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Abstract

Field-Programmable Gate Arrays is an emerging technology which promises easy
hardware reconfigurability by software at low cost. Entire systems can be built in which
some parts are programmable. Such systems are flexible hardware platforms, which can
then be tailored to implement various architectures. Each architecture prototype is a
detailed hardware implementation of the architecture —-including 1/O-- on which complex
software systems can be ported.

We have built a multiprocessor emulator called RPM --Rapid Prototyping engine
for Multiprocessor systems. The second version of the hardware called RPM-2 is up and
running. In this paper, we present the modeling methodology, the performance collection
mechanism, the calibration of the emulator as well as emulation results obtained for the
emulator of a cache-coherent non uniform memory access multiprocessor (CC-NUMA)

Keywords: Field Programmable Gate Arrays, Rapid Hardware Prototyping, Multiprocessor,
Shared-Memory, System Design.

1. INTRODUCTION

There are currently many competing ideas to implement multiprocessor systems. Among
shared-memory systems, many variants, ranging from software or hybrid hardware/software
DSM (Distributed Shared Memory) systems [13] to cache-based multiprocessors with hardware-



enforced coherence [21] are under intense scrutiny in the research community. Several projects
both in industry and academia evaluate new ideas in multiprocessor systems by building hardware

prototypes [1] [4][11][12][14]. In other projects, abstracted machine prototypes are developed on
software simulation platforms [S][17][18].

The advantages of hardware prototyping are well known. In an hardware prototype
detailed implementations are worked out and thus new problems are discovered and new ideas are
found in the process. Hardware prototypes are the ultimate proof of concept of an architectural
idea and lead to complete system design in which hardware/software complexity can be evalu-
ated. Moreover, they can run interesting workloads such as operating systems and commercial
workloads. In an academic environment, hardware prototyping is an extremely valuable experi-
ence for graduate students.

However, hardware prototypes suffer from two major problems: they take too long to
build and they are very expensive. Thus only a few ideas are validated in hardware and many
good ideas are never implemented. By the time a prototype really works (i.e. when it runs for days
without crashing), it is often obsolete. This problem of hardware obsolescence is particularly bad

since prototyping projects must explore future architectures. The three aspects of hardware obso-
lescence are:

* first, the absolute speed of the prototype is no longer up to par with current hardware;

* second, the relative speeds of components have changed so that experiments run on the proto-
type become meaningless (for example, processor speed is improving much faster than DRAM
speed);

* third, the new architecture ideas embodied in the prototype have become uninteresting.

Besides the high cost and long development time, hardware prototypes are often hard to
observe. On the other hand, software simulations are very flexible, observable, and relatively
inexpensive to develop. They may range from detailed cycle-by-cycle simulations of a target,
which are very slow, to trace-driven simulations, in which no machine is simulated but instruc-
tions of different processors are simply interleaved and some events such as cache misses are
counted. There is often a trade-off in software simulations between realistic simulation speeds
and realism [18].

Hardware emulation, the approach adopted in RPM (Rapid Prototyping engine for Multi-
processors) is an intermediate approach between software simulation and hardware prototyping.
RPM facilitates the rapid and economical development of complete hardware systems for various
configurations of shared-memory multiprocessors with a NUMA (Non-Uniform Memory Access)
architecture. RPM reaps most of the benefits of hardware prototypes at a much reduced cost and
design effort. Because of its flexibility, the hardware can adapt during its lifetime to the rapid evo-
lution of technology trade-offs and of new ideas in architecture. RPM is also much more observ-
able than typical hardware prototypes. The cost of this flexibility in RPM is its reduced speed.

In the class of architectures which can be prototyped on RPM, each processing element is
made of a processor, some cache, and a share of the main memory. The prototyping methodology
is based on FPGA (Field-Programmable Gate Arrays) technology [22]. Processors and memories
on each board are off-the-shelf but controllers are implemented with FPGAs. To modify the
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architecture or the parameters of the architecture, the FPGAs are reprogrammed in VHDL and the
VHDL programs are downloaded in the FPGAs. From the software point of view, an RPM proto-
type is indistinguishable from a (slow) hardware implementation of a SPARC multiprocessor.

The overall architecture of RPM and the details of the hardware design can be found in [3]
and [15]". This paper describes the methodology, tools and environment that we have developed
to exploit the emulator, as well as our experience with hardware prototyping using FPGAs. In
Section 2 of this paper we briefly describe RPM, as well as the first prototype, a Cache-Coherent
Non-Uniform Memory Access (CC-NUMA) architecture similar to the Stanford DASH [12].
Then, in Sections 3 and 4, we expand on the various aspects of the prototyping methodology:
multi-cycle Pclock emulation, time scaling, count memory, architecture verification, and emula-
tor programming. Section 5 shows emulation results. We show the results obtained on systems of
different sizes and with different application data set sizes. In Section 6, we comment on several
aspects of the prototyping methodology. Finally, we conclude in Section 7.

2. OVERVIEW OF RPM-2 AND THE CC-NUMA EMULATION

2.1. Hardware Substrate

RPM is made of nine SPARC processors connected to a Futurebus+ backplane and is currently
clocked at 5 MHz. Normally, one processor acts as an I/O node. The single chip processors have
both an integer and a floating-point pipelines and the execution of floating operations are over-
lapped with the execution of integer instructions. They have no on-chip cache and therefore all
instruction fetches and data accesses are observable. The block diagram of each processor board
is shown in Figure 1. Processors and memories on each board are off-the-shelf but controllers are
implemented with FPGAs. In all each boards contains 8 FPGAs, each with the equivalent of more
than 10,000 logic gates.

