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Abstract

In the development of large scale multiprocessor systems and parallel applications,

it is critical to predict performance before physical implementation. Software simulations

and analytical models are widely used for this purpose. However, softwaresimulations are

time-consuming and resource-intensive and it is difficult or even impossible to simulate

realistic applications on large target systems. Furthermore, the predictive power of con

ventional analytical models is very limited. The major goal of this thesis is to explore a

methodology to predict accurately the performance of very large applications executed on

large-scale multiprocessors.

In this thesis an empirical modeling methodology is developed for shared-memory

applications. In this methodology, a few samples of a performance metric are collected by

simulating small problems on small system configurations. Additionally, a parametric

model of the metric is found through static data-sharing analysis. We limit ourselves to

scientific SPMD applications, in which data-sharing can be quantified by analyzing the

array indexes of shared data structures. A statistical robust parameter estimation technique

is then applied to estimate the parameters of the model. The outcome is an analytical

model to predict the value of the metric. Although the ultimate measure of performance is

the execution time, we focus on the cold and coherence misses, which are essential in par

allel applications.

With this modeling technique, we have achieved quick and accurate performance

predictions for problems and systems that are so large that they are difficult or even impos

sible to simulate. In most cases, the prediction error falls below \%. This result demon-

xi



strates that prediction based on empirical models is extremely accurate even for

applications whose behavioral characteristics are irregular.

Because the data-sharing analysis is applicable not only to the number of cache

misses but also to other performance metrics such as the numbers of instructions and data

accesses, it could be used to predict the execution time in many cases. With the help of a

parallelizing compiler, we can envision that the whole modeling procedure can be part of

an evaluation framework to develop large scale applications and architectures for high-

performance scientific computing.
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Chapter 1

INTRODUCTION

To evaluate high performance shared-memory multiprocessor systems, researchers

and designers can compare designs through software simulations without building hard

ware prototypes. A set of potential application programs are ported and run on the simula

tor for diverse possible configurations of the architecture. Various types of performance

metrics can be obtained. Unfortunately, software simulations are usually slow and con

sume large amounts of memory, which limits the problem sizes and target systems to be

simulated. As the data set size and the number of processors [36, 56] grow, the amount of

memory needed to store the code and the data for both the simulator and the application

program may become prohibitive. Moreover, the simulation lime often increases much

faster than the data set size and the number of processors. This explains why simulation

results are only reported on small data sets and small systems while researchers still want

to see how their design performs for very large problems.

A tempting approach is to build analytical models and to employ them for driving

software simulators. In the past, analytical models have been widely used. Synthetic,

parameterized workloads mimic the behaviors of real programs so that the architectures

can be compared. Analytical models are useful for several reasons. First, they can be used

in quick performance evaluation to prune the design space. Second, analytical models help

understand the workload and its characteristics when various parameters are changed.

Finally, if extrapolation can be done reliably, the model is used to predict workload behav-



ior and architecture performance for thecases that would be very difficult or even impossi

ble to simulate.

Existing analytical models are structural models abstracted from the expected

behavior of the workload and formalized with a set of statistically defined parameters. For

example, in [24], a stochastic model was developed in which the workload is characterized

by the probabilities of accessing and modifying a shared block. Whereas the model can

drive an architecture simulation and show the effects of the parameter values, it is in gen

eral difficult to estimate the parameters of the model for a particular application, let alone

to estimate the effects of variables such as the data set size or the number of processors in

the underlying system. Thus a model is only valid for a particular application with a given

data set size and a given number of processors.

Because simulation and general-purpose hardware have become so efficient, it is

now possible to develop empirical models. In an empirical performance model, a few sam

ples of performance metrics are collected by simulating a few small-size problems run

ning on small systems. Additionally, the magnitude orders of those performance metrics

are found from static workload analysis. Then, statistical extrapolation techniques produce

an analytical model which can be applied to estimate the values of performance metrics

for realistically large data set size and number of processors.

In this thesis, an empirical technique for modeling cache misses due to data shar

ing and interprocessor communication is introduced. Although the ultimate measure of

performance is the execution time, cache misses have been at the center of attention

because of their significant impacts on execution time. In a parallel system, a large number

of cache misses stem from the data-sharing among processors as specified in program

statements. These data-sharing misses can be estimated through the analysis of data-shar

ing in parallel applications.



