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Abstract

In this paper we propose and evaluate a new data-prefetching technique for cache co
herent multiprocessors. Prefetches arc issued by a new functional unit called a prefetch en
gine which is controlled by the compiler. We let second-level cache misses generate cache
miss traps, and start the prefetch engine in a trap handler. The trap handler is fast (40-50
cycles) and does not normally delay the program beyond the memory latency of the miss.
Once started, the prefetch engine executes on its own and causes no instruction overhead.
The only instruction overhead in our approach is when a trap handler completes after data
arrives. The advantages of this technique are (1) it exploits static compiler analysis to deter
mine what to prefetch which is hard to do in hardware, (2) it uses prefetching with very little
instruction overhead, which is a limitation for traditional software-controlled prefetching,
and (3) it is accurate in the sense that it generates very little useless traffic while maintaining
a high prefetching coverage. Wc also study whether one could emulate the prefetch engine
in software, which would not require any additional hardware beyond support for generating
cache miss traps and ordinary prefetch instructions.

In this paper we present the functionality of the prefetch engine and a compiler algorithm
to control it. We evaluate our technique on six parallel scientific and engineering applications
using an optimising compiler with our algorithm and a simulated multiprocessor. Wc find
that the prefetch engine removes up to 67% of the memory access stall lime at an instruction
overhead less than 0.42%. The emulated prefetch engine removes in general less stall time
at a higher instruction overhead.

Keywords: Data prefetching, memory access traps, cache coherent multiprocessors,
compiler algorithms, performance evaluation.
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1 Introduction

Coherent data caches are key toachieving good performance inshared-memory multiprocessors.
The majority of memory access instructions can be serviced by thedata cache of a processing
node, and this reduces the average memory access latency seen by the processor. Despite this,
memory accesses often account for a significant fraction of the total execution time. This is due
to cache misses that must be serviced by remote memory. One techniqueto hide memory access
latency is to fetch datacloserto the processor before it is actually needed, that is, data prefetch
ing. A successful prefetching technique must be able to predict which data will be accessed in
thenear future. This is ingeneral difficult [9], butforregular array accesses, both compiler-based
and hardware-based prefetching techniques havebeen able to predictfutureaccesses quite accu
rately [5, 7, 8, 13, 14, 15].

In traditional compiler-based prefetching, prefetch instructions are inserted into the code. While
static compiler analysis can deal with more complex memory access patterns than can a pure
hardware-basedapproach, instructionoverheadisa fundamental limitationof traditionalcompiler-
based prefetching. The instruction overhead arises partly due to the execution of prefetch instruc
tions and partly due to address calculations and increased register pressure. In [15] the importance
of limiting the prefetching to accesses which are likely to experience cache misses was shown.
Otherwise, the execution of the additional instructions does not give any benefit. The instruction
overhead is still present for codes which experience cache misses, but the benefits of hidden la
tency outweigh the overhead. Although for some codes, locality analysis can determine when
prefetch instructions should be inserted, such analysis typically requires a certain structure of the
code. For instance, Mowry reports [13] that some while-loops do not have an induction variable
thatthelocality analysis needs.1 Amore serious limitation isthatboth thecache sizeandtheinput
data set size (or loop iteration count) must be known at compile-time (otherwise, compile-time
analysis cannot know whether cache misses will occur). Furthermore, for irregular data struc
tures it seems difficult to determine the locality at compile-time. Therefore instruction overhead
is an even more significant problem for such codes.

In contrast, hardware-based prefetch techniques execute in parallel and do not cause any in
struction overhead. Stride prefetching in hardware first identifies the stride by comparing the
sequence of addresses generated by each memory access instruction. Unfortunately, the stride-
detection phase requires quite complex hardware which includes a reference prediction table [5].
Once the stride is detected, prefetching proceeds until hardware detects that accesses no longer
use the stride. Another limitation is that no hardware-based technique in the literature has been
able to prefetch indirect memory accesses.

The problems with the instruction overhead and the need for knowing the cache size and data
set size at compile-time for compiler-based prefetching on the one hand, and the complex stride-
detection phase and the limitation to regular accesses for hardware-based prefetching on the other,
have motivated us to consider a hybrid prefetching technique which can take advantage of static
compiler analysis to determine what to prefetch while still being able to issue prefetches with very
little instruction overhead, and in particular, no instruction overhead cost at all when memory
accesses hit in the cache.

In this paper we propose and evaluate a new prefetching technique, which is based on static
compiler analysis, memory access traps, and anew functional unit which issues prefetch requests.
Our approach uses low-overhead cache miss traps as proposed in [10]. For certain memory ac-

lCf. page 101 in [13].



cess instructions, we let a miss in the second-level cache generate a cache miss trap. Each such
memory access instruction has a correspondingtrap handler which is generated by the compiler.

For stride array accesses, the miss trap handler starts a functional unit called a prefetch engine
by specifying prefetch parameters includingprefetchstart address, stride, number of prefetches to
issue, direct or indirect addressing mode, and shared or exclusive mode requests. The parameters
are derived statically by the compiler but the prefetch engine executes on its own and does not
cause additional instruction overhead beyond that in the trap handler. Trap handlers typically
complete in 40 to 50 clock cycles, which often is before the missing data arrives. The prefetch
issue pace is controlled by keeping track of when a prefetched block is accessed. The number of
prefetched but not yet accessed blocks is limited to a small number. There can be several prefetch
engines in an implementation.

We also study whether one could emulate the prefetch engine in software by a loop in the trap
handler which issues prefetches using ordinary prefetch instructions. The emulated prefetch en
gine requires very little hardware support: cache miss traps and prefetch instructions. However,
the number of prefetches issued by the emulated engine must be limited to a small number, oth
erwise hot-spots can be created. Therefore, the emulated engine cannot remove as many cache
misses as can the real prefetch engine.

To evaluate our techniques we have implemented the functionality to generate cache miss traps
and the prefetch engine in a detailed architectural simulator of a sequentially consistent cache-
coherent multiprocessor and compiled six parallel scientific and engineering applications using an
optimising compiler which incorporates our algorithm to generate cache miss trap handlers. We
find that the prefetch engine removed up to 67% of the memory access stall time at an instruction
overhead less than 0.42%. The emulated prefetch engine removes in general less stall time at a
higher instruction overhead.

The rest of the paper is organised as follows. In Section 2 we give an overview of our prefetch
ing technique. In Section 3 we present the functionality of the prefetch engine and in Section 4
we describe a compiler algorithm that generates the cache miss trap handlers to control prefetch
ing. The details of the compiler algorithm are presented in Appendix A. In Section 5 we present
the experimental methodology, and we show the simulation results in Section 6. We discuss our
results and relate them to work by others in Section 7. Finally, we conclude the paper in Section 8.

2 Prefetching Approach

This section illustrates the steps our technique takes from experiencing a cache miss, executing a
trap handler, to starting a prefetch engine (or emulating the engine). The putpose of this section
is to give the reader an idea of the types of memory access patterns which are handled by our
prefetching approach. In Section 3 we will consider the hardware support our approach assumes.

The compiler marks certain memory instructions in a program to generate a low-overhead trap
on a second-level cache miss. Such a memory access instruction is called a faulting memory ac
cess instruction, and for each faulting memory access instruction, there is a corresponding cache
miss trap handler. Upon a cache miss trap, a prologue code sequence saves a small number of
the general purpose registers, locates the faulting instruction's trap handler using the saved pro
gram counter in a hash table, and jumps to the trap handler. After the trap handler has completed,
an epilogue restores the saved registers and re-executes the faulted instruction. If the faulted in
struction gets a second cache miss when it is re-executed, it does not generate a new trap. A key
difference between ordinary hardware trap handlers and our cache miss trap handlers is that the



former executes in separate stack frames. Instead, to be able to access the local variables (which
may reside in registers), a cache miss trap handler is part of a faulting instruction's procedure.