In a typical emulation, a fraction of every on-board memories emulates the target system’s
caches and memories and the rest is used for performance collection and for the emulation of spe-
cial registers and buffers (such as those needed to support virtual memory). The first-level mem-
ory controller drives the emulation of each pclock. Typically, at the start of each pclock
emulation, it resumes the processor execution for one cycle, receive the next processor access (if
any), blocks the processor, and then emulates the memory access (in one or several pclocks). The
emulation of each pclock is implemented by a combination of control in the FPGAs and memory
space in the RAMs attached to the memory controllers. The number of clocks per pclock can be
easily changed and it depends on the complexity of the pclock emulation.The Delay Unit (DU) is
a programmable chip which emulates variable interconnection delays. Messages that are sent out
of the processor node are stored in the Delay Unit for an amount of time that is programmable. If
L is the length of a packet, then the delay is equal to o+ x L, where o is a fixed delay per
packet and P is the time per 32-bit word transfer. The FutureBus+ interconnection is 32-bit wide,
and transfers one 32-bit word every 100nsec, for a total bandwidth of 40 Mbytes per second. The
main memory speed can be modified by suspending memory requests using interleaving registers
as described in [3].

1. However, a new version of RPM (RPM-2) has been built and we will highlight some of the differences in
Section 2.



The SCST interface and serial port allow every board to be confi gured as an I/O node.
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Figure 1. Block Diagram of RPM-2’s Processor Node [3]

The CPU is an LSI Logic L64831 SPARC IU/FPU. The first-level cache (RAM1) and the second-
level cache (RAM?2) are built with SRAM SIMMs and have a maximum capacity of 2 Mbytes and
8 Mbytes respectively. Both cache controllers (MCI and MC2) are made of 2 Xilinx 4013 FPGAs.
The CMMU is made of one Xilinx 4013. The main memory (RAM3) is made of 96Mbytes of
DRAM connected to 2 Xilinx 4013 FPGAs plus an off-the-shell DRAM controller (Cypress
CYM?7232). The delay unit is built with a FIFO controlled by one AMD MACH 210 chip. The
FIFO (8 kbytes) contains blocks and messages which are sent to the bus interface after a program-
mable delay depending on the target machine’s interconnect latencies and packet size. The NIC is
built with 1 Xilinx 4013. The FutureBus+ chip set comes from Newbridge and National Semicon-
ductors and it includes bus transceivers plus the Newbridge LIFE chip. The SCSI interface of the I/
O board is attached to the SCSI bus of a SPARC station II which currently serves as an I/O server
and console for RPM. The RS232 serial interface can connect to a terminal and is used mostly for
debugging purposes. The board size is 22"x16" but only three-fourth of the board is populated.

The current hardware (RPM Version 2 or RPM-2) is slightly different from the hardware
described in [3], which was RPM Version 1. First of all the boards have been designed to clock at



20MHz instead of the I0MHz of RPM-1. Second, the internal bus, which caused reliability prob-
lems in the first hardware version, has been replaced by a Network Interface Controller (NIC).
The added advantage of the NIC is that it can be programmed to control the flow of packets in and
out of the board. Another modification is the addition of on FPGA to the second-level cache con-
troller to implement the Coherence and Memory Model Unit (CMMU). This chip is dedicated
mostly to latency tolerance hardware [9]. Finally, I/O and virtual memory support have been

upgraded to facilitate the port of an operating system and of commercial workloads. Pictures of
RPM-2 and of one of its boards are shown in Figure 2 and in Figure 3..
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Figure 2. RPM-2 with 9 boards and its Sun host

The memories of every board can be accessed in Test mode or in Emulation mode. In Test
mode (mostly used for booting and debugging), the memories on all boards are all part of a con-
tiguous address space and every location can be accessed randomly. To configure RPM into a tar-
get multiprocessor, the FPGA programs of all three controllers are written in VHDL, compiled
and then downloaded through the I/O node as part of the booting procedure. Once the FGPAs are
programmed, the machine is in test mode. Memories are initialized, the code and data of the
application are downloaded into RPM’s main memory and the machine then switches to emula-
tion mode where memory accesses are restricted by the addressing mechanisms of the target
machine. From this time on, RPM behaves like the target machine

2.2. An Emulator for Small-Scale CC-NUMAs

Today’s successful multiprocessors are mostly small-scale systems (2 to 16 processors) with
shared memory and cache coherence enforced by a snooping protocol on one or multiple buses.
As an alternative to snooping, industry and academia are exploring other, point-to-point intercon-
nect such as rings [2] or crossbars to connect ultra-fast processors in a small number (1 to 32).



Our first emulator is a CC-NUMA under strong ordering of shared-memory accesses [9].

