
Empirical Performance Modeling
of Multiprocessors Based
on Dal;a-Sharing Analysis

Kangwoo Lee

CENG 97-24

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, California 90089-2562
(213) 740-4475
December 1997

EMPIRICAL PERFORMANCE MODELING OF MULTIPROCESSORS

BASED ON DATA-SHARING ANALYSIS

by

Kangwoo Lee

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

December, 1997

Copyright 1997 Kangwoo Lee

Dedicated to myfamily...

ii

Acknowledgments

This work marks the completion of my Ph. D. degree at USC. I am immensely

grateful for the opportunity of having received what I consider the finest education avail

able. I would like to thank some of the people that have made this possible.

I would like to thank my advisor without whom none of this work would have been

possible. I would like to thank Professor Michel Dubois for serving as my advisor. In addi

tion to excellent technical advice, he showed me much about how to work with people.

His early help in defining a research problem was especially critical. Additionally, he lent

industrial insight to the work and gave much help with publications.

I am indebted to all those who helped in the preparation of this thesis, particularly

Professor Peter Beerel, Professor J-L. Gaudiot, Professor Sandeep Gupta, and Professor

Clifford Neuman, for their detailed and constructive criticism.

I would like to thank the members of our research group. Also. I would like to

thank the current and the alumni members oi' Yonsei University at USC for showing me

the great warmness. I would also like to thank all my friends here and in Korea.

For moral support, much of which was needed in the years completing this work, I

would like to again thank my parents for their unfailing support. I would also like to thank

my wife, daughter, and son who also contributed greatly to my general state of well being

as my best friends for showing me the single minded determination to graduate that led to

the completion of this work.

in

Contents

Chapter 1 INTRODUCTION 1
1.1 Overview 6

1.2 Scope of the Thesis 7

1.3 Organization of the Thesis 7

Chapter 2 BACKGROUND 10
2.1 Parallel Programming 10

2.1.1 Data Partitioning and Distribution 10
2.1.2 Process Coordination and Task Assignment 12
2.1.3 Summary 14

2.2 SPMD Programs 15

2.2.1 SPMD Programs on Shared-Memory Systems 16
2.2.2 Data Communication 17

2.2.3 Number of Iterations 22

2.3 Cache Misses 22

2.3.1 Cache Miss Classification 24

2.4 Curve Fitting 25
2.4.1 Least-Square Estimators 25
2.4.2 Robust Estimators 26

2.4.3 Computation Time 27

Chapter 3 EARLY EXPERIENCE 29

3.1 Modeling Data Accesses and Cache Misses 30
3.1.1 Number of Data Accesses 30

3.1.2 Number of Cold Misses 30

3.1.3 Number of Sharing Misses 31

3.2 Simulation and Benchmarks 32

3.3 Prediction Results 33

3.4 Discussion 34

Chapter 4 DATA-SHARING ANALYSIS 36
4.1 Data-Sharing Factors 37

4.1.1 Data Set Size and Number of Processors 37
4.1.2 Data Partitioning 37
4.1.3 Access Distance 37

4.2 Array Index Analysis 41
4.2.1 Index Expression Components 44
4.2.2 Compound Index Expressions 47
4.2.3 Index Expressions lor Multiple Array Elements 56

4.3 Sharing Pattern Analysis 57
4.3.1 Single Element Vicinity Index Expression 57
4.3.2 Multiple Element Vicinity Index Expression 59
4.3.3 Single Element Stranger Index Expression 64
4.3.4 Multiple Element Stranger Index Expression 64

IV

4.3.5 Summary 65

4.4 Multi-dimensional Arrays 67
4.4.1 Two-dimensional Array 68
4.4.2 Higher-dimensional Array 72

Chapter 5 MODELING MISS RATES 73
5.1 System Information 74

5.2 Static Sharing Information 74

5.3 Behavioral Sharing Information 75
5.3.1 Multiple Index Expressions of One Shared Array 78
5.3.2 for Loops 84
5.3.3 Multi-Dimensional Arrays 85
5.3.4 Example 86

5.4 Sharing Stale Management and Event Counts 87
5.4.1 Sharing Analysis for Cache Misses 90
5.4.2 Number of References 101

