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Abstract

In this research, we developed a model for multi-chip implementation of a digital
system that captures the complex process of system-level design decisions. We also
designed tools that automate the system architecture optimization process, produc-
ing trade-off informations on design alternatives. A set of system-level decisions,
namely physical design style selection, datapath architecture selection, task-level
system partitioning, die selection, die clustering, substrate technology selection,
package selection, and bus selection are automated. These decisions are mod-
eled as binary decisions and a set of functions is designed which quickly computes
metrics for design entities based on the first-order effect of a given set of design
decisions. Among metrics, the prototyping time of a system is defined as a metric
for a digital system and the cost of a die is computed by considering the effect
of yield. The interrelationships among the system-level design decisions are cap-
tured as validity constraints which allows the software to detect the inconsistency
among design decisions and therefore reduce the risk of incorrect design decisions.
The design model can be used for the purpose of both automatic optimization or
interactive optimization.

Based on the model developed, two automatic optimization tools have been
developed. The first tool, EDEN, is an MILP-based optimization tool constructed
by linearizing the model specifically for designs that can be rapidly prototyped. As
a part of EDEN, a language called M and a constraint generator called GEM were
developed to automate the instantiation of the linearized formulation for a specific
design problem. The second tool, GARDEN, is based on a Genetic Algorithm.
Novel schemes for solution encoding, population initialization, crossover, muta-

tion, and fitness function are presented to apply a genetic algorithm framework to



the complex optimization problem considered in this research. GARDEN is im-
plemented in an object-oriented manner and includes many heuristics developed
from our understanding of the multi-chip system design problem.

With this research, the possibility of developing a more sophisticated model and
automation tools for system-level design decisions is shown, which help designers
to handle more complex systems, reduce the risk of development process iterations

and design a better system in a shorter time.



Chapter 1

Introduction

1.1 Background

The growing popularity of internet, multimedia, and telecommunication applica-
tions has increased the demand for complex electronic systems. Several conflicting
requirements are often associated with these systems, such as low cost, high perfor-
mance, low prototyping time, short time-to-market, high testability, and low power
dissipation. Reducing the time-to-market is acknowledged by all industries as the
most important objective in system design, due to the fierce competition in the
market and narrowing market windows. The cost of a unit is an important factor
in consumer electronics applications. Power dissipation and energy consumption
are important in battery-operated mobile computing and communication equip-
ment. Performance is a prime consideration in many applications which involve
real-time processing ol image data sets. Designing systems considering all the
factors mentioned above is understandably a difficult task.

On the technology side of digital system development, new technologies keep
emerging and old technologies become economically feasible. Decreasing feature
size, high-density programmable devices, and new packaging techniques are a few
examples of such changes. Designers can consider employing such newly-available
technologies for improving system characteristics. However, increasing the number
of design options further complicates the job of system design, which is already

unbearably complex.



Today’s system designers are forced to think at an even higher level of abstrac-
tion and rely heavily on the design automation tools so as to be able to deal with
the complexity of modern-day electronic systems under increasing time-to-market
pressure. However, current design automation tools lag the demands of design-
ers of such complex systems. Though employing the existing tools for system
design steps reduces the design time, many system-level design issues cannot be
handled with such tools. For example, while a combination of high-level synthesis
tools, logic synthesis tools, and layout tools are sufficient to synthesize application-
specific integrated circuits, the same is insufficient when the designer want to set
up an overall implementation strategy of a specification into a system of multiple
chips. To handle the system-level issues, new types of design automation tools are
called for.

Figure 1.1 summarizes the general characteristics of the design problems at
different abstraction levels. In general, at a higher abstraction level, a design
problem has a smaller number of design entities and therefore, takes less time to
solve. Also design decisions have a bigger impact on system quality because of more
degrees of freedom. However, making correct higher-level design decisions is very
difficult because of the degrees of freedom and “distance” to a final implementation.
Making the right decisions in the early system development phase is a challenging
task. Introducing a systematic way of analyzing the effect of different alternatives
and optimizing a system architecture can reduce the number of possible design
iterations and optimize a system better,

In this section, we introduce the notion of design at the system-level of ab-
straction. In the next section, we explain how system-level design is different from
designing at other levels. In Section 1.3, we define the system-level design steps.
In Section 1.4, we define a system design methodology as an ordered set of design
steps and investigate the properties of these design steps. We review the system
design methodologies that are currently in use and point out the problems associ-
ated with the current practices. Finally, we briefly state the problem and approach

which we propose in order to automate system-level design tasks.
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Figure 1.1: Characteristics of the design problems at different abstraction levels.

1.2 The System-level Design Problem

What are system-level design tasks? Since a system can be implemented in different
target architectures as shown in Table 1.1, specific design steps are different for
different target architectures. However, there are common characteristics shared by
different system-level design tasks that differentiate these tasks from those of lower-
level design steps. Figure 1.2 shows a schematic view of the development cycle of
a digital system. The high level of abstraction of system design places the system-
level design problem in an early phase of development where an overall system
implementation strategy is set up. Peculiar characteristics of the system-level
design problem come from its position in the development cycle. First, design steps
encompass a broader range of development issues outside the design process itself.
Second, the designer must make the right decisions based on rough information
about lower level implementations.

Although across the whole development process any design decision brings a
change in final system characteristics, the amount of change caused by a design

decision is different across abstraction levels. In the literature, many authors have



[ Target Architecture | Comments Reference |

Full software Both single and multiple | [GR94]
processor implementation

Mixed TW/SW Two video RISC Optbase, Dallas, TX
processors are used

Full hardware H.261 video conferen- [FLS*92]

(ASIC) cing standard

Full hardware A custom designed [RHU*93]

(custom) single chip

Table 1.1: MPEG encoders implemented in different target architectures

Test,abi‘li@
-~

-

“(_ Detail Design
Packagirfg =

Time-to-marke

Figure 1.2: Development cycle of a digital system and concurrent engineering



pointed out the importance of making design decisions at the system level because
the overall characteristics of a system are determined by decisions made at an
early stage, although the time for making such design decisions does not occupy
a significant part of the whole development process. “Requirements and archi-
tecture development together represent only 10% of total cost. However, once an
architecture is selected, much of the development and life cyvcle cost of the system,
as well as achievable performance, are determined” [SAM95, SA95]. In short, the
importance of system-level design decisions is similar to that of an opening game of
a chess match or making the sketch for a painting. Elaborate work on the details
of a portion of a painting will not compensate for a bad overall sketch.

Since the impact by system-level decisions is so significant, other development
issues cannot be ignored in making such decisions. For example, one of the im-
portant steps in designing a digital system is to select implementation styles for
components in a system. A system can be implemented in hardware or software
and a hardware module can be realized using a programmable device, an off-the-
shelf component, or as an application-specific integrated circuit. In making design
decisions on implementation styles of components, not only the performance and
size of chips or software modules in a system must be considered but also other
factors such as yield effect, packaging, and time-to-market should be considered.

In order to make good system-level design decisions, extensive trade-off analysis
is necessary without knowing implementation details. Only by setting up a cor-
rect implementation strategy and resource budget based on such trade-off analysis
among design alternatives a good system would be resulted in. While synthesizing
cach component of a system and integrating them together is itself a formidable
task, without correct decisions in the beginning, it could be wasted. For example,
for a system which is composed of a number of functional tasks, a system-level issue
is to determine how to budget silicon area for each functional task such that the
performance requirements are met, the cost is minimized, and the power dissipa-
tions is constrained. Without the right budgeting, the effort and time to optimize
the design of each functional task separately could be in vain because the resulting
system might be of superior performance but too expensive or there might be no

economically feasible packaging method for the given design. This emphasizes the



Abstraction Library Elements
Processing Storage 1/0
System-level | DCT, MMU, CPU, RAM, ROM | bus and /0O circuits
Software module
High-level Adder, Comparator, ALU | Register Bus, Mux
Logic-level NAND, NOR, NOT F/F, Latch | Wire
Gate-level Transistors Capacitance | Metal, Poly

Table 1.2: Comparison of library elements at different levels of design abstraction

approach that making the right architectural trade-offs is usually more important

than optimizing components.

1.3 System-level Design Automation

We have enumerated the general characteristics of the system-level design problem
in the previous section without explaining why they have such characteristics. In
this section, we view our problem from the design automation point to understand
from where the characteristics of the system-level design problem are derived as
well as to form a basis for automating system-level design tasks. For this purpose,
we investigate how the design automation model of lower abstraction design tasks
can be extended to include our system-level design problem.

The design of electronic systems and design automation tools at the physical
level, logic level and register-transfer level of abstraction are well documented
in the literature. At the physical design level, software packages are available for
automatic generation and optimization of floor plans, placement of building blocks,
and routing of interconnect. At the logic level, software tools have been reported for
automatic generation of gate-level netlists starting from Boolean expressions. Tools
have also been reported for technology mapping, which takes a generic gate-level
netlist and maps it to a component-level netlist making use of components from
a specified cell library. High-level synthesis tools which begin with a behavioral-
level description of the circuit and synthesize an optimal register-transfer level

architecture have also been developed.



Design problems at different levels of abstraction are characterized by the types
of library elements (see Table 1.2). Besides library elements, different operational
models, specification methods, and possible architectures are developed and used
for different levels of abstraction. For the lower design levels such as logic design,
the operation of a design is often modeled as an FSM, specified with a truth table
or state diagram and the data are exchanged in the form of signals or bits. Such
a logic function can be implemented with random logic, programmable arrays, or
ROMs[McC86]. At the RTL level, the operation is modeled as a control data-
flow graph and the data are represented as variable, integer, or floating-point
numbers. An RTL design can be implemented in a number of different classes
of architectures. Typical examples are pipelined and non-pipelined[PP88], and
synchronous and asynchronous[MC80]. At the system level, a design can be viewed
as communicating multiprocesses executing concurrently. Processes exchange more
complicated forms of data such as arrays, aggregated data structures, and bit
streams. Possible architectures to implement a system specification can be multi-
chip systems, embedded systems, or reconfigurable systems.

The relationships among different abstraction levels and different represen-
tations of a digital system were noted and formalized by Knapp, Parker and
Granacki[KP85]. They observed that there are four different domains in which
a digital system can be represented, namely dala flow, timing and sequencing,
structural, and physical. A design problem is defined as a translation process from
the behavioral domain to the physical domain. The system-level design problem
can also be modeled similarly. As shown in Figure 1.3, we added another outer
layer [or system-level design to extend their model.

An example of design steps as mappings between different domains is as follows:
Specification is a process to create a design entity. Synthesis is a process in which
a behavioral representation of a system (e.g. truth table) is translated into the
structural representation (e.g. schematic). Verification is the process of comparing
the structural representation and the behavioral representation. Layout is a process
of translating a structural representation into a physical representation. Different
types of design entities are involved in steps at different abstraction levels. In

Table 1.3, we compared design entities at different abstraction levels.
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Figure 1.3: Four domains and steps of system-level design

Temporal
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Typical
step

Abstraction Levels

Gate-level

] Logic-level

High-level

| System-level

Specification

Transfer Function

Truth Table

State-diagram

Data-f-low
Language

Task-flow

Verification

Circuit Simulation

Logic Simulation

HDL simulation

Synthesis Schematic Logic netlist RTL netlist Partitioning
Physical Layout Layout Layout Packaging Plan
Design

Table 1.3: Design entities in different abstraction levels




Another common characteristic of most design steps is that they are constrained
optimization problems. For example, synthesizing a schematic from a truth table
can be viewed as a constrained optimization problem if the designer tries to con-
struct a schematic with a given library of gates that meets performance constraints
and minimizes the module size. For the system-level, there are more metrics simul-
taneously involved to create a more complicated constrained optimization problem.

Across abstraction levels, the characteristics of design activities as described
above are shared among design steps. On the other hand, design issues involving
each step are different at different levels and the amount of impact which each
design step has on a system is different across levels. Synthesizing a logic circuit
and an RTL netlist are both constrained optimization problems and there is a
translation process from the behavioral domain to the structural domain. But the
impact of reducing the size of a large module is bigger than the impact of reducing
the number of gates: similarly, satisfying the timing constraints in an RTL netlist
is more important than satisfying the delay constraints of a data path logic circuit
unless the logic circuit will be used many times in a system. Steps at the system
level are also different from design steps at lower levels because the result of a step
may not be something that can be directly simulated or laid out. The outputs
mostly take an abstract form reflecting overall characteristics and a global plan
about a possible implementation.

At a lower level of abstraction, the metrics associated with design entities are
well defined. For instance, the cost and performance of logic are well-defined met-
rics e.g. area and the maximum delay from inputs to outputs, although delay
definitions vary enormously. But at the system-level, such metrics are often com-
plicated or hard to define e.g. the cost of a system not only includes the cost of
fabricating a piece of silicon but many other costs such as amortized development
cost, the cost of testing, and so on. Therefore, at a lower level of abstraction,
designers can focus relatively easily on satisfyving and/or optimizing well-defined
metrics. System-level design problems demand that designers evaluate complicated
and not well-defined metrics such as cost, manufacturing, development time, and

user satisfiability.



In general, the lower a level is, the easier it is to assess the effect of a design
decision because “distance” from a decision to a final implementation is shorter
and the number of possible implementation choices is smaller. For example, the
effect on size of adding a gate to a module can be predicted more accurately than
the change of the size of a chip resulting from moving a task from one chip to

another.

1.4 System-level Design Methodologies

In the previous section, we described a design problem as a translation from the
behavioral to the physical domain and did not explicitly mention the ordering of
design tasks in a certain way. The ordering of design tasks is important in the
development process. There are a few reasons for ordering. The characteristics
of design problem itsell is one and the logistics of a design house is the other.
Design steps cannot be executed in any order because of the dependencies among
them. A design process can be represented a directed graph in which each node
represents steps and each arc represents the necessary information from a source
step to a destination step for the destination step to be performed. In order for
a design to be completed, all steps should be visited in a certain order at least
once while not violating dependencies among them. Such an ordering of steps is
called a design methodology. For example, using one methodology of designing a
combinational logic with gates in a library, a truth table representation is created
(specification). The designer creates a schematic (synthesis). The schematic is
simulated (verification) and laid out into a layout (layout).

The dependencies among design steps are often cyclic. When there is a cyclic
dependency between two steps, ordering them becomes difficult. Tt is not possi-
ble to optimize the design by optimally solving steps in sequence because design
decisions for one step can be made only after the other step have been solved.
Such cyclic interdependencies among steps exist not only in one translation pro-
cess but across different translation processes. For example, it is well known that

the two physical design steps, namely placement and routing, have such a cyclic
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dependency. Scheduling, allocation, and binding also exhibit a cyclic interdepen-
dency as part of the RTL synthesis process. An example of cyclic dependencies
across processes is the relationship between floor-planning and scheduling. The
designer should consider floor-planning during the scheduling of operations since
the delay of the critical path is influenced by the wiring length between modules
while floorplanning can be influenced by scheduling[WP91]. Solving the interre-
lated subproblems across processes simultaneously is difficult. McFarland, Parker
and Camposano called this as “integrating levels of design” [MMCS88].

Based on our understanding of the design process model, we can understand
existing design methodologies. The objectives of a design methodology are two
fold. One objective is how to handle the complexity of design problems and the
other is how to handle cyclic dependencies among design steps. Traditionally, a
top-down design methodology is used to manage the complexity of a design, while
the cyclic dependency problem is approached with construct-improve methodology

or through the use of estimators.
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Figure 1.4: Breaking the cyclic dependencies among design steps

A typical top-down design process used for moderately complex ASICs is capture-

simulate-layout methodology. The design is captured in a schematic, then the
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netlist is simulated to verify the functionality of the system and finally the chip is
laid out using layout tools. The top-down methodology can be extended to include
logic synthesis or high-level synthesis when the complexity of a design problem is
very large. This methodology will be called synthesize-simulate-layout.

In the construct-improve methodology, a cyclic dependency among steps is bro-
ken with reasonable assumptions about the results of later steps. When a problem
is found after one design step, the problem is fixed in the preceding design step.
For the above example of the cyclic dependency between the floorplanning and
scheduling, if the interconnection delay due to wires is not significant compared
to the operator delays, we can solve the operation scheduling problem early by
ignoring wiring delay. If the interconnection delay after floorplanning is found
too long to be ignored, we can perform the operation scheduling again with the
backannotated wire-delay information. Since such design iterations are very ex-
pensive in terms of development time and cost, there has been an effort to reduce
the number of iterations by using sophisticated estimation tools which predict the
results of subsequent design steps. Such estimations become more important as
the coupling of steps becomes stronger. Estimating wiring delay and incorporating
it in synthesis steps is critical for the current submicron semiconductor technology
in which the interconnection delay is a dominant factor in determining the timing
of a system.

Top-down and construct-improve types of design methodologies cannot be sim-
ply extended for the system-level design steps. This is because, at the system-
level, the “integrating of levels” extends to not only the design process but also
to the whole development cycle: manufacturing, customer satisfaction, and time-
to-market. Furthermore an iteration in the development cycle is much longer and
more expensive. For example, system partitioning is closely related to package
selection. System partitioning determines the number of partitions to be packaged
and the sizes of partitions. If system partitioning is carried out without considering
the packaging issue, a partitioned system might not be able to be packaged due to
the huge size of one of the partitions or the required packages are too expensive
so as to violate the system cost constraint. Therefore, in a system architecture

design, it is important to consider the availability of components and the influence
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of selections on system characteristics in the early system-level design stage to
reduce the project risk.
Therefore, it is desirable to develop a design methodology and tools for the

early stage of the system development which has following properties:

e The methodology concurrently consider issues that encompass the whole de-
velopment cycle at the beginning of a design process, as shown in Figure 1.2,

and

e The designer can view and evaluate quickly as many designs as possible so
that the designer can make informed decisions based on a thorough trade-off

analysis of design alternatives provided.

Though the importance of such methodologies and tools that perform the above
roles has long been emphasized to design better systems in a shorter time, system-
level architecture trade-ofl analysis and optimization remains as an implicit part of
the current design process. There are few tools and frameworks compared to the
software engineering field[Boe88]. Recently, interest in defining such methodologies
for hardware system development is growing. The RASSP project is one such
research project that focuses on reducing the development time by improving the
current design methodology[Ric94]. Tn this thesis, we present one approach to build
such tools based on a system design model that reflects concurrent engineering
issues and can be used to evaluate the effect of possible design alternatives in early

development phase.

1.5 Problem Approach

Our approach to achieve the aforementioned goals is shown in Figure 1.5. The
design procedure is divided into a system architecture design phase and a com-
ponent design phase. During the system architecture design phase, the designer
generates a small number of good candidate designs using optimization tools that
work at a high abstraction level but are incorporated with lower-level estimators.
The designer further narrows the candidate designs from designs suggested by op-

timization tools and manually optimizes the selected designs with an interactive
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what-if analysis tool. The final round of candidate designs is [urther verified with
more detailed and specialized estimators. From the detailed information for can-
didate designs, finally a design is selected and a detailed design process can be

started.
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Figure 1.5: Our system architecture design methodology
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The focus of our approach is the trade-off between the accuracy and the speed
of estimation tools. While higher accuracy of predicted results can be achieved by
emulating the design process more closely, such an approach is often impractical
in the early stage because of the huge design space and the excessive computation
time. On the other hand, a less accurate but faster estimator can evaluate many
designs quickly but the predictions can deviate enormously from the final imple-
mentation. For example, although a predicted partition size fits into a selected

die type, there is still a chance that the selected die type is too small. Therefore,
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to reduce the whole system architecture design time while generating a reliable
result, gradually detailed estimation and optimization with designer interaction is
desirable.

To implement the above design methodology, in this thesis, we define a multi-
chip architecture design problem as a subset of the system-level design problem and
investigate the possibility of developing a fast estimation method and optimization

tools that automate the system-level architectural trade-offs.

1.6 Thesis Organization

The organization of this thesis is as follows:

Chapter 2 surveys related research on system-level design automation.

In Chapter 3, our approach for modeling the multi-chip system design problem
is described. The binary variable representation of system design decisions and the
first-order analyvtical model that computes metrics of design entities at different
abstraction levels and checks the validity of a solution will be presented.

A Mixed Integer Linear Programming (MILP) approach for optimizing the
multi-chip system architecture for rapid-prototyping will be given in Chapter 4.
The software architecture for an MILP-based optimization tool called EDEN will
be detailed. Experimental results of the system architecture are also presented.

In Chapter 5, another optimization approach for multi-chip system design based
on a Genetic Algorithm will be described. The design of GARDEN, the optimiza-
tion tool using a genetic algorithm will be detailed. Experimental results are given
that demonstrate how GARDEN can be used for various trade-ofl analyses of a
system architecture.

Finally, a summary of this thesis and outline of future research are given in

Chapter 6.
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Chapter 2

Related Research

2.1 System-level Synthesis

Attempts to automate system-level design have only been recent. Design tasks
are different from each other depending on target architectures since computing
systems can be implemented using hardware, software; or a mix of hardware and
software modules. An example of different implementations of the same system
behavior was given in 1.1.

Hardware-software codesign is an area of system-level design which has been
researched the most. Design of application-specific multiprocessor systems with
heterogeneous processor types has been studied at the University of Southern Cal-
ifornia, and will be discussed later. Hardware implementation can be classified
into reconfigurable systems and hardwired systems. Reconfigurable systems im-
plement specifications using arrays of programmable logic devices. Because of
their capability of on-the-fly change of system behavior, such systems are used
for emulating a complex digital system or a military system in which a high per-
formance light-weight system is required and the system is expected to perform
several predetermined functions. Hardwired systems which aim at high perfor-
mance are typically implemented in multi-chip systems. In this chapter, our aim

is to summarize the salient work in the area of system-level design automation.
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2.2 The USC project

The Advanced Design Automation System (ADAM) suite of tools [GKP85] was
developed at the University of Southern California. ADANM design tools synthesize
a low-cost RTL implementation from the given behavioral specification using the
modules from a given operator library such that the RTL implementation satisfies
the timing constraints provided by the designer. Input specification to the ADAM
system is either in the form of a VDL description or a control data flow graph.
The Design Data Structure (DDS) is used for internal representation of designs
[KP85]. The datapath generated by ADAM is an RTL netlist of selected library
components and the control path is a finite state machine description. Unified
System Construction (USC) [PCG93] is a successor of the synthesis part of the
ADAM design automation research project, and aims to develop an integrated set
of automation and prediction tools to produce system-level designs. The target
architectures that the system can produce are (a) heterogeneous multiprocessors
[Pra93, DP94], (b) asynchronously communicating multi-chip ASIC systems, or
(c) synchronously communicating multiple ASIC systems[HRP96]. The main ap-
plication domain of USC is that of real-time systems. Tools which are developed
up to this point can perform behavioral-level partitioning[Che94], behavioral-level
estimation [KP95], task-level system partitioning and package selection [HRP96],
and global task scheduling on an application specific heterogeneous multiprocessor
[Pra93, DP94]. BEST[Kuc91] is a comprehensive tool for estimating the num-
ber of operators, registers, multiplexers, wiring space, and delay for a process,
starting from the control-data flow graph description of the process. To synthe-
size a synchronous multi-chip system of a specification which does not fit on a
single chip, CHOP[KP95] performs behavioral partitioning at the operation level
based on behavioral estimations done by BEST. MCS[Hun92] schedules the par-
titioned behavioral specifications across chip boundaries synchronously so as to
satisfy the user specified timing constraints as well as pin constraints posed by
chips. SOS[Pra93] pioneered the automation of synthesis of application-specific

heterogeneous multiprocessor systems. Prakash[Pra93] used a task flow graph



model to represent a system specification. The library for SOS consists of gen-
eral or special-purpose microprocessors and special hardware processors. Prakash
developed a formal model of multiprocessor synthesis using mixed integer linear
programming (MILP). By solving the MILP formulation, SOS synthesizes non-
inferior designs which satisfy (or minimize) the timing constraints defined on the
task flow graph while minimizing (or satisfving) the system cost. The synthesis
results of SOS include selecting the number and types of processors in the library
which best handle the given tasks and synthesizing a multiprocessor architecture
by determining the interconnection style. SOS also statically schedules tasks in
the task-flow graph on the chosen processors as well as the data-transfer activities
among processors. SOS computes the amount of local memory which is used as
storage for the code and temporary computation result for each processor in the
synthesized system. Batista|DP94] extended SOS in his work, MEGA, to synthe-
size heterogeneous multiprocessor systems with task-level pipelining. The genetic
programming paradigm was used in MEGA. Batista considered two other comput-
ing models in addition to the traditional deterministic computing model: (a) the
execution time of a task on a given processor is treated as a random variable rather
than a constant, and (b) the execution time of a task is divided into two parts, a
mandatory part and an optional part. The first model is useful in situations where
the execution time of a task cannot be estimated accurately because the number
of iterations of the loops in the algorithm is dependent on the nature of the input
data or there are natural statistical variations in design properties due to design
and fabrication. The second model is useful in some applications such as image
processing. Chen[Che94] proposed process-level partitioning across packages as an
alternate way of behavioral partitioning. In his work also, the task flow graph de-
scription of a system was used. Different implementations of each task in the task
flow graph and package information were supplied in a library. ProPart[Che94]
synthesizes a multi-chip system by selecting an implementation for each process,
partitioning the processes across multiple chips, and selecting a package type for
each chip which minimizes the cost of the system while satisfying the timing con-
straints given on the task-flow graph. Chen formulated the problem first using ILP

and then used a genetic algorithm to speed up the run time of ProPart. Chen also
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studied the problem of concurrent scheduling of internal behavior of tasks and 1/0
transactions with unbounded delay, using the communicating process model of a

system.

2.3 Design Methodologies and Design Process
Model

In software engineering research, the design methodology for building complex
software systems has been studied for decades, and methods for software project
planning, estimating development cost, and scheduling system development have
long been understood[Boe88, Pre87]. The waterfall model is the most influential
software process model. In this model, a software development process consists of
successive stepwise relinement stages namely, operational plan, operational speci-
fication, coding specification, coding, parameter testing, assembly testing, shake-
down, and system evaluation. In addition to the stages, feedback loops from
one stage to the previous stage exist along with prototyping in parallel with re-
quirement analysis. The waterfall model requires an elaborate specification and
documentation step between stages, which is difficult in the early stage of software
development. Boehm [Boe88| proposed a spiral model in which 4 basic devel-
opment steps are repeated with gradual refinement on the software requirements
and implementation. The 4 basic steps are “determine objectives, alternatives,
constraints”, “evaluate alternatives, identify, resolve risks”, “develop, verify, next-
level product”, and “plan next phases”™. As the development process goes through
each cycle, more elaborate specification, detailed architecture consideration, and
a more refined system are evolved by prototyping, simulation, and benchmark-
ing. Therefore, the spiral model allows incomplete specification in the early phase
of design, and reduces risk by evaluating the risk factor and prototyping at each
round of the development process.

An important recent change in the hardware system development process is the
emphasis on concurrent engineering. The sequential approach of designing a sys-
tem has an inherent possibility of an iteration in a system development cycle due

to failure to address issues of a later development task in early development tasks.
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With people of different disciplines such as design, test, manufacturing, marketing,
etc. participating in the early phase of system development, concurrent engineer-
ing tries to reduce the aforementioned risk of an development iteration. Therefore,
a mechanism that ensures the end product will meet constraints posed by different
groups of people is necessary. Darr and Birmingham [DB96] developed such a tool
called Automated Configuration Design Service (ACDS) for a system that is built
with a set of available components. ACDS is composed of catalog agents which
maintain the information on available components, a system agent which requests
parts that meet the specification and constraints from catalog agents, and con-
straint agents which monitor the feasibility of a current design. System design by
multi-disciplinary people can be coordinated by ACDS to detect infeasible designs
and prune the design space.

Gajski et al [GNRVIG6] classified digital system design methodologies currently
in use in the industry, namely capture-and-simulate methodology and describe-and-
synthesize methodology. Capture-and-simulate methodology is a primary design
methodology for ASICs in last few decades. In this methodology, an informal
specification is translated into a block diagram by the chip architect and func-
tional blocks are refined into logic circuits. Then each circuit is simulated and laid
out. With the development of logic synthesis and high-level synthesis, the func-
tion of a block diagram is often described at a higher level of abstraction such as a
Boolean equation or a state diagram and then translated into a logic circuit. For
system-level design, Gajski et al. proposed a specify-explore-refine (SER) method-
ology. They pointed out that the design space exploration was an important but
informal step in the system design which is often not pursued thoroughly in the
design process. In SER methodology, the exploration stage is further divided into
allocation and partitioning. TIn the allocation step, the physical implementation
for a class of objects such as channels is selected from libraries based on the con-
straints defined by designers. Then, the class of objects is partitioned into multiple
instances of selected components. For each configured system, system metrics are
estimated. By manually changing design decisions, designers further optimize the

system configuration.