2.2.1. Protocol

The protocol is write-invalidate with a directory organization based on Censier and Feautrier’s
design [7]. Besides the presence bits and the modify bit per block, we have added some transient
state bits to support concurrent transactions on different directory entries. A miss request first
goes to the home memory. Before returning a copy of the block, the home memory must some-
times invalidate copies (write miss in the presence of multiple remote copies) or obtain the dirty
copy from the owner (miss in the presence of a dirty remote copy). This latter transaction takes
four traversals of the interconnect (requester-to-home, home-to-dirty, dirty-to-home and home-to-
requester). After invalidations are sent by the memory controller the block state is set to transient
and the presence bits indicate which copies have pending invalidations. While invalidations are
propagated, the memory controller is released and any other request to the block is nacked by the
home node. As invalidations are acknowledged, the memory controller resets the presence bits;
once all acknowledgments have been received the controller completes the transaction and sets
the block to a stable state. More details on this protocol can be found in [16].

Figure 3. One board of RPM-2. Each board contains 8 Xilinx 4013 -3 FPGAs.

2.2.2. Architectural Parameters

The first-level cache is a 64kbyte direct-mapped write-through cache with a block size of 16
bytes. The second-level cache is a IMbyte direct-mapped write-back cache with 16 byte blocks.



The emulated memory size on each board is 32Mbytes. The basic hardware latencies listed in
Table 1 (second column) are the number of cycles needed for the emulation. They were obtained

by counting cycles in the RPM hardware. They are the lowest possible latencies for the CC-
NUMA emulation.

Resource Event E:iés priggzgzrs
ware (pclocks)
(clocks
)

FLC Data Read (single) or Instruction Hit 8 1
Data Write Hit (single) 24 3

Data Read Hit (double) 16 2

Data Write Hit (double) 32 4

Fill from SLC 16 2

SLC Hit from FLC 40 5
Hit from Bus Interface 24 3

Miss Detection 16 2

SLCc fill 24 3

SLC restart 24 3
Internal Bus Request Packet 4 1/2
Data Packet 8 1

DU and FutureBus+ Request Packet 24 8
Data Packet 24 20

Memory Miss (Tpiss) 40 15

Send k Invalidations (Ty,) (10+4k) (1+2k)

Ack Invalidation (T,.y) 24 5

Receive Write Back (T) 40 15

Get Block from Dirty (Tgs) 56 8

Send Dirty Block to Requester (Tp,) 72 9

Nack (Tnzck) 24 5

Table 1. Hardware Latencies (no conflict) in the CC-NUMA Emulator on RPM-2

Miss is the time to receive a packet, fetch the block from DRAM, update the directory and send a
packet back to the requester. Send k Invalidations is the time to send k invalidation packets. Ack
Invalidations is the time to receive an acknowledgment for one invalidation and update the direc-
tory. Receive Write Back is the time to receive a block packet, store the block in DRAM, and possi-
bly forward the block to the requester. Get Block from Dirty is the time to receive a packet from the
requester, check the directory, and send a packet to the dirty node. Send Dirty Block to Requester is
the time to receive the block copy from the dirty node and send it to the requester with ownership
(memory is not updated). Nack is the time to receive a packet, and negatively acknowledge it.



The latencies of second level cache read misses comprise three terms: on-board delays

memory Qela)f, and interconnect delays. From Table 1 the following equations are applicable for
the latencies (in clocks) of read misses in the absence of conflicts.

* SLC read miss from Local Home Memory: 36 + T

miss

* SLC read miss from Remote Home Memory (2 hops): 48 + T, .. +2X (24 +0) + B x 4

* SLC read miss from Dirty Node (4 hops): 96 + Typa+ T, +4x(24+0)+Bx8

Figure 4 shows the decomposition of the latencies of a read miss on a dirty copy. The
basic hardware latencies for read misses (e and B = 0) are 76 clocks (local), 136 clocks (home),
and 288 clocks (dirty). There are small fluctuations in these latencies because some timings (such
as accesses to the DRAM, FutureBus+, and the second level cache) may vary slightly. However,
these simple estimates are surprisingly accurate as we will see in section 4.

Requester Node Home Node
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On Board On Board Miss Request to 0on Board
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Figure 4. Timings of a Read Miss with Fill from a Dirty Node (no conflict)

2.2.3. Software Environment

We have developed a software environment for RPM to run applications using the ANL program-
ming macros to express and manage parallelism such as the SPLASH-2 benchmarks [23]. Most of
the library functions are statically linked directly from SUN’s standard C and math libraries. A
special operating system trap handler (tr0.0) written to support I/O functions intercepts the system
call parameters and passes them over a communication line to a server running on the SUN work-
station acting as the emulator’s console. The server performs the request and cooperates with the
system call stub running on the emulator’s I/O board for possible data transfers. Upon comple-



tion, the server passes a return code to the stub, which is delive

the system call. The whole mechanism is transparent to the a
UNIX kernel is entire.

red to the application as a result of
pplication and the appearance of a

Applications for the emulator are compiled using the standard procedures and UNIX tools
for a SUN-4 workstation. Once compiled, applications can be downloaded into the shared-mem-
ory of the emulator at a fixed address. To start them, control is passed from the emulator’s moni-
tor to the application entry point, after switching from test mode to emulation mode.

3. PERFORMANCE METHODOLOGY

3.1. Multi-cycle Pclock Emulation

Each pclock of the CC-NUMA emulator is executed in eight clocks. The corresponding reduction
in emulation speed is compensated by three advantages. First we can emulate complex mecha-
nisms without sacrificing flexibility. Second, the latencies of the target are not limited by the
latencies of the basic hardware: even if a large number of clocks are needed to move packets on
the board and to emulate memories and complex directories, the target may still have very low
latencies, expressed in pclocks. Finally, if processors were executing at the rate of one clock per
pclock, the FutureBus+ would be a serious bottleneck.