5.4.3 NumberofPCM [03
5.4.4 Number of TSMs 106

Chapter 6 PREDICTION RESULTS 122
6.1 LU 123

6.2 MP3D 128

6.3 WATER 133

6.4 OCEAN 136

6.5 FFT 144

6.6 BARNES 148

6.7 RADIX 155

6.8 Summary 159

Chapter 7 CONCLUSION 161

Chapter 8 RELATED WORK 165

Appendix A 174

A.l LU 174

A.2 MP3D 175

A.3 WATER 176

A.4 OCEAN 177

A.5 FFT 178

A.6 BARNES 179

A.7 RADIX 179

Bibliography 181

List of Figures

Figure 1. Overview: miss rale prediction system 6
Figure 2. Data partitioning schemes 12
Figure 3. Data-sharing parameters: distance and number of associated data 19
Figure 4. Effect ofdata set size and the number of processors on data-sharing 20
Figure 5. Effect of the number of participants and access distance 21
Figure 6. Bus-based 3-state write-back invalidation protocol and coherency events...22
Figure 7. Coherency events in bus-based 3-state write-back invalidation protocol 23
Figure 8. Partition block size and length of partition boundaries 38
Figure 9. Vicinities and strangers 40
Figure 10. Effects of access distance on data-sharing 40
Figure 11. Data access interpretation methods 43
Figure 12. Home-inclusion property of the PRC 44
Figure 13. Array index expression components 45
Figure 14. Effect of access distance in block-cyclic partitioning 49
Figure 15. Effect of access distance in cyclic and block partitioning 50
Figure 16. Access patterns of sparse array indices 55
Figure 17. Index expression for multiple array elements 57

Figure 18. Data-sharing in multiple vicinity index expression 60

Figure 19. Data-sharing in two-dimensional arrays 70
Figure 20. Overview of miss rate modeling system 74

Figure 21. Example FORALL loop and data accesses 76

Figure 22. Behavioral sharing information description for Figure 21 77

Figure 23. Multiple index expressions of one shared array in a FORALL loop 78

Figure 24. Access patterns for multiple array accesses 80

Figure 25. Access patterns for multiple array accesses 81

Figure 26. Access patterns for multiple array accesses 82

Figure 27. Multiple index expressions of one shared array in a FORALL loop 83

Figure 28. Access patterns for multiple array accesses 84

Figure 29. Nested FORALL loops for different arrays 85

Figure 30. Behavioral sharing description of nested FORALL loops 85

Figure 31. Behavioral sharing description for multi-dimensional arrays 86

vi

Figure 32. Static and behavioral sharing description for particles in MP3D 87
Figure 33. Data accesses of EL 92
Figure 34. Data accesses ofEVIC-S 94
Figure 35. Data accesses of EVIC-M 95
Figure 36. Data accesses of ELV-S 97
Figure 37. Algorithm to measure the number of data references 102
Figure 38. Example for the measurement of data references 104
Figure 39. Algorithm to measure the number of PCM 106
Figure 40. TSM on EVIC-S read statement afterEVIC-S write statement 110

Figure41. TSM on ELV-S or ELV-M readstatement after a write statement 111

Figure 42. TSM on EVIC-S read statement after ELV-S or ELV-M write statement... I 11

Figure 43. Number of TSM for consecutive reads after a write 112

Figure 44. Data accesses of EVIC-M 114

Figure 45. Algorithm for TSM measurement (Main routine) 116

Figure 46. Algorithm for TSM measurement (RC_LOOP_BEGIN_HANDLER) 118

Figure 47. Algorithm for TSM measurement (RC_LOOP_END_HANDLER) 121

Figure 48. Static and behavioral sharing description for array A in LU 124

Figure 49. Static and behavioral sharing description for array L in LU 124

Figure 50. Static and behavioral sharing description for array thispivot in LU 125

Figure 51. Simulation results in LU 126

Figure 52. Static and behavioral sharing description for array Particles in MP3D 129

Figure 53. Static and behavioral sharing description for array Cells in MP3D 130

Figure 54. Simulation results in MP3D 131

Figure 55. Static and behavioral sharing description for array VAR in WATER 134

Figure 56. Simulation results in WATER 135

Figure 57. Static and behavioral sharing description for array Q_multi in OCEAN. ..138

Figure 58. Static and behavioral sharing description for other arrays in OCEAN 139

Figure 59. Static and behavioral sharing description for array Q_multi in OCEAN. ..140

Figure 60. Simulation results in OCEAN 141

Figure 61. Static and behavioral sharing description for array X in FFT 145

Figure 62. Static and behavioral sharing description for array trans in FFT 146

Figure 63. Simulation results in FFT 147

Figure 64. Static and behavioral sharing description for array bodytab in BARNES.. 150

