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Abstract

Traditionally, cache coherence in multiprocessors has been maintained in hardware. How-
ever, the cost-effectiveness of hardwired protocols is questionable. Virtual Shared Mem-
ory systems have highlighted the many advantages of software-implemented protocols,
albeit at a performance price. The performance gap is narrowed by hybrid systems with
the addition of hardware support for fine-grain sharing.

We have developed a software protocol for a COMA (Cache-Only Memory
Architecture) on a distributed network of processing elements. We call the system SC-
COMA for Software-Controlled COMA, to emphasize that the protocol engine is emu-
lated by software executed on the main processor. Contrary to user-level protocols, the
software handling coherence events in SC-COMA runs in sub-kernel mode to provide the
applications and the bulk of the kernel with the same services as its hardware counterpart.
The software emulation layer has been written and we compare SC-COMA to an idealized
hardware COMA through detailed simulations.

Our results show that SC-COMA is competitive. On systems with 32 processors,
it achieves a slowdown of 11-66% with respect to its hardware counterpart, across a 25-
75% range of memory pressures. SC-COMA scales well for up to 32 nodes provided the
communication-to-computation ratio is moderate. For the organization of the attraction
memory, we find that four-way set-associativity is both necessary and sufficient. A study
on the impact of faster processors on SC-COMA’s relative performance indicates a con-
sistent improvement, but with a limitation due to overheads stemming from the loosely-
integrated, decoupled design. We conclude that SC-COMA is a viable solution, using a

simple hardware addition, to transform networks of workstations into powerful multipro-
Cessors.
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1. Introduction

Several factors are motivating current research on Distributed Shared Memory (DSM) to investigate
hybrid systems, which provide cache coherence with software-implemented protocols. In spite of achiev-
ing the best performance, hardware DSMs [17][3] are hard to build and costly, and lack flexibility. All
these disadvantages are eliminated by software DSMs [18][7], at the cost of some performance degrada-
tion. Software-implemented protocols, however, can go to great lengths of complexity in order to improve
protocol performance or hide remote access latency. The ever-increasing speed of processors drives the
performance of software protocols even closer to hardware implementations [2]. To fight false sharing [6]
effects, caused by the coarse, fixed-sized units of coherence (the pages), hybrid hardware/software systems
rely on fine-grain access control. Apart from the performance aspects, hybrid systems are better suited for
off-the-shelf components, which further improves their cost-effectiveness.

DSM protocols are mainly influenced by the memory organization scheme, although many varia-
tions exist in the organization of the directory. NUMA protocols are simpler and the solution of choice in
many systems. COMA protocols, although more complex, have the appeal of automatic data replication
and migration. NUMA protocols have been evaluated previously for a variety of hybrid systems. Alewife
[4] and the software-only directory proposal [8] execute coherence actions partly in a controller and partly
on the main processor. Blizzard-E [26] uses exclusively the main processor, but it has only partial hard-
ware support for fine-grain access lookup. Blizzard-S [26] and Shasta [25] use the main processor for both
the protocol and the access lookup. Memory informing operations [12] provide a better mechanism to trig-
ger protocol actions on the main processor. Dedicated processors are used as protocol engines in Typhoon
[21] and FLASH [15]. The latter could support a COMA protocol but there is no evaluation available yet.

To our knowledge, this paper is the first to detail the software implementation of a COMA proto-
col and evaluate its performance. The contribution of the paper is to present the design of a hybrid COMA,
where the protocol engine is emulated in software executed on the main processor, and to compare its per-
formance to an idealized hardware implementation of the protocol. Our decision to study a hybrid COMA
is motivated, in part, by the intuition that a COMA maximizes node hit rates, hence reducing protocol
engine occupancy. Another reason is that studies involving NUMA protocols in hybrid architectures with
varying degrees of hardware aggressiveness are plentiful [10][8][22].

In the current version of our system, the targeted platform is a network of uniprocessor worksta-
tions. Hence, the protocol runs on the main processor, but the solution could easily be adapted if a dedi-
cated processor is available. Fine-grain memory access checking support and the controller for a set-
associative memory are incorporated in a single, relatively simple functional unit. This could be easily

integrated in the memory controller or just be plugged into the local bus, like in Typhoon-0 [22] or
START-NG [5].

Our results show that a software-implemented protocol engine can perform very well, even when
compared to an ideal hardware implementation. Addressing some of the concerns about performing proto-
col actions on the main processor [10][11], we show that efficient switching of the main processor between
application and protocol can be done without hardware support for context switching. We also show that
the overhead of protocol actions does not disrupt application performance to a significant degree. The pro-
tocol engine occupancy, relative to measurements in FLASH [10], is reduced by several effects. The num-
ber of accesses hitting in the local memory is maximized by the COMA organization and such accesses
bypass the protocol engine, generating zero occupancy, unlike in FLASH. When the main processor is
blocked in a remote access or even for synchronization, servicing external requests also produces zero
occupancy.

After we describe the COMA and the coherence protocol in Section 2, we explain the issues
involved in supporting a protocol engine inside the main processor and we detail our solutions. The soft-



ware version of COMA is compared to an idealized hardware counterpart in a setup described in Section 4.
Evaluation results follow in Section 5. The impact of processor technology is debated in Section 6. We end
with a discussion of related work and with our conclusions in Section 8.

2. Cache-Only Memory Architecture (COMA)

2.1. DSM hardware substrate

Figure 1 illustrates the composition of a generic DSM node. Processor P issues references, most of them
satisfied by the internal and external caches. E-cache misses reach the Access Checking Device (ACD) for
a possible completion of the access in the local memory. When memory contains a valid copy of the data,
it sends it to the cache. Otherwise, the ACD signals a miss to the Protocol Engine (PE). The PE is respon-
sible for completing the remote access by communicating with other nodes over the network. Request and
reply packets, sent in accordance to a set of rules (the coherence protocol) and the information maintained
in a distributed directory, are processed by the PEs to accomplish this task. When a reply packet contains
data, the data can be transferred from the network interface (NI) buffers to the main memory or, in some
cases, directly to the cache. Apart from implementation differences, the memory organization, embodied
in the ACD, and the coherence protocol supported by the PE are the most important features in a DSM
architecture. These two features defining the COMA will be discussed next. Note that a COMA does not
require the ability to transfer data between the E-cache and the network.