Rapid-prototyping of Application Specific Signal Processor (RASSP) [SAM95]
is concerted effort to develop a design methodology and design automation tools
for DSP applications to reduce the cost and development time by four-fold. In

order to achieve this, RASSP uses the following aspects in its design methodology:
e requirement traceability,

virtual prototyping in which a software model of the hardware is developed,

synthesis and reuse of Hardware/Software modules, (design reuse)

use of VHDL, and

system engineering EDA tools (pricing models and design adviser).

The RASSP design methodology starts with a VHDL specification of the sys-
tem. The VHDL specification is used to simulate the system behavior. Many
VHDL models are required for complex modules as well as standard parts because
design reuse is an important issue. Then the architectural trade-off is made for a
problem like hardware-software partitioning. Each module is refined and imple-
mented at a more detailed level by virtual prototyping. The integration among

modules is also tested using virtual prototyping.

2.4 System Specification

There are many languages developed for the specification and verification of hard-
ware. VHDL[Ins88] is the most well-known and probably most widely used lan-
guage. VHDL can be used for the specification, verification, and synthesis of
hardware at different levels. HardwareC[MK88] was developed mainly for syn-
thesis, and is based on the C programming language. Though not developed for
hardware specification and verification, there are other languages devised for the
purpose of describing protocols among communicating processes. Specification
and Description Language(SDL)[BS91] has been developed by the CCITT for the
specification of a telecommunication system. CSP (Communicating Sequential
Processes)[HoaT78] is a programming language developed to formally specify the

communication and synchronization between processes.



The capability of HDLs describing desired behaviors algorithmically greatly re-
duced the amount of specification work for complicated hardware and the overall
functionality is easily verified. However, the language description is still tedious
for an early design phase and not intuitive. There are other efforts that focus
on building a graphic interface with which the designer can capture design at a
conceptual stage. StateChart|DH89] and SpecChart[NVG91] are tools that help
the designer to describe a system as a set of a concurrent processes. The commu-
nication channel among processes is described as a global variable and the process
behavior is captured as a state diagram. The final design is translated into a VHDL
description, which is simulated with VHDL simulators.

While the above tools are designed to have a general applicability, there are
other graphic tools with description languages that are designed for specific types
of digital systems. Ptolemy[KL93] uses synchronous dataflow(SDF) to describe
the behavior of a DSP application. The Alta group developed a set of tools for
specifying multimedia and telecommunication applications around a components
library which is a well-defined set of building blocks in designing the aforementioned
systems. The design can test various architectural level configurations of building
blocks in a library.

The system specification is often given in a natural language which is not for-
mal but convenient. Translating an informal specification into a formal specifica-
tion would greatly reduce the burden of specilying a system in a formal language.
Granacki and Parker [GP87] developed a translator using artificial intelligence nat-
ural language understanding techniques which can construct a formal specification
of a system from a specification written in natural language.

Internal representations for system specification are developed as part of speci-
fication effort. Codesign Finite State Machine (CFSM) was proposed by Chiodo et
al. [CGJ*94]. The CFSM is a model based on a network of FSMs communicating
with each other. The reactive nature of CFSM is suitable for a control-dominated
system. Both hardware and software specification in a higher-level language such
as Esterel, StateCharts, and a subset of VHDL can be translated into CFSM. Sim-

ilarly, the concurrent process model of SpecChart is internally represented as a set



of FSMs[NVGI1]. Srivastava and Brodersen used a queuing network representation
for the system specification described in VHDL in their work for STERA[SB95].

2.5 Transformation

Transforming a given specification is another area of research to improve the sys-
tem quality before starting detail designs. Process transformation for system-level
design was proposed by Hagerman and Thomas [HT92]. Two types of transfor-
mations, namely module expansion and behavior merging, are used to explore the
trade-off between implementation size and performance. Module expansion merges
two physical modules into one while behavior merging combines two processes into
one. Adams and Thomas[AT95] considered another transformation scheme for
hardware-software codesign. A given behavioral description is clustered into a
number of tasks and metrics for each task in different implementations that can
be moved are defined. Then, fractions of code are moved among processes or to

new processes to make architectural trade-offs.

2.6 Simulation and Verification

To speed up the verification process of a system during development, the under-
lying representation for a system specification is constructed such that the sim-
ulation based on the high-level modeling of components is possible. A system-
level simulation tool called Ptolemy was developed at the University of Califor-
nia, Berkeley[KL95]. Systems such as multi-rate signal processing systems, asyn-
chronous signal processing systems, and communication networks can be simulated.
Blocks in Ptolemy can be represented in one of the supported paradigms such
as synchronous dataflow, dynamic dataflow, discrete event, and digital-hardware
modeling. A system can be specified using multi-paradigm components depend-
ing on the demands of the application. Chiodo et al.. [CGJ*94] used CFSM as
a model for co-simulating both hardware and software. The time behavior of a
CFSM is constructed with an equivalent FSM network. Then a timed sequence

of events is checked to determine whether it is consistent with the specification.



Thomas, Adams, and Schmit[TAS93] presented a co-simulation environment. Un-
der the given single processor system architecture model, hardware simulation is
performed with Verilog processes that communicate with software processes by

means of the Unix socket utility.

2.7 Design Space Exploration

With the capability of simulating a multi-paradigm system specification, various
manual trade-off analyses are possible. However, no work is known to us to au-
tomate the design space exploration in the system-level design, though the im-
portance of design decisions are pointed out by a number of researchersSA95,
SAM95, Gaj94, GNRVI6]. An example of manual trade-off analyses with Ptolemy
by changing parameters during simulation is given for a multiprocessor-system de-
sign for a full-duplex telephone channel simulator[IKKL93]. Tn general, any system-

level simulation tool can be used for the trade-off analyses purpose.

2.8 Hardware/software codesign and partitioning

There are a number of design steps in developing an embedded system. Hard-
ware/software partitioning, co-specification, co-simulation, software module gen-
eration, and interface synthesis are such design steps. Since works on other design
steps are described in previous sections, works on hardware/software partitioning
are described. A considerable research work devoted to hardware/software parti-
tioning because partitioning a given system specification into hardware and soft-
ware parts is a very important system architectural design decision for embedded
system design. Since partitioning can be performed at different granularity[EHB93],
Ernst, Henkel and Benner classified partitioning schemes into coarse-grain parti-
tioning and fine-grain partitioning.
Gupta and DeMicheli{GM92] used a heuristic to perform fine-grain hardware/software

partitioning. Starting from an all-hardware implementation, operations are se-

lected to move into software implementations depending on a number of criteria.



The communication overhead, presence of unbounded delay operations, and/or
decoupling of control and execution are examples of such criteria.

Ernst, Henkel and Benner[EHB93] developed a fine-grain partitioning scheme
called hardware extraction. A specification is divided into basic blocks which
do not have control structures such as branching or loops. The performance of
blocks in both hardware and software implementations is estimated. A partitioning
is optimized using simulated annealing along with the estimated performance of
blocks. In computing the cost function for a partitioning, the delay caused by
moving a block from software to hardware is also considered.

Thomas, Adams, and Schmit developed a set of guidelines for coarse-grain
hardware-software partitioning [TAS93]. Those guidelines are based on the type
of an application, the characteristics of the task function, the static properties of
task behaviors, and the amount of custom hardware.

Vahid, Gong and Gajski[VGG94] proposed a heuristic that is based on binary
search for hardware-software partitioning. In the proposed heuristic, instead of
using a weighted cost function that considers both performance constraints and
hardware size simultaneously, the possible range on the amount of custom hardware
is divided into a set of ranges and used as a size constraint. The cost function is
defined such that it veturns 0 if there is at least one partitioning that does not
violate both types of constraints. Then, the smallest hardware size is obtained by
performing binary search within a possible range of hardware size with this cost
function.

Kalavade and Lee [KL94] reported a constructive heuristic which traverses a
task-flow graph and maps nodes into hardware or software based on an appropriate

objective function.

2.9 Multichip Design

Task-level System Partitioning

Traditionally partitioning a netlist into multiple chips is one of important design

tasks in developing a digital system due to the size and pin count constraints
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of packages. A better optimization scheme by partitioning a specification at the
behavioral level was proposed by Lagnese and Thomas [LT89]. Chen further moved
the partitioning problem to the task-level[Che94]. Chen used a Genetic Algorithm
and MILP to perform task-level partitioning. Clustering of functional objects to
improve the partitioning process was proposed by Vahid and Gajski[VG95]. An
interactive partitioning method using a set of process transformation primitives
has been proposed[I0.J94].

The Physical Design Style Selection

Although the selection of a physical design style among different ASIC design
styles available today is an important step in the beginning of a digital system
development, there is no intensive research effort on automating a physical design
style selection for VLSI chip design because of the difficulty of quantifying the
effect of physical design style selection. Instead, many selection guidelines were
published based on the qualitative difference among possible physical design styles
[Hol87, HRI1, EBCHS86]. The efficiency of silicon area usage, performance, and
turn-around time are primary trade-off points in selecting a physical design style

for a chip.

Datapath Architecture Selection

Chen [Che94] pioneered a datapath architecture selection for a functional task
in a specification. Chen used used mathematical programming to find a data-
path architecture for each task in a specification such that the overall system
cost is minimized while satisfying performance constraints. Later, Kalavade and
Lee described the extended partitioning problem [KL95] in which several possible
implementations were considered that may exist for every mapping ol tasks to
different implementation styles. The extended partitioning problem is to find a
hardware/software mapping, an implementation point (A;,£;), and a global sched-
ule for each node such that the user-specified latency is achieved. The problem
attempts to optimize the area cost of the implementation. The authors assume the

availability of two curves for every node, namely, a hardware implementation curve
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and a software implementation curve. These curves are described as sets of tuples
of the form (A;,t;), where 4; represents the area (or memory) requirement of the
i-th implementation and {; is the execution time corresponding to the implemen-
tation. Adams and Thomas partly addressed the issue of datapath architecture
selection in the global allocation problem[AT95], where an implementation point is

selected from the several alternatives generated by a high-level synthesis program.

System I/0 synthesis

Another important design step in a digital system development is the synthesis
of the I/O subsystem, in which scheduling of T/O activities and the type of a
bus used for the communication among processes are determined. Filo et al.
[FKCM93] classified the communication among processes as blocking and non-
blocking. Blocking communication implies that two processes engaged in com-
munication wait for one another, whereas in non-blocking communication the
sender/receiver continues its operation without waiting for an acknowledgment
from its communication partner. Blocking communication corresponds to hand-
shaking and non-blocking corresponds to synchronous communication. Filo et al..
proposed an algorithm which optimizes the interface by reducing the amount of
blocking communication. PUBSS is a system to generate a relatively scheduled T/O
description called Behavioral FSM from a specification in VHDL and then solves
a set of linear equations to minimize the handshaking in communication[WM93].
Narayan and Gajski[NG94] proposed heuristics which find the width of a bus that
serves as the physical path for a set of interface communication channels. Filo et
al. [FKCM93] proposed an algorithm which optimizes the interface by reducing

the amount of blocking communication.

Die clustering and MCMs

The emergence of MCMs as a package alternatives, it has been noticed that ex-
ploiting the advantages of MCMs over other packaging methods requires a good
partitioning scheme. Partitioning a system into multiple dies for maximal utiliza-

tion of MCMs is attempted at different abstraction levels.
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There are trade-off studies comparing the cost and performance of a single big
chip to that of several smaller chips packaged into an MCM. In the report by
Dehkordi et al..[DRB*95], an exhaustive partitioning method was used to find an
optimal partition of the SUN MicroSparc system. The partitioned system with
MCMs is considerable cheaper than the existing single design. Another similar
trade-off study by O'Brien el al.. [OHK92] showed the cost advantage of MCMs
over a single chip by partitioning an TBM RS/6000 system into a set of 8 chips.
Both results show that task-level partitioning and package selection are the main
factors in determining the total system cost and that such decisions should be
considered in early design stages. Shih et al.. [SKT92] proposed an algorithm for
structural partitioning of a system graph (a graph of interconnected combinational
blocks and registers) into chips on a MCM. Though it is not directly developed for
MCMs, Chen [Che94] used mathematical programming and a genetic algorithm
to partition a system specification into a number of packages to minimize the
cost of a system. Khan and Madisetti[KM94, KM95] used quadratic non-linear
programming to partition a system for MCMs [or yield consideration and low
power. In their formulation, the yield is fixed to a given value and consequently

limits the size of dies which can be used in a system.

2.10 Comparison with Previous Research

Work related to hardware-software codesign by Gupta et al. [GM92] aims at the
rapid prototyping of embedded systems. Their main focus is on hardware-software
partitioning, software module generation, and interface synthesis. In hardware-
software partitioning, multiple implementations of tasks were not explicitly con-
sidered. Many issues related to the portions of the system designed in hardware
are not addressed, e.g. selection of implementation style, partitioning of tasks into
chips, and selection of packages which influence the system cost and performance.
The work presented in STERA [SB95] is not an automation tool, but a system
design methodology developed from long experience in designing real-time digital
systems. The most important steps such as hardware-software partitioning are

done manually. The target architecture is a hierarchical bus-based system. After
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the given system model is partitioned into architectural templates, the modules for
hardware, software and hardware-software interfaces are synthesized using existing
CAD tools. The methodology supports task-level partitioning. PTOLEMY [KTL93]
aims at developing a heterogeneous system design environment which provides the
designer with tools to explore the tradeoffs involved in design. Therefore, the
main emphasis is to develop simulation and translation tools that integrate differ-
ent models of system design. In the design methodology of PTOLEMY, a designer
can verify his or her design decisions with the available tools. SOS [Pra93] and
ProPart [Che94] of the USC project are similar to this work in their use of math-
ematical programming to solve the multiple facets of the system-level synthesis
problem concurrently. The main focus of the SOS system is to synthesize a hetero-
geneous multiprocessor architecture, to find a global schedule for the tasks, and to
allocate the tasks to processors so as to maximize the performance and minimize
cost. SOS assumes either point to point interconnection or a bus-based multipro-
cessor architecture. In SOS, each task is realized in hardware or software on one
of the processors of the target architecture. Our work addresses style selection,
task-level system partitioning and packaging for full hardware designs. ProPart
[Che94| performs task-level system partitioning and package selection, but the
main objective is to optimize the system in terms of cost assuming a homogeneous
implementation style for all tasks. In our work, we not only handle heteroge-
neous physical design styles for tasks, we use the time-to-market as the objective
function. Interface configuration was not fully addressed by Chen[Che94], and
multichip modules were not considered in package selection by Chen[Che94]. The
cost model of a system used in ProPart does not include the effect of yield and
therefore, a bigger chip is always preferred over a smaller one, unless the size of the
chip is not limited by the cavity size of the available packages. The distinguishing
features of our work from other system-level design automation work in the lit-
erature are the following: (1) We consider the non-design issues such as physical
design style, yield, packaging, and prototyping time in the early phase of system
development, (2) We focus on automating the optimization steps by providing a
mean for trade-ofl analysis rather than automating synthesis step, and (3) We solve

the subproblems of system-level design concurrently, without isolating them.



Chapter 3

The Multi-Chip Design Problem and Model

In Chapter 1, we described the system-level design problem and proposed a design
methodology to reduce the search space rapidly and systematically. In this section,
we introduce the multi-chip system design problem as a special case of the system-
level design problem. We start with a real example to describe the multi-chip
design problem and describe the associated design steps. Then a description of our
first-order analytical model that captures the multi-chip system design problem is

presented.

3.1 The Multi-Chip Architecture Design

Problem with an Example

Example 4.1

In this hypothetical system development project, the project goal is lo
build an MPEG-1 encoder board within 6 months and the cost of each
unit should be less then $500. The specification and performance re-
quirements of the system are given in the MPEG-I standard[Gal91 i
The specification is captured graphically and algorithmically in the task-
flow graph shown in Figure 3.1 as a sel of communicaling tasks which
are written in VHDL and verified with an HDL simulator. The available
physical design styles for building chips are FPGA, gate array, standard
cell style, and commercial off-the-shelf (COTS) devices. For the FPGA
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design style. available die types provided by a vendor are 3K-gate, 5K-
gate, and 10K-gale while die types provided by a gate array vendor are
SK-gate, 10K-gate, and 15K-gate. For the standard-cell style, a ven-
dor provides a cell library. If necessary. MCMs can be considered for
packaging dies and there are a number of package types available for

dies.

360 x 280 pixels frame pathi

En fropﬁ Encoded Bi rstre;n
Encoder)

[

Motion ' Forward .
Estimation pbcTt Quantizer

s path2
-
Reconstructed Ref. Frame
-
-

Inverse
bcT

Figure 3.1: A specification [or the MPEG encoder.

An example design which meets this specification is shown in Figure 4.4.
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System design consists of a following set of

activities which cannot be ordered

to achieve optimal results
achieve optimal results because the decisions interact

3.

L=

o

=1

8.

10.

physical design style selection in which a physical design style for each task

in the specification is selected from the given design styles such as FPGA
gate array, standard cell, and COTS, |

architecture selection in which a datapath architecture for the behavior of
each task is selected,

task-level system partitioning in which the entire set of tasks is partitioned

into groups that will be implemented as separate dies,

die selection if the task partition is implemented with either FPGA or gate
array style, a die type such as 10K-gate die is selected for each task partition

from a given die library in die selection,

die clustering in which dies are partitioned into groups that will be packaged

separately,

substrate technology selection in which a substrate technology is selected for

each die cluster if the die cluster is implemented with MCMs,

package selection in which a package type that houses each die cluster is

selected from a given package library,

channel partitioning in which channels are partitioned into groups such that

channels in a group share a single physical bus,
bus selection in which the bus type for each channel partition is selected, and

task scheduling in which the ordering and overlapping of execution of tasks

are determined.

The next sections describe each of the activities as an individual step. We

describe their interaction later in Section 3.2.



3.1.1 Physical Design Style Selection

Before starting a design, the designer should decide what physical design styles
should be used for the system. Understanding the impact of different physical
design styles on the system cost, performance, power, and prototyping time is
important in making a correct physical design style selection. The 4 physical design
styles which we are considering in this thesis are FPGA, gate array, standard cell
and COTS. Figure 3.2(a) shows the comparison of prototyping time of the same
design in different styles while Figure 3.2(b) shows the difference of max clock
frequencies and costs of systems implemented in different styles.

The development time of a multi-chip digital system can be roughly divided
into seven components - logic design time, test generation time, layout time, mask
generation time, fabrication time, packaging time, and fault testing time. In terms
of design time, which is composed of the first three components, logic design time,
test generation time, and layout design time, there is not a significant difference
between physical design styles (except COTS) if we assume the use of CAD tools
since the complexity of designing logic circuitry depends on specification more
than on physical design style. However, prototyping time varies with the selected
physical design stvle. The FPGA style has a strong advantage in prototyping
time. Because of the programmable architecture of FPGA devices, they do not
require mask generation, fabrication, packaging, or testing! Although the gate
array style cannot avoid the above prototyping steps, it still takes less time for
mask generation and fabrication than the standard cell style since considerably
fewer masks and fabrication steps are required. In case the design process should
be repeated for some reason, the short prototyping time of the FPGA style gives
FPGA implementations a strong advantage.

The cost of a chip is composed of non-recurring engineering (NRE) cost and

material cost. NRE cost such as design cost and mask generation cost should be

I'There are two classes of FPGAs. The Xlinx class, which are reprogrammable, can be tested
in advance. The Actel class, which are one-time programmable, cannot be tested.
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Figure 3.2: Comparison of different physical design styles. (a) Prototyping time

(b) System clock [requency and cost
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amortized, while fabrication cost, packaging cost, and testing cost constitute the
cost of a chip as follows:
NRE

S +m (3.1)

where ¢ is the cost of a chip, and n is the number of dies produced. m is the
material cost for manufacturing a chip, which is modeled by Murphy[Mur64] as
follows:

CySy C: G

M = o Tiges T ar 3.2
p}’ty w "p} i Y n ( )

where C is the cost of wafer processing for unit area, Sy is the size of a chip, C,
is the cost of testing a chip, C), is the cost of packaging a chip, Y}, is the yield of
walfers, Y; is the bare die yield, and Y}, is the packaged chip yield.

Since FPGA chips are mass produced, the cost of NRE for each FPGA die is
negligible. For gate array and standard cell design styles, the effect of NRE on die
cost will vary depending on the volume of production n. The material cost of a die
is mainly determined by the size of a die. The gate density of a die is low for an
FPGA compared to a gate array or standard cell die because of the programmable
interconnection and logic architecture of FPGA chips. Low gate density of FPGA
dies makes the same design consume more silicon area than other physical design
styles. Gate array dies have higher gate density than FPGA dies. Standard cell
styles offer highest gate density of the styles considered. Therefore, it can be said
that standard cell implementation becomes more cost effective as the number of
system units produced increases.

In terms of performance, the FPGA style is the slowest physical design style,
again because its programmable architecture causes longer delays in interconnec-
tion and logic. Gate array style designs in general have lower performance than
standard cell designs for which optimized cell libraries are used. This is shown in
Figure 3.2 (b).

The characteristics of COTS chips cannot be generalized, except that they do

not require any chip prototyping time since an existing design is being reused.



Therefore, although it is desirable to use COTS chips for rapid prototyping, the
effect on system performance and cost should be carefully evaluated.

So far, we have implicitly assumed that all chips in a system are implemented in
a single physical design style. Frequently, a system design can be further optimized
for a selected metric if we allow mixture of physical design styles in a system. Hard-
ware/software co-design is a well-known example of mixed-style implementation of
a system. Mixed-style implementation can be a good alternative when conflicting
requirements cannot be satisfied with a single physical design style. For example,
a system can be implemented using both FPGA and gate array design styles if an
FPGA implementation alone cannot satisfy the performance constraints but the
prototyping time required for gate-array implementation is not tolerable. A real
example of such a mixed design with standard-cell and gate-array design is given
in [FLS*92]. In such a mixed-design-style implementation, the number of possible
style selections for T tasks from s styles is given by s7. For example, if there are
4 physical design styles and 10 tasks, the number of possible style selections is
4'% = 7 % 100,

3.1.2 Datapath Architecture Selection

A given algorithm can be implemented through a number of different datapath
architectures, depending on the decisions involved in synthesizing a structural rep-
resentation from the algorithm. Therefore, the designer has to select a datapath
architecture for each task such that the overall characteristics of a system are
optimized. Knowing the characteristics of different datapath architectures in the
design space is very important to make correct design decisions.

Jain, Park, and Parker[JPP92] showed that the following relationship exists
between the cost and performance of different pipelined architectures for a speci-

fication.

(-’lT) lowerbound = constant
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where A is the functional area required to implement a system, 7 is the initi-
ation interval for the pipelined design or is the length of the schedule for the

non-pipelined design, Graphically, the relationship is shown in Figure 3.3.
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Figure 3.3: Area-delay trade-off of data path architectures

However, merely selecting an optimum solution for each step may not achieve
a valid optimum solution. For example, if the designer wants to minimize the
system cost, selecting minimum cost architectures for all tasks could result in the
cheapest design but might violate the performance constraint. In such a case, we
should select one or more tasks which are implemented with faster architectures
while minimizing the system cost.

The number of possible architectures A assuming the chip design style selection

has occurred is given by

A = TLT, (3.3)
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where [; ; is the number of datapath architectures for task ¢ in selected style s and
T"is the number of tasks. For a system with 10 tasks and 4 datapath architectures

per task, there are 4% 2 1.0 x 10° possible architecture selections.

3.1.3 Task-Level System Partitioning

Although today’s semiconductor technology can put several million gates on a
single chip, the complexity of systems is increasing as fast as the integration level.
As a result, there is still a frequent need to partition complex system into several
chips because of the limited pin count or the physical size of package and/or die
types. Although a system can be partitioned at any level of abstraction[Joh96],
it is desirable to partition it at the task level because functional boundaries are
preserved, which makes a design modular, better testable, and more re-usable.

Besides the evident physical size limitation, there are other reasons for task-
level system partitioning. Too much integration may not be cost-effective because
the yield drops faster than the area. For example, Dekhordi ef al. showed that the
overall cost of a CPU can be lowered by a factor of seven if the design is properly
partitioned[DRBT95]. The cost and yield of a chip are given as follows:

Cy - DieSize

_ Gy DieSize 3.4
/ Yield o

1
" ( — 3"
Yield 9. DU . DieSize ( 0)

where f is the bare die cost, C'; is the cost per unit area associated with the
fabrication facility, Dy is the number of defects per unit area, and DieSize is the
size of a die. Equation 3.5 is based on the non-linear yield model along with the
assumption of rectangular defect density distribution [Ber83].

The system performance also changes with task-level system partitioning be-
cause the on-chip wiring delay is usually shorter than off-chip wire delays. There-
fore, more partition boundaries inserted in a path result in slower performance.

The complexity of the unconstrained task-level system partitioning problem
can be computed as follows: When the number of task partitions is known, the £-

way partitioning of tasks can be modeled as a combinatoric problem of partitioning
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T distinguishable balls into % indistinguishable slots without allowing an empty
slot. This number is known as the Stirling Cycle Number, which is given as
follows[Zwi95]:

zf‘:J — 1)k i i
HTk) = : i! () (3.6)

The number of ways to partition 10 tasks into 3 chips is approximately 9,330.
When the number of partitions is not known, the total number of possible ways of
partitioning is given as follows:

T

> ST, k)

k=l
For the above example, the total number of possible task-level system partitioning
is 115,975, The partitioning problem is actually somewhat different from the un-
constrained partitioning problem. Tasks can only be grouped together if they are
implemented with the same physical design style. We address this problem later

in the next section.

3.1.4 Die Selection

When a selected physical design style for a set of tasks assigned to a partition is
either FPGA or gate array, the designer has to select a die type for the partition
since the range of sizes of FPGA or gate array dies is a set of discrete values.
With discrete size die types, it is difficult to fully utilize the pins and gates on
a die type. Such underutilization of resources also contributes to the higher cost
of FPGA or gate array design than standard cell design. Figure 3.4 illustrates
the utilization of pins and die areas of different physical design styles. The solid
rectangles show the available die types of an FPGA or gate array style while the
dotted rectangle indicates the pins and size of a standard cell implementation.
A standard cell implementation can always fully utilizes resources except in the
case of I/O constrained designs (The dot inside the shaded area shows an I/O

constrained design which can be no smaller than the point marked with an X.).
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Figure 3.4: The utilization of die resources of different physical design styles

Task-level system partitioning and die selection have cyclic dependencies. If
either one of them is known, the problem becomes much simpler. If task-level
system partitioning is carried out before die selection, the number of pins and
sizes of task partitions are known and a greedy approach like best fit algorithm
solves the die selection optimally. But the overall utilization of dies might not be
optimal.

If die selection is done first, the number of dies and their sizes are known
and the problem becomes the well-known partitioning problem under size and pin
constraints. The advantage of this approach is that task-level system partitioning
can be done such that the given dies are maximally utilized. However a different
die selection might yield a better partitioning, and so the two design steps are

mutually dependent.

3.1.5 Die Clustering and Package Selection

A package type should be selected to house each die. Selecting the right packaging

strategy is important since the cost of packaging comprises a considerable part of
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the total system cost. System design should be conducted such that the resulting
design fits into available package types. Power dissipation, cavity size, and 1/0
pin count are the physical constraints that determine the selection of a package
type. Deciding on the packaging strategy for a system is not a trivial task, ow-
ing to the increasing number of packaging options ranging from the plain PWB
with separately packaged chips to surface mounting technology(SMT) to Multi-
Chip Module(MCM) technology[Tum92, Sch92, SA95]. Good package design in
general can result in considerable cost, performance, and physical savings in a
system[OHK92, Siu92]. O’brien et al [OHK92] showed with a package estimator
that different packaging options result in diverse performance and size of a system.
The estimated performance and physical size with various packaging technologies
for the IBM RISC System /6000 processor are shown in Figure 3.5[0OTTK92].
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Clock cycle (ns) COB: Chip on Board

Figure 3.5: Estimated board sizes and clock cycles for 8-chip set of the RS6000
processor| OHK92]

MCMs which can package multiple chips in a single package are packaging al-
ternatives for both the traditional single chip packages on PWBs as well as single
monolithic chips. The ability to package multiple chips in a single package offers the

possibility of lowering cost with proper partitioning over a large monolithic chip as
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we already have discussed in Section 3.1.3. Packaging chips of mixed physical de-
sign styles is possible using MCMs[Tum92]. The tight integration of chips directly
on boards without soldering pins increases the reliability of the system. The MCM
technology also improves the system performance because of lesser parasitics due
to the fine conducting lines. Finally, the area bonding technique can reduce the
die size by removing the big output drivers and input protection, and increase the
utilization of silicon area by eliminating I/O bound designs such as those shown in
Figure 3.4. MCM cost strongly depends on the capability of fully testing bare dies
which is a difficult problem called a known good die (KGD) problem[HW92]. Also
the high density of gates in a smaller area requires efficient heat removal. Finally,
the fine spacing between signal lines could worsen the crosstalk.