Figure 65. Static and behavioral sharing description for array ctab in BARNES 151

Vll

Figure 66. Static and behavioral sharing description for array ltab in BARNES 152

Figure 67. Simulation results in BARNES 153
Figure 68. Static and behavioral sharing description for array key[0] in RADIX 155
Figure 69. Staticandbehavioral sharing description for array key[1] in RADIX 156

Retire 70. Effect of the data set size on the number of misses in RADIX 157

Figure 71. Shared array and index variables 162

VIII

List of Tables

Table 1. Parallel application characteristics 15
Table 2. Computation cost of curve fitting (M<N) 27
Table 3. Size of data sets used to find fitting functions and shared variables 33

Table 4. Empirical models and prediction results 34
Table 5. Processor attributes by which a certain data is accessed 44
Table 6. Processor attributes for index expression components 47
Table 7. Data access pattern summary for vicinity expressions 51
Table 8. Data access pattern for stranger expressions 54
Table 9. Effects of data set size and number of processors in EVIC-S 59
Table 10. Effects of data set size and number of processors in EVIC-M 63
Table 11. Effects of data set size and number of processors in ESTR-S and ESTR-M.65
Table 12. Syntax of behavioral sharing information description 77
Table 13. Important metrics during the execution of Pi with respect to BPi 100
Table 14. Effect of number of processors on the event in Table 13 101
Table 15. Effects of number of processors on the number of PCM 105
Table 16. Modified elements of Pi after a write operation with respect to BPi 107
Table 17. Array elements accessed by Pi during itsexecution with respect to BPi. ..108
Table 18. Summary of TSM on read operation by Pi with respect to BPi 113
Table 19. Summary of TSM on write operation by Pi with respect to BPi 115
Table 20. Number of processors used to find fitting functions 122
Table 21. Effects of data set size and number of processors 125
Table 22. Empirical models and prediction results for data set size (LU) 127
Table 23. Empirical models and prediction results for number of processors (LU)... 127
Table 24. Effects of data set size and number of processors 130
Table 25. Empirical models and prediction results for data set size (MP3D) 132
Table 26. Empirical models and prediction for number of processors (MP3D) 132
Table 27. Effects of data set size and number of processors 134
Table 28. Empirical models and prediction results for data set size (WATER) 135
Table 29. Empirical models and prediction for number of processors (WATER) 136
Table 30. Numbers of data elements of shared arrays in OCEAN 137
Table 31. Effects of data set size and number of processors 137
Table 32. Empirical models and prediction results for data set size (OCEAN) 142
Table 33. Empirical models and prediction for number of processors (OCEAN) 144
Table 34. Effects of data set size and number of processors 146
Table 35. Empirical models and prediction results for data set size (FFT) 148

l\

Table 36. Empirical models and prediction results for number of processors (FFT). 148
Table 37. Effects of data set size and number of processors 149
Table 38. Empirical models and prediction results for data set size (BARNES) 154
Table 39. Empirical models and prediction for number of processors (BARNES)....154
Table 40. Effects of data set size and number of processors 156

Table 41. Empirical models and prediction results for data set size (RADIX) 158
Table 42. Empirical models and prediction for number of processors (RADIX) 159
Table 43. Empirical models and prediction results for data set size 160
Table 44. Empirical models and prediction results for number of processors 160
Table 45. Comparison of prediction errors for data set szie 160
Table 46. Empirical models and prediction results for LU 174
Table 47. Empirical models and prediction results for MP3D 176
Table 48. Empirical models and prediction results for WATER 176
Table 49. Empirical models and prediction results for OCEAN 177
Table 50. Empirical models and prediction results for FFT 178
Table 51. Empirical models and prediction results for BARNES 179
Table 52. Empirical models and prediction results for RADIX 180

Abstract

In the development of large scale multiprocessor systems and parallel applications,

it is critical to predict performance before physical implementation. Software simulations

and analytical models are widely used for this purpose. However, softwaresimulations are

time-consuming and resource-intensive and it is difficult or even impossible to simulate

realistic applications on large target systems. Furthermore, the predictive power of con

ventional analytical models is very limited. The major goal of this thesis is to explore a

methodology to predict accurately the performance of very large applications executed on

large-scale multiprocessors.

