Empirical Performance Modeling
of Multiprocessors Based
on Data-Sharing Analysis

Kangwoo Lee

CENG 97-24

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213) 740-4475
December 1997

EMPIRICAL PERFORMANCE MODELING OF MULTIPROCESSORS

BASED ON DATA-SHARING ANALYSIS
by

Kangwoo Lee

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY
(ELECTRICAL ENGINEERING)

December, 1997
Copyright 1997 Kangwoo Lee

Dedicated to my family...

Acknowledgments

This work marks the completion of my Ph. D. degree at USC. I am immensely
grateful for the opportunity of having received what I consider the finest education avail-
able. I would like to thank some of the people that have made this possible.

[would like to thank my advisor without whom none of this work would have been
possible. I would like to thank Professor Michel Dubois for serving as my advisor. In addi-
tion to excellent technical advice, he showed me much about how to work with people.
His early help in defining a research problem was especially critical. Additionally, he lent
industrial insight to the work and gave much help with publications.

[am indebted to all those who helped in the preparation of this thesis, particularly
Professor Peter Beerel, Professor J-L. Gaudiot, Professor Sandeep Gupta, and Professor
Clifford Neuman, for their detailed and constructive criticism.

I would like to thank the members of our research group. Also, I would like to
thank the current and the alumni members of Yonsei University at USC for showing me
the great warmness. I would also like to thank all my friends here and in Korea.

For moral support, much of which was needed in the years completing this work, I
would like to again thank my parents for their unfailing support. I would also like to thank
my wife, daughter, and son who also contributed greatly to my general state of well being
as my best friends for showing me the single minded determination to graduate that led to

the completion of this work.

iii

Contents

Chapter] INTRODUCTION cicinmmssssmmsonnimimsemisiisinmsiasnis i igamiaiimaii |
1.1 OVBTVIBW 1.t aee et em s ebs e saese s e et b e e b e bt eb s s e £ s b ebsd 2 db e s b s b e e sbe e bt e bt s s bt e b e anbenbnesans 6
1.2 SCOPE OF the TRESIS .eoveeeieeeieeiee et s e se et e e ess s 7
1.3 Organization 0f (he TRESIScvvveecie e 7

Chapter?2 BACKGROUNDY conimasimmesmpsssinymsins sommess s esiis (i sasmi s 10
2.1 Parallel Programming & T R e 1

2.1.1 Data Paruliomnﬂ and Dlslnbuuon ... 10
2.1.2 Process Coordination and Task ASSIZNMENT ...evvviveviineerininiiniiieninieeee, 12
2.LiB BBIEIARY e orimrssnninsiitwesossims s e vooen s VAT o A G5 SEHE8 P S oo 14
22 S PV PIOIERIIS v2rescsvenostsvannstsesmasis et s ks s 355445 noks s ssseh s s ashe a5 s voess 15
2.2.1 SPMD Programs on Shared-Memory SyStemsccccooeiiiiaiinicireiiis e 16
222 Datad ComMuniCation. s isisessomesssisss s i s sma i 17
223 Number of Teratlons.......cocociiiiriiniiiiseerereres s e s ees 22
2.3 Cache Misses .. R R e S S T P T e sas s D
23.1 Cache Mle Cldsmﬁcutnon OGPPSR .
2.4 TR BT o tivis i s s e F s s By oo P AT A5 S 48 oS e e mms RSO RS A PR Rg Fei 25
24,1 Least-Square ESUMALOTS cooooioireieeeeieteeeeieeiesee s eses s sns s cre et e sesenes 25
242 RODBUSEESUMALOIS ...ccviviiieieieereise it stes s enes st s s b eae e sssessssnerresissnseres 26
243 Computation TIOIE i smsssissiminseimms s st 27
Chapter 3 EARLY EXPERIENCEoooiiiiiiceeceeeee et 29
3.1 Modeling Data Accesses and Cache MiSSES......oovveeieiriiniiiiinsie s iicsieies e svesresens 30
3.1.1 Nomberof Data ACEesSES sy insmmmmninteise st 30
3.1.2 Number Of Cold MISSES.....cocuiriiirieieiitininreriinisarsensssseressesessesssesesssesossesne 30
313 Number of Sharing MISSES ...ccoveveeeriiereriisierreiesesesisseessssssssessessssss s esseses 31
32 Simulation and Benchmarksccc.eceverireereiereeieseseecreceesssssssssesssecesesessessessensssneness 32
33 Prediction RESUILS ..o.ciiiiiccesiecseee ettt es et s e e seeeeses 33
34 DIISCUSETON , covirissisvisessons assans omas o A T SR s wobrmos o tmt pros ot ops8es com e menrmsas senss 34
Chapter 4 DATA-SHARING ANALYSIS ..ot eeae e rave s 36
4.1 Data-Shafifig FHCIOTS cuironnmanmmmimmiisiissssss i s s st snrssrnmeras 37
4.1.1 Data Set Size and Number of ProCessorsoooueeeeoicreeeiiieeeeeeieeeeseeeresenns 37
4.1.2 Data PartitionINg....cccveverereeseessieree et essesstssssssesseseses s ssesenseesesesseneases 37
4.1.3 AcCeSS DISANCE ..o iviveinieririiiie it cnincr e e st eneserstsressbisasenian PRI 3
4.2 ATTay Index ANalYSis ..o s vebs et s e 41
42.1 Index Expression COMPONCNSoceieieverivieeresiiniseresessscssscssiseeseeeseeeenae 44
4.2.2 Compound Index Expressions............. R A s s T
4.2.3 Index Expressions for Multiple Ar:ay Elemems ... 56
43 Sharing Pattern Analysis. i snuinaiimsiarimnssis i i 57
43.1 Single Element Vicinity Index EXpressionccocvcvveereieieiiinnoieoseeseenne. 57
432 Multiple Element Vicinity Index EXPression ..o.eovverevveveeesevisecevecissennn 59
4.3.3 Single Element Stranger IndeX EXPression ... ecveeeeeereeieeesenesinsnnns 64
43.4 Multiple Element Stranger Index EXPression.......ceeeeeesevesoierieseieiveennens 64

43,5 SUIMMMIATY coereeeeieeerereesteseeseeeesens e ee s esesessesaes e s eensesnesseensesesssarsessssaesssssssnsns 65

4.4 Multi-dimensional AITAYScereeevimimsiscsicsissssieris s s s 67

441 Two-dimensional ATTAYcccoeeeeeiererrierereneresereresseeressesseraessssesaesssssnnenses 68

4.4.2 Higher-dimensional AITAY ..o s 72

Chapter 5 MODELING MISS RATES ..ot 73
5.1 SyStEm INTOIMALION. ...civrerrircerrrereenisessrrsreseesrrerressaesseesaressessessaseiasnrnssssssrnsnsnssbssnnsrsss 74

5.2 Static Sharing INfOrmation ... 74

53 Behavioral Sharing Information ..o, 75

5.3.1 Multiple Index Expressions of One Shared Array......cooovvevvveseesnnncieiins 78

532 TOT LOOPS wcivisssavimisimmiuesiivivns svbivussniiivas soiestin seivs samionsicsssniimsnstiaississosinoiiss 84

533 Multi-Dimensional AITays.....ccocveeciaiiiieniiceesisie s sse s sssssssssseseseesees 89

531 BRATDlb i i e e i srAlep e ae e rres A e SRS SRS 86

54 Sharing State Management and Event Countsccooccveeevieniercirenenieinisieeceeeeseenes 87

5.4.1 Sharing Analysis for Cache MISSES......cocvrereerriereeiieeiteeee e 90

542 Number of REfErenCesocvveiniieieneiieeisisietsisis e ssssssninsnens 101

SA3 INUMDBEEOL PEM ioisuusiiuiosiimmmssimivinossmsian iost vsosss 55 assbiaiarsiasibess svsott esitinsiids 103

Siid NOMber Of TOME bciu i s s s TS sebeet st sty smore 106

Chapter 6 PREDICTION RESULTS ..ottt 122
6.1 Ll sscmusamnsisisvssnsossomismmamiisini vos s osmassostos et s e oA s A P S e 123

6.2 AP BID s easrermmammsctvusasumsnsnas swssiissnsve s iossmesin sy s sinds b asasas s o Sk S s 128

6.3 e e e e U o e e e 133

6.4 e e e e e e e 136

6.5 F T ottt ettt b ettt nen 144

6.6 BARNES ;. cviiivnmnesessiosminnssnisnsnsmenymsesessssasssansareas st ssns s sasassnssasassesssssussessssrsssessssas 148

6.7 RADIEK i onis sttt b0 G s oGS0t e s mns e son s mases 1A e AR RS SRS SR RS 155

6.8 ST AN 5 cvivumsvitiossis st sasiattne o 54 s S0 S AT T B s s goms g asns st e sine 159
Chapter 7 CONCLUSION ..ottt ettt se e ereeseeesensan 161
Chapiet 8 RELATED WIORK ...ouccovucmsmivmsmsensinsisansassessin sssssios sissssasiossonerssssss iy 165
BNTTIEEII . omstomen wioa 33 3 BE TR TB 174
Al L 174

A2 IMPBID . sicorsosusommminssmsosnamsmimissssesio omato s i s s S d eSS S S SR 175

A3 WATER 176

A4 i et e e e 177

A5 | S e e e o e e el S e e 178

A6 BARNES ..ottt e es et 179

A7 RADIX.... 179
BIDHOZIADNY woxsecuoivevusnsyamsessrmeitiss o iessss s o G il sai s sapmaransesyrsansssss 181

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.

Figure 11.
Figure 12.

Figure 13.

Figure 14.
Figure 15.

Figure 16.

Figure 17.
Figure 18.
Figure 19.
Figure 20.

Figure 21.

Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.

Figure 31.

Overview: miss rate prediction SYSIEIL ... iissiiimminmissimnsssassnssumosnnsesas 6
Data partitioning SCHEMES.cceoieueiiiaiesisiniiiisstiter et 12
Data-sharing parameters: distance and number of associated data............... 19
Effect of data set size and the number of processors on data-sharing. 20
Effect of the number of participants and access distance. ..., 21

Bus-based 3-state write-back invalidation protocol and coherency events...22

Coherency events in bus-based 3-state write-back invalidation protocol.23
Partition block size and length of partition boundaries.cccovvinininin 38
Vicinities and SIrANGETS.cmmressersimsisrerseessserssisressssssssassssnsnssssssssissssssssason 40

Effects of access distance on data-sharing.ciissimsmversiammsamsssmnns 40
Data access interpretation methods. ..., 43

Home-inclusion property of the PRC. ... 44

Array index eXpression COMPONENS. ... wimummsmrssmsssissosusss sossraasnees russrss 45
Effect of access distance in block-cyclic partitioning.........cccccceveiieniinnennnn 49
Effect of access distance in cyclic and block partitioning.coevveiieni. 50
Access patterns of sparse array INAIEES.....cmimnminmsmmmssersmmasd d
Index expression for multiple array elements.coceenearevecirecsiaennannnn 37
Data-sharing in multiple vicinity index eXpression.cccoeivenersniinenens 60
Data-sharing in two-dimensional arrays.c..c.cviisimivemiimmmsisssmsasiesss 70
Overview of miss rate modeling SYStelic v amssusimmmsssivimiiaseas 74
Example FORALL loop and data aCCesSes.......ccurrursrereernssesisessseraeessnssnsnns 76
Behavioral sharing information description for Figure 21. ... 77
Multiple index expressions of one shared array in a FORALL loop. s 18
Access patterns for multiple array aCCessSes. .vovvirviiiiiiiaiiiiiieniie e 80
Access patterns for multiple array aCCESSES. .. iuiummsmmisiimmnmmrmnossrasss imsvanses 81
Access patterns foit multiple Array ACOBSSES ummiusissmsmnsmasamimmssms 82
Multiple index expressions of one shared array in a FORALL loop. 83
Access patterns for multiple array acCesSes.ovviiviiimiiiniiniinenie s 84
Nested FORALL loops for different arrays. ..cvseiosiwisamsmisiiie 85
Behavioral sharing description of nested FORALL loops ..o 85
Behavioral sharing description for multi-dimensional arrays............c.cooee 86

Vi

Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.

Static and behavioral sharing description for particles in MP3D. 87

Trita ACCESSERION ELL, ..vuonesnsonnsssseivoiniassssniismeiasassdossinssessbecaainesams susavssatons st 92
Data accesses 0f EVIC=S. ..o s ssisesons 94
Data accesses 0f EVIC-M i cimsminimmisiniriiassesaimisissasisssmns s amsses 95
Diatd 4ccESSes:0f ELVES..seuecsnmmenseesamssssaiisiusiississaississiaisssdonsisssamarsisossssaisniion 97
Algorithm to measure the number of data references. ... 102
Example for the measurement of data references. ..o 104
Algorithm to measure the number of PCM........ccooiiinniniiiinn 106
TSM on EVIC-S read statement after EVIC-S write statement. [10
TSM on ELV-S or ELV-M read statement after a write statement.............. 1]
TSM on EVIC-S read statement after ELV-S or ELV-M write statement...111
Number of TSM for consecutive reads after a Write........ccocvvvieceiiinnnenne. 12
Data accesses of EVIC-M.....cccunismmnmsimmimiinsiamssissississ i 114
Algorithm for TSM measurement (Main routine).ccocevevirviiiecinnninnneene 116
Algorithm for TSM measurement (RC_LOOP_BEGIN_HANDLER)......118
Algorithm for TSM measurement (RC_LOOP_END_HANDLER).......... 121
Static and behavioral sharing description for array A in LU. ..o 124
Static and behavioral sharing description for array L in LU. ..o 124
Static and behavioral sharing description for array thispivot in LU. 125
Stmitiletinn PESTILS T Ll o mismmmmmesmssimnioniss s 5smesssnraisonmsbossrsssaavnicdessshassios 126
Static and behavioral sharing description for array Particles in MP3D......129
Static and behavioral sharing description for array Cells in MP3D. 130
Simulation results in MP3D...cooiiieeeeeee e 131
Static and behavioral sharing description for array VAR in WATER.134
Sinmlation results in WATER. ...cvmmsanemsssmmmmsinrassim s 135

Static and behavioral sharing description for array Q_multi in OCEAN. ..138
Static and behavioral sharing description for other arrays in OCEAN.......139

Static and behavioral sharing description for array Q_multi in OCEAN. .. 140

Simulation results i OCEAN....csumssvrmimmisisesivissssssissmvmsmsimtii 141
Static and behavioral sharing description for array X in FFT.......ccocoo. 145
Static and behavioral sharing description for array trans in FFT............... 146
Sitnlation results I FIIL .. .oomasssomsssmmmessmesss e s 5w wa s s 147

Static and behavioral sharing description for array bodytab in BARNES..150

Static and behavioral sharing description for array ctab in BARNES. 151

vii

Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

Static and behavioral sharing description for array Itab in BARNES......... 152
Suniilatiom resalts iti BARNES .o snmumasmmmmrmnimmssassivmies 153
Static and behavioral sharing description for array key[0] in RADIX.155
Static and behavioral sharing description for array key[1] in RADIX. ... 156
Effect of the data set size on the number of misses in RADIX. 157
Shared array and index variables.osisssssimimmisems s 162

viii

List of Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.

Parallel application characteriSHEs, i commmmimimsnmivmmsisismmsmmnisass ssseniss 15
Computation cost of curve fitting (M<N). cooviviiiiiiniiiies 27
Size of data sets used to find fitting functions and shared variables. 33
Empirical models and prediction results. ..o 34
Processor attributes by which a certain data is accessed.cooeeiiiiiiiinnnns 4+
Processor attributes for index expression COMPONENLS. ...ooieeeeeirrriiieienieiins 47
Data access pattern summary for vicinity eXpressions.ccccveeievienennnnJ
Data access pattern for Stranger eXpressions. ... eeereneseennennennesrenes 54
Effects of data set size and number of processors in EVIC-S.59
Effects of data set size and number of processors in EVIC-M. 63
Effects of data set size and number of processors in ESTR-S and ESTR-M.65
Syntax of behavioral sharing information description..........ccooceveniviniennnnes 77
Important metrics during the execution of Pi with respect to BPi............... 100
Effect of number of processors on the event in Table 13...........ccoocoei, 101
Effects of number of processors on the number of PCM...........ccccooein 105
Modified elements of Pi after a write operation with respect to BPi.......... 107
Array elements accessed by Pi during its execution with respect to BPi. ..108
Summary of TSM on read operation by Pi with respect to BPi.................. 113
Summary of TSM on write operation by Pi with respect to BPi. 115
Number of processors used to find fitting functions.ccoccoeiiiiiiniennn 122
Effects of data set size and number of Processors.cocoveiiiiieninieceeneens 125
Empirical models and prediction results for data set size (LU)......c..ceve. 127
Empirical models and prediction results for number of processors (LU)...127
Effects of data set size and number Of Processors.coveeieariiriienriieenens 130
Empirical models and prediction results for data set size (MP3D).132
Empirical models and prediction for number of processors (MP3D).........132
Effects of data set size and number of processors.coovivvinininninennn 134
Empirical models and prediction results for data set size (WATER). 135
Empirical models and prediction for number of processors (WATER).136
Numbers of data elements of shared arrays in OCEAN.cccccoviiinnne. 137
Effects of data set size and number of processors.ccovviveniieiiiiiiiniinnn, 137
Empirical models and prediction results for data set size (OCEAN). 142
Empirical models and prediction for number of processors (OCEAN)......144
Effects of data set size and number of proCcessors.cccoceeieriiiniciiieannes 146
Empirical models and prediction results for data set size (FFT). 148

Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.

Empirical models and prediction results for number of processors (FFT). 148
Effects of data set size and number of processors.civiiinniiiinins 149
Empirical models and prediction results for data set size (BARNES). 154
Empirical models and prediction for number of processors (BARNES)....154

Effects of data set size and number of processors.cciveiiinnnnieriinenens 156
Empirical models and prediction results for data set size (RADIX).158
Empirical models and prediction for number of processors (RADIX)....... 159
Empirical models and prediction results for data set size...........cccocovininnn 160
Empirical models and prediction results for number of processors............ 160
Comparison of prediction errors for data set $zie. ... 160
Empirical models and prediction results for LU. ... 174
Empirical models and prediction results for MP3D. ... 176
Empirical models and prediction results for WATER............ccooiinn 176
Empirical models and prediction results for OCEAN. ..o 177
Empirical models and prediction results for FFT. ... 178
Empirical models and prediction results for BARNES. ...l 179

Empirical models and prediction results for RADIX. ... 180

Abstract

In the development of large scale multiprocessor systems and parallel applications,
it is critical to predict performance before physical implementation. Software simulations
and analytical models are widely used for this purpose. However, software simulations are
time-consuming and resource-intensive and it is difficult or even impossible to simulate
realistic applications on large target systems. Furthermore, the predictive power of con-
ventional analytical models is very limited. The major goal of this thesis is to explore ¢
methodology to predict accurately the performance of very large applications executed on
large-scale multiprocessors.

In this thesis an empirical modeling methodology is developed for shared-memory
applications. In this methodology, a few samples of a performance metric are collected by
simulating small problems on small system configurations. Additionally, a parametric
model of the metric is found through static data-sharing analysis. We limit ourselves to
scientific SPMD applications, in which data-sharing can be quantified by analyzing the
array indexes of shared data structures. A statistical robust parameter estimation technique
is then applied to estimate the parameters of the model. The outcome is an analytical
model to predict the value of the metric. Although the ultimate measure of performance is
the execution time, we focus on the cold and coherence misses, which are essential in par-
allel applications.

With this modeling technique, we have achieved quick and accurate performance
predictions for problems and systems that are so large that they are difficult or even impos-

sible to simulate. In most cases, the prediction error falls below 1%. This result demon-

X1

strates that prediction based on empirical models is extremely accurate even for
applications whose behavioral characteristics are irregular.

Because the data-sharing analysis is applicable not only to the number of cache
misses but also to other performance metrics such as the numbers of instructions and data
accesses, it could be used to predict the execution time in many cases. With the help of a
parallelizing compiler, we can envision that the whole modeling procedure can be part of
an evaluation framework to develop large scale applications and architectures for high-

performance scientific computing.

Xii

Keywords: Empirical Modeling, Performance Prediction, Sharing Analysis, scien-
tific SPMD applications, Curve Fitting, Robust Parameter estimation, Shared-Memory

Multiprocessors, Cache, Cache Misses

xiil

Chapter 1

INTRODUCTION

To evaluate high performance shared-memory multiprocessor systems, researchers
and designers can compare designs through software simulations without building hard-
ware prototypes. A set of potential application programs are ported and run on the simula-
tor for diverse possible configurations of the architecture. Various types of performance
metrics can be obtained. Unfortunately, software simulations are usually slow and con-
sume large amounts of memory, which limits the problem sizes and target systems to be
simulated. As the data set size and the number of processors [36, 56] grow, the amount of
memory needed to store the code and the data for both the simulator and the application
program may become prohibitive. Moreover, the simulation time often increases much
faster than the data set size and the number of processors. This explains why simulation
results are only reported on small data sets and small systems while researchers still want
to see how their design performs for very large problems.

A tempting approach is to build analytical models and to employ them for driving
software simulators. In the past, analytical models have been widely used. Synthetic,
parameterized workloads mimic the behaviors of real programs so that the architectures
can be compared. Analytical models are useful for several reasons. First, they can be used
in quick performance evaluation to prune the design space. Second, analytical models help
understand the workload and its characteristics when various parameters are changed.

Finally, if extrapolation can be done reliably, the model is used to predict workload behav-

ior and architecture performance for the cases that would be very difficult or even impossi-
ble to simulate.

Existing analytical models are structural models abstracted from the expected
behavior of the workload and formalized with a set of statistically defined parameters. For
example, in [24], a stochastic model was developed in which the workload is characterized
by the probabilities of accessing and modifying a shared block. Whereas the model can
drive an architecture simulation and show the effects of the parameter values, it is in gen-
eral difficult to estimate the parameters of the model for a particular application, let alone
to estimate the effects of variables such as the data set size or the number of processors in
the underlying system. Thus a model is only valid for a particular application with a given
data set size and a given number of processors.

Because simulation and general-purpose hardware have become so efficient, it is
now possible to develop empirical models. In an empirical performance model, a few sam-
ples of performance metrics are collected by simulating a few small-size problems run-
ning on small systems. Additionally, the magnitude orders of those performance metrics
are found from static workload analysis. Then, statistical extrapolation techniques produce
an analytical model which can be applied to estimate the values of performance metrics
for realistically large data set size and number of processors.

In this thesis, an empirical technique for modeling cache misses due to data shar-
ing and interprocessor communication is introduced. Although the ultimate measure of
performance is the execution time, cache misses have been at the center of attention
because of their significant impacts on execution time. In a parallel system, a large number
of cache misses stem from the data-sharing among processors as specified in program
statements. These data-sharing misses can be estimated through the analysis of data-shar-

ing in parallel applications.

ta

Due to its importance in the performance evaluation of parallel computer systems,
data-sharing analysis has been a popular research subject. Many researchers suggested
their own analysis methodology and introduced diverse analytical performance models
established on top of the knowledge they earned from the sharing analysis. The sharing
analysis can be carried on from the traces collected from the actual execution of parallel
programs, or directly from the parallel application codes. In general, trace-collection facil-
ities are not so widely available and the traces are valid only for the hardware and software
configurations from which they are collected. For these reasons, the accuracy and general-
ity of data-sharing analysis is better when the application codes are used.

One of the most general application classes of parallel systems is scientific compu-
tations programmed in the Single-Program-Multiple-Data (SPMD) model. As the speed of
today’s computer systems gets ever faster, the amount of data to be processed is accord-
ingly growing. These data objects are normally represented by array data structures and
the computations on them are performed within iterative loops such as the for loop con-
struct. The information regarding the memory locations of the data objects that a processor
accesses is given in the program. That is to say, the index expressions of array variable
bear the information regarding possible data-sharing in the program. Therefore, the data-
sharing analysis must start with array index expression analysis.

The SUIF compiler [40, 73] is the product of the one of the state-of-the-art
research in this field. The SUIF compiler statically analyzes the locality of data accesses in
a sequential program and produces a parallel program that can be run with minimized
amount of data-sharing or data communication among the processors. The locality analy-
sis in the SUIF compiler is done on top of the index expression analysis. Their target
application area is dense matrix computations. Indeed, the array index expressions in gen-
eral scientific applications such as those in SPLASH [67] and SPLASH-2 [82] bench-

marks are generally too complicated to perform array index expression analysis. This is

why the researchers participating in the development of the SUIF compiler confine them-
selves to dense matrix computations.