Figure 1. Hardware substrate for a DSM node

Memory Directory

Network

2.2. Memory organization in COMA

As shown in Figure 2, the portion of main memory hosting shared data in COMA is called the attraction
memory (AM) and has a set-associative organization similar to a cache. A block of data in the AM is called
line and is identified by a tag stored in the Tag Table. Along with the tag in each table entry, several bits
encode the state of the line, such as Invalid, Shared, Exclusive. The Tag Table is queried by the ACD on
every AM access from the local processor and its information is used to signal a miss to the PE. It may also
be queried by the PE during the processing of external requests or AM misses. The Tag Table is updated
exclusively by the PE. We assume the presence in main memory of a private space, free of tags, which
hosts the stack and, in the fork model of parallel processing, the data segment and private heap as well.

The COMA memory organization comes with a trade-off. On one hand, it provides support for
automatic data replication and migration in memory, a great relief for programmers and operating systems.



From a performance perspective, many cache conflict misses can be satisfied from the local memory, thus
improving the node hit ratio and overall latency. On the other hand it suffers from the tag-checking over-
head and the replacement problem. Searching the AM tags increases memory latency, especially for
misses. When replacing a line out of memory to make room for another, it is possible that no other copies
of the replaced line exist in the system. Other nodes must be asked to accept this line in their memory,
complicating the coherence protocol and, indirectly, affecting system performance. To allow for data repli-
cation, the total allocated memory for the AMs should exceed application needs. The ratio between the
sizes of shared data in the application and the AMs is called memory pressure. Memory pressure has a
direct effect on the rate of replacements.

Figure 2. Logical organization of memory in a COMA

2.3. Coherence protocol

2.3.1. The directory

The directory is made of the Pointer and Copyset tables and is accessed only by the PE in the events of an
AM miss or an external request. As per the Flat COMA [13] organization, the Pointer Table in the home
node of a line contains the identifier of the node currently owning the line. The size of a pointer is logN
bits, N being the number of nodes. The Pointer Table is indexed and dense. The owner node (not the home)
for a line contains the presence bits in the Copyset Table, indicating the nodes with a copy of the line.
While other presence representation methods are possible, we are assuming a full bitmap encoding. Thus,
the size of a copyset is equal to the number of nodes and we need as many copysets as there are lines in the
AM. The Copyset Table is indexed and sparse because not every line is owned.

2.3.2. Protocol actions

We evaluate a write-invalidate protocol, very much like the one in DASH [17], with extensions for COMA
and optimizations designed to improve performance when protocol actions are executed by the main pro-
cessor. Currently, it implements a sequentially consistent memory access model with no prefetching;
hence, just one request can be pending in each node at a time.

Each line in the AM can be in one of four stable states: Exclusive, Master-Shared, Shared and
Invalid. The Exclusive (writable) and Master-Shared (read-only) states denote ownership of the line. The
owner node must ensure that at least one copy of the line exists in the system. Thus, before replacing the
line, it must inject it into another node. On a read miss, nodes acquire a line in state Shared.

A home node is statically associated with each line, as in COMA-F [13], to hold the owner identi-
fication pointer. After a miss in the AM, the PE sends a request to the line’s home. If home is also the cur-
rent owner, it replies to the request. If not, it forwards the request to the current owner, which will reply
directly, bypassing the home. As opposed to COMA-F, the line owner (instead of home) maintains the cur-
rent copyset (presence bits) for the line. This allows the owner to send invalidations without consulting the



home node and to piggyback the number of acknowledgments to be collected on the reply, thus saving a
message. Acknowledgments are sent directly to the originator of the request, which is idling anyway.

Keeping the copyset with the owner also allows us to implement request buffering. This technique
is targeted at eliminating the retry (NACK) messages used by homes when the owner pointer is locked
(usually, during transactions involving a change of ownership, such as write requests). Instead, the home
always updates the owner table to point to the last writer and starts forwarding new requests to it. In case
forwarded requests reach the new owner before the reply from the old owner, they are buffered. After
receiving the reply, the new owner responds to buffered requests. When using software to implement the
PE, request buffering is very cheap to support. This strategy reduces the number of messages exchanged
by nodes, as well as the number of interruptions on the main processor.

For replacements, the protocol chooses a victim line in the set according to the priorities: (1)
Invalid, (2) Shared, (3) Exclusive/Master-Shared. The replacement of a Shared line is silent and does not
trigger a copyset update. Exclusive/Master-Shared lines are sent to their home node. If the home does not
accept the injection, the request is forwarded from node to node until it finally finds its place. An injected
line can only replace an [nvalid or Shared line and does not generate other replacements in the visited
nodes. During this injection, the owner pointer for the line at the home node is locked and any request for
the line is NACKed. Pending replacements are the only situations where the protocol uses NACKs.

3. A COMA with software-implemented protocol engine

We now describe a COMA having the protocol engine implemented entirely in software executed on the
main processor. Effectively, the processor is multiplexed between application and protocol modes. The
protocol mode is a sub-kernel mode where the processor executes a thread with system-level privileges
and having access rights to special address ranges, mapped over the directory, tag table, and the NI and
ACD registers. The coherence threads run without interruptions and preserve atomicity with respect to
faulting references. In essence, the bare message-passing hardware and the coherence software handlers
form a virtual machine having all the properties of a COMA'. With a careful design, this can be accom-
plished with very low overhead.

3.1. Mechanisms

Referring back to Figure 1, the embedding of the PE into P requires several mechanisms to be present at
the processor interfaces with the ACD, NI, memory and cache to fully support the operations of the PE.
The ACD access miss signal to the PE is implemented with a bus error transaction. This generates a syn-
chronous data access exception trap, because we assume a processor with blocking loads and stores?.
When the trap is shared by several events, such as MMU faults, status registers are queried to select the
appropriate handler. The handler can retrieve information about the access, such as physical address and
type, from the memory-mapped ACD registers. The processor trap is precise, so that the application can be
safely restarted after the access fault.