3.2. Time Scaling

3.2.1. Latencies

To emulate systems with various processor, memory and interconnect technologies, the latencies
measured in pclocks must be the same in the target and in the emulator. For example, if, in the tar-
get system, processors are clocked at 100MHz (pclock=10nsec), interconnect delay is 80nsec and
DRAM access time is 100nsec, then the interconnect delay must be 8 pclocks (or 64 clocks) and
each DRAM access must take 10 pclocks (or 80 clocks) in RPM.

The third column of Table 1 shows the latencies for a target systems with 100MHz proces-
sors and 100nsec DRAM access times. The values for memory/directory accesses assume that the
directory is built in fast SRAMs, that the DRAM:s can fetch an entire block in one cycle, and that
the memory controller can be clocked at the speed of the processor and works in parallel with the
DRAM access. The values of 8 pclocks and 20 pclocks (obtained by setting 0. = 40 clocks and B =
24 clocks) for the latencies of the target interconnect were chosen from the hypernode of the Con-
vex Examplar, which is an 8 100MHz processor cluster connected by a crossbar switch [8].

From the numbers in Table 1, and the expressions for the read miss latencies in the target,
the number of pclocks to service a SLC read miss in the CC-NUMA emulation is 19.5 pclocks if
serviced by the home locally, 49 pclocks if serviced by the home remotely, and 91 pclocks if ser-
viced by a dirty node.
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3.2.2. Bandwidths

?Esxdes latgncy, bandwidth lb also a critical performance parameter for any hardware resource
e bandwidth of .the memories and directories in our CC-NUMA emulator is directly related to
their access latencies since main memory on each board is neither interleaved nor pipelined.
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Figure 5. Addresses Used to Access Count Memory in MC, SLC and FL.C

The main memory contains 4 M 32-bit counters (a); for each request type, each request source, and
each global state of the block, there are 512 counters, one for every possible distribution of the cop-
ies among the processors. The second-level cache count memory contains 64K 32-bit counters (b);
the location of the event counter depends on the request type, the source of the request (bus or local
processor plus the ID of the processor), the state of the block in the cache, the state of the replaced
block and the value of the hit/miss line. Finally the count memory of the first-level cache contains
16 K 32-bit counters (c), detecting various data or instruction cycles in the processor.

The current width of the FutureBus+ is 32-bits (extensible to 64 bits) and its bandwidth is
8 bytes per clock or 64 bytes per pclock. With a target pclock rate of 100MHz, this corresponds to
an interconnect bandwidth of about 6 Gbytes per second in the target system. This is a huge, prac-
tically infinite bandwidth which increases proportionally to the target’s pclock rate and this



explains why we have (_)bserved very low interconnect traffic in our experiments (see Section 5).
The FutureBus+ bandwidth can be reduced by changing the bus clock rate or the bus width and by

padding packets with extra bytes. This feature allows us to run experiments under limited inter-
connection bandwidth.

3.3. Count Memory

The primary two mechanisms to collect performance statistics in RPM are memory-mapped
counters (implemented in the FPGAs) and memory-mapped event-count memory (implemented
in memory). Memory-mapped counters are simple counters that can be read/written as any mem-
ory location. Such counters can measure the total execution time, the utilization of the processors
and the controllers, and can count events. So far, the only counter we have implemented in the
FPGAs is a 40-bit pclock counter in the first-level cache controller of every processor to record
the total execution time of each processor.

Event-count memories consist of a set of counters implemented in the SRAMs of the
caches and the DRAM of main memory. Events are mapped to memory addresses, and, at the
occurrence of a given event, the value stored at the corresponding memory location is incre-
mented. Therefore, to implement event-count memories, it is necessary to have some extra hard-
ware in each controller to read a counter from count memory, increment its value and write the
updated value back to memory. In the first-level cache, an event counter is incremented at each
pclock, as part of the pclock emulation, whereas, in the controllers of the second-level cache and
of the main memory, an event counter is incremented on each controller transaction, which may
take multiple pclocks. Figure 5 displays the composition of addresses to the event counters in the
three memories, obtained by merging hardware signals corresponding to various events and
resource states. Each processor board has three sets of event counters, one for each memory. At
the end of an emulation run, all processors store their counters in their main memory in parallel;
then the I/O processor uploads all counters to the SUN host, where the events are summed up and
combined to obtain the counts of meaningful aggregate events.

3.4. Dealing with I/0

RPM has been configured with one I/O processor and eight execution processors, but since any
board can act as an I/O processor, we can prototype systems with more I/O processors and less
execution processors. To avoid distortions in the performance of complex commercial workloads
and multiprogrammed workloads where I/0 and processing are overlapped, we need to scale 1/O,
just as we scale memory and interconnect delays.

Currently disk I/O is performed at full speed. However, if the prototype is, say, 80 times
slower than the target architecture then we need to increase the latency of I/O requests accord-
ingly. This problem can be solved in software, by scaling the latency of I/O operations in a similar
manner as was done for memory and interconnect latencies. When an I/O board receives an I/O
request, it executes it as fast as possible, at full disk speed, and then it inserts an entry in an event
queue with a timestamp indicating the time at which it is supposed to complete in the prototyped
system. Periodically, the I/O processor retrieves entries from the queue and interrupts a processor
to inform it of the completion of I/O. Besides emulating disk DMA transfers, the I/O board also
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maintains the time-of-day and tick clock and the console.