In this thesis an empirical modeling methodology is developed for shared-memory

applications. In this methodology, a few samples of a performance metric are collected by

simulating small problems on small system configurations. Additionally, a parametric

model of the metric is found through static data-sharing analysis. We limit ourselves to

scientific SPMD applications, in which data-sharing can be quantified by analyzing the

array indexes of shared data structures. A statistical robust parameter estimation technique

is then applied to estimate the parameters of the model. The outcome is an analytical

model to predict the value of the metric. Although the ultimate measure of performance is

the execution time, we focus on the cold and coherence misses, which are essential in par

allel applications.

With this modeling technique, we have achieved quick and accurate performance

predictions for problems and systems that are so large that they are difficult or even impos

sible to simulate. In most cases, the prediction error falls below \%. This result demon-

xi

strates that prediction based on empirical models is extremely accurate even for

applications whose behavioral characteristics are irregular.

Because the data-sharing analysis is applicable not only to the number of cache

misses but also to other performance metrics such as the numbers of instructions and data

accesses, it could be used to predict the execution time in many cases. With the help of a

parallelizing compiler, we can envision that the whole modeling procedure can be part of

an evaluation framework to develop large scale applications and architectures for high-

performance scientific computing.

xii

Keywords: Empirical Modeling, Performance Prediction, Sharing Analysis, scien

tific SPMD applications. Curve Fitting, Robust Parameter estimation, Shared-Memory

Multiprocessors, Cache, Cache Misses

Xlll

Chapter 1

INTRODUCTION

To evaluate high performance shared-memory multiprocessor systems, researchers

and designers can compare designs through software simulations without building hard

ware prototypes. A set of potential application programs are ported and run on the simula

tor for diverse possible configurations of the architecture. Various types of performance

metrics can be obtained. Unfortunately, software simulations are usually slow and con

sume large amounts of memory, which limits the problem sizes and target systems to be

simulated. As the data set size and the number of processors [36, 56] grow, the amount of

memory needed to store the code and the data for both the simulator and the application

program may become prohibitive. Moreover, the simulation lime often increases much

faster than the data set size and the number of processors. This explains why simulation

results are only reported on small data sets and small systems while researchers still want

to see how their design performs for very large problems.

A tempting approach is to build analytical models and to employ them for driving

software simulators. In the past, analytical models have been widely used. Synthetic,

parameterized workloads mimic the behaviors of real programs so that the architectures

can be compared. Analytical models are useful for several reasons. First, they can be used

in quick performance evaluation to prune the design space. Second, analytical models help

understand the workload and its characteristics when various parameters are changed.

Finally, if extrapolation can be done reliably, the model is used to predict workload behav-

ior and architecture performance for thecases that would be very difficult or even impossi

ble to simulate.

Existing analytical models are structural models abstracted from the expected

behavior of the workload and formalized with a set of statistically defined parameters. For

example, in [24], a stochastic model was developed in which the workload is characterized

by the probabilities of accessing and modifying a shared block. Whereas the model can

drive an architecture simulation and show the effects of the parameter values, it is in gen

eral difficult to estimate the parameters of the model for a particular application, let alone

to estimate the effects of variables such as the data set size or the number of processors in

the underlying system. Thus a model is only valid for a particular application with a given

data set size and a given number of processors.

Because simulation and general-purpose hardware have become so efficient, it is

now possible to develop empirical models. In an empirical performance model, a few sam

ples of performance metrics are collected by simulating a few small-size problems run

ning on small systems. Additionally, the magnitude orders of those performance metrics

are found from static workload analysis. Then, statistical extrapolation techniques produce

an analytical model which can be applied to estimate the values of performance metrics

for realistically large data set size and number of processors.

In this thesis, an empirical technique for modeling cache misses due to data shar

ing and interprocessor communication is introduced. Although the ultimate measure of

performance is the execution time, cache misses have been at the center of attention

because of their significant impacts on execution time. In a parallel system, a large number

of cache misses stem from the data-sharing among processors as specified in program

statements. These data-sharing misses can be estimated through the analysis of data-shar

ing in parallel applications.

Due to its importance in the performance evaluation of parallel computer systems,

data-sharing analysis has been a popular research subject. Many researchers suggested

their own analysis methodology and introduced diverse analytical performance models

established on top of the knowledge they earned from the sharing analysis. The sharing

analysis can be carried on from the traces collected from the actual execution of parallel

programs, or directly from the parallel application codes. In general, trace-collection facil

ities are not so widely available and the traces are valid only for the hardware and software

configurations from which they are collected. For these reasons, the accuracy and general

ity of data-sharing analysis is betterwhen the application codes are used.