When external requests and replies are received from the network, the NI signals the PE with
asynchronous interrupts. Memory-mapped registers are used to communicate with the network interface.
DMA is available for data transfers between memory and the network, to off-load the processor and to
bypass the caches.

The Tag Table and the directory are stored in main memory, for simplicity. Both of them reside in

1. we are aware that further extensions toward supporting virtual memory and I/O are required.
2. store buffers and asynchronous data access traps could be accommodated by more complex fault handlers.



reserved areas. Because the ACD shares access to the Tag Table with the PE, the Tag Table cannot be
cached. It could be cached if access to the Tag Table can be done in write-through mode, but we do not
assume this. However, the directory can be cached and we take advantage of this.

Finally, when servicing external requests, the PE needs the ability to downgrade® certain lines in
the cache, based on their physical address. Our assumption is that the processor and the cache controller
support two special instructions: Invalidate and Flush. Flush is used to downgrade from exclusive to
shared, possibly generating a write-back. Alternate Space Identifier (ASI) instructions in the SPARC
architecture can be used to this purpose. Otherwise, the processor could program a bus device, namely the
ACD, to issue the appropriate bus transactions.

3.2. The coherence software handlers

We now describe, in more detail, how the processor switches between protocol and application modes and
how the coherence handlers operate. In the current design of SC-COMA, two types of coherence trap han-
dlers are present, reflecting the client/server nature of the PE. A synchronous memory exception handler
implements the client and starts when an access to the attraction memory cannot be served. The missing
access is not completed and will be re-executed after the line is brought locally in the correct state. The
asynchronous interrupt handler implements the server and manipulates messages containing requests and
replies issued by remote processors. At the time of an interruption, the processor can be either in applica-
tion mode or in a memory exception and waiting for a reply.

The bulk of the trap handlers is written in C for ease of development. A prologue and an epilogue,
written in assembly language, are responsible to make the execution of the C routines transparent to the
interrupted thread. When entering protocol mode, the prologue saves the current context entirely in proces-
sor registers (trap window locals) in most cases. This is made possible by SPARC’s windowed registers
and by forcing the compiled code for the C routines to avoid using global registers at no performance cost.
The code for the prologue and the epilogue is highly optimized, adding an overhead of just 25-30 instruc-
tions to the C routines. Since this code is very likely to hit in the on-chip cache and data transfers are not
involved, the transition to the C routines and back happens in less than 30 cycles on average.

3.2.1. Memory exception handler

The memory exception handler is composed of three parts. First, the processor identifies the missing line,
its current state in the memory, and the type of memory access (Read, Write, LoadStoreAtomic) by read-
ing the ACD registers. Based on this information, the processor builds a request which is sent to the home
node. If the AM has to make room for the requested line, a replacement is performed after sending the
request. Thus, replacements are not on the critical path. Second, the processor enters a spinning loop wait-
ing for a reply to its request. The third part of the memory exception handler starts as soon as the processor
has received the reply to the request through an interruption“. The processor can now restart its computa-
tion and re-execute the missing instruction. The different phases of a memory exception are depicted, in
more detail, in Figure 3.

When a reply reaches a node, the pending memory access should be restarted and completed.
However, between the time the interruption is completed and the time the instruction is restarted, another
interruption for the same memory line could be raised and remove the line from the memory; the restarting
access then triggers a new memory exception. Two or more nodes competing for the same line could hence

3. we assume the caches support multiprocessor protocols.
4. polling is another option.



be tied in a livelock situation where each node loses the line before the completion of its current memory
access. The time window in which a memory line may be invalidated before the processor restarts access-

ing it has been called the window of vulnerability in [14]. To avoid livelocks and ensure forward progress,
this window of vulnerability must be closed.

One approach for closing the window of vulnerability, proposed for hardware coherence proto-
cols, is called associative locking in [6]. It consists of locking a cache line when it is loaded into the cache
and deferring its invalidation until the processor effectively accesses it. When an interruption occurs and
the line is locked, the request must be rejected so that the local processor can restart the access on the line
before loosing it. Adapting such a solution to our implementation would require a new locked state for the
lines of the attraction memory as well as modifications of the ACD. To minimize hardware complexity, we
have implemented a software solution in SC-COMA. To close the window of vulnerability, the instruction
generating the access fault is copied into the code of the memory exception handler in a dedicated slot and
executed with interruptions disabled after the reply is received. The instruction executes in exactly the
same context as when the fault was generated, albeit in system mode and with a different program counter.
After the epilogue, execution resumes with the following instruction. A distinct advantage of our software
solution over associative locking is that it cannot create any deadlocks.

Figure 3. Anatomy of a remote miss
After sending the request (1) the local processor becomes idle. The request message traverses the network to
the home node (2). Upon arrival, it interrupts the home node which performs a directory lookup (3). The
request is forwarded to the owner and received (4). The owner node handles the request (5). After locating the
line in its physical memory, invalidating and, possibly, flushing it from the caches, the processor transfers the
line to the network interface (6). The line crosses the network back to the local node (7). At reception, the local
node is interrupted. The reply handler (8) precedes the transfer of the line from the NI to memory (9). After
resuming the context of the waiting loop and exiting it (part of 10), the instruction is re-executed (11). Check-
ing for buffered requests, restoring the application context and returning from the fault handler are the final
events, but their penalty has been lumped into phase 10. Thin lines are for software latencies and thick lines

are for hardware latencies in 5ns cycles..
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3.2.2. The interruption handler

Interruptions are triggered by the network interface when external messages (requests or replies) are
received. When the message is a request, the handler simply treats the request and sends a reply message.
If the message is a reply, the handler updates the line state and, if necessary, transfers the line into memory.
Finally, the handler unlocks the waiting loop in the memory exception handler. No other interruption is
allowed within an interruption handler.