Due to its importance in the performance evaluation of parallel computer systems,

data-sharing analysis has been a popular research subject. Many researchers suggested

their own analysis methodology and introduced diverse analytical performance models

established on top of the knowledge they earned from the sharing analysis. The sharing

analysis can be carried on from the traces collected from the actual execution of parallel

programs, or directly from the parallel application codes. In general, trace-collection facil

ities are not so widely available and the traces are valid only for the hardware and software

configurations from which they are collected. For these reasons, the accuracy and general

ity of data-sharing analysis is betterwhen the application codes are used.

One of the most general application classes of parallel systems is scientific compu

tations programmed in the Single-Program-Multiple-Data (SPMD) model. As the speed of

today's computer systems gets ever faster, the amount of data to be processed is accord

ingly growing. These data objects are normally represented by array data structures and

the computations on them are performed within iterative loops such as the for loop con

struct. The information regarding the memory locations of the data objects that a processor

accesses is given in the program. That is to say, the index expressions of array variable

bear the information regarding possible data-sharing in the program. Therefore, the data-

sharing analysis must start with array index expression analysis.

The SUIF compiler [40. 73] is the product of the one of the state-of-the-art

research in this field. The SUIF compiler statically analyzes the locality of data accesses in

a sequential program and produces a parallel program that can be run with minimized

amount of data-sharing or data communication among the processors. The locality analy

sis in the SUIF compiler is done on top of the index expression analysis. Their target

application area is dense matrix computations. Indeed, the array index expressions in gen

eral scientific applications such as those in SPLASH 167] and SPLASH-2 [82] bench

marks are generally too complicated to perform array index expression analysis. This is



why the researchers participating in the development of the SUIF compiler confine them

selves to dense matrix computations.

The people in the High Performance Fortran Forum [42] perceived that static array

indexexpression analysis is too complex unless the compiler is provided with useful infor

mation so that it can generate high performance parallel codes. To achieve this goal, they

develop High Performance Fortran (HPF), a language in which added directives guide the

compiler in decisions about some fundamental factors affecting the performance oi' a par

allel program such as the degree of available parallelism, exploitation of data locality, and

choice of appropriate task granularity. HPF directives appear as structured comments that

suggest implementation strategies or assert facts about a program to the compiler.

In another active project called ALPSTONE [16, 45], a formal description of data

access behavior in a parallel application is provided as an input to the data-sharing ana

lyzer, instead of the actual program codes.

These projects are evidence that data-sharing analysis based on array index expres

sion analysis is hard to make and a tempting approach is to provide the sharing analyzer

with formally described sharing information. This information can be obtained in many

ways. In HPF or ALPSTONE, the programmer or researcher must understand the behav

ioral characteristics of the underlying algorithms in their parallel applications beforehand.

Based on this understanding, they can specify the sharing information according to the

pre-defined syntax of the description tools.

In this research, the data-sharing analysis does not need the knowledge regarding

the sharing activities in an application. Instead, the translation of the source code into a

formal description called the Access Pattern Description Statement (APDS) is merely nec

essary. The core of this research is to establish a systematic method with which the APDS

can be easily constructed from the given parallel applications. The APDS can then be

input to the analyzer to compute the magnitude order of the number of data references and



the number of cache misses in the big-oh notation. The outputs of the sharing analyzer are

used in the curve fitting stage together with previously collected simulation samples to

find the a numerical expression for the best fit curve, where two independent variables are

the data set size and the number of processors. The final results are the empirical models

for the miss rates and, as will be seen later, they are extremely accurate.

To establish a method to translate the source code into an APDS, we should first

characterize the data-sharing patterns for various types of array index expressions that are

found in general scientific parallel applications. First of all, data-sharing is not observed at

every moment during the execution of a parallel program. Rather, it takes place only when

certain necessary conditions are met. Therefore, we first investigated what are these condi

tions and which types of factors are associated with them. In practice, the number of pos

sible values that the sharing factors can take is so large that they need to be categorized

into a finite number of groups. Although fine grouping may increase the accuracy of shar

ing analysis, complicated treatments of minute differences among the categories often

degrade the efficiency of the work. Our policy is to keep the categories as coarse as possi

ble while a certain level of analysis accuracy is maintained. The next step is to map the

array index expressions in application codes into the groups that we have defined.