One of the most general application classes of parallel systems is scientific compu

tations programmed in the Single-Program-Multiple-Data (SPMD) model. As the speed of

today's computer systems gets ever faster, the amount of data to be processed is accord

ingly growing. These data objects are normally represented by array data structures and

the computations on them are performed within iterative loops such as the for loop con

struct. The information regarding the memory locations of the data objects that a processor

accesses is given in the program. That is to say, the index expressions of array variable

bear the information regarding possible data-sharing in the program. Therefore, the data-

sharing analysis must start with array index expression analysis.

The SUIF compiler [40. 73] is the product of the one of the state-of-the-art

research in this field. The SUIF compiler statically analyzes the locality of data accesses in

a sequential program and produces a parallel program that can be run with minimized

amount of data-sharing or data communication among the processors. The locality analy

sis in the SUIF compiler is done on top of the index expression analysis. Their target

application area is dense matrix computations. Indeed, the array index expressions in gen

eral scientific applications such as those in SPLASH 167] and SPLASH-2 [82] bench

marks are generally too complicated to perform array index expression analysis. This is

why the researchers participating in the development of the SUIF compiler confine them

selves to dense matrix computations.

The people in the High Performance Fortran Forum [42] perceived that static array

indexexpression analysis is too complex unless the compiler is provided with useful infor

mation so that it can generate high performance parallel codes. To achieve this goal, they

develop High Performance Fortran (HPF), a language in which added directives guide the

compiler in decisions about some fundamental factors affecting the performance oi' a par

allel program such as the degree of available parallelism, exploitation of data locality, and

choice of appropriate task granularity. HPF directives appear as structured comments that

suggest implementation strategies or assert facts about a program to the compiler.

In another active project called ALPSTONE [16, 45], a formal description of data

access behavior in a parallel application is provided as an input to the data-sharing ana

lyzer, instead of the actual program codes.

These projects are evidence that data-sharing analysis based on array index expres

sion analysis is hard to make and a tempting approach is to provide the sharing analyzer

with formally described sharing information. This information can be obtained in many

ways. In HPF or ALPSTONE, the programmer or researcher must understand the behav

ioral characteristics of the underlying algorithms in their parallel applications beforehand.

Based on this understanding, they can specify the sharing information according to the

pre-defined syntax of the description tools.

In this research, the data-sharing analysis does not need the knowledge regarding

the sharing activities in an application. Instead, the translation of the source code into a

formal description called the Access Pattern Description Statement (APDS) is merely nec

essary. The core of this research is to establish a systematic method with which the APDS

can be easily constructed from the given parallel applications. The APDS can then be

input to the analyzer to compute the magnitude order of the number of data references and

the number of cache misses in the big-oh notation. The outputs of the sharing analyzer are

used in the curve fitting stage together with previously collected simulation samples to

find the a numerical expression for the best fit curve, where two independent variables are

the data set size and the number of processors. The final results are the empirical models

for the miss rates and, as will be seen later, they are extremely accurate.

To establish a method to translate the source code into an APDS, we should first

characterize the data-sharing patterns for various types of array index expressions that are

found in general scientific parallel applications. First of all, data-sharing is not observed at

every moment during the execution of a parallel program. Rather, it takes place only when

certain necessary conditions are met. Therefore, we first investigated what are these condi

tions and which types of factors are associated with them. In practice, the number of pos

sible values that the sharing factors can take is so large that they need to be categorized

into a finite number of groups. Although fine grouping may increase the accuracy of shar

ing analysis, complicated treatments of minute differences among the categories often

degrade the efficiency of the work. Our policy is to keep the categories as coarse as possi

ble while a certain level of analysis accuracy is maintained. The next step is to map the

array index expressions in application codes into the groups that we have defined.

Generally, the overall quality of an analysis and modeling technique is determined

by comparing the resulting analytical models against the experimental results. In addition,

the prediction accuracy for very largedata sets and processor numbers is also important in

judging the usefulness of analytical models. Once the model is shown to be accurate, the

whole technique including the definition of sharing factors, grouping their values into cat

egories, capturing the values of sharing factors from applications and formulaiizing the

factors into a numeric expression is appraised to be accurate, as well. In this regard, the

extreme accuracy of our empirical models for miss rates based on sharing analysis is evi

dence to the high quality of the modeling technique introduced in this thesis.