4. Performance Evaluation Methodology

4.1. The two architectures

The operation of the ACD is identical in terms of timings for all AM accesses, so that uniprocessor appli-
cations perform identically on the two architectures. The memory controller implements a 4-way set asso-
ciative attraction memory with 128-byte lines. The Tag Table is stored in regular DRAM, like regular data.
We do not assume memory interleaving or any fast page mode optimizations. The tags and states for the
lines in a set are packed in a single double word (8 bytes), which is fetched and checked in a full memory
cycle time, prior to the actual access. Access checking to the code and private data segments is disabled.

HW-COMA'’s PE is a hardware controller with zero latency. The PE has instantaneous access to
the directory and the tag table. Hence, the latency of a remote miss is due exclusively to data transfer
delays and contention for the local bus.

SC-COMA’s PE is implemented in software. The latency of the PE operations is variable. The
directory is stored in main memory, but is cacheable. Accesses to the tag table are uncached. When han-
dlers search for a line in the AM, the ACD provides assistance, so that the cost is slightly more than an
uncached read. Although we still simulate arbitration for the local bus, there is no longer contention with
external requests.

The simulated architectures consist of 32 nodes, each with a 200 Mhz Sparc processor, a hierarchy
of caches, a memory module and a network interface. The first-level caches (FLC) and second-level
caches (SLC) are direct-mapped with 64 bytes lines. The FLC is split into two independent 16 Kbytes
caches, for instructions (IC) and data (DC). The DC is write-through with no allocation on write. The SLC
is four-way set-associative and unified. The SLC size must be scaled down to reflect the small data set size
of the benchmarks. 64 Kbytes is enough for the primary working set WS1 of the benchmarks [30], while at
the same time yielding a reasonable ratio of memory versus cache sizes. (The shared memory size per pro-
cessor in these runs varies between 100 Kbytes to 2Mbytes). The SLC connects to the memory by a 128-
bits local bus running at 50 Mhz. The memory has a 16-byte wide interface and an access time of 28 cycles
(140 ns). The critical word of the line is fetched first. Read latencies are given in Table 1.

The network interface is controlled through a set of memory-mapped registers. A 128 byte line is
transferred between network buffers and main memory in 80 cycles, assuming DMA assistance. The simu-
lated network is a crossbar with a constant bandwidth of 100 MB/s between two nodes. Hence the transfer
of a request (8 bytes) takes 16 cycles and the transfer of a message containing a line (128 bytes) takes 272
cycles. Ten cycles are added for processing at the reception.

Table 1. Read latencies

Read Requests Latency (pclocks)
Read served by FLC 1

Read served by SLC 7

Read served by the local memory (64 bytes) 46
SCC-NUMA, SS-COMA, SC-COMA privale data

Read served by the local memory (64 bytes) 46+28=74
SC-COMA shared data

Direct read access from memory(4 bytes, uncached) 40




4.2. The simulator

We have developed a flexible, modular simulation environment for hybrid and hardware DSM architec-
tures. Common modules include a processor simulator, a simplified MMU, two levels of caches, private
and shared physical memory modules, a FIFO message-passing substrate, and a custom event scheduler
implementing the multiprocessor features. System-specific modules interface the cache to main memory.
The code implementing the coherence protocol can be linked either with application code or with the sim-
ulator modules by simply modifying some macros. The former case corresponds to hybrid DSMs. In the
latter case, we simulate an ideal hardware implementation where protocol handlers take zero time to exe-
cute. The processor simulator is a SPARC interpreter. With every invocation, the simulated processor
advances exactly by one memory reference. Every instruction executes in one cycle, as we do not simulate
the details of the instruction pipeline. Load and store instructions are both blocking.

4.3. The benchmarks

The SPLASH-2 benchmarks are compiled on a SparcStation10 using gce-2.7.0 -O2 and linked with the
system libraries of SunOS 4.1.4. A special library provides routines required by the ANL macros. Support
for efficient synchronization is included in the form of queue-based locks and hardware barriers. The sim-
ulator detects special load-store atomic (LDSTUB) instructions used in synchronization routines and sus-
pends/resumes execution for processors, as appropriate. Other ANL macros, such as G_MALLOC,
CREATE, CLOCK etc., along with all operating system stubs, employ special software traps to request
servicing from the simulator. The trap table and software handlers are linked together with the application
to create an executable used for simulation on both a hybrid architecture and its hardware counterpart.
Where necessary, we made small modifications to the benchmarks to comply with the FORK execution
model. The characteristics of the benchmarks are given in Table 2.

Benchmark Parameters Shared memory
used (bytes)
Barnes 8K particles 2,584,576
FFT 64K points 3,555,328
LU 512 x 512 2,113,536
Ocean 258 x 258 16,375,808
Radix 1M integers 10,051,584
Raytrace teapot 3,407,872

Table 2: Characteristics of the benchmarks

The data placement strategy is round-robin using a page-sized (4KB) allocation unit. We should
point out that an informed placement, optimized for a CC-NUMA, leads to a slightly better performance
for all benchmarks. However, it is an advantage of COMA that uninformed placement strategies perform
almost as well as optimized strategies. When we will compare the performance of SC-COMA to an ideal
hardware implementation, a less efficient initial placement is more unfavorable to SC-COMA, as the num-
ber of interrupts, hence the software overhead, is increased due to request forwarding.



5. Simulation Results

5.1. Miss Latencies

To understand where time is spent during a miss in SC-COMA, we have run a set of micro-benchmarks,
each targeting a particular situation such as a read miss or a write miss with zero, one or two invalidations.
For each of these cases, we measure the time spent in the different software handlers and in the network. In
Figure 4, each stacked bar gives the time breakdown in cycles for the activities of a request. All handler
times include the time to save and restore the context of the processor. The memory exception handler time
also includes the time to re-execute the faulted instruction. For write misses with invalidations, the invali-
dation acknowledgment handler time is the average sum of all the times spent in processing acknowledg-
ments. The bar on the right of each stacked bar gives the latency experienced by the requester. They are
shorter than the sums of the times for all activities because some activities overlap.