The compiler controls a prefetch engine by specifiying the prefetch parameters shown in Ta
ble 1, which also shows the default value of each parameter. A trap handler needs only specify a
parameter value if it is different from the default value. The parameters are as follows: Count is
the number of prefetches to issue using direct addressing, Stride is the distance in bytes between
blocks that are prefetched, Indirect is the number of prefetches to issue using indirect address
ing, Cache state specifies whether a block is expected to be read only or also modified, and fi
nally, Address is the byte address of the first prefetch. The cache state is normally shared but is
set to exclusive mode for data that will be modified, which is useful for ownership-based cache
coherence protocols [13]. The cache state is specified as two boolean values: the first refers to
direct addressing and the second to indirect addressing. For instance, (false, true) specifies direct
addressing prefetch using shared state and prefetch for writing using indirect addressing. So, the
task of the compiler algorithm is to extract these parameters for each stride access in a loop. How
this is done will be described in Section 4.

Parameter Default Value Description

Count Blocks in a page Number of blocks to prefetch
Stride Cache block size Distance in bytes between prefetched blocks
Indirect Zero Number of blocks to prefetch using indirect addressing
Cache state Shared state Prefetch for reading or writing
Address Prefetch start address

Table 1: Prefetch parameters that the compiler extracts from the code. A prefetch engine uses the
default value for parameters not specified.

To illustrate the operation of a prefetch engine, we will use C code fragments and show how
the engine should be controlled for each case. In the examples below we assume that the cache
block size is B bytes.

for (i = 0; i<n; i=i+D)

x = x + a[K*i];

Figure 1: Example code which accesses one array.

To start with the code in Figure I, a number of elements of an array a are read. A trap handler is
associated with the instruction that loads a [ K* i ], and will be invoked when the load instruction

generates a cache miss trap. The information that the compiler extracts from the code in Figure 1
is the stride of a [K*i], the number of blocks to prefetch, and the starting address. While the
stride is constant and is required to be known at compile-time, the number of prefetches to issue
is computed in the trap handler. The number of prefetches depends on the value of the loop index
i when a miss occurs. The task for the compiler is to generate code for the trap handler that
computes this by comparing i, n. The index i is incremented by D in each loop iteration. The
number of iterations remaining in the loop is (?? —i)/D. An address-expression with a stride
must contain a variable that is incremented by a constant in each loop iteration. In Figure 1, this
variable is i. Assuming that the size of one array-element is E, the stride S of the instruction



loading a [K*i] then becomes K * D * E. If the stride S is equal to or greater than the cache
block size B, then N = (n - i)/D blocks will be accessed. On the other hand, if S is less than
B, the number of cache blocks that will be accessed becomes N = \(n —i) * S/{D * D)]
(assuming i refers to the beginning of a cache block). We should prefetch one block less than N
since the missing load instruction requests the first block itself.

In Figure 2 we give an example of indirect prefetching, a is an array of pointers to integers
and each loop iteration dereferences one pointer. In this case the prefetch engine is set up to do
indirect prefetching. When the engine has prefetched one cache block of the array a using direct
addressing, it will prefetch the pointed-to blocks as well. For this code, Stride is set to the size
of a pointer to an int and Indirect is set to one, since the size of an int does not exceed one
cache block. If a pointed-to variable is IB blocks, Indirect is set to IB. Strides less than a cache
block only make sense when using indirect addressing. Count is set to n —i — 1, and the start
address to &a [ i+1 ]. The prefetch engine is likely to find that the first block is already requested
by the instruction loading a [ i ], however, when that block arrives to the second-level cache, the
prefetch engine can issue a prefetch for a [ i +1 ] — i.e. the address of a pointed-to variable.

int *a[J;

for (i = 0; i < n; i++)

x = x + *a[i];

Figure 2: Here indirect addressing is used.

So far, we have shown codes with only one array accessed in a loop iteration. In fact, the num
ber of arrays accessed in a loop does not affect neither the compiler algorithm nor the resulting
trap handlers in any way. A trap handler is only concerned with one array. Prefetching multiple
arrays concurrently is supported by hardware through use of multiple prefetch engines. One en
gine is associated with each data stream. In our simulations, we use four prefetch engines. Arrays
of records are treated in the same way as arrays of scalar variables. Consider a record size greater
than the block size. Then each access to a field of a record is associated with a trap handler which
will prefetch the different blocks (of different records) where that field is located.

To emulate prefetch engines in trap handlers, a trap handler issues prefetches using ordinary
prefetch instructions in a loop. In order to reduce the risk of hot-spots in the memory system,
the number of prefetches is limited to four. Indirect addressing prefetch is not emulated by trap
handlers. Otherwise, the compiler analysis to generate trap handlers is identical regardless of
whether the trap handler will start a prefetch engine or it will emulate a prefetch engine.

3 Prefetch Engine Functionality

This section describes the state variables and the operation of the prefetch engine that we have
evaluated. A processor has multiple prefetch engines. The number of engines is implementation-
defined. Although the compiler does not need to know the exact number of engines from a cor

rectness point of view, it can produce better code if it knows the exact number of engines. Be
fore the compiler can specify the parameters shown in Table 1, one prefetch engine must first be
chosen. This is done with a reset command which selects one prefetch engine. Subsequent pa
rameters up to and including the start address will implicitly refer to the most recently selected



engine. In our design, engines are selected in a round-robin manner by a counter. Apart from
this selection, all engines operate independently of each other. To limit the number of pending
prefetches, a prefetch engine records all prefetches in a prefetch buffer which will be described
next.

3.1 Prefetch Buffer

The purpose of the prefetch buffer is to control the prefetch issue pace. Each prefetch engine has
a prefetch buffer with four entries and a prefetch cannot be issued unless there is a free entry.
The motivation for using four entries is that, according to Mowry's measurements [13], it does
not pay to allow for more than four outstanding prefetchs. A prefetch request allocates an entry
and records the block address. An entry is deallocated when two conditions are satisfied: data has
arrived and it has been requested by the processor. A replacement or an invalidation also deallo
cates an entry. A reset command deallocates entries whose data has arrived but that has not yet
been accessed (otherwise, a useless prefetch would occupy an entry until the entry is deallocated
by a replacement or an invalidation). The Accessed-flag is set when an access refers to a block
with a pending prefetch, and is reset when an entry is allocated.

Name Description

Free

Accessed

Block

True if entry is not in use
True if block has been accessed

Prefetched block number

Table 2: Prefetch buffer entry. Each engine has a buffer with four entries.

3.2 Prefetch Engine State

In Table 3 we show which state variables a prefetch engine uses. There are three groups of state
variables. The first group, Operatingand Stride,is used both for direct and indirect address prefetch
ing. The next group, Address, Count, and DState, is used only for direct addressing, and the last
group Pointer, Indirect, and IState, is used only for indirect addressing. We will now describe the
purpose of each variable.

To start with the first group, Operating is true when the engine has valid prefetch parameters.
Stride is the amount that both Address and Pointerwill be incremented for the next prefetch using
direct addressing. In the next group, Address is the byte address of the next block to prefetch us
ing direct addressing, and Count is the number of remaining prefetches to issue. DState controls
whether shared or exclusive mode prefetches should be issued for direct addressing. In the last
group, Pointer is the byte address of a pointer in the program. To issue a request using indirect
addressing, the data that contains the address must (of course) be present in the cache first. Indi
rect is the number of blocks to prefetch starting at the memory (cache) contents at Pointer, and
IState specifies whether shared or exclusive mode prefetches should be used. Indirect specifies
the number of sequential blocks to prefetch using indirect addressing. We will now describe how
direct and indirect prefetching is carried out.



State Variable Default Value Description

Operating
Stride Cache block size

True if parameters are valid
Byte stride

Address

Count

DState

Blocks in a page
Shared state

Next address to prefetch
Remaining prefetches to issue

Direct addressing cache state
Pointer

Indirect

IState

Zero

Shared state

Next address to prefetch indirectly
Number of indirect prefetches
Indirect addressing cache state

Table 3: State variables in each prefetch engine.