4. VERIFICATION, CALIBRATION AND PERFORMACE DEBUGGING

Once an architecture emulator is built, it is very important to verify that the characteristics of the
architecture, such as cache sizes, cache organizations, and access times, are correct according to
the original specifications defined for the target system. For an emulator built on top of RPM, it is
also necessary to verify that the performance counters recorded during executions are accurate. In
this section we present approaches used to calibrate and verify the correctness of the CC-NUMA
emulator. We first verify the architecture characteristics of the emulator using a method derived
from [19]. Then, we verify the emulator by comparing results obtained with a simulator and the
results obtained with the emulator running some of the Splash-2 applications.
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Figure 6. Performance profile of the CC-NUMA emulator

4.1. Verifying the Architecture Parameters

To verify that the emulator respects the specifications of the target architecture, Saavedra’s tech-
nique described in [19] and based on micro-benchmarks has been applied to the emulator.

The micro-benchmark is made of multiple loops. In each loop, the processor reads every
S-th (Stride) element of an array of size R. After each iteration, the stride is multiplied by 2 until

13



it reaches R/2. When § reaches R/2, R is increased and S is reset to its initia
of R and S, we first run the micro-benchmark with the read access, and th
the read access replaced by a noop. The times are measured using the pclock counter provided by
the RPM hardware in the first-level cache controller. The difference between the execution times
of these two loops divided by the number of iterations yields the average read access time. A dia-
gram representing the average time to read a single element for different values of R and S, is
obtained. On the diagram, each curve corresponds to a value of R. The same benchmark with
write accesses could be used to measure the timings of write accesses.

| value. For each value
€n we run it again with

Different regimes are observed on a graph resulting from the execution of a micro-bench-
mark. For example, when the size of R is inferior to the size of the first-level cache, all elements
accessed in the loop fit in the first-level cache and the average read time as a function of S is a
constant, as shown by the bottom curve of Figure 6. By varying the values of S and R, other
regimes where the read access hits or misses in the second-level cache are observed. These differ-
ent regimes allow us to observe experimentally the cache size, organization, and latency times
through various features of the diagrams, as pointed out in the figure. A more detail description of
these regimes and of the way to interpret the graphs can be found in [19].

Figure 6 shows the graph obtained for the CC-NUMA emulator. From this figure, we can
infer that the first-level cache is direct-mapped and that its size is 64Kbytes: we can also verify
that the second-level cache is direct mapped with a size of IMByte and that the lines in both
caches are 16 bytes. Access times are confirmed as follows. A read hit to first level cache takes 1
pclock. A read miss in the first-level cache that hits in the second level cache takes 6 pclocks. A
read miss in the first- and second-evel caches takes 27 pclocks if it is serviced from the local
home memory and 55 pclocks if it is serviced from a remote home memory. These experimental
timings are more accurate than the timings estimated by counting cycles, as we did in Section 2.
However, the two sets of estimates are in close agreement. Adding the first-level cache access
time, the second-level cache miss detection time, the second-level cache restart time and the first-
level cache fill time (a total of 8 pclocks), to the second-level cache miss times computed in sec-
tion 3.2, we find a total of 27.5 pclocks (vs. 27) for a read access with a local second-level cache
miss and 57 pclocks (vs. 55.5) for a read access with a remote second-level cache miss.

4.2. RPMsim

RPMsim is an approximate simulator of the CC-NUMA emulator. This simulator was written in
C using the CSIM package [20] and the Cache-Mire SPARC interpreter [5]. It consists of several
modules implementing the processor, first- and second-level caches, memory controller, main
memory, and the shared bus.

The processor module is a simulator for the instruction set of the SPARC architec_ture. It
has no detailed simulation of execution pipelines and it issues a memory cycle upon every invoca-
tion, including instruction fetches. The fact that we do not simulate the pipeline introduces some
error in the simulation, because, in the real machine, (1) instructions do not always complete in
one processor cycle, (2) some cycles are null cycles (null cycles are mostly due to annuled
instructions in branch delay slots), and (3) none of the extended precision instructions and a few
double precision instructions are implemented in the simulator2.
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5. EMULATION RESULTS

In this section, we present some of the performance data collected on the CC-NUMA emulator. In
F)rder to observe the effects of instruction misses and local data accesses --which are often ;10t
included in simulation studies-- the code and private data of processes are allocated at the top of
the address space, followed by the shared data segment. Addresses are not interleaved so that con-
secutive addresses are located in the same board. The allocation of memory affects the speedup.
For programs with very small data set sizes, most if not all data are in board 0, which then reaches
high utilization values. Additionally, for program having high miss rates for local data and
instructions, the instruction and data (read/write) stall times are large.

All programs except MP3D are taken from the SPLASH-2 benchmark suite [23]. The
selected data sets are larger than the default values for Cholesky and FFT and smaller for Barnes-
Hut, FMM, Radiosity, Radix, Raytrace, and Volrend.