The most important component of the latency is the remote read or write interruption handler at
the owner. The owner must identify the location of the line, using hardware assistance, and reply to the
request. On average, this takes 280 cycles when no line is sent back and 330 cycles when the reply contains
a line. For write requests, the first invalidation sent by the owner increases the handler time by 246 cycles
(on a 32-node configuration); each additional invalidation adds 22 cycles.

On a node with a Shared copy of a line, the invalidation interruption time is 218 cycles (we only
show the time for one invalidation interruption, since all the invalidations handlers are executed in paral-
lel.) A big part of this latency is hidden, however, since the invalidation acknowledgment message is sent
before searching for the line and invalidating it. Receiving an invalidation acknowledgment at the
requester consumes 65 cycles, except for the last one (76 cycles).

Figure 4. Breakdown of latencies for simple requests (micro-benchmarks) for 200 MHz processors.
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By looking at the latency times experienced by the requester (right bars for write miss cases), we
see that the global cost per invalidation is between 70 and 90 cycles. This can represent a large overhead if
data sharing is important. However the number of simultaneous copies of a line is usually low in typical
programs and we do not think that dispatching invalidations and collecting invalidation acknowledgments
by hardware, as advocated for software-extended protocols [4], would yield a large performance improve-
ment, except for benchmarks with wide sharing. This issue is discussed further in the next section.
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5.2. Execution Times

In this section we present the overall performance of SC-COMA by comparing it to an ideal hardware
implementation called HW-COMA. HW-COMA uses exactly the same coherence protocol as SC-COMA,
but incurs no penalty for the (software) execution of coherence actions, as if they are performed by an
extremely fast hardware controller. HW-COMA'’s controller is arbitrated between the local cache and the

network interface and is occupied by a request for a duration of time involving mostly data transfers
between memory and the network interface or the cache.

Figure 5 shows execution times on SC-COMA normalized with respect to HW-COMA, for three
memory pressure points: 25%, 50% and 75%. The execution times are broken down into several compo-
nents. The busy time corresponds to the effective instruction processing time of the processor. The proces-
sor is stalled during synchronization events and whenever it misses in the FLC. When the access hits in the
SLC or local memory, the delay is counted as local stall. In SC-COMA, this corresponds to accesses per-
formed without software intervention. Attraction memory misses contribute to the remote stall. An addi-
tional component of the execution time in SC-COMA is due to the processing of external requests which
interrupt the application thread. This category excludes the overhead of requests occurring while the pro-
cessor spins at a synchronization or a pending remote access.

Figure 5. Execution times for SC-COMA normalized with respect to HW-COMA.
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SC-COMA’s slowdown ranges from 11-48% at low memory pressure to 26-66% at high pressure.
The local stall, in spite of almost identical cache and memory hit ratios for the two architectures, is higher
in HW-COMA. This is explained by the increased delay for cache misses, when HW-COMA’s controller
is busy with external requests. By contrast, in SC-COMA, the cache controller has exclusive access to the
bus and the memory controller.

25 0% 75%



The amount of remote stall in SC-COMA, as compared to HW-COMA, roughly scales up by the
ratio of the remote read/write miss latencies, shown in Figure 3. The reason is that the node miss ratio
remains practically constant in the two architectures and, except for LU, there is no significant component
of upgrade (ownership) misses. Compared to read misses, the overheads of SC-COMA for upgrade misses
are relatively bigger, hence LU shows a higher scale-up factor for the remote latency. Other factors of fluc-
tuation from this approximate ratio are the amount of request forwarding and contention for certain nodes,
which increases queuing delays. The number of forwarded requests should decrease with better placement
strategies, leading to a reduction of the average latency which is more significant in SC-COMA. The like-
lihood of contention goes up with the memory pressure, as processors become interrupted more frequently.
This explains why the ratio between the amounts of remote stalls increases slightly along with memory
pressure.

Indirectly, the activity of the coherence handlers negatively affects the synchronization stall. The
increased synchronization penalty in the context of software-implemented protocols has been attributed by
Grahn and Stenstrom [8] to node activity imbalances due to uneven distributions of coherence requests.
This is more serious at high memory pressure, when the protocol overhead is more pronounced.

Finally, SC-COMA has a component of overhead due to interrupts disturbing the application.
Overall, this is quite small, indicating that a potential communication coprocessor would be underutilized.
As memory pressure increases and replacements become more frequent, this component becomes more
significant, but never critical. An interesting effect in some applications is the occurrence of external
requests when the processor is stalled anyway, either in synchronization or because of a pending miss. LU,
with a high synchronization penalty, is able to overlap the processing of some external requests with bar-
rier synchronization. On the other hand, FFT, Radix and Ocean exhibit clustered misses during data
exchange phases, when processors are cross-servicing misses, again overlapping some of the overhead
with a blocked time.

5.3. Speedups

In Figure 10 we present speedups for up to 32 processors. The algorithmic speedup is derived for a perfect
memory system, with zero stall. To gain insight into the behavior of the COMAs, we show the speedup at
three different memory pressures. The total amount of memory in the system is kept constant and is
divided equally among the processors. In all configurations, processors have a 64KB cache. The tag-
checking overhead in shared memory accesses is removed for simulations of the uniprocessor case. This
explains why the slope of the speedup is smaller than one right from the start (i.e. for just a few proces-
sors), especially in applications with high cache miss ratios: Radix, Ocean, and FFT.

Let’s introduce a simple model to discuss the speedup. Assume the execution times using P and 2P
processors are given by:

T(1 + o)

5P (1

B T B
’Pzﬁ"“L;_a 12},:54-1,

B is the total amount of computation, 7 is the inherent total traffic, L is the communication latency and o. is
a factor describing the increase in traffic from P to 2P processors. The speedup 1,/1,, is then given by:

p)
Sop = ——— (2)
! BT
L
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We can infer that the speedup is ideal when the traffic stays constant (0t=0). The latency L is the only
architecture-dependent factor. The smaller the L, the bigger the speedup. B/T is the computation-to-com-
munication ratio. A large B/T would make variations of L less significant. This model does not include the
effects of synchronization. In general, larger latencies exacerbate the penalties of synchronization. For a
COMA, the above effects are visible at low memory pressure. With increasing memory pressure, replace-
ments and capacity traffic start to interfere. In HW-COMA, replacements act indirectly, by increasing con-
tention and the average latency L. However, they should have a relatively mild impact. In SC-COMA,
replacements have a direct effect, as well, by interrupting application processing. Capacity traffic slows
down both implementations, but especially SC-COMA.