3.3 Prefetch Engine Operation

A reset selects an engine, deallocates the engine's prefetch buffer entries as discussed in Sec
tion 3.2, clears all state variables of that engine, and initialises the following default values: Stride
is set to the cache block size, the addressing mode is set to direct addressing by setting Indirect to
zero, Count is set to a maximum value (we use the number of cache blocks in a page), and both
direct and indirect addressing prefetch are set to use shared state. After a reset, the default values
may be overridden by giving new values. Finally, when the Address parameter is specified, the
Address and Pointer state variables are set to this address and Operating is set to true. An oper
ating prefetch engine issues prefetches using direct addressing until its Count becomes zero or it
is selected by another reset command. We will first describe the operation of direct addressing
prefetch and then indirect addressing prefetch. A new prefetch request can be issued by an engine
when a free entry in the prefetch buffer is available.

The Address state variable contains the byte address of the next block to prefetch. This block is
looked-up in the second-level cache and if it is not present, the block is requested and a prefetch
buffer entry is allocated. If the block was prefetched or present, the Address variable is incre
mented by Stride and Count is decremented by one (Address and Count do not change if the block
was absent but there was no available buffer entry). If Address crosses a physical page, Count
is set to zero. This will generate a new trap at a cache miss in the new page and prefetching will
start again.

The state variable Pointer contains the byte address of a pointer in the program, and is ini
tialised to the same value as Address. If the block of the pointer is not present in the cache, indi
rect addressing prefetching is paused until that block arrives, e.g. as a result of direct addressing
prefetch. When the block is present, the cache content at the memory address Pointer is read and
is treated as a virtual address VA. VA is translated to a physical address and then a prefetch is
issued when a free entry becomes available. Note that indirect prefetch requires interaction with
the virtual memory system.

In Figure 3 we see an example of indirect prefetching. An engine is prefetching an array of
pointers and the pointed-to objects, and each element's and object's cache block number and
cache block state are shown in the figure. A block for which there is a pending prefetch is marked
with PF in Figure 3. Each pending prefetch has a prefetch buffer entry in which the prefetched
block number can be seen. As we can see, both Address and Pointeradvance through the array
but Address advances faster, since Pointer must wait for the data to arrive before it can issue an

indirect prefetch.



Prefetch Engine Prefetch Buffer

Pointer Address 2 3 4 9

Array of pointers

Pointed-to objects

Figure 3: Indirect addressing prefetch.

To limit the prefetching activity, an engine has only four prefetch buffer entries. Both direct
and indirect addressing compete for these four entries and we give indirect addressing higher pri
ority to be granted an entry.

4 Compiler Algorithm

This section gives an overview of a compiler algorithm for automatically generating cache miss
trap handlers for prefetching. The analysis performed by the compiler is based on natural loop
analysis, induction-variable analysis, and a dataflow analysis similar to live-variables analysis [1].
In general, our algorithm can detect stride accesses in loops if an induction-variable is part of an
access's address-expression. The details of the algorithm are presented in Appendix A.

4.1 Direct Addressing Engine Prefetch

We will first consider memory accesses that can be handled by a prefetch engine using direct
addressing mode. Assume a memory access A belongs to a natural loop L. If A will generate
addresses that differ by a constant S (known at compile-time) in subsequent iterations of L, then
A is a stride access. The constant S denotes the stride. A trap handler is generated for every
stride access. If L has a loop-termination condition of the form ?" < n, the remaining number
of loop iterations can be computed and from that the number of prefetches to issue. Assume i
is incremented by D in each iteration. As we discussed in Section 2, if the stride S is equal to
or greater than the cache block size B, the number of direct addressing prefetches, N, is set to
(n—i)/D —L. Otherwise, if 5 is less than B, N isset to [n-i) *S/(B*D) —l. Here i and possibly
n are variables, and D, B, and S are compile-time constants. The number of prefetches is not
computed using multiply and divide instructions, which would be too time-consuming, instead
we approximate the number using shift as follows:

Case 1. For S > B, we have N = (n - i)/D - 1 = [n - i) *2-'°9^ - 1. We shift (n-i)
to the right log(D) positions.

Case2. ForS < B, wehave N = [n - i) *S/{B*D)-1 = {n- i) *2-lo^B"D/s) - ],
so we shift (n-i) to the right log(B * D/S) positions.
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Case 3. ForS < B AS = D, wehave N = [n - i) *S/(B *D) - I = (n - i)/B - 1 =
(n - i) *2~i&&(B) - l, and we shift (n-i) to the right loy(B) positions.

If the number of prefetches to issue cannot be computed at runtime, a default number is used
instead (we use the number of cache blocks in a page).

In Figure 4, we give an exampleof a loop and trap handlers. Only one of Tl and T2 is gen
erated, depending on the relative size of B and D. In the loop, a pointer p is incremented S bytes
each loop iteration. The loop is executed while p is less than u. In this case, S and D are equal,
and therefore the number of blocks to prefetch for Tl where ,S' < B is computed using Case 3
above, while for the other case, T2, the number of blocks to prefetch is approximated using Case
1.

Loop Trap Handler if S i B Trap Handler if S £= B
L: Tl: T2:

load p,x reset reset

add P,S,p sub u,p,tl sub u,p,tl

bit p,u,L srl tl,LOG(B),t2 srl tl,LOG(S),t2

sub t2,l,t3 sub t2,l,t3

count t3 count t3

add p,B,t4 stride S

address t4 add p,B,t4

reload saved regs address- t4

rett reload saved regs

rett

Figure 4: Example loop with its trap handler. Either of Tl and T2 is generated, which one depends
on the relative size of B and D, which in this case is equal to S. The reloaded registers were saved
by the prologue.

4.2 Indirect Addressing Engine Prefetch

For indirect addressing prefetch, the compiler must analyse the use of data read by a load instruc
tion. If the data read by one load instruction .4] is used as a base address by another memory
access instruction A%% then A\ is said to be a parent of A2, which is said to be a child. When
the parent is a stride access, then indirect engine prefetching is started in the trap handler of the
parent. The engine parameter Indirect is determined by considering which blocks are accessed
using the base pointer loaded by the parent instruction. To illustrate this, consider the loop in Fig
ure 5, where the first load instruction (A\) is a parent and the second (A2) is a child. The engine
parameter Indirect is set to one because one block is fetched using indirect addressing.

A separate trap handler is not generated for Ai (since it is not a stride access), however, if A\
rarely misses but A2 does frequently, we wish to do indirect prefetching to avoid these misses.
Therefore, we let A2 use the trap handler of At. Assume the prefetch engine in Figure 3 was
initiated due to a miss to A%\ then Address, defined in Section 3.3, will advance quickly through
the array while Pointer will issue prefetches. In the loop, a pointer p is incremented by four bytes
each loop iteration. The loop is executed while p is less than u. The stride is set to four, and the
number of prefetches using direct addressing is set to (u —p)/A —1.



Loop Trap Handler (4 ; B)
L: T:

At: load p,c reset

A2: load c,x indirect 1

add P*4,P sub u,p,tl

bit p,u,L srl

sub

count

stride

add

address-

tl,2,t2

t2,l,t3

t3

4

P,4,t4

t4

reload saved regs

rett

Figure 5: Example loop with pointer dereference and its trap handler.

4.3 Finding a Trap Handler at Runtime

For each memory access with a trap handler, a pair of two symbols are added as data to a special
section in the relocatable object file: one referring to the instruction address of the faulting mem
ory access and the other referring to the trap handler's first instruction. The link-editor relocates
the symbols and stores each pair in the executable file in a hash table at the end of the text seg
ment. At a cache miss trap, the prologue first saves a small number of general purpose registers
and then searches the hash table to find the pair and then jumps to the trap handler.

5 Experimental Methodology

To evaluate our prefetch technique, we have incorporated the prefetch algorithm in an optimising
compiler [17], including the modifications of the link-editor. We have then compiled and run six
parallel applications on a simulated cache-coherent NUMA multiprocessor. First we present the
compiler and the benchmarks we have used. Next we define metrics of detection efficiency used
when we analysed the application executions. Finally we present the multiprocessor architectures
we have simulated to evaluate effects on execution time and traffic.