Generally, the overall quality of an analysis and modeling technique is determined

by comparing the resulting analytical models against the experimental results. In addition,

the prediction accuracy for very largedata sets and processor numbers is also important in

judging the usefulness of analytical models. Once the model is shown to be accurate, the

whole technique including the definition of sharing factors, grouping their values into cat

egories, capturing the values of sharing factors from applications and formulaiizing the

factors into a numeric expression is appraised to be accurate, as well. In this regard, the

extreme accuracy of our empirical models for miss rates based on sharing analysis is evi

dence to the high quality of the modeling technique introduced in this thesis.



1.1 Overview

Figure 1 shows the overall empirical performance modeling procedure with

respect to the data set size N. It is largely composed of three subprocedures: sharing anal

ysis, sample collection, and curve fitting. The first component is to establish polynomial

expressions (models) for the magnitude order of the number of cache misses in the big-oh

notation (Figure 1, boxes I, 2, 3). This step is the core of the work. Performance data are

then collected by simulating the execution of the program with small data set (boxes 4, 5,

6). Then, the robust parameter estimation technique (box 7) is used to find the best fit

numerical expression (models) for each performance metric (box 8).

Sharing Analysis

1. SPMD Benchmark

2. Sharing Analysis

3. Big-oh Expressions

Num. dala accesses : 0(N3)
Num. read misses : 0(N2)
Num. write misses : O(N)

Curve Fitting

Sample Collection

4. Architecture

Parameters

Program-Driven

Simulator

6. Result-Set (N=48)
Result-Set (N=64)

Result-Set (N=144)

Robust Parameter Estimation

Numerical Expressions for Execution Time factors
Num. dala accesses: 1.23N3 + 45.67N2 + 8.9N + 10
Num. read misses : 9.87N2 + 65.43N + 21
Num. write misses : 345.67N + 654

Miss Rate Model

Figure I. Overview: miss rate prediction system.



Since our target is the miss rate, the numbers of data references and cache misses

are first modeled in terms of data set size and number of processors. Prediction is per

formed by substituting a large valueof data set size into the model obtained in boxes 7 and

8. The same can be done with P, the number of processors.

1.2 Scope of the Thesis

In shared-memory multiprocessor systems, the mechanisms to maintain data con

sistency are broadly classified into write-invalidale protocols and write-update protocols

[74]. In this thesis, among many possible protocols, we only consider a three state write-

invalidate protocol [74]. However, since the source of all coherency events in as protocol

is commonly the dala sharing which is inherent in applications, the methodology intro

duced in this thesis can be applied to other protocols.

In addition, among parallel applications, we consider scientific SPMD programs

since they are the most popular primarily due to the ease of program coding. The bench

mark applications used in our research are from the SPLASH [67] and SPLASH-2 [82]

benchmark suites.

In the simulation, the caches have infinite size. This helps fully understand the

data-sharing effects by eliminating the replacement misses.

1.3 Organization of the Thesis

This thesis is organized as follows.

Chapter 2 provides the basic background knowledge for the work in this thesis. A

set of issues that often characterize parallel programs are briefly introduced. The issues

include data partitioning, task scheduling, and synchronization. In addition, we extract the

essential features of scientific SPMD programs. These features of SPMD programs are at

the foundation of our research.



Recall that the empirical models to be built in this thesis will be able to predict the

miss rates for very large data sets and number of processors. That is to say, the only two

independent variables in the model are the data set size and the number of processors, and

the number of data references and the number of cache misses should be dependent on

them. Asimple, but important, illustration that the number ofcache misses is proportional

to the two independent variables in the model is given in Chapter 2. At the end of this

chapter is found the mathematical presentation of the curve lilting technique is given.

At the beginning stage of the work, we needed a sound evidence that miss rates

vary along with the data set size of an application. Chapter 3 presents our very first mod

els. These miss rate models were established based on a simple algorithmic complexity

analysis idea instead of the sharing analysis. In this chapter, a small table that collectively

shows the empirical models and predictions results of the benchmarks is given. The results

for individual applications are put into the Appendix A.

Encouraged by the accurate prediction results of the model in Chapter 3. we

started the actual research, /. c, the construction of empirical models for cache miss rates

based on the sharing analysis. When investigating the data-sharing patterns in Chapter 4,

we do not focus on the cache misses, yet. First, the sharing factors that affect the amount

of data-sharing are defined. Once we understand the sharing factors and the ways they

affect data-sharing, the array index expression analysis (or, data-sharing analysis) is car

ried on. The components used in array index expressions and the composite index expres

sions composed of the index expression components are enumerated. The data-sharing

patterns for all types of index expressions are also provided. At this moment, the effects of

the data set size and the number of processors on the amount of data-sharing are dis

cussed.