The people in the High Performance Fortran Forum [42] perceived that static array
index expression analysis is too complex unless the compiler is provided with useful infor-
mation so that it can generate high performance parallel codes. To achieve this goal, they
develop High Performance Fortran (HPF), a language in which added directives guide the
compiler in decisions about some fundamental factors affecting the performance of a par-
allel program such as the degree of available parallelism, exploitation of data locality, and
choice of appropriate task granularity. HPF directives appear as structured comments that
suggest implementation strategies or assert facts about a program to the compiler.

In another active project called ALPSTONE [16, 45], a formal description of data
access behavior in a parallel application is provided as an input to the data-sharing ana-
lyzer, instead of the actual program codes.

These projects are evidence that data-sharing analysis based on array index expres-
sion analysis is hard to make and a tempting approach is to provide the sharing analyzer
with formally described sharing information. This information can be obtained in many
ways. In HPF or ALPSTONE, the programmer or researcher must understand the behav-
ioral characteristics of the underlying algorithms in their parallel applications beforehand.
Based on this understanding, they can specify the sharing information according to the
pre-defined syntax of the description tools.

In this research, the data-sharing analysis does not need the knowledge regarding
the sharing activities in an application. Instead, the translation of the source code into a
formal description called the Access Pattern Description Statement (APDS) is merely nec-
essary. The core of this research is to establish a systematic method with which the APDS
can be easily constructed from the given parallel applications. The APDS can then be

input to the analyzer to compute the magnitude order of the number of data references and

the number of cache misses in the big-oh notation. The outputs of the sharing analyzer are
used in the curve fitting stage together with previously collected simulation samples to
find the a numerical expression for the best fit curve, where two independent variables are
the data set size and the number of processors. The final results are the empirical models
for the miss rates and, as will be seen later, they are extremely accurate.

To establish a method to translate the source code into an APDS, we should first
characterize the data-sharing patterns for various types of array index expressions that are
found in general scientific parallel applications. First of all, data-sharing is not observed at
every moment during the execution of a parallel program. Rather, it takes place only when
certain necessary conditions are met. Therefore, we first investigated what are these condi-
tions and which types of factors are associated with them. In practice, the number of pos-
sible values that the sharing factors can take is so large that they need to be categorized
into a finite number of groups. Although fine grouping may increase the accuracy of shar-
ing analysis, complicated treatments of minute differences among the categories often
degrade the efficiency of the work. Our policy is to keep the categories as coarse as possi-
ble while a certain level of analysis accuracy is maintained. The next step is to map the
array index expressions in application codes into the groups that we have defined.

Generally, the overall quality of an analysis and modeling technique is determined
by comparing the resulting analytical models against the experimental results. In addition,
the prediction accuracy for very large data sets and processor numbers is also important in
judging the usefulness of analytical models. Once the model is shown to be accurate, the
whole technique including the definition of sharing factors, grouping their values into cat-
egories, capturing the values of sharing factors from applications and formularizing the
factors into a numeric expression is appraised to be accurate, as well. In this regard, the
extreme accuracy of our empirical models for miss rates based on sharing analysis is evi-

dence to the high quality of the modeling technique introduced in this thesis.

AN

1.1 Overview

Figure 1 shows the overall empirical performance modeling procedure with
respect to the data set size N. It is largely composed of three subprocedures: sharing anal-
ysis, sample collection, and curve fitting. The first component is to establish polynomial
expressions (models) for the magnitude order of the number of cache misses in the big-oh
notation (Figure 1, boxes 1, 2, 3). This step is the core of the work. Performance data are
then collected by simulating the execution of the program with small data set (boxes 4, 3,
6). Then, the robust parameter estimation technique (box 7) is used to find the best fit

numerical expression (models) for each performance metric (box &).

/

Sharing Analysis Sample Collection \

/ \ / 4. Architecture \

1. SPMD Benchmark — Parameters

‘ I

Program-Driven

2. Sharing Analysis |
Simulator
——
Y
3. Big-oh Expressions 6. Result-Set (N=48)
Num. data accesses : O(N%) Result-Set (N=64)

Num. read misses : O(N®)

\ Num. write misses : O(N) / K Result-Set (N=144}J
/ Curve Fitting \

7. Robust Parameter Estimation
8. Numerical Expressions for Execution Time factors

Num. data accesses : 1.23N°% + 45.67N? + 8.9N + 10
Num. read misses : 9.87N% + 65.43N + 21

\ Num. write misses : 345.67N + 654 /
K Miss Rate Model /

Figure [. Overview: miss rate prediction system.

6

Since our target is the miss rate, the numbers of data references and cache misses
are first modeled in terms of data set size and number of processors. Prediction is per-
formed by substituting a large value of data set size into the model obtained in boxes 7 and

8. The same can be done with P, the number of processors.

1.2 Scope of the Thesis

In shared-memory multiprocessor systems, the mechanisms to maintain data con-
sistency are broadly classified into write-invalidate protocols and write-update protocols
[74]. In this thesis, among many possible protocols, we only consider a three state write-
invalidate protocol [74]. However, since the source of all coherency events in as protocol
is commonly the data sharing which is inherent in applications, the methodology intro-
duced in this thesis can be applied to other protocols.

In addition, among parallel applications, we consider scientific SPMD programs
since they are the most popular primarily due to the ease of program coding. The bench-
mark applications used in our research are from the SPLASH [67] and SPLASH-2 [82]
benchmark suites.

In the simulation, the caches have infinite size. This helps fully understand the

data-sharing effects by eliminating the replacement misses.

1.3 Organization of the Thesis

This thesis is organized as follows.

Chapter 2 provides the basic background knowledge for the work in this thesis. A
set of issues that often characterize parallel programs are briefly introduced. The issues
include data partitioning, task scheduling, and synchronization. In addition, we extract the
essential features of scientific SPMD programs. These features of SPMD programs are at

the foundation of our research,

Recall that the empirical models to be built in this thesis will be able to predict the
miss rates for very large data sets and number of processors. That is to say, the only two
independent variables in the model are the data set size and the number of processors, and
the number of data references and the number of cache misses should be dependent on
them. A simple, but important, illustration that the number of cache misses is proportional
to the two independent variables in the model is given in Chapter 2. At the end of this
chapter is found the mathematical presentation of the curve fitting technique is given.

At the beginning stage of the work, we needed a sound evidence that miss rates
vary along with the data set size of an application. Chapter 3 presents our very first mod-
els. These miss rate models were established based on a simple algorithmic complexity
analysis idea instead of the sharing analysis. In this chapter, a small table that collectively
shows the empirical models and predictions results of the benchmarks is given. The results
for individual applications are put into the Appendix A.

Encouraged by the accurate prediction results of the model in Chapter 3, we
started the actual research, i. e., the construction of empirical models for cache miss rates
based on the sharing analysis. When investigating the data-sharing patterns in Chapter 4,
we do not focus on the cache misses, yet. First, the sharing factors that affect the amount
of data-sharing are defined. Once we understand the sharing factors and the ways they
affect data-sharing, the array index expression analysis (or, data-sharing analysis) is car-
ried on. The components used in array index expressions and the composite index expres-
sions composed of the index expression components are enumerated. The data-sharing
patterns for all types of index expressions are also provided. At this moment, the effects of
the data set size and the number of processors on the amount of data-sharing are dis-
cussed.

In Chapter 5, the models for the number of data references and the number of

cache misses are built based on the knowledge we obtained in Chapter 4. The ideas about

the data-sharing patterns are briefly summarized to apply them to measuring cache misses.
Since there are usually many shared arrays whose behavioral characteristics are distinct
from each other, individual arrays are dealt with separately. A miss rate model is estab-
lished for each shared array. The global miss rate model is then built by summing up those
models. At the end of the chapter, formal algorithms to count the number of data refer-
ences and the number of cache misses are provided.

The prediction results of the empirical models built in Chapter 5 are tabulated in
Chapter 6. For each application, two tables are shown; one for the prediction for large data
sets and the other for large number of processors. The full descriptions of each applica-
tion, their behavioral characteristics and APDS, and the simulation results for various data
sets are all summarized in this chapter. Finally, the improvements of the prediction accu-
racy of the models established based on the sharing analysis over the crude models built in
Chapter 3 are tabulated.

The concluding remarks of this thesis are given in Chapter 7 and the related work

of other researchers follows in Chapter 8.

9

Chapter 2

BACKGROUND

2.1 Parallel Programming

We first summarize fundamental issues in parallel programming and relevant char-
acteristics of scientific SPMD programs. Generally, parallel programs involve:

* partitioning of the computation into tasks,

* distribution of tasks among processes,

* coordination of data accesses and communication, and

* assignment of processes to processors.

2.1.1 Data Partitioning and Distribution

Data partitioning and distribution are usually independent of the underlying archi-
tecture. They determine how the work is broken up among cooperating processes. In many
classes of applications, especially in scientific applications, the partitioning of the data and
of the task are so strongly related that it is unnecessary to distinguish them. Therefore, we
regard them as equivalent and focus on data partitioning.

The data partitions may or may not be of equal size. We refer to these two cases as
uniform or nonuniform partitioning, respectively. Uniform partitioning is preferred when
data partitioning is based on the memory locations of data (location-dependent partition-
ing) due to several reasons. First, it is simple to devise an algorithm and to write a pro-

gram. Second, performance analysis and prediction are easy. Finally, one can achieve

10

well-balanced workloads. Data partitioning may also be based on data values (value-
dependent partitioning). This approach is usually taken when the program behavior is
dependent on the values of data and the data partitions may be either uniform or nonuni-
form. Unlike location-dependent partitioning, we cannot statically understand or predict
the runtime behavior of applications especially when data are nonuniformly partitioned.
Therefore, applications with nonuniform value-dependent data partitioning are not consid-
ered in our research.

In parallel programs, shared data structures are partitioned and distributed among
processors. We define the processor associated to a particular data to be the Home of the
data. The home is of great interest since most accesses to a data are made by home
because data partition 1s intended to maintain the locality of accesses and to reduce com-
munication overheads. Additional accesses to the data may be made by other processors
between two consecutive access runs by the Home.

Data structures are typically partitioned in block, cyclic, block-cyclic or random
manner. Assume P processes and an N-element shared array which is partitioned into b-
element blocks. In block partitioning, an array is broken into P pieces of equal size (b=N/
P). The block size varies with the data set size and the number of processes. In cyclic par-
titioning, each element is considered as a block (b=1). In block-cyclic methods, hk=N/P
where k is an arbitrary positive integer so that & blocks are allocated to the same process in
a particular manner such as round-robin. In cyclic and block-cyclic partitioning. the block
size is fixed regardless of data set size or number of processes. Finally, the array can also
be randomly partitioned into blocks of arbitrary size which varies in an unspecified man-

ner as the data set size and the number of processes change.

/ P, [0 0000O0O0OQ0 \

Py [ocooo0000]

() Block

Py [0] [0 [0 [0 [[a [o] [9]
Pi @ [@ [0 [[o [o] [o] [9]

(b) Cyclic

Py [0 O] =Xe) [0 0] [sXe]
P [0 0] [0 O] [0 0] [0 0]

(¢) Block-Cyclic

Py [0 00O] [0] (0] (0]

Py 0] [0o] [0oo] [00]

\ () Random /

Figure 2. Data partitioning schemes.

2.1.2 Process Coordination and Task Assignment

The purpose of the coordination and assignment is to use available mechanisms to

accomplish the following goals correctly and efficiently.

2.1.2.1 Naming and Accessing Shared Data

The fundamental issues in naming are: which shared data can be addressed at the
hardware or user level, how they are addressed, and which operations are provided to
access them. In distributed address space systems, the data in each processing element are
independently managed so that remote processing elements cannot directly access them.
In shared address space systems, all processes are able to access any shared data location
with a single memory operation. A shared address space means that, when an address is

generated by a processor, the hardware will access the specified memory location without

additional processor intervention regardless of where the data is located in the system. In

my research, only shared address space systems are considered.

2.1.2.2 Data Communication

Communication among processes is done by either massage passing or shared-memory
accesses. In the message-passing paradigm, the sending and receiving of messages are
implemented by specific primitives which are the basis of orchestrating individual activi-
ties. Shared memory systems employ conventional memory operations to provide data
communication through shared addresses as well as special atomic operations such as lock

or test-and-set. The communication model adopted in our study is the shared memory.

2.1.2.3 Interprocessor Synchronization and Execution Ordering

In message passing, a synchronization event is implicitly associated with the trans-
mission or arrival of a message. At the hardware level, an event causes either a program on
a processor or a state machine controller to take some action. At the user level, returning
from the send call implicitly conveys synchronization information as does returning from
the receive call. On the other hand, in shared address spaces, additional operations using
synchronization primitives such as locks are required to enforce mutual exclusion. In addi-
tion, other primitives such as pauses and barriers are also used for correct execution order-

ing and interprocessor synchronization.

2.1.2.4 Concurrent Task Scheduling

In the management of parallelism, load balancing can be achieved by a static or
dynamic assignment of concurrent tasks to processors. A static assignment is typically an
algorithmic matter where the allocation of tasks to processors depends on the data set size,

the number of processors and data partitioning. In many SPMD applications, the number

of processes and the number of processors are identical and a particular process is tied to a
specific processor. Static techniques do not cause much task management overhead. How-
ever, for the sake of good load balance, the work in each task must be predictable.

Dynamic techniques are categorized into two classes. In semi-static techniques the
assignment is determined algorithmically before a computation phase but assignments are
recomputed periodically for better load balance. The task granularity in semi-static assign-
ments is predictable between successive time-steps. As in static techniques, a particular
process is assigned in each execution phase to a specified processor. Dynamic tasking han-
dles the cases where the task granularity or the machine environment is unpredictable. In
this approach, the program specifies a mechanism by which tasks are assigned to proces-
sors during the computation. Essentially, a pool of available tasks is maintained, and each
process repeatedly takes a task from the pool and executes it until there are no tasks
remaining.

To summarize, dynamic techniques are adopted for runtime load balancing when
the work to be done by a processor is not predictable. While they generally provide good
load balance, task management is expensive. Static techniques are therefore usually pref-
erable when they can provide good load balance and are, thus, used in the majority of sci-
entific applications. Also, semi-static techniques are very common. In our study, since the
dynamic task assignment is too difficult to statically model or analyze. we focus on static
and semi-static task assignment techniques. That is to say, the benchmarks used in our
study can associate tasks with processors in a way that each process runs on exactly one

and only one processor and there is no task migration.

2.1.3 Summary

The common characteristics of applications we use in the study are summarized

below. In addition, the applications in SPLASH and SPLASH 2 benchmark suites are tab-

ulated in Table 1 with their characteristics related to task partitioning and assignment.
* Programs are running on the shared address space system,
» number of processes is equal to that of processors,
e data communication is achieved through shared data,
» representative synchronization primitives are locks, pauses and barriers,
* tasks are assigned to processors in static or semi-static manner, and

* no task migration is allowed.

Task partitioning Task assignment
Benchmarks Partition Location- | Block, Cyclic, Static,
Size or Value- Block-cyclic Semi-Static
dependent or Random or Dynamic
LU Uniform Location BC.C Static
MP3D Uniform Location BC Static
Usad WATER Uniform Location B Static
in the study OCEAN Uniform Location BC Static
FFT Uniform Location B Static
BARNES-HUT Uniform Value R Semi-Static
RADIX Uniform Location B Static
FMM Nonuniform Value R Semi-Static
CHOLESKY Nonuniform Value R Dynamic
Carnot be LOCUSROUTE || Nonuniform Value R Static/Dynantic
Used PTHOR Nonuniform Value R Staric/Dynamic
RAYTRACE Uniform Location B Staric/Dynamic
RADIOSITY Nonuniform Value R Static/Dynamic
VOLREND Uniform Location B Static/Dynamic

Table |. Parallel application characteristics.

2.2 SPMD Programs

In scientific applications, computers are used to simulate physical phenomena that
are usually impossible or very costly to observe through empirical means by discretizing

continuous problems in both space and time into numerically approximated algorithms.

Discretized times are represented as fime-steps in programs and discretized spaces form
large regular grids or arrays. The computations executed on array elements are uniform,
and the most popular program structure for uniform computations is iferative loops such
as for loops.

Typically in SPMD programs, all processes are synunetric and execute a common
stream of instructions. Therefore, the most suitable problems for SPMD style are the ones
with large amounts of uniform computations which can be partitioned and executed by
multiple processes, simultaneously. In consequence, many scientific applications nowa-
days are programmed in the SPMD style. Now, we summarize a set of observations
regarding scientific SPMD programs.

Observation 1. (Iterative program structure) Discretized times in scientific appli-

cations are implemented as time-steps in programs.

Observation 2. (Array data structure) Discretized spaces in scientific applications

are 1'epresenled as array data structures.

Observation 3. (Data homogeneity) The elements in an array are homogeneous in

the sense that the computations executed on them are uniform or identical.

Observation 4. (/terative computation loop) Uniform computations on array ele-

ments are implemented by iterative loops. The iterative loop in SPMD programs

mentioned in Observation 4 is equivalent to the FORALL loop [42].

Observation 5. (Processor symmetry) The processors are symmetric or identical

and they execute a single instruction stream on their portion of partitioned array.
2.2.1 SPMD Programs on Shared-Memory Systems

Initially, a single process called a master process is started by the operating system.

The master process performs initialization procedures required for parallel processing of

16

operations in the program. Then, it creates worker processes, or slave processors, which
directly enter the parallel section. The master process itself enters the parallel section so
that all created processes execute the same code image until they exit from the program
and terminate. This does not mean they proceed in lock-step manner or even execute the
same instructions at a given moment since they may follow different control paths in the
code.

Control over the shared data distribution and the assignment of work to processors
are maintained by private variables that acquire distinct values for different processes. For
instance, every process obtains a unique process identifier between 0 to the number of pro-
cessors minus one upon the creation. This pid is used to determine which data partitions
are assigned to which processes by calculating the array indices of each chunk of data.
Such private variables are used as loop bounds to limit the address space of partitioned
portion of a shared array. The code that performs the actual computations is essentially

identical to that in the sequential program.

2.2.2 Data Communication

Data communication, or data-sharing, is of great significance since it causes per-
formance degradation due to the coherency overhead for the correct execution of pro-
grams. This is why the reduction of data-sharing and its overhead has been one of the most
important goals in parallel processing. To this goal, many efforts have been made to better
analyze and model data-sharing.

In this section, we like to provide the first intuition that data-sharing is defined by
the index expressions of shared arrays and the amount of data-sharing can be estimated
from the values of array index components. In addition, we also like to show how the
amount of data-sharing is dependent on both data set size and number of processors. Com-

plete discussions will be made in Sections 4 and 5.

As pointed in Observation 4, the computations in SPMD programs are performed
within FORALL loops. During the parallel execution, the loop control variables take the
values bounded by the index range of array elements allocated to each processor. The
array element designated by the loop variables is called the center of computation. Ele-
ments that participate in the computation are called the participating data or partici-
panl(s)]. [n general, the indices of participants are expressed numerically using the loop
control variables, constant numbers, or some other general variables. Then, the primary
factors affecting data-sharing are:

* data set size and number of processors

* data partitioning method, and

» distance of participating data from the center of computation

In addition, the number of participating data and the dimensions of shared array
also influence the data-sharing as will be seen in Sections 4 and 3.

The distance between the center of computation and each participant is denoted by
d and its possible values are d,, d,, d,, and d,, which stand for the unit distance (adjacent
elements), constant distance, variable distance, and random distance respectively. Variable
and constant are distinguished according to whether the distance is dependent on the data
set size or the number of processors, or not. See the example program in Figure 3 (a)
where an N-element array (N=10) is partitioned into blocks and distributed to P processors
(lines 1, 2, 3). In each iteration of the fox loop (line 4), the center of computation is A[I]
(line 5). The distances between participants in lines 6 through 9 from the center of compu-
tation are shown in Figure 3 (b). Note that a variable r in line 8 and 12 is the one whose
value can be only known at run time. The number of participants is similarly defined and

denoted by n, n, n,, or n, (Figure 3 (a), lines 10 through 14 and Figure 3 (c)). Arrays can

1. Formal definitions of the center of computations and participants will be made in Section 4.1.3

~

int A[N]; /* array of N integers */ \

2. int first = N / P * my_pid; /* block partitioning */
3. int last= N / P * (my_pid + 1);/* block partitioning */
4. FOR (I=first;I<last;I++) (
5. A[TI] ... ; /* center of computation */
6. A[IH#L] «w. § /% d=dy */
s A[TH3] .:: 3 1'% d=dyg=3 */
8. AlI+r] ... ; 1% d=dav */
9. A[T+N/2] ... ; [* d=d,=N/Z */
i, oue ALTAAN v ; /Y = %/
11. L., A[I-1], A[I+1) ... ; /* n=n,=3 */
12. 2o AfI#L] ®ol A[I+£] www [on=agr
13~ FOR (J=0;J<N/2;J++)
14. oL ALIHTY] ... ; I* n=n,=N2 */
15
(a) Program
o = random
| :
‘ﬁd‘; : @ center of computation
Q000000 0DO0D0O0BGO0OO
Fd' © participating data
fog= 12 1 (b) distance
@eC00000EEOEO0O0O0O0OO0 .0@0@00@000.6{_0_?0
t
i n=72 ny= N2 n=random

(¢) number of associated data

- &

Figure 3. Data-sharing parameters: distance and number of associated data,

be block (py,), block-cyclic (py.). cyclic (p.) or random (p,) partitioned. Finally, the array
may be one-, two-, or higher dimensional.
Following examples show how the factors mentioned above influence the amount

of data-sharing. Among many combinations of possible cases, we present a few examples

19

where one- and two-dimensional arrays are partitioned in py, and p,. manner with d=1 and,
n.=2 and n.=4. A 16 element one-dimensional array and a 16x16 element two-dimen-
sional array are partitioned between two processors into variable size blocks (p},) and fixed
size blocks (py.) in Figure 4 (a) and (b), respectively. In general, the data set size and the
number of processors proportionally affect the amount of data-sharing. In Figure 4, we see
that the amount of data-sharing does not change when the size of a block-partitioned one-
dimensional array grows. It is because the block size varies with the data set size. The
number of processors in py. does not affect the amount of data-sharing, either, since two
adjacent processors share the same amount of data regardless of the number of processors.

The shaded areas in Figure 4 (b) indicate the set of data shared by pj and p,, and p; and p,.

Access Pattern .
« target Data-sharing Pattern
| © assoc. | « shared data |
I T 1
P=2 P=2 P=2P=4
N=16 » N=2N=32 L _ N=16 .
d=1 Po P Po Py Po P Pz P3
n=n=2 °°° [66cc006000060600CEEON000L0000G0C00E
=2
d=d, °
n=n=4 °a°
2000000000000 00SE00000000000000S
0000000000000 0EN00ODO00O00C0O0O0000E
(a) Block partitioning (variable size block=N/P)
d=d, Po P1 Po P BP0 Pr Py Py Po P1 P2 P
n=n=2 L
d=d, o
n=n=4 "o
(b) Block-cyclic partitioning (lixed size block=4)

Figure 4. Effect of data set size and the number of processors on data-sharing.

/ dy =1 Po P1 Po P1 Po P4 \

m=1[oooooooomooooooo]mooooooemoooooom[ooooooo-ho00000m

W:2]ooooo-oﬂocooooom|ooooocoMooooooom|ooooocc-mooooooo

1%=3 [Pcoococeco[coococo00] [COOOOCO@O[0O000000 0Oo0OOCOOO@®00000000

(a) Effect of the number of associated data (d}=1)

n.=3 Po P Po Py Po Py

m=1|oooooooqoooooooo|EOOOOOOOMOoooooo]moooooooheoooooo
¢=2 O0000O®0OROEOO0CDOO [cocoocoeojococoo000| [PoocoocOO@OCOOO0OO0OO]
d.=3 Coocooeoocoo00000| [CCOOC0E0[0000C0000] [0000000R00006C00D0]

(b) Effect of data distance (1,=3)

e center of computation
\ o participants /

Figure 5. Effect of the number of participants and access distance.