Introduction of MCMs as a possible packaging option adds another design
step called die clustering in which dies are grouped into clusters for an MCM
package. MCMs in general improve performance compared to PWBs. However,
the effectiveness of using MCMs for cost improvement relies on good die clustering
and even further task-level system partitioning,.

A cyclic dependency exists between die clustering and package selection just as
for task-level system partitioning and die selection. Similar characteristics which
we observed in the previous section for task-level system partitioning and die se-
lection exist for this pair of steps. By selecting the number of packages and their
types first, we can reduce the design space signilicantly, but the feasibility of such
package selection is not known. Clustering the dies first and selecting package
types may lead to a waste of resources.

The complexity of the unconstrained die clustering step can also be expressed

with the Stirling Cyvclic Number given in Section 3.1.3.

3.1.6 Substrate Technology Selection

Just like selecting physical design styles for tasks plays major role in determining
the characteristics of a task partition, selecting a substrate type for a die cluster
determines the cost and performance of a die cluster[Hig92]. There are basically

three major types of MCM technologies, namely MCM-D, MCM-C, and MCM-L.



| Characteristic | MCM-L [ MCM-C [ MCM-D |

Maximum Wiring 300 800 250-750
(cm/em?)

Minimum Line Width | 60-100 75-100 8-25
(um)

Line Space 625-2250 | 50-450 25-75
(pm)

Maximum No. 46 63 8
Wiring Layers

Table 3.1: Characteristics of different MCM technologies

Chips are placed on a laminated board which has multiple wiring layers in MCM-
Ls. Wiring layers are printed inside a ceramic substrate on which chips are placed
in MCM-Cs. Wiring layers are constructed by depositing thin-film materials for
insulators and conductors in MCM-Ds[Lic95] In Table 3.1.6, the characteristics of
different MCM technologies are shown which are summarized by Tummala[Tum92].
Selecting MCM-L technology reduces the cost but increase the system size. The
performance improvement using MCM-Ls is limited. On the other hand, MCM-D
technology provides very high performance and high density interconnection at a

high cost.

3.1.7 Channel Allocation and Bus Selection

Recall that edges in a task flow graph are called communication channels. The
communication edge in a task-flow graph must be implemented with a set of wires
collectively called a bus in hardware. The data to be exchanged among tasks
is converted into the proper format by I/O circuitry. Since the amount of data
that can transferred over a bus is limited by the width of a bus, data has to be
transferred using multiple transactions if the amount of data is larger than the
bus width. Besides formatting data and driving the buses, the other important
task of an 1/O circuit is to ensure the arrival of data. This can be achieved using
one of two commonly used protocol types, namely synchronous or asynchronous

communication[Hay88]. In synchronous communication, the transaction is timed
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and the source and destination devices are synchronized by a single clock source.
In asynchronous communication, the source and destination devices coordinate the
transaction using control signals. Therefore, a bus can be characterized by three
parameters, namely bit-width, clock cycle, and protocols.

Bus selection affects the performance of a system, the 1/O pin counts of task
partitions and die clustering, and the size of a substrate or a board. On the other
hand. the task-level system partitioning, die clustering, and substrate selection
determine the maximum bus clock because of different parasitic capacitances of
different substrates. Assuming that the parallel plate capacitance model is appli-
cable, the capacitive load can be expressed as C, = W x L x C,, where Cj is the
capacitance of a wire in a bus, W is the width of a wire in the bus, and L is the
length of a wire, and C,, is the capacitance per unit area. A simplified equation
for C', can be ﬁ where € and d are the dielectric constant and thickness of insu-
lators respectively. The length of the wire L depends on the substrate on which
the wiring is done; using an MCM-D substrate will lead to shorter wires, whereas
using an MCM-L or regular PWB will lead to relatively longer wires. Similarly, C),
depends on the substrate type on which the wires are laid out, whether the wiring
is on-chip or off-chip.

Since buses are expensive commodities, often, the designer tries to reduce the
number of buses. Yet, when buses are shared, there is a possibility of a “collision”
i.e. two transactions requesting the same bus at the same time. The exact timing
of a transaction depends on the scheduling of tasks and bus selection, which we
discuss in the following section. If the execution time of a task is not known
because of data-dependent execution or due to some asynchronous input event,
a bus arbitrator is required to avoid collision among two transactions. If all bus
transaction can be predetermined, as for most DSP applications, a bus can be
shared without an arbitrator. If the time interval of a bus transaction over one
channel does not overlap with the time interval of the transaction on another
channel, the two channels can be mapped onto the same bus so that they can
share a bus. A problem in which such sharing of buses among channels is done to

minimize the number of buses is called channel allocation.
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3.1.8 Task scheduling

Given the system specification shown in Figure 3.1, the exact time span for each
task and the relationship of one time span to another is to be determined. Schedul-
ing depends on a number of factors: (1) the ordering among tasks, (2) the length
of a task execution, (3) whether two tasks execution can be overlapped or not, (4)
whether two tasks can share a same hardware module, and (5) the mode of system
operation.

The ordering among tasks is given in the specification. The length of a task ex-
ecution can vary with the input data and the selected datapath architectures. The
overlapping of execution of two tasks which have a data dependency among them
also depends on the selected datapath architectures. If a hardware module can be
shared by more than one task, this would influence the time of execution of a task
which shares hardware with other tasks. A specification shown in Figure 3.1 can
operate in either non-pipeline mode or pipeline mode. In non-pipelined operation,
an instance of data cannot be initiated until the processing of the previous data
instance is completed. In pipelined operation, a new data instance can be initiated
before the previous data instance processing is completed. By designing a system
in non-pipelined mode, we can obtain a cheaper design in general because more
sharing of hardware is possible between different control steps. On the other hand,
pipelined scheduling produce a high throughput system with additional hardware
by allowing overlapped processing ol data instances.

Considering a combination of the above factors, different schedules of task
executions are possible. Finding a minimum execution delay or initiation latency

for a given cost constraint is the problem of task scheduling in system-level design.

3.2 A Multi-Chip Design Problem and A Model

In the previous section, we described informally design steps at the system-level and
their characteristics. In this section, we state the multi-chip system design problem
formally and further explain a model that captures the relationships among design

steps quantitatively.



3.2.1 Specification and User Specified Constraints

In this thesis, we model the behavior of a digital system as communicating multi-
processes that run concurrently in time and represent it with a task-flow directed
hyper-graph, G(E. V'), which consists of a set of task nodes V" and a set of commu-
nication edges E as shown in Figure 3.1. A task node ¢ represents a computational
function in which the behavior of a task can be described algorithmically with a
hardware description language and its functionality is abstracted by an associated
name TFTY PE,. For example, the functionality of quantizer task in Figure 3.1
is given TFTY P E;=quantizer.

Communication among tasks is expressed as passing data from one task to an-
other. The data can be primitive data-types such as signal, bit, and integer or
composite data-types such as vector, multi-dimensional array and even aggregated
data. Such communication among tasks is represented with a directed hyperedge,
since a hyperedge can capture naturally data transfer from one source to desti-
nation tasks. The hyperedge is characterized by the associated volume of data
VOL, which is the amount of data that must be transferred from a source task to
destination tasks through channel e after the completion of the source task.

The execution model for the task-flow graph is taken from Prakash[Pra93] i.c.
a task can start execution without requiring all input data to be available and can
output the results before completing execution.

The user can specify constraints on system metrics, cost, performance and the
prototyping time. The cost is the price of a system unit if n copies of a prototyped
system will be produced. The performance constraints are given as the processing
time for an instance of data. The exact definition for the processing time will be

given in Section 3.3.10.

3.2.2 Library

In our model, a library represents a set of existing choices for a design step. The
structure of a library can be thought of a table in a relational database, in which

an element is represented with a tuple.
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A physical design style library is a set of different physical design styles given

as follows:

DSL = {qu, q1,-- -, 9o}

where physical design style g is characterized by the name SNAME, the NRE
cost, and the performance scaling factor PS, which will be explained in Sec-
tion 3.3.8. In this thesis, we assume that the supported physical design styles
are SNAMEy, =FPGA, SNAME, =gate array, SNAME, =standard cell, and
SNAME; =COTS.

The substrate technology library for MCMs is given as follows:
ST = {sty, sy, .., stg}

where substrate technology st is characterized by the number of signal layers
NSIG, the via grid spacing VGS, the number of lines between vias LBV, the per-
formance scaling factor SPS, and the manufacturing cost of a unit area UCOST.

An implementation ¢ in implementation library I can be characterized by the
size ISTZE, delay IDELAY and style ISTYLE € DSL. The implementation

library is denoted as a set of implementations and expressed as
I = {i[,’ig, . i]}

. Tn the same way, die library D, package library K, and bus library B are expressed

as follows: The die library is expressed as
D= {d1, dg, ey !,1[)}

where d is a die type characterized by the size DSTZE, the I/O pin counts DPIN,
the cost DCOST, the style DSTY LE, the fabrication time FTTME, the average
gate size AGATESIZE, the average I/O pad size PADSIZE and WB =1 +
routing area

function area’
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The package library is expressed as
K= {kl: kg, vey ]i?,r{}

where % is a package type characterized by the cavity size KSIZE, the 1/O pin
counts K PIN, the cost KCOST, the packaging time KTITME.

The bus library is expressed as
B = {bl: b'i': "y bb’}

where b is a bus type characterized by the bus type BTYPE € {on-chip, on-
module, on-board}, the clock cycle BCYCLE, and the bus width BWIDTH.

The protocol for buses in the bus library used in this thesis is synchronous.

3.2.3 Target architecture

The target architecture for the multi-chip systems we are considering is defined as

follows:

Definition 1 A die is defined as a set of functional blocks connected by a sel
of buses and implemented in a silicon substrate. A chip s composed of a set
of dies connected by a set of buses and packaged by a package. A hierarchical
bus-based multi-chip system is composed of a sel of chips interconnected by a
set of buses that performs the given system behavior specification in task-flow graph

G(V,E).

A hypothetical example of the target architecture is shown in Figure 3.6. Circles
represent abstract design entities such as task or die clusters while boxes represent
physical implementation of abstract design entities such as selected datapath ar-
chitecture or package types. As the system specification can be represented with
a task-flow graph, the target architecture can be represented as a tree as shown in
Figure 3.7. The leaf level is the task level, where an implementation (a datapath
architecture in a physical design style) is chosen for each task. At the die level,

tasks are grouped into sets. A die type for each task set is chosen, channels are
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grouped into sets and a bus type is selected for each channel set. The task par-
titioning determines whether a channel will be on-chip or not. At the chip level,
dies are clustered and a package type for a die cluster is selected while the die
clustering determines whether a channel which is not on-chip will be on-module or

on-board. Finally a system is packaged into a board and a set of buses.

64 bits/25MHz
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| 11O Interface | 11O Interface
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'} 1 || Rom |
| ~ | Table /O Interface
= b L =l =
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1 S| | l\F;I_ame ncoder |
. iti emor
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Board : controller L= — —= — — — — &

Figure 3.6: A hypothetical example of a multi-chip system architecture

The execution of a target architecture can be either non-pipelined or pipelined.
Coordination among different task executions can be controlled by a centralized
controller which initiates and terminates the execution of tasks and the data trans-
fer. Another possible scheme for system control can be the asynchronous mode of
operation in which a task initiate the subsequent task by indicating its termination.

Tn order to simplify the problem, all communications are assumed to be syn-

chronous in our prototype system.
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task level

channel

Figure 3.7: A tree representation of a multi-chip system

3.2.4 The Problem Statement

Definition 2 A4 valid design at the system level is a complete sel of design de-
cisions for steps which are manufacturable. An invalid design at the system level

is a sel of design decisions for steps which are not manufacturable.

Definition 3 A feasible design at the system-level is a set of design decisions
which is valid and also satisfies following condilions: Let mg be objeclive melric
while my, ... ,m, are constrained melrics. Let ¢, ..., ¢, are upper bound con-
straints on corresponding metrics. When ¢; —m; > 0, a solution is feasible for m;.

A solution is said lo be feasible if it satisfy following condilion:
c;—m; 20,i=1,...,n

Definition 4 An optimized design at the system level is a set of design decisions

which is feasible and also optimizes the objective metric associated with a design.

Definition 5 A multi-chip architecture design problem is to find a number
of near-optimum designs for a given task-flow-graph representation of a system
behavior using a set of lbraries for physical design styles, substrate technology

styles, datapath architectures for each tasks in a given specification, dies, buses,

50



and packages by solving physical design style selection, architecture selec-
tion, task-level system partitioning, die selection. die clustering, sub-

strate technology selection, package selection, channel partitioning. bus
selection. and task scheduling.

The complete model for the multi-chip system design problem should include all
the above design steps but the complexity of the model including all subproblems

is too high. Therefore, we make the following assumptions to simplify the problem:
1. each task is implemented separately, and

2. each channel is implemented separately.

The above assumptions mean that no hardware resource such as a functional
block or a bus is shared among tasks or channels. The first assumption can be
justified for system-level design because few tasks perform the same function at the
system level. Sharing of buses can reduce the number of pins but could increase
the length of buses. For some types of MCM technologies, a few hundreds of pins
can be provided easily without increasing the die size. For designs with such MCM
technologies, short wiring length can be of more concern than the number of pins.
The above assumptions make channel partitioning unnecessary and task scheduling

trivial.

3.2.5 The Problem Approach

As outlined in Chapter 1, our system design methodology progresses in three
steps. In the first part, we reduce the design space to a number of near opti-
mum designs with optimization tools. In the second step, the designer improves
the design interactively with what-if analysis tools. The final round of candidate
designs are further verified with the existing detailed estimator for various system
metrics[Kur91, HOK92].

Both optimization tools and what-if analysis tools vequire a mechanism that
checks the consistency among design decisions and therefore, the validity of a de-

sign. For this purpose, we need a model that not only captures the relationship
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among design steps at the system-level but also estimates various metrics asso-
ciated with the design entities in a system. As we proposed before, in order to
reduce the time for the first step which searches a vast design space, we need a
very fast way to estimate metrics as a function of design decisions. Therefore, we
developed a set of analytical formulae which can translate design decisions into
various metrics of design entities in a system. Then the validity of a design can be
checked using these estimated metrics.

For the optimization process of design decisions, we decided to use general
optimization techniques. In this work, we used both MILP and a Genetic Al-

gorithm.

3.3 A First-Order Analytical Model for Multi-
Chip System Design

We start building a model by modeling each design step as a decision problem and
define the relationships between steps. Then, for each design step, we define func-
tions to compute metrics of design entities and define general validity constraints

for design decisions.

3.3.1 Modeling a Design Step and Its Relationship to Other
Steps

As we can see in Figure 3.7, the design steps in our model can be classified into two
types, namely partitioning steps and selection sleps. Both types can be thought of
a decision problem in which a selection is made from a finite number of choices. For
a selection step, choices are given as elements in a library while for a partitioning
step, choices are the partition assignments. Both types of steps can be thought
of as finding a mapping f from the domain set S to the range set T as shown in
Figure 3.8(a).
[:85—=>T
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Such a mapping can be represented as a set of binary variables @ = {gs. | ga =
Lift = f(s) and g5, = 0 if ¢ # f(s), Vs € S,Vt € T}. In order to ensure f to be a

function (mapping), it should satisfy the following condition:

Z st = 1
=
We defined such binary variables for each step, z; for the physical design style
selection, y, for the task-level system partitioning, x4, for the die selection, s, for
the die clustering, my, for the substrate technology selection, wy, for the package
selection, and u;, for the bus selection. Then a design A at the system level can
be represented as a set of sets of the above binary variables {Z,Y, X, S, M, W,U}.
The exact definitions of the above binary variables will be given in the following

sections.

T

L]
°
°
[+]
(a) (b)

Figure 3.8: A model for a design step as a mapping with binary decision variables
With such binary variables, we can express the mapping function in linear form.

t=f(s)= f(31 Q) = Z Goi - 1

teT



which means that ¢ is chosen for s. In Section 3.2.2, we represented a library
element with a parameter tuple, for example, { = (E,G, H) where E, G, and F'I
are parameters characterizing element {. Let E; denote E of t and Let E. be the
parameter E of ¢ chosen for s. Then we can express a function fP(s, Q) that

returns the parameter E of chosen element ¢ for s as follows:

E, = fP("Q) = ZQS,I. - By
tel
We call such functions metric selection functions.
Validity constraints take a form of relations imposed on mapping functions. For
example, not all elements in the implementation library can perform the behavior
of a task. Therefore, the mapping function fsag of the physical design style and

architecture selection has to satisly the following condition:
({Rt)VE=1,VieV

where i R t is a relation between ¢ € I and ¢ € V which is defined as “the
implementation ¢ performs the function of #7. z; is is a binary variable which is
has a value 1 if implementation 7 is selected for task ¢ or 0, otherwise. The above
equation enforces the rule that z; must be 0 when ¢ R is not true and Boolean
{rue is set to 1 and false is set to 0.

A validity constraint can exist between two design steps. For example, there
is the following validity constraint between the the physical design style selection
step and the task-level system partitioning step. Implementations of different styles

cannot be grouped together in the same partition. This can be expressed as
ER)V Ui Ayp) =155 €V

where R is defined as “the physical design style of task ¢ is same as the physical
design style of task j7 and y,; is a binary variable which has a value 1 if task
i is assigned to task partition p and 0, otherwise. The above validity constraint
prevents y,; and y,; from taking value 1 simultaneously when implementation @

and j are different styles. (i.e., the relation is not true.)



Partition Metric Function

Some validity constraints check the validity between the metrics of design entities.
For example, the size of a chosen die type for a task partition must be big enough
to hold the size of a task partition. We call constraints metric validity constraints.
If a design entity involving a metric validity constraint is an element from a library,
then such parameters can be computed with metric selection functions. But the
parameters for a design entity created during the design process such as a task
partition must be computed. We call the metric function that computes such met-
rics the partition metric functions. For example, in order to compute the metrics
for task partition p, we need to compute the task partition size metric function
T PartSize(p, Z,Y, X,U) and task pin count metric function T'PartPin(p,Y,U)
which compute the corresponding metrics from the first order effects of involved

design decisions.

3.3.2 Physical Design Style and Datapath Architecture

Selection Subproblem

A physical design style must be selected for each task. For each style, we in-
dexed the physical design styles as follows; FPGA=qp, gate array=q;, and stan-
dard cell=g,. Then the set of physical design styles is given as @ = {0,1,2,3}.
For later use, we define two disjoint subsets of @, Q;={FPGA, gate array} and
Q,={standard cell}. By selecting an implementation in a library, the design style
and datapath architecture for a task are selected. Therefore, we treat the design
style and datapath architecture selection subproblem as a single problem called
style and architecture selection subproblem or implementation selection subprob-
lem.

The mapping function for style and architecture selection is given as follows:

fsas:V =1

(&3]
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where 17 is the set of tasks and T is a set ol implementations. Let Z be a set of

binary variables for style and architecture selection which is defined as follows:
Z={z; |z =11il1i= feas(t) and z; =0 if i # feas(t) ,Vie I, Vi €V}

subject to the following mapping function constraint:

3z =1,¥
i€l

The metric selection functions for a chosen implementation for task ¢ can
be expressed as follows:

The size and delay of different datapath architectures in the library are esti-
mates obtained from the BEST estimator. BEST works differently for two different
groups of physical design styles, namely the FPGA-gate array group (@) and the
standard cell group (@,). Since the BEST estimator was originally developed to
estimate only standard cell implementations, we modified BEST to estimate the
size and delay of datapath architectures of FPGA and gate array styles. For stan-
dard cell design, BEST produces the size estimates for datapath architectures in
terms of pum? and the size estimate includes the area for controller and routing as
well as datapath. On the other hand, for physical design styles belonging to €),,
BEST produces the size estimate in terms of gate counts excluding routing area
because the physical size in terms of pm? cannot be computed until the die type
for a given task is selected. Therefore, two diflerent metric functions are defined

for the size estimates depending on the physical design styles.

TaskSize(t,Z) = z:ti x ISIZE; if ISTYLE; € @),
TaskGate(t,Z) = Y 2z x ISIZE; if ISTYLE; € Qf
TaskDelay(t, Z) = Zz“ x IDELAY;

i

TaskStyle(l, Z) = Z zu X ISTYLE;

i



where ISIZE;, IDELAY;, and ISTY LE; are parameters for implementation i
obtained from a library as we discussed in Section 3.2.2.

The validity constraint for style and architecture selection is as follows:

TFTYPE; = ) z; % IFTYPE;

i

where TFTY PE; is the name of the function performed by implementation 7.

3.3.3 Task-Level System Partitioning Subproblem

The mapping function for task-level system partitioning subproblem is given as
follows:

.I‘TV i 1" — P

where P is a set of task partitions.
Let Y be a set of binary variables for task-level system partitioning subproblem

which is defined as follows:
Y = {ypt | ype =1 if p= frp(t) and yp, = 0 il p # frp(t) ,Vp € PVt € V}

subject to the following mapping function constraint:

Z Ypt = 'lVI

icl

Task Partition Pin Metric Function T PartPin(p,Y,U)

The number of pins for partition p T PartPin is a function of task partitioning ¥
and bus selection U because task-level system partitioning determines whether a
channel is cut by a task partition boundary and the number of pins required for

each channel is determined by the selected bus type for the channel.

TPartPin(p,Y,U) = > ble,Y) x t(e,p,Y) x BusWidth(e,U)

ec

where b(e,Y) and #(e, p,Y") are defined below:

|
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be,Y) =

{ 1 if edge e is cut by the given task partitioning Y’ (3.7)

0 if edge e is not cut by the given task partitioning Y’
1 if edge e is incident to ¢ € V,

te;p,Y) = 5.8
0 if edge e is not incident to VI € V), (3.8)

where V), = {t: ype = 1}.

Task Partition Size Metric Function 7'PartSize(p, Z,Y, X, U)

The size TPartSize(p, Z,Y, X,U) of partition p is a function not only of imple-
mentation selection Z and task-level system partitioning Y but also that of die
selection X if it is implemented with either FPGA or gate array style. This is
because parameters related to a chosen die type d such as the ratio of wiring area
to the total area W By, the average gate size AGATESIZE,, and the average
1/O pad size PADSIZE, change the physical size of a task partition even though
the datapath architecture remains same. Therefore, we need two separate metric
functions for T' PartSize depending on the physical design style of a task partition.

The core size of a task partition implemented with the standard cell style is

simply the sum of sizes of tasks allocated to a partition as follows:
> TaskSize(t, Z) X Yp
i

T PartSize(p, Z,Y,U) for a standard cell implementation including I/O area can

be expressed as follows:

T PartSize(p, Z,Y,U) =
> TaskSize(t) x yu + TPartPin(p,Y,U) x PADSIZE
£

where PADSIZE is the average 1/O pad size of a given standard cell library.
As we discussed in the previous section, the size estimate of a datapath archi-
tecture implemented with the physical design styles in @y is given as the number

of gates; the average gate size AGATESIZE(pum?/gate) should be multiplied to
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obtain the physical size of the chosen implementation. Since the average gate size

depends on the die type, the core size of a task partition in gm? is given as follows:

AvgGateSize(p, X) x ZTrz.skGutﬁ(i, Z) X Yy
A

where AvgGateSize(p, X) is an average gate size of a chosen die type for partition
p, which will be discussed in Section 3.3.4. In order to factor in the area consumed

by the routing: The total task area, including routing is
WB(p, X) x AvgGateSize(X,p) x > TaskGate(t, Z) x yp
t

where W B(p, X) is the ratio of routing area to total die area of the chosen die
type for partition p, which will be discussed in Section 3.3.4.
Finally, TPartSize(p, Z,Y, X, U) including 1/O area can be expressed as fol-

lows:

T PartSize(p, 2,Y,X,U) = (3.9)
W B(p, X) x AvgGateSize(p, X) x >_ TaskGate(t) X y, +
4
T PartPin(p,Y,U) x PadSize(p, X)
where PadSize(p, X) is the average 1/O pad size of the chosen die type for partition
p which will be given in Section 3.3.4.
Task Partition Style Metric Functions and a Validity Constraint

T PartStyle(p, Z,Y") which computes the style of task partition p is given as follows:

T PartStyle(p, Z,Y) = TaskStyle(t, Z)
il Zym # 0 and yp =1
P

According to the above equation, the style of task partition p can be multiply

defined, which is in reality not possible since the implementations of different
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physical design styles cannot be put together on a single chip. Therefore, the

following wvalidity constraint for task-level system partitioning is required:

Ypi =1 and y; =1 — ISTYLE; = ISTYLE; (3.10)

Task Partition Cost Metric Functions

T PartCost(p, Z,Y,X,U) computes the cost of a die if a task partition is imple-

mented with the standard cell style is

Cg-TPartSize(p, Z,Y, X,U)
Yield, '
if T PartStyle(p, Z,Y) € @,

TPartCost(p, Z,Y, X,U)

where Cy is the cost parameter associated with the fabrication facility and has
the units dollars per unit area. The following non-linear model for vield is used to
estimate Yield, [Ber83).

1

Yield, = : -
‘= 5Dy - TPartSize(p, Z,Y, X, U)

where Dy is the number of defects per unit area.

3.3.4 Die Selection Subproblem
The mapping function for the die selection subproblem is given as follows:
fpgi P D

Let X be a set of binary variables for die selection which is defined as follow:

X ={z4gp | wap=11ifd = fps(p) and z4, =0 if d # fps(p) ,Vp € P,Vd € D}

60



subject to the following mapping function constraint:

Z Tap = Maiey (Yp), VP (3-11)
deD
where maxcy () is imposed so that a die type is selected only for non-empty
partitions.

The metric selection functions for the selected die for partition p can be
expressed as follows:

Since die types are not selected for task partitions implemented with the stan-
dard cell style, the metric selection functions for a standard cell die cannot be
defined by the die parameters in a library. Instead, the metrics for a task partition
are used as the metrics for a standard cell die. Therefore, again we need to main-
tain two separate metric functions for different groups of physical design styles.
One way to avoid this complication is to have standard cell task partitions select
an imaginary die type from a die library which does not have a fixed size, 1/0
pins, or cost. Then the other formulae defined later can be built on single metric
function regardless of the physical design styles and the formulation is greatly sim-
plified. The introduction of this imaginary die type for standard cell design can
even further simplify the formulation. By associating PADSIZE, AGATESIZE
and W B with this imaginary standard cell die type, we can use Equation 3.10
for estimating the size of a task partition regardless of the physical design styles
used. By making AGATESIZE and W B of the imaginary standard cell die type
equal to 1, the size estimate for standard cell is not affected by die selection. In
Appendix A, we will show how the linearization of 3.15 and 3.17 can be avoided
by using an imaginary standard cell die type of (AGATESIZE =1, WB =1).

Let XTPS, = TPartStyle(p, Z,Y).

- e TPartSize(p, Z,Y,X,U) if XTPS, € Qy
DieSize(p, Z,Y, X,U) = o (3.12)
Y dep Ldp X DSIZEy if XTPS, € Q¢

T PartPin(p,Y,U) it XTPS, €@,

o (3.13)
Zrien Lap X DPINy if X TPSP & Qf

DiePin(p,Y,X,U) = {
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T PartCost(p, Z,Y,X,U) if XTPS, € Q,

DieCost(p, Z,Y,X,U) = ) (3.14)
ZrlED .T,[p X DCOSﬂ[ if X TP;S}, € Qf
1 if XTPS, € Q,
AvgGateSize(p, X) = l ) 2€ 3?3.15)
>dep Tap X AGATESIZE, if XTPS, € Q¢
PadSize(p,X) = Y w4, x PADSIZE, (3.16)
de D
1 if XTPS, € Q,
WB(p,X) = _ BATPRE0, (3.17)
Yaep Tap X WBy if XTPS, € Qy
FabTime(p,X) = > a4 x FTIME, (3.18)
i

DieStyle(p,X) = > wqy x DSTYLE,
d

The metric validity constraints [or die selection can now be defined with
the above partition metric functions. The size, pin, and style requirements between

die selection and task-level system partitioning are given as follows:

DieSize(p,X') > TPartSize(p, Z,Y,X,U)
DiePin(p,X) = TPartPin(p,Y,U)
DieStyle(p, X) = TPartStyle(p, Z,Y)

3.3.5 Die Cluster Subproblem
The mapping function for die clustering is given as follows:
foc:P=C

where C is a set of die clusters.

Let S be a set of binary variables for die clustering which is defined as follows:

5= {Sr.'p | Sep = life= ,fD(,'(p) and Sep = 0ife ?f ./I!)(.'(P)a Ve € C': VT) € P}



subject to the following mapping function constraint:

Z Sep = maxy(Yp)
C
This constraint ensures that only non-empty task partitions are clustered.