In Chapter 5, the models for the number of data references and the number of

cache misses are built based on the knowledge we obtained in Chapter 4. The ideas about



the data-sharing patterns are briefly summarized to apply them to measuring cache misses.

Since there are usually many shared arrays whose behavioral characteristics are distinct

from each other, individual arrays are dealt with separately. A miss rate model is estab

lished for each shared array. The global miss rate model is then built by summing up those

models. At the end of the chapter, formal algorithms to count the number of dala refer

ences and the number of cache misses are provided.

The prediction results of the empirical models built in Chapter 5 are tabulated in

Chapter 6. For each application, two tables are shown; one for the prediction for large data

sets and the other for large number of processors. The full descriptions of each applica

tion, their behavioral characteristics and APDS, and the simulation results for various data

sets are all summarized in this chapter. Finally, the improvements of the prediction accu

racy of the models established based on the sharing analysis over the crude models built in

Chapter 3 are tabulated.

The concluding remarks of this thesis are given in Chapter 7 and the related work

of other researchers follows in Chapter 8.



Chapter 2

BACKGROUND

2.1 Parallel Programming

We first summarize fundamental issues in parallel programming and relevant char

acteristics of scientific SPMD programs. Generally, parallel programs involve:

• partitioning of the computation into tasks,

• distribution of tasks among processes,

• coordination of data accesses and communication, and

• assignment of processes to processors.

2.1.1 Data Partitioning and Distribution

Data partitioning and distribution are usually independent of the underlying archi

tecture. They determine how the work is broken up among cooperating processes. In many

classes of applications, especially in scientific applications, the partitioning of the data and

of the task are so strongly related that it is unnecessary to distinguish them. Therefore, we

regard them as equivalent and focus on data partitioning.

The data partitions may or may not be of equal size. We refer to these two cases as

uniform or nonuniform partitioning, respectively. Uniform partitioning is preferred when

data partitioning is based on the memory locations of data (location-dependent partition

ing) due to several reasons. First, it is simple to devise an algorithm and to write a pro

gram. Second, performance analysis and prediction are easy. Finally, one can achieve

10



well-balanced workloads. Data partitioning may also be based on data values {value-

dependent partitioning). This approach is usually taken when the program behavior is

dependent on the values of dala and the data partitions may be either uniform or nonuni

form. Unlike location-dependent partitioning, we cannot statically understand or predict

the runtime behavior of applications especially when data are nonuniformly partitioned.

Therefore, applications with nonuniform value-dependent data partitioning are not consid

ered in our research.

In parallel programs, shared data structures are partitioned and distributed among

processors. We define the processor associated to a particular data to be the Home of the

data. The home is of great interest since most accesses to a data are made by home

because data partition is intended to maintain the locality of accesses and to reduce com

munication overheads. Additional accesses to the data may be made by other processors

between two consecutive access runs by the Home.

Data structures are typically partitioned in block, cyclic, block-cyclic or random

manner. Assume P processes and an A'-element shared array which is partitioned into b-

element blocks. In block partitioning, an array is broken into P pieces of equal size (b=N/

P). The block size varies with the data set size and the number of processes. In cyclic par

titioning, each element is considered as a block (/?=1). In block-cyclic methods. bk=NlP

where k is an arbitrary positive integer so that k blocks are allocated to the same process in

a particular manner such as round-robin. In cyclic and block-cyclic partitioning, the block

size is fixed regardless of data set size or number of processes. Finally, the array can also

be randomly partitioned into blocks of arbitrary size which varies in an unspecified man

ner as the data set size and the number of processes change.
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Figure 2. Data partitioning schemes.

2.1.2 Process Coordination and Task Assignment

The purpose of the coordination and assignment is to use available mechanisms to

accomplish the following goals correctly and efficiently.

2.1.2.1 Naming and Accessing Shared Data

The fundamental issues in naming are: which shared dala can be addressed at the

hardware or user level, how they are addressed, and which operations are provided to

access them. In distributedaddress space systems, the data in each processing element are

independently managed so that remote processing elements cannot directly access them.