5.1 Compiler and Benchmark Programs

We have incoiporated the compiler algorithms in an optimising C compiler [17] which compiles
parallel applications using the ANL macros [2] and generates code for shared-memory multipro
cessors based on SPARC processors. Even though our compiler performs many standard opti
misations, it becomes important to understand how the results compare to code compiled with
other compilers. We have compared some key parameters with gcc (version 2.1) with optimisa

tion level 02. We have found that the numbers of loads and stores to shared-memory typically
differ by less than I % between our compiler and gcc.

We have used a set of six applications developed at Stanford University (Water, Cholesky, LU,
MP3D, Barnes-Hut, and PTHOR), of which all but LU are part of the SPLASH-1 suite [16]. We
used the data set sizes that are shown in Table 4.
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Table 4: Benchmark Programs, Data Set Sizes used.

Benchmark Description and Data Sets
Water N-body water molecular dynamics simulation

244 molecules, 3 time steps
Cholesky Cholesky factorisation of a sparse matrix

matrix bcsstkl4

MP3D 3D particle-based wind-tunnel simulator
50,000 particles, 5 time steps

LU LU-decomposition of a dense matrix
200 x 200 matrix

Barnes-Hut 128 bodies

PTHOR RISC circuit

5.2 Metrics of Detection Efficiency

To understand how close to the optimum the prefetch efficiency of the compiler algorithm is, we
have measured the number of second-level cache misses in an execution that were removed be

cause the data was prefetched. Unless the processor was stalled waiting for a prefetched block
B, when B is loaded into the second-level cache (SLC), a PF-flag is set in the simulator's cache
block. When the block is accessed, invalidated, or replaced, the flag is reset. Let M be the num
ber of SLC misses which request data from memory (this excludes misses to blocks that have a
pending prefetch and also re-executed faulted instructions). Let H be the number of SLC accesses
where the PF-flag is true and P be the number of SLC accesses to blocks which have a pending
prefetch. Consequently, H is the number of memory accesses whose latency was hidden, and P
is the number of memory access whose latency was partly hidden. We define the coverage to be

C = [H + P)/(H-rP + M).

Table 5: Metrics of detection efficiency.

Metric Description

Coverage Fraction of completely or partially hidden memory access latencies

Bad Fraction of prefetch requests that are useless

Prefetch activity Number of prefetches divided by misses in baseline

Traditionally, prefetch instructions are useless if the data to prefetch is already present in the
cache. In our technique, prefetch instruction overhead is not a concern and in the efficiency mea
surements, we count only prefetches that miss and will generate memory requests to fetch data.
Thus, in this study, prefetches are useless if they do not remove cache misses. There are differ
ent reasons for a prefetch request to be useless. The requested data may arrive but be replaced
or invalidated before it is accessed or the processor will never access that data even if the cache
were infinite. Another category of useless prefetch requests are those which were denied data
by the coherence protocol, which may happen for example when the requested block is in a tran

sient state in memory, e.g. waiting for an update or invalidation acknowledgement from a remote

II
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Figure 6: Organisation of a cache coherent multiprocessor.

cache. Wecall all such prefetches badand we define the degreeofbadprefetchesto be the number
of bad prefetch requests divided by the number of prefetch requests sent to memory.

Finally, we define the prefetch activity as the number of prefetch requests in one execution
divided by the number of misses in the originalexecution. This metric isuseful when interpreting
the coverage and degree of bad prefetches: a low coverage and a high degree of bad prefetches
may have no significant effect on performance if the prefetch activity is low. We summarise the
metrics in Table 5.

The measurements of prefetch activity, coverage, bad, execution-time, and traffic have all been
carried out by executing the compiled applications on a detailed architectural simulator which we
will describe next.

5.3 Simulated Multiprocessor Architectures

We have developed two detailed architectural simulation models: first a basic write-invalidate
protocol which constitutes the baseline architecture and second the baseline extended with load
and store instructions that can generate a cache-miss trap and with prefetch engines. These mod
els are described in detail below. The simulation platform consists of a functional simulator of
SPARC processors which generate memory references to an attached memory system architec
tural simulator with a detailed timing model [3]. Since the executing processors are delayed ac
cording to the latencies encountered by each memory reference, the same interleaving of memory
references will be encountered as in the target architecture.

Baseline Architecture

The overall organisation of the baseline architecture is shown in Figure 6. It consists of 16 pro
cessing nodes. Apart from the local portion of the shared memory, each processing node also
contains a two-level cache hierarchy whose organisation is shown in Figure 7. It consists of a
write-through, direct-mapped first-level cache (denoted PLC) with an associated first-level write
buffer denoted FLWB. In the baseline, the FLWB buffers requests to a copy-back, second-level
cache (SLC) (which is also direct-mapped), and there is full inclusion between the PLC and the
SLC. Since the processor is stalled on loads that miss in the PLC and on stores, the FLWB is not
needed in the baseline architecture. As we will see below, it is used to buffer requests that do not
need to stall the processor, namely, requests related to prefetching.
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System-level cache coherence between the second-level caches is maintained by a Censier and
Feautrier write-invalidate protocol which associates a bit vector with each memory block [4].
Virtual pages are 4KB and are mapped to physical memory modules using a round-robin policy
that interprets the four least significant bitsof the virtual page numberas the node identity. The
node in which a certain page is mapped is called the homeof all blocks in that page.

Loads that miss in the FLCand the SLCcause a miss request to be sent to home. If the copy
is present at home, and if home is the local node, the miss is serviced locally. Otherwise, two or
four node-to-node traversals are required to fill the cache.

Stores are written through the FLC. If the SLC copy is exclusive, the store can be carried out lo
cally. Otherwise, ownership has to be acquired. The coherence protocol in both the baseline and
the extended architecture we evaluate, implements sequential consistency by stalling the proces
sor until ownership is granted. Depending on the location of home and whether another node has
an exclusive copy, ownership acquisition may encounter zero, two, or four node-to-node traver
sals.

In Figure 7, a write buffer is also associated with the SLC, denoted SLWB. Since the processor
is stalled on every global store, this buffer is not needed in the baseline architecture.

Support for Faulting Memory Access Instructions

We evaluate the effectiveness of our compiler algorithms by replacing marked memory accesses
by special instructions denoted faulting memoiy access instructions. Unlike ordinary memory
access instructions, they generate a hardware cache miss trap on a second-level cache miss.

The actions taken by the cache hierarchy when an ordinary load or store instruction executes
are identical to those of the baseline. The actions taken by the cache hierarchy when a faulting
memory access instruction executes are as follows. If the block is present in the PLC (and there
fore in the SLC as well due to inclusion), the behaviour is identical with that of the baseline. If

the block is not present in the FLC, however, the processor has to stall, and the memory request
is buffered in the FLWB. If the SLC has a copy, the behaviour again is identical with that of the
baseline. Conversely, if the block is not present in the SLC and there is no pending request in the
SLWB (or in a prefetch buffer), a cache miss trap is generated.

The request of the cache miss which generated the trap is recorded in the SLWB, the request
is sent to home, and the processor continues execution in a trap handler prologue. To support
faulting memory access instructions, the SLWB should have at least two entries; one entry for
the faulted access and one entry if an access in the trap handler would experience another second-
level cache miss (that miss would not generate a second trap, however). A cache miss trap is a
low-overhead trap [9]. In particular, the operating system is not involved in the trap, since this
would be too costly in terms of instruction overhead. The additional state that faulting memory
accesses require is a flag that can disable cache miss traps, so that cache miss trap handlers do not
need to worry about nested cache miss traps. Cache miss traps are enabled again after a faulting
memory access is re-executed, so that repeated traps are not generated. When an instruction is
re-executed, it behaves exactly as in the baseline architecture.

Support for Prefetch Engines

An SLC is extended with four prefetch engines where each engine has a prefetch buffer with four
entries. To issue a prefetch by an engine, the request must first be allocated a prefetch buffer entry.
An engine request cannot allocate an entry whose block has not been accessed; the purpose of this
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Figure 7: The two-level cache hierarchy ineach processing node. The prefetch engine is partof
the SLC.

is to control the prefetch issue pace. Indirect prefetch requires a TLB access. In this study, we
do not model any cost for doing this translation. Instructions to control the prefetchengine and
ordinary prefetch instructions do not stall the processor; rather, they are buffered in the FLWB.