Die Cluster Pin Metric Function, DCluPin(S,U)
The number of T/O pins for die cluster ¢ can be computed in a similar way to that

of TPartPin.

DCluPin(c,S,U) = > bl(e,S) x t1(e,c,S) x BusWidth(e,U)

ecly

where bl(e, S) and t(e, ¢, S) are defined below:

1 il edge e is cut by the given die clustering S
bl(e,S) = o i . . .
0 if edge e is not cut by the given die clustering S
1 if edge e is incident to t € V,
tl(e,e,S) = ° ]

0 if edge e is not incident to Vi € 1,

where Ve = {t : 8¢5 - ypi = 1}.

Die Cluster Size Metric Function DCluSize(c, Z,Y, X, U, 5, M)

The size of a substrate DCluSize on which a die cluster is mounted depends
not only on the sizes of assigned dies but also on the wiring space requirement
WireSize for the die cluster using the selected substrate technology. Since wires
can be routed under dies in MCMs, either the sum of die areas T DieSize or
the wiring space requirement determines the die cluster size. WireSize can be
computed with the estimation technique developed for PWBs. A method for esti-
mating the size of a PWB from a given interconnected chip netlist was proposed
for a single pair of wiring layers[Sch82, SO73] using Rent’s rule. However, it is
not suitable for MCMs because it does not consider more than two wiring layers.

Hence, we used the following analytic equation expressing the wiring correlation
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for multilayer PWB proposed by Hannemann[Han84], without relying on Rent’s

rule.

A X TDiePin

NSIG = K,AZ 22T
IVTND

where L = VWireSize, K, is a constant, T DiePin is the total number of die
VGS(c,M)
[+LBV(c,M) "

computing VGS(c, M) and LBV (¢, M) are given in Section 3.3.6.

pins, TN D is the total number of dies, and A(e, M) = The equations

Therefore, WireSize can be computed with following equation:

Me, M) x TDiePin(c,Y,U, S) 1

WireSize(c, Y, U, 5, M) = (K, NSIG(c, M) y TND(c,S)

With S, the above parameters are calculated as follows:
T DiePin(c,Y,U,S) = Z Sep X TPartPin(p,Y,U)
14
TND(c,S) = Y. s
n

Now, DCluSize(e, Z,Y, X, U, S, M) can be expressed as follows:

WireSize if WireSize > T DieSize
DCluSize(e, Z,Y, X, U, 8, M) = { ¢

TDieSize if WireSize < TDieSize
where T'DieSize is given below:

TDieSize(c, Z,Y, X, U, S) = Z DieSize(p, Z,Y,X,U) X 8¢
P

The above equation represents the sum of sizes of dies on a die cluster, which
is smaller than the size of a substrate because the spacing between dies and other

space consumed by routing are not included.
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Die Cluster Cost Metric Function, DCluCost(c, Z,Y, X,U, S, M)
SubCost(c, Z,Y, X, U, S, M) = DCluSize(c, Z,Y, X, U, S, M) x UCost(c, M)

3.3.6 Substrate Technology Selection Subproblem

The mapping function for substrate technology selection subproblem is given as
follows:
fss: C = ST

where ST = {SMC, MCM-D, MCM-C, MCM-L } and SMC' is an imaginary
substrate for a single chip package.
Let M be a set of binary variables for the substrate technology selection which

is defined as follows:
M = {my. | my. =1 if v = fsg(c) and m,. = 0if v # fss(c), Yec € C,Vv € ST}

subject to the following mapping function constraint:

Z Mye = MATp(Scp)

v

The metric selection functions for a chosen substrate technology for die

cluster ¢ can be expressed as follows:

NSIG(e,M) = Y myx NSIG,
vesST
VGS(e, M) = 3 muex VGS,
neST
LBV(c,M) = 3 mu.x LBY,
vEST
SPS(c, M) = Z Mye X SPS;
veST
UCOST(e, M) = 3 my x UCOST,

nEST

NSIG, VGS, LBV, SPS, and UCOST are defined in Section 3.2.2.



3.3.7 Package Selection Subproblem

The mapping function for package selection subproblem is given as follows:

f‘p‘r)' P2 K

Let W be a set of binary variables for package selection which is defined as follows:

W = {wge | wge = 1if k = fpg(c) and wy. =0 if k # fpg(c), Ve € C,Vk € K}

subject to the following mapping function constraint:

Z Whe = MATH(Sep)
k

(3.19)

The metric selection functions for the chosen package [or partition p can be

expressed as follows:

PkgSize(p,W) = > wgex KSIZE}
k

PkgCost(p,W) = Z'ru;m x KCOSTy
k

PkgPin(p,W) = Y wy. x KPIN,
l.

PkgTime(p,W) = 3wy, x KTIME,
k

Then the metric validity constraints can be expressed as follows:

PkgSize(c, W) > DCluSize(c)
PkgPin(c,W) > DCluPin(c)

3.3.8 Bus Selection Subproblem

The mapping function for bus selection is given as follows:

fes: E— B
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Let U be a set of binary variables for bus selection which is defined as follows:
U= {upe | upe =1iF b= fgg(e) and upe =0 if b # fpg(e), Ve € E,¥b € B}

subject to the following mapping function constraint:

Z Upe = 1 (322)
b

The metric selection functions for the chosen bus selected for communication

channel e are

BusWidth(e,U) = Z up, X BWIDTH,
b

BusType(e,U) = > w, x BTYPE,
b

BusClkCyc cannot be computed as simply as above because it depends not
only on bus type but also on task implementation style or substrate technology
and average length of wires. For example, even if it is an on-chip type, the maxi-
mum clock frequency of the FPGA style is different from that of the standard cell
style. In the same manner, the maximum clock frequency of a multi-chip module
substrate with MCM-D technology is different from that of MCM-L technology.

The bus clock cycle can change with the selection of style or technology by

computing a scaling factor according to either the style or the technology as follows:

BusClkCycle,U, 7Z) = Z uy, X BCYCLE), x ps(e)

b

where ps(e) is a function that compute the performance scaling factor for edge e

given below:
If BusType(e,U) = on — chip,

ps(e) =Y PerfScale(p, Z,Y) x (1 —b(e,Y)) x t(e.p,Y)
o
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where PerfScale(p, Z,Y) is defined as follows:

PerfScale(p, Z,Y) = Z QM (q, TPartStyle(p, Z,Y)) x PS,

q

0 il N
Qr"lff(gl:qg) = { il q # q

Lilgq =g
7,0 €Q

If BusType(e,U) = on — module,

ps(e) =Y SPS(c, M) x (1 —=bl(e, S)) x t1(e, ¢, S)

If BusType(e,U) = on — board,
ps(e) =1

PS and SPS are defined in Section 3.2.2.

The walidity constraint [or bus selection is given as follows:
BusType(e,U) = be,Y) (3.23)
From bus selection, we can compute the delay for transferring the required
volume of data VOL, over the selected bus as follows:

VOL, - BusClkCyc(e,U, Z)

EdgeDelagie) = BusWidth(e,U)

3.3.9 Task Scheduling

In the beginning of this section, we made assumptions about the task implemen-
tation and channel implementation. Those assumptions simplify the task schedul-

ing. Under those assumptions, the non-pipeline schedule is unique. Therefore,
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non-pipeline scheduling is determined by decisions in other design steps. How-
ever, operating a system in non-pipelined mode under our assumption underuti-
lizes hardware resources. For example, in the JPEG and the MPEG example, an
image frame is divided into macro-blocks and each macro-block is processed sepa-
rately. With non-pipelined operation, Hardware utilization is low because the rest
of hardware modules are idle waiting for the completion of one hardware part. We
can reduce considerably the total processing time of an image frame by processing
macro blocks in a pipelined fashion and also increase the utilization of hardware.

In a pipelined scheduling of a TFG, we partition a TFG into stages as in
pipelining a CDFG[PP88]. Pipeline schemes must consider resource allocation
such that stages sharing resources must not be executed in parallel[PP88]. Our
assumption of no hardware sharing between tasks frees our model from considering
resource allocation of tasks as a complex problem. Instead, it degenerates to a one-
to-one mapping onto resources. We still consider datapath resource sharing as an
integral cost-performance trade-off. Consequently, task scheduling is determined
solely by other design decisions and only the definition of performance becomes

different under a different operation mode as will be discussed in the next section.

3.3.10 System Metric Functions

In previous sections, we defined metric functions for design entities in a system.
In this section, metric functions for a system as a function of design decisions
A={Z)Y,X,W,U,S, M} are defined. Among system metrics, we consider the
cost SCOST, the performance SPERF, and the time-to-market 7T M of a system

in our model.

3.3.10.1 The System Cost Metric Function

The cost of a multi-chip digital system is the sum of amortized development cost,
the costs for all components, and the assembly cost. The cost of each component
cost is further composed of the manufacturing cost and the testing cost. We

approximate the system cost function as follows:
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SystemCost(A) = NRE/n+ Y. COSTupp
chipesystem
where NRE is the development cost and n is the number of copies of the system
that will be manufactured. NRE can be estimated by the parametric cost estima-
tion(PCE) technique borrowed from software engineering [And95] or input by the
user. Since each chip corresponds to a die cluster ¢, COST;, can be approximated

with the following equation:

COST,= (3.24)
> DieCost(p, Z,Y, X, U) + SubCost(c, W) + PkgCost(c, W)

pec

where SubCost(c, W) = DCluCost(c, W).

3.3.10.2 System Performance Metric Function

The system performance metric function is defined as the execution time on path
between two specified nodes (sre,dst) in the task flow graph. Then, the system
performance of a non-pipelined execution model is defined as the delay of the
critical path path from sre to dst in the TFG (see Figure 3.2.1). We have the

following system performance metric function for a non-pipelined system:

SystemPer f(A) = DELAY
= Y TaskDelay(t,Z) + > EdgeDelay(e) (3.25)

tepath eEpath
The performance metric function for pipelined systems is given as follows for pro-

cessing 1 data instances:

SystemPer [(A,n) = DELAY,u, + InitIntv(Z) x n (3.26)
ImitInv(Z) = maxeyTaskDelay(l, Z) (3.27)



3.3.10.3 System Time-To-Market Metric Function

Although the time-to-market is an important metric that varies with system-level
design decisions, it has not been considered as a metric of a system architecture.
In this section, we develop a simplified formula to estimate the prototyping time
as a fraction of time to market. However, the reader is cautioned that our sim-
plified model is built to demonstrate our research contributions. An industrial
set of system architecture design tools would of necessity have a more complex
model of time-to-market customized for that industry and perhaps that particular

organization.
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Figure 3.9: Generic design flow for multi-chip system development



In Figure 3.9, we showed the typical design flow for a multi-chip system. We
defined TT M for a multi-chip digital system as a sum of two major components,
namely prototyping time T Prolo for a system and production time T Prod(n) for
n copies of a system.

T'TM = TProto+ T Prod(n)

We consider only T'Proto in our prototype model. T Proto is further divided
into two components, namely component prototyping time C'Proto and system
prototyping time S Proto. For multi-chip systems, we assume system prototyping
can be done in parallel with component prototyping as shown in Figure 3.9 and
takes less time than component prototyping since the complexity of prototyping a
board is much less than developing ASICs. Therefore TT'M can be simplified as

follows:
TTM = max(CProlo, SProto) =~ C Prolo

C'Proto is composed of the design time, the manufacturing time and the testing
time of chips. In general, these terms depend on the availability of resources. For
example, the design time is a function of the number of engineers and tools avail-
able while the manufacturing time and testing time vary with the availability of
equipment. Design time is especially hard to estimate because tasks in the design
process are not only dependent on the number of engineers and their skillfulness
but also on other factors like design methodologies, tools to be used and character-
istics of the system being designed. Since no known available model can estimate
design time realistically, we assume that the design time is rather independent of
design decisions for the subproblems considered in this dissertation. Testing time
is not considered in our simplified model. Under such simplifying assumptions, the
estimated time required to prototype a system is still difficult because the design
time for each component is not the same and sometimes the tasks in a system
have interdependencies which prohibit concurrent design. Therefore, we approx-
imate the system manufacturing time with a total time required to develop each
component in a serial manner. Minimizing the total development time eventu-

ally reduces the prototyping time and therefore, time-to-market. We divide the

=1
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manufacturing time into two components, namely the fabrication time T Fab and
the packaging time T'Pkg. Under the above assumptions, SystemTT M (A) can be

expressed as follows:

SystemTTM(A) = Z Z FabTime(p, X) + »_ PkgTime(c, W)3.28)

cEsystem pec



Chapter 4

EDEN: MILP-Based Optimization Tool

In Chapter 3, we focused on how to represent an early system-level design de-
cision, building a first-order analytical model that expresses metrics associated
with design entities as a function of design decisions and also expresses validity
constraints that capture interdependencies among design decisions. In this chap-
ter, we describe one of our system architecture optimization methods called Early
Design ENwvision (EDEN) that uses Mixed Integer Linear Programming (MILP)

to produce a number of near-optimal system architectures.

4.1 MILP and Linearization

We first attempt to find optimized system architectures by linearizing the design
model in Section 3.2 and solving it with MILP. If the model renders itself to
linearization easily, MILP takes relatively less effort to develop than many other
methods and the optimality of a solution is guaranteed. However, it is well-known
that MILP is in general very slow and therefore, the practical size of a problem
that can be solved with MILP is limited. Therefore, to see the feasibility and
usefulness of using MILP in system architecture optimization, we first attempt
to solve a subset of the design steps for the case that the objective metric is the
system prototyping time, which corresponds to finding a feasible design that can
be most quickly prototyped.

Design steps considered in this MILP-based optimization are implementation

selection, task-level system partitioning, die selection, package selection, and bus

74



selection. The physical design styles which are considered in MILP-based opti-
mization are FPGA, gate array, and standard cell style. The linearization step of

our model is given in detail in Appendix A.

4.2 Problem Instantiation and the M-Language

In order to use an MILP solver, we must specify the objective and the constraints
in a matrix file which the MILP solver can understand. Hand-coding the matrix for
even a small-size MILP model is erroneous and tedious. It is practically impossible
to handcode the matrix of the model given here for a design problem. An alternate
is to write a program that generates a matrix file for a specified instance of the
problem, e.g., the JPEG codec. This does not improve the situation significantly.
First, this approach still requires the user to write a separate program for each
problem. Secondly, if there is a ervor in final matrix format, it is difficult to debug.
Third, if there is any change in the MILP model, the correction of the program to
accommodate the change is very hard.

Therefore, we developed a language called M to describe the MILP formulation
in a natural mathematical form. Any change made in the MILP model can be
painlessly entered into the existing model. The given MILP model in M can be
instantiated with a compiler called GEM which generates a matrix generator in
C++. By compiling and running the matrix generator, the matrix representation
is produced for the MILP solver. For example, consider the constraint shown in
Equation (4.1) below.

¥ Op=PX, Vpe P (4.1)

=3O
This constraint can be coded as follows in M language.
Sig(i: EY(THETA4.p) = PXp Qp{P

The corresponding C' + + code generated by the G EM compiler is shown below.

for (int j=1; j < P_size; j++) {

for (int i = 1; 1 < E_size; i++) {



cout << "THETA" << E[i].name << P[j].name;
count << '"+4'";

¥

cout << "='" << "PX" << P[j].name << ’\n’

By compiling and executing the above generator, the matrix representation of
a problem is produced.

Since writing the MILP formulation and debugging it could be carried out at a
high level of abstraction, we were able to save considerable amount of development
and debugging time. Since the MILP formulation is popularly used to solve a num-
ber of problems is design automation, such as global routing, channel routing, floor
planning, internal task scheduling and so on, we believe that the meta-language
M and the GEM compiler will find general applicability.

With the M-language formulation and GEM, Figure 4.1 shows the implemen-
tation of EDEN. We used the LAMPS [AMS94] MILP solver as part of EDEN.

MILP System
Formulation @ Specification

(M-Language) (VHDL)

v Y )
GEM BEST <+—— Parser
!
/
EDEN | wiLp Solver

Post Processor

Vet

Solution
S

Figure 4.1: Software architecture of EDEN



4.3 Experimental Results

4.3.1 Examples

Example 1: JPEG Codec

JPEG ( Joint Photographic Expert Group ) standard[Wal91] is an ISO/CCITT
standard for still image compression/decompression. The task flow graph for the
JPEG codec is shown in Figure 4.2. The still image is divided into 8 x 8 pixel
blocks. A Forward Discrete Cosine Transformation (FDCT) is performed on each
block to transform the image from the spatial domain to the frequency domain.
After FDCT, the macro block consists of 1 DC component and 63 AC components.
Compression is attained at this step because most of the AC components have
values close to 0. The frequency domain components are quantized to achieve
further compression. An Entropy encoder encodes the quantized macro block
using a table defined in the JPEG standard. While scanning a macro block from
left to right and from top to down, the number of zeros are counted until a non-zero
element is found. The number of zeros and the amplitude of non-zero elements is
represented using a pair of values. The encoded bits are read from the table with
this value-pair as the key.

Real time processing is not necessary in most applications of still image com-
pression, but we shall treat the JPEG codec as a real time application. An image
for JPEG or MPEG compression system has three components, one luminance
component(Y) and two chrominance components(Cb and Cr). The frame size we
shall consider consists of 360 x 288 pixels. The precision for a pixel is 8 bits and we
consider only the Y component for our examples. A processing rate of 30 frames
per second is assumed. Therefore, there are 1620 blocks of 8x8 pixels in the Y
component and the processing time for an 8 x 8-pixel block is 20,576 ns. The

volume of data on a channel is 1 macro block i.e., 8 x 8 pixels x 8 bits= 512 bits.

Example 2 : MPEG Video Encoder

The MPEG ( Motion Picture Expert Group ) standard[Gal91] is an international

standard for video compression. In Figure 3.1, a simplified task flow graph of
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Figure 4.2: Task flow graph of the JPEG codec

an MPEG encoder is shown. A frame has three components: Y, Cb, and Cr.
Each component is divided into 16 x 16 pixel blocks. Processing is carried out for
each block. Motion estimation compares the current pixel block Beur to blocks in
the previous frame within the search range, identifies the closest matching block
Bbest and computes a motion vector. Bbesl is subtracted from Beur and the
difference is transformed through the use of the DCT into the frequency domain.
As in JPEG, the transformed block information is quantized and encoded using an
entropy encoder. A dequantizer and an inverse DCT are applied to the quantized
block to reconstruct the current frame to be used as a reference frame for the next
frame.

The frame size of the MPEG-T standard is 360 x 288 and the frame rate is up to
30 frames/sec. The macro block size for motion estimation is 16 x 16 and for the
DCT is 8 x 8. The timing requirement to process a 16 x 16 macro block is 164,609
ns. with 15 frames/sec. (Y component only). The volume of data transferred on

an edge of the task flow graph is assumed to be 16 x 16 x 8 = 2,048 bits.



4.3.2 Library Setup for Experiments

In order to be able to use EDEN to optimize the multi-chip system architecture
designs for the JPEG codec and MPEG encoder, we first needed to build the
technology library. Three physical design styles, namely, FPGA, gate array and
standard cell, are represented in our current technology library. In addition to
the modules available in the vendor libraries that were accessible to us, we de-
signed and characterized several modules. We used the Xilinx XC4000 family for
our FPGA design style. Modules such as an 8-bit ripple carry adder and 8-bit
parallel multiplier were designed using ViewLogic and laid out using XACT, the
Xilinx FPGA place and routing tool. The modules were simulated using ViewSim
from ViewLogic to obtain the delay and the gate count of the modules. For gate
array design, we chose VLSI Technology Inc.’s vgt350 1.2 micron gate array. The
modules mentioned above were designed using VTT's portable cell library, laid out
using the Gate Compiler tool from Compass Design Automation, and back anno-
tated and simulated using the Qsim logic simulator from Compass. For standard
cell design, VLSI Technology Inc.’s vse350 1.2 micron standard cell technology
was chosen. Modules designed using the gate array design style could be reused,
because of the portability of the cells in VTT library. The modules were laid out
using ChipCompiler and back annotated and simulated using the Qsim simulator
from Compass.

With the characterized operator modules in different technologies, we obtained
the estimated size and delay on possible datapath architectures with BEST[KP95].
The summarized information on the estimated architectures used for JPEG codec
is given in Table 4.1. The information on the cost and size of die and package
types are obtained or approximated from the available data of Xlinx databook and
MOSIS service. For the die library, 4 FPGA die types and 5 gate-array die types
are used. For the package library, 16 different package types are used. Finally, 12

bus types are used [or the bus library.



# of

estimated FPGA | gate array | standard cell
datapath

architectures

DCT T 12 9
Quantizer 1 4 3
Encoder 0 3 3
IDCT 7 12 9
Dequantizer 1 4 3
Decoder 0 3 3

Table 4.1: The number of datapath architectures for tasks in the JPEG codec
predicted by BEST

4.3.3 Experimental Results for Rapidprototyping

By running GEM on our model description in M, we instantiated our model for the
JPEG codec and MPEG encoder examples. The instantiated MILP formulation
of the JPEG codec has 3,972 constraints and 2,266 variables and that of MPEG
encoder has 4,345 constraints and 2,324 variables.

We conducted our experiments by tightening both the system performance
constraints and the cost constraints to obtain design points satisfving those con-
straints and to study how physical design style and datapath architecture selection
change with the constraints. When the performance bounds and cost bound are
very loose, the formulation selects pure FPGA designs to minimize the product de-
velopment time. As we tighten the performance constraints, a pure-FPGA design
cannot meet the performance constraints at some point. Then the formulation
forces the solution to choose the gate Array style for portions of the task-flow
graph. Further tightening of timing constraints results in the selection of standard
cells. When we tighten the cost constraint, the formulation forces the solution to
one which exhibits cost-effective technology. For the JPEG codec, EDEN found
multiple solutions which have the same prototyping time.

Our first experiment was to perform virtually unconstrained optimization i.e.

both cost and performance constraints were set to large values so that the solution
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space is practically unconstrained. The result of unconstrained optimization can
be expected to lead to pure-FPGA designs. (Despite the fact that these designs
may not satisfy realistic timing constraints, pure FPGA designs can be rapidly
prototyped and are useful for functional verification through hardware emulation.)
However, since the estimator BEST could not find feasible points for the entropy
encoder and decoder in the FPGA design style due to the limitations of BEST, the
optimum solution EDEN could find uses one FPGA partition and one gate array
partition for the case of unconstrained optimization. BEST assumes the worst case
number of iterations of unfixed loops making the critical path appear to be quite
lengthy, when in fact the loops often terminate early. The feasible design points
which correspond to EX1 (unconstrained optimization), have three partitions, two
in FPGAs and the other in the gate array style. The existence of multiple solutions
comes {rom the fact that there are many possible ways of partitioning tasks with
the same number of partitions and same style selection, e.g. by changing package
and die selection or with a slight change of interface configuration, a different but
valid solution can be derived. We have shown one of the solutions of experiment
EX2 in Figure 4.3. We conducted six sets of experiments using EDEN on the JPEG
example. The constraints corresponding to these experiments (EX1 through EXG6)
are summarized in Table 4.2. The results obtained in these experiments are sum-
marized in Table 4.3. As can be seen, tight constraints on cost and performance
force the selection of more gate array and standard cell design styles (EX5 and
EX6). A mix of the three design styles is selected for experiments EX3 and EX4.
In experiment EX6, we obtained a pure standard cell design. We conducted an-
other set of experiments for the MPEG encoder. As we already observed in the
JPEG experiment, solutions are clustered in the design space. The constraints of
experiments are summarized in Table 4.4. EX1 corresponds to the unconstrained
case. EX2 and EX3 are performance constrained experiments. EX4 and EX5 are
cost constrained experiments. EX6 was constrained in both performance and cost.
The experimental results are summarized in Table 4.5. Solutions for EX3 and
EXG6 satisfy the performance requirement of the MPEG standard. An example of

solutions found for EX3 is shown in Figure 4.4.
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Figure 4.3: One of solutions found by EDEN for the JPEG example (EX2)

Cost(S) | Delay on Pathl (ns) | Delay on Path2 (ns)
EX1 5,000 50,000 50,000
EX2 5,000 25,000 25,000
EX3 5,000 20,000 20,000
EX4 800 50,000 50,000
EX5 500 50,000 50,000
EX6 200 20,000 20,000

Table 4.2: Constraints used for experiments on JPEG example



Delay on | Delay on

Objective | Cost Pathl Path2 | FPGA | gate | standard

(S) (ns) (ns) array cell

EX1 84 | 3,748 44,980 47.880 2 1 0
EX2 161 | 2,724 24,660 24,800 1 2 0
EX3 357 | 1,350 19,920 19,920 0 3 1
EX4 1,000 798 47,140 43,980 2 2 1
EX5 1,732 470 47,900 48,300 1 1 3
EX6 3,252 | 128 19,640 19,640 0 0 1

Table 4.3: Summary of JPEG experiment results

| | Cost(8) | Delay on Pathl (ns) | Delay on Path2 (ns) |

EX1 | 10,000 500,000 500,000
EX2 | 10,000 190,000 190,000
EX3 | 10,000 164,600 164,600
EX4 | 2,000 500,000 500,000
EX5 500 500,000 500,000
EXG6 500 164,600 164,600

Table 4.4: Constraints used for experiments on MPEG example

Delay on | Delay on

Objective | Cost Pathl Path2 | FPGA | gate | standard

(5) (ns) (ns) array cell

EX1 55 | 4,105 | 499,480 | 490,720 3 2 0
EX2 2,333 |1 1,891 | 188,040 | 187,840 1 1 2
EX3 2,500 | 1,247 | 159,960 | 163,800 1 1 3
EX4 82 | 1,010 | 477,240 | 480,045 1 1 0
EX5 1,415 | 446 | 492,757 | 495,717 0 1 1
EX6 2,000 481 162,921 162,360 0 1 1

Table 4.5: Summary of MPEG experiment results
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Figure 4.4: One of solutions found by EDEN for the MPEG example (EX3)

4.4 Conclusion

We have presented a software tool called EDEN for multi-chip system design op-
timization. EDEN was able to find valid style and implementation selections
that minimized the total fabrication time. As the performance and cost con-
straints are tightened, the style and implementation selections move towards more
manufacturing-time-intensive technologies. Based on our experiments using EDEN
we now believe that using the prototyping time as an objective function is not suf-
ficient since the current formulation merely eliminates the invalid designs while
optimizing the system cost or performance are desired. As a result, many inferior
designs are included in solutions such as selecting a larger package than can ac-
commodate the die. This suggests that we need to extend EDEN for optimization
of multiple objectives such as cost, performance, and prototyping time simultane-
ously. Through our experimentation, it became clear to us that style and datapath
architecture selection have significant impacts on the behavior of a solution in the

design space; following style and datapath architecture selection, the remaining
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steps, i.e. task-level system partitioning, package selection, and interface configu-
ration have impact on the characteristics of the solution. These observations can
be exploited in developing efficient heuristics for the multi-chip system design op-
timization problem. Our current cost model was simplified on the assumption of
mass production of the prototype in which the development cost of a product is
negligible. As a result, high-performance styles became more cost-effective because
FPGA chips are more expensive than gate-array chips under the mass-production
assumption. But this is not a suitable model for rapid-prototyping and small-
quantity production where the development cost is a big part of the system cost.
Solving an MILP formulation for a real-size problem is computationally expensive.
Often, it took more than 2 hours of CPU time to search a fraction of the design
space for the first 25 solutions reported for the JPEG example. The solution time
varies widely depending on the characteristics of specified system and constraints.
For example, in most cases of the MPEG example, no solution was found after 15
hours CPU time. To speed up the solution process, we divided the search space by
providing lower and upper bounds on the objective function. Since the LAMPS
MILP solver uses branch and bound in solving integer programming problems,
setting bounds on the objective function helps in reducing the run time. Without
a good method of finding bounds for the objective function, we may be able to
reduce run time by dividing the search range into a set of smaller ranges. We
start the search range with higher prototyping time because the chance of a design
satisfying the performance and cost constraints is higher when implemented in the
high-prototyping styles. If a solution is found in one range, we stop the MILP
solver and the next lower range is searched. This step is repeated until there is no
solution in the given range. Another way of speeding up the MILP formulation is
to solve the steps separately in the order of their importance as described above.
For example, the style and implementation selection steps are solved first, followed
by partitioning and interface configuration while variables related to the style and
implementation selection are set to values found in the previous step. In summary,
the MILP approach for the system architecture optimization is not practical for a
complicated model such as the one we are attempt to solve for multi-chip systems.