1.1 Overview

Figure 1 shows the overall empirical performance modeling procedure with

respect to the data set size N. It is largely composed of three subprocedures: sharing anal

ysis, sample collection, and curve fitting. The first component is to establish polynomial

expressions (models) for the magnitude order of the number of cache misses in the big-oh

notation (Figure 1, boxes I, 2, 3). This step is the core of the work. Performance data are

then collected by simulating the execution of the program with small data set (boxes 4, 5,

6). Then, the robust parameter estimation technique (box 7) is used to find the best fit

numerical expression (models) for each performance metric (box 8).

Sharing Analysis

1. SPMD Benchmark

2. Sharing Analysis

3. Big-oh Expressions

Num. dala accesses : 0(N3)
Num. read misses : 0(N2)
Num. write misses : O(N)

Curve Fitting

Sample Collection

4. Architecture

Parameters

Program-Driven

Simulator

6. Result-Set (N=48)
Result-Set (N=64)

Result-Set (N=144)

Robust Parameter Estimation

Numerical Expressions for Execution Time factors
Num. dala accesses: 1.23N3 + 45.67N2 + 8.9N + 10
Num. read misses : 9.87N2 + 65.43N + 21
Num. write misses : 345.67N + 654

Miss Rate Model

Figure I. Overview: miss rate prediction system.

Since our target is the miss rate, the numbers of data references and cache misses

are first modeled in terms of data set size and number of processors. Prediction is per

formed by substituting a large valueof data set size into the model obtained in boxes 7 and

8. The same can be done with P, the number of processors.

1.2 Scope of the Thesis

In shared-memory multiprocessor systems, the mechanisms to maintain data con

sistency are broadly classified into write-invalidale protocols and write-update protocols

[74]. In this thesis, among many possible protocols, we only consider a three state write-

invalidate protocol [74]. However, since the source of all coherency events in as protocol

is commonly the dala sharing which is inherent in applications, the methodology intro

duced in this thesis can be applied to other protocols.

In addition, among parallel applications, we consider scientific SPMD programs

since they are the most popular primarily due to the ease of program coding. The bench

mark applications used in our research are from the SPLASH [67] and SPLASH-2 [82]

benchmark suites.

In the simulation, the caches have infinite size. This helps fully understand the

data-sharing effects by eliminating the replacement misses.

1.3 Organization of the Thesis

This thesis is organized as follows.

Chapter 2 provides the basic background knowledge for the work in this thesis. A

set of issues that often characterize parallel programs are briefly introduced. The issues

include data partitioning, task scheduling, and synchronization. In addition, we extract the

essential features of scientific SPMD programs. These features of SPMD programs are at

the foundation of our research.

Recall that the empirical models to be built in this thesis will be able to predict the

miss rates for very large data sets and number of processors. That is to say, the only two

independent variables in the model are the data set size and the number of processors, and

the number of data references and the number of cache misses should be dependent on

them. Asimple, but important, illustration that the number ofcache misses is proportional

to the two independent variables in the model is given in Chapter 2. At the end of this

chapter is found the mathematical presentation of the curve lilting technique is given.

At the beginning stage of the work, we needed a sound evidence that miss rates

vary along with the data set size of an application. Chapter 3 presents our very first mod

els. These miss rate models were established based on a simple algorithmic complexity

analysis idea instead of the sharing analysis. In this chapter, a small table that collectively

shows the empirical models and predictions results of the benchmarks is given. The results

for individual applications are put into the Appendix A.

Encouraged by the accurate prediction results of the model in Chapter 3. we

started the actual research, /. c, the construction of empirical models for cache miss rates

based on the sharing analysis. When investigating the data-sharing patterns in Chapter 4,

we do not focus on the cache misses, yet. First, the sharing factors that affect the amount

of data-sharing are defined. Once we understand the sharing factors and the ways they

affect data-sharing, the array index expression analysis (or, data-sharing analysis) is car

ried on. The components used in array index expressions and the composite index expres

sions composed of the index expression components are enumerated. The data-sharing

patterns for all types of index expressions are also provided. At this moment, the effects of

the data set size and the number of processors on the amount of data-sharing are dis

cussed.

In Chapter 5, the models for the number of data references and the number of

cache misses are built based on the knowledge we obtained in Chapter 4. The ideas about

the data-sharing patterns are briefly summarized to apply them to measuring cache misses.