We discuss the speedups by analyzing the communication-to-computation characteristics, as indi-
cated by the traffic (bytes per instruction [30]), the influence of replacements and synchronization limita-
tions. The presence of remote latency makes HW-COMA s speedup diverge from the algorithmic speedup
and SC-COMA’s speedup diverges even more. When communication scales well, the total traffic is
roughly independent of the number of processors and the speedups should not saturate. Otherwise, stalls
due to communication can become dominant and the speedup saturates. In this case, due to the higher
remote latencies, SC-COMA would saturate even faster. Indirectly, increasing communication may affect
synchronization penalties, making saturation even more prominent. A higher memory pressure can
increase the capacity traffic. When data is mostly-read, this doesn’t dramatically affect the rate of replace-
ments.

Barnes has a small comm-to-comp ratio, resulting in a nice speedup at 25% memory pressure. At
higher pressures, the capacity traffic, albeit for mostly-read data, increases sharply. In a snowball effect,
synchronization penalties increase as well.

FFT has a very good algorithmic speedup and practically no false sharing. The traffic is moderate
and remains almost constant for any number of processors. Furthermore, the capacity traffic and the
replacements are not very much affected by the memory pressure, because there are few processor cache
capacity misses.

LU has the smallest comm-to comp ratio, resulting in speedups for the COMAs which are very
close to the algorithmic speedup. Unfortunately, the barrier synchronization penalty for the algorithm is
high and becomes even higher for the COMAs when memory pressure is raised, although the capacity traf-
fic changes increases slowly.

Ocean has a fairly high comm-to-comp ratio. Both capacity traffic and replacements increase
moderately at 50% memory pressure, but start to pick up at 75%.

Radix has the highest comm-to-comp ratio. The capacity traffic is also significant at high memory
pressure and, because most of the data is writable, there are many replacements as well. All together, these
effects contribute to the worst speedup.

Raytrace has a moderately small comm-to-comp ratio. The speedup would be very good at low
memory pressures if synchronization penalties were not in the way. With higher pressures, the capacity
traffic increases significantly. However, replacements stay low, because data is mostly-read.
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5.4. Effects of the associativity degree in the attraction memory

The associativity degree of the attraction memory has a double impact on the overall performance. Firstly,
the AM hit ratio generally improves as the associativity is increased, resulting in fewer accesses requiring
software intervention. As a side effect, the number of replacements is also reduced when associativity is
increased, again reducing software overhead and network traffic. Secondly, for a direct-mapped AM, it is
possible to eliminate the tag-checking overhead, which speeds up all memory accesses. Figure 7 illustrates
the impact of the associativity on the execution time at different memory pressure points. The choice of a
four-way set-associative AM becomes quite evident. Eight-way set-associativity brings minor improve-
ments at high memory pressure only. At 25% memory pressure, even an associativity of two seems satisfy-
ing, but as pressure increases, especially for Barnes and Ocean, the performance degrades considerably.

The bad performance of the direct-mapped AM, in spite of having no tag-checking overhead, is
due to two reasons. Firstly, increased chances for conflicts translate into higher node miss ratios. More
importantly, within the confinement of a global set, there is limited capability for replication. A single line
L1 cannot be efficiently shared by many nodes, especially at a high pressure, because line L2, replaced
when L1 is replicated, will likely conflict again with L1 in the node where the replacement request is sent.
Skewing [27][19] alleviates this problem by using a different hashing function for each node in order to
translate a line address into a set index. Thus, two lines contending for the same set in node N1, will likely
be free of contention in any other node. Thus, it is possible to efficiently replicate a line to all the nodes,
without creating a cascade of replacements. We must point out that this does not come for free in a hybrid
system. The software handlers themselves must compute the set when they access tables indexed by the set
number. It is true that hardware could assist to make skewing totally transparent, but this violates the goal
of simple hardware. With dashed line, in Figure 7, we present the performance of a skewing scheme with
four different hashing functions. The hashing functions are described by:

15



set = ((Aqg..Ag) Xor (Ag..A;s << (N%4))) % NUM_SETS 3)

where A q..A is the physical line address and N is the node number. In the shared address space, the field
Aj9..A |5 specifies the home node. As can be seen from the plots, the results are mixed. The overhead of
more complex computations for the set address in the software handlers is not offset by a reduction in the
number of replacements in FFT, Ocean and Radix. On the other hand, Barnes and Raytrace show overall
improvements, whereas in LU skewing works better at high pressure only. It is unclear, as yet, whether
other skewing schemes would bring significant changes, as we are still investigating this aspect. At this
point, it seems that, with or without skewing, a direct-mapped AM is not an attractive option.

Figure 7. Execution times (10° cycles) as functions of the memory pressure for different AM associativities.
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5.5. Effects of processor speed

It is expected that, with increasing processor speeds, the overhead of coherence-related software and the
contribution of software-implemented actions to the remote latency should be relatively diminished, if the
memory and network speeds are kept constant. In order to quantify this intuition, we have performed sim-
ulations for SC-COMA and HW-COMA using varying processor clock frequencies, from 100MHz to
1000MHz. These simulations are performed at 75% memory pressure, where the software overhead is
higher, due to more frequent replacements, and the impact of faster processors is more significant. Our
indicator is SC-COMA’s slowdown, the ratio of execution times ($¢/:/4W . Indeed, as shown in Figure 8,
there is an obvious trend for a relative improvement of SC-COMA as the processor is clocked faster and
the overhead of the software-implemented protocol is reduced by comparison. The inconsistent behavior
in Barnes may be due to dynamic work scheduling, which could lead to different execution paths. LU does
not show any improvement, possibly because of the high synchronization penalty and the small amount of
remote stall. Finally, SC-COMA’s slowdown never approaches one. This is because of the overly optimis-



tic timings of HW-COMA, which is assumed to have instantaneous access to all the coherence tables and
the directory, whereas SC-COMA must perform costly uncached accesses. Table 3 lists the estimated
value where SC-COMA’s slowdown is converging.