In shared address space systems, all processes are able to access any shared data location

with a single memory operation. A shared address space means that, when an address is

generated by a processor, the hardware will access the specified memory location without
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additional processor intervention regardless of where the data is located in the system. In

my research, only shared address space systems are considered.

2.1.2.2 Data Communication

Communication among processes is done by either massage passing or shared-memory

accesses. In the message-passing paradigm, the sending and receiving of messages are

implemented by specific primitives which are the basis of orchestrating individual activi

ties. Shared memory systems employ conventional memory operations to provide data

communication through shared addresses as well as special atomic operations such as lock

or test-and-set. The communication model adopted in our study is the shared memory.

2.1.2.3 Interprocessor Synchronization and Execution Ordering

In message passing, a synchronization event is implicitly associated with the trans

mission or arrival of a message. At the hardware level, an event causes either a program on

a processor or a state machine controller to take some action. At the user level, returning

from the send call implicitly conveys synchronization information as does returning from

the receive call. On the other hand, in shared address spaces, additional operations using

synchronization primitives such as locks are required to enforce mutual exclusion. In addi

tion, other primitives such as pauses and barriers are also used for correct execution order

ing and interprocessor synchronization.

2.1.2.4 Concurrent Task Scheduling

In the management of parallelism, load balancing can be achieved by a static or

dynamic assignment of concurrent tasks to processors. A static assignment is typically an

algorithmic matter where the allocation of tasks to processors depends on the data set size,

the number of processors and data partitioning. In many SPMD applications, the number
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of processes and the number of processors are identical and a particular process is tied to a

specific processor. Static techniques do not cause much task management overhead. How

ever, for the sake of good load balance, the work in each task must be predictable.

Dynamic techniques are categorized into two classes. In senu-static techniques the

assignment is determined algorithmically before a computation phase but assignments are

recomputed periodically for better load balance. The task granularity in semi-static assign

ments is predictable between successive time-steps. As in static techniques, a particular

process is assigned in each execution phase to a specified processor. Dynamic tasking han

dles the cases where the task granularity or the machine environment is unpredictable. In

this approach, the program specifies a mechanism by which tasks are assigned to proces

sors during the computation. Essentially, a pool of available tasks is maintained, and each

process repeatedly takes a task from the pool and executes it until there are no tasks

remaining.

To summarize, dynamic techniques are adopted for runtime load balancing when

the work to be done by a processor is not predictable. While they generally provide good

load balance, task management is expensive. Static techniques are therefore usually pref

erable when they can provide good load balance and are, thus, used in the majority of sci

entific applications. Also, semi-static techniques are very common. In our study, since the

dynamic task assignment is too difficult to statically model or analyze, we focus on static

and semi-static task assignment techniques. That is to say. the benchmarks used in our

study can associate tasks with processors in a way that each process runs on exactly one

and only one processor and there is no task migration.

2.1.3 Summary

The common characteristics of applications we use in the study are summarized

below. In addition, the applications in SPLASH and SPLASH 2 benchmark suites are tab-

11



ulated in Table 1 with their characteristics related to task partitioning and assignment.

• Programs are running on the shared address space system,

• number of processes is equal to that of processors,

• data communication is achieved through shared dala,

• representative synchronization primitives are locks, pauses and barriers.

• tasks are assigned to processors in static or semi-static manner, and

• no task migration is allowed.

Benchmarks

Task partitionin o Task assignment

Partition

Size

Location-

or Value-

dependent

Block. Cyclic.
Block-cyclic
or Random

Static.

Semi-Static

or Dynamic

Used

in the study

LU Uniform Location BC. C Static

MP3D Uniform Location BC Static

WATER Uniform Location B Static

OCEAN Uniform Location BC Static

FFT Uniform Location B Static

BARNES-HUT Uniform Value R Semi-Static

RADIX Uniform Location B Static

Cannot he

Used

FMM Nonuniform Value R Semi-Static

CHOLESKY Nonuniform Value R Dynamic

LOCUSROUTE Nonuniform Value R Static/Dynamic

PTHOR Nonuniform Value R Static/Dynamic

RAYTRACE Uniform Location B Static/Dynamic

RADIOS1TY Nonuniform Value R Static/Dynamic

VOLREND Uniform Location B Static/Dynamic

Table I. Parallel application characteristics.

2.2 SPMD Programs

In scientific applications, computers are used to simulate physical phenomena that

are usually impossible or very costly to observe through empirical means by discretizing

continuous problems in both space and time into numerically approximated algorithms.
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