Support for Emulated Prefetch Engines

The hardware support required to emulate prefetchengines in trap handlers is as follows: faulting
memory access instructions, a lockup-free SLC, and ordinary prefetch instructions included in
modern instruction set architectures. To make the SLC lockup-free, pending prefetch requests are
buffered in the SLWB. A prefetch request, either from a prefetch engine or an ordinary prefetch
instruction, first checks that a block is not in the SLC already or has a pending request.

Architectural Parameters

In our simulations we assume that the FLWBand the SLWBcontain 8 and 16entries, respectively.
The architectural parameters we assume for all three architecture variations are as follows. Each
node contains a SPARC processor clocked at 200MHz (1 pclock = 5ns). We model a 4KB FLC
and a 64 kB SLC, both direct mapped and with a block size of 16 bytes. PLC, SLC, and local
memory access times are 1, 6, and 30 pclocks, respectively. The nodes are interconnected with
a network with a fixed node-to-node latency of 54 pclocks. Each control message is 5 bytes, and
each data message is 21 bytes. Only shared references in the applications' parallel section are
modelled with these parameters. Other memory accesses are assumed to hit in the PLC.

6 Simulation Results

We first show the detection efficiency achieved for the prefetch engine and the emulated prefetch
engine, and then as a case study present simulated execution times and traffic.

6.1 Detection Efficiency

The diagrams of Figure 8 show the coverages (top), the degrees of bad prefetches (mid), and the
prefetch activity (bottom) for the applications we have studied. For each application we show five
bars that from left to right correspond to the following prefetch techniques: prefetch engine using
direct addressing only is DH, DH extended with indirect addressing prefetch is IH, IH extended
with exclusive mode prefetching is EH, emulated prefetch engine using direct addressing is DS,
and finally DS extended with exclusive mode prefetching is ES. We will also collectively refer
to DH, IH, and EH as HW, and DS and ES as SW.

For three of the applications (Water, Cholesky, and LU), most cache misses are to arrays ac
cessed with direct addressing. MP3D is an application with both regular array accesses and in-
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Figure 8: Coverage (top), degree of bad prefetches (mid), and prefetch activity (bottom) in per
cent.

direct accesses. Finally, the last two applications (Barnes-Hut and PTHOR) have many pointer
dereferences. The compiler used indirect addressing prefetch only for three of the applications,
namely, MP3D, Barnes-Hut, and PTHOR. So, for Water, Cholesky, and LU, the simulation re
sults for DH and IH are identical.

We expect that the detection efficiency for HW should be somewhat better than for SW since
SW is limited to prefetch at most four cache blocks per cache miss. An upper bound of the cov
erage for SW is therefore 80%, which is achieved when one miss causes four useful prefetches.

To start with Water, we see that the number of prefetches issued is quite low for each tech
nique. Of the issued prefetches less than half were useful: each technique covered only 3% of the
misses. We found two situations that limited the coverage. The first is in the procedure INTERF
where one variable comp is used to index array elements in a loop. Although the value of comp
normally is incremented by one for each iteration, in some cases its value is set modulo another
variable, which prevents our compiler from using a prefetch engine for these accesses. The sec
ond situation which our compiler currently cannot handle is when the surrounding loop is in one
source file and the array accesses are in another. With interprocedural analysis at the file level this
situation could be handled. A significant fraction of the prefetched data was invalidated resulting
in high degrees of bad of 59% for HW, and 60% for SW.

Continuing with Cholesky, all techniques use prefetching extensively and are quite successful.
HW covers 75%, DS covers 69%, and ES covers 70% of the misses. The degrees of bad are
17% for HWand 18% for SW. These bad were due to prefetched data that was either replaced or
invalidated.
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For LU, prefetching is also used extensively. HW has a coverage which exceeds the upper
bound that SWcan reach. DHcovers 85% and EHcovers 84%. We analysed the reason why
HWdid not reach an even higher coverage and found it is mainly due to a limitation in our co
herenceprotocol. Whenoneprocessorhasproduced acolumn, thenall processors waitingfor this
column will prefetch the cache blocksof that column. However, our coherence protocol permits
only one prefetch request to wait for home to becomeclean. The other nodes receive a negative
acknowledgement (nack) of their prefetchrequest. This limitationcan be removed by a more so
phisticated coherence protocol. These nacks constitute the majority of the bad prefetch requests
both for HWand for SW. The remaining misses in LU were mostly to the synchronisation struc
ture Global->done.

There are two data structures in MP3D, one array of particle records and one array of cell
records. Each particle has a pointer to a cell. The cells are migratory objects and most misses
are to the cells. With DHand SW,only the particlesare prefetched,and therefore the prefetching
activity is quite low and their coverages become only 36% and 31%, respectively. With IH, an
engine prefetches the pointed-to cells as well, and a coverage of 58% is reached. The misses that
remain are mostly due to prefetched cells that were invalidated before they were accessed, and
to cells when a particle moves from one cell into another. As expected, SW has a lower degree
of bad prefetches than HW since SWonly prefetches particles (which are seldom invalidated).

Barnes-Hut is an application whose main data structure is recursive and is operated on by re
cursive procedure calls, which limit the prefetching. SW has a higher prefetching activity than
HW. For DH and SW, typically only the array of subnode pointers are prefetched — but not the
subnodes themselves. IH does prefetch subnodes using indirect addressing in the recursive pro
cedure walksub () and reaches a marginally higher coverage of 12%. However, many misses
remain that could not be handled by our algorithm.

PTHOR is also an application whose main data structure is recursive and is a graph of circuit
elements. The prefetch activity is higher for exclusive mode prefetching, which indicates that
PHand PS create new misses. For this application DH and IH only cover 5% of the misses. The
degree of bad prefetches for PS is 16%.

In summary, we find that the prefetch engine reaches high coverages for codes with regular
array accesses, namely LU and Cholesky, and that the emulated engines reach coverages which
are quite close to their upper bounds of 80%. The degrees of bad are around 20%. We also see
that indirect engine prefetch could contribute significantly to the coverage for one application
with pointer dereferences (MP3D), but many misses due to pointer dereferences that could not
be handled by our algorithm remain. One other reason for not having an even higher coverage
was a limitation in the coherence protocol we used, namely, that multiple prefetch requests for a
block were allowed while home was waiting for becoming clean. Another limitation was related
to the scheduling of prefetches. Some blocks were invalidated before they were used. We will
next consider the effects on the execution time and traffic of our prefetch technique.

6.2 Effects on Execution Time

In this section we present the execution times for the applications in Figure 9. For each applica
tion we show six bars where B is the baseline in addition to DH, IH, EH, DS, and PS, which are

the same as in Section 6.1. The normalised execution times for each application is broken down
into the following components from bottom to top: the busy time, the trap handler time, synchro
nisation and buffer stall, the read stall, and the write stall. We define the trap handler time as the
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execution time a processor is executing in a trap handler after that the data (whose absence in the
cache generated the trap) has arrived.

Based on the detection efficiency measurements presented in the previous section, we can ex
pect three applications with significantly reduced memory access stall time: Cholesky, LU, and
MP3D. The other applications are interesting because we want to know how our prefetch ap
proach affects performance for codes where it is unable to cut memory access stall times signif
icantly. These applications are Water, Barnes-Hut, and PTHOR.

To start with Water, no prefetch technique has any effect on the the execution-time, which can
be understood by the low prefetch activities.

Continuing with Cholesky, we see that the memory access stall accounts for more than half of
the execution time in B. DH reduces the read stall time from 27% down to 8%. The synchronisa
tion stall time is also reduced from 6% to 5%. PHreduces the write stall time from 25% to 8%.

However, Phas a somewhat longer read stall time than DH, 9% versus 8%. Although the execu
tion time has dropped to 45% for PH, part of this is due to the application's scheduling which in
this case reduces the busy time significantly.

Water
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Figure 9: Normalised execution times.

For LU, DH and DI reduce the read stall time from 29% to 10%, and PH reduces it to 11 %. As

expected from the coverage measurements, SWdoes not reduce the read stall time to the same
extent as HW, but still cuts it to less than half. PH and PS also reduce the write stall time from
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Table 6: Instruction Overhead due to Traps measured for PH and PS.