Therefore, a more efficient optimization technique is required.
: 1 |



Chapter 5

GARDEN: Genetic Algorithm-Based

Optimization Tool

MILP is a powerful tool to express a complex model rigorously and conveniently,
but even a simple model requires lengthy time to solve. The requirements of
linearity on the constraints is another drawback of MILP because many factors in
a design model are easier to express in non-linear form. Even though it is possible
to linearize non-linear constraints, the linearization step increases the number of
constraints exponentially. On the other hand, it is generally accepted that tailored
heuristics are efficient in solving a problem, but it is difficult to develop a robust
heuristic for a complicated constrained optimization problem. Another drawback
of specialized heuristics is the difficulty of extension because many new issues and
changes in a model cannot be easily incorporated in an existing heuristic because
of customization.

In order to avoid the aforementioned problems of MILP and tailored heuristics,
we decided to use another generic optimization technique which is general but able
to be customized in some degree. We developed multi-chip system architecture op-
timization tool called Genetic Algorithm for eaRly Design ENwvision GARDEN
which is based on the Genetic Algorithm approach[Mic92]. Tn principle, a genetic
algorithm emulates the evolution process in nature. Intuitively, a genetic algo-
rithm is suited to design problems since it is similar to a real design process. In
the early stage, the designer reviews a few possible architectures and selects one
that is believed to be the best (evaluation and selection), then the designer tries

to improve the selected design by making a few changes (mutation). Also the
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designer tries to build a better system by taking the good traits of two designs
(crossover). However, the designer optimizes a design serially in the real design
process while a genetic algorithm can search the design space in parallel. As we
will show in our experimental results, a genetic algorithm finds solutions in much
shorter time while it does not require tailoring of specialized heuristics. Incorpo-
rating non-linearity is not a problem in the GA. Easy parallelization is the another
advantage of a genetic algorithm because the processes in a genetic algorithm are
highly independent therefore easily parallelized to either test more complex mod-
els or handle a bigger design population[Whi93]. A genetic algorithm also has a
room for customizing to exploit the characteristics of a problem as we will show in
the following sections. Our systematic model and object-oriented implementation

makes GARDEN easily upgradable for a more sophisticated model.

5.1 Genetic Algorithm

procedure Genetic Algorithm
begin
t =0;
initialize P(t);
evaluate P(t);
while termination condition not satisfied do

begin
t=t + 1;
select C(t) from P(t-1);
recombine individuals in C(t) forming P(t);
evaluate P(t);
end
end

Figure 5.1: A generic genetic algorithm[Mic92]

A generic genetic algorithm is shown in Figure 5.1. A solution is often called an
individual and the encoded form of an individual is called a chromosome. Different
problems require different encoding schemes. Although a binary string represen-

tation is the most popular, it could be ineflicient il the solution requires a huge
) | 5
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binary string. Tnteger or floating point numbers can also be used for encoding a
solution. In the first step of a genetic algorithm, a population P which is a set
of such encoded solutions is generated. Initial solutions are most often generated
randomly but heuristics can be used. Each solution is evaluated with a fitness
function which measures the quality of a solution. If the current generation of
solutions satisfies one of termination conditions, the program stops. If any ter-
mination condition is not met, a set of promising solutions is selected from the
current population and populates the intermediate population C(t). This process
is controlled by the selection mechanism which is sometimes called a sampling
mechanism and considered the most important step in a genetic algorithm[Mic92].
In the elitist approach, the solutions of high fitness are selected not only from the
current population but also the parent population of the current generation. De-
pending upon the function which computes the number of copies which a solution
can insert into the next generation, there can be variations of the sampling mech-
anism. Remainder stochastic sampling and ranking are representative examples of
selection schemes. In each iteration, the genetic algorithm needs to introduce cer-
tain changes over the population characteristics to explore the search space. The
crossover and mutation operations are mechanisms to bring in such changes in the
next generation. The individuals in C(t) are crossed over and mutated to generate
a new generation P(t). While crossover creates a new solution by combining parts
of two chromosomes, mutation randomly changes values in a chromosome. For the

new generation, the evolution process is repeated.

5.2 GARDEN Implementation

Although the overall framework of genetic algorithms is well-known, an improper
implementation of a genetic algorithm for a problem can easily nullify the advan-
tages of a genetic algorithm. A fast and high quality optimization tool based on
GA demands deep understanding of both the problem and the characteristics of
GA. In applying GA to the multi-chip system architecture optimization problem,

the primary difficulty comes from the complex structure of the problem and its
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constrained optimization nature. In this Section, we detail how such difficulties

are resolved in our implementation of GARDEN.

5.2.1 Encoding and Data Structure of a Solution

Encoding of a solution greatly influence the implementation of the genetic algo-
rithm for a specific problem. Since the role of binary decision variables in our
model closely matches the role of genes in the reproduction process of living or-
ganisms, it is plausible to build the chromosome representation of a multi-chip
system architecture from binary decision variables.

However merely concatenating binary decision variables into a bit string is
not suitable to express a complicated structure like the tree representation of our
target architecture. Further, such a long bit string complicates the definition
of crossover. Since the minimum unit of design decisions at the system-level is
a task, the exchange of genes at the task boundary considerably simplifies the
implementation. With the bit string encoding, exchanging all decisions relevant
to a task together during crossover is difficult. To simplify the exchange of genes,
a binary substring representing a task is stacked together as shown in Figure 5.2.
The encoding can be further simplified to take advantage of the fact that only
one binary variable regarding a specific design decision for a task can have 1.
Therefore, the chromosome representation can use an integer to represent a design
decision instead of bit strings. Since we also need to represent design decisions
for communication channels, we use two chromosomes, namely a task chromosome
and a channel chromosome, to represent a multi-chip system architecture.

The tree representation of a solution can be constructed from the encoded
design decision information in a chromosome as shown in Figure 5.3. The tree
representation is implemented in an object-oriented manner such that a tree is
composed of hierarchically organized classes of objects at different abstraction
levels. The metric functions defined for each object in Section 3.2 are associated
as methods with each object class.

COTS devices can be defined as a subtree at various abstraction levels. An
existing chip can be represented as a subtree rooted at package level. An existing

die can be represented as a subtree rooted at the die level. An existing design in
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the form of layout can be represented as an possible datapath architecture element.
The meaning of a COTS device is semantically defined by preserving the structure

of a subtree during optimization process.

5.2.2 Initialization

The beginning step of the evolutionary process is to generate a number of solutions
that will evolve. The initial population could be created by either random gener-
ations or heuristics. For the multi-chip system design problem, a solution can be
generated fast and easily by a random number generator which fills the decision
slots of the structured integer representation of a solution. There are two possible
ways to make random decisions. The random decisions on the design steps can
be made concurrently or sequentially. Making concurrent decisions means that
a decision on each design step is made independent of other design steps while
sequential decision making means that a decision on a design step respects those
decisions already made on other design steps.

In concurrent random generation, decision making is free from ordering and
therefore expected to generate unbiased solutions. However, because random gen-
eration could produce invalid solutions, the validity of newly created solutions must
be checked. If a solution is found to violate any validity constraint, the solution is
discarded.

If there are m design steps for tasks, n design steps for channels, ¢ validity
constraints for a design problem with 7" tasks and V' channels, the total complexity

of successfully creating a solution is given as follows:
O(m*T)+O(n+ V) +0(c*g(T,V))

where ¢(T, V) is the complexity of checking a validity constraint.

Let p; be the probability that a validity constraint ¢ is satisfied by a given set
of design decisions. Then the probability of creating a valid solution by random
decisions is J]%, pi. If there are 10 validity constraints and p;=0.5, then 1 out of

10,000 tries succeed in creating a valid solution. Let {, be the time taken for design
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decisions and let {; be the time needed to check validity constraint i. Then time 7

to generate a valid solution is given as follows:

[ l;;
T = !,0 + Z —jzn—f
i=1 115=1 Dj

The above equation shows how expensive it is to generate a valid solution by
concurrent decision making. Experimentally, the probability of generating a valid
solution is 1.0 x 107° for even a simpler model of fewer design steps. Such low
probability of generating a valid solution makes concurrent decisions impractical for
our early analysis purpose, which requires fast evaluation of system architectures.

As an alternative, keeping invalid solutions in the population or repairing an
invalid solution is considered. In the first scheme, an invalid solution is retained
in the population with a given survival probability. The survival probability de-
termines the time for initialization of the genetic algorithm. Considerably high
probability is required to reduce the time for the initialization because of the high
birth rate of invalid solutions, which severely corrupts the population so as to
prevent the genetic algorithm from converging toward meaningful solutions. In
addition, defining recombination operations such as crossover and mutation for
invalid solutions is very difficult if possible at all, as we will see in the following
sections. Therefore, it is not a viable option.

In the second scheme, which is called the repair scheme, violations on validity
constraints are corrected by changing decisions in connected design steps. There
can be more than one way to repair a violated validity constraint as illustrated in
Figure 5.4. The dotted edge ¢; represents a violated constraint. We can change
either decision A or B to make ¢; valid. The selection of design design steps
to be repaired can be done either randomly or based on predetermined priority
similar to the decision making process. Unfortunately, the random repair scheme
could create an oscillation problem if a solution violates more than one constraint.
Imagine a case that another constraint e; connected to A is also violated. Though
the validity constraint e; becomes satisfied by fixing A in Figure 5.4, A can be

again chosen to fix ¢; in the next repair step and ¢; can become invalid again as



a result of fixing e;. In order to avoid this oscillation problem, we have to impose
the ordering of fixes by predetermined priority on each design step. However,
such prioritization is equivalent to sequential decision making described below.
Therefore, in our GARDEN implementation, we employ sequential decision making

for creating initial solutions.

fix ej by changing A

\ & .

\ i
<alf——

fix e; by changing A

Figure 5.4: Oscillation of solution state by the random repair

In sequential decision making, design steps are solved in a predetermined order.
When each design step is solved, previous design decisions are respected. For
example, the ith design step must conform to design decisions on the previous ¢ —1
design steps. For example, imagine that a die selection step is the first design step
and the task-level system partitioning design step follows. The number of dies in a
system and their types are already known when the task-level system partitioning is
to be made. In sequential decision making, task-level system partitioning decision
is made such that no task partition is bigger than the selected die types and needs
more pins than the selected die types. Therefore, validity checking involving task-
level system partitioning and die selection is unnecessary in sequential decision

making. In Equation (5.1), the denominators become equal to 1, therefore, the
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initialization process can be sped up considerably. The ordering of design steps

used for GARDEN is shown in Figure 5.5.

Task partitioning

Die clustering

mplementation
selection

" Subtech

selection & e

Figure 5.5: The ordering of design steps used in GARDEN

Sequential decision making exhibits an interesting property which can be ex-
ploited for further speeding up the optimization process. Since design steps are
solved sequentially, some design steps can be solved optimally quite easily by or-
dering them properly as we discussed in Chapter 3.

Let us consider the task-level system partitioning and die selection step pair
again. Solving this pair of design steps simultaneously to minimize the number of
dies, the total utilization of die areas, and the number of 1/O pins is a difficult
optimization problem. However, if they are solved in sequence, the second problem
is greatly simplified, especially when task-level system partitioning is done first, and
the number of task partitions and their metrics is known. Die selection can be easily
solved with a best fit algorithm. Therefore, there is no need to make a random
decision in solving die selection. By ordering carefully and using a greedy algorithm
for some of design steps, the design space can be reduced considerably. The shaded
ovals in Figure 5.5 indicate the design steps that are solved with a greedy algorithm
in GARDEN. For task-level system partitioning and die clustering, we use a max-
partition heuristic which creates the maximum possible number of partitions in

the beginning. Therefore, no random decision making is necessary for these design
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steps. As we will show later, our crossover and mutation operators are designed
to decrease the average number of partitions in the population and work fast
when there are more partitions. By beginning with the maximum number of task

partitions, those operators can perform search more effectively.

5.2.3 Selection

The selection mechanism used in GARDEN is remainder stochastic selection. In
remainder stochastic selection, a solution puts a number of copies into the inter-
mediate population C(t) according to the integer portion of fi/fu, where f; is
the fitness value of solution ¢ and f,,, is the average fitness of solutions in the new
population P(t). Then a solution can put an additional copy in C(t) with the

probability corresponding to the fractional portion of [/ fau,-

5.2.4 Crossover

Crossover and mutation are two primary mechanisms to explore the design space in
genetic algorithms. The generic crossover operation is done by randomly cutting a
chromosome at a fixed point and swapping genes between two chromosomes at the
cut point. Although this technique is simple to implement, it is not appropriate
for the multi-chip system design problem for a number of reasons. Cutting a
task chromosome corresponds to splitting the corresponding system architecture
into two parts. The structure of a solution can be disturbed by random fixed-
point splitting as illustrated in Figure 5.6. Such a random change is very likely to
disturb the validity of a solution as we have seen for the initial population creation.
Therefore, an expensive validity checking is required to prevent the population from
being corrupted by invalid solutions. Il invalid offspring are discarded, creating
the next generation with crossover takes an intolerably long time as in the random
initial population creation. In addition, since fixed point splitting of a solution
could cut a partition into two while never merging two partitions into one, the
average number of partitions of solutions increases over generations. Finally, such
an exchange of fixed genes limits the possible configurations of solutions because

two solutions swap only a fixed part of each solution. Therefore, a new crossover
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scheme other than the fixed point crossover is desired that does not disturb the
validity of a solution while not increasing number of average task partitions and

allowing more exploration capability.

Chromosome | t;

System architecture

Figure 5.6: Tllustration for the problem of partitioning a chromosome at a fixed
point

In multi-chip design, the most fundamental unit of exchange is a package. We
can create valid new designs by exchanging a set of packages between two designs
if the set of tasks in exchanging sets ol packages are equal. Such a condition
which must be satisfied by two solutions to be crossed over is called compatability
condition and the process of finding a compatible solution is called mating. The

compatibility condition is defined below:

Definition 6 Compatibility condition Let A and B be sels of task genes, A =
{ti,to, oty } and B = {t1, 1o, ..., 0, }. Let Ay and A, be two disjoint and exhaustive
subsets of A, i.e. A = AgU Ay and Ay N A, = 0 such that pkg(t;) # pkg(t;),
Vie Ay and Vj € Ay where pkg(t;) is a function that returns the package for task
ti. Let By and By be two disjoint and exhaustive subsels of B. B is compatible
with A if Ag = By, A1 = By or Ay = By, A, = By.
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From the above definition, we can compute the probability of finding a compat-
ible solution from a given population which is a sample space of the design space.
Let Ay be a subset of size m chosen out of T tasks. Let {p; be a set of disjoint and
exhaustive subsets of A; such that A; = Ug, p and Nyeyp, p = (). Let TP, be a set
of tp. Since pkg(ti) # pkg(t;), Vi € Ay and Vj € A9, a compatible solution must
have tp, € TP, as part of its solution. The size of TP, is computed by Equation
3.6. For A, part of the solution, a compatible solution must have ip, € TP, as
part of its solution. Therefore, the number of compatible solutions for a given split
solution in the design space is given as follows:

m T—m
> fln, k) x Y (T —m,k))
k=1 k=1

Since the number of possible task-level partitionings of a system in the design
space can be computed by Equation 3.6, The probability for a randomly selected
solution from the population being compatible to the given split solution given as

follows: From Equation

m T—m

7
P(m) = (> fm,k)x > [(T—m,k)/ > [(T.k)
k=1 k=1 k=1

The probability is plotted in Figure 5.8 from m =1 tom = 9 for T = 10.
Since it is reasonably high, therefore, the time to find a compatible solution is not
significant if a compatibility function can be implemented in O(n). One such O(n)
algorithm is shown in Figure 5.9.

Equipped with the above compatibility operator, we can build a crossover op-
erator as shown in Figure 5.10 which preserves the structure of a solution while
effectively searching the design space.

A solution is chosen randomly from the pool of intermediate solutions C(t) and
is partitioned at the random package boundary into two. In the mate function,
a compatible solution S[j] is found by checking the compatibility of a candidate
which is chosen randomly from C(t). The mate solution S[j] is then split into
two parts according to the boundary defined during the compatibility check. New

solutions are created and stored in the next generation P(t) by merging parts of
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Figure 5.8: The probability of finding a compatible solution as a function of m
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CheckCompatibility (male solution M, female solution F)
for each mark[i] of F
mark[i] « -1;
end
for each die partition dp in F{
for each task gene tp in dp{
if mark[tp] of F # —1 and mark[tp] of F # prev_mark
then
return not_compatible;
else
mark[tp] of F < mark[tp] of M;
prev_mark < mark[tp] of M;
fi
end
end
return compatible;

Figure 5.9: Compatibility checking algorithm

Crossover()

randomly pick a solution S[i] from population C(t);

randomly split Sfi] into two set of genes, S_0[i] and S_1[i] at the package boundary;
J + mate(S[i]);

split S[j] into S_0[j] and S_1[j];

merge S_0[i] and S-1[j] into S[i] in P(t);

merge S_0[j] and S_1[i] into S[j] in P(t);

Figure 5.10: Algorithm for the crossover operation

99



chromosomes from both solutions. In Figure 5.11, the crossover operation for the
tree representation is illustrated. A solution is split into two subset of subtrees
rooted at the package level. The subtrees in one subset is represented with filled
circles and the subtrees in the other subset is represented with clear circles in
Figure 5.11. By merging the subsets of subtrees with the same type of circles, new

solutions are created.

Parent A

Figure 5.11: Mlustration of crossover operations based on compatibility

5.2.5 Mutation

The crossover operation described in the previous section allows GARDEN to
search the design space for all possible combinations of existing designs in the
current population. But, as the reader can easily see, the searchable design space by
crossover alone is limited to the combinations of existing design decisions in initial
solutions. In addition, our crossover operator cannot work on a solution of a single

package. Another reason for using the mutation operation is that certain values
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Figure 5.12: Tllustration of a mutation operation for task-level system partitioning

of genes are depleted as the search progresses over generations[Whi93]. Mutation
enhances the search capability of the genetic algorithm by reintroducing depleted
genes into the population characteristics.

In the generic genetic algorithm, the mutation operation is implemented as a
mechanism of changing part of a solution randomly. The mutation operation is
illustrated in Figure 5.12 in which a task-level system partitioning decision on task
1; is changed as a result of the mutation. It is highly likely that such a random
change of part of a chromosome will corrupt the validity of a design. For example,
a migration of a task from task partition 1 to task partition 2 makes the destination
task partition 2 bigger and the selected die type of task partition 2 might be too
small to accommodate the new task partition or #; might not be implemented with
the same style as task partition 2. Such a possibility of corrupting the validity
of a solution necessitates validity checking to avoid invalid solutions. Again, the
situation described for the initial population generation and the generic crossover
is repeated. Therefore, a scheme that can save time for the mutation operation

without incurring too much computational cost is desired.
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Our first scheme to reduce the run time of the mutation operation is to avoid
generating invalid solutions, which can be accomplished by preventing any muta-
tion that will result in a invalid solution. In the previous example, the violation of
the task style constraint in mutating task-level system partitioning can be easily
avoided by restricting the possible range ol task partition migration to those of the
same physical design style. Since restricting the mutation operation for task-level
system partitioning can be done without increasing computation time significantly
and the search capability remains the same, the first scheme is very effective in
preventing the violation of the task style constraint. However, some mutation op-
erations require a considerably increase in run time to be restricted and too much
restriction would result in the loss of searching capability. The die size constraint
in the previous example is one such constraint. With the above scheme, the muta-
tion operation should make sure that the die type for task partition 2 has enough
space for task ¢; before moving which requires the recomputation of die size metric
function for all other task partitions in the worst case.

We already introduced the concept of repair to avoid the long run time when
discarding invalid solutions. Random repair does not reduce the run time because
of the oscillation problem. However, just as we ordered the design steps, by or-
dering the design steps for repair, we can prevent the oscillation problem. We call
this scheme prioritized repair. For example, if there is not enough space for the
selected die type for task partition 2, by selecting another die type for task parti-
tion 2, a mutation operation can be successfully completed without restricting the
operation. Therefore, we can retain the freedom of mutation while not increasing
the run time. In the GARDEN implementation, the priority of design steps for
repair is as follows;bus selection, die selection, and package selection. If a solution

is irreparable, the mutation is aborted and the original solution is restored.

5.2.6 Evaluation and Fitness Functions

Each solution in the population is evaluated at the evaluation step with a function
called the fitness funciion. Solutions with higher fitness will have higher probability

of generating offspring. Since the behavior of a genetic algorithm is very sensitive



to the form of a fitness function, designing a good fitness function has critical
importance for both run time and the quality of solutions.

There are three major metrics which we defined in Section 3.2 for the multi-chip
system. With the tree representation and associated metric functions, computing
metrics for a solution is easily and systematically carried out by calling metric
functions in a bottom-up fashion, from the leal elements (tasks) to the root element
(system) (See Figure 5.3).

For multi-chip system design, optimization tools should be able to handle dif-
ferent optimization modes. For the multi-chip system design problem, the designer
might desire to optimize system architectures for different objective combinations
and different constraint combinations. Diflerent optimization modes can be ex-
pressed as follows: Each system metric can be one of the metric state modes {
objective, constrained. don't-care }. Objective metric is a metric that is either
minimized or maximized during the optimization process and only one metric
can be objective. A constrained metric must be satisfied by all solutions in a
population to be feasible. A don’t-care melric can have any value. As a combina-
tion, various optimization modes can be described. For example, experiments with
EDEN can be expressed as ( prototyping time=objective, cost=constrained, perfor-
mance=constrained). If the designer wants to find a minimum cost solution under a
performance constraint while not being concerned with the prototyping time, such
an experiment can be expressed as ( cost=objective, performance=constrained,
prototyping time=don’t-care ).

The next important issue in designing a fitness function is the strategy of
dealing with infeasible solutions. Various schemes are possible depending on the
fitness function definition. For convenience, we recite our definition of feasibility

of a solution as follows:

Definition 7 A feasible design al the system-level is a sel of design decisions
which is valid and also satisfies following conditions: Let mq be an objective melric

while my, ..., my are constrained melrics. Let ey, ..., ¢, be upper-bound constraints
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on corresponding metrics. When ¢; — m; > 0, a solution is feasible for m;. A

solution is said to be feasible if it satisfy the following condition:
G=my20i=1,...,n

For the constrained-optimization problem, Defining a function with all metrics
F(mg, ¢y —my, -+, ¢, —my,) is the most popular way of devising a fitness function.
In order to use remainder stochastic sampling, F' > (.

The first scheme ol handling infeasible solutions is to discard them and only
feasible solutions are retained in the population. The following fitness function
defines such a scheme:
my if a solution is feasible
F(mg,c1 —my, -+, ¢ —my) =

0 il a solution is not feasible

A number of disadvantages arise using this scheme in evaluation. First, when
the birth rate of infeasible solutions is higher than that of feasible solutions, ini-
tializing a population can take a very long time. Second, when the relationships
among metrics are inversely proportional to each other, maintaining population
size is very difficult. For example, if we want to optimize the cost, then the genetic
algorithm produces more solutions that have lower cost but slower performance.
Therefore, merely driving a population to the cost optimization will eventually
force all solutions to be infeasible. Third, infeasible solutions can produce feasible
solutions during recombination operations. So, it is desirable to keep infeasible so-
lutions which do not violate the user-specified constraints too much, which points
to the necessity of quantifying the degree of infeasibility, i.e. how much a solution
violates the specified constraint as the next fitness function.

The common form of a fitness function for retaining infeasible solutions is given

below:
F = Wyo-mg+Wi-(cg—mq)+---+ W, (ch —my)

where Wy, W, ..., W, are weighting factors. This fitness function can avoid some

of the problems with the former fitness function but adds other types of problems
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for the purpose of optimization. (1) Finding a set of W; of the above conditions
for a fitness function that satisfies even the simple condition F > 0 is difficult.
(2) From fitness function value, we cannot tell whether a solution violates any
constraint or not because a solution can violate one constraint and have a very
high objective value and the fitness can remain positive. (3) For the same reason,
we cannot tell whether one solution is better than others in terms of the objective
metric.

From the above fitness function, we can identify the following desired charac-

teristics of a good fitness function:
1. distinguishing infeasible solutions [rom feasible solutions,
2. distinguishing better solutions among feasible solutions, and
3. distinguishing less infeasible solutions among infeasible solutions.

Mathematically the conditions for a fitness function can be expressed as follows:

F(?’J’LU:C‘; = 140" 5 Gy —‘Hln) > 0 (51)
F lc,-zm,-‘.«"i > f(-ﬂ[ ',U) |c,—<m,—§i (52)
OF oF
—&03=1...,m; ‘ = 0 if a solution is infeasible. (5.3)
am; dmy
JF JF - i
‘( =0d=1....0 f( > (il a solution is feasible. (5.4)
om; dmy

The Equation 5.1 is required to use the remainder stochastic selection. The
Equation 5.2 states that any feasible solution must have higher fitness than all
infeasible solutions. The Equation 5.3 enforces that the objective metric should
not influence the fitness of infeasible solutions. Finally, the Equation 5.4 requires
that the fitness of any feasible solution should not be influenced by constrained
metrics.

Devising a function that satisfies the above conditions would be difficult. Also,
even if it were possible, we would need to define as many fitness functions as the
number of possible optimization modes described above. The fundamental reason
for difficulty with the above schemes comes from mixing different metrics in a

single function.
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To solve the problems associated with the above schemes, we developed a dif-
ferent optimization scheme for GARDEN called Finite State Optimization. In
this scheme, each metric has its own fitness function, fi(m;). Constraints are
imposed on average population characteristics rather than on an individual solu-
tion, which allows infeasible solutions to be retained in the population. For each
metric, there is a separate optimization state. In one optimization state for a met-
ric, the corresponding fitness function is used. When the average characteristics
of the population violate one of the constraining metrics, according to the pre-
defined FSM-like control mechanism, the optimization mode switches to the other
state. For GARDEN, three separate fitness functions, [(SPERF), g(SCOST),
and h(TTM) are defined. The state diagram for an optimization mode ( proto-
typing time=objective, cost=constrained, performance=constrained) is shown in
Figure 5.13.

In the beginning, solutions are optimized for either the performance or cost,
which are constraint metrics, then optimized for the prototyping time after both
the average fitness regarding performance and cost reach the critical values which

are defined as follows:

Critical Per [ Fitness = [(CPerf)
CriticalCostFitness = g(CCost)

where C'Per [ and C'Cost are user-specified performance and cost constraints.
When solutions are optimized for the prototyping time, the population character-
istics can deteriorate in terms of cost and/or performance. Then, the population is
again optimized for the violated metric according to the corresponding oplimizing
condition. In Figure 5.13, such conditions for optimization state transitions are

denoted by P and € which are defined as follows:

AwvgPer f Fitness > Critical Per fFitness — D =1

AvgCost Fitness > CriticalCost Fitness — M =1
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In Figure 5.13, D = not D and C = not C, an optimizing state transition

occurs whenever a condition becomes true.

Performance
Optimization

Cost
Optimization

Prototyping time
Optimization

Dand M

Dand M

Figure 5.13: Optimization sequence in GARDEN

In Figure 5.14, the normalized average fitness values over generations is plot-
ted. In Figure 5.14, B is the h(TT M) of a best valid solution, [ is the average
J(SPERF), jis the average g(SCOST), and h is the average h(TT M) of solutions

in the population.

5.3 Termination Conditions

Two termination conditions are used in GARDEN, namely, mazimum generation
limit and minimum improvement requirement. The first condition sets the up-
per bound on the number of generations. The second condition, the minimum
improvement requirement checks the saturation of improvement over generations,
whether the fitness of the best solution improves more than a given improvement

requirement whenever a new best solution is found. If the fitness improvement of
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Figure 5.14: Normalized fitness functions
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the new best solution is less than the specified requirement for a given number of

times consecutively, GARDEN terminates.

5.4 Experimental Results

In the experiments with EDEN, we focused on finding a system that can be rapidly
prototyped under different cost-performance constraints. In the experiments with
GARDEN, different architectural trade-ofl analyses are emphasized. Since GAR-
DEN provides controls over many system architecture alternatives, the designer
can investigate the influence of design alternatives painlessly. The effects of the
physical design style selection, the number of task partitions in a system, and the
use of MCMs are examples of such architectural decisions that are experimented

with and described in this Section.

5.4.1 Examples

The MPEG example which we used in previous section is not big enough to show
the full capability of GARDEN. To demonstrate the complexity of the multi-chip
design problem and the capability of GARDEN, we used the following two hy-
pothetical examples constructed with the MPEG encoder as a building block as
shown in Figure 5.15 in addition to the MPEG encoder example. The first example
is constructed by instantiating the MPEG encoder 4 times and therefore has more
tasks and more external connections while the second example has 4 copies of the

MPEG encoder connected serially.