In addition, a computation may apply to data elements of different arrays. There
are two possibilities. First, the memory locations of an array and other arrays are depen-
dent. That is, the indices of array elements in an array are given by functions of index vari-
ables which are also used for other array elements. In this case, both arrays normally have
same size and are partitioned in the same manner. Second, the array indices of two arrays
are independent. For example, memory locations of array elements of an array are the
results of earlier computations while the elements of other arrays are specified by a loop
control variable. Then, we regard the data location designated by earlier computation
results as random. The Cells and Ares in MP3D, ctab and 1tab in BARNES-HUT
and key in RADIX are such arrays. Generally, these arrays cause large amount of data-
sharing, especially when the size of secondary array is much smaller than that of main
array (Cells and ctab).

In consequence, the amount of data-sharing varies along with the data set size, the
number of processors or both as well as with the access distance of a participant, the num-

ber of participating data elements and the partitioning method.

2.2.3 Number of Iterations

The data-sharing analysis discussed so far deals with data sharing within an itera-
tion. Another factor that affects the amount of data-sharing is the number of iterations or
time-steps in an application. The total amount of data-sharing can be computed by multi-

plying the amount of data-sharing within an iteration by the number of time-steps.

2.3 Cache Misses

In cache-coherent shared-memory systems, some shared data accesses must be
accompanied by data or signal transfers between the processor modules and memory mod-
ules. The occurrence of events that cause such transactions depends on the coherency pro-
tocol. We will use a bus-based three-state writeback invalidation protocol where possible
cache block states are invalid, shared or dirty as in Figure 6. It is assumed that, when a
processor executes a write operation, an invalidation signal is broadcast through the bus to
all other processors so that only one signal suffices and no acknowledgment collection is
required. Furthermore, when a processor has a dirty block copy, it must write the block

back on receiving the invalidation signal.

4 2, w3 M

R: rea
W: write

i: local
j: remote

0] Wi I: Invalid
S: Shared
BRI D: Dirty

, 8 . (D
Ri, Rj CQ Wi Q)Ri, Wi

Figure 6. Bus-based 3-state write-back invalidation protocol and coherency events

29

Figure 7 illustrates the coherency transactions performed in the three-state write-
back invalidation protocol (Figure 6) to maintain data consistency. All coherency transac-
tions are assumed to be initiated by P;, and P; is an arbitrary processor other than P;. The
circles denote processors and state changes of shared data block are placed over them.

Shaded arrows denote the paths of data or coherence messages.

f [=8§ D=S§ =8 S.I=81 =D
@ @ ®) ®)
A]\l- ’n'q]ll_-rrrq o Ldata
5 | s

\

i w ’n-q i Ldata

.
| B U S | (B 1§ [
¥ E_*n; ’u'frjf'q @ ldas
Memory Module
(a) Read miss with writeback (b) Read miss without writeback (¢) Write miss with writeback

S=D

@
[

-
i B U S] [T]
B date I @ iy I e
Memory Madute Memory Mudule
() Write miss without writeback (e) Write hit with invalidation

\ I I: invalid S: Shared M: modified l

/

Figure 7. Coherency events in bus-based 3-state write-back invalidation protocol.

* Read miss with writeback: P; experiences a read miss when P; has a dirty copy
in its cache. Then, P; sends a request message for a copy of the block first. P; must perform
a writeback when it receives a signal so that a recent copy can be supplied to P;. A copy of
a block can be sent to P; from either P; or memory module. The former case shown in the

figure.

* Read miss without writeback: P; experiences a read miss when no processor

has a dirty copy of the block. That is to say, other processors may have either a clean copy

or none. In this case, a copy of the block must be provided from either processor with a

clean copy or a memory module. The figure shows the latter case.

* Write miss with writeback: P; experiences a write miss when P; has a dirty
copy of data. P; sends a request and P; should writeback its dirty copy of data when a sig-
nal arrives. Then, similarly to the case of Figure 7 (a), a copy of the block is eventually

supplied by P;.

» Write miss without writeback: P; experiences a write miss when no cache has
a dirty copy. Some processors may have a clean copy. The clean copies in other proces-
sors must be invalidated. Then a copy will be sent to P; from either any one processor or

the memory. Memory sends a copy in the figure.

* Werite hit with invalidation: P; experiences a write hit when P; has a clean copy.
This is the only case when a cache hit initiates a coherency transaction. The clean copies

in other processors must be invalidated due to the write operation of P;.

2.3.1 Cache Miss Classification

In a system with infinite caches, traditionally, cache misses are classified as cold
misses or invalidation misses. A cold miss is the first miss to a block by a processor; inval-
idation misses are all other misses and are caused by invalidations. For precise perfor-
mance analysis, researchers have built schemes to classify the misses [29, 76].

In our research, since we like to concentrate the effect of data-sharing without the
effects of replacement misses, we assume infinite caches. The classification algorithm
introduced by Dubois et al. [26] is used in this proposal. If a cold miss is preceded by an
update from another processor, it is classified as a cold true sharing miss (CTSM) or as a
cold false sharing miss (CFSM) depending on whether the updated value is communicated

to processors during the lifetime of the block in the cache. Pure cold misses (PCM) are not

preceded by an update from a different processor. Among invalidation misses we distin-
guish between pure true sharing misses (PTSM) and pure false sharing misses (PFSM).
As opposed to a pure false sharing miss, a pure true sharing miss communicates a new
data value to a processor.

The PCM, CTSM, CFSM and PTSM are called essential misses and their numbers
cannot be reduced. The PFSM are called useless misses and they can be reduced by chang-

ing the hardware configuration of underlying systems or coherency protocols.

2.4 Curve Fitting

Generally, an estimator y(x) = yv(x;a,,...ay) is a linear combination of any M
specified functions of independent variable x and unknown coefficients a;, where the gen-

eral linear combination is

A
M) = ap dyx+.. -v-e."“..r'“_l = Z ap Xp(x) (Eqg. 1)

k=1
where X;(x) are called the basis functions which can be nonlinear functions of x such as
sines, cosines or exponential functions. The term “linear” only refers to the dependence of
the model on its parameters, ;. A procedure (o find the coefficients called parameter esti-
mation [47, 61] consists in fitting N data points (x, y,), i=1,....N, to an estimator with M

adjustable parameters, a;, j=1,...M. Two types of estimators, least-square and robust esti-

mators, will be used in my thesis.

2.4.1 Least-Square Estimators

Suppose the measurement errors for every observed data point y, are independent
and identically distributed random variables with a normal (Gaussian) distribution around
the exact model y(x). The probability (likelihood) of occurrence of the data points is the

product of the probabilities of occurrence of every point [79]

AL ey
= chxp[_i(TH;\\-} o

where N and Ay are constants. Thus, given N data points (x, y,), i=1.....N, to maximize the

N :
V=YX eaaa g 2
likelihood function we must find the parameter values that minimize Y [G—")] .

E |

Then, the solutions are given as [61]

M
3 Lol B, with (Eq. 3)
k=1
Ny ;‘&(\) \'.(.\'.) =
z or equivalently [a] = A -A ., where Ajj : (Eq. 4)
e Gr' G;
'\: \.\’ [\) o 3!
and B; = Z Lzl or equivalently [B] = A’ b, where b, = '81 (Eq. 5)

G-

i=1 [
where o, is the measurement error of the i/ data point. If not known, G, may be set to the

constant value, for example, =1 [61].

2.4.2 Robust Estimators

Robust estimators are less sensitive than least-square estimators to departures from
the idealized assumptions for which the estimator is optimized. Such departures are due to
outliers which do not follow the general trend and thus distort the estimation. Instead of
Eq. 2, the likelihood function for a robust estimator is given by [43]

N

P = “ Lexpl-p(y ¥ enay,)) 1Ay) (Eq. 6)

7=
where p is the negative logarithm of the probability density of measurement error. In case
of local M-estimator, p is only dependent on the difference of measured y; and predicted
y(x;) when scaled by some weight factors o; for each point. Then, p becomes a function of

a single variable z = (y, - y(x;))/0o,. Therefore, maximizing Eq. 6 is equivalent to minimiz-

N
yi—y(x;;a) .
z h[—ﬁ] (Eq. 7)

i=1

over a. Solving Eq. 7 is finally equivalent to solving the M simultaneous equations [47]

N (y.=y(x:a)
2 \|t{""—"}\'il.r,) =0, j=12.M where ¢ = dp (Eq. 8)
o, dz

i=1
The solution, called the weighted least squares method [49], is iterative and starts

with an initial estimate of a obtained by the least square method. In [43], we have

- 0 . . . No(x,
a, = (A"WA) 'A"WY |, where A is an NxN matrix with Ay s #

t

and Y=[y]. Wisa

diagonal matrix of w, defined as

(W(y;— y(x;;a)))/ o,
w. =

P = i = [,2,.N (Eq. 9)
(v;,=y(x;a))/c,

There are several possible choices for the weight functions. In this paper, we use

Cauchy’s function, so that p(z) = In(l+:3) and w(z) = 2z/() +:2}. When o, is

unknown, it must be estimated. Among many suggestions [43], 6, = (./(y,— y(x;:a)))/N

is used in this paper.

2.4.3 Computation Time

- Operation | Description | Multiply/Adds (Upper-
__ _ ; 3'7 hound)
Least Squares la]=AT A [MxN] x [NxM] | N x M? < N7
Bl=ATD [MxN] x [Nx1] NxM<N?
Robust Estimation: T, =ATW [MxXN] x [NxN] N”x M <N’
a,=(ATWA)'ATW T,=T A [MxN] x [NxM] N x M2 < N
Y Ty = {T;)’I [MxM] inversion M3 < N3
Ty=T;AY [MxM] X [MxN] NxMI<N?
Ts =Ty W [MxN] x [NxN] N2xM<N?
Te=Ts Y [MxN] x [Nx1] Nx M < N2

Table 2. Computation cost of curve fitting (M<N).

Two fundamental computational algorithms in least-square and robust estimations
are matrix inversion and matrix multiplication. For NXN matrix inversion. the Gauss-Jor-
dan method [44] takes N° multiply/adds. The multiplication of two NxN matrices also
takes N° multiply/adds and the multiplication of an NXN matrix with an Nx| matrix takes
N? multiply/adds.

Given N samples for M unknowns, as shown in Table 2, at most N +N? multiply/
adds for the least squares and 5N 4+N?2 multiply/adds for the robust estimation are
required. The procedure for robust estimation is iterative and usually converges very
quickly, within 100 iterations. Thus, its cost is less than S00N+200N? multiply/adds.
Since we have less than 10 samples (N=10) most of the time, the computation of the coef-

ficients of a fitting curve is very efficient.

Chapter 3

EARLY EXPERIENCE:
EMPIRICAL MODELS FOR MISS RATES
WITHOUT SHARING ANALYSIS

At the early stage of this research, we first built models for the number of data ref-
erences and for the number of cache misses. The miss rate model was obtained by dividing
the number of cache misses by the number of data references. At this time, no sharing
analysis was performed. Instead, simple algorithmic complexity analysis was adopted.

In complexity theory, the execution time of a sequential program is characterized
by a function f{N) where N is the input data set size and f{N) is an expression in the big-oh
notation. f{N) is though of as the mumber of instructions or the number of data accesses. In
other words, the number of instructions and the number of data references in a program
vary according to the input data set size with a certain trend which is numerically
expressed in terms of data set size. We call the data set size the problem scaling variable.

In case of parallel programs, the number of instructions and the number of data
references of each processor depend on the number of processors, which is called the sys-
tem scaling variable. Therefore, they are both expressed in terms of two independent scal-
ing variables. Since the primary data in parallel programs are shared data structures, data
accesses are ordinarily understood to mean shared data accesses. Of course, private vari-

ables are also indispensable and they are mainly loop variables of array index variables. In

29

both cases, private data accesses are incident to shared data accesses. In consequence,
what defines the number of shared data accesses is the algorithmic complexity of an appli-

cation which is a function of input data set size expressed in the big-oh notation.

3.1 Modeling Data Accesses and Cache Misses

The cache misses we modeled in this thesis are the ones in Section 2.3.1.

3.1.1 Number of Data Accesses

As mentioned above, the number of instructions or the number of data accesses 1s
given by a function f{N) where N is the input data set size and f{N) is expressed in the big-

oh notation.

3.1.2 Number of Cold Misses

At the initial stage of my research, PCM, CTSM and CFSM defined in Section
2.3.1 are combined into cold misses (CM). The estimation of the number of cold misses

starts with trivial assumptions.

Assumption 1: Every data element in shared data structures of an application is
accessed at least once by at least one processor during the execution time.
Assumption 2: The number of processors (P) and cache block size (8) of underly-

ing architecture model are constants.

Then, the lower-bound and upper-bound for the number of cold misses of an appli-
cation program with O(/i(N)) shared data elements running on a P processor shared-mem-
ory multiprocessor system with B byte cache blocks are both O(h(N)), where N is a
variable that defines the data set size and /i(N) is the actual number of shared data elements

in an applicution]. The reasons are as follow. First, the smallest number of cold misses 1s

30

achieved when every cache block is accessed by only one processor during the entire exe-
cution. Then, the number of cache misses is [-h(N) / B which is O(h(N)). Similarly, the
largest number of cold misses is achieved when every cache block is accessed by all P pro-
cessors during the entire execution. Then, the number of cache misses is fh(N}/ B* P|
which is O(h(N)), too. Therefore, having identical expressions of both lower- and upper-
bound, we conclude the number of cold misses in an application is expressed as O(h(N))

when the assumptions are held.

3.1.3 Number of Sharing Misses

Given an application running on a target system, the occurrences of essential shar-
ing misses (PTSM) [26] are determined by data-sharing patterns in the application and by
some parameters of the architecture such as the cache block size. As discussed in Section
2.2.2, the amount of data-sharing and the number of PTSM vary with the data set size and
the number of processors (which is assumed to be constant in this section).

When a processor experiences a PESM, there must have been one or more stores to
the block, but not to the data element accessed since the last load of the block. Therefore,
unlike PTSM, occurrences of PFSM depend on the physical placement of data in cache
blocks, which seems too complex to analyze statically. PFSM are not necessarily observed
on every shared variable. In any case, if the data around the one to be accessed are truly
shared, the number of PFSM will be proportional to the amount of data-sharing. If not,
since the cache block must be located across a data partition boundary and the number of
PFSM must be proportional to the total length of partition boundaries.

Since the amounts of PTSM and PFSM are commonly dependent both on the total

1. For example. in matrix applications such as LU, the number of array elements is denoted by NXN, or N°.

sider the number of PFSM to be approximately proportional to that of PTSM. Therefore,
they will have the same order of complexity. In this section, the number of PTSM will be
estimated by a big-oh expression derived from the algorithmic characteristics of an appli-

cation. Then, the same estimate will be used for the number of PFSM.

3.2 Simulation and Benchmarks

The simulation environment is the Cache-Mire testbench, a program-driven simu-
lator developed at Lund University [12]. Cache-Mire executes the application and gener-
ates memory references, which are then simulated on an architectural simulator.
Instruction fetches, private data accesses, shared data accesses and synchronization (test-
and-set) operations are monitored on the fly as the execution progresses. The architectural
simulator simulates a bus-based cache-coherent shared-memory multiprocessor system
with eight processors. The coherency protocol is described in Section 2.3 and Figure 6 (a).
The caches have infinite size and block size is 32 bytes.

Seven application programs in Table 3 were run: MP3D, WATER, OCEAN, LU,
BARNES, FFT and RADIX. They are parallel applications developed at Stanford Univer-
sity and the first three are part of the SPLASH suite [67] and the last three are from
SPLASH-2 [82]. These applications are written in C using the Argonne National Labora-
tory macro package [11].

Table 3 shows the (small) data sets used for the samples and the (large) data sets.
Table 3 also lists the shared data structures in each application. Of course, applications
have more shared variables. However, some of them are not truly shared but are accessed
by one processor only. The rest of them maintain programs’ statistics: for instance, in
MP3D, one variable keeps track of the number of particles’ collisions, and another keeps
track of the particle population. Since their number of misses are not significant or are not

dependent on the data set size, I do not include them.

- Shared variables
A, L, thisPivot

Sample data setsizes ||
48, 64, 80, 96, 112, 128, 144
MP3D 2K, 4K, 8K, 16K, 32K, 64K, 128K

Particles, Cells, Ares

WATER 32, 48, 64, 80, 96, 112, 128 360 720 VAR
OCEAN 34, 66,130 258 514 ||g_multi, rhs_multi + 23 2-d arrays
FFT 28 98 ol 972 o4 218 218 X, trans
BARNES || 512,768,1024,1280,1536,1792,2048 || 4096 8192 bodytab, ctab, Itab
RADIX 2K, 4K, 6K, 8K, 10K, 12K, 14K 512K 1024K key, densities, ranks

Table 3. Size of data sets used to find fitting functions and shared variables.

3.3 Prediction Results

In Table 4, the empirical models for overall cache miss rates are given. The denom-
inators of miss rate models are the empirical models (fitting functions) for the total num-
ber of data accesses and the numerators are the models for the total number ol cache
misses. The prediction results were computed by substituting the desired large data sizes
into miss rate models. All detail simulation and prediction results for each type of cache
misses and data references are found in Tables 46 through 52 in Appendix.A. Brief discus-
sions of the simulation and prediction results are also provided. In the tables of the appen-
dix, the number of essential misses are computed by summing up the numbers of CM and
PTSM. The prediction error is computed as:

simulation result — prediction result
simulation result

prediction error (%) = x 100 (Eq. 10)

In Appendix A, brief description of benchmark applications and their algorithmic
behavior are provided. The tables include empirical models and prediction results for all

kinds of performance metrics of every shared data structure in each application.

33

Bench- Empirical Model Prediction - 1 Prediction - 2
mark for Miss Rate sim. pred | err% sim pred | err%
2
LU 15250“ +‘§-425N*53-303 0.2220 | 0.2220 | 0.000 || 0.1237 | 0.1238 |-0.080
1.994N" + 8.764N° - 178.70N + 3849.08
MP3D 21.452N - 3650.3
348.845N + 41097.4 6.1494 | 6.1513 | -0.030(| 6.1332 | 6.1504 |-0.280
WATER 5
4.490N ’5151-‘54N-22‘-4B 0.8964 | 0.8953 | 0.122 || 0.8646 | 0.8636 |0.115
540.016N° - 2938.3N + 644.47
OCEAN 5
6.911N 2+2‘37-36N+9554-16 0.3121 | 0.3221 |-3.204|| 0.2285 | 0.2375 |-3.938
4596.93N° - 53728.1N - 1562387
FFT 2
2-315”2'*22-908”*0-672 1.3149 | 1.2787 | 2.753 || 1.1875 | 1.2234 |-3.023
197.952n° - 2614.8n + 241845
BARNES 34.943N + 119656.7logN — 24249.6
1491.8NlogN + 3278.6N — 27414591ogN + 6796905 || 0.4822 | 0.4847 | -2.592|| 0.4216 | 0.4213 | 0.071
RADIX 34009N + 219.030
1.437N + 3575.31 4.3686 | 4.2448 | 2.833 || 4.3624 | 4.2348 | 2.924

* sim: simulation results, pred: prediction results, err: prediction errors

Table 4. Empirical models and prediction results.

3.4 Discussion

As we have seen in Table 4, the empirical modeling strategy works very well. The
predictions are very accurate even when the sharing behaviors are quite irregular (MP3D,
BARNES), when the amount of computations or the number of iterations are dependent
on the run time value of the data (OCEAN, BARNES) or when barely enough number of
samples (OCEAN and FFT) are available. Especially. three is the minimum number of
samples required to compute three unknown parameters of OCEAN’s O(N?) fitting func-
tion. The prediction errors calculated according to the Equation 10 fall below 4% and, in
most cases, below 1%.

Given the possibility of building accurate empirical performance model for miss

rates, a systematic methodology to obtain the polynomial expressions of performance met-

34

rics is needed. The analysis and characterization of data-sharing behavior will be the start-
ing point. Since the characteristics of each shared data structure in an application are quite
different, each shared data structure will be dealt with separately. Scaling effects of the
problem size correspond to the case where the size of memory in a multiprocessor system
is increased while maintaining the same number of processors; for a complete perfor-
mance prediction model, the scaling effects of the number of processors will be incorpo-

rated in the performance model, as well.

35

Chapter 4

DATA-SHARING ANALYSIS

One of the most general application classes of parallel systems is scientific compu-
tations and most scientific programs are written according to the Single-Program-Multi-
ple-Data (SPMD) model. As the speed of today’s computer systems gets ever faster, the
amount of data to be processed is accordingly growing. These data objects are normally
represented by array data structures and the computations on them are performed within
iterative loops such as the for loop construct. The information regarding the memory
locations of the data objects that a processor accesses is given in the program. That is to
say, the index expressions of array variable bear the information regarding possible data-
sharing in the program. Therefore, the data-sharing analysis must start with the array
index expression analysis.

In this section, we do not focus on the cache misses, yet. First, a set of sharing fac-
tors that affect the amount of data-sharing are defined. Then, their unique contributions to
data-sharing are illustrated. The components used in array index expressions and the com-
posite index expressions composed of the index expression components are enumerated.
The data-sharing patterns for all types of index expressions are also provided. At this
moment, the effects of the data set size and the number of processors on the amount of

data-sharing are discussed.

36

4.1 Data-Sharing Factors

As the first step ol sharing analysis, we define data-sharing factors.

4.1.1 Data Set Size and Number of Processors

As shown in Figure 4, data-sharing is affected by the data set size and the number
of processors. The effects of these two sharing factors were discussed in detail in Section
2.2.2. They are the variable parameters in the data-sharing characterizer and performance

model.

4.1.2 Data Partitioning

As shown in Figure 4, various partitioning methods have a different impact on
data-sharing. In fact, what makes the effects of partitioning methods on data-sharing dis-
tinct is the partition block size. For example, the block size (or the number of partition
blocks) in Figure 4 (a) is larger (smaller) than that in Figure 4 (b). Smaller partition blocks
causes shows more data-sharing. Therefore, in the sharing analysis, the size of partition
blocks and the partitioning method are simultaneously taken into account.

Figure 8 illustrates data partitioning examples for one- and two-dimensional
arrays. Given N as the data set size in one dimension of an array and P as the number of
processors, the partition block size and the number of partition blocks are provided. One
may bring up more complicated partitioning schemes such as value-dependent partition-
ing. However, we only consider location-dependent partitioning schemes where cyclic,

block-cyclic and block partitioning are known as the most popular schemes [40, 42, 73].

4.1.3 Access Distance

While the three factors described above are related to data placements in parallel

applications, the access distance is related only to the program code. Before going any fur-

m

_

’)r | PH] ll 1])Hl
Pia P Pio i) Ba BBy B B Py
v oo s e TLT]Il [TT1]
JL I I | I
Block size 1
bh>|
Number of
Blocks N Nity
(a) Cyclic (b) Block-cyclic
Block Number of
N size Blocks N
L P : | Axl / ‘ :
P2 ’ Yooy b
#lPi Piy
Pf-l I:! Pi
Pisi Pryi
(d) None & Cyclic (c)None & Block-cyelic
N N
. —————] -
Py Py Pl '.?','- 4
N N N
P i I =
! tl‘ MG k ¢JT’
]’1,,1 I,p-l
(1) None & Block (g) Block & Block

P

(¢) Block

Block Number of

size Blocks
b N/b
5

NT

LA i

Il

J

Figure 8. Partition block size and length of partition boundaries.

ther, it is necessary and helpful to make the following definitions. Assume an N element

array A and a FORALL loop with variable I.

Definition 1. (Pure index and Applied index) The index expression of “I" in A[T]

is called the pure index and all other index expressions are called the applied index.

Definition 2. (Center of computation) An array element designated by pure index,

A[I],

is the center of computation (Section 2.2.2).

Definition 3. (Participants in computation) All array elements engaged in the

computation, except for A[I], are called the participants in computation.

38

Definition 4. (Access distance) The access distance of a participant is the number
of array elements lying between A[T], inclusively, and the participant, exclusively.
Definition 5. (Vicinities in computation) The participants whose indices are in the
form of A[I+d], where d is the access distance, are called the vicinities in
computation.

Definition 6. (Strangers in computation) The participants whose indices are not in

the form of A[I+d], where d is the access distance, are called the strangers in

computation,

If a FORALL loop contains only pure indices, no data-sharing occurs since each
processor finds all the required data within its local partition block. In this case, the access
distance of an array element, designated by the pure index from the center of computation,
is zero. In contrast, if there are participants defined in the FORALL loop whose access
distances are not zero, there will always be data-sharing. The sharing behavior of a partic-
ipant is determined by the value of the access distance as will be shown below.