Benchmark Instruction Overhead

PH PS

Water 0.00% 0.00%

Cholesky 0.065% 0.11%

LU 0.059% 0.16%

MP3D 0.42% 0.0088%

Barnes-Hut 0.019% 0.030%

PTHOR 0.40% 0.41%:

19% down to 13% and 14%, respectively.

For MP3D, DH and SWare not expected to reduce the read stall time significantly, as discussed
in the previous section. IH on the other hand reduces it from 45% to 22%. PHalso reduces the
write stall time from 45% to 24%.

Finally, for Barnes-Hut and PTHOR, we see that both the read stall and the synchronisation
stall are reduced slightly by each technique, and the write stall time is also reduced marginally
for PH.

Instruction overhead is introduced when a trap handler completes after data arrives. In Table 6
we can see the instruction overhead for each application measured for PHand PS. The instruction
overhead is defined to be the trap time divided by the busy time. For none of the applications the
overhead exceeds 0.42%, and this is why the trap times don't appear in the diagrams. We can
compare the instruction overhead for PH and PS only for applications without indirect engine
prefetch (Water, Cholesky, and LU).

In summary, we see that data prefetching using prefetch engines —either implemented in hard
ware or emulated in software— are successful at reducing both the read and write stall time at very
little instruction overhead.

6.3 Effects on Traffic

We present in this section how memory traffic is affected for each algorithm in Figure 10. A re
duction in traffic comes from reducing the number of control messages while an increase is due
to useless prefetches and additional cache misses created by useless invalidations. We are espe
cially interested in seeing the effects of exclusive mode prefetching on the traffic. We can expect
that the merged data and ownership requests have a potential to cut traffic, unless the ownership
requests create additional misses. Recall that a control message is 5 bytes, and a data message is

21 bytes.
Starting with Water, we can see that traffic is increased by 3% for each technique except PS

where it is increased by 4%. Thus, the high degrees of bad observed in Section 6.1 for Water do
not have a significant effect on the traffic, since the prefetch activities are rather low for Water.

Continuing with Cholesky, we see that the useless prefetches increase the traffic and the merged
ownership and data requests in exclusive mode prefetching reduce the traffic. For DH and DS the
traffic becomes 109% and 107%, respectively, while for PHand PS it becomes less than for B,
96% and 98%, respectively.
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The traffic generated for LU is also below or close to that of the baseline. It is as follows: DH
103%, EH99%, DS 105%, and finally for PS it is 101%. The reason why the traffic is lower for
LU than for Cholesky (even though they have similar degrees of bad) is that for LU it was control
messages that were useless (nacked prefetch requests) while for Cholesky it was both control and
data messages.

MP3D has a low traffic as well. We can see that exclusive mode prefetch reduces the traffic to
or below that of B, while IH suffers from useless prefetches and increases the traffic to 107%.

Finally, for Barnes-Hut and PTHOR the traffic was increased somewhat. While PHcan re
move ownership requests, the reduction for Barnes-Hut is mainly due to dynamic application
scheduling effects.

In summary, for all applications, the prefetch engine increased the traffic by less than 10%. We
also see that exclusive mode prefetching can reduce traffic, as compared to the other schemes we
evaluated.
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7 Related Work and Discussion

Compiler-based data prefetching has been studied extensively by Mowry in [13]. As mentioned
in Section 1, there are some problems with traditional compiler-based data prefetching as pro
posed in [13], and which this research aims at overcoming.

By inserting prefetch instructions in the code, these instructions will introduce overhead, re
gardless of whether cache hits or misses occur. In our approach, there is instruction overhead in
the trap handlers, but as we saw in Section 6, this overhead is very small, and more importantly is
only present when misses occur. In our approach, there is no need to limit the use of data prefetch
ing. Since the instruction overhead is present in Mowry's approach also when there are no cache
misses, that approach is limited to source codes, where the compiler can find that misses will
occur. To find this, the compiler must have more information known at compile-time than our
approach needs, including the data set size (or loop iteration count) and the cache size. This ex
cludes many codes. For instance, it seems difficultto use traditional compiler-based prefetching
in numerical libraries, or in object-oriented programming with precompiled classes.

In [9] Horowitz et al. propose a way to reduce the instruction overhead by chosing between
alternate code versions at runtime; different code versions are optimised for different prefetching
strategies. We will refer to the prefetching approaches in [13] and [9] as Mowry's prefetching ap
proaches. One of their experiments is focused on the library routine bcopy (), which copies a
block of data from one location to another. This code is an example of when locality analysis can
not be performed (since the loop iteration count is unknown at compile-time). Their experiment
shows results for cases when the data fits in the cache and when it does not.

For the case when data fits in the cache, the traditional compiler-based prefetching creates sig
nificant instruction overhead of more than 80% of the original busy time. To avoid this instruction
overhead, the authors suggest using informing loads to measure the prefetch hit count for the first
few loop iterations of bcopy. If the hit count is above a certain number, the remaining loop iter
ations of bcopy use code without prefetch instructions. This reduced the instruction overhead to
around 15%. For cases where the data does not fit in the cache, the code with prefetch instmctions
will be used for all loop iterations. The instruction overhead then becomes around 77%. These
examples illustrate that significant instruction overhead can remain, and the purpose of our re
search is to remove that by using the prefetch engine. In our approach, neither the loop iteration
count nor the cache size must be known at compile-time.

The reason why instruction overhead remains in the executions of their experiments is (of
course) that the prefetch instructions are mixed with other instructions. In contrast, to emulate the
prefetch engines, we execute prefetch instructions in a loop in a trap handler while the processor
is stalled anyway. Which software prefetch approach is most advantageous depends on several
factors: Firstly, the coverage can be made higher in Mowry's approaches than in the emulated
prefetch engines, because an emulated engine issues only a limited number of prefetch requests
while the trap handler is executing. However, as the number of prefetches issued in each trap
handler invocation increases, so does the coverage. With N issuedprefetches in a software loop,
the upper bound of the coverage becomes N/(N +1); e.g. with N = 16, the upper bound be
comes a coverage of 94%. The risk with this amount of clustered prefetches is that hot-spots can
be created. A second difference is that Mowry's approaches cover indirect addressing while our
emulated prefetch engines currently do not. However, we are investigating approaches to deal
with that case as well. Also, in our approach we cannot avoid the initial miss in a loop since that
miss is used to start prefetching, while in [13] prefetch instructions are inserted before loops as
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well (to cover initial misses). So the bottom line is that in Mowry's approach, the coverage can
be higher while for the emulated prefetch engines, the instruction overhead is much smaller.

Wesee two main optionsfordoing indirect prefetch usinganemulated prefetch engine. Firstly,
with hardware support in the cache, we could specify a prefetch instruction that takes the address
of a pointer as a parameter, then both the pointer and what it points to can be prefetched. Wecall
these indirectprefetch instructions. Secondly, we can synthesise the indirect prefetch instruction
usinga loadand an ordinaryprefetch instruction inthe traphandler. In a processorwithblocking
load instmctions, such synthesised indirect prefetches can increase read stall time, if a cache miss
is suffered when reading a pointer and the pointed-to data is prefetched but not used.

In the initial stages of this research, we used faulting memory instmctions for every shared
memory access with the purpose of using prefetch instmctions for nonstride memory accesses
as well. While the coverages reached were somewhat higher, the cost of finding and executing
the trap handlers sometimes exceeded the benefits of hidden latency. In contrast, restricting the
use of faulting memory access instmctions to stride accesses reduces the number of trap handler
invocations and therefore the trap handler instruction overhead.

To contrast Mowry's approach to the real prefetch engines, the primary limitation of the prefetch
engines is that they cannot cover initial misses. However, with large data set sizes, the prefetch
engine will be programmed to issue a large number of prefetches and therefore the initial misses
will be unimportant. On the other hand, with small data set sizes, the fraction of misses that are
initial will be higher, but the total number of misses will be lower (since more data will fit in the
caches) and therefore prefetch may not be very important. Based on this discussion, be expect
that the prefetch engines can reach the same performance improvements as Mowry's approach. A
more important difference, however, and which is the difference which motivates our approach,
is that Mowry's approach is only applicable to codes where compile-time analysis can determine
that there will be misses, while our approach frees the compiler from this concern.