Figure 8. SC-COMA’s slowdown at 75% memory pressure for different processor speeds
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Table 3: Asymptotic slowdown for SC-COMA (estimated at 1GHz)

Barnes FFT LU Ocean Radix Raytrace

1.32 1.30 1.27 1.21 1.486 1.26

Ar first, it was very surprising to us that the slowdowns in Table 3 were so close asymptotically,
given the mix of applications. To explain why, we use a simplified model, in which the execution time of
an application is given by

TCK = TCOI‘[]p * Nm(_hc LYClE + NI'IICI'I\ mem + NI‘LI]]DLCti‘C!n(}lE (4)

T'eomp 1s the execution time of instructions with no memory access. Nyyeper Nppeps and [\'_’,‘,,,mm are -the num-
bers of memory accesses that hit in the cache, hit in the local memory after a cache miss, and miss in the
local memory, respectively. Given our assumptions, the latency for accessing local (r,,,,.) is unaffected b
ry P Y- p Y mem y
the processor’s cycle time (f.y..). This holds true for the average latency of a remote memory access (7,
ore) in @ hardware implementation as well. With software coherence, f,,,,;, COntains a component depen-
dent on 7.y, but it virtually disappears at high processor speeds. As processor speed increases, the T,
and N,,epelevele cOmponents of the execution time become less and less significant and the following

approximation can be used:

TBX - NI]]CITI[II']CITI + NTC]T]O[CII'CITIOW (5)
For high memory pressure, in most cases, the memory hit ratio is 35-65%, thus making N,,,,,, and

N, emore have the same order of magnitude. Because 1,10 >> 1,,0m» We can further approximate:
Tex = Niemotelremote (6)

For a given application, the ratio of the execution times from equation (4), 75€/75W indicates the



precise value of SC-COMA’s slowdown, whereas the approximation from equation (6) explains why, in
most applications, the slowdown converges to the value (5S /W . This is the ratio of the average
remote latency for SC-COMA, when the overhead of executing software handlers is negligible, and that of
an ideal COMA. Remote accesses due to read and write misses have very similar latency, dominated by
the delays of transferring data over the network, bus and memory. Remote accesses due to ownership
misses have a much smaller latency. When the mix of remote accesses does not have a very significant
component of ownership misses, a frequent case, the asymptotic slowdown can be simply approximated by
the ratio of the unloaded read/write latencies. This explains why, in most cases, the slowdown converges
roughly to an application-independent value. This value is not equal to one, because of the overheads of
programming the network interface and updating the tag and state table with uncached operations in SC-
COMA. The penalty of uncached accesses is constant, regardless of processor speed.

Further comments are due to explain the behavior of Ocean, LU and Radix. SC-COMA’s slow-
down for Ocean converges to a lesser value than all other applications. This is because the attraction mem-
ory hit ratio is still very high (84%) even with 75% memory pressure. This makes the N,.fmem
component of 7, large enough to bring the asymptotic slowdown closer to one. In LU, the slowdown
seems to become larger with increasing processor speeds. Within our model, it can be proven that this phe-
nomenon appears every time the overall node miss ratio of an application falls below a certain threshold.
For the six applications we have examined, only LU fulfills this condition. By contrast, Radix has the high-
est node miss ratio. This makes the convergence of the slowdown become slower.

Figure 9. Execution times for SC-COMA and HW-COMA with varying processor speeds
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To better understand the prospects of SC-COMA in the future world of fast processors, in Figure 9
we plot the absolute execution times for some benchmarks using processors clocked up to 1GHz. The
results for the other benchmarks are similar to Barnes and LU. The curves for LU show that a 275 MHz
SC-COMA performs like a 200 MHz HW-COMA. The same is true for a 450 MHz SC-COMA and a 300
MHz HW-COMA. In essence, this indicates that SC-COMA could be a very viable solution for the present
and near-future. The release of a hardware COMA using 300 MHz processors could take as long as the
development of a next-generation, 450 MHz processor, which can be used immediately by a software
COMA, at virtually no costs. At higher processor speeds, this advantage disappears, as the execution time
starts to saturate due to memory and network latencies. The good news is that, at saturation, the perfor-
mance of SC-COMA is relatively close (within 30%) to HW-COMAs, regardless of application specifics.
This confirms the expectation that an ultimate performance limitation for hybrid DSMs is the efficiency of
data movement and the overhead to control this movement.

The current version of SC-COMA runs on a sequentially consistent hardware. Thus, the store buff-
ers are disabled. In Figure 9, a third curve is plotted for a HW-COMA where all write stalls have been
eliminated. At 200 MHz, SC-COMA shows a slowdown between 1.45 for LU and 3.25 for Radix, as com-
pared to this HW-COMA with ideal release consistency. However, the software protocol in SC-COMA



could be upgraded as well to run on a release consistent substrate. This would involve the software ability
to recover pending stores from the buffer (address and data), after they are faulted, and to complete them,
using untranslated stores.

It is obvious that future processors will incorporate features to fight the memory wall [24], such as
bigger on-chip caches, simultaneous multithreading, out-of-order execution. At the same time, limited
improvements in memory speed are also expected. The net effect is that the saturation of the execution
time will be pushed toward higher processor speeds. The question, then, is how would these processor fea-
tures affect the performance of hybrid DSMs. Would they be able to avoid saturation just as well? Systems
with external protocol processors could probably deal with some of the advanced processor features, most
notably non-blocking loads, with less overhead. On the other hand, processor/memory integration trends
[24] and memory feedback mechanisms [12] impose at least physical collocation of the protocol engine
and main processor. We believe that, in integrated systems, the memory access checking for loads/stores
can be efficiently incorporated in the processing pipeline and low-overhead traps, similar to memory-
informing operations, could start the appropriate handlers on the main processor.