5.1. Emulation Speed

RPM currently emulates the execution of 625,000 target pclocks per second at the S MHz clock
rate. The clock rate is limited by the speed of the FPGAs, which depends mostly on the quality of
the synthesis tools. We expect to raise this clock rate to 10MHz at least in the near future. Figure
7 (a) shows the emulation times of all benchmarks. The emulation times vary from 10 to 140 min-
utes on one RPM processor and from 2 to 20 minutes on eight processors. FMM takes the most
time and Barnes-Hut comes second. This graph gives a feel for the speed of RPM. Figure 7 (b)
shows the emulation rate of the CC-NUMA emulator on RPM, for one set of experiments. This
rate (in terms of million of instructions emulated per second) is directly proportional to the
speedup of the target system, given the time-scaling methodology. The best emulation rate is
achieved for Volrend in which RPM reaches nearly 3 million emulated instructions per second,
which is 60% of RPM’s peak emulation rate and the worst case is for MP3D with 833,000 emu-
lated instructions per second.

Figure 7 (c) displays the utilizations of the memory controller on board 0. To find the uti-
lization of each memory controller we sum up the times the memory controller takes to process
specific request types including the secondary messages and their replies. The counters in count
memory yield the number of time a request of a given type has been executed and the time taken
by each request is given by Table 1. MP3D has the worst-case memory utilization. In MP3D the
memory controller utilization of board 0 reaches 94.5% on 8 processors. Due to the large number
of messages generated by MP3D the memory controller becomes a hot spot and the read and write
stall times increase with each additional processor.

Figure 7 (d) shows the FutureBus+ utilization. This utilization is computed from the event
counts using a similar procedure as for the memory controllers. The FutureBus+ is very much
underutilized. In order to emulate limited bandwidth systems we can artificially increase the size

2. These functions do not appear in the code generated by the GCC compiler. However, some of them may

occur in math library functions linked together with the application. To handle the situation, these functions
have been implemented as application traps to the simulator. Because they make heavy use of registers and

have few memory accesses, the caching behavior of the application is not severely affected, but the applica-
tion execution time may be affected



of each packet sent to the FutureBus+.
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Programs such as Volrend, Water-nsquared, Raytrace, Barnes-Hut, and Radix, which are
known to have good speedup run at high emulation rates on RPM, in contrast with MP3D and
FFT. Radiosity, which usually shows good speedup, has a very large data set size and its instruc-
tion miss rate is higher than in all other benchmarks, which in turn results in up to 18% instruction
stall time on an 8-processor system. This high instruction miss rate may be partially explained by
the nondetermistic behaviour of Radiosity. There may also be some trashing between data and
instruction accesses. Although LU has normally worse speedup than FFT, it achieves a very good
emulation rate. The main reason for this is that the work is not uniformly distributed among pro-
cessors in LU. When a processor is waiting for other processors (busy waiting), it stays in a tight
loop with a single data access, which hits most of the time. During this time, RPM is close to its
peak emulation rate.Ocean has normally better speedup than FFT, but it exhibits a large local data
traffic [23]. We can also see from Figure 7 (c) that the utilization of the memory controller on
board 0 reaches 60% in Ocean. By contrast, Cholesky has usually lower speedup, but still
achieves better emulation rate in these experiments. This is mostly because of Cholesky’s smaller
data set size and lower data traffic.
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Figure 8. Total Execution Times of the Five Benchmarks on a 4-processor System

5.2. Varying Data Set Sizes

We have also examined the effects of increased data set sizes for Barnes-Hut, Water-nsquared,
Ocean, Radix, and FET on a 4-processor system. For Barnes-Hut we have used 4K, 8K, and 16K
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particles. For Water-nsquared the number of molecules were changed from 512 up to 1331. We
ran Radix with 256K, 1M, 2M, 4M, 8M and 12M integers with a radix of 1024. For FFT 64K,
256K, and 1M points are used, We simulated Ocean with 130x130, 258x258 and 514x514 grid
sizes. The memory used by these benchmarks are 8, 16, and 32 MB for Barnes-Hut, 550KB,
775KB, 1MB, and 1.4MB for Water-nsquared, 2, 8, 16, 32, 64, and 96 MB for Radix, 3, 12, and
48 MB for FFT, and 3.7, 14, and 56 MB for Ocean.

When increasing the data set sizes we were limited by three factors: (1) Execution time,
(2) Memory size, and (3) Completion of the program execution. Among the selected benchmarks
Radix, Ocean, and FFT are memory-bound. On a 4-processor RPM we have 128 MB memory and
for these three benchmarks we could not run bigger problems because of our memory limitations.
Water-nsquared and Barnes-Hut are compute-bound programs and we are currently limited by
their execution time. In the current RPM configuration we are limited to about two hours of exe-
cution time because of the 32-bit resolution of the event counters in count memory. In the near
future we plan to interrupt the IO processor periodically every two hours to freeze the whole Sys-
tem, upload all the counters to the host Sun SPARC Workstation, and resume the program. We
expect this mechanism to add very little distortion to the collected performance statistics (it takes
a couple of pclocks to stop all processors) while increasing the tolerance to crashes.
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Figure 9. Normalized Execution Time of the Five Benchmarks on a 4-processor System

Figure 8 and Figure 9 show the total and the normalized execution times of the five bench-
marks on four processors. The run for Ocean 514 took the longest time, about one hour and 20



minutes on RPM. The busy time is the total execution time including instruction executions when
all data read/write accesses hit in the First Level Cache. The Null Busy time is the sum of all the
times when the processor can not execute a useful instruction because of an pipeline interlock or a
unused branch delay slot. The write stall, read stall, swap stall and instruction stall times are the
times during which a processor is blocked pending the completion of a write, a read, a swap and

an instruction fetch in the memory system. The spin time is the total synchronization time exclud-
ing the swap stall time.