Of participant types, first consider the vicinities. The vicinities are the elements
whose locations are specified by relative distances from the center of computation. Given
an array A partitioned into b element blocks and accessed in a FORALL loop of variable
I, the vicinities specified as A[I+d] form a block of the same size at d elements away
from the center of computation (Figure 9 (a)). In Figure 10 where A is partitioned into
blocks and distributed among P processors, lightly shaded elements are accessed by the
Home while heavily shaded elements are accessed by a remote processor. In (a), only the
center of computation is accessed without data-sharing. On the other hand, in (b). element
A[T+1]is the vicinity whose access distance is 1. The access distance in (c) is 3. From the
figures, we can see that the amount of data-sharing is proportional to the access distances

of the vicinities.

39

N block size=0 | block size = I';;

ol ILT 1] Jeee[TPTTT]e--LT T Te0s see [TTTT T[] TTT]---LT 1w

mloculml o P, P P Pia B r, e Pia \

iteration 0[] —=[] a
iteration | [—[] a
freration 2 OJe=———1—[] i1
iteration 3 Ow————[1 O
., distqnee =d 3
teration b-2 - O O
iteration b-1 [}] O
projection [TTT11---[1] [ITI1] I:Ei l.:l O O O O l:i
Center of P ! iy ' L
Computation Vicinities Strangers
\ (a) Data accesses by vicinities (b) Data accesses by starngers /

Figure 9. Vicinities and strangers.

/ partition \

boundary
I'H P; Py .
FORALL (T=0..N) -« ol -l » data allocation map
(a) A[T] = . 0 T) O
’ < ol 2 data access map
iy Py Pisy
i P{~| 'r’i 1L ‘”r'+l -
FORALL (I=0..N) L - i
(b) ATTHL] = .. ; III_LIILIIEL«LIIIIII«lllllll=Illl
I iy s l
Piy £
FORALL (I=0..N) i o e .
(©) ALT+3] = .. EEE T 111
T f’,
O accessed by Home processor

\ [accessed by remote processor J

Figure 10. Effects of access distance on data-sharing.

In contrast, strangers are the elements whose locations are determined regardless
o o

of the center of computation. The “strangers” are named by opposition to the “vicinities™.

Figure 9 (b) presents data accesses of strangers whose indices are determined by a certain

run time variable. The array elements may be accessed by a remote processor or by the

40

Home. Generally, in this case, the probability that an element is accessed by the Home is
inversely proportional to the number of processors. In other words, the larger the number

of processors, the more data-sharing by remote accesses are observed.

4.2 Array Index Analysis

Data-sharing analysis can be done in two phases. The first phase is to identify how
an N element array is partitioned and allocated to P processors. At this stage, the first three
sharing factors (data set size, number of processors and partitioning schemes) are simulta-
neously taken into account. Given data distribution information, the next phase is to deter-
mine the method of data-sharing by the processors. Being one of the causes of data-
sharing, the access distance will be investigated in detail, in this section. Since the access
distance is defined by the index of an array, the sharing analysis can be seen in the same
perspective as array index analysis.

Since the number of possible index expression types is uncountable, efficient
grouping is necessary so that one may have a manageably finite number of index expres-
sion types. The grouping must guarantee that an arbitrary index expression should fall into
exactly one category. In categorizing index expressions, we first define index expression
components and, then, compound index expressions that are composed of the index
expression components as building blocks. Index expression types will be introduced with
brief explanations of their access patterns. Their sharing patterns will be analyzed in the
next section for various data partitioning schemes.

Prior to introducing the methodology, we assume the meaningfulness of data set
size. It implies the data set size, N, is large enough so that we may say N >> P or NIP >> |,
where P is the number of processors, although exact values of N and P are not known.

Array indices are numerical expressions consisting of loop variables, numeric con-

stants and/or general variables. We separate general variables into loop-invariant vari-

41

ables and loop-variant variables. Memory locations of array elements may be fixed
through all iterations or varying in each iteration according to whether their indices are
loop-invariant or loop-variant, respectively. General variables are further grouped accord-
ing to whether their values can be evaluated at compile time or not. We refer to general
variables whose values can be known at compile time as compile time variables and those
whose values can be known only at runtime as runtime variables. The memory locations
specified by compile time variables can be known via static analysis. By contrast, the
memory locations specified by run time variables cannot be known since they depend on
the run time computation results. In the rest of the paper, we use the terms particular and
arbitrary to denote that a memory location is determined by compile time variables and
runtime variables, respectively.

Given an index expression in SPMD programs, it can be stated that each processor
accesses a particular or an arbitrary array element whose location is variant or invariant
with respect to the loop variables. This interpretation is made from the view point of pro-
cessors. In our methodology, sharing analysis is done from the view point of data. The
interpretation of data accesses seen from the view point of data is that an array element is
accessed by particular or arbitrary processors which may vary as the loop advances. Fig-
ure 11 compares the two interpretations from the view points of the processors and data.

The processors accessing an array element are named by the entries in Table 5.
Among them, the Home and All are self-explanatory. The others are first distinguished
according to whether an array element is accessed by particular or arbitrary processors
(Determinism). The determinism is explained as follows. In Figure 11 (b), ¢ is a compile
time variable so that the memory location of A[c] is considered particular and the proces-
sor accessing A[c] is the Home of the particular array element. The Home of particular
element is considered to be particular, too. In contrast, if ¢ is a run time variable (Figure

11 (c¢)), the memory location is considered as arbitrary and the processor accessing A[c]

/ FORALL (I=0..N) \

Ale]l .. ;

(a) Program code

Seen at the view point ol Processors Seen al the view point ol Data
Processors I I | | | I | Data

! T !) '1 U i.‘ T Fi

F ¥ .L 3 SI
"t D, PP HIS
Data | | | | O O O Q Q@ Processors

(h) Particular Accesses (¢ is known at compile time)

1 1 1 1
Processors() OO O O O CCC T T T 1l Data
L~ =
: — Z
Data © @ Processors

(c) Arbitrary Accesses (e is known at run time depending on computation results)

— Processor accesses data
\ -~ Dala accessed by processor j

Figure |'1. Data access interpretation methods.

is the Home of the arbitrary array element. The Home of arbitrary element is considered
to be arbitrary.

The processor attributes in Table 5 are further distinguished according to whether
an element may be accessed by the Home or not (Home inclusion). In Figure 11 (c), an
array element, arbitrarily selected by run time variable ¢, could be accessed by either its
Home or any remote processor. On the other hand, imagine an array partitioned into
blocks of size b and the program codes including A[I+d] where I is the loop variable and
d > b. No element is accessed by their Home (Figure 12) since d = 8 and b = 10.

The last distinction in Table 5 is made according to whether an element is accessed
by a single processor or multiple processors (Cardinality). In Figure 12 (b). a certain ele-
ment is accessed by only one processor while, in Figure 11 (¢), it may be accessed by two

Or MOore processors.

43

Processors Definition Deter- Home- |Cardinal-
minism | inclusion ity

Home a processor to which a particular data is allocated Yes Yes singular
One one particular processor Yes Yes singular
AnyOne one arbitrary processor No Yes singular
Other one particular processor except Home Yes No singular
AnyOther one arbitrary processor except Home No No singular
Some one or more particular processor Yes Yes multiple
Any none or more arbitrary processor No Yes multiple
Others one or more particular processor except Home Yes No multiple
AnyOthers || none or more arbitrary processor except Home No No multiple
All all processors Yes Yes multiple

Table 5. Processor attributes by which a certain data is accessed.

/ FORALL (I=0..N) \
AlT+nggl .
(a) Program code

P r P ,
el S R o data allocation map
PR [I P 1 e I I Y [
>|= _ - ol data access map
Pis '”l'] ’J."-I Pi P.+|
npe =8
jfe————|
Hefigt = 10
BELL (/L LS

K (b) Data partitioning and accesses /

Figure 12. Home-inclusion property of the PRC.

4.2.1 Index Expression Components

The array index components that form an array index expression are introduced in

this section. Sample program codes and access patterns are illustrated in Figure 13.

44

/FORALL (I=0..N) FORALL (I=0..N) € = .au § \
A[I) H A[3] ..; FORALL (I=0..N)
Ale] e
D g
HELPEITITIATTTITET] &0
'
(@) V, (b) Vi
E = wae @ FORALL (I=0..N) FORALL (I=0..N)
FORALL (I=0..N) @ 5 c.n & r= ... ;
Alx] .. ; s Bl e i ae BEF] o
(R (0 Vi
c: compile time variable B particular array element
\ r: run time variable M : arbitrary array element /
FFigure 13. Array index expression components.

4.2.1.1 Loop Variable
A loop variable, V,, designates all elements that are accessed by their Home
through the FORALL loop. Array elements designated by V; are accessed only by their

Home as shown in Figure 13 (a).

4.2.1.2 Numeric Constant

A numeric constant, V., designates a single particular element whose location is
fixed through iterations. The element is accessed by all processors in every iteration as

shown in Figure 13 (b).

4.2.1.3 Loop-invariant Compile Time Variable

A loop-variant compile time variable, V., designates particular elements whose
locations are fixed through all iterations. Once a processor selects an element, it keeps
accessing the same element in all iterations. Consequently, every selected element is inter-
preted as accessed by a particular processor including its Home, for N/P times, which is

the loop size executed by a processor. The corresponding value in Table 5 is One.

4.2.1.4 Loop-invariant Run Time Variable

A loop-invariant run time variable, V,,, designates arbitrary array elements whose
locations are fixed through iterations (Figure 13 (d)). Once a processor selects an element,
it keeps accessing the same element in all iterations. Consequently, every selected array
element is interpreted as accessed by an arbitrary processor including its Home, for N/P

times. This corresponds to the processor AnyOne in Table 5.

4.2.1.5 Loop-variant Compile Time Variable

A loop-variant compile time variable, V., designates particular array clements
whose location changes in every iteration (Figure 13 (e)). In contrast to the V- in Section
4.2.1.3, the loop-variant variable c designates a new element in each iteration. Through N
iterations, therefore, an element is very likely to be selected more than once by at least two
processors. That is to say, every array element is interpreted as accessed by particular pro-

cessors including the Home. The corresponding processor value in Table 5 is Some.

46

4.2.1.6 Loop-variant Run Time Variable

A loop-variant run time variable, V,,, designates arbitrary array elements whose
location changes in every iteration (Figure 13 (f)). Through N iterations, as in Section
4.2.1.5, an element is very likely to be selected more than once by at least two processors.
That is to say, every array eclement is interpreted as accessed by arbitrary processors

including the Home. The corresponding processor value in Table 5 is Any.

4.2.1.7 Summary

Note that V, is a private variable and V- is a shared constant in SPMD programs.
Other index expression components (Ve, Ve Vive and V) can be either shared or pri-
vate variables. When they are shared variables, a common array element is selected and
accessed by all processors. Although this situation is theoretically possible, they are not
often implemented in common SPMD programs. Furthermore, they are against data
homogeneity (Observation 3). For this reason, the focus is mainly put on the cases where
Vies Vigs Vive and V,, are private variables.

In summary, Table 6 shows the processors that access array elements indexed by

each index expression component.

Loop Components V. Vi Viic Vi Vive Vivr

Processors Home All One | AnyOne | Some Any

Data Homogeneity Yes No No No Yes Yes
Table 6. Processor attributes for index expression components.

4.2.2 Compound Index Expressions

This section presents index expressions which are composed of index expression

components.

47

Data partitioning is ordinarily done so that as little data communication as possible
is required. Once partitioned, data are mainly accessed in a sequential manner within
FORALL loops. The variables of type V, are used for this purpose and array elements
indexed by them are called the centers of computation. As noted before, other elements
called participants often take part in computations and the accesses to them may require
data communications. The participants were classified into strangers and vicinities in Def-
initions 5 and 6. In subsequent sections, compound index expressions and data-sharing

patterns of vicinities are discussed first and the strangers will follow.

4.2.2.1 Compound Index Expressions of Vicinities

Compound expressions of vicinities, £y, are in the form of A[V,+d], where the

access distance d is a function of V.V, and V, .. Note that Ey,- does not include V. or

=1V Vies Vir), where f is a multi-variable function. The effects of ¢ on data-sharing for
various partitioning methods are discussed below.

Block-cyclic partitioning with & element blocks is known as periodic with the
period of AP elements. Therefore, should « be multiple of bP, the element A[V,+d] is
accessed by its Home (Figure 14 (a)). In order to look at a single period, we set
d = |d mod Pb|. The data-sharing pattern varies according to the ranges of d; O <d < b,
bsd<bx(P-1)and hx(P-1)<b<bxP.Figure 14 (b) shows the data-sharing pattern
caused by Py’s accesses. When 0 <d < b, some elements are accessed by the Home and
others by the adjacent processor which lies in the positive (negative) direction if the dis-
tance is positive (negative). The entry in Table 5 for the adjacent processor is Other mean-
ing a particular processor which is not the Home of the accessed data. The number of
remote array elements is . For hb<d <bx (P - 1), all elements are accessed by the remote

processor whose entry in Table 5 is Other. Finally, when b x (P - 1)<d <bx P, some ele-

48

Pp.j 2y P Py Py Py ,.Idall;: ullnczuinn\

data access

T ; T >
d=byxP e Fo A}

(i) Periodic accesses in block-cyclic partitioning

Pp ™y £

] s [T« |11--E:E[:|~Ei--

bed<hbx(P=1)

:

.,

d=hsx(P-1) EHiE
hx(P=-1)y<h<hxpP

d=1

d=DbsX(P-1)+1

d=hsxP-|

(b) Data-sharing patterns in block-cyclic partitioning for various access distances

[: accessed by Home processor

\ W : accessed by remote processor /

Figure 14. Effect of access distance in block-cyclic partitioning.

ments are accessed by the Home and others by the adjacent processor which lies in the
negative (positive) direction if the distance is positive (negative). The processor value in
Table 5 is Other. The number of remote array elements 1s b — (¢ mod b). As before, the
entry in Table 5 for the adjacent processor is Other.

Cyclic partitioning is an extreme of the block-cyclic method with » = 1 and the
period is P elements. If is a multiple of P, all elements are accessed by their Home. If
not, all elements are accessed by a remote processor (Figure 15 (a) and (b)) whose corre-
sponding entry in Table 5 is Other. In Figure 15, data-sharing patterns caused by Py’s

accesses are shown.

49

Finally, block partitioning is another extreme of block-cyclic partitioning with b =

N/P and no period. If O <d <b, first b - d elements are accessed by the Home and other d

elements by the adjacent processor which lies in the positive (negative) direction if d is

positive (negative). If b <d, all element are accessed by a remote processor (Figure 15

(¢)). The entry in Table 5 for the remote processor is Other.

-~

data allocation

data access

(b) Data-sharing pattern for non-periodic accesses in cyclic partitioning

Py Ppy

". ‘. Oz <
d=| . _ bsd
=T _)
| d=bs |
- =hsx(-1) -

(¢)Data-sharing pattern in block partitioning for various access distances

saccessed by Home processor
B/ : accessed by remote processor

<

/

Figure 15. Effect of access distance in cyclic and block partitioning.

The access distance of A[V,+d] from A[V,] can be known at compile time, depend-

ing on the existence of V,,, in f;. I known at compile time without V. data-sharing anal-

ysis is straightforward as shown thus far. Otherwise, worst case estimation is made by

50

assuming the value of d to be large enough so that every element is involved in data-shar-
ing. This yields the most data-sharing. In this case, every element is interpreted as
accessed by a certain processor which might be the Home or an arbitrary remote proces-

sor. Such processor’s corresponding entry in Table 5 is AnyOne.

Vicinity Expressions (in the form of AV, +d], No V- or Vi)
d Conditions Processor | No. accessed | Processor | No. accessed
clements per elements per
block block
Cyclic d = upP Home 1 - .
Partition -
(h=1) d #nt Other | - -
Without ?Lt:;]:— D<ed®<h Home (b-d) Other d
.. b2d ¥ <hx(P-1 Other L - -
Vi Partition = gl) o %
(b=c) bx(P=1)<bf<bxP Home d mod b Other b—(d mod b)
Block O<d=<b Home (b -d) Other d
Partition :
b<d Other NI PP - -
(h=NIP) e ’ :
With V, In all cases AnyOne b - -

A given array, N: data set size. P: number of processors, b: partition block size. d: access distance,
d*=|d mod bP|, ¢ and n: arbitrary non-zero integers

Table 7. Data access pattern summary for vicinity expressions.

Data-sharing characteristics of the array elements with vicinity expressions (Eyc)
are summarized in Table 7. When there is only one processor value in a row, all array ele-
ments present a common sharing behavior. Otherwise, in the shaded rows, some elements
and the others are accessed by different types ol processors exhibiting different sharing
behaviors. Distinct sharing behaviors are observed when b consecutive array elements
accessed by a certain processor fall across the partition boundaries between the Home and
adjacent processor. In shaded rows, the number of elements accessed by a remote proces-

sor is determined by various factors as shown in the last column of Table 7.

4.2.2.2 Compound Index Expressions of Strangers

In the previous section, it was shown that the location of the center of computation
is designated according to the applied data-partitioning method and the locations of vicin-
ities are determined by the relative distances from the center of computation. Therefore,

the access patterns of compound expressions of vicinities were distinguished for different

Figure 9, the locations of strangers are not associated with the center of computation nor
the loop variable, V,. For this reason, the analysis of sharing pattern of strangers will be
performed without distinguishing data partitioning methods,

First of all, consider a compound index expression of strangers, Egy, including
Vv that designates distinct arbitrary array elements in each iteration. Once V,; exists, the
whole expression becomes a loop-variant and its value is known only at run time regard-
less of other components. Resulting sharing pattern is identical to what is shown in Sec-
tion 4.2.1.6. We call such an expression the loop-variant run time index expression (Ejyy).

Without V,ye, Ve dominates index expressions in that they are loop-variant. The
determinism depends on whether V,, is included in the expression or not. If Vi and Vi,
are coincident, since the value of the expression is not known at compile time due to Vg,
array elements are arbitrarily selected regardless of other components. The sharing pattern
is identical to what is shown in Section 4.2.1.6. If no V,,, (and no V,,;) is in the expres-
sion, there is no run time component and selected array elements are particular. The shar-
ing pattern is identical to what is shown in Section 4.2.1.5. The former is of type loop-
variant run time index expression (I,), and the latter is called the loop-variant compile
time index expression (E). In consequence, if an index expression includes V,y; or Ve,
it designates arbitrary memory locations of stranger elements, regardless ol the other

index expression components.

Now, consider compound index expressions for stranger elements without V,, or
Vive- If an expression includes no V,, it is only composed of V., V, - and/or V. Any com-
binations of these three types of variables are loop-invariant. If there is V,, the elements
are selected arbitrarily, regardless of the other two, and the expression is called the loop-
invariant run time expression (I£;;;). The sharing pattern is given in Section 4.2.1.4. If
there is no V,, the expression is composed of V- and V., and it is called the loop-invari-
ant compile time expression (E;,-). The sharing pattern is the same as mentioned in Sec-
tion 4.2.1.3.

If a compound index expression includes V., and it is not in the form of the vicin-
ity expression, it must be written as A[f(V,, V.. V. Vi)l By restricting the function to be
affine with respect to the loop variable V, [40, 42, 73], we can rewrite the compound
expression into Alg(Ve, Vie VXV + (Ve Ve, V)], where ¢ and / are functions of Vi,
Ve and V.. These are discussed in the following section.

Table 8 shows the processors accessing array elements indexed by Egg. The
entries for Ey and E. are put in this table for convenience although they do not specify the
stranger array elements. Data access patterns for various types ol Egpy, are illustrated in
Sections 4.2.1.1 through 4.2.1.6. Unlike Table 7, each sharing pattern of Eg;, can be repre-
sented by a single processor type although the sharing behaviors of data in some cases are
not homogeneous. For E¢, E) ;- and E; . if the data set size is N, only 1 or P elements are
selected and accessed O(N) or O(N/P) times, respectively. None of the remaining elements
are accessed. For Ey E; ¢ and E,, sharing behaviors of all elements are homogeneous

and the number of accesses made to a single element is estimated as O(1).

4.2.2.3 Sparse Index Expressions of Strangers

In this section, the index expression ol A[g(Ve, Ve VixVe + WV, Ve, V)] for

strangers is presented. Defining the sparsity of accessed elements, integer function g(V,,

Stranger Expressions (not in the form of A[V,+d] or &[gV,-+h])
Expression|[Must include Must not include Don’t Cares Processor |No. elements
E; v, Veo Viges Viags Vives Vi - Home All
EC V(‘ vl‘ VH(" VLHE' VLl"F' VI.I"H - A” I
Epe Vie Vives Vive Vi Vi Ve, One F
Epp Vi Vivrs Vive Vis Ve Vige AnyOne P
Epve Vive Vivi Vi Vi Ve Vi Some All
Epyg Vives Vi Vive Vi Vi Vige Any All
Vive - Vs Ve Vies Vi Vive

% A given array, P number of processors

Table 8. Data access pattern for stranger expressions.

Ve Vi) is called the sparsity function. Consider the code segment in Figure 16 (a). The
access distance from the center is d = g(Ve, Ve Vi) x Vi + h(Ve Ve Vi) - 'V, which var-
ies as the loop progresses. The largest distance from the center is found when the loop
variable points to the last element in a partition block. It 1s d,,,. = gV Viye. Vi) x (b-1) +
h(Ve Ve Vi) = (b-1). As shown in Figure 16, only a few first elements of an array are
accessed by the Home; all others are accessed by a particular remote processor (One in
Table 5). The number of elements accessed by the Home is [h/g |- 1.

Without losing generality, we may assume array elements are accessed in a wrap-
around fashion. For example, given an N element array A and a sparse index expression
A[2T], A[0] is accessed when T = N/2, instead of A[N] which is out of the index range.
This assumption is valid for all other types of index expressions. As another example,
given an index expression A[I+2], A[2] is accessed when I = N-I, instead of A[N+1]
which is out of the index range. Based on this assumption, the number of array elements

accessed in a FORALL loop can be measured. If b and g are not relatively prime numbers,

my_start = N / P * my_pid; /* N : data set size */
my_last my_start + N / P; /* P : number of processors */
for ({ I = my_start ; I < my_last ; I++)

RIZ2T) 5 3

(a) Program segment for sparse array index expression

allocated to Py ™ " P
block size = b "
)) O T T G T O

index 0 12 3 4 5 6 TR 0 I 121310506 1T 1K 19 2021 222333 25 eee

iterarion () [T] »u

: Cu
iteration | i
iteration 2]

iteration 3 r'r—r"l ! T i

iteration 4 ——e] - =

ireration 5 - [0 = (|
(reration 6 - El o {71
iteration 7 {1 =

access distance

Projection [T LTI T T T T T TTTTTT P BT [

(b) Access pattern of sparse index expression A[21]

allocated to 7y P P Py
i N block size = b |
) 6 O 1 O 1 O 0

index D1 23456 T R N 23S T NI 2021 22 2324 25 s e

iteration O fee{T] 0 n b e
iteration |] 0 e =7
iteration 2 —r—{ | T |
iteration 3 | - O e |
iteration 4 - {0 i | -
ieralion 3 - L= (11—
iteration 6 by B |
ireration 7 A] TEeeaR (IR aE {7
access distance

Projection [TTTTTTTTTTTITIT] B BB e

\ (c) Access pattern of sparse index expression A[2I1+2] /

[0 Accessed by P,
Aceessed by P

Figure 16. Access patterns of sparse array indices.
only N/g elements of the array are accessed; otherwise, all elements are accessed. We can
summarize to the following observations.

* Being an integer function, g = 2.

» The indexes of accessed elements are periodic with period of g.

» If b and g are relatively prime numbers,
* total number of accessed elements is N, the size of FORALL loop.
 each element is accessed O(1) times in a FORALL loop.
« each element is accessed by one processor.
e If b and g are not relatively prime numbers,
e total number of accessed elements is N/g, the size of FORALL loop.
» accessed elements are accessed O(g) times in a FORALL loop.
* accessed elements are accessed by g or P processors whichever is smaller.
In consequence, data-sharing characteristic of sparse index expression is similar to
that of E, ¢ in that the memory locations of array elements are analyzible at compile time
and they vary as the loop advances. Furthermore, in both sparse index expression and £,y
cases, majority of array elements are engaged in data-sharing. Due to these reasons, for
convenience purpose, sparse array expressions are categorized into £y in this disserta-

tion.