6. Possible improvements

The current protocol for SC-COMA is just a basic version, still to be improved. The average remote access
latency for SC-COMA can be reduced by using ownership hints [1]. Whenever the owner and home nodes
for a line do not coincide, transactions require three hops (and a costly interrupt at the home node for SC-
COMA). When the owner can be guessed correctly, the home is bypassed and two hops are sufficient. Pre-
vious research for hardware-implemented protocols indicated the costs of incorporating hints in the proto-
col offset their efficiency [1]. This is likely to change in a software implementation.

Another avenue for improving the performance of SC-COMA is provided by application-specific
protocols. Some communication patterns in certain applications are better suited for write-update protocols
or bulk data transfer. This can be either indicated by the programmer or detected by adaptive protocols.
Adaptive sequential prefetching can also be incorporated.

7. Related Work

Research on the hardware implementations of COMA begun with the DDM [9], which used hierarchical
directories. As demonstrated by the KSR-1 [3], hierarchical directories increase the latency of remote
accesses. This would become even worse with software-implemented directory management. The Flat
COMA, COMA-F [13], was proposed to eliminated hierarchical directories. More research on the proper-
ties of COMA was done by the DICE group [16]. To our knowledge, there is no working prototype of a
Flat COMA. The Illinois Aggressive COMA (I-ACOMA) [29] group is currently building one. A variation
of the COMA, using a page grain in the allocation policy, is the Simple COMA [23]. S3.mp [20] has pro-
vided a testbed for its implementation.

A variety of DSM systems have used the main processor for protocol processing. The Alewife
project [4] was the first to experiment with software extensions to a NUMA protocol implemented mostly
in hardware. The software protocol actions were written in C and executed on the main processor, which
was providing support for very fast context switching.

On the heels of the Alewife study, Grahn and Stenstrom evaluated various implementations of a
NUMA protocol with software-only management of the directory on a NCC-NUMA substrate [8]. A cus-
tom node controller provides support for remote put/get operations and implements a good part of the pro-
tocol actions. Software protocol actions are running on the main processor. The necessity to switch context
while an access is pending requires the provision of high-availability interrupts.
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Another project using the main processor to execute protocol actions is Blizzard-E [26]. A cross
between VSM and hybrid systems, it uses the CMS5 virtual memory system to trap shared writes and the
memory error-correcting codes (ECC) to implement a memory line valid bit and support fine grain sharing
for read-only pages. Protocol actions run at user level, taking advantage of CMS5’s user-level network
interface. The overhead of traps through the kernel has been reduced by careful recoding. Faulted accesses
are re-executed after the trap handler terminates. There is no detail on how forward progress is guaranteed.
Depending on the application, Blizzard-E is slower than KSR-1 by a factor up to seven [26].

All Distributed Virtual Shared Memory systems implement the coherence protocol in software
running at user-level on the main processor, albeit using coarse-grain sharing. More recently, user-level
software-only protocols with support for fine-grain sharing have been proposed by Blizzard-S [26] and
Shasta [25]. They do, however, incur a penalty for performing access checking in software for every
potential access to shared memory. This category of user-level software-only DSM has COMA-like fea-
tures, by accumulating the working set in the local memory. However, the replacement algorithm must dis-
pense of a whole page, which could be too large a grain in some cases, and adds the overhead of page
faults.

Typhoon [21] is one of the first proposals for hybrid DSMs with high levels of integration. Its net-
work device contains a processor dedicated to user-level protocol handling. Coherence events, snooped
from the bus or signaled by the network interface, invoke user-level procedures. Bus addresses must be
passed through a reverse TLB which adds to the complexity. The memory organization is inspired from
Simple COMA.

The Stanford FLASH [16] is the most aggressive proposal for a DSM with software-implemented
coherence. A custom node controller, the MAGIC chip, provides pipelined data paths between the proces-
sor, memory, network and I/O. It also contains the processor running the coherence protocol along with its
own caches. Currently, like SC-COMA, FLASH does not allow user-level handlers and runs protocol han-
dlers at system-level. Although a COMA protocol is planned for evaluation, the only reports [10] available
are for a NUMA protocol with a directory structure using dynamic pointer allocation.

Typhoon-0 [22], START-NG [5] run the protocol on one of the processors in a standard SMP clus-
ter. Fine-grain sharing is supported by the addition of a custom access checking device on the local bus.
Both run user-level protocols. While Typhoon-0 uses a Simple COMA memory organization, START-NG
manages a level-3 cache in software, requiring intervention on all level-2 cache misses.

8. Conclusions

We have presented a COMA architecture with the coherence protocol executed in software on the main
processor. The hardware substrate is very close to a generic network of workstations. We rely on a custom
hardware device, acting at the local bus level of every node, to organize and control a fine-grained attrac-
tion memory using standard DRAMSs. Misses in the attraction memory are faulted on the bus and trigger
protocol actions on the main processor. Packets received from the network are flagged with asynchronous
interrupts and are handled similarly. The protocol handlers run in kernel mode and are lightweight. These
handlers can be integrated into a standard OS kernel with minor modifications. SC-COMA’s approach and
other optimizations allow it to achieve a software overhead of just 430 cycles for a three-hop remote read.

The performance of SC-COMA compares favorably with an idealized hardware-implemented
COMA. Execution times on 32 nodes for six benchmarks indicate a slowdown of 11-48% at 25% memory
pressure and 26-66% at 75% memory pressure. SC-COMA scales well up to 32 processors. We studied the
effects of the associativity factor for the attraction memory and concluded that, for both implementations,
at least four is necessary. An associativity of four was also found to be sufficient for all benchmarks. An
attempt to simplify the attraction memory controller by using a direct-mapped organization with skewing
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produced mixed results. Our investigation on the effects of faster processors, relative to memory and net-
work speeds, revealed that SC-COMA'’s slowdown is reduced as the overall contribution of the software
overhead to the remote latency shrinks. However, the slowdown cannot pass below a certain threshold due
to SC-COMA’s loose integration of the protocol engine with the network interface and the Access Check-
ing Device. The results we have presented are encouraging given the simplicity of the current protocol. We
are expecting improvements from further optimizations and extensions.
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