the unfinished work is
almost the same as the arrival process. On the other
hand, when using larger buffers (even if losses occur)
the correlation coefficient of the unfinished work is even
higher than the arrival process’ coefficient. For ex-
ample, in figure 8, the loss probability for the 1000 cell
buffer is O(10~2) but it presents a very strong correl-
ation structure.

2.5 The Busy Period

We investigated the busy period distribution for the
real system. Since this distribution is related to the
unfinished work distribution, we should expect that it
also presents a large variance. In figures 9 and 10, we
show the AR system’s busy period distribution and
the tail of the real traffic’s busy period distribution
respectively. By comparing both figures, we can see
that the real traffic’s busy period presents much larger
variability than the AR’s busy period. In fact, the
real traffic’s distribution has a very long tail, i.e. this
system experiences very long busy periods that are
responsible for most of the cell losses.

2.6 The Output Process

We checked if the output process of the queueing
system presents LRD. Since a queueing system can
be seen as a low-band pass filter, the low frequency



should remain intact if the cell losses are negligible
[11]. Nevertheless, we observed that the queueing sys-
tem presents LRD, despite of the volume of cell losses,
see figure 11. In fact for buffer sizes equal to 100 and
1000 cells, the output process’s correlation coeflicient
structure is remarkably similar to the input process’s
structure, even though the smaller buffer achieves a
0(1072) cell loss probability. On the other hand, a
20 cell buffer filters most of the high-frequency com-
ponent of the input process, so that the resulting cor-
relation structure has a weak SRD component. It
also filters part of the low-frequency structure, but
the remaining correlation structure still presents LRD.
Therefore, a fBn process is also a good model for the
output process of a queueing system fed by an input
process with long-range dependence.

3 Conclusion

Our work has confirmed recent studies in showing
that traditional Markovian queueing systems can un-
derestimate the average cell delay and cell loss prob-
ability experienced by real ATM networks. We also
showed that whenever the high-frequency component
of the arrival process is buffered, the LRD dominates
the bandwidth requirements. In this scenario, a traffic
model needs to emulate part of the tail of the covari-
ance structure exhibit by real network traffic in order
to achieve accurate queueing statistics.

Moreover, we explained the large volume of cell
losses experienced by real ATM queueing systems by
showing that the unfinished work of those queueing
systems present long-range dependence and the
infinite-variance syndrome associated with the self-
similar (fBn) arrival process. Moreover, we showed
that the output process of a queueing system fed by
a long-range dependence input process has also long-
range dependence even in the presence of massive cell
losses. Therefore, fBn processes are also good can-
didates for modeling the output process of an ATM
queueing system.

We also concluded that in order to archive higher
degrees of link utilization, ATM management protocols
need to be able to either re-route traffic on demand
whenever it sees a busy link, or to allocate bandwidth
dynamically.
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Figure 1: Loss probability for a 100 cell buffer.
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Figure 2: Loss probability for a 1000 cell.
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Figure 3: Average Delay for a 100 cell buffer.
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Figure 4: Average Delay for a 1000 cell buffer.
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Figure 5: Cell Loss Probability for the modified fBn.
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Figure 6: Variance of the unfinished work.
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Figure 7: Correlation coefficient of the unfinished work
for the real traffic and AR source.
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Figure 8: Correlation coefficient of the unfinished
work.
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Figure 9: Busy Period for the AR source queueing
system.
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Figure 10: Busy Period for the Real Traffic queueing
system.
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Figure 11: Correlation coefficient of the output pro-
cess.