In recent work, Luk and Mowry [12] have evaluated a compiler algorithm to prefetch recursive
data structures. We expect that the prefetch engine approach presented in this paper will not be
useful at prefetching recursive data stmctures, because of the difficulty at generating addresses
to prefetch without actually traversing a recursive data structure, which our prefetch engines are
not intended to do.

To reduce the complexity of pure hardware-based stride prefetches is another motivation of
this work. The stride-prefetcher proposed by Chen and Baer [5] includes complex hardware to
analyse the string of accesses to detect strides, and the hardware includes a reference prediction
table [5]. Our simulations indicate that this complexity is not necessary. Chen [6] has proposed an
on-chip prefetch engine which works with the first-level cache and is programmed by a compiler
before a loop is entered (although the compiler's task was done by hand in [6]). A difference
between that work and ours is that our technique suffers no instruction overhead when there are no
misses. However, Chen's prefetch engines can, of course, also exploit low-overhead cache miss
traps proposed in [10] and the compiler-generated trap-handlers proposed in this paper. Since the
latency of a first-level cache-miss serviced by the second-level cache is much shorter than the 40-
50 clock cycles that our trap-handlers need to terminate, there is a risk that the trap-handlers create
instmction overhead which exceeds the benefits of prefetching. It would be interesting to explore
this further.
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8 Conclusion

The contributions of this paper are the design and evaluation of a new approach to do data prefetch
ing in multiprocessors. The components of our approach are a new functional unit that issues
prefetch requests, memory access instructions that trap on a second-level cache miss, and a com
piler algorithm that automatically generates trap handlers. The trap handlers are part of the pro
cedure of the trapping instruction and therefore can access the procedure's local variables. From
the local variables, the trap handler can compute the remaining number of cache blocks of an
array that the processor will access in a loop. The prefetch engine is initialised with the num
ber of blocks to prefetch, the access stride, and an address to start prefetching. Once started, the
prefetch engine executes autonomously and creates no instmction overhead. We also evaluated
the possibility of emulating the prefetch engine in a software loop in the trap handler. To evalu
ate our designs, we have implemented the prefetch engine in a detailed multiprocessor simulator,
incorporated the compiler algorithm in an optimising compiler, and compiled and mn six parallel
applications.

We have presented a detailed evaluation of our prefetch technique including effects on execu
tion time and traffic. We find that the memory access stall time could be reduced by up to 67%,
at an instmction overhead of less than 0.42% and very little additional memory traffic.

Although we have evaluated the prefetch engine in the context of a cache coherent NUMA,
we expect that the prefetch engine can have a potential to reduce memory access latencies also
in uniprocessors. We are planning to evaluate the prefetch engine in the context of a superscalar
microprocessor. We also expect that distributed virtual shared memory systems [11] could take
advantage of our stride prefetching because each miss takes a large number of cycles. In this case,
it might be good to "batch" the prefetches, so that they cause one single interruption on their way
back.

To conclude, we have shown that with proper hardware support, it is possible to exploit an op
timising compiler's static analysis in order to do accurate data prefetching at very little instmction
overhead. In addition, we find that the emulated prefetch engine is competitive with prefetch en
gines while not requiring any hardware support beyond cache miss traps and prefetch instmctions.

Acknowledgements

This research has been supported by a grant from the Swedish Research Council on Engineering
Science (TFR) under the contract number 94-315.

References

[1] Alfred Alio, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wcsley, Reading, Mass., 1986.

121 J. Boyle, R. Butler, T. Diaz, B. Glickficld, E. Lusk, R. Ovcrbeck, J. Patterson, and R. Stevens.
Portable Programsfor Parallel Processors. Holt, Rinchart. and Winston, New York, 1987.

[3] Mats Brorsson, Fredrik Dahlgren, Hakan Nilsson, and Per Slenstrom. The CacheMire Test Bench -
A flexible and effective approach for simulation of multiprocessors. In Proceedings ofthe 26th IEEE
Annual Simulation Symposium, pages 41-49. IEEE, New York, March 1993.

[4] Lucien Censier and Paul Fcautricr. A new solution to coherence problems in multicache systems.
IEEE Trans. Comput., 27( 12): 1112-1118, 1978.

22



[5] T.-F. Chen and J.-L. Baer. A Performance Study of Software and Hardware Data Prefetching
Schemes. In Proceedings of2Jst Annual International Symposium on Computer Architecture, pages
223-232, 1994.

[6] Tien-Fu Chen. An effective programmable prefetch engine for on-chip caches. In Proceedings of
the 28th Annual InternationalSymposium on Microarchitecture, pages 237-242, 1995.

[7] Fredrik Dahlgrcn, Michel Dubois, and Per Stenstrom. Sequential Hardware Prefetching in Shared-
Memory Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 6(7):733-746,
1995.

[8] Eric Hagersten. Toward Scalable Cache Only Memory Architectures. PhD thesis, Royal Institute of
Technology, Stockholm, Sweden., October 1992.

[9] Mark Horowitz, Margaret Martonosi, Todd Mowry, and Mike Smith. Informing Loads: Enabling
Software to Observe and React to Memory Behavior. CSL-TR-95-673, Computer Systems Labora
tory, Stanford Univ., July 1995.

[10] Mark Horowitz, Margaret Martonosi, Todd Mowry, and Mike Smith. Informing Memory Opera
tions: Providing Memory Performance Feedback in Modern Processors. In Proceedings of the 23rd
International Symposium on ComputerArchitecture, pages 260-270. ACM, New York, 1996.

[11] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Trans. Comput.
Syst., 7(4):321-359, November 1989.

[12] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive data structures. In
Proceedings of the Seventh International Conference on Architectural Support for Programming
Languages and OperatingSystems, pages 222-233. ACM, New York, 1996.

[13] Todd Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. PhD thesis, Stan
ford Univ., Computer Systems Laboratory, Stanford, Calif., March 1994.

[14] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled prefetching in scal
able shared-memory multiprocessors. J. Parallel Distrib. Comput.,2(4):87-106, 1991.

[15] Todd Mowry, Monica Lam, and Anoop Gupta. Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the FifthInternational Conference on Architectural Supportfor Pro
gramming Languages and Operating Systems, pages 62-73. ACM, New York, 1992.

[16] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Applica
tions for Shared-Memory. Comput. Arch. News, 20(l):5-44, 1992.

[17] Jonas Skeppstedt. The design and implementation of an optimizing ANSI C compiler for SPARC.
Technical report, Dep. of Computer Science, Lund Univ., Lund, Sweden, April 1990.

A. Compiler Algorithm Implementation

In this appendix we give a detailed presentation of the algorithm for generating trap handlers. To
start with, the prefetching algorithm performs better with interprocedural dataflow information,
however, our compiler currently performs no interprocedural dataflow analysis (other than that
described in this section). We therefore use procedure integration to avoid introducing an artificial

limitation to the prefetch algorithm. For recursive procedures, however, the prefetch algorithm
exploits interprocedural dataflow analysis of access classes, as we will see in this section.

The analysis of the prefetch algorithm always operates on the flow graph of one procedure.
The algorithm consists of the following seven passes:

1. Natural loop analysis. This pass finds the natural loops in a flow graph.
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2. Collect access classes. This pass collects all access classes that exist in the flow graph.

3. Local analysis. This pass operates on each basic block and constructs dataflow informa
tion.

4. Identifying parent and child instructions. This pass collects information for indirect
prefetching.

5. Dataflow analysis of access classes. This pass perforins iterative dataflow analysis of ac
cess classes.

6. Engine prefetch. This pass operates on each natural loop, starting with the innermost
loops.

7. Procedure parameter analysis. This pass associates access classes with the formal pa
rameters of a procedure.

Natural Loop Analysis

The purpose of this pass is to identify the set of natural loops in a flow graph. A natural loop is a
set of basic blocks with one basic block denoted the loop header. The structure of a natural loop
is such that the loop header is the single entry point to the loop and there is at least one path back
to the header [1].