Barnes-Hut and Water-nsquared have very high processor utilizations and their memory
behavior is not affected by the increased data set sizes, because their working set sizes are much
smaller than 1 MB and therefore they fit in our second-level cache easily. Pipeline overheads
dominate. The memory behavior of Radix is also unaffected data set size increases. This result
can be explained mainly by the communication-to-computation ratio of Radix. This ratio is con-
stant as long as the number of processors is fixed. One interesting point about Radix is the large
amount of time it spends in Null Busy cycles. A large number of branch delay slots are not uti-
lized. In this case, processor overheads dominate memory overheads.

FFT is another benchmark whose memory behavior is unaffected by increasing the data
set sizes. In FFT the most important data set size is one row of the matrix [23], which fits our sec-
ond level cache. On top of that the communication-to-computation ratio decreases logarithmically
with increasing data set sizes. We have ran FFT with three data set sizes: 64K points (3 MB),
256K points (12 MB), and 1M points (48 MB). The changes in communication-to-computation
ratio from 64K points to 256K points and from 64K points to IM points are 0.9152 and 0.8437,
respectively. We see the slight effect of the reduced communication-to-computation rate in terms
of increasing busy times for larger data sets.

Ocean is the only benchmark which shows a dramatic difference in its memory behavior
as the data set size is increased. Ocean has a large working set size which does not fit into our |
MB second-level cache for the 514 x 514 grid size. (It is possible that the working set size for the
258 x 258 grid does not fit in our second-level cache as well.) As the data set size increases the
miss rates in the second-level cache increases from 0.4% to 1.3% and then to 2.3%. As reported in
[23], the local data traffic increases drastically with the data set size for 4-processor configura-
tions and a 16 bytes block size. Because of the data allocation, the service time of the read/write
misses to local data as well as the data traffic affect execution speed.

5.3. Simulation Experiments

Table 2 shows some comparisons between RPM and RPMsim. All the experiments reported in
Table 2 have been conducted for four processors clocked at SMHz. The simulations were per-
formed on a SUN SparcStation-10 with 128 Mbytes of memory (a 50 MIPS machine). The time
values correspond to the parallel section of the benchmark only. The average emulation speedup
is close to 170 and it should more than double when eight processors are used instead of four.
Also, this speedup should again quadruple if we reach the 20MHz clock for which the boards of
RPM-2 were designed. Applications with high busy times (Barnes-Hut, Volrend, Raytrace,
Water) achieve large emulation speedups.

In actuality, comparisons with simulations are quite meaningless, since the outcome
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depends on the level of details in the simulations, on the efficiency of the simul

ation and on the

speed (?f the machine on which the simulation runs. The emulation speedups would be much
higher if the emulation was compared to cycle-by-cycle simulation.

Emulat ; . . Parallel Stmnlated Simulation

Y| I — .muldtion S}Inulatxon Emulation I parallel aceura
time(sec.)| time (sec.)| speedup (106 Ik.) run time | i

N s eky| P
barnes 4k 533 94483 177.3 333.1 343.1 +3.0
cholesky besstk 14 37 6546 176.9 23.5 245 +4.3
fft -m16 -n4096 50 6444 128.9 31.3 31.7 +1.3
lu -n128 10.4 2163 207.9 6.5 6.9 +6.2
radiosity test 848 105083 123.9 5299 324.5 -38.8
radix 262144 int. 74 11253 152.1 46.4 40.8 -12.1
raytrace teapot 252 49973 198.3 157.3 166.2 +5.7
volrend scaleddown4 70 11588 165.5 43.8 35.2 -19.6
water-nsq 343 303 56498 186.5 189.4 192.3 +1.5

Table 2. Comparison of Emulation with Simulation

The simulation accuracy ranges from surprisingly good (Barnes-Hut, Cholesky, FFT, LU,
Raytrace, Water) to moderate (Radix, Volrend) and bad (Radiosity). In the emulation, Radix
spends 15 to 20% of its time in null busy cycles, which are unaccounted for in the simulation.
Volrend makes heavy use of mathematical library functions, which are not simulated. Hence the
simulated execution times are too optimistic. Finally, Radiosity seems to have followed different
convergence paths to the solution in the simulation and in the emulation. Clearly, we will have to
include pipeline effects in the simulation and simulate more of the mathematical library functions
if we want to improve the accuracy of the simulator.

6. ABOUT THE METHODOLOGY

There are many aspects of the project that could have made the methodology more effective. We
could have built a system with a large number of processors and a reconfigurable network to
increase the generality of the prototypes. We could also have clocked RPM faster. However the
project would have been much more expensive and risky. In this section we discuss three aspects
of the methodology: flexibility, performance and generality.

6.1. Flexibility of RPM

There is considerable flexibility in configuring RPM. Nonetheless, the hardware prototypes
which can be built on RPM have some basic limitations. Most of these limitations are also present
in traditional hardware prototypes. First, the overall hardware configuration must be the same in
the prototype and in RPM. For example, we cannot prototype systems with three levels of caches
or systems with shared caches. Second, we cannot prototype systems with more than eight execu-
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tion processors. Third, we cannot implement specific interconnections. We can only change the

latencies as well as the bandwidth, which are the most important factors of interconnect perfor-
mance.