Since there are usually many shared arrays whose behavioral characteristics are distinct

from each other, individual arrays are dealt with separately. A miss rate model is estab

lished for each shared array. The global miss rate model is then built by summing up those

models. At the end of the chapter, formal algorithms to count the number of dala refer

ences and the number of cache misses are provided.

The prediction results of the empirical models built in Chapter 5 are tabulated in

Chapter 6. For each application, two tables are shown; one for the prediction for large data

sets and the other for large number of processors. The full descriptions of each applica

tion, their behavioral characteristics and APDS, and the simulation results for various data

sets are all summarized in this chapter. Finally, the improvements of the prediction accu

racy of the models established based on the sharing analysis over the crude models built in

Chapter 3 are tabulated.

The concluding remarks of this thesis are given in Chapter 7 and the related work

of other researchers follows in Chapter 8.

Chapter 2

BACKGROUND

2.1 Parallel Programming

We first summarize fundamental issues in parallel programming and relevant char

acteristics of scientific SPMD programs. Generally, parallel programs involve:

• partitioning of the computation into tasks,

• distribution of tasks among processes,

• coordination of data accesses and communication, and

• assignment of processes to processors.

2.1.1 Data Partitioning and Distribution

Data partitioning and distribution are usually independent of the underlying archi

tecture. They determine how the work is broken up among cooperating processes. In many

classes of applications, especially in scientific applications, the partitioning of the data and

of the task are so strongly related that it is unnecessary to distinguish them. Therefore, we

regard them as equivalent and focus on data partitioning.

The data partitions may or may not be of equal size. We refer to these two cases as

uniform or nonuniform partitioning, respectively. Uniform partitioning is preferred when

data partitioning is based on the memory locations of data (location-dependent partition

ing) due to several reasons. First, it is simple to devise an algorithm and to write a pro

gram. Second, performance analysis and prediction are easy. Finally, one can achieve

10

well-balanced workloads. Data partitioning may also be based on data values {value-

dependent partitioning). This approach is usually taken when the program behavior is

dependent on the values of dala and the data partitions may be either uniform or nonuni

form. Unlike location-dependent partitioning, we cannot statically understand or predict

the runtime behavior of applications especially when data are nonuniformly partitioned.

Therefore, applications with nonuniform value-dependent data partitioning are not consid

ered in our research.

In parallel programs, shared data structures are partitioned and distributed among

processors. We define the processor associated to a particular data to be the Home of the

data. The home is of great interest since most accesses to a data are made by home

because data partition is intended to maintain the locality of accesses and to reduce com

munication overheads. Additional accesses to the data may be made by other processors

between two consecutive access runs by the Home.

Data structures are typically partitioned in block, cyclic, block-cyclic or random

manner. Assume P processes and an A'-element shared array which is partitioned into b-

element blocks. In block partitioning, an array is broken into P pieces of equal size (b=N/

P). The block size varies with the data set size and the number of processes. In cyclic par

titioning, each element is considered as a block (/?=1). In block-cyclic methods. bk=NlP

where k is an arbitrary positive integer so that k blocks are allocated to the same process in

a particular manner such as round-robin. In cyclic and block-cyclic partitioning, the block

size is fixed regardless of data set size or number of processes. Finally, the array can also

be randomly partitioned into blocks of arbitrary size which varies in an unspecified man

ner as the data set size and the number of processes change.

11

P0 loooooooo]
P| |o o o o o o o o'

(m) Block

Pi [1 jo] i] Hi U 11 @ El
(b) Cyclic

Po |o o| |o o| |o o| |o o|

'Jl |o o| |o o| |o o| |o o|

(c) Block-Cyclic

P0 |ooo| |oo| |o| | o | |o

|Ji |o| |o o| |o o o| |o o|

(d) Random

Figure 2. Data partitioning schemes.

2.1.2 Process Coordination and Task Assignment

The purpose of the coordination and assignment is to use available mechanisms to

accomplish the following goals correctly and efficiently.

2.1.2.1 Naming and Accessing Shared Data

The fundamental issues in naming are: which shared dala can be addressed at the

hardware or user level, how they are addressed, and which operations are provided to

access them. In distributedaddress space systems, the data in each processing element are

independently managed so that remote processing elements cannot directly access them.