4.2.3 Index Expressions for Multiple Array Elements

Thus far, an index expression is used to denote one array element in an iteration of
the given FORALL loop. In many scientific computations, it is often wanted to access a
group of array elements in an iteration. For example, some computations in image or sig-
nal processing application require the values of a certain data object and its neighbors.
Another example is found in molecular science where the interactions between a certain
molecule object and its neighbors are calculated. The index expression within a FORALL
loop is in the form of Figure 17 (a). ¢ and B specify the neighboring array elements and
they must be either constants or some compile time variable. Multiple element index
expressions can be associated with any types of array index expressions discussed until

now (Figure 17 (b)).

FORALL (I=0; I<N; I++) |
for (j=0; Jj<B; j++)
BIE#TN wnesi
)

(2) Multiple element index expression for £,

FORALL (I=0; I<N; I++) {
for (J=o0t; j<P; J++)
AlE + 3) ..;
}

(b) Multiple element index expression for a certain expression type £

-

Figure 17. Index expression for multiple array elements.

4.3 Sharing Pattern Analysis

In Section 4.2, the types of index expressions and their access patterns were pro-
vided. Data-sharing patterns of those index expressions will be analyzed in this section for
various data partitioning methods. In addition, to complete the sharing pattern analysis,
the effects of data set size and number of processors will be discussed.

Among data partitioning methods, data-sharing patterns of index expressions for
block-cyclic method will be investigated first. The cases of cyclic and block partitioning

schemes will follow.
4.3.1 Single Element Vicinity Index Expression

4.3.1.1 Block-Cyclic Partitioning

First note that the partition block size in block-cyclic partitioning is a constant. An

tinct access patterns were presented according to the access distance, d.
Indeed, what is desired is to first analyze the data-sharing patterns for a specific

size of a data set, N, and the number of processors, P. Then, the effects of N and P on data-

n
~1

sharing will be investigated. In this context, by eliminating the distinction caused by P in
Table 7, we merge the lower two rows into one. So, we are left with only two cases;
O<d<b and d=b. When 0 <d < b, the first d elements in a block are accessed by Other
processor while the last » - elements by the Home. Since the number of blocks in block-
cyclic partitioning is N/b, where b is a constant, the amount of overall data -sharing is pro-
portional to O(N). However, the number of processors has no impact.

When d = b, every array element is interpreted to be accessed by the Home or
Other; corresponding value in Table 5 is One. Since all N elements are potentially
engaged in remote accesses, the amount of data-sharing is proportional to O(N). In addi-
tion, among P processors, the probability that a processor accessing a certain element is
the Home is 1/P. That is, the amount of data-sharing due to remote accesses is propor-
tional to O((P —1)/P). This result is due to the periodic distribution of partition blocks to

the processors.

4.3.1.2 Cyclic Partitioning

As given in Table 7, all elements of an array are accessed by the Home if d = nP,
by a remote processor if d #nP . In this study, the worst case estimation is assumed; we
assume d # n P, regardless of the value of , and all elements are accessed by a remote pro-
cessor. The effect of data set size on the amount of data-sharing is O(N). As in block-
cyclic partitioning, due to the periodicity of data distribution, the amount of data-sharing is

proportional to O((P—1)/P).

4.3.1.3 Block Partitioning

As in block-cyclic partitioning case in Section 4.3.2.1, there are two cases;
O<d<b and d=b (Table 7). However, the data set size and the number of processors

have quite different influences on data-sharing. First of all, when O <d <b, d clements

58

among N/P elements in each partition block are engaged in data-sharing in each block.
While there are N/b (= O(N)) blocks in block-cyclic method, there are P blocks in the
block partitioning case. Thus, the amount of data-sharing is proportional to O(P) while
there are no effects due to the data set size. When d 2 b, all N/P elements in each partition
block are engaged in data-sharing. With P blocks, the amount of data-sharing is propor-

tional to O(N) while the number of processors has no effect.

4.3.1.4 Summary

The effects of the data set size and number of processors on data-sharing in Eyes

are summarized in Table 9.

Partition Method|| Conditions Data Set Size Number of Processors
Cyclic - O(N) =
Block- d<b O(N) -
Coehe d=b O(N) OP-1)/ P)
d<b O(N) O(P)
Bl dzb O(N) -

Table 9. Effects of data set size and number of processors in £y

4.3.2 Multiple Element Vicinity Index Expression

4.3.2.1 Block-Cyclic Partitioning

An index expression for multiple vicinity, £y, is in the form of A[T+d+7], where
T is the FORALL loop variable, ¢ is the access distance of £\, and j is a variable with a
range of .< 5 <P (Figure 17 (b)). The sharing pattern of £y, is changing according to
various conditions; d+a<bh and |p-ol<h, d+o<b and |P-c|l2b, d+o=b and

IB-ol<b,d+a=b and |B- a2 b. The reason for the distinction is as follows.

59

Py | ! '“J‘-a—l
block size = b
eee (I T T TITTTAT IO
.) =3
iteration () [[] [
: ! ; t I
ireration | v | |
tteration 2 !] 1
iteration 3 ' : !
iteration < \) H \
; sl : ; i !
teralton > ! ! ! !
iteration 6 ' ' K |]
ireration 7 : - 1] L]]
Projection EEEEE HEENES EEEEEE

(a) Access pattern A T+d+7], d = 3, 0=()

<j<P=4.b=8

e [T TTT I TT I T T I T TITTTITTIT 0T
=3

iterarion {) F i =i =
ireration | : = : . = f : “ e e
ireration 2 = _ = * = : =
iteration 3 ' I] . : + 1
Projection [T TS TT T T TTS T T 0=
(b) Access pattern A[T+d+]], d =3, 0=0< 3 <p=10.b=4

SOOI I T T T T T T T T T T T T I T g

:S _:-l

oo ® fet=2 =T 0 I
iterarion | [[[
freration 2 1
feration 3
freration 4
iteration S [
iteration 6 [] |
ireration 7 Ll 1] 1
Projection A T 1 Y S e [

(c) Access pattern A[T+d+7]. d = 5.

o=4<j<p=8.h=8

S I G T T O A O

)) d=5 a=4

iteration 0 ; == :

)) e— H . |

ireration | ! * * == +
: ' ' o
1 . . : :

fteration 2 A = =SS S S SS E
: ' ' ' v

iteration 3 : ; i e

Projection [T T T T T I I T T I T I I T ITTIT I]

(d) Access pattern A[T+d+]), d=5.0=4 < <P=14.h =4

O
tl
|

aceessed by remote processor(s), only

accessed by the Home and remote processor(s)
accessed by the Home. only

Figure 18. Duta-sharing in multiple vicinity index expression.

60

Basically, the value of ¢ + « determines whether a processor starts its execution of
the FORALL loop by accessing its own array element (o + o < b, Figure 18 (a) and (¢)) or
not (d + o= b, Figure 18 (b) and (d)). The value of |- a| provides several meanings.
First, while an array element is accessed only once in the case of E,,-, it is accessed
|B—of times in the Ey,.,, case. Second, in £y, il a processor executes computations on
its b element partition block, it accesses another set of b consecutive elements that are d
elements away from its own partition block. By contrast, in £\, a processor accesses
b +|B - o consecutive elements which are ¢ + o elements away from its own block (Fig-
ure 18). Third, while an array element is accessed by one processor in Ey,.g, it may be
accessed by multiple processors in Eye. I |~ o < b, the first and last |p - o elements
among b +|B -« elements that are accessed by a processor during the execution on its b
element block are accessed by two processors and other elements in the middle are
accessed by a single processor. In addition, if d+o<b and [B-a|<h, merely
b—(d+|p-a]) out of h+|B-0| are accessed by the Home, only. In consequence,
d +|B -« elements per partition block are involved in data-sharing in this case. However,
if |B—al = b, all elements are accessed by multiple processors and the number of proces-
sors accessing an array element is either [|B-al/bT or [Ip—al/b7]+1.

It is very important to note that the access order of an array element by multiple
processors is not strictly well-arranged as shown in the figures. It is because the processors
execute program instructions not in lock-step fashion. Therefore, |B—of accesses to an
element by multiple processors are assumed to be made in an arbitrarily interleaved man-
ner. In this situation, each element yields O(|p - ¢) data-sharing. In addition, even when
d + o> b, a processor may start execution of the FORALL loop by accessing its own array
element, and even when |B -« = b, array elements may be accessed by their Home. This

is due to the periodicity in block-cyclic partitioning.

61

Summarily, when d + o< b and |B- 0| < b, d +|B — 0] elements per partition block
are involved in data-sharing. In other cases, all elements are involved in data-sharing. So,
the total number of elements involved in data-sharing is always O(N). In addition, each
element is involved in data-sharing [B— o] times so that the total amount of data-sharing is
O(N)x O(|B - a]). Finally, when d +o.< b and |B -] <b (Figure 18 (a)), the number of
processors has no impact. Otherwise, due to the periodicity of block-cyclic partitioning,

the amount of data-sharing is proportional to O((P - 1)/P) (Figure 18 (b), (¢), (d)).

4.3.2.2 Cyclic Partitioning

Cyclic partitioning is a special case of block-cyclic partitioning with b = 1. Given
d,o and B in Eyey, d+o2b and |B-of2h are always true. Therefore, all elements
become involved in data-sharing so that the number elements involved in data-sharing is
O(N). Each element is accessed |- times as in the block-partitioning case so that
O(|B — o]) data-sharing is observed per array element. It is known that the cyclic partition-
ing is also periodic like block-cyclic partitioning. This results in the effect of the number
of processors to be O((P ~1)/P). In contrast to the block-cyclic partitioning where an ele-
ment might be accessed several times by the same processor (Figure 18), all accesses to an
element in the cyclic partitioning case are made by distinct processors if |p—o] <P. If

IB - o] > P, every processor accesses an element O(|f — /P) times.

4.3.2.3 Block Partitioning
Block partitioning is another special case of block-cyclic partitioning with
b = N/P. Data-sharing patterns in this case are almost identical to those in block-cyclic

partitioning. The only difference is the scaling effects on the amount of data-sharing.

62

When d+o0.<b and |- 0| <b in block-cyclic partitioning, d elements per block

are engaged in data-sharing. In block partitioning, there are P partition blocks so that the

amount of data-sharing is proportional to O(P), regardless of data set size. In all other

cases (d+a<b and |B-co|2b,d+0o2b and [B-o|<b,d+0=b and |B-a| 2 b), data-

sharing is observed on every element. The amount of data-sharing is O(N). The effect of

the number of processors on data-sharing is also O(P). The reason is as follows. We know

that an element is accessed |B — o times and the number of processors accessing an array

element is [|[p-a|/b7] or [|[B—ol/b]+ 1. As the number of processors increases, the

block size shrinks and the number of processors accessing an element increases.

4.3.2.4 Summary

The effects of data set size and number of processors on data-sharing in E,,.,, are

summarized in Table 10. Note that a single array element presents O(|p — o) data-sharing.

Partition Conditions Data Number of Data-sharing

Methods Set Size Processors per element

Cyclic - O(N) O((P-1)1P)
d+a<b,|p-ol<b O(N) .

Block- d+oa<b,|p-of=2b O(N) O((P-1) I P)

Cyclic
d+ozb,|p-o<b O(N) O((P-1) I P) o(B-al)
d+ozb,|p-al2b O(N) O((P-1)1 P)
d+o<bh,|p-ol<b . oP)

Block d+o<b,|p-0|2b O(N) o)
d+ozb.|p-ol<b O(N) o(P)
d+oazb,|p-0|2b O(N) Oo(P)

Table 10. Effects of data set size and number of processors in Eye..

63

4.3.3 Single Element Stranger Index Expression

As pointed earlier in Section 4.2.2.2, no distinction between Ey, ¢ and £y, 1S nec-
essary for the purposes of sharing pattern analysis. It has been mentioned many times that
the accesses to array elements with £, cause no data-sharing. So, the discussion will start
with E,.

Given E,, Figure 13 (b) shows only one element is selected regardless of the data
set size and it is accessed by all processors. The amount of data-sharing is thus propor-
tional to the number of processors, or O(P). In addition, once an element is selected, it is
accessed N times within the FORALL loop so that it presents O(N) data-sharing.

For E, - and E,;, only P elements are accessed regardless of the data set size. The
probability that an element is selected by its Home is 1/P so that the amount of data-shar-
ing is proportional to O((P - 1)/P). That is to say, the overall effect of the number of pro-
cessors is O((P - 1)). In addition, as in E., once an element is selected, it is accessed O(N)
times within the FORALL loop. So, each selected element shows O(N) data-sharing.

In case of E,, and E, on the average, it is very likely that every element is
accessed once through the loop. With P processors given in the system, the probability
that a certain element is accessed by the Home is |/P. Therefore, the amount of data-
sharing is proportional to O(N) and O((P-1)/ P).

The following table summarizes the discussion made in this section. Note that in
E., E, - and E,;, only one or P array elements are accessed while, in E,, and E, all ele-

ments are accessed.

4.3.4 Multiple Element Stranger Index Expression

The multiple element stranger index expression, Eyy . allows a processor to first

select an element with corresponding £, then, to access it and its [p— « neighbors. The

Index Expression Data Number of Data-sharing per
Types Set Size Processors | element (Epp . 0nly)
E; = -
Ee O(N) O(P)
Evic O(N) O(P-1)
En O(N) O(P-1) O(|p-a)
Epve O(N) o((P-1)1P)
Epve O(N) our-11pP)

Table 11. Effects of data set size and number of processors in Egpp ¢ and Egppap.

selection method of the first element, the basic sharing patterns, and the effects of data set
size and number of processors on the amount of data-sharing are all the same as the corre-
sponding index expressions in Section 4.3.3 and Table 11.

The only difference is that |B—of times more elements are selected in £y, than
in Egyps. Thus, for E., E, and E, ;. the number of accessed elements grows by factor of
IB = @] . For E,- and E,;, on the other hand, all elements are accessed [B - ¢] times so that

every element yields |B - o| data-sharing.

4.3.5 Summary

Thus far, we have seen the sharing patterns and the effects of the data set size and
the number of processors on the amount of data-sharing for all Kinds of array index
expressions. All works have been possible owing to the fundamental inherent nature of
SPMD programs (Observations 1 to 5). Especially, the properties of data homogeneity and
FORALL loop-based structure of SPMD programs are invaluably useful in performing
data-sharing analysis in this study. In this section, before closing the sharing patterns anal-
ysis based on array index expression analysis, we make a few additional comments.

First of all, the difference between array elements designated by compile time

variables and by run time variables is the determinism of their memory locations. Obvi-

ously, describing their sharing behaviors as they are accessed by particular or arbitrary
processors is useful in many aspects of sharing analysis. Nevertheless, in measuring their
data-sharing amounts, we see no difference at all as shown in Table 11. For this reason, no
distinction will be imposed on them in the rest of this paper. Consequently, the array
expressions of £,,- and E,, are merged into E;,, and £}, and E,,, into E,,.

As mentioned many times, one of the most useful properties in SPMD programs is
data homogeneity. That claims every element should experience the same computation
within the same FORALL loop. In this regard, the access patterns of array elements with
E.and E,, (E,, and E, ;) violate the property of data homogeneity. In fact, such access pat-
terns are quite rarely found in practical applications. Especially in SPLASH and
SPLASH-2 benchmark suites, no application presenting such access patterns is found.
Additionally, since N >> P due to the meaningfulness of data set size (Section 4.2), the
amount of data-sharing observed on those elements that are selected and accessed by E.-
and E,, seems to be negligible as compared to total amount of data-sharing. For this rea-
son, and to make further analysis simple, their consideration will be put aside in subse-
quent sections. Consequentially, the index expressions are finally classified into £, Ej,
and E\,~. Among them, £, and E,,- are subdivided into E,y., £y Eviess and Eye .

Up to now, we have investigated the amount of data-sharing incurred by each type
of index expressions. The data-sharing is the source of diverse coherency events defined
by the underlying architecture. One of the popular coherency events is the cache miss. In
Section 5. E,, E,yvc. Ejvaps Eviess and Ey,,, are investigated further to see how their sharing
characteristics influence the number of cache misses.

In Sections 4.3.2 and 4.3.4, when E,; or Egppey 18 used, it was shown that an array
element is accessed |B —«| times and the accesses are normally made by distinct proces-
sors in interleaved manner. This may or may not result in the total amount of data-sharing

multiplied by the factor of |p — o] depending on whether the access type is a read or write

66

operation. Let’s consider the case where the access is a read operation. If an element has
been modified by remote processor(s) during the most recent access, the first access
should invoke a coherency transaction to obtain an up-to-date data copy. Subsequent
accesses, however, will not cause any coherency transaction because the first copy has
brought in the valid copy already. Therefore, multiple accesses of the read operation do
not influence the amount of data-sharing regardless of the size of | — «] . In contrast, if the
access is a write operation, each access will cause coherency transactions to first obtain a
valid data copy, before the write operation, which has been modified by another processor
executing the same computation in the same FORALL loop, and to propagate the modi-
fied data copy, after the write operation ! That is to say, multiple accesses of the read oper-
ation increases the amount of data-sharing by factor of |B - o] .

Finally, |B -« is often a function of the data set size. Then. if the access type is a

write operation, the effect of the data set size in Tables 10 and 11 is multiplied by |B - .

4.4 Multi-dimensional Arrays

So far, we have presented analysis of all possible sharing patterns for one-dimen-
sional shared arrays. In practice, arrays in scientific SPMD applications are n-dimensional,
where n is an arbitrary positive integer. Each dimension of an n-dimensional array may be
partitioned in cyclic, block-cyclic or block manner. In addition, for certain dimension(s),
no partitioning may be applied. Figure 8 shows some examples of data partitioning of two-
dimensional arrays. This section is dedicated to the sharing pattern analysis of n-dimen-
sional arrays.

Before starting the discussion, let’s consider a case where a particular dimension

of an n-dimensional array is not partitioned. The examples are in Figure 8 (d), (e) and (f).

I. The types of required coherency transaction are variously defined according to the predefined cache
coherency protocol.

67

In this case, no matter which types of index expressions may be given for the dimension,
there is no data-sharing. This is equivalent to the case where an expression type for the
dimension is £, regardless of the partitioning methods in that there is no data-sharing tak-
ing place.

In the following, sharing pattern analysis for two-dimensional arrays will be made
first. Then, the sharing patterns in n-dimensional arrays will be deduced based on the

knowledge earned from the one- and two-dimensional cases.

4.4.1 Two-dimensional Array
The basic procedure of sharing analysis is as follows.

Step 1: Perform sharing pattern analysis to obtain sharing amount for one row.
Step 2: Having N rows, multiply the sharing amount obtained in Step | by M.
Step 3: Perform sharing pattern analysis to obtain sharing amount for one column.
Step 4: Having N columns, multiply the sharing amount obtained in Step 3 by N.

Step 5: Sum up the amounts of data-sharing obtained in Step 2 and Step 4.

This way of sharing analysis is valid regardless of the data partitioning methods. In
addition, it is also valid for both singular and multiple element index expressions. In Steps
1 and 3, the data set size is N as before, but the number of processors varies according to
the partitioning methods applied to each dimension. For example, in block-block parti-
tioning (Figure 8 (g)), there are P processors in a dimension.

Recall that the index expression types we have are ;. £, and E,. For two-dimen-
sional array A of size N x N, possible combinations of index expressions are A[E][E,],
A[ENEwd. RIEuAEvel. ALEEL, AlEyE,y] and A[E,][£,y], where the order of index
expressions in dimensions is not important. We consider them, one by one, for the case
when A is partitioned in a block-cyclic manner in both dimensions. For better discussion,

assume we have a one-dimensional array B of size N.

68

44.1.1 E, and E,

Since all elements are accessed by their Home in both dimensions, no data-sharing

is observed.

44.1.2 E, and E,,;

As an example, notice the sharing pattern of A[I][J+1] shown in Figure 19 (a).
The sharing pattern is observed as there are identical N rows each of which has the same
sharing pattern as B[J+1]. At first, we measure the amount of data-sharing in a row, by
dealing with the row as a one-dimensional array. The data-sharing analysis for one-dimen-
sional array was described in Section 4.3. The only difference is that N elements in a row
are distributed among /P processors. In the next step, we expand the number of rows to N

by multiplying the amount of data-sharing obtained in the first step by N.

4413 E,and E,,

Figure 19 (b) shows the sharing pattern of A[I+1][J+1]. This situation can be
understood that the data-sharing is the union of the data-sharing caused by A[T][J+1] and
by A[T+1][J]. For each of them, by repeating the analysis procedure in Section 4.4.1.2,
the amount of data-sharing can be obtained. The sum is the total amount of data-sharing in
A[T+1][T+1].

Note that, although the elements filled with black are counted twice, their amount

is negligible especially when expressed in big-oh notation.

4414 E, and E,,

Figure 19 (c) is for A[E,][E,]. There are N rows each of which has the same shar-
ing pattern as B[E,,], while no data-sharing is observed in the vertical direction. As in Sec-

tion 4.4.1.2, the sharing analysis is first done for a row by assuming an N element one-

69

L sharing in Direction-J
o sharing in Direction-T
[sharing in Direction-J

M sharing in both Direction
- T
Z i i __! ﬂ
R
3]] -
] i = il o L

(a) Sharing pattern of A %, |[Eyyc) (b) Sharing pattern of A[Ey] Eyyel

e wa O sharing in Direction-J
[sharing in Direction-J B sharing in Direction-1

(c) Sharing pattern of A% |[£y (d) Sharing pattern of A[Lyl

sharing in Direction-I and -J

Direction J

A[T]T]

Direction |

(e) Sharing pattern of A[][]

Figure 19, Data-sharing in two-dimensional arrays.

70

dimensional array is distributed among /P processors. Complete data-sharing analysis for
E, is found in Section 4.3. Then, the amount of data-sharing obtained earlier is multiplied

by N.

44.1.5 E,,cand E,,

Figure 19 (d) presents the sharing pattern observed when a two-dimensional array
is indexed as A[E,, |[E,]. At first, for the horizontal direction, data-sharing analysis for
E\-is made as in Section 4.4.1.4. Then, for the vertical direction, the methodology in Sec-
tion 4.4.1.2 is applied.

Normally, the data-sharing analysis for a dimension of multi-dimensional arrays is
performed as described in Section 4.3 where one-dimensional arrays are considered. The
only difference between one-dimensional arrays and multi-dimensional arrays is the num-
ber of processors involved. For example, it was pointed earlier that JP processors access
the elements in a row or column of two-dimensional array which is partitioned in block-
block manner (Figure 8 (g)).

However, if a certain dimension (dim;) is indexed by £, special attention must be
paid when analyzing sharing patterns in the other dimension (c!imj). Assume that f{P)
(=P, in this section) processors are invloved along the dim; direction and g(P) (=P,
too) processors are invloved along the din; direction. The index expression of type E;y in
dim; direction means that f{P) processors access any single element. Therefore, the num-
ber of processors invloved in the accesses to the elements in the dini; direction is not g(P)

any longer; rather it is f(P) x g(P).

4.4.1.6 E,,and E,,

If both directions (dim; and dr'm,-) are indexed by E,,, the sharing analysis in each

direction will be made by including P processors. Since, the dim; is indexed by E,;, the

71

number of processor to be considered in the sharing analysis of din; direction is /P x J/P
for N elements. With N elements in the dimj direction, the amount of data-sharing is multi-

plied by N. Vice versa is true for the analysis of dim; direction. The total amount of data-

sharing of two-dimensional array indexed by £, in both direction is proportional to O(N™)

and O(P).

4.4.2 Higher-dimensional Array

Now, from the knowledge gained from one- and two-dimensional arrays, the shar-
ing analysis method for a general n-dimensional array is described in this section. The
data set size in each dimension and the number of processors allocated to each dimension
are assumed to be N and f,(P), where 0<i<n— 1. The basic procedure of sharing analy-

sis introduced in Section 4.4.1 is revised as follows.

For each dimension, /, 0<i<n -1, repeat Steps | and 2.

Step 1: For one dimension, i, perform data-sharing pattern analysis and obtain the
amount of data-sharing as described in Section 4.3.
If there are other dimensions with E,y dim,y: the number of processors

involved in accesses to elements in dimension 7 is

n—1
FAPYX H S (P), if dimension k is dimy
k= 0pkEd

Step 2: Having n dimensions, multiply the amount of data-sharing obtained in Step
-1
| by N"

Step 3: Accumulate the amount of data-sharing obtained in Steps 1 and 2.

Finally, note that for the dimensions in which no data partitioning is applied, none

of the index expressions result in any data-sharing.