Collect Access Classes

The purpose of this pass is to identify all access classes that exist in the flow graph.
The data address of a memory access is given by a base pointer b and an immediate-valued

offset k. We classify all memory accesses in a procedure into equivalence classes called access
classes such that a memory access instmction corresponds to the access class (b, n = [k/B\),
where B is the cache block size. Dataflow analysis of access classes is performed in the backward
direction. A memory access is said to generatean access class and an assignment to a base 6 is said
to kill&U access classes with /; as base. The dataflow analysis is similar to live-variables analysis
and if an access class has propagated backward to a point in the flow graph, it is said to be live
at that point. Theaccess class (6, fc-f 1) is called the successor of (/;,;?). When different word
offsets are used to generate an access class (b, n), then two cache blocks may be accessed (since
access classes are not necessarily aligned on cache block boundaries). To deal with this problem
we generate the successor access class (b, n + 1) when the algorithm detects that different words
generate an access class (b, n). characterised by a base pointer and an offset.

A new access class is inserted by assigning it an index to simplify dataflow operations. Each
base pointer is associated with a number of indices corresponding to access classes that use this
base pointer. When the content of the base pointer is changed, all corresponding access classes
can then be killed by simply performing bit operations on the bit vectors used in the dataflow
analysis described next.

Local Analysis

The purpose of this pass is to constmct, for each basic block, three sets of access classes called
GEN, KILL, and S-GEN, which are used by the global dataflow analyses. GEN represents gener
ated access classes, KILL represents killed access classes, and S-GEN represents access classes
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generated by store instmctions. The prefix S of a dataflow set means that the access classes were
generated by store instructions. The set of access classes that are live at the beginning of a basic
block are denoted IN and SJN, respectively, and the access classes that are live at the end of a
basic block are denoted OUT and S.OUT, respectively.

Assume B is a basic block with three local dataflow sets GEN, KILL, and S.GEN. Moreover,

there is a function—denoted access-dasses(b)—which maps a base pointer/? to the set of access
classes that use b as a base pointer. The statements of a basic block are scanned in the backward
direction. When a statement is a memory access with base pointer b and offset /.-, the access be
longs to the access class (6, n = [k/B\), where B is the cache block size. If (6, n) belongs to
GEN but was generated by an offset other than k, then multiple words of (b, n) are accessed, and
the successor (b, n + 1) is added to GEN and removed from KILL, (b, n) is generated and added
to the GEN set and removed from the KILL set:

B.GEN := B.GEN U { (ft ») }

B.KILL :=B.KILL - { (/;, n) }

If the statement is a store, the access class is added to S-GEN as well:

B.S.GEN := B.S.GEN \J { (6,n) }

Similarly as for GEN, the successor (b, ?i + 1) may be added to S-GEN.
When the statement is a function call each formal parameter p of the callee c is considered.

The access classes of p that belonged to IN and SJN of the initial basic block of c are added
to GEN and S-GEN and removed from KILL of B. Before they are added, however, the base
is translated from the formal parameter in the callee to a base that is the argument in the caller.
When the statement is an assignment ofa base pointer, all access classes for that base are killed.
This is done by removing them from the GEN sets and adding them to the KILL sets:

B.GEN := B.GEN - access.classes(b)

B.S-GEN := B.S-GEN - access.classes(b)

BJiILL := B.KILL [j access.classes(b)

Identifying Parent and Child Instructions

The purpose of this pass is to identify parent load instructions which read data that is used as a
base in other memory access instmctions.

Dataflow Analysis of Access Classes

The purpose of the dataflow analyses is to keep track of which access classes are live at the be
ginning and at the end of each basic block by letting access classes generated in one basic block
propagate backward to the preceding basic blocks. Note that the global dataflow information is
not used by access class prefetching (which only considers local dataflow information to limit the
size of the trap handlers). The global dataflow information is used for engine prefetch.

For all immediate successor basic blocks .5' of B in the flow graph, we can formulate how
accessclasses thatare liveat the beginning ofeachS propagate to B. This isdone inthe following
dataflow equations:
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B.OUT := U SJN Vimmediatesuccessors $ of B

B.SJDUT := n 5.5-7 A^ V immediatesuccessors S of £

Thus, for prefetching for reading, the algorithm requires only that an access class is live in at
least one successor basic block. In contrast, for prefetchingfor writing, it requires that an access
class is live at the beginning of all immediate successor basic blocks.

Finally, the dataflow equations to establish B.1N and B.SJN are as follows:

B.IN := (B.OUT [j B.GEN) - B.K1LL

B.SJN := (B.SDUT (J B.S.GEN) - B.KILL

i.e., access classes live at the beginning of B are defined by the access classes live at the end of
B plus access classes generated in B minus access classes that are killed locally in B. The above
operations applied to each basic block are repeated until no changes occur as in other iterative
dataflow analyses [1].

Engine Prefetch

The purpose of this pass is to generate cache miss trap handlers for controlling prefetch engines.
Before this pass, all natural loops of a procedure have been sorted from innermost to outermost
loop. The loops are processed starting with the innermost. Each natural loop L of the flow graph is
considered in turn. A stride access is an access whose address-expression contains a term which is
an induction variable JVof L. /Vis incremented by a compile-time constant c each loop iteration.
Each stride access A in L is considered in turn, and is then marked as visited. A stride access is

visited only once— in the innermost loop where there is an induction variable in the access's
address expression.

First, the stride is computed at compile-time by analysing the term with IV of the address-
expression of A. The stride S of A is set to c, possibly multiplied by a constant in the address-
expression.

Second, the compiler tries to extract the remaining number of loop iterations. If the loop header
of L has a conditional branch instmction of the form i < n where ?' is an induction variable of L,

then L is said to be limited. Note that IVand / can be different variables. If L is not limited, then

the remaining number of loop iterations is not estimated and therefore not the number ofblocks to
prefetch either, however, prefetching is used anyway but the number of blocks to prefetch is left
unspecified and a default value is used by the prefetch engine; for the emulated prefetch engine,
the number of blocks to prefetch is set to a small number (we used four).

If L is limited, then the induction variable i is incremented by a constant D in each iteration.
In the loop of Figure 1, the loop is limited and the induction variable is i. The remaining number
of loop iterations is estimated to be A'* = (n —i)/D, where n and / are mntime variables. Early
loop exits due to a goto or a break or additional loop termination conditions beyond i < n
are not taken into account by our algorithm. If the stride S of A is greater than or equal to one
cache block B, then the number of blocks to prefetch is set to one less than N (as discussed in
Section 3, the missing access requests the first cache block by itself)- However, if S is less than B,
then multiple loop iterations will access the same cache block, and number of blocks to prefetch
is set to N * S/B - 1.
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If A is a store instmction or the access class of A is either generated by a store in the same
basic block B or belongs to B.S.OUT, then the engine will prefetch in exclusive mode under
direct addressing.

If A is a parent, then indirect prefetching will be used. The engine parameter for Indirect is
determined by considering which access classes of a child c are live at the point just after A in
the flow graph. The number of blocks to prefetch using indirect addressing and the requested
cache state (shared or exclusive) for these blocks are determined as follows. First, the number of

consecutive access classes (c, 0), (c, 1),..., (c, r) that are live at the point just after A in the flow
graph is found. Second, the number of consecutive access classes generated by store instmctions
(c,0), (c, 1),..., (c, w) that are liveat the point just afterA in the flow graph is found. We have
w < r. If w is greater than zero, then exclusive modeprefetching isused for indirect prefetch and
the number of blocks to prefetch using indirect addressing is set to w. Otherwise, if r is greater
than zero, then the number of blocks to prefetch using indirect addressing is set to r and the blocks
are prefetched for reading only.

Finally, a trap handler is created and is added to the flow graph.

Parameter Analysis

Each formal parameter p a of procedure is finally considered. All access classes (/», in) that be
long to IN and SJN of the initial basic block of the flow graph are preserved in the symbol table
as interprocedural dataflow information of access classes. If the procedure is recursive, then all
analysis is performed a second time; this time exploiting the formal parameters of itself in the
local analysis.
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