5.4.2 The Effect of Physical Style Selections

The first trade-ofl analysis is to find the effect of physical design style selections on
prototyping time, system cost, system performance and the number of task-level
system partitions. For each FPGA, gate array, and standard cell design style, we
had GARDEN generate cost-optimized architectures under different performance

constraints when 10% units are assumed to be produced.
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)

Figure 5.15: Examples used in GARDEN experiments. (a) parallel example (b)
serial example

The results are plotted in Figure 5.17. It shows the design space reachable
with different physical design styles. Under the mass production assumption, a
system designed with the standard-cell style is superior to other designs with either
FPGA or gate-array style in both performance and cost. However, the advantage
of standard-cell designs comes at the cost of prototyping time. In Table 5.1, the
prototyping time for the optimized designs of the MPEG example is shown together
with the number of task partitions. In order to reduce the system prototyping time
while maintaining the cost at a low level, a mixture of different physical design
styles which fall in the area between homogeneous physical-style designs can be
considered by EDEN.

The cost advantage of standard cell designs also requires a certain volume of
production. In Figure 5.18, the variation of system cost per unit with the volume
of production is plotted with the given NRE for standard cells and gate arrays.
The standard-cell design maintains a cost advantage over other physical design
styles for the MPEG encoder when the NRE cost of the standard cell is equal

to $150,000. The gate-array design becomes more cost-effective when the NRE
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FPGA Gate Array Standard cell
No. of TP | PTime | No. of TP | PTime | No. of TP | PTime
(dies) | (hour) (dies) | (hour) (dies) | (hour)
Ex1 3 3 4 2688 3 6048
Ex2 3 3 4 2688 3 6048
Ex3 4 3 4 2688 3 6048
Ex4 4 3 4 2688 3 G048

Table 5.1: The number of task partitions (No. of TP) and the prototyping time
(PTime) for the optimized architectures for the MPEG encoder.

cost of the standard-cell design is $500,000. For Example 1, gate-array designs
becomes cheaper than standard-cell designs for a small volume of production (less
than 5,000 units).

5.4.3 The Effect of the Number of Task Partitions

Setting the number of task partitions in the early stages of design primarily de-
termines the project schedule and board size. Moreover, the system cost and
performance are influenced by the number of task partitions. In this experiment,
we investigate the effect of the number of task partitions on system characteristics.
The results for the MPEG encoder are shown in Figure 5.19 (a). The cheapest
designs are 3-chip systems for all constraints. The high cost of 2-chip systems
are due to the high pin count requirements of one of the packages. Figure 5.19
(a) shows that neither a single chip design nor a max-chip design is cost effective
and that a system can be far from the optimum because of unexpected factors
like the /O pin count requirement. The effect on the system cost of example 1
for different numbers of task partitions under different performance constraints
is plotted in Figure 5.19 (b), which shows other interesting factors about design
problems and GARDEN. First, except for the case of high performance systems,
the low-cost designs are found between 11 and 16 partitions. Second, the cost of a
system with 12 task partitions and a 2.6 x 10° ns. performance constraint is higher
than designs of 12 task partitions and a higher performance requirement. From the

qualitative point of view, this point is not well optimized by GARDEN. Since tools
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like GARDEN cannot guarantee to find an optimal solution, there is possibility of
getting a result far from an optimum. However, the designer can avoid drawing a
false conclusion from non-optimal design points by identifyving the trends of other
optimized points. Once a point is known to deviate far from the optimum, by
relaxing the termination conditions of GARDEN, the designer can try to optimize
such points further. Third, at 4-chip designs, the cost of systems under different
constraints are close each other while one would expect that a high-performance
design has much higher cost because of bigger datapath architectures. The primary
reason for this phenomenon is the high pin count requirements of Example 1. By
comparing the results of experiments of the same type for Example 2 as shown in
Figure 5.19 (c), it is evident that the cost for a high-performance system is higher
across different numbers of task partitions. The comparison between Figure 5.19
(b) and Figure 5.19 (c) revealed that Example 2 has in general lower system cost
and is more easily optimized by GARDEN.

The system performance variation with the number of task partitions for the
MPEG encoder and Example 2 is plotted in Figure 5.20. GARDEN generated
a number of performance-optimized architectures under different cost constraints.
When the cost constraint is $10,000, the critical path delay increases with the
number of task partitions because of the introduction of off-chip buses while the
fastest datapath architectures can be used for tasks. When the cost constraint is
very tight, GARDEN must budget carefully the cost between silicon and package
such that the performance is maximized within the given cost constraint. For a
single chip or 2-chip design, the high T/O pin counts require an expensive package.
Therefore, datapath architectures that are aflordable are small and slow. On
the other hand, the increasing number of task partitions increases the cost of
packages and forces GARDEN to select smaller and slower datapath architectures
and therefore the performance drops rapidly. GARDEN was not able to find a
6-chip design since the package cost alone is higher than the cost constraint. The
experiments for Example 2 shows similar trends. the optimum performance design
with the tight cost constraint is somewhere between 12 and 16 partitions. As one
might expect, a more tightly constrained problem demands a better partitioning

scheme to reach a better system characteristics.
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5.4.4 The Influence of MCMs

In this experiment, we investigated the effect of employing MCMs over system
characteristics. For both examples, we had GARDEN find a cost-optimized system
for 4,8,12,16,20, and 24 partitions. The four different performance constraints from
2.6x10% ns to 1.0x 10° ns were used. The results of experiments are shown in Figure
5.21. By comparing these results to the results in Figure 5.19, we can see the effect
of using MCMs as a possible packaging option. The 2-die design of the MPEG
example with MCMs is not so expensive comparing to the 1-die design because
the MCM packaging absorbs the pin count requirements of the 2-die design. The
system cost with a higher number of dies stays rather flat compared to non-MCM
designs. For low-performance designs, the cheapest designs with MCMs occurred at
a bigger number of task partitions than the cases of non-MCM designs for Example
1 because MCMs can accommodate more dies in a single package. Except the high
performance systems at 1.210° ns, the system cost is more expensive with MCMs

than with a single chip packaging.

5.4.5 The Example Designs Optimized by GARDEN

In Figure 5.22, three optimized designs, (a), (b), and (c) for the MPEG example are
shown. Designs (a) and (b) are implemented with the standard-cell style and were
optimized for cost under the same performance constraints. Design (a) is packaged
separately while Design (b) uses MCMs for part of its design. The cost of Design
(a) and (b) is roughly the same and the performance of Design (b) is better than
Design (a). When MCMs are not allowed, Design (a) is partitioned into 3 dies.
The package cost is a major part of the system cost. The rapid increase in the
die cost prevents further integration. Another factor suppressing integration is the
package cost. In our library, the package type that can accommodate 96 pins is 560
which is the same as for the cost of 3 packages used in Design (a). By integrating
the Encoder task with the Motion estimation die, the system will have two chips
and the cost of the system increases $80. Moving the Encoder task to the Inverse
DCT die will not increase the total die cost significantly. Towever, it still requires

a 100-pin die which increases the system cost by $60. Separating the Quantizer
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task from the Motion estimation die and integrating it with the Encoder task can
lower the total die cost but increase the system cost by 560 again which cannot
be compensated for by the die cost decrease. More partitioning of the system can
lower the total die costs but increase the package cost.

In Design (b), MCMs are allowed as a possible packaging option. Design (b)
also has three packages. However, there are 5 dies in the system. The use of MCMs
allows GARDEN to partition further the system into more dies to lower the total
die cost and to use a cheap package type with 80-pins to house the first three
dies. Therefore, the system cost can be lowered by $10. Unfortunately, the cost
gain is compensated by the cost of the substrate. However, the performance can
be improved slightly because a bigger datapath architecture can be used without
incurring too much additional cost because of the low integration level. Integrating
other dies into the MCM can remove more packages but requires a more expensive
package type because of increased 1/O pin counts.

In Design (c), the system is implemented with FPGA style only without MCMs.
The die type used in the design has 139 pins and costs $333. The next smaller
die type has 105 pins and cost $111. The next smaller package type costs $60.
Therefore, by splitting a task partition into two dies in Design (c¢), we can save
$111+530=8141 for each task partition. However, the next smaller die type cannot
hold the Motion estimation task. Therefore, instead of wasting the unused space
of the Motion estimation die, the FDCT task can be integrated into the motion
estimation die. If a die type cannot hold both tasks, the problem can be resolved
by either selecting the next bigger die type or selecting a smaller datapath archi-
tectures for both tasks unless the performance constraints are not satisfied. In this
case, the use of the next bigger die increases the system cost more than 51,000 so
it cannot be used. Therefore, using smaller architectures is a better choice. If the
performance constraints cannot be met with smaller architectures, faster architec-
tures for other tasks can compensate for the loss of performance. The Quantizer
die has the same size problem as above because of the Encoder task. The IDCT
die does not have the same size problem. The selected architecture for the IDCT
task can fully utilize the next smaller die and the selected architecture for the

Dequantizer task can fit onto even the smallest die type, which can further lower
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the system cost. However, splitting the IDCT die could introduce more communi-
cation delay of about 4,000 ns, jeopardize the performance of the system and make

the design infeasible.

5.4.6 The Run Time Distribution of GARDEN

The run time of GARDEN depends on the population size, the termination con-
ditions, and the complexity of a given problem. The random nature of the genetic
algorithm makes the run time of GARDEN vary for the same number of genera-
tions. Figure 5.23 shows the plot of the run time vs. the number of generations for
64 runs on Example 1. The run times shown in Figure 5.23 are for 100 solutions
in the population, 200 limits on generations without improvement, and 20 limits
on less than 2% improvement. The machine used for runs is a Ultra Enterprise

system which has 8 sparc CPUs and 2.0 GB memory.

5.5 Conclusion

We developed GARDEN, a genetic algorithm-based software that can optimize
multi-chip system architectures based on the model described in Section 3.2. A
number of problem-specific features were developed to apply genetic algorithms to
the multi-chip design problem. GARDEN was able to find good solutions quickly
compared to MILP-based optimization. The experiments showed the versatility of
GARDEN in optimizing a multi-chip system architecture for different optimization
modes.

The speed up of the optimization process comes from the reduced design space
by incorporating knowledge about the problem characteristics and customized op-
erations such that obvious infeasible solutions are eliminated in the initial popu-
lation creation stage. By combining the understanding of the problem with the
optimization mechanism of genetic algorithms, it was possible to develop a robust
and extensible optimization tool. However, as demonstrated from the encoding
of a solution to the development of recombination operators, careful design of a
genetic algorithm suitable for the multi-chip system design problem was a critical
part of the development of GARDEN.
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Versatility is the most important feature which GARDEN has for multi-chip
system design. Experimental results showed how the designer can investigate vari-
ous architectural trade-offs with GARDEN in the early system development stage.
With such trade-off analyses of various system parameters and design alternatives,
the designer can make fast and informed decisions that lead to a better system in a
shorter development time. However, the design decisions for optimized systems are
very sensitive to yield of dies, available die and package types and their cost distri-
bution, and datapath architectures. Therefore, the observed trends in optimized
system architectures under various optimization modes cannot be generalized.

The current implementation of GARDEN does not limit the other possibilities
of improving and extending our model and optimization mechanism. The complete
model and systematic organization of the GARDEN software architecture renders

itself useful for other extensions easily.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

Design decisions made for system-level design steps in the early system develop-
ment stage shape the overall system characteristics. Albeit its importance in the
system development process, automating and assisting decision making at this
abstraction level has only been researched rather recently. In this research, we
attempt to define the system-level design problem and automate early design deci-
sion making. For that purpose, we developed a model and optimization tools that
can help designers in making critical system-level design decisions.

We defined the multi-chip system design problem as a special case of the system-
level design problem, in which an optimized hierarchical bus-based multi-chip ar-
chitecture is constructed for a given system specification and user constraints. The
multi-chip system design problem is a complex problem composed of interrelated
design steps which addresses many development issues of the multi-chip system
design problem simultaneously. In this research, we consider design steps, namely
physical design style selection, datapath architecture selection, task-level system
partitioning, die selection, die clustering, substrate technology selection, package
selection, and bus selection. These tasks are modeled as binary decision problems
and formulas computing metrics of design entities are developed based on the first
order effect of design decisions. The interrelationships among design steps called

validity constraints are defined with the computed metrics.



On this underlying model of the multi-chip system design steps, two opti-
mization tools were developed. In EDEN, our MILP-based optimization tool, our
first-order analytical model was linearized. To speed up the instantiation of a
design problem in MILP, we defined a language called M which can express the
formulation in the mathematical form effortlessly. (See Appendix C for the M
language description of the linearized formulation). The M language description
can be processed by a compiler called GEM to generate a generator which will
be compiled and run to produce the matrix representation of a problem. EDEN
was specifically formulated for rapid-prototyping. Experimental results to show
the change of system architectures that can be rapidly prototyped under different
user constraints were described.

A customized implementation of a genetic algorithm for multi-chip system de-
sign optimization was developed. GARDEN was designed such that various archi-
tectural alternatives can be evaluated under different optimization modes. There-
fore, GARDEN is capable of versatile trade-off analyses. The experimental results
of such architectural trade-off analyses for different physical design styles, the use
of MCMs, and the number of task partitions are given.

There are other possibilities of using EDEN or GARDEN. Partitioning of a
system into FPGA chips and COTS device selection are some examples of such
applications. As indicated by its capability of producing a new solution by mix-
ing different solutions together with different objectives, GARDEN can be used
for improving existing designs with a mix-and-match of promising designs. Such
capability can be exploited in finding a better solution from solutions optimized
for different system metrics.

We believe that tools like EDEN and GARDEN are in demand to manage
the increasing complexity of the modern system development process in the early
phase of system development. Such tools can help to reduce time for trade-off
analyses for informed decision making, increase the correctness of design decisions

and therefore, reduce the time-to-market.



Our formulation shows how a systematic model for system-level design decision
making can be developed. Our model can be extended to include other architec-
tural alternatives. The possibility of applying GA for optimizing a complex prob-
lem like multi-chip system architecture is another important contribution. Our
work shows the design issues of applying GA to the complex constrained optimiza-
tion problem. New approaches for encoding, recombination operator design, and
the optimization mode control mechanism were developed.

Our work has a number of limitations imposed from the simplifying assump-
tions. However, we believe that our work is the ground work for more practical

tools which might be developed in future.

6.2 Future Work

Our current work can be continued in three different directions in the future. The
first direction is to make our model more sophisticated and realistic. The second
direction is to further extend our tool to cope with new optimization challenges for
other system-level design issues such as mixed supply voltage power optimization
or intellectual property-based design. The third possible direction is toward a more

accurate and fast trade-off analysis and optimization.

Model Enhancements

The following design issues should be incorporated in the future model.

1. architecture trade-offs for I/O and memory subsystems,
2. consideration for design-for-testability,

3. power consideration in package selection, and

o

power budgeting among tasks.

Coping with New Optimization Challenges

Our model and GARDEN can be extended further to cope with new optimization

challenges in the future. A mixture of different feature size in a system to achieve
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a better the cost-performance trade-off[Mal94] can be performed with GARDEN.
Power optimization for a system with a mixture of designs with different supply
voltages can be done also by extending GARDEN. Recently incorporating intel-
lectual property (IP) which is existing design data becomes an important issue in
digital system design because the rapidly growing popularity of the internet makes
the marketing of design information possible. By employing TPs in a system, the
design time can be greatly reduced. However, deciding which TP is good for system
development requires a systematic evaluation method. Since GARDEN has the fa-
cility to handle a COTS device which can be considered to be an 1P, GARDEN
can be used in making decisions on the use of TPs. Finally, in our hardware model,
we assumed that no hardware is shared among tasks. In general, it is a realistic
assumption at this time. However, a system can be designed such that hardware
can be shared among tasks in the future. Sharing can be easily implemented for
FPGAs because of the programmability of FPGAs. While an FPGA chip performs
a specified task at one moment of the system execution, the same chip can be pro-
grammed to perform a different task in the next moment. The sharing of hardware
necessitates solving a non-trivial scheduling problem in a multi-chip system design

which must be handled by future system architecture tools.

Increasing the Accuracy of the Estimates While Reducing
the Runtime

Our model considers only the first-order effect of design decisions. For example,
in computing the size of dies, our model does not take into account placement
and routing, which also has big influence on the size. Considering such factors
in the early design phase is an almost impossible task. However, the first effect
consideration alone cannot guarantee the correctness of a design decision though
it can lower the risk of incorrect decisions considerably. The goal of our three-step
system architecture optimization is to balance accuracy and speed. However, more
detailed and accurate estimation can be made to further eliminate the possibility
of a wrong design decision. Since there exist a number of good estimators that

can compute various metrics more accurately, such sophisticated estimators can



be used. To achieve speeding up the architecture optimization while increasing the
accuracy, a distributed system over LAN or parallel processors can be used. The
metric functions in the analytical model in GARDEN can be simply replaced with

calls for detailed estimators running on different machines over a network.
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Appendix A

Linearization for MILP

Notations and Conventions

Lower case alphabets are used to denote binary variables, e.g. y,. Upper case
letters are used for linear/integer variables and constants. Names of linear/integer
variables begin with an X to distinguish them from constants. Greek letters are
used to denote intermediate variables introduced for the purpose of linearization
of constraints. Intermediate binary variables are in lower case Greek letters and

intermediate linear variables and constants are in upper case Greek letters.

A.1 Lemmas for Linearization
We introduce a few useful lemmas that simplily linearization procedure.

Lemma A.1.1 Let S be a set of real numbers and y € S. A non-linear equation

of the form x > max,es(y) in the formulation can be linearized as follows:
r>y, Yyes

A non-linear equation of the form x < minyes(y) in the formulation can be lin-
earized as follows:

zly YyeS

The linearization step with the above lemma increases the number of constraints
by S —1.
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Lemma A.1.2 Let S be a set of binary numbers and y € S. A non-linear equation

of the form x = max,cs(y) in the formulation can be linearized as follows:

x > y, YyeS
x < Yy Vyes

Y

A non-linear equation of the form x = minyes(y) in the formulation can be lin-

earized as follows:

r < y, WWeS
x> Y @y-1)+1,¥yeS
Yy

The linearization step with the above lemma increases the number of constraints
by 25 — 1.

Lemma A.1.3 A product x -y of two binary variables appearing in a constraint

can be replaced with a binary variable z as follows:

z € &
z <y
z > r+y—1

Proof. When both = and y are equal to 0, we have z < 0,z > —1. When either

?

of 2 or y takes the value 0, the above inequalities becomes z < 0,z <1,z > 0, and
therefore z = x - y = 0. When both = and y are equal to 1, we have z < 1,z <

1,z > 1, therefore, z =z -y = 1.
O

The linearization step with the above lemma increases the number of constraints
by 3.
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Lemma A.1.4 A product L -y of a finite positive real variable L and a binary
variable y in the MILP formulation can be replaced with a positive real variable M

as follows:

M < y-MAXL
M £

A

M > L+(y-1)- MAXL
where MAXL is the upper bound on the variable L.

Proof. When y = 0, the constraints can be rewritten as M < 0,M < L and
M > L — MAXL. The last term implies M > 0 because L — MAXL < (
and thus M = L -y = 0. When y = 1, the constraints can be rewritten as
M<MAXL,M < Land M < L, implying M = L.

O

The linearization step with the above lemma increases the number of constraints
by 3.

A.2 Linearization of Non-linear Formulations

for Task-Level System Partitioning

Function b(e,Y), Equation (3.7)

b(e,Y) can be expressed as follows:

!J((‘, 5') = 1- Z ‘ITLi'I‘f—gEi»;: (,’jm)

P

Let b, = b(e, Y). the above equation can be linearized with Lemma A.1.2 by

replacing mingev, (ym) with A, as follows:

hf-: = 1= z A::p
n
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[

/\::p Ypts Vi e I‘,

)\f.‘p £ Z(’Hp,{ - 1) + 1

i

V

Function t(e,p,Y), Equation (3.8)
t(e.p.Y) can be expressed as follows:
te,p,Y) = maxey, (yp)

t(e,p,Y) can be linearized with Lemma A.1.2 by replacing ., = max ey, (ypt)-

Cc‘:p = ie,pY)
Cr:p = Ypt, te 1 |'
Cﬂp < Z Ypt

tel]

%

Task Partition Pin Metric Function, T PartPin(p,Y,U)

Let XTPPIN, = TPartPin(p,Y,U) and XBW, = BusWidth(e,U). By
substituting b, = b(e, V) and (, = t(e,p,Y), TPartPin(p,Y,U) can be written

as follows:

XTPPIN, = Z be X (op X X BW,
=y
According to Lemma A.1.3, we can replace b, X (,, with dep- Then,
XTPPIN, = Z Oep X X BW,

el

where d,, is subject to following additional constraints according to Lemma A.1.3:

Oe p < b

ep S Cfﬁ r

O‘ﬁp > Ct:;rr + b, —1

)
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We can further linearize the above equation by replacing d,, x X BW, with Oep

and the following additional constraints:

%

O, > 0, % MAXBW
O, < XBW,
Oy > XBW,+ (3, —1) x MAXBW

(A

Task Partition Size Metric Function, T PartSize(p, Z,Y, X, U)

Let XTPSIZE, = TPartSize(p, Z,Y,X,U) and XTSIZE, = TaskSize(t, Z).

Then, the equation for TaskSize(t, Z) can be written as follows:

XTPSIZE, = % 4y X #qy x XTSIZE, x WBy x AVGGATESIZE, +
d ot

S" XTPPIN, x ©4, x PADSIZE,
d

Let Agpt = ypt X Tgp X XTSIZE; and Ay, = XTPPIN, X Typ. Then,

XTPSIZE, = 3.3 Aay x WByx AVGGATESIZEy+)_ Ay x PADSIZE,
d i

We need to linearize Agy. Let Ygp = Ype X Tap. Then, Ay = Ype X XTSIZE;. Tt

can be linearized by Lemma A.1.4 as follows:

Agpt = XTSIZE,+ (Yam — 1) x MAXTSIZE
Kaw & XTSIZE,

Agpt € Yape X MAXTSIZE

Y

According to Lemma A.1.3, the new binary variable g is subject to the

following additional constraints:

IA

Vdpt Yt

A

Fdpt = Tdp

Ydpt = Tdp + Ydp — 1
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Finally, Ay, is subject to the following additional constraints:

Agp > XTPPIN,+ (g —1) x MAXTPPIN
Ad‘p < Tap X MAXTPPIN

Task Cost Metric Function, T'PartCost(p, Z,Y, X,U)

1000.0

800.0

600.0

400.0 -

Die Cost ($)

200.0

4E+8 6E+8 8E+8
Die Size (].1m2)

0.0 2E+8

Figure A.1: Piece-wise approximation of die cost vs. die size for the standard cell
implementation

TPartCost(p, Z,Y, X,U) can be linearized by a piece-wise linear approximation
as shown Figure A.1. Let XTPCOST, = T PartCost(p, Z,Y, X,U) and let
R={i, : i = [Sr1 Sr41),Urir = {5:0 < s < MAXTPSIZE}, 7 =1, 2, .y} Let
A, and B, be the slope and offset of the line approximating XTPCOST, within

range r as follows (see Figure A.1):

Vied(Sps1) — Yield(S,)

.-"11- = 1'.:1:2:---:”
Sr+l - SJ‘ I
Br _ Y‘i(j(f(sr)sr+l — .}"f-.(;’»“r-(ts‘r_}_l)s;"’ = ']7’ ?_‘l_ e n
Sr+l - Sr
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We also introduced a new binary variable trp defined below:

o |1 WS SXTPSIZE, <5,
a 0 if S, > XTPSIZE, or S,41 < XTPSIZE,

The above definition can be linearized as follows:
XTPSIZE, < zy,.p X Srii
T

XTPSIZE, > Y ppX S,

The following equation ensures that only one Iy can take on the value 1 for a

non-empty partition p.
Z Hep = ?ni‘”t(‘.’/pt)
r

With Lemma A.1.2, we can linearize the above equation by substituting

ming(ype) with 7, as follows:

ZUFP = iy
r

T 2 Upt
Tp S Z U pt
t

Then we can express the piece-wise approximation in linear form as follows:

XTPCOST, ~ S A, % iy, x XTPSIZE, + 3" By X jin

In order to linearize the above equation, we substitute ®,, = pi,p X XTPSIZE,,

XTPCOST, = Z Ap x Oy + Z B, X Hep
r r
where ®,, is subject to following constraints:

d., < ppp Xx MAXTPSIZE



&, < XTPSIZE,
b,y > XTPSIZE,+ (u,p—1)x MAXTPSIZE

Style Constraint for TP, Equation (3.10)

Let XTSTYLE; = TaskStyle(t, Z):

ay, > mazey, (XTSTYLE,), Yt €V,

= yux XTPSTYLE, Vi€V (A1)
B, < miney,(XTSTYLE), Vi€V,
= yu x ISTYLE,, Vi € (A.2)

Then, for a given partition p, in order to satisfy the constraint given in Equation
(3.10),

ety = iy (A.3)
Therefore, the validity constraint given in (3.10) can be replaced with Equation
(A.1)-(A.3).

With Lemma A.1.4, Equation (A.1) can be linearized by replacing
ypo X XTPSTY LE; with Uy, as follows:

oy > zspf.
where U, is subject to the following constraints:

Up < X MAXISTYLE
U, < XTPSTYLE,

Up = XTPSTYLE +(y—1) X MAXISTYLE
Similarly, Equation A.2 can be linearized as follows:

."3;; S Unl
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where MANTSTY LE is the maximum value of ISTYLE and in this case, it is
MAXISTY LE = 2. For each p, the above linearization step increases the

number of constraints hy 2V — 1.

A.3 Linearization of Non-linear Die Selection

Formulation

Function Mapping Constraint for DS

Since miny(y,:) was linearized with 7, the function mapping constraint can be

written as follows:

Saw =
b

Die Size Metric Function, DieSize(p, Z,Y, X, U)

In order to linearize partition metric functions for DS, we need introduce the

following binary variable:
1 if XTPSTYLE,=q
Ny =
" 0 if XTPSTYLE, #q

where ¢ € Q).
Since each non-empty task partition must have one and only one design style, the

following two constraints are necessary.
XTPSTYLE, = Z”I"l q
q

Yy = T
q
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Let XDSSIZE, = DieSize(p, Z,Y, X,U). Then, Equation (3.12) can be

expressed:

XDSSIZE, = Y nyx XTPSIZE,+ ¥ npy x 324 x DSIZE,

= > X XTPSIZE,+ Y. Y mp, X 24y x DSIZE,

GEQw GEQy d
By substituting =,, = n,, x XTPSIZE, and 14, = n,, X 4y, the above

equation becomes,

XDSSIZE, = ) Sp+ Y. O 7y X DSIZE,

JEQw qgeQy b

where =, and 7y, are subject to the following constraints:

Ndpg = Mg

Ndpg < Tip

Ndpg = Tpg + Tap — 1

Spg £ Ny x MAXTPSIZE

=,, < XTPSIZE,

Zpg = XTPSIZE,+ (npg—1) x MAXTPSIZE

Die Pin Metric Function, DiePin(p,Y, X, U)

Let XDSPIN, = DiePin(p,Y, X,U). Then, Equation (3.13) becomes,

‘\»DSPIA‘-}; = Z ”‘pq X JYTPPI.{\FP -+ z Z ”’pr} X .’I.'dp K DPI;\':d
GEQy 9EQy d

Because term 1, X x4, is already linearized, we replace it with 7y,,. Let
Epy = Mgy X XTPPIN,.

‘\—D‘SPI-'\rjr == Z qu + Z Z ”ﬂ’;ﬂl[ X DPATJ\"’(]
1EQu qeEQf d
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where &,, introduces the following constraints:

épq 2 J\-Tpplf\rp -+ (H-.,-,q = ]) X MAXTPPIN
&, < XTPPIN,
&0 < npg X MAXTPPIN

Die Cost Metric Function, DieCost(p, Z,Y, X, U)

Let XDSCOST, = DieCost(p,Z,Y, X,U) and
XTPCOST, =TPartCost(p, Z,Y,X,U). Then Equation (3.14) can be rewritten

as follows:

XDSCOST, = . nyyx XTPCOST,+ ¥ S fipy X Zgp x DCOST,

1EQn qeEQy b

Let Qg = npy X DCOST,. Then,

XDSCOST, = ¥ Qu+ 3 3 nup X DCOST,

qeQ, qeQy b

where (), is subject to [ollowing constraints:

Oy < Npg x MAXDCOST
0,, < DCOST,
Q,, > DCOST,+ (ny, —1) x MAXDCOST

Average Gate Size, Pad Size, and Routing-Area-Ratio

Metric Functions

Equation (3.15),(3.17), the metric functions for the average gate size, and the

routing-area-ratio of a chosen die can be linearized easily by setting the value in
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the corresponding library element, i.e., by letting AVGGATESIZE,; =1 and
WBy=1 for g € Q,, Equation (3.15),(3.17) are simplified as follows:

AvgGateSize(p, X) = > a4 x AVGGATESIZE,
deD

WB(p,X) = Z Tap X W By

deld

A.4 Linearization of System Metric Functions

Modified System Cost Metric Function

We do not consider MCMs in the MILP model and further simplify the system
cost metric function by assuming n — oc. Then, Equation 3.25 must be modified

as follows:

COST, = Z DieCost(p, Z,Y, X,U) + PkgCost(p, W)

peC

Linearization of System Performance Metric Function

In order to make the equation computing DELAY)u, linear, we need to linearize

the following term in Equation (3.25):

VOL, - BusCycle(e,U)

CommDelayle) = — g Widshie, U}

L(?l /\-DPB [TE_ = BusCycle(e,l]) |

BusWidth(e,l') "

CommDelay(e) = VOL.x XDPBIT,

Then X DBPIT, can be simplified as follows:

BusCycle(e,U)
BusWidih(e,U)
Yy upe X BCYCLE,
Sy upe x BWIDTH,

XDPBIT, =
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- T BCYCLE,
~ Z«™¢" BWIDTH,

Linearization of System TTM Metric Function

SysternTTM(A) is used as an objective function in our MILP model but
Equation (3.28) is not appropriate to be used for the objective function as it is,
since there can be a number of different architectures with the same TTM but
the characteristics of the architectures in other system metric are quite different.
Therefore, we modified Equation (3.28) as follows such that an architecture with

smaller implementation size is preferred among solutions having the same TTM.