Chapter 5

MODELING MISS RATES

In the event of a cache miss, a processor has to stall its current execution until the
required data are brought into its local cache. The long latency in the data path including
memory accesses and data block transfer via the interconnect is costly in terms of perfor-
mance. As the speed of processors continually increases, the stall penalty that a processor
has to suffer becomes relatively larger. Therefore, cache misses are regarded as one of the
most important performance metrics that affect the overall execution time.

Given an application running on a specific architecture, the origins of cache misses
are the inherent data-sharing in the application. Therefore, by understanding the sharing
behavior, we should be able to estimate the number of cache misses when cache sizes are
infinite. In this section, a systematic methodology is proposed to derive polynomial mod-
els for the number of cache misses and miss rates based on the sharing analysis. The mod-
els are expressed by numerical expressions in terms of data set size (N) and number of
processors (P). The power of the model lies in the accurate prediction of cache misses and
miss rates for large data sets and large number of processors which are usually difficult or
even impossible to simulate.

The overall system looks as shown in Figure 20. The components are described in

the following subsections.

73

Static Sharin I)
Information Sharing State

Management Unit
Array Data Structure

- size of an element | - initial sharing state

- dimension - static sharing info. storage

- size in each dimension - input: behavioral sharing info.
- sharing state maintenance Coherency protocol
- output: events Cache line size

System Information

Partition Information
- for each dimension

= Static Info. |«

Behavioral Sharing

Information Y
Data Access Description {’

: Event
= Sharing State | Counters |
- program struclure

- data access statements State Transition

Figure 20. Overview of miss rate modeling system.

5.1 System Information

The first component includes the information related to the underlying architec-
ture. From an architectural viewpoint, the cache coherency protocol to governs sharing
state transitions activated by incoming data accesses. The occurrences of relevant events
such as cache misses are also determined by the coherency protocol. Another architectural
factor needed in measuring cache misses is the cache block size. In this study, the three

state write invalidate protocol is adopted and the cache block size is32 bytes.

5.2 Static Sharing Information

On the application side, the static sharing information is related to the shared data
structures. The static sharing information includes the size of each array element, the num-
ber of dimensions, and the number of elements in each dimension of shared arrays. In
addition, the partitioning methods applied to each dimension of shared arrays is also pro-

vided. Usually, many shared arrays are used in a program. They are frequently of different

74

sizes with different partitioning schemes and they present different sharing behaviors. The
unique characteristics of shared arrays will result in different miss rate models. For this
reason, in this study, the shared arrays are dealt with separately.

Among static information, the size of an element, the number of dimensions and
the number of elements of an array are given in the declaration area of applications. Data
partitioning information is found at the top portion of parallel applications before the par-
allel section is started. Along with the system information, static sharing information is
stored inside the sharing state management unit. They are both used in controlling the
sharing state transitions and in measuring the number of coherency events of particular

interest.

5.3 Behavioral Sharing Information

The behavioral sharing information of applications is related to the shared data
accesses in the computation body of applications. Its role is to drive the sharing state man-
agement unit to initiate the sharing state transitions. Being used as an input to the sharing
state management unit, the behavioral sharing information is syntactically well-defined as
will be shown later.

Given a scientific problem, the algorithm to solve it generally consists of a
sequence of numerical equations. According to the equations, required computations are
executed on proper data objects. Since the data structures are in array format (Observation
2) in SPMD programs, the application of a common computation on array elements
(Observation 3) is implemented by for loops (Observation 4). That is, an SPMD program
is another form of a sequence of numerical equations represented by a sequence of for
loops.

In view of data-sharing analysis, a for loop construct is regarded as an execution

unit whose sharing pattern is represented by a description statement which will be intro-

duced shortly. As discussed in Section 4, the array index expressions within FORALL
loops can be used to describe the sharing patterns of shared arrays. Consider a FORALL
loop in an SPMD application and the program statements within the loop given in Figure

21, where x is a loop-variant variable.

1. FORALL (I = 0 .. N} {

2- ®x = (A[TI+1] + B[I+2] / 2) ;
3. C[I] = D[x] ;

4.}

Figure 21. Example FORALL loop and data accesses.

The index expression for individual arrays are specified as follows:

* for array A, index is Eyjcg, d = 1, 0.

0, p
0,p

* for array C, index is ;. and the operation is wrife, and

0 and the operation 1s read,

* for array B, index is Eyjeqo d = 1, 00 0 and the operation is read,

» for array D, index is £, ., variable is x, o = 0, B = 0, the operation is read.

Recall that shared arrays are dealt with separately in data-sharing analysis. We
now define the syntax for behavioral sharing information description as follows.

Expression_Type: d, label, o, B, op_type,

where d is used only for Eye, label for E; o and B for multiple element index
expressions. When no value is specified, the field is omitted. In summary, the syntax of
each type of array index expressions is given in Table 12. The fields of d, label, o, B and
op_type should be substituted by its proper values accordingly. The d, o, and 5 are integer
numbers, label is character string and op_type is either read or modify.

The resulting behavioral sharing information description for the program segment

given in Figure 21 is shown in Figure 22. Note that the FORALL loop statement (line 1 in

76

Expressions Syntax
£y Ey:op_type
Eyies Eyiegt d, op_type
Evye Eviear dy o, Boop_type
Bivis Eyys: label, op_type
Epvi Epag label, o, B, op_type

Table 2. Syntax of behavioral sharing information description.

Figure 21) is not shown in the behavioral sharing information description. It is because

each statement in Figure 22 implicitly presents the data-sharing pattern within the

FORALL loop. The behavioral sharing information presents the access pattern of a shared

array. So, the behavioral sharing information is called the waccess pattern description

(APD, in short) and the statement in the APD is the access pattern description statement

(APDS, in short). These two terms will be used in the rest of the thesis.

In practical applications, there are more complicated numerical equations, array

index expressions, or data-sharing patterns, which are discussed further in the following

subsections.

/

Eyies 1, Read

(1) For array &

Eves 1. Read

(b) For array B

E,: Modify

(¢) For array ©

Lg% Read

(d) For array D

\

Figure 22. Behavioral sharing information description for Figure 21.

77

5.3.1 Multiple Index Expressions of One Shared Array

In Figure 21, each shared array is used only once. However, in many cases, a

shared array may be accessed many times within a FORALL loop as shown in Figure 23

(a). The resulting APD is given in Figure 23 (c). Note that the access types of three index

expressions are all reads.

/

b2

> W

FORALL (I = 0 .. N) {

X

= (A[I-1] + A[I] + A[I+1]

(a) Program segment (example 1)

FORALL (I =0 .. N)
a = A[TI-1] ;

FORALL (I =0 .. N)
b = A[I] ;
FORALL (I = 0 .. N)

c = A[I+1] ;

(h) Program segment (example 2)

e -1, Read
E;: Read

Eyeg |, Read

(¢) Behavioral sharing description

)

~

S

Figure 23. Multiple index expressions of one shared array in a FORALL loop.

One natural problem regarding the APD is that the program codes in Figures 23 (a)

and (b) would result in identical APDs. Obviously, the computations given in the two pro-

gram examples are different from each other. However, for the measurement of cache

78

misses (or, other data coherency events), they both yield the same result. In the following,
we will show that the programs in Figure 23 (a) and (b) produce the same magnitude order
of the number of cache misses.

Cache misses are classified into cold misses and invalidation misses. First, we con-
sider the cold misses. Assume the program statements above are executed at the very
beginning of the program. Figure 24 illustrates data accesses made by a processor, P;, on
array elements which are allocated to it. The heavily shaded accesses denote the accesses
experiencing cold misses while the lightly shaded accesses denote cache hits. Figure 24
(a) is the result for the program in Figure 23 (a) and Figure 24 (b) is for Figure 23 (b). We
see that the number of cold cache misses are the same in both cases.

In addition, assume there has been a write operation so that some of the elements
accessed by P; are modified by remote processors. The black dots in Figure 25 (a) denote
such element. When executing program segments in Figure 23 (a) and (b), P; experiences
the same number of invalidation misses as shown in Figure 25 (a) and (b). In consequence,
the APD for the multiple read operations to the same array within a FORALL loop can be
written in the formats shown in Figure 23 (c) without causing any differences in the num-
ber of cache misses.

Now, consider the case when one of the multiple accesses to a shared array within
a FORALL loop is a write operation. The example code is given in Figure 26 (a) and the
accesses by P;_ |, P; and P, to the array are shown in Figure 26 (b). Attention should be
paid to the elements filled in black. They are the ones to be accessed by two processors. At
first glance, the program line 2 does not seem to cause any problem. However, since
SPMD programs are not executed in lock-step manner, the sequence of computations to be
performed to a certain element is not deterministic. The tagged element ¢; is supposed to
be modified and read by P;, and then read by P; |. But in reality, the order of the access

sequence is by no means guaranteed. For example, if P; experiences a page fault before

79

Ill‘_| r r

C I N N I A

reratien %
treration |1

iteration 2
iteration 3
ireration 4
iteration 3
Projection

X=(A[I-1]+A[I]1+A[I+1]1)/3;

() Access pattern for A|T-1]+A[T]+A[T+1] in one loop

S 1 1 O O O A

irervarion O
iteration
iterarion 2
iteration 3
fteration 4
freration 3

a = A[I=1] 3

frervation 0
{reration |
{teration 2
frevarion 3
iteration 4
iteration 5

b = A[I] ;

ireration O
iteration
ireration 2
fteration 3
iteration 4
iteration 5 E

Projection

(b) Access pattern for A[T-1], A[T]. 2|T+1] on other loops

Bl cold misses

N Y,

Figure 24. Access patterns for multiple array accesses.

accessing ¢;, ¢; may be accessed by Pj; this is not what the programmer or algorithm
designer expects. In real life, to avoid this problem, a temporary array (B) of the same size
is adopted to store the computation results as shown in line 2 of Figure 27 (a). Then, array
B may be used in subsequent program statements as in line 3 or the results are copied back

to array B for further computation as in line 6. The APDS in Figures 27 (b) and (¢) will be

30

ireration 0
freration |]

ireratien 2 EEE
iteration 3
iteration 4
iteration 3

w=(AI-1]+A[T]+A[I+1])/3;

iteration () L]
iteration | i
iteratiom % [} a = A[T=1]
Heration 3
iteration 4
iteration 3

iteration () D[:l
tteratient |

iteration 2 13]
ireration 3 (|
iteration 4 [|
iteration 5]

b = r".{fl

iteration 0 O
ireration | [
iteration 2 [¢ = A[T+1]
iteration 3 |

freration 4 =

iteration S ﬂ

(b) Access pattern for A[I-1]. 2[T], [I+1] on other loops

E invalidation misses

[hits

N /

Figure 25. Access patterns for multiple array accesses.

derived. An alternative is to impose synchronization primitives such as lock, pause or bar-
rier. This method usually suffers from synchronization overhead, which seriously
degrades overall performance. This is why the former scheme is preferred by program-
mers. In other words, within a FORALL loop, no element of a shared array is accessed by

multiple processors il at least one of the access types is a write operation.

81

l. FORALL (I = 0 .. N) {

s A[I] = (A[I-2) + A[I+2)) / 2 ;
3.

4. }

(a) Program segment

weration ()
iteration |
iteration 2
iteration 3
ireration 4
ireration 5

Accessed by: Py P; P

(b) Access pattern

B write operation
O read operation

- W

Figure 206. Access patterns for multiple array accesses.

Nevertheless, if there is a FORALL loop where multiple processors are accessing
some shared array elements and at least one of the accesses is a write operation, the fol-
lowing approach is taken. As was shown in Figure 26 (b), the read accesses of a processor,
P;, may be made either before or after another processor, P; |, executes its write operation.
Then, the read by P; may observe either an invalidation miss or a cache hit. Assume that
the largest number of possible cache misses is O(f,(N)) and O(g(P)). and the largest
number of possible cache hits is O(f,(N)) and O(g,(P)). where N is the data set size and
P is the number of processors. Further assume that the probability that P; experiences an
invalidation miss is p and the probability that P; experiences a cache hit is 1 - p. The

numbers of cache misses and cache hits that are measured during the execution of the pro-

1. FORALL (I = 0 .. N) {

R BII] = (A[I-2] + A[I+2] ¥ / 2 ;
3. x = B[E] .x:
4. }

5. FORALL (I =0 .. N) {

6. A[I] = B[I] ;

(a) Program segment

Eyest -2, Read
Eyiist 2, Read

E,: Write
(h) Behavioral sharing description ol array &
E;: Write

E;: Read
E;: Read

(¢) Behavioral sharing description of array B

Figure 27. Multiple index expressions of one shared array in a FORALL loop.

gram are then expressed as px O(f,(N)) and px O(g,(P)), and (1 - p)x O(f;(N)) and
(1—p)xO(g,(N)), respectively. Since the access order is independent of the data set size
or the number of processors, p and | —p are not functions of N or P. Therefore, since
these expressions should eventually be given only in terms of N and P, the terms p and
I — p will disappear. As a result, we will have O(f,(N)) and O(g,(P)) cache misses, and

O(f,(N)) and O(g,(P)) cache hits.

83

The method above is called the worst case estimation of performance metrics and
such estimation can be achieved by presenting the APD for Figure 26 (a) as in Figure 28.
The first three lines correspond to line 2 of Figure 26 (a). The last two are for the worst
case estimation where they will observe the largest number of cache misses.

r a

Evies: -2, Read

Eyies: 2, Read
E,: Write
Eves -2, Read

Eviey: 2. Read

Figure 28. Access patterns for multiple array accesses.

5.3.2 for Loops

Consider the program segment in Figure 29. The loop statement in line 1 governs
the index range of array A, while the loop statement in line 2 shows the index range of
array B. We call the loops whose variables are used in designating array elements /C loops
(Index Covering loops) and their control variables are called /C variables. When an n-
dimensional array is involved in the computation, exactly n /C loops are nested. For exam-
ple, the I-loop in Figure 29 is the /C loop with respect to & and the K-loop is the /C loop
with respect to B. One IC loop is used to specify each element of A and another /C loop
deals with B. Additionally, we call & the IC array of I-loop and B the /C array of K-loop.

The other type of loop is called RC loops (Repetitive Computation loops). Given
an array, all loops which are not /C loops with respect (o a particular array are RC loops
with respect to that array. For example, the I-loop is the RC loop with respect to B whose
loop variable is X, and the X-loop is the RC loop with respect to A whose loop variable is

I. The I-loop executes N> read operations on one data element, B[K]. The X-loop exe-
P p P

84

cutes M write operations on each data element, A[T]. That is to say, the RC loops denote
the number of computations executed on a single array element. Similarly, we call A the

RC array of K-loop and B the RC array of I-loop.

int A[N]1, B[MI];

1. FORALL (I =0 .. N)
2. FORALL (K = 0 .. M)
3. AlI+2] += B[K-2] ;

Figure 29. Nested FORALL loops for different arrays.

When presenting the APD, RC loops are explicitly specified while, as before, IC
loops are not. The difference between two arrays is whether the RC loop is executed inside
or outside the /C loop. If the RC loop is executed inside the /C loop, as for array A, the
specified data accesses are made M times in each iteration of the /C loop. If the RC loop is
executed outside the /C loop, as for array B, the /C loop of size M is executed N times. The
final resulting APD of Figure 29 is given in Figure 30.

- B

For array A: Eyeg: 2, Write, M Times

For array B: RC-loop (N times) BEGIN

E\’f{'-.\': 2, Write

RC-loop END

N oA

Figure 30. Behavioral sharing description of nested FORALL loops for different arrays.

5.3.3 Multi-Dimensional Arrays

In this section, an example of the program segment and its corresponding APD are

given. Given two-dimensional arrays A and B, lines 1 and 2 in Figure 31 (a) are the IC

loops of A and lines 3 and 4 are the RC loops of A. The lines 3 and 4 are the /C loops of B
and lines | and 2 are the RC loops of B. The APD is found in (b). Given an n-dimensional
array, the access classes (Eyc, £, and etc.), d, label, o. and B are written n times in the
order from the first dimension to the last. The access type (read or write) is given only

once.

e N

int A[N][N], B[M][M];
1. FORALL (I = 0 .. N)

2 FOALL (J = 0 .. N)

3. FORALL (K = 0 .. M)

4 FORALL (L = 0 .. M)

5 A[I+2][J-2] += B[K][L=-2] ;

(a) Program scgment

For array A:

[Evies 2 and Eyyes -2} Write, M° Tines

For array B:
RC-loop (N times) BEGIN
{ Ef,: iln(] E\r”is: '2] \‘Vi'ilc

RC-loop END

K (b) Behavioral sharing description

Figure 31. Behavioral sharing description for multi-dimensional arrays.

5.3.4 Example
The representative array Particles in MP3D of the SPLASH benchmark suite
is taken as an example. It is a one-dimensional array of size N partitioned in the block-

cyclic manner. Each element of Particles is 36 bytes in size and one partition block is

composed of 16 elements. The static information and APDS are given in Figure 32. As
shown in the figure, the sharing information of arrays in the real application is relatively

short, and its sharing behaviors is simple to characterize.

4 N

Array Particle

Size of an element: 36 bytes
Dimension: i
Size in each dimension: N

Partition:Block-Cyclic, block = 16 elements

(a) Static sharing information

1. /* For array Particles */

2. RC-loop (N’ times) BEGIN
3 E;: Read

4. E; Read

5 E,: Write

6. B.: Read

7. E,: Read

8. Epy: pn, Read

9. ar Read

10. Bryi pn, Read

il ; RC-loop END

(h) Behavioral sharing description

- _/

Figure 32. Static and behavioral sharing description for particles in MP3D.

5.4 Sharing State Management and Event Counts
Given static sharing information and the APDS, the sharing state management unit
is used to measure particular performance metrics of interest. The static information pre-

defines the set of the interesting performance metrics such as the number of cache misses,

the rules that govern sharing state transitions, and other rules that control the occurrences
of events. Sharing state management unit takes in the APDS to execute proper sharing
state transitions and to count the performance events.

Since the target is the miss rates, the events of interest are the number of data ref-
erences and the number of cache misses. Given an n-dimensional array A with N,
0 <i<n,elements in each dimension that are used in the computations within a FORALL
loop, there are HN!., 0 <i<n, data references to A. As shown in Figure 31, the APDS
implicitly represent data accesses executed within the FORALL loops. Therefore, each
APDS for A yields []N;, 0<i<n, data references. In addition, the RC loops also influ-
ence the number of data references. If there are m nested RC loops of size [y 0<j<m,
surrounding the computations on A, the total number of data references becomes
H!qu [IN; 0<j<m and 0 <i<n. The number of data references is measured directly
from the APD without any consideration for data-sharing. The number of processors is not
a factor affecting the number of data reference.

Cache misses are experienced by a processor whenever it accesses data objects
which are not in its local cache. Given an APDS, the information as to (1) which data
objects a processor keeps in its cache and (2) which data objects it tries to access is neces-
sary and sufficient to count the cache misses. The state transition rules adopted in this
study is the three state write invalidate protocol as shown in Figure 6. At the beginning, a
processor has no data in its cache. As the processor accesses data, new data are brought in
and out of the cache. The events that load data into a processor’s cache are data accesses
(read or write) by the processor and events that remove data out of the cache are remote
writes.

In Section 2.3.1, according to the situation where cache misses are observed, they
were classified into pure cold misses (PCM), cold true sharing misses (CTSM), cold false

sharing misses (CFSM), pure true sharing misses (PTSM) and pure false sharing misses

88

(PFSM). Being dependent on the sharing behavior of data objects, PCM and true sharing
misses (CTSM and PTSM) can be characterized and measured based on data-sharing
analysis. Unlike true sharing misses, false sharing misses (CFSM and PFSM) are observed
when one or more write operations have been executed on the elements that are not
accessed during the lifetime of the cache block. The occurrences of false sharing misses
depend on the physical placement of cache blocks, which seems to be almost impossible
to statically analyze. Since true sharing misses and false sharing misses are commonly
dependent on data-sharing, the number of false sharing misses is estimated to be approxi-
mately proportional to that of true sharing misses. That is to say, they have the same order
of magnitude in the big-oh notation.

In this regard, only the numbers of data references, PCM, CTSM and PTSM are to
be modeled. On a PCM, a cache block containing a data object that caused the miss is
brought into the local cache from the memory. No remote caches are involved during this
coherency transaction. On the other hand, on a CTSM or a PTSM. if a modified copy of
the data that caused the miss is kept in a remote cache, a remote processor is involved in
the coherency transaction. The coherency transactions for CTSM and PTSM are identical.
Furthermore, both the CTSM and PTSM are observed when a processor tries 1o access a
data object that has been modified by a remote processor(s) since its last access. For these
reasons, CTSM and PTSM are grouped into TSM (true sharing misses) and CESM and
PFSM are grouped into FSM (false sharing misses).

Therefore, in order to measure the number of cache misses, the sharing state man-
agement unit must keep track of data movements among processors so that the informa-
tion as to which elements a processor keeps in its cache after executing a behavioral
sharing description statement is maintained. Second, the sharing state management unit
should also know which array elements a processor tries to access during the execution of

a behavioral sharing description statement.

89

In Section 4, we learned about general sharing behaviors of diverse data access
types. Being interested in cache misses, we will summarize the data-sharing analysis,

focusing on the above-mentioned two requirements of the sharing state management unit.

5.4.1 Sharing Analysis for Cache Misses

Since every processor in an SPMD application is symmetric (Observation 5), we
consider a processor, P;, as the representative of all. We also consider an arbitrary partition
block, Bp;, which is allocated to P; as the representative of all partition blocks. Note that,
in Section 4.3.5, the access types were classified into £, E, ., Epyvy Evies and Eyyy. Given
a data access type in the APD, only the execution of P; on Bp; is considered. P; may access
only data elements in Bp; or other elements according to whether the access type is £, or
others (Evs, Ervais Evies O Eveny), respectively.

The array elements accessed by P; during the execution of P; on Bp; are regarded
as elements accessed by P; with respect to Bp; (¢,,..). If the access type 1s E,, E,y.5 0r Eyeg,
the number of elements accessed by P; with respect to Bp; is the same as the number of
elements in Bp;. On the other hand, if the access type is £,y 0r Eyey, the number of ele-
ments accessed by P; with respect to Bp, is larger than the number of elements in Bp;.

In addition, the data residing in P;’s cache at the completion of the execution of P;
on Bp; are regarded as the elements residing in P; with respect 10 Bp; (¢,,,). If the access is
aread operation, ¢, and ¢,,, are identical to each other. On the other hand, if the access is
a write operation, because there can be only one modified copy of data in the system, we
have e, D €,

Since an array element is modified by multiple processors in £, £y, and Eye.y
with a write operation, the processors accessing the modified data should experience

TSMs. The misses observed by P; during the execution of P; on Bp,; are regarded as the

90

misses observed during the accesses by P; with respect to Bp;. The term n,,;, is used to

denote the number of these cache misses. Similarly, n,,.. denotes the number of elements

ac
in ¢, and n,,, denotes the number of elements in e,,,.

In the sharing analysis of this section, the array is at first assumed to be partitioned
in block-cyclic manner with b elements in Bp. When it is not necessary to distinguish
event types such as data accesses or cache misses, they are simply called events and their
number is denoted by n,. Having N/b = O(N) partition blocks (since b is a constant in
block-cyclic partitioning) in block-cyclic partitioning, the total number of 1, will be mul-
tiplied by N/b = O(N), that is, n,x O(N). Although n, is normally dependent on b
(O(1)), they often depend on data set size. For example, n,,,;,, may be measured as f(N).
Then, the effect of data set size on n,,;,, is f(N)x O(N). The effects of the number of pro-
cessors are of two types. Section 4 show that, if data-sharing takes place between two
adjacent processors, the number of processors has no impact on 7,. On the other hand, if
data-sharing is observed on more than two processors or on two nonadjacent processors,
the effect of the number of processors was known as O((P—1)/P). in Section 4.

In cyclic partitioning where b = 1, there are also O(N) (= N/ = N) partition
blocks. The discussion made for the block-cyclic partitioning is the same for the cyclic
partitioning case. The only difference is that the elements accessed by P; with non-£;
access types are all supposed to be remote data while, in block-cyclic partitioning case,
some of them may be the local data to P;.