In shared address space systems, all processes are able to access any shared data location

with a single memory operation. A shared address space means that, when an address is

generated by a processor, the hardware will access the specified memory location without

12

additional processor intervention regardless of where the data is located in the system. In

my research, only shared address space systems are considered.

2.1.2.2 Data Communication

Communication among processes is done by either massage passing or shared-memory

accesses. In the message-passing paradigm, the sending and receiving of messages are

implemented by specific primitives which are the basis of orchestrating individual activi

ties. Shared memory systems employ conventional memory operations to provide data

communication through shared addresses as well as special atomic operations such as lock

or test-and-set. The communication model adopted in our study is the shared memory.

2.1.2.3 Interprocessor Synchronization and Execution Ordering

In message passing, a synchronization event is implicitly associated with the trans

mission or arrival of a message. At the hardware level, an event causes either a program on

a processor or a state machine controller to take some action. At the user level, returning

from the send call implicitly conveys synchronization information as does returning from

the receive call. On the other hand, in shared address spaces, additional operations using

synchronization primitives such as locks are required to enforce mutual exclusion. In addi

tion, other primitives such as pauses and barriers are also used for correct execution order

ing and interprocessor synchronization.

2.1.2.4 Concurrent Task Scheduling

In the management of parallelism, load balancing can be achieved by a static or

dynamic assignment of concurrent tasks to processors. A static assignment is typically an

algorithmic matter where the allocation of tasks to processors depends on the data set size,

the number of processors and data partitioning. In many SPMD applications, the number

r>

of processes and the number of processors are identical and a particular process is tied to a

specific processor. Static techniques do not cause much task management overhead. How

ever, for the sake of good load balance, the work in each task must be predictable.

Dynamic techniques are categorized into two classes. In senu-static techniques the

assignment is determined algorithmically before a computation phase but assignments are

recomputed periodically for better load balance. The task granularity in semi-static assign

ments is predictable between successive time-steps. As in static techniques, a particular

process is assigned in each execution phase to a specified processor. Dynamic tasking han

dles the cases where the task granularity or the machine environment is unpredictable. In

this approach, the program specifies a mechanism by which tasks are assigned to proces

sors during the computation. Essentially, a pool of available tasks is maintained, and each

process repeatedly takes a task from the pool and executes it until there are no tasks

remaining.

To summarize, dynamic techniques are adopted for runtime load balancing when

the work to be done by a processor is not predictable. While they generally provide good

load balance, task management is expensive. Static techniques are therefore usually pref

erable when they can provide good load balance and are, thus, used in the majority of sci

entific applications. Also, semi-static techniques are very common. In our study, since the

dynamic task assignment is too difficult to statically model or analyze, we focus on static

and semi-static task assignment techniques. That is to say. the benchmarks used in our

study can associate tasks with processors in a way that each process runs on exactly one

and only one processor and there is no task migration.

2.1.3 Summary

The common characteristics of applications we use in the study are summarized

below. In addition, the applications in SPLASH and SPLASH 2 benchmark suites are tab-

11

ulated in Table 1 with their characteristics related to task partitioning and assignment.

• Programs are running on the shared address space system,

• number of processes is equal to that of processors,

• data communication is achieved through shared dala,

• representative synchronization primitives are locks, pauses and barriers.

• tasks are assigned to processors in static or semi-static manner, and

• no task migration is allowed.

Benchmarks

Task partitionin o Task assignment

Partition

Size

Location-

or Value-

dependent

Block. Cyclic.
Block-cyclic
or Random

Static.

Semi-Static

or Dynamic

Used

in the study

LU Uniform Location BC. C Static

MP3D Uniform Location BC Static

WATER Uniform Location B Static

OCEAN Uniform Location BC Static

FFT Uniform Location B Static

BARNES-HUT Uniform Value R Semi-Static

RADIX Uniform Location B Static

Cannot he

Used

FMM Nonuniform Value R Semi-Static

CHOLESKY Nonuniform Value R Dynamic

LOCUSROUTE Nonuniform Value R Static/Dynamic

PTHOR Nonuniform Value R Static/Dynamic

RAYTRACE Uniform Location B Static/Dynamic

RADIOS1TY Nonuniform Value R Static/Dynamic

VOLREND Uniform Location B Static/Dynamic

Table I. Parallel application characteristics.

2.2 SPMD Programs

In scientific applications, computers are used to simulate physical phenomena that

are usually impossible or very costly to observe through empirical means by discretizing

continuous problems in both space and time into numerically approximated algorithms.

15