Obj = > XTPSIZE, x (FabTime(p, X) + PkgTime(p,W)) (A.4)

2
In order to linearize the above equation, we take advantage of the following facts:

1. the time for fabrication and packaging for FPGA implementation is equal

to 0, and

2. the times for packaging for both the gate array and the standard cell

implementations are equal.

Since the fabrication and packaging time of a chip differ only by the physical
design styles, T'Fab and T Pkg can have only finite number of values depending
on the design styles. Let TFab= {TF,:q€ Q} and TPkg = {TK,: q € Q}. Let
GA and SC denote the gate array and standard cell design style respectively. Let
P,={p: XTPSTYLE, = q,p € P}. Then, Equation (A.4) can be expressed as

follows:

Obj = Y XTPSIZE, x (FabTime(p, X) + PkgTime(p, W)) +
PFPGA
> XTPSIZE, x (FabTime(p, X) + PkgTime(p, W)) +
PGa

Z XTPSIZE, x (FabTime(p, X') + PkgTime(p, W))

psc
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Since FabTime(p, X') € TFab and PkgTime(p, W) € T Pky,

Ob} = Z J\'TPLS‘.I’ZEI, X (TF;:;':(;_,\ + TI(,!.'[:[},])

PFPCGA

+ > XTPSIZE, x (TFga+ TKga)

PcA

4 Z XTPSIZE, x (TFsc + TKsc)

Ps¢

SiTlCE‘ TF[.‘;:(;__; = TI{F'!-’(,‘_-{ =0 and T]\’(;,—; = TI\'S(; = TI\"C,

Obj = Y XTPSIZE,x (TFga+TKC)+ > XTPSIZE, x (TFsc+TKC)

PaiA pPs¢

= (TFga+TKC)> XTPSIZE,+ (TFsc+TKC)Y XTPSIZE,

PG A PsC
= (TFoa+TKC)Y nyea x XTPSIZE,
p

+(TF5(, + Tf\(rJ Z Npsc X J\—TPSIZEP
p

Let MANUgs = TFga+TKC, MANUse = TFsc + TKC, and
T,y =Ny, X XTPSIZE,. Then

Ob[ = MA ‘T\f'[j”;‘ Z FII,CA + MA I\rbrg(; Z r!,vc,-(;
r P

where T'), 4 and T'p ¢ are subject to the following linearization constraints:

T,oa < Myeax MAXTPSIZE

Tpea & XTPSIZE,

Toca = XTPSIZE,+ (npga—1)MAXTPSIZE
T,sc < Mpsox MAXTPSIZE

Tyse < XTPSIZE,

T,s¢c > XTPSIZE,+ (npsc— 1)MAXTPSIZE
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Appendix B

Complete List of Linearized Formulae

B.1 Definition of Sets

0 = {0,1,2)

@y = { FPGA, gate array }

@, = {standard cell}

R = {ir iy =[S Sp)Uir={s:0< 5 < MAXTPSIZE},r = 1,2,..,n}}
V, = {t: tis connected to ¢ £ € V)

Vo = {t gy = 1}

B.2 Physical Design Style and Architecture Selection
Subproblem
Z 2t = 1
el

Metric Selection Functions

TaskSize(t,Z) = Z zi; X ISTZE;

i
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TaskDelay(t,7) = sz- x IDELAY;
TaskStyle(t, Z) = Z’:ﬁ % TSTY LE;

i

Validity Constraint
TFTYPE, = Y 2z x IFTYPE,
B.3 Task-Level System Partitioning Subproblem
> =1
il

Function b(e,Y)

by = 1-— Z /\r-:p
P

/\up '.U,u.h \j,r E 1:-

’\up 2 Z(ypt - 1) -+ 1
t

IA

Function t(e,p,Y)

Cl:‘j’f
Ct'p S Z Ypt

teVe

IV

Ypts € I;

Task Partition Pin Metric Function, T PartPin(p,Y,U)

XTPPIN, = YO,
el

O = 0ep x MAXBW

en
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0., < XBW,

O > XBW,.+ (0, —1) x MAXBW
b < Do

r)',,.}., < Cep

Jp = Coptbo—1

Task Partition Size Metric Function, T PartSize(p, Z,Y, X, U)

XTPSIZE,

A dpt
Nty
Nyt
Adp
Ad}:
edpt
Vedpt

“Ydpt

AN VAN VAN VA VAN PANSN AV

IV

S5 A x WBy x Ga+ S Agy x PADSIZE,

d L i)
XTSIZE, + (Yape — 1) x MAXTSIZE
XTSIZE,

Yape X MAXTSIZE

XTPPIN, + (zgp — 1) x MAXTPPIN
Tgp X MAXTPPIN

Ypt

Ly

Lap T Ypt — 1

Style Constraint for TP, Equation (3.10)

O

(AN VAN | R VAN A%

%

(o
B
8,
ypt X MAXISTY LE
XTPSTYLE,

XTPSTYLE, +(y—1) x MAXISTYLE



Task Partition Style

XTPSTYLE, = o

Task Partition Cost Metric

XTPCOST,
P, B
P rp

P rp

Z “rp X Sr‘-{-—l
"
Z fip X Sy
D brp
r

I AN IVIVIA A

v

AN

S A x B, + S By X ity

;t.rrp X J‘lf.—lXTP%fZE

XTPSIZE,

XTPSIZE, + (u;p — 1) x MAXTPSIZE
XTPSIZE,

XTPSIZE,
Tp

'.Up.e

Z Unpt

4

B.4 Die Selection Subproblem

Z Ty = Tp
b

Die Size Metric Function, DieSize(p, Z,Y, X,U)

XDSSIZE,

=pq

=pq

=py

Ndpq

vV IA A

A

S Sp+ D D g x DSIZE,

fJGQr.- qEQf d
nyy x MAXTPSIZE
XTPSIZE,

XTPSIZE, + (ny, — 1) x MAXTPSIZE

Npg



[\

Mldpq Ty

V

Ndpg =  Mpg + Tap — 1

S fw-q = XTPSTYLE,

]
Z Tpq
q

Tp

Die Pin Metric Function, DiePin(p,Y, X, U)

XDSPIN,

Z &.-pq + Z Z Ndpg X DPINy

gEQy qeQy d
Npg X MAXTPPIN

XTPPIN,
XTPPIN, + (np, — 1) x MAXTPPIN

Epg
&
Spq

&pq

IA - IA

IV

Die Cost Metric Function, DieCost(p, Z,Y, X, U)

XDSCOST, = ¥ Qu+ 3. 3 1upg x DCOST,
1EQu 4€Q; b

Npy X MAX DCOST
DCOST,
DCOST, + (ny, — 1) x MAXDCOST

Q’P'?
’Q'I”I
QPG

A IA

IV

Metric Selection Function for the Physical Design Style

XDSSTYLE, = > w4 x DSTYLE,

d

Validity Constraints

IV

XDSSIZE, > XTPSIZE,
XDSPIN, > XTPPIN,
XDSSTYLE, = XTPSTYLE,
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B.5 Package Selection Subproblem

> Wip =T
b

Metric Selection Functions

XPKGSIZE, = Y wiyx KSIZE,
i

XPKGCOST, = Z wip X KCOST,
I

XPKGPIN, = Y wy, x KPIN,
.f..

Validity Constraints

XPKGSIZE, > XDSSIZE, (B.1)
XPKGPIN, > XTPPIN, (B.2)

B.6 Bus Selection Subproblem

Z Upe = 1
d

Metric Selection Functions

XBSWIDTH, = Z tpe X Wy
d

XBSOYCLE: = > wiex Dy
d



Validity Constraint

bl;’ = z Upe X brl

d

B.7 User Constraints on the System Metrics and
the Objective Function

B.7.1 The System Cost Constraint
Z XDSCOST,+ XPKGCOST, < GivenCost
p

B.7.2 System Performance Metric Function

Z XTDELAY, + Z Vol, x XDPBIT, < GivenDelay

tepath ecpath

BCYCLE,
XDPBIT, = 3 u Lol
b

* BWIDTH,

B.7.3 Objective Function:Modified System Time-To-Market

Metric Function

Obj = MANUgs S Tpea+ MANUse > Tpsce
Tpoa < Mpga X M,;XTPSIZE '

;01 < XTPSIZE,

T,ca > XTPSIZE,+ (nyca—1)MAXTPSIZE
Tpsc < npscx MAXTPSIZE

T,s¢c < XTPSIZE,

Tosc > XTPSIZE,+ (nysc—1)MAXTPSIZE
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Appendix C

MILP Formulation in the M Language

TITLE mpeg;
i

# Physical Design Style and Architecture Selection Subproblem
#

sisAA:Sig(i:I) (Bz_t_i) = 1 @t{V;

sisB:Sig(i:I)(Bz_t_i * S.i) - LSX_t = 0 @t{V;
sisC:8ig(i:I)(Bz_t_i * D.i) - LDX_t = 0 @t{V;
sisE:Sig(i:I)(Bz_t_i * Q.i) - IQX_t = 0 @t{V;

*

sisF:Sig(i:I)(Bz_t_i * F.i) - F.t = 0 @t{V;
#

# Task-level System Partitioning Subproblem
#

tlpA:Sig(p:P) (By_p_t) = 1 @t{V;
t1pAB:Sig(p:P) (By_p_ex) = 0;

#

# ble,Y)

#

t1pAB:B_e - 1 + Sig(p:P)(Bla_e_p) = 0 Qe{E;
t1pAC:Bla_e_p - By_p_t<= 0 @t{V"e Qe{E @p{P;
t1pAD:Bla_e_p - Sig(t:V7e)( By_p_t - 1) - 1 >= 0 @e{E Cp{P;
#

=1



# t(e,p,Y)

#

tlpS:Bze_e_p - By_p_t >= 0 @t{V e Qe{E @p{P;
tlpT:Bze_e_p - Sig(t:V7e) (By_p_t) <= 0 @e{E @p{ P;
#

# Task Partition Pin Metric Function

it

tlp0:Sig(e:E) (ITH_e_p) - IPX_p = 0 @p{P;
tlpR:ITH_e_p - Bde_e_p * Wmax <= 0 @e{E @p{P;
tlpQ:ITH_e_p - IWX_e <= 0 @e{E @p{P;

tlpP:ITH_e_p - IWX_e - Bde_e_p * Wmax + Wmax >= 0 @e{E @p{P;
tlpU:Bde_e_p - B_e <= 0 @e{E @p{P;

tlpV:Bde_e_p - Bze_e_p <= 0 @e{E @p{P;

tlpW:Bde_e_p + 1 - Bze_e_p - B_e >= 0 @e{E @p{P;
i

# Task Partition Size Metric Function
#

t1pE:Sig(b:B) (Sig(t:T) (LG_b_p_t * WB.b * G.b)) + Sig(b:B) (IDE_b_p *

PAD.b) - LSX_p = 0 @p{P;

t1pF:LG_b_p_t - LSX_t - Bg_b_p_t * Smax + Smax >= 0 @{B @p{P Qt{V;

t1pG:LG_b_p_t - LSX_t <= 0 @b{B @p{P @t{V;

t1pH:LG_b_p_t - Bg_b_p_t * Smax <= 0 @b{B @p{P @t{V;
t1pL:IDE_b_p - IPX_p - Bx_b_p * Pmax + Pmax >= 0 @b{B Cp{P;
tlpM:IDE_b_p - IPX_p <= 0 @b{B @p{P;

t1pN:IDE_b_p - Bx_b_p * Pmax <= 0 @b{B @p{P;

t1pI:Bg_b_p_t - By_p_t <= 0 @b{B @p{P @t{V;

t1pJ:Bg_b_p_t - Bx_b_p <= 0 @b{B Cp{P @t{V;

t1pK:Bg_b_p_t — Bx_b_p - By_p_t + 1 >= 0 @{B Cp{P 0t{V;

#

# Implementations of different design style cannot be assigned
# the same partition

#

to



tlpB:Tal p - Imh_p_t >= 0 @p{P @t{V;

tlpC:Ibeta_p - Imh_p_t <= 0 @p{P @t{V;

tlpD:Ial_p - Ibeta_p = 0 @p{P;

tlpBA:Imh_p_t - By_p_t * Qmax <= 0 @p{P @t{V;

t1pBB:Imh_p_t - IQX_t <= 0 @p{P @t{V;

tlpBC:Imh_p_t - IQX_t - By_p_t * Qmax + Qmax >= 0 @p{P @t{V;
#

# Task Partition Cost Metric Function

#

bsW:LC_p - Sig(r:R) (A.r+LPI_r_p)-Sig(r:R) (B.r*Bmu_r_p) = 0 @p{P;
bsZ:LPI_r_p - Bmu_r_p * Smax <= 0 @r{R @p{P;

bsY:LPI_r_p - LSX_p <= 0 @r{R @p{P;

bsX:LPI_r_p - LSX_p - Bmu_r_p * Smax + Smax >= 0 @r{R @p{P;
bsT:LSX_p-Sig(r:R) (Bmu_r_p * S.{r+1}) < 0 @p{P;

bsU:LSX_p - Sig(r:R)(Bmu_r_p * S.r) >= 0 @p{P;

bsS:Sig(r:R) (Bmu_r_p)-Bta_p =0 @p{P;

1

# Die Selection Subproblem

it

bsA:Sig(b:B) (Bx_b_p) - \Bta_p = 0 @p{P;

bsAB:Bta_p - Sig(t:T) (By_p_t) <= 0 @p{P;

bsAA:Bta_p - By_p_t >= 0 @t{T Cp{P;

#

# Die Size Metric Function

#

bsF:LBSX_p - Sig(q:Qf) (Sig(b:B) (Be_b_p_q * S.b)) - Sig(q:Qv) (LXI_p_q)

= 0 @p{P;
bsL:LXI_p_q - Bn_p_q * Smax <= 0 @p{P @q{Qv;
bsK:LXI_p_q - LSX_p <= 0 @p{P @q{Qv;
bsJ:LXI_p_q - LSX_p - Bn_p_q * Smax + Smax >= 0 @p{P @q{Qv;
bsG:Be_b_p_q - Bn_p_q <= 0 @b{B @p{P @q{Qf;
bsH:Be_b_p_q - Bx_b_p <= 0 @b{B @p{P @q{Qf;
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bsI:Be_b_p_q - Bn_p_q - Bx_b_p + 1 >= 0 @b{B @p{P @q{Qf;

bsE:IQX_p - Sig(q:Q) (Bn_p_q * Q.q) = 0 @p{P;

bsD:Sig(q:Q) (Bn_p_q) - Bta_p = 0 @p{P;

#

# Die Pin Metric Function

#

bsN:IBPX_p - Sig(q:Qf) (Sig(b:B) (Be_b_p_q * P.b)) - Sig(q:Qv) (Ixi_p_q)
= 0 @p{P;

bsQ:Ixi_p_q - Bn_p_q * Pmax <= 0 @p{P @q{Qv;

bsP:Ixi_p_q - IPX_p <= 0 @p{P @q{Qv;

bs0:Ixi_p_q - IPX_p - Bn_p_q * Pmax + Pmax >= 0 @p{P @q{Qv;

it

# Die Cost Metric Function

#

bs0:LBCX_p - Sig(q:Qf) (Sig(b:B) (Be_b_p_q * C.b)) - Sig(q:Qv) (LOM_p_q )
= 0 @p{P;

bs1:LOM_p_q - LC_p <= 0 @q{Qv @p{P;

bs2:LOM_p_q - LC_p - Bn_p_q * Cmax + Cmax >= 0 @q{Qv @p{P;

bs3:LOM_p_q - Bn_p_q * Cmax <= 0 @q{Qv @p{P;

#

# Metric Selection Functions for the Fabtime and the Design Style

#

bsB:IBQX_p - Sig(b:B) (Bx_b_p * Q.b) = 0 @p{P;

#

# Validity Constraints

#

bsM:LBSX_p - LSX_p >= 0 @p{P;

bsR:IBPX_p - IPX_p >= 0 @p{P;

bsC:IQX_p - IBQX_p = 0 @p{P;

#

# Package Selection
#
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psA:Sig(k:K) (Bw_k_p) - Bta_p = 0 @p{P;

#

# Metric Selection Functions

#

psD:LKSX_p - Sig(k:K) (Bu_k_p * S.k) = 0 @p{P;
psG:LKCX_p - Sig(k:K) (Bu_k_p * C.k) = 0 @p{P;
ps:IKPX_p - Sig(k:K)(Bw_k_p * P.k) = 0 @p{P;
#

# Validity Constraints

#

psE:LKSX_p - LBSX_p >= 0 @p{P;
psF:IKPX_p - IPX_p >= 0 @p{P;

#

# Bus Selection Subproblem

#

icE:Sig(b:B) (Bd_e_c)=1 Qe{E;

it

# Metric Selection Functions

it

icA:Sig(b:B) (Bd_e_c * W.c) - IWX_e
icB:Sig(b:B)(Bd_e_c * D.c) - LDX_e
#

0 @e{E;
0 @e{E;

[}

# Validity Constraint

#

icC:Sig(b:B) (Bd_e_c * b.c) - B_e = 0 Qe{E;

#

# User Constraints on the System Metrics and the Objective Function
#

# System Cost

B

CC:Sig(p:P) (LBCX_p) + Sig(p:P) (LKCX_p) <= Cs;

#
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# System Performance

#

TC:Sig(t:T path) (LDX_t)+Sig(e:E"path) (V.e*LBTX_e) - D.path <= 0 @path{PATH;
icD:Sig(b:B)(Bd_e_c * B.c) - LBTX_e = 0 @e{E;

i

# Objective Function

#

0BJ:Sig(p:P) (LGa_p_ga * MANUga)+Sig(p:P) (LG_p_sc*MANUsc) ;
obja:LG_p_ga - n_p_ga * Smax <= 0 Qp{P;

objb:LG_p_ga - LSX_p <= 0 @p{P;

objc:LG_p_ga - LSX_p - n_p_ga % Smax + Smax >= 0 @p{P;
obja:LG_p_sc - n_p_sc #* Smax <= 0 @p{P;

objb:LG_p_sc - LSX_p <= 0 @p{P;
objc:LG_p_sc - LSX_p - n_p_sc * Smax + Smax >= 0 @p{P;
end



Appendix D

The VHDL Descriptions of Tasks in the JPEG
and MPEG examples

In this appendix, the VHDL specifications for tasks in the JPEG and MPEG
examples are listed. The specifications are developed based on a public C impl-
mentation. The first JPEG specification was simulated with ViewLogic VHDL
simulator and part of the first JPEG specification is given here. The first JPEG
specification was customized considerably for VHDL2DDS parser and BEST. Some

of such modifications are as lollows:

1. Data interfaces between tasks through files were removed,

o

“inout” T/O type was removed,

3. Some constants declaration in the JPEG package file were moved to each

task, and
4. Unfixed loops were fixed.

For the MPEG encoder design, a motion estimation description was written.

D.1 JPEG Package

-- jpeg.vhd
-- Types and Functions for JPEG decorder

-- by DongHyun Heo
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== This is for v2dss

—-- Remove inout variables and temporily remove emit_bits
-- Remove assert statement.

-- Remove the body of the function and procedures to

—— reduce the run-time

-- constants are moved to corresponding files

package jpeg is

--type long is array(0 to 31) of vlbit;

type long is array(0 to 31) of bit;

type frame is array( O to 63 ) of integer;
type inttable is array( 0 to 63 ) of integer;
type huftable is array( 0 to 255 ) of integer;
type outbuf is array( O to 63 ) of integer;

constant ZAG : inttable := (
o, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
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53, 60, 61, b4, 47, 55, 62, 63

(

: huftable :=

0, 2, 3, 4, 5, 6, 14, 30,

constant dchufco

62, 126, 254, 510, 0, 0, 0, O,

0, 05, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0; 0, 0, 0,

0; 0; 9; 0; 0; D, 0, 0,
0,

0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, O,

0, 0,

0, 0, 0,

0,

0,

0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,0,0,0,0,0,
0, 0; 0; 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,0, 0,0,
0, 0, 0, 0,0, 0,0, 0,
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o0, 0, 0, 0, 0, 0, 0, O,

g, 0, ¢, 0; 0, 0, ¢, 0,
0, 0, 0, 0, 0, 0, 0, O,

0, 0} 0: O’ 0) 0, 0’ O

3

= (

: huftable

2, 3, 3, 3, 3, 3, 4, 5,

6) 7) 8! 9! O’ O’ 0! O’

constant dchufsi

0, 0, 0, 0, 0, 0, O, O,

o, 0, 0, 0, 0, 0, 0, 0,

o, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, O,

0, 0, 0, 0, 0, 0, O, O,

0, 0, 0, 0, 0, 0, 0, O,

o, 0, 0, 0, 0, 0, 0, O,

O} Ol 0, O, 0’ O’ 0) 0!

Q,; 0, 0, 0, 0y 0, 0, 0,

o, 0, 0, 0, 0, 0, O, O,

06, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 06, 0, 0, O,

0, 0, 0, 0, 0, 0, 0, O,
0, 0, 0,0, 0, 0, 0, 0,

0,0,0,0,0,0,0,0,

0, O, O; 0, 0: 0: Oi 03

o, 0, 0, 0, 0, 0, 0, 0,

o, 0, 0, 0, 0, 0, 0, O,

0, 8, 0, 0, 0, 0, 0, 0,

0o, 0, @, 0, 0, 0, 0, O,

0, 0, 0, 0, 0, 0, 0, O,
¢, 0, 9; 9, 0, 0, 0, 0,

o, 0, 0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0, 0, O,
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¥

constant achufco : huftable := (
10, 0, 1, 4, 11, 26, 120, 248,
1014, 65410, 65411, 0, 0, O, 0, O,
0, 12, 27, 121, 502, 2038, 65412, 65413,
65414, 65415, 65416, 0, 0, 0, 0, O,
0, 28, 249, 1015, 4084, 65417, 65418, 65419,
65420, 65421, 65422, 0, 0, 0, 0, O,
0, 58, 503, 4085, 65423, 65424, 65425, 65426,
65427, 65428, 65429, 0, 0, 0, 0, 0O,
0, 59, 1016, 65430, 65431, 65432, 65433, 65434,
65435, 65436, 65437, 0, 0, 0, 0, O,
0, 122, 2039, 65438, 65439, 65440, 65441, 65442,
65443, 65444, 65445, 0, 0, 0, 0, O,
0, 123, 4086, 65446, 65447, 65448, 65449, 65450,
65451, 65452, 65453, 0, 0, 0, 0, O,
0, 250, 4087, 65454, 65455, 65456, 65457, 65458,
65459, 65460, 65461, 0, 0, 0, 0, O,
0, 504, 32704, 65462, 65463, 65464, 65465, 65466,
65467, 65468, 65469, 0, 0, 0, 0, O,
0, 505, 65470, 65471, 65472, 65473, 65474, 65475,
65476, 65477, 65478, 0, 0, 0, 0, O,
0, 506, 65479, 65480, 65481, 65482, 65483, 65484,
65485, 65486, 65487, 0, 0, 0, 0, O,
0, 1017, 65488, 65489, 65490, 65491, 65492, 65493,
65494, 65495, 65496, 0, 0, 0, 0, O,



0, 1018, 65497, 65498, 65499, 65500, 65501, 65502,
65503, 65504, 65505, 0, 0, 0, 0, O,

0, 2040, 65506, 65507, 65508, 65509, 65510, 65511,
65512, 65513, 65514, 0, 0, 0, O, O,

0, 65515, 65516, 65517, 65518, 65519, 65520, 65521,
65522, 65523, 65524, 0, 0, 0, 0, O,

2041, 65525, 65526, 65527, 65528, 65529, 65530, 65531,
65532, 65533, 65534, 0, 0, 0, 0, O

);

constant achufsi : huftable := (

4; 2, 2, 3, 4; by
10, 16, 16, 0, O,

7, 8,
0, 0, 0,

0, 4, 5, 7, 9, 11, 16, 16,

16, 16, 16, 0, 0,
0, 5, 8, 10, 12,

16, 16, 16, 0, 0,
0, 6, 9, 12, 16,

16, 16, 16, 0, 0,
0, 6, 10, 16, 16,
16, 16, 16, 0, 0,
0, 7, 11, 16, 16,
16, 16, 16, 0, 0,
0, 7, 12, 16, 16,
16, 16, 16, 0, 0,
0, 8, 12, 16, 16,
16, 16, 16, 0, 0,
0, 9, 15, 16, 16,
16, 16, 16, 0, 0,
0, 9, 16, 16, 16,
16, 16, 16, 0, 0,
0, 9, 16, 16, 16,
16, 16, 16, 0, 0,

0, 0, 0,

16, 16, 16,

&; 0: 0;

16, 16, 16,

0, 0, 0,
16, 16, 16,
0, 0, 0,
16, 16, 16,
0, 0, 0,
16, 16, 16;
o, 0; 0,
16, 16, 16,
0, 0, 0,
16, 16, 16,
0, 0, 0,
16, 16, 16,
0, 0, 0,
16, 16, 16,
0; 0, 0,
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0, 10, 16, 16, 16,

16, 16, 16,

16, 16, 16, 0, 0, 0, 0, 0,

0, 10, 16, 16,
16, 16,
0, 11, 16, 16,

16, 16, 16, 16,
16, 0, 0, 0, 0, 0,
16, 16, 16, 16,

16, 16, 16, 0, 0, 0, 0, 0,

0, 16, 16, 16, 16,
16, 16,

16, 16, 16,
16, 0, 0, 0, 0, O,

11, 16, 16, 16, 16, 16; 16, 16,

16, 16, 16, 0, 0, 0, 0, O

function int2long( n :
function long2int ( s :
function iOR ( x

function 1iAND ( x :

function rshlong( x: integer; n :
function lshlong( x: integer; n :

function arshlong( x: integer; n :

function descale( x: integer; n :

procedure emit_bits ( code :
size :
huff_put_buffer_in :
huff_put_buffer_out
huff_put_bits_in
huff_put_bits_out

output_buffer :

: integer; y :

integer; y

integer ) return long;

long ) return integer;

integer ) return integer;
: integer ) return integer;
integer ) return integer;

integer ) return integer;

integer ) return integer;

integer;
integer;

integer;
: OUT integer;
: integer,

: OUT integer;
0UT outbuf;

integer ) return integer;
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bytes_in_buffer_in : integer;
bytes_in_buffer_out: out integer );

end jpeg;

function int2long ( n : integer ) return long is
variable FourByte : long;

variable i, m : integer;

begin

return FourByte;

end int2long;

function long2int ( s : long ) return integer is

variable i, it : integer;

variable t : long;
begin

return it;

end long2int;
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function iOR ( x : integer; y :
variable bz : long;
begin

return long2int(bz);

end;

function iAND ( x : integer; y :

variable bz : long;

begin
return long2int(bz);

end;

function 1lshlong( x: integer; n

variable iz, m : integer;

begin

integer ) return integer is

integer ) return integer is

: integer ) return integer is
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while (m > 0 ) loop

=]
N
I
[
N
*
e

2
Il

3
I

=

end loop;

return iz;

end 1lshlong;

function rshlong( x: integer; n : integer ) return integer is
variable z, m : integer;
begin

return z;

end rshlong;

function arshlong( x: integer; n : integer ) return integer is
variable z : integer;
begin

return rshlong( z, n );

end arshlong;

=t
=
[RV)



function descale( x: integer; n : integer ) return integer is

begin
return arshlong( x + lshlong( 1, n-1 ), n);

end descale;

procedure emit_bits ( code : integer;
size : integer;
huff_put_buffer_in : integer;
huff_put_buffer_out : out integer;
huff_put_bits_in : integer;
huff_put_bits_out : out integer;

output_buffer : out outbuf;

bytes_in_buffer_in : integer;

bytes_in_buffer_out : out integer ) is

variable put_buffer : integer;
variable put_bits : integer;
variable c¢ : integer;

variable huff_put_buffer : integer;
variable huff_put_bits : integer;

variable bytes_in_buffer : integer;

begin

end emit_bits;



end jpeg;

D.2 Forward DCT Specification

—— dct.vhdl

—= SsSource :

from dct.vhdl

-- constant in the loop condition is replaced with the real value

use work.jpeg.all;

entity dct

is

port( indata : in frame

end dct;

outdata :

architecture behavior of dct is

constant
constant
constant

constant

constant

constant

constant
constant
constant
constant
constant

constant

DCTSIZE : integer

= 8;

DCTSIZE2 : integer := 64;

CONST_BITS : integer :
PASS1_BITS : integer :

XFF : integer :
XFO : integer :

FIX_0_298631336 :

FIX_0_390180644

FIX_0_541196100 :

FIX_0_765366865

255;
240;

integer :
integer :
integer :
: integer :
FIX_0_899976223 :
FIX_1_175875602 :

integer :

integer :

13;
2y

out frame );

2446;
3196;
4433;
6270;
T373;
9633;
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constant FIX_1_501321110 : integer := 12299;
constant FIX_1_847759065 : integer := 15137;
constant FIX_1_961570660 : integer := 16069;
constant FIX_2_053119869 : integer := 16819;
constant FIX_2_562915447 : integer := 20995;
constant FIX_3_072711026 : integer := 25172;

begin

dct:process

variable tmpO, tmpl, tmp2, tmp3, tmp4,

tmp5, tmp6, tmp7 : integer;
variable tmpl0, tmpll, tmpl2, tmpl3 : integer;
variable =z1, z2, z3, z4, z5 : integer;
variable I, J: integer;
variable data : frame;

variable L, M : integer;

begin
I == 0;

while (I < 8) loop
L:= I*#*DCTSIZE; M:=I*DCTSIZE+7;

indata(L) + indata(M);
tmp7 := indata(L) - indata(M);
L:= I+«DCTSIZE+1; M:=I*DCTSIZE+6;

tmp0 :

I

tmpl := indata(L) + indata(M);

I

tmp6 := indata(L) - indata(M);
L:= I*DCTSIZE+2; M:=I#DCTSIZE+5;
indata(L) + indata(M);
tmp5 := indata(L) - indata(M);
L:= T*DCTSIZE+3; M:=I+DCTSIZE+4;

tmp2 :



Il

tmp3 := indata(L) + indata(M);

tmp4 := indata(L) - indata(M);

-— Even part per LL&M figure 1

-- note that published figure is faulty;

-- rotator "sqrt(2)*cl" should be "sqrt(2)*c6".

tmpl0 := tmp0 + tmp3;
tmpl3d := tmp0 - tmp3;
tmpll := tmpl + tmp2;
tmpl2 := tmpl - tmp2;

L := I*DCTSIZE; M:= I*DCTSIZE+4;
data(L) := 1shlong( tmplO+tmpll, PASS1_BITS);
data(M) := 1shlong( tmplO-tmpll, PASS1_BITS);

z1 := (tmpi2+ tmp13)* FIX_0_541196100;

L := I%«DCTSIZE+2; M:= I*DCTSIZE+6;

data(L) := descale( zl+tmpl3*FIX_0_765366865,
CONST_BITS-PASS1_BITS) ;
data(M) := descale( zl-tmpl2+FIX_1_847759065,

CONST_BITS-PASS1_BITS);

-- 0dd part per figure 8
-- note paper omits factor of sqrt(2).
-- cK represents cos(K+pi/16).