In the block partitioning case with h = N/P, since there are only P partition
blocks, the total number of n, is simply multiplied by P to become n,x O(P). The effect
of data set size on n, exists only when n, is dependent on the data set size. In addition,
since b is a function of N, n,, is frequently dependent on the data set size. The effects of the

number of processors on n, is always O(P) if the access type is Ey,. Recall that, in cyclic

and block-cyclic cases, the number of processors does not affect or its effect is

91

O((P - 1)/P) depending on whether data-sharing is observed among more than two adja-
cent processors or not. This is due to the periodicity in data distribution. However, in block
partitioning, since data distribution is not periodic, no such distinction is necessary. If the
access type is £, in block partitioning, the effects of the number of processors on n, is
O((P~1)/P) due to the irregularity of the access pattern.

In consequence, in the rest of the this section, the analysis will focus on the ¢,
€05 and n,,;. for various access types. At the end of this section, a table will be provided

to summarize the effects of data set size and number of processors on them.

P Py i Pisy P
[JTITTT I ITITI I IITTI I T I T I]ITTITII] DatabDistribution Map
ireration 0[] | | | |
iteration |] =] | q:]
Trertt 2
feemion® O | O 0, | o L | Accesses inthe loop
iteration 4 O Ei:] DE q: DD
iteration 5] C
CITTTTT TTTTTT Data Access Map
0 N [TTTT] Modified Data Map
[0 Allocated ta P; Loaded to £/'s cache after Read
[0 Accessed by P E Loaded to P;'s cache after Write

- v

Figure 33. Data accesses of £},

Again, in Section 4.3.5, index expressions were finally categorized into five
classes: E,. Eves. Eviean Ervs and E,y,,,. Figure 33 shows data accesses of ;. There are four
levels in the figure. At the top is the data distribution map to describe data distribution

among processors. The second level presents data accesses of P; with respect to Bp; in

92

each iteration of a FORALL loop. The data access map follows to show array elements
that are accessed by P; with respect to Bp;, which is the projection in the figure, regardless
of read or write. The elements marked in the data access map are loaded into P;’s cache at
least once. They will all reside in P;’s cache at the completion of the read operation. If the
access is a write operation, some of them have to move out of P;’s cache following the
invalidation due to the remote processor’s write operation. The diagram at bottom is the
modified data map used for the write accesses of P; with respect to Bp,. If the access is a
read, the modified data map is empty. The elements marked in the modified data map are
in P;’s cache at the completion of the write access. In this figure, because the elements are
exclusively accessed by their Home, they do not moving out to another cache during the
accesses of P; on Bp,. The case where the data are loaded into a processor’s cache and
moved out to another cache will be shown shortly in E\¢,. £, and E,,.,.

As shown in Figure 33, for £, P; accesses all of its local data in Bp;, but no remote
data. Once a data is accessed, it stays in P;’s cache. In other words, all data are accessed
only by their Home processors and stay in their caches.

Figure 34 shows the data accesses of type Eyy.. As in £, all data are accessed only
by one processor; either the Home or an adjacent processor. With respect to Bp;, P;
accesses b consecutive elements which are d elements away from the elements in Bp;. In
other words, all processors access the elements that are d elements away from the ele-
ments allocated to them. If the elements are accessed, they stay at the accessing proces-
sor’s cache until the completion of the accesses of P; with respect to Bp;, whether it is a
read or write operation.

Figure 35 shows data accesses of Eyy. . With respect (0 Bp;, Pjaccesses b + IB - o
consecutive elements which are d + o elements away from Bp;. All data are accessed

|B— o] times by various number of processors (see Section 4.3.2 and Figure 18).

93

iteration ()
iteration |
ireration 2
fteration 3
iteration 4
ileration 5

ireration ()
ireration |
iteration 2
Iireration 3
freration 4
freration 3

Pi-" Prl 'Pl "’H—l ‘rl-il
I I I [TTTTJTTTTT]
O O O
g O]

O
O

T

]
[

\

5 i 1 T

[TTIT

[TTT]

P

LITTTTI

[TT11]

[TITTII]IT

[1

O

N 0 I

[1

0 ‘

(b) edzb

~

Data Distribution Map

Accesses in the loop

a

Data Access Map

Modified Data Map

Data Distribution Map

Data Access Map

Modilied Data Map

[Allocated to £;

@ Loaded to £}'s cache after Read

[0 Accessed by P; B Loaded 10 P;'s cache after Write
Figure 34. Data accesses of £y .

04

e[ITTTI

feration () EILT
iteration | [T

iteration 2]

iteration 3
iteration 4

iteration 5

|) T

Dfy-ex
0 dbo dip d+Db+
(a) d+o<band - <bh
‘“l 1 ‘“i IH-]
SO T O I T T T T T T]
) s = = A= = o e s o
iteration () = = E _i e g |
L 1T T 1T 11 e e
treration | e
| —— 11 T 1 e
iterarion 2 1 : ‘, : Gt
teration 3 == == E_i_ s
) O I 1
[ITTITTITITI 111
b
0 o A+ deiy
(by d+o<bhand f-wzh

O Alloeated w7
O Accessed by P,

1 Loaded to s cache after Read
B Loaded to P;'s cache after Write

N

TTTTOPTTIT TP TIT L] -+ DawaDistibution Map

Accesses in the loop

Data Access Map

Modified Data Map

Data Distribution Map

Accesses n the loop

Data Access Map

Maodified Data Map

Figur

o

¢ 35. Data accesses of Eyyear

<

| Py N P Py

SR i I L T Dara Distribution Map
iteration () i O T N T 2 5 7 Y
iteration | 1] [1 [
iteration 2 [T e LT T T " —
) ; AcCcesses in the loop
iteration 3 L] O 1711 I117 o
iferation 4 LIT 1) Telslebinks [0]
ireration 5 N R

[ITTTTTITITTITT Rttt | [| Data Access Map

] S i T

Madified Data Map

" -+ " | b |
Dfi—on
i bt }
0 d+ir d+p d+D4p

(¢) d+ozband P-a<h

Piy o P Pin
Y 1 1 T A I Data Distribution Map

iteration 0

iteration |

Accesses in the loop

iteration 2

feration 3

Data Access Map

LITTTTTTTITT

A O A Modified Data Map

D+f—te

i i b

0 it d+y d+DHd

(y d+ozband f-wzbh

O Allocated 10 P; B Loaded to £;'s cache alter Read
[0 Accessed by P; B Loaded to ;s cache after Write

Figure 35. (Cont’d) Data accesses of Eyye .

96

If a read operation is performed, the elements are copied into multiple processors’
caches and stay there till the end of P;’s execution with respect to Bp; according to the val-
ues of d, o and B. In contrast, if the access is a write operation, only one data copy per
array element is allowed. As shown in Figure 35, P; 1s approximately assumed to keep
only b consecutive array elements in its cache from the one that is ¢ + 3 elements away
from the leftmost element in Bp;.

The approximation such that P; keeps b consecutive elements in its cache is based
on the lock-step fashion execution. Since we are dealing with the magnitude order in big-
oh notation, this approximation will not yield any significant errors. To be precise, among
b consecutive elements, a few elements may be taken away from P;’s cache to another pro-
cessor’s cache. In the modeling procedure, the coefficients are computed in the curve fit-
ting stage using the simulation results. Thus, the difference between the approximation

and practical value will eventually be eliminated completely.

- D

Pia iy Pi . P Pia
OITT T T T OO00 I TTITIITITITITIT] Data Distribution Map
iteration () o ol
iteration | O [:I:]
sl
::::::::::i% U | 0 O Accesses in the loop
iteration 4 |
ieration 5 1] O
[TITET I TTII Data Access Map
[TTTE T Maditied Data Map
O Allocated to P, Loaded 1o P's cache aller Read
[Accessed by 7 Bl Loaded to Ps cache alter Write

N Y

Figure 36. Data accesses of £, .

The access pattern for E,,. is shown in Figure 36. With respect to Bp,, P; accesses

b elements which are scattered over the index range. Although some elements may be

97

accessed more than once by more than one processors, there is no differences in the mag-

nitude orders of n,,.. and n,,,. They are both proportional to Bp,. Interestingly, the number

rey
of elements accessed more than once is also proportional to the data set size, as well. That
is, the magnitude orders of the total number of elements accessed by at least one processor
and of the total number of elements residing in at least one cache are given by O(N).

If the access is a read operation, exactly b elements are accessed and they stay in
P;’s cache regardless of whether they are accessed by multiple processors or not. For the
write operation, consider the second element of Bp; in Figure 36. It is accessed by P; first
in iteration |, and by a remote processor, P, in iteration 5. (P; experiences a TSM at this
point.) The data copy that was residing in P;’s cache in iteration | is taken away in itera-
tion 5. This implies certain remote processors may have more than 6 elements in their
caches. However, on the average, a processor contains b elements in its cache.

Summarily, this situation is approximated as follows. P; accesses b elements with
respect to Bp;. O(N) elements are accessed, in all, and O(N) elements are accessed many
times by multiple processors. On a write operation, O(N) TSMs are observed.

In the case of E,,.,, with respect to Bp,;, P; accesses |B—of x b elements. In other
words, an element is accessed [p—a| times. If the access is a read operation, the
IB - ¢f x b elements are accessed and they will stay in P;’s cache. However, at the comple-
tion of a write operation, there must be only b elements remaining in P;’s cache, on the
average. This means that |p—o|x (b-1) elements have gone out of P;’s cache, or each
remote processors should observe [B—of x (b—1) = O(|B - | xb) TSMs.

Discussions made in this section are summarized below.

e If the access type is E,, Eyes or Eyey. the locations of array elements accessed

by P; can be described by , b, o and B.

Ph

If the access type is £, s or E,.,, the locations of array elements accessed by P;
can not be described by d, b, o and J.

For E,, Ey g or E,,.,, b clements are accessed and they are supposed to stay in
P;’s cache regardless of the operation type at the completion of the accesses of P;
with respect to Bp;.

In Eyyy and E,y,, if the access is read operation, b+ |B -] and |p -« xb ele-
ments stay in P;’s cache at the completion of the accesses of P; with respect to
Bp;, respectively.

In E,y, and E,, . il write operation, only b elements will eventually remain in
P;’s cache at the completion of the accesses of P; with respect to Bp,. That is to
say, [B-ol x(b—1) TSM are observed during the accesses of P; with respect to
Bp;, respectively.

Not only E\, and E, ., but also E,,.¢ yields TSMs whose amount is proportional
to O(b), during the accesses of P; with respect to Bp;.

If all elements in Bp; were modified by remote processors in previous APDS, the
first access to a certain element in Bp; yields a TSM. If the access is a read oper-
ation, subsequent accesses to that element of £,y g, £y and £, will not pro-
duce any more TSMs. If the access is a write operation, they will produce TSMs
due to the interleaved accesses by distinct processors.

In Table 13, a set of important metrics and events are summarized. They were all
measured during the execution of P; on the elements in Bp;. The first row in the
table also presents the elements that will reside in P;’s cache after the completion
of read operations.

To reflect the effects of data set size, the metrics presented in Table 13 are multi-
plied by the number of partition blocks which are N, N/b = O(N) and N/P in

cyclic, block-cyclic and block partitioning, respectively.

99

write op.

B-cyclic

Block

e

Events or Data Access Types
Metrics Partition E, Evics Evica Eijie By
Num. Cyclic I [1 +|B-al O(1) O(p-al)
accessed B-cyclic b b b+ |B=d Oh) O(bx|p-al)
elements (1) Block NIP NIP | N/7P+|B-o] |O(N/P)| OUN/P)x|B-al)
Distance of Cyclic
accessed elements | B-cyclic 0 d d + o unspecifiable
from B[’f Block
Num. Cyclic
accesses per B-cvelic I | B -0 o) OB -al)
elements (1,,.,) Block
Num. total Cyeclic
data B-cvelic Myoe X Mot _ o
accesses Block
Num. modified Cyclic I
elements in cache | B-cvelic b
after write op. Block N/P
Distance of modified| Cyclic
ch-zmems . (after B-cyclic 0 d d+p unspecifiable
write op.) from Bp;
Block
Num. TSM Cyclic
during a single 0 0 O e X By)

Table 13. Important metrics during the execution of P; with respect to Bp;.

* Finally, the effects of the number of processors are summarized in Table 14. All
entries in the rows of E,, and E,,,, are due to the non-deterministic sharing
behavior; the probability that a certain event takes place in remote data range is
proportional to O((P - 1)/P). The reason for all entries in the rows of £y, and
E -y for cyclic partitioning (b = 1 <d) is the periodicity of data distribution. In

addition, the entries in the rows of £, and E,,-,, for block-cyclic partitioning

with O((P-1)/P) are also due to the periodic data distribution. Finally, the

effects of the number of processors in block partitioning case are all O(P)

except for Ey- with d 2 b.

Access Partitioning Methods
Type Condjtions Cyclic Block-Cyclic Block
Ey = - = =
B - o((P-1)/P) | OUP-1)7P) | O((P-1)/P)
Epvn - O((P-1)/E) | O((P-1)7P) | O((P=-1)/P)
Evics d<b O((P-1)/P) - o(r)
d=zb : O((P-1)/P) =
Evicar d+o<h, f-a<h - O(FP)
dvo<h,f-uzh = 1)/ O((Fr=1/P) o)
d+azb,.p-a<b -O(,(ij-ﬁzl_j)#”) OUP-1)/P) or)
d+oazhb, p-azb O((f_:— DAPY | OUP-1)/P) O P)

Table 14. Effect of number of processors on the event in Table 13.

5.4.2 Number of References

In the previous section, we performed sharing analysis for measuring cache miss
rates. Based on the knowledge obtained, in this and the next subsections, we will introduce
the methodology to compute the magnitude orders of the number of references and of the
numbers of various cache misses.

The formal algorithm to measure the number of data references is shown in Figure
37. The APD is assumed to be in the form of Figure 32 where each statement is serially
numbered. There is a variable and an array to maintain the information regarding RC
loops; RC_Depth to denote the depth of current RC loop and RC_Size[MAX RC] to
denote the size of current RC loop. An additional data structure N_Ref_List[MAX_STMT|

is used to record the numbers of data accesses incurred by each APDS.

101

W o

(1N

@ N o w;m

1L
12,
13
14.
15 .
16.

17.
18.

19
20.
21.
22.

23.

DataSetSize = £(N);
RC_Depth = 0;
RC_Size[MAX RC_Loop] = 1;

N_Ref_List = empty;

for (each behavioral description statement)
if(RC_Loop BEGIN statement) {
RC_Depth++;
RC_Size[RC_Depth]=RC_Size[RC_Depth-1] *
current RC loop size;
}
else if (RC_Loop END statement) {
RC_Size[RC_Depth] = RC_Size[RC_Depth-1];
RC_Depth--;
)
else /* regular data access statement */({
num_references = find from Table 13 and multiply
with the number of partition blocks ;
if (implicit RC_Loop with size S)

num_references *= S3;

num_references *= RC_Size[RC_Depth];

add num_references into N_Ref List;

}

sum up magnitude orders in N_Ref List;

Figure 37. Algorithm to measure the number of data references.

Initialization is done in lines 1 through 4. The data set size (Datasetsize) of the

shared array is obtained from the static sharing information. batasetsize defines the /C

(or, FORALL) loop size of each APDS. At the very beginning, no RC loop is outstanding

102

so that the depth of the RC loop for the current statement (RC_Depth) is zero. For all pos-
sible RC loops, their sizes (RC_Size[MAX_RC]) are initially assumed to be one. This
implies that the body statements in the APD are executed only once. Finally. the list of the
numbers of data accesses to be observed by the APDS (N_Ref List[MAX_ STMT]) is
assumed to be empty.

Lines 5 through 23 form the main body of the algorithm. An example will help
understand the way the algorithm works. Assume an array with data set size f{N) and its
APD given in Figure 38. On §|, RC_Depth becomes | and RC_Size[l] becomes 1. On
S5, RC_Depth is 2 and RC_Size(2] is n, xn,. These are shown by lines 7, 8, 9 in Figure
37. stmt; is executed on f(N) array elements and the number of data accesses is
ny X,y % f(N), which is the result of lines 16, 19 in Figure 37. In line 16, the sharing anal-
ysis results obtained in Section 5.4.1 and Table 13 are used. On S, RC_Depth becomes |
and RC_Size[2] is reset to 1. The number of accesses due to stmi, is the product of fiN)
and RC_Size[l]; n, x f(N). S in Figure 38 implies that there is an RC loop within the IC
loop (see array A in Figure 31 (b)). In this case, the number of data references is
n; xnyx f(N) which is the result of lines 16, 18, 19 in Figure 37. Having no RC loop
around, stmty yields f{N) references. The number of references computed for each state-
ment is stored into the N_Ref_List. After all statements are processed, the last step is to

sum up the magnitude orders stored in the N_Ref_List.

5.4.3 Number of PCM

In Table 13, the number of data elements accessed by P; during its execution with
respect to Bp; for all possible cases is given. The total number of data elements accessed
by any processor should be at least O(N). But, since an element brings in exactly one cold
miss for a processor, the upper bound of the number of cold misses is O(N). Hence, the

number of cold misses is always proportional to O(N). As a result, the goal in measuring

103

/ S, RC-loop (n; times) BEGIN \
S;. RC-loop (1, times) BEGIN
S3. stmt,
Ss- RC-loop END
8. stmt,
Sg - stmtz, n5 times
Sq. RC-loop END
Sg. stmty

S /

Figure 38. Example for the measurement of data references.

the number of cold misses is to find out the number of processors observing a cold miss
from an array element. This is identical to measuring the sharing degree of array elements.

A pure cold miss (PCM) is observed when a processor accesses a cache block for
the first time which has not been modified by any other processors. So, the behavioral
sharing description statements appearing before the first write statement and the write
statement itself are the only sources of PCM. RC loops do not affect the number of PCM
since the PCMs are measured only once per element for a processor.

Table 15, which is based on Table 14, shows the effect of the number of processors
on the number of PCMs. The first row represents the case where there is only one APDS,
or there are two or more exactly same statements, before and during the first write state-
ment. If the index expression in the statement(s) is for a single array element (£, Eye.g, Or
E;), every array element is accessed by one processor. This results in the fact that the
number of PCMs is not affected by the number of processors. For the other cases, the
entries in the remaining rows are applied. For instance, if the index expression is for mul-
tiple array elements (Ey;cy, or Epyyy), an array element may be accessed by multiple pro-
cessors. If there are two or more different APDSs before the first write, an array element

should be accessed by multiple processors as well.

104

Access
Types

Conditions

Partitioning Methods

Cyclic

Block-Cyclic

Block

Single or same multiple behavioral statements
of type E;, Epysor Eyeg

before the first write

. Epys ; O((P=1)/P) | O(P=1)/P) | O(P-1)/P)
T;-ljl-plc Evva) O(P-1)/P) | OUP-1)/P) | OUP-1)/P)
belha‘:'lil:)]:':x] Evies 4< our-1/p) - or)
sharing dzb O(P=1)/P) | OUP-1)/P) .
descriptihon Evicm dea<h, p-v<b || OUP-1)/P) - or)
statements d+o<h.Bp-azb || O((P-1)/P) | OWP-1)/P) or)
d+ozh, f-o<h || O(P-1)/P) | OLP-1)/P) o(P)
d+ozb B-uzb || OWP-1)/P) | OUP-1)/P) aor)

Table 15. Effects of number of processors on the number of PCM.

The algorithm in Figure 39 shows that the number of PCMs is computed merely

by executing a table look-up (lines 10 and 15). What is necessary in static information 1s

the partitioning method (line 1). Instead of the N_Ref_List for the number of data refer-

ences used in Figure 37, N_PCM_List is used to store the magnitude order of the number

of processors affecting the number of PCM observed during each APDS.

The main body of the algorithm takes care of only the regular data accesses with

read operations before the first write statement (line 10) and the first write statement itself

(line 15). For each of those statements, table look-up is performed. As soon as the first

write statement is met (line 7). the loop is broken (line 8) and the control in the algorithm

jumps to the point (lines 15) where the magnitude order of the number of processors in the

first write statement is to be found.

105

1. /* Data Partitioning Method is known */
2. N_PCM_List = empty ;
3. for (each behavioral description statement) {
4, if (RC_Loop BEGIN OR RC_Loop END statements)
5. do nothing ;
6. else /* regular data access statement */ {
T if (write operation)
8. break for-loop and go to line 15 ;
9. else {
10. look up Table 15;
11. add the result into N_PCM_List;
12. }
13. }
14. 1
L5. look up Table 15 for PCM in the first write statement ;
16. add the result into N_PCM_List;
\\‘ L7 sum up magnitude orders in N_PC_List; 4/)

Figure 39. Algorithm to measure the number of PCM.

5.4.4 Number of TSMs

A true sharing miss (CTSM or PTSM) is a miss which is preceded by a write oper-
ation from another processor. At the completion of a write operation in a FORALL loop,
all array elements are in dirty or modified state. The processor that keeps the exclusive
dirty copy of a certain array element is determined from the access types and access
parameters. In addition, the elements a processor, P;, tries to access is also diversely
defined according to the access type. If P; tries to access an element which was loaded into

a remote cache after the write operation. it has to experience a TSM.

106

5.4.4.1 Sharing State after a Write Statement

The first requirement to measure the number of TSMs is to know the distribution
of modified data after the write statement. In Section 5.4.1, the complete sharing analysis
for cache misses and the distribution of modified data for various access types were intro-
duced. The modified data maps in Figures 33 through 36 show the modified array ele-
ments that the processor P; keeps in its cache after completing its write operations with
respect to Bp;. They were summarized in Table [3. In this section, we build another table
based on Table 13. Table 16 more specifically describes the index ranges of modified ele-

ments processor P; keeps in its cache after completing its write operations with respect to

B[Jf"
Data Access Types
Partition £y Eyies Evicn Eps Epyvu
Cyclic from 0 d d+p
o I d+1 d+ P+
- - unspecifiable
B-cyclic | from 0 d d+p
(scattered over
to b 1+ I+ [+ .
(g d+l+d index range)
Block from 0 d d+p
to N/P d+N/P |d+PB+N/P

Table 16. Locations of modified elements of P; after a write operation with respect to Bp;.
i Pi

The entries in the table denote the relative distance from the leftmost element in
Bp;. The elements designated by the from rows are inclusive while those designated by the
to rows are exclusive. For better understanding, see Figures 33 to 36. Note that the condi-
tions (such as h <d or d + w2 b) which were applied to each partitioning scheme in shar-
ing analysis are not taken into account in describing the locations of modified elements of

P; after a write operation with respect to Bp;.

107

5.4.4.2 Access Pattern of a Statement

The other requirement to measure the number of TSMs is to know the elements to
be accessed during the execution of the APDS. In Section 5.4.1, the complete sharing
analysis for data access patterns for various access types were introduced. The data access
maps in Figures 33 through 36 shows the array elements that the processor P; accesses
during its execution with respect to the elements in Bp;. They are summarized in Table 13.
In this section, we build another table based on Table 13. Table 17 more specifically
describes the index ranges of the elements accessed by processor P; during its execution

with respect to Bp;.

Data Access Types
B - - B -
Partition E; Eyies Evic.u Epys Eryvn
Cyclic from 0 d d +o
to | d+1 d+p+1
- - unspecifiable
B-cyelic | from 0 d d+o
(scatteree over
1o] d+h d+p+b 3
index range)
Block from 0 d d+o
1o N/P d+N/P |d+P+N/P

Table 17. Locations of array elements accessed by P; during its execution with respect 10 Bp;.

In Table 17, the entries in the table denote the relative distance from the leftmost
element in Bp;, and the elements designated by the from rows are inclusive while those
designated by the ro rows are exclusive. The conditions such as h<d and d +0.2b are
not taken into consideration in this table. The differences between Tables 16 and 17 are
the entries in the shaded table cells appearing in Eyey case. Obviously, the elements to
appear in [, cases of both tables must be distinct from each other, although they are spec-

ifiable. As in Table 16. the entries in the table denote the relative distance from the left-

108

most element in Bp;, and the elements designated by the from rows are inclusive while
those designated by the o rows are exclusive. The conditions such as b<d and d + = b

are not considered in this table.

5.4.4.3 TSMs on Read Statement

Using the information obtained from earlier sections, we can estimate the number
of TSMs. In this section, we consider read statements following a write statement. Assume
the recent write statement is of type E;, Eyjcs, or Eyey. Then, processor P; Keeps some
modified elements at deterministic locations in its cache. If the read statement that follows
the write statement is also of type E;, Eyye.g, or Eyey, the number of elements that proces-
sor P; cannot find in its cache are measurable using access parameters (d, o and). In Fig-
ure 40, at the top level are the modified elements residing in P;’s cache after the write
operation of P; with respect to Bp;. The second level shows the elements accessed by P;
during its read operation with respect to Bp;. Then, the shaded elements at the bottom level
denote the elements not found in P;’s cache during its read operation with respect to Bp;.
They are the TSM. The figure is an example where the write statement and read statements
are both of type Eyyc.s.