Fourth, the processor architecture is fixed. Thus RPM prototypes are not appropriate to
evaluate the effects of processor architecture on multiprocessor performance. An issue mi ght be
non-blocking loads (as opposed to prefetches, which we implement.) The depth of the processor
pipeline or the issue width of superscalar processors may also have a serious effect on multipro-

cessor performance, as our own results show. Finally, RPM cannot emulate multiprocessor sys-
tems with non-SPARC processors.

To conclude, whereas RPM cannot prototype any multiprocessor architecture, it is much
more flexible than traditional hardware prototypes and can be used to explore a large number of
practical and useful multiprocessor architectures.

6.2. Performance

The comparison of RPM’s speed with simulation speed is not easy to make. RPM emulates an
architecture in hardware and in all its details. One major advantage of a simulation is that it can be
as detailed or as abstracted as desirable. Depending on how abstracted the simulation is, RPM is
slower or faster than the simulation. For example, simulations of system code on SimOS run with
a slowdown between 10 times and 50,000+ times, depending on the level of details [18]. The
detailed simulation of the SGI Challenge to verify the hardware and its performance on small
operating system kernels reportedly ran at about one cycle of the target per second [10]. On the
other hand, trace-driven simulations can be extremely fast.

RPM could emulate the execution of 2,500,000 target pclocks per second when the 20
MHz clock rate is reached, independent of the number of processors. The peak emulation rate is
20 Million target instructions per second, with 8 boards at 20 MHz. However, the emulation rate
is strongly affected by the characteristics of the application. RPM approaches its peak emulation
rate for programs with little memory activity and with very high computation-to-communication
ratio.

The speed bottleneck in RPM prototypes is the FPGAs. The clock rate is limited by the
speed of the FPGAs, which depends mostly on the quality of the synthesis tools.

Like any piece of hardware, RPM performance degrades with time with respect to target
machines due to the fast pace of technology improvements. However, if the boards were designed
to run at a higher clock rate, RPM could follow the technology curve and its speed could be
improved over the years by upgrading the FPGAs, since FPGA suppliers maintain pin-to-pin
compatibility. FPGAs have improved dramatically over the years and all indications are that this
trend will continue unabated.

6.3. Generality

There is nothing in the methodology of RPM that would prevent us from building better hardware
prototyping platforms in the future. A different processor will have to be chosen. One drawback
will be that more and more of the memory hierarchy will migrate on chip, thus reducing the flexi-
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bility of RPM but simplifying the design of prototypes. Observability will also be affected (as in
any hardware prototype). However, we note that the current trend is to include more and more
performance evaluation hooks in processor chips.

6.4. A “Dream” Machine

In the RPM project, we have been quite conservative in the design of the hardware, because of the
novelty of the approach, the limited budget, and the risks associated with aggressive hardware
designs in an academic environment. Of course, larger, faster emulation platforms could be built.

If we used modern processors with on-chip first-level caches, the prototypes would be
simplified and would run faster®. The reason is that, in the current machine, the first-level cache
controller must execute in one pclock all the details of every processor access, including stopping/
starting the processor, translating addresses in the TLB, accessing the cache, and updating count
memory. Thus the first-level cache controller is by far the most complex and dictates the number
of clocks per pclock. On the other hand each second-level cache access takes several pelocks.

Instead of a bus interconnection, we could build a bit-serial, hypercube interconnection
(implemented for example with S3.mp’s TIC chip [14]), which could emulate complex, point-to-
point interconnections more faithfully.

Finally, we would design the boards to run at much higher frequency (100MHz) in order
to be able to upgrade the boards as faster FPGAs become available.

With these considerations in mind a 128-processor machine with two clocks per pclock
and clocked at 20MHz (upgradable to 100MHz) could be built today. Such a machine would have
a peak emulation rate of 1.28 billion emulated instructions per second (counting one instruction
per cycle per processor), and even more, if processors execute more than one instruction per
cycle.

7. CONCLUSION AND FUTURE WORK

Multiprocessor emulation is an alternative to prototyping and software simulation, both in flexi-
bility and observability. In this paper we have related our initial experience with emulation tech-
nology based on field-programmable gate arrays.

RPM is a configurable hardware platform or substrate on top of which various multipro-
cessor architectures can be implemented in hardware. Because the controllers are made of
FPGAs, architecture parameters as well as performance measurement hardware can easily be
changed. We have described the methodologies and illustrated them with our first CC-NUMA
emulation on RPM.

In the future, we plan to continue the prototyping work, which will result in three broad
contributions:

« Demonstration and evaluation of hardware prototypes of shared-memory architectures with var-
ious hardware/software mechanisms by porting an entire system with multiprogrammed and com-

3. As a trade-off, some flexibility and some observability would be lost
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mercial workloads

¢ Comparison of these machines and of various DSM systems for scientific workloads with large
data set sizes as well as system and commercial workloads, on the same hardware substrate.

s Developmerllt and demonstration of a viable methodology for the rapid and cost-effective hard-
ware prototyping of multiprocessor systems using FPGA technology.

Recently we have completed the port of Solaris 2.4 on RPM-2 and we expect to run non-
scientific workloads soon.
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