-- 10..13 in the paper are tmp4..tmp7 here.

z1l := tmp4d + tmp7;
z2 := tmp5 + tmp6;
z3 := tmp4d + tmp6;
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zd :=
zb =

tmp4
tmpS
tmp6
tmp7

zl :=
z2 =
z3 :=

z4 :=

Z3 =
z4 =

L := I*DCTSIZE+T;

data(L) :=descale(tmp4

+

z1 + z3, CONST_BITS-PASS1_BITS);

L := I*DCTSIZE+5;

data(L) :=descale(tmp5

+

z2 + z4, CONST_BITS-PASS1_BITS);

L := I+#DCTSIZE+3;

data(L) :=descale(tmp6

+

z2 + z3, CONST_BITS-PASS1_BITS);

L := I*DCTSIZE+1;

data(L) :=descale(tmp7

+

zl + z4, CONST_BITS-PASS1_BITS);

I :=1+ 1; -- advance pointer to next row

end loop;

-- 2nd phase of DCT

--wait until clk = ’1’;

I :=0;

tmpS + tmp7;

(z3+ z4)*FIX_1_175875602; -- sqrt(2) * c3

:=tmp4 * FIX_0_298631336; -- sqrt(2) * (-cl+c3+c5-c7)
:=tmp5 * FIX_2_053119869; -- sqrt(2) * ( cl+c3-c5+c7)
:=tmp6 * FIX_3_072711026; -- sqrt(2) * ( cl+c3+c5-c7)
:=tmp7 * FIX_1_501321110; -- sqrt(2) * ( cl+c3-c5-c7)
- z1 * FIX_0_899976223; -- sqrt(2) * (c7-c3)

- z2 % FIX_2_562915447; -- sqrt(2) * (-cl-c3)

- 2z3 * FIX_1_961570560; -- sqrt(2) * (-c3-cb)

- z4 * FIX_0_390180644; -- sqrt(2) * (c5-c3)

Zz3 + Zhs

z4 + zb5;



while ( I < 8 ) loop
L :=1I; M:= DCTSIZE*7+1;

tmp0 := data(L) + data(M);
tmp7 := data(L) - data(M);
L := DCTSIZE#1+I; M:= DCTSIZE#6+I;

tmpl := data(L) + data(M);
tmp6 := data(L) - data(M);
L := DCTSIZE*2+I; M:= DCTSIZE#5+I;
tmp2 := data(L) + data(M);
tmp5 := data(L) - data(M);

L := DCTSIZE*3+I1; M:= DCTSIZE*4+I;
tmp3 := data(L) + data(M);
tmp4 := data(L) - data(M);

- Even part per LL&M figure 1
- note that published figure is faulty;
- rotator "sqrt(2)*cl" should be "sqrt(2)*c6".

tmpl0 := tmpO0 + tmp3;
tmpl3 := tmp0 - tmp3;
tmpll := tmpl + tmp2;
tmpl2 := tmpl - tmp2;

L := DCTSIZE#0+I; M:= DCTSIZE#4+I;
descale(tmpl0 + tmpll, PASS1_BITS+3);
descale(tmpl0 - tmpll, PASS1_BITS+3);

outdata(L) <
outdata(M) <

I

z1l := (tmpl2 + tmpl3) #* FIX_0_541196100;

L := DCTSIZE#2+I; M:= DCTSIZE*6+I;

descale(zl + tmpl3 * FIX_0_765366865,
CONST_BITS+PASS1_BITS+3);

descale(zl - tmpl2 * FIX_1_847759065,

]

outdata(L) <

I

outdata(M) <
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CONST_BITS+PASS1_BITS+3);

-- 0dd part per figure 8

-- note paper omits factor of sqrt(2+I).

-- cK
-~ 10

zl :=
z2 :=
z3 :=
z4d :=

z5 =

tmp4d :
tmpb
tmp6 :
tmp7

zl :=
z2 =
z3 :=

z4 =

23 =
z4 :=

repres

..13 in

tmp4d +
tmpb +
tmpd +
tmpS +
(z3 +

I

tmp4

]

tmpb

I

tmpb6

tmp7
-zl *
-z2 *
-z3 *

-z4 *

23 + =z

zd + z

ents cos(Kxpi/16+I).
the paper are tmp4..tmp7 here.

tmp7;

tmp6;

tmp6;

tmp7;
z4)* FIX_1_175875602; -- sqrt(2) * c3
*FIX_0_298631336; —-- sqrt(2) * (-cl+c3+c5-c7)
*FIX_2_053119869; -- sqrt(2) * ( cl+c3-c5+c7)
*FIX_3_072711026; -- sqrt(2) * ( cl+c3+c5-c7)
*FIX_1_501321110; -- sqrt(2) * ( cl+c3-c5-c7)
FIX_0_899976223; -- sqrt(2) * (c7-c3)
FIX_2_562916447; -- sqrt(2) * (-cl-c3)
FIX_1_961570560; -- sqrt(2) * (-c3-c5)
FIX_0_390180644; -- sqrt(2) * (c5-c3)

5;
5;

L := DCTSIZE*7+I;
outdata(L)
CONST_BITS+PASS1_BITS+3);
L := DCTSIZE=5+1;
outdata(L)
CONST_BITS+PASS1_BITS+3);
L. := DCTSIZE#*3+I;

<= descale(tmpd + zl + z3,

<= descale(tmp5 + z2 + z4,
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outdata(L) <= descale(tmp6 + z2 + z3,
CONST_BITS+PASS1_BITS+3) ;
L := DCTSIZE*1+T;
outdata(L) <= descale(tmp7 + zl + z4,
CONST_BITS+PASS1_BITS+3) ;
I =1+ 1; -— advance pointer to next column
end loop; -- end 2nd phase

end process;

end behavior;

D.3 Quantizer Specification

—-- quantizer.vhd
-- source : converted from the public domain jpeg software
-- remove vlbit;
use work.ijpeg.all;
entity quantizer is

port( data : in frame; quanttbl : in frame;

ZAG : in inttable; outputdata : out frame);

end quantizer;
architecture behavior of quantizer is

begin
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quantizer

variable

variable

variable

variable

begin
I :=0;
J = 0;

. process

temp : integer;

I, J : integer;

n : integer;

b : boolean;

while ( I < 64 ) loop

temp :=

data (ZAG(I));

-- divide by quanttbl[J], ensuring proper rounding

if (temp < 0)

then
temp
temp
temp
temp

else
temp
temp

end if;

i= —temp;

:= temp + rshlong( quanttbl(J), 1 );
:= temp/quanttbl(J);

= —temp;

:= temp + rshlong(quanttbl(J), 1);
:= temp/quanttbl(J);

outputdata(I) <= temp;



I =1+ 1;
Jd = J #1;
end loop;

end process;

end behavior;
D.4 Huffman Encoding Specification

-- huff.vhd
-- source : converted from the public domain jpeg software
—— declare the input at port
-— the iteration of a loop is fixed.
-- inout type is seperated into in and out type
use work.jpeg.all;
entity huffman is
port( data : in frame; output_buffer : out outbuf );
end huffman;
-- Encode the DC coefficient difference per section F.1.2.1
architecture behavior of huffman is

begin

huffman : process



variable temp, temp2, nbits, r, i, j, k : integer;
variable data : frame;

variable huff_put_buffer : integer;

variable huff_put_bits : integer;

variable output_buffer : outbuf;

variable bytes_in_buffer : integer;

variable i2 : integer;

begin

-— Initialize variables
huff_put_buffer :
huff_put_bits = 0;

Il
o

bytes_in_buffer :

I
o

data(0);

temp2 :
temp := temp2;

if (temp < 0)
then
temp := -temp; -- temp is abs value of input
-- For a negative input,
-- want temp2 = bitwise complement of abs(input)
-- This code assumes we are on a two’s complement
-- machine
temp2 := temp2 - 1;

end if;

-- Find the number of bits needed for the magnitude of the

-— coefficient
nbits := 0;
1:=0;
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while(i < 16 ) loop
--while (temp > 0) loop

--nbits := nbits + 1;

nbits := nbits + 1;

temp := rshlong( temp, 1);
i = i+1;

end loop;

-- Emit the Huffman-coded symbol for the number of bits
emit_bits(dchufco(nbits), dchufsi(nbits),
huff_put_buffer, huff_put_buffer,
huff_put_bits, huff_put_bits, output_buffer,
bytes_in_buffer, bytes_in_buffer );

-- Emit that number of bits of the value, if positive,
-- or the complement of its magnitude, if negative.
if (nbits /= 0) -- emit_bits rejects calls with size 0
then
emit_bits( temp2, nbits,

huff_put_buffer, huff_put_buffer,

huff_put_bits, huff_put_bits, output_buffer,

bytes_in_buffer, bytes_in_buffer ¥

end if;
-- Encode the AC coefficients per section F.1.2.2
r =0 =- r = run length of zeros
k :=1;

while ( k < 64 ) loop

temp := data(k);
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if ( temp = 0 )
then
r = r ¥ L

else

== 1if run length > 15,

-- must emit special run-length-16 codes (0xF0)

--while ( r > 15 ) loop

if ( r > 15) then

emit_bits( achufco(240), achufsi(240),

huff_put_buffer, huff_put_buffer,
huff_put_bits, huff_put_bits, output_buffer,
bytes_in_buffer, bytes_in_buffer );

r := 1 - 16;
end if;
--end loop;

temp2 := temp;

if (temp < 0)
then
temp := -temp; -- temp is abs value of input
-- This code assumes we are on a two’s complement
-- machine
temp2 := temp2 - 1;

end if;

-- Find the number of bits needed for the magnitude

-- of the coefficient

nbits := 1; -- there must be at least one 1 bit

temp := rshlong( temp, 1);
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i2 = 0;
while ( i2 < 16 ) loop
--while (temp > 0 ) loop
nbits := nbits + 1;
temp := rshlong( temp, 1);
i2 = 12 + 1;
end loop;

-= Emit Huffman symbol for run length / number of bits

i := lshlong(r, 4) + nbits;

emit_bits(achufco(i), achufsi(i),
huff_put_buffer, huff_put_buffer,
huff_put_bits, huff_put_bits, output_buffer,
bytes_in_buffer, bytes_in_buffer );

-- Emit that number of bits of the value, if positive,

-- or the complement of its magnitude, if negative.
emit_bits( temp2, nbits,
huff_put_buffer, huff_put_buffer,

huff_put_bits, huff_put_bits, output_buffer,
bytes_in_buffer, bytes_in_buffer );

end loop;

-- If the last coef(s) were zero,
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-- emit an end-of-bdata code

if (r > 0)
then
emit_bits(achufco(0), achufsi(0),
huff_put_buffer, huff_put_buffer,
huff_put_bits, huff_put_bits, output_buffer,

bytes_in_buffer, bytes_in_buffer );
end if;

end process;

end behavior;

D.5 Inverse DCT Specification

use work.ijpeg.all;
entity idct 1is
port( indata : in frame; outdata : out frame ¥
end idct;
architecture behavior of idct is
begin
idct : process
variable tmpO, tmpl, tmp2, tmp3 : integer;
variable tmpl0Q, tmpll, tmpl2, tmpl3 : integer;
variable zl, z2, z3, z4, z5 : integer;

variable I : integer;
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variable data : frame;

begin

I :=8-1;
while (I >= 0) loop

-- Even part: reverse the even part of the forward DCT.

-— The rotator is sqrt(2)*c(-6).

z2
ot I

indata(8*I+2);
indata (8*I+6) ;

z1l := (z2+z3)#* FIX_0_541196100;
tmp2 := zl1l - z3 * FIX_1_847759065;

tmp3 := zl1 + z2 * FIX_0_765366865;

tmp0 := 1lshlong((indata(8*I+0) + indata(8*I+4)), CONST_BITS);
tmpl := lshlong((indata(8*I+0) - indata(8+I+4)), CONST_BITS);
tmpl0 := tmp0 + tmp3;

tmpl3 := tmp0 - tmp3;

tmpll := tmpl + tmp2;

tmpl2 := tmpl - tmp2;

-- 0dd part per figure 8; the matrix is unitary and hence its
-- transpose is its inverse.

-- i0..i3 are y7,y5,y3,yl respectively.

tmp0 := indata(8+I+7);
tmpl := indata(8*I+5);
tmp2 := indata(8*I+3);
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tmp3 := indata(8*I+1);

zl := tmp0 + tmp3;
z2 := tmpl + tmp2;
z3 := tmp0 + tmp2;
z4 := tmpl + tmp3;

zb := (23 + z4)* FIX_1_175875602; -- sqrt(2) #* c3

tmp0 := tmp0 * FIX_0_298631336; -- sqrt(2) * (-cl+c3+c5-c7)
tmpl := tmpl * FIX_2_053119869; -- sqrt(2) * ( cl+c3-c5+c7)
tmp2 := tmp2 * FIX_3_072711026; -- sqrt(2) * ( cl+c3+c5-c7)
tmp3 := tmp3 * FIX_1_501321110; -- sqrt(2) * ( cl+c3-c5-c7)
z1 := - z1 * FIX_0_899976223; -- sqrt(2) * (c7-c3)

z2 := - z2 * FIX_2_562915447; -- sqrt(2) * (-cl-c3)

z3 := - z3 % FIX_1_961570560; -- sqrt(2) * (-c3-cb)

z4 := - z4 * FIX_0_390180644; -- sqrt(2) #* (c5-c3)

z3 := z3 + zb;

z4 = z4 + zb;

tmp0 := tmp0 + z1 + 23;
tmpl := tmpl + z2 + z4;
tmp2 := tmp2 + z2 + z3;
tmp3 := tmp3 + zl + z4;

-- Final output stage: inputs are tmp10..tmp13, tmp0..tmp3

data(8*I+0) := descale(tmpl0 + tmp3, CONST_BITS-PASS1_BITS);
data(8+I+7) := descale(tmpl0 - tmp3, CONST_BITS-PASS1_BITS);
data(8%I+1) := descale(tmpil + tmp2, CONST_BITS-PASS1_BITS);
data(8*I+6) := descale(tmpll - tmp2, CONST_BITS-PASS1_BITS);
data(8+I+2) := descale(tmpl2 + tmpl, CONST_BITS-PASS1_BITS);
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I

data(8*I+5) descale(tmpl2 - tmpl, CONST_BITS-PASS1_BITS):

data(8+I+3) := descale(tmpl3 + tmp0O, CONST_BITS-PASS1_BITS):
data(8*I+4) := descale(tmpi3 - tmp0, CONST_BITS-PASS1_BITS);
Le=1I-=15

end loop; -- while

-— Pass 2: process columns.
-— Note that we must descale the results by a factor of

-- 8 == 2%%3, and also undo the PASS1_BITS scaling.

I := 8-1;
while( I>=0 ) loop
-- Even part: reverse the even part of the forward DCT.

-- The rotator is sqrt(2)*c(-6).

z2
z3

data (I+8%2);
data (I+8%*6);

z1l := (z2 + z3)* FIX_0_541196100;

tmp2 := zl - z3 % FIX_1_847759065;

tmp3 := zl + z2 * FIX_0_765366865;

tmp0 := 1lshlong(( data(8*0) + data(8*4)), CONST_BITS);
tmpl := lshlong(( data(8*0) - data(8%4)), CONST_BITS) ;
tmpl0 := tmpO + tmp3;

tmpl3 := tmp0 - tmp3;

tmpll := tmpl + tmp2;

tmpl2 := tmpl - tmp2;

-- 0dd part per figure 8; the matrix is unitary and hence 1its
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-- transpose is its inverse.

-- 10..13 are y7,y5,y3,yl respectively.

tmp0
tmpl
tmp2
tmp3

zl :=
zd =
z3 :=
z4d :=
zh =

tmp0
tmpl
tmp2
tmp3

zl :=
z2 =
z3 :=

z4 =

z3 =
z4 =

tmp0 :
tmpl :
tmp2 :

tmp3

tmp0 +
tmpl +
tmp0 +
tmpl +

:= tmp0
:= tmpl
1= tmp2
:= tmp3

-zl *
= Z2 *
- z3 *

- z4 *

Z3 =

z4 +

]

tmp0

1l

tmpl

I

tmp2

1= tmp3

tmp3;

tmp2;

tmp2;

tmp3;
(z3 + z4)* FIX_1_175875602; —-- sqrt(2) * c3

*

*

*

FIX_
FIX_
FIX_
FIX_

:= data(I+8%7);
:= data(I+8%5);
:= data(I+8%3);
:= data(I+8%1);

0_298631336;
2_053119869;
3.072711026;
1_501321110;

FIX_0_899976223; --
FIX_2_562915447; --
FIX_1_961570560; --
FIX_0_390180644; --

Z55
7% ;

zl
z2
z2
zl

-- sqrt(2)
-- sqrt(2)
— 8qrt(2)
-- sqrt(2)
sqrt(2) *
sqrt(2) *
sqrt(2) *
sqrt(2) *

* (-c1+c3+c5-c7)
* ( cl+c3-c5+cT)
* ( cl+c3+c5-cT)
* ( cl+c3-c5-c7)
(cT-¢3)

(-c1-c3)
(-c3-c5)

(c5-c3)
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-— Final output stage: inputs are tmpl0..tmpl3, tmp0..tmp3

outdata(I+8*0)

A
1]

descale(tmpl0 + tmp3,
CONST_BITS+PASS1_BITS+3);

outdata(I+8%7) <= descale(tmpl0 - tmp3,
CONST_BITS+PASS1_BITS+3);

outdata(I+8+1) <= descale(tmpll + tmp2,
CONST_BITS+PASS1_BITS+3);

outdata(I+8%6) <= descale(tmpll - tmp2,
CONST_BITS+PASS1_BITS+3);

outdata(I+8+2) <= descale(tmpl2 + tmpl,
CONST_BITS+PASS1_BITS+3);

outdata(I+8%5) <= descale(tmpl2 - tmpl,
CONST_BITS+PASS1_BITS+3);

outdata(I+8*3) <= descale(tmpl3 + tmp0,
CONST_BITS+PASS1_BITS+3);

outdata (I+8%4) <= descale(tmpl3 - tmp0,
CONST_BITS+PASS1_BITS+3);

end loop; —-- while
end process;

end behavior;

D.6 Dequantizer Specification

use work.ijpeg.all;

entity dequantize is
port(datain : in frame; quanttbl : in frame;
ZAG : in inttable; data : out frame);

end dequantize;



architecture behavior of dequantize is
begin
dequantize : process

variable s, k, r : integer;

variable blkn, ci : integer;
begin
--DC coefficient dequantization

--Descale and output the DC coefficient (assumes ZAG[0] = 0)
s := datain(0);
data(0) <= s * quanttbl(0);

--Section F.2.2.2: decode the AC coefficients
--Since zero values are skipped, output area must be
--zeroed beforehand

k = 1;

while ( k < 64 ) loop

r := datain(k); -- ac coefficients
s := iAND(r, 15);
r := rshlong(r, 4);

data(ZAG(k)) <= s * quanttbl(k);
k =k + 1;
end loop;
end process;

end behavior;
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D.7 Huffman Decoder Specification

use work.ijpeg.all;

entity dehuff is

port(data : out frame, get_buffer : in integer);
end dehuff;

architecture behavior of dehuff is
begin
dehuff : process

variable 1 : integer;
variable code : int32;

variable bits_left : integer;

if ( bits_left = 0 ) then
bits_left=15;
else
bits_left := bits_left - 1;
end if;
code := rshlong(get_buffer, bits_left) and 1;

—-Assume that the macro block detection is dome
--Recover DC coefficent

1 :=1;

while (code > dcmaxcode(1)) loop

if ( bits_left = 0 ) then
bits_left=15;
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else

bits_left := bits_left - 1;

code := rshlong(get_buffer, bits_left) and 1;

code = lshlong(code,1) or code;
1 :=1+1;
end loop;
s := dchuffval(valptr(l) + code - dcmincode(1));
if ( s /= 0 ) then
if ( bits_left >= s )
then
bits_left := bits_left - s;
r := get_buffer >> bits_left

r := r and bmask(s);
else

r := fill_buffer_..
end if;

if ( r < extend_test(s) )

then
s := r + extend_offset(s);
else
g =T
endif

data(0) <= s;

--AC coefficient

k :=1;

while ( k < DCTSIZE2 ) loop
1, s= di;



while (code > acmaxcode(l)) loop

if ( bits_left = 0 )
then
bits_left=15;
else
bits_left := bits_left - 1;
end if;
code := rshlong(get_buffer, bits_left) and 1;

code = lshlong(code ,1) or code;

L 3= L=+ 13
end loop;
r := achuffval(valptr(l) + code - acmincode(1l));
s = r and 15;
r := rshlong(r, 4);
if (s /= 0)
then
k := ktr;

3

r := get_bits(s);
if ( r < extend_test(s) )

r + extend_offset(s);

wu
1]

else
s = I;

end if;

else

if (r /= 15)
then

break;
k :=k + 15;

endif
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data(k) <= s;
k =k +1;
end loop;
}

D.8 Motion Estimation Specification

—- Motion Estimation Block

entity motion 1is
port( current : in macro_block;
prev : in macro_block;
xmin : out integer;
ymin : out integer
)3

end motion;
architecture behavior of motion is
begin
motion:process
variable x, i : integer;
variable dmin, dp : integer;
variable dp0,dpl,dp2,dp3,dp4,dp5,dp6,dp7,
dp8,dp9,dp10,dpil,dpl2,dpl3,dpl4,
dpl5 : integer;

begin

dmin := 1000;
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while( x < 256 ) loop
i :=0;
while( i < 16 ) loop
dp0:=current (0)-prev(0) ;
dpl:=current(1)-prev(1l);
dp2:=current (2) -prev(2);
dp3:=current (3)-prev(3);
dp4:=current (4)-prev(4);
dp5:=current (5)-prev(5);
dp6:=current (6)-prev(6) ;
dp7:=current (7)-prev(7);
dp8:=current(8)-prev(8);
dp9:=current (9)-prev(9) ;
dpl0:=current (10)-prev(10);
dpll:=current(11)-prev(11);
dpl12:=current(12)-prev(12);
dp13:=current(13)-prev(13);
dpl4:=current(14)-prev(14);
dp15:=current (156)-prev(15);
dp:=dp0+dp1+dp2+dp3+dp4+dp5+dp6+dp7 ;
+dp8+dp9+dp10+dpl1+dpl12+dp13+dpl4+dpl5+dp;

e 1@ 1

end loop; -- I

if dp < dmin then
dmin := dp;
xmin <= Xx;
ymin <= y;

end if;

198



X = x + 1j
end loop; —-- x
end process;

end behavior;
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Appendix E

The Libraries Used in the Experiments

The characteristics of package types, die types, bus types, and substrate technology

types used for GARDEN examples are given here.

| Name [ Style | Size (1 x 10*um?) | Cost (§) | Pins | Pkgtime (hours) |
Kl SCM 5.800 5] 40 336
k2 SCM 13,000 20 80 336
k3 SCM 20,000 60 | 100 336
k4 SCM 30,000 100 | 156 336
kd SCM 50,000 150 | 200 336
k6 SCM 70,000 220 | 299 336
k7 MCM 15,000 5 40 336
k8 MCM 40,000 20 80 336
k9 MCM 60,000 60 | 100 336
k10 MCM 90,000 100 | 156 336
k11 MCM 150,000 150 | 200 336
k12 MCM 210,000 220 | 299 336

Table E.1: Package library
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| Name | Style | FabTime (hours) | Cost (S) | Size (um?) |
dl FPGA 1 37.50 10,000
d2 FPGA 1 110.70 17,000
d3 FPGA 1 333.00 34,000
d4 FPGA 1] 1422.00 62,000
db gate array 336 0.63 1,400
d6 gale array 336 3.70 3,400
d7 gate array 336 17.50 7,400
d8 gate array 336 82.10 16,900
d9 gate array 336 128.00 21,000
ds standard cell 1680 - -

[ Name | AGATESIZE (um?/gate) | Pins | PADSIZE(um?/gate) | WB |

dl

3.42

80

0.00 | 1.7
d2 2.89 | 105 0.00| 1.7
d3 2.65 | 139 0.00 | 1.7
d4 2.49 | 199 0.00 | 1.7
d5 1.42 80 0.00 | 1.5
d6 096 | 125 0.00 1.5
d7 0.96 | 184 0.00] 1.5
d8 0.85 | 270 0.00 | 1.5
d9 0.84 | 302 0.00| 1.5
ds 1 - .73 | 1.2

Table E.2: Die library
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Name | Bit width

| Clock Cycle (ns) | Type

b0 1 40 | on-chip
b1 2 40 | on-chip
b2 4 40 | on-chip
b3 8 40 | on-chip
b4 16 40 | on-chip
b5 32 40 | on-chip
b6 1 100 | on-board
b7 2 100 | on-board
b& 4 100 | on-board
b9 8 100 | on-board
b10 16 100 | on-board
b1l 32 100 | on-board
b12 32 100 | on-module

Table E.3: Bus Library

MCM-D | MCM-C | MCM-L

No. of Layers 5 10 6
Via Grid Space 7 450 1250
Line btn Vias 1 1 1
Perf. scale 1.00 0.26 0.10
Unit area Cost 0.009 0.006 0.0009
NRE () 5000 | 3,000 1,000
Manu. Time 336 336 336

Table E.4: Substrate Technology Library
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