Given a write statement of type £, Eyjc.s, OF Eyyeoy, assume a read statement is of
type E;y.g or E;y.y. Whenever P; makes its access to an element designated by an index
expression of type Ejy.g or £y, the probability that the element is kept in a remote cache
is (P—1)/P, regardless of the access type of the recent write statement. This is true even
for the case where the write statement is of type E;y.g or ;.. The example in Figure 41
(a) shows the TSM observed on £ .¢ read statement after £y, write statement, both of
which are executed by P; with respect to Bp;. Another example is in Figure 41 (b) where

both read and write statements are of type £;,.¢ executed by P; with respect to Bp;. The

109

- R

'pl'-l Piy = ! | Pigy P

i+2

[(TTTTTITTTITTIITTTITT T T I TIT 7T DataDistribution Map

CLITTTTITITT] Modified Data Map

(ITTTTITTTTIITVIT PR T T T T T T T T T Dama Access Map
|]
ot
0 d i dab
(I I T T T T T T T T T TTTTTITTTTTT] Elements notin £,'s cache

(TSM)

K, W

Figure 40. TSM on E\ ¢ read statement after Ey;- ¢ write statement.

number of TSMs observed by P; during its read operation with respect o Bp; is estimated
as O(b) and O(b +|B + o) for E;y.g and E;y.y, respectively.

Finally. if the write statement is of type E;y.g or E;y.y, Pj keeps some modified ele-
ments at arbitrary locations in its cache. When P; makes its access to an array element dur-
ing its execution with respect to Bp;, the probability that the element is not in P;’s cache is
(P—-1)/P, regardless of the access type of the read statement. This is the probability that
P; experiences a TSM on its access to an element. The number of TSMs that P; experi-
ences is proportional to the number of accesses it makes during the execution with respect
to Bp;. An example is presented in Figure 42.

When a series of read statements are executed after a write statement, the esti-
mated number of TSMs are summed up. For example, assume an APD in Figure 43 (a).
Three consecutive read statements follow a write statement. Figure 43 (b) shows the shar-
ing patterns of processor P;. The elements in the figure at the top level are modified by

their Home (by E,) and stay in their Homes’ caches. The numbers of TSMs observed

110

f,l—l ‘“r— | ‘"a f‘i+l ‘”Hl
LTI T TTI T T ITTIITIIT I LTTITT]
\l}
[T TTTITT I T eS| T T 1T 1 111
]
iy
0 d, dytb

(T TS TTTECTI T TITITIT Bl

(T TTT T T T T T T I T T IITIT I T I]

(a) 17, read statement after ££y-¢ wrile statement

‘r,:-!

P

3
‘,r+l

»
Pisa

[T

[TITL

[TTTT

FTrrid

~—

COmCT s T T T U777 11 e

T O O I O O O

MTTTT I T e T T T ST T T T] W TTTT]

() Epyg read statement alter Ly g o By write statement

\

Data Distribution Map

Madified Data Map

Data Access Map

Elements not in P/'s cache

(TSM)

Data Distribution Map
Modified Data Map
Data Access Map

Elements not in /s cache

(TSN
/

Figure 41. TSM on Ejy.g or Ejyy read statement after a write statement.

o

P

Piy

P,

i

P

i+2

| I

I

11T

i il

[TTTT1]

h

O TTECCT Ty T TRy TTIT 1T IS

[TITTT]

|
N

T 1 5 O A

~

Data Distribution Map

Modificd Data Map

Data Aceess Map

Elements not in ;s cache
(TSM)

Figure 42. TSM on £y read statement after £,y or £y, write statement.

11

when §,, S5 and S, are individually executed immediately after §| are shown as well as the
number of TSMs when S|, S5, S5 and §4 are executed serially. We observe that the total
number of TSMs caused by serial read statements, whose magnitude order is expressed in
big-oh notation, is same as the sum of the magnitude orders of the number of TSMs

caused by individual read statements executed immediately after the write.

- A

8. Ep: Write

Sy Eygege 1,0, 0, Read
83 Eyeg 3. 0,0, Read
Sy Epg %, 0,4, Read

(a) Behavioral sharing description

'Pl-l r

[N NEE

2]
"i+|

ITIT1TTT11

L] 111

Access Sequence

block size = b

No. of TSM

per Block

SI : S: o)
8,55 0(3)
S| 3 .5‘4 @ @ ()”))

1 O(H)+0(3)+0(D)

81085848, H H
=0(bh)

[modified in local processor
O cache hits
B true sharing misses

(h) Sharing patterns and number of TSM

e

Figure 43. Number of TSM for consecutive reads after a write.

More interestingly, assume that a read statement, S,, that produces O(f(N)) and
0(g(P)) TSMs is executed twice. In practice, the first execution of S, results in O(f(N))
and O(g(P)) TSMs, while the second execution produces cache hits, only. Therefore, the
total number of TSMs produced by two read operations is O(f(N)) and O(g(P)). How-

ever, in our scheme, O(f(N)) and O(g(P)) TSM are recorded for both executions of the

read statements given in the program code. Having O(f(N))+ O(f(N)) = O(f(N)) and
O(g(P))+O0(g(P)) = O(g(P)), we get the same number of TSMs. As a result, the num-
ber of TSMs observed by consecutive read statements following a write is measured for
individual read statements and added together to obtain the total number of TSMs.

From the number of TSMs observed by P; during its read accesses with respect to
the elements in Bp; (Table 18), the total number of TSMs can be computed using the

effects of data set size and number of processors as discussed in Section 5.4.1.

£, Evic.s Evien Epys Epym
E; Estimation using Qb
Eicis access parameters O(h)
Evien (d,o,pB) O+ [p-al)
Epys O(b) O(h)
Epv O(bx|B~al) O(bx|B~al)

Table 18. Summary of TSM on read operation by P; with respect to Bp;.

5.4.4.4 TSM on Write Statement

In this section, we consider the case where the current statement in the APD that
follows a previous write statement is also a write statement. Let’s first assume the previous
write statement is of type E;, Eyycs or Eyyey 0 that a processor P; has b consecutive ele-
ments at deterministic locations, in its cache, after the completion of its write operation
with respect to Bp;. If the current write statement is of type £, or Eycg, the number of
TSMs that are observed by P; during its execution with respect to Bp; can be computed
using access parameters, d, o and . This procedure is identical to the case where the cur-
rent statement is a read operation. The only difference is the resulting sharing state of the

modified elements after the write operation.

If the previous write statement is of type E;, Ey,c.g or £y, and the current write
statement is of type Eycy, P consecutive elements at the distance of ¢ + o from the left-
most element in Bp; are accessed first by P;, and, later, by other processors. The other ele-
ments that P; will access are preceded by remote processors™ write operations (Figure 44).
Therefore, the TSM that P; observes during its execution with respect to Bp; are classified
into two kinds. The first kind of TSM occurs due to the previous write operation. The
TSMs observed on the b elements between the relative distances of + ¢ (inclusive) and
d + 0.+ b (exclusive) from the first element of Bp; belong to this category. The number of
TSMs in this case is estimated by using access parameters. Another kind of TSM is due to
the write operations from remote processors executed in the current write statement. In
this case, all accesses yield TSMs. The number of TSMs observed by P; during its execu-
tion with respect to Bp; is proportional to (| - ¢|). The total number of TSMs that P;
observes during its execution with respect to Bp; is the sum of the number of TSMs mea-

sured in two cases.

4 S)

i Pty

o CTHTTTTTITTTTTITITTITITTITTIT] <+« Data Distribution Map
ireration 0 o o v
iteration | I I 5 . 1 O
iteration 2 I O G . I I’*: I Aceesses in the loap
iteration 3 i) L 503
iteration 4 | I [J]
iteration 3 [l [TTT1]I | I i T

q—bl-q——-—-—b-'

d+a L ”3 —dl

elements
accessed by Pyfirse elements accessed

\ by nen=F; jirst J

Figure 44. Data accesses of Eyye .

Consider the previous write statement is of type £, £y¢.5 or Eyyeyp and the current

write statement is of type E;y.q or £y In this case, no matter how the modified elements

114

may be distributed among processors, each access of P; would produce a TSM with the
probability of O((P—-1)/P). The number of TSMs that P; experiences during its execu-
tion of write operation with respect to Bp; is proportional to O(b) or O(bx|p-al) for
E;y.g or Epyyy, respectively.

Finally, if the previous write statement is of type E;y.¢ or £y, every data access
of P; produces a TSMs with the probability of O((P—1)/P). regardless of the current
access type. This is because of the non-deterministic distribution of modified data ele-
ments as a result of the previous write statement.

From the number of TSMs observed by P; during its write accesses with respect to
the elements in Bp; (Table 19), the total number of TSMs can be computed using the

effects of the data set size and the number of processors as discussed in Section 5.4.1.

£y Evie.s Evie.n Epys Epvn
E; Estimation using access parameters O(h)
Evies (d,e.B) O(b)
Ly |Estimation using access parameters + O(|p - o) O(b+|B-0f)
Eypys O(h) o)
Epvm Ohx|B-af) O(hx|B-af)

Table 19. Summary of TSM on write operation by £; with respect to Bp;.

5.4.4.5 Algorithm for TSM Estimation

In Sections 5.4.4.3 and 5.4.4.4, the number of TSMs observed by P; during its
write accesses with respect to the elements in Bp; were completely explained and tabu-
lated. In addition, Section 5.4.1 showed the way to expand the number of TSMs to reflect
effects of data set size and number of processors. This knowledge is essential in measuring
the total number of TSMs. In this section, the formal algorithm for estimating the total

number of TSMs is introduced.

/* Given static sharing information =*/
/* Given behavioral sharing description where

the statements are serially numbered */

1. stmt_no = RC_Depth = RC_Idx = Crt_RC_Idx = 0 ;

2. RC_Info[MAX_RC_Loops] = empty ;

3 Global_ TSM_List_for_ DSS[MAX_RC_Idx] = empty ;

4. Global_ TSM_List_for NP[MAX_RC_Idx] = empty ;

5. while (! end_of_behavioral_ sharing_description) {

6. if (behavioral_stmt[stmt_no]->type == RC_BEGIN)

T RC_LOOP_BEGIN_Handler (stmt_no) ;

B. else if (behavioral_stmt([stmt_no]->type == RC_END)

9, RC_LOOP_END Handler {(stmt_no) ;

10. else /* regular statements */ {

i compute magnitude orders of data set size and
number of processors using access parameters or
in the way shown in Sections 5.4.4.3 and 5.4.4.4

12+ if (RC_Depth > 0)

13. add the results to crt RC_Info TSM lists ;

14. else

15. add the results to Global TSM Lists ;

16. if (behavioral_stmt[stmt_no]l-»op == WRITE)

17 change data modification state ;

18. }

19. stmt_no++ ;

20. }

20 . sum up magnitude orders in

Global_TSM_List_for_DSS and in
Global_TSM_List_for NP ;
22, return final results to users ;

Figure 45. Algorithm for TSM measurement (Main routine).

<
1

116

Figure 45 presents the main routine for measuring the number of TSM in terms of
data set size and number of processors. The static information and the APD are assumed
to be provided beforehand. The statements in the APD are supposed to be serially num-
bered as in Figure 32 (b). There are a few variables and data structures needed in the algo-
rithm. All of them are global in the program scope. The stmt_no is used to point to the
statements in the APD. The RC_Idx assigns a unique number to each RC loop found in
the APD. The RC_Depth denotes the depth of the current RC loop and the Crt_RC_Idx
is defined to store the RC_Idx of current RC loop. The initial values of all these variables
are zero (Line 1).

There are two /ist data structures (Global_ TSM_List) that store the estimated
number of TSMs in terms of data set size and number of processors. They are used to store
the number of TSMs measured from the statements that are not within an RC loop and the
total number of TSM measured inside an (nested) RC loop. Finally, the data structure
called RC_Info is used lo store the information of each RC loop including the stmt_no
in the APD and the size of the RC loop. The RC_Info also includes two lists to maintain
the amount of TSMs measured from the statements within the current RC loop. All these
data structures are initialized to be empty.

The main body of the algorithm starts from line 7. The loop is executed until the
end of the APD is detected. Every statement is checked if it is the beginning of an RC loop
(Line 6), the end of an RC loop (line 8) or a regular data access statement (line 10). For the
first two cases, proper handler subroutines are invoked (lines 9, 1) which will be
explained shortly.

The actual estimation of the number of TSMs for each APDS is done in line 11.
The methodology is completely described in Sections 5.4.4.3 and 5.4.4.4. If the current
statement is within an RC loop, the estimation results are stored into the corresponding

lists of RC_Info[Crt_RC_Idx] (line 13). If the current statement is not surrounded by

117

i void RC_LOOP_BEGIN Handler (stmt_no)

2., {

3, RC_Info[RC_Idx]->stmt_no = stmt_no ;

4. RC_Info[RC_Idx]->size = RC loop size;

B RC_Info[RC_Idx]->TSM List_for_DSS = empty ;
6. RC_Info[RC_Idx]->TSM_List_for NP = empty ;
T if (RC_Depth > 0)

8. RC_Info[RC_Idx]->parent = Crt_RC_TIdx

9. else

10. RC_Info[RC_Idx]->»parent = None ;

11z Crt_RC_Idx = RC_Idx ;

12. RC_Idx++ ;

13. RC_Depth++ ;

\\‘ 14. } 4//

Figure 46. Algorithm for TSM measurement (RC_LOOP_BEGIN_HANDLER).

any RC loop, the results are added to the list of Global_TSM_Lists (line 15). After TSM
estimation, the current statement is checked if it is a write operation to update the modified
data distribution among processors (lines 16, 17).

Finally, the entries in GLlobal_TSM_Lists are the number of TSMs expressed in
terms of the data set size and number of processors. They are all summed up to yield the
total number of TSMs.

Figure 46 is the subroutine performing the operations needed when a new RC loop
is started. The variable RC_Tdzx, which is monotonously increasing, points to a new space
of data structure RC_Info. The information regarding the new RC loop are stored into
RC_Info[RC_Idx]. Atthe beginning of RC loop, the lists of TSM for data set size and for

number of processors are both empty (lines 3 to 6). All TSM estimation results from the

18

statements within this RC loop are stored into the lists as specified in lines 12 and 13 of
Figure 45.

It is checked if there was any other RC loop surrounding the current RC loop
(nested RC loop). If so, Crt_RC_Idx which is the RC_Idx of previous RC loop is
recorded into the parent field of RC_Info[RC_Idx]|. The goal for this is as follows. Once
the estimation of TSM from the statements within a child RC loop is finished, the total
number of TSM within the child RC loop is stored into the TsSM_List_for_DSS and
TSM_Lict_for NP of the parent RC loop. This will be shown in detail when we intro-
duce the RC_LOOP_END_HANDLER subroutine.

After the initialization, the Crt_RC_Idx pointing to the current entry of the RC
loop data structure (RC_Info) is updated. Similar cases are applied to the variables
RC_Idx and RC_Depth whose values are used for the next RC loop to be opened within
the current RC loop.

The last part of the algorithm for TSM estimation is the RC_LOOP_END_HANDLER
in Figure 47 which is executed when the current RC loop is terminated. First of all, the
entries in TSM_List for_ DSS and TSM_List_ for NP of the current RC loop are
added together. The results are the number of TSMs measured during one iteration of the
current RC loop. To see how these results should be dealt with, let’s assume that there is at
least one write statement within the RC loop.

In the first iteration, the number of TSMs observed from the read statements ahead
of the first write in the current RC loop are measured based on the modified data distribu-
tion due to the most recent write statement executed before entering current RC loop. At
the end of the first iteration, we must have different modified data distribution due to the
last write statement within the RC loop. Then, in the second iteration of the RC loop, the
occurrences of TSMs during the executions of the read statements ahead of the first write

must be different from what we had in the first iteration. Since the modified data distribu-

119

tion at the end of every RC loop iteration is the same, the numbers of TSM estimated in
the second and later iterations are the same. In consequence, if the size of an RC loop is s,
the total estimated number of TSMs is given by

TSM yypy = TSM jjy g+ (TSM i g X (5= 1))

where 7SM ;. is the number of TSMs in the first iteration and TSM ., 1s the
number of TSMs measured in the second iteration of the RC loop.

If there is no write statement in an RC loop, the total TSM measured in the RC
loop of size s becomes

TSMyyu = TSM g X8 .

In the algorithm, lines 2 to 17 compute the number of TSMs when there is at least
one write statement in the RC loop. Note that the effects of the number of processors on
TSM are not multiplied by the RC loop size. This is because while the RC loop size may
be dependent on data set size, it is not dependent on the number of processors. The lines
16 and 17 in Figure 47 should be replaced with the following if there is no read statement
in the RC loop.

16. Total Order of DSS =Tmp T Order_of DSS[0]*
RC_Info[Crt_RC_TIdx]->size;
17. Total Order_of NP =Tmp_ T Order_of NP[O0];

Once the total amount of TSMs for a whole RC loop is computed. the results must
be saved. If the RC loop has its parent RC loop, the results are added to the
TSM_List_for_DSS and TSM_Lict_for_ NP of the parent RC loop (lines 23 to 27)
since the current RC loop is regarded as one statement by its parent RC loop. If no parent
RC loop is found, the results are added into the Global TSM_List_for_DSS and
Global TSM List_ for NP (lines 25 to 30).

Finally. proper bookkeeping operations including the decrement of RC_Depth and

adjustment of Crt_RC_Idx are done.

120

e e R AT ® 1 I S UN [O I o

I N = = =
o U s W N R O
. g

i ff 49

18.
20.
21.
22 .
23.
24.
25 .
26.
27 ;
28.
29.
30.
31 .
32.
33.}

void RC_LOOP_END Handler (stmt_no) { ﬂ\\

sum up the entries in
RC_Info[Crt_RC_Idx]->Order_of_DSS_List and in
RC_Info(Crt_RC_Idx]->Order_of_ PN_List ;
and save them into
Tmp_T_ Order_of_DSS[0] and
Tmp_T_ Order_of_NP[0] ;
clear RC_Info[Crt_RC_Idx]->Order_of_DSS _List and
RC_Info[Crt_RC_Idx]->Order_of_ PN_List ;
run current RC loop one more iteration
from tmp_stmt_no = RC_Infol[RC_Idx]-»stmt_no
to tmp_stmt_no = stmt_no - 1 ;
ditto lines 2 through 9 using
Tmp_T_Order_of DSS[1l] and
Tmp_T_Order_of NP[1] ;
Total Order of DSS = Tmp T Order_of DSS[0] +
(Tmp_ T Order of DSS[1l] * RC_Info[Crt RC_Idx]->size);
Total Order of NP = Tmp T Order of NP[O0] +
Tmp_ T Order of NP[1] ;
if (RC_Depth » 1) {
add Total_Order_of_DSS into
RC_Info[RC_Info[Crt_RC_Idx]->parent]->TSM_List_for_DSS
add Total_ Order_of NP into
RC_Info[RC_Info[Crt_RC_Idx]-»parent]->TSM List_for NP
}
else {
add Total Order_of_DSS into
Global_TSM_List_for DSS and
add Total Order_of NP into
Global_TSM_List_for_NP
}
RC_Depth-- ;
Crt_RC_Idx = RC_Info[RC_Info[Crt_RC_Ind]->parent] ;

Figure 47. Algorithm for TSM measurement (RC_LOOP_END_HANDLER).

Chapter 6

PREDICTION RESULTS BASED ON
DATA-SHARING ANALYSIS

This section provides all simulation and prediction results. Simulations are per-
formed in two aspects; one for variable data set size and the other for variable number of
processors. At first, when we vary the data set sizes, the number of processors is fixed at 8.
The small and large data sets are identical to those given in Table 3. Second, as the number
of processors is changing, the data set sizes in applications take distinct values. They are

summarized in Table 20.

o Prediction
= || Sample Number Fixed Data "
 Benchmark || of Process:éﬁ, : Set Size NP-1 NP2
W - 256
MP3D oK
WATER 256
OCEAN 2,4,8,16 — 4 -
FFT -7
BARNES 1024
RADIX 128K keys

Table 20. Number of processors used to find fitting functions.

At the beginning of each subsection, brief algorithmic descriptions for the pro-
grams and representative shared variables are introduced with their static and behavioral
sharing information for the shared variables in every application are also provided. An
additional table follows after the sharing information that includes the effects of data size
and number of processors on the number of data references and the number of various
types of cache misses.

Besides, a set of graphs for simulation results obtained from the small data sets are
provided in each benchmark. Even though we are modeling and predicting the number of
misses categorized into PCM, TSM and FSM only, the graphs were drawn for each type of
cache misses (PCM, CTSM, CFSM, PTSM, and PFSM) to help understand detail behav-
ioral charactersitics in the application. In the graphs, the x-axis and y-axis stand for the
data set size and the number of the events, respectively.

Finally, two tables per application will show the prediction results for large data
sets and large number of processors. In tables, the empirical models for individual shared
variables are found. At the bottom of tables, models for overall performance metrics are
given which are obtained by summing up the models for all shared variables.

At the end of this section, the empirical models and prediction results for large data
sets and large number of processors of all applications are collected together. The last
table will compare the prediction results for data set size obtained in Section 3 and those

obtained in this section.

6.1 LU

Shared variables: LU application performs the LU-decomposition of a dense
matrix. The problem size N is the number of rows of the matrix as well as the number of
iterations. There are two large matrices, A and L, of size N-by-N and one vector, this-

Pivot, of size N are modifiable. A and L are stored column-wise in shared memory

space. Columns i of A and L are statically allocated to the Home, processor i mod P, where
P is the number of processors. Each column of A is accessed by its Home only, whereas a
column i of L and an element i of thisPivot are first modified once by the Home and

then read by all the Homes of columns with indices greater than i.

(/r Size of an element: 8 bytes ‘\\
)

Dimension:

Size in dimension 1: N

Size in dimension 2: N
Partition in dimension 1: Eyeclie
Partition in dimension 2: None

(a) Static sharing information

1. RC-loop (N times) BEGIN
{ E,: and E;: }, Write;
3. RC-loop END

\ (b) Behavioral sharing description /

Figure 48. Static and behavioral sharing description for array A in LU.

2]

Size of an element: 8 bytes
Dimension: 2

Size in dimension 1: N

Size in dimension 2: N
Partition in dimension 1: Cyclie
Partition in dimension 2: None

(a) Static sharing information

=

{ By and E;: }, Write;
RC-loop (N times) BEGIN

3. { Eyios: and E;: }, Write;
4. RC-loop END

8]

k (b) Behavioral sharing description /

Figure 49. Static and behavioral sharing description for array L in LU.

124

/ Size of an element: 4 bytes \

4
Dimension: 1
Size in dimension 1: N
Partition in dimension 1: Cyclic

() Static sharing information

1. E,:, Write;

2. RC-loop (N times) BEGIN
3. Eyre-gts Write;

4. RC-loop END

\ (b) Behavioral sharing description /

Figure 50. Static and behavioral sharing description for array thispivot in LU.

Array Metrics Scaling Elfects
Data Set Processor

A References O(N) -
PCM O(N”) -
L Relerences O(N") -
PCM O(N*) -

TSM O(N*) o)
This References o N) =
PCM O(N) -

TSM / FSM O(N) or)

Table 21. Effects of data set size and number of processors.

Simulation results: Overall miss rate in LU is dominated by cold misses of arrays
Aand L (Figure 51 (b), (¢)). Only a few sharing misses are observed in thisPivot (Fig-
ure 51 (d), (e)). The static and behavioral sharing information of arrays are given in Fig-
ures 49 to 50. They show that the first accesses to every array are made by the Home and

the operation type is a write. This implies that the home is the only processor experiencing

PCM since subsequent accesses of all remote processors are made to the elements modi-

fied by the Home. Therefore, the numbers of PCM of all arrays are not affected by the

number of processors (Table 21). Instead, those accesses bring in TSM on arrays A and

thisPivot. RC loops surrounding the array accesses result in 0(N") and O(N?) data

references for two-dimensional and one-dimensional arrays, respectively. Figures 49 to 50

and Table 21 show that overall PCM and TSM of arrays A and L increase at the speed of

O(Nz) whereas the number of references increases at the speed of O(N?). Therefore the

miss rate in LU will vanish quite rapidly as the data set size increases.

(//PQOOOOGO

6000000

REF

T

4000000

2000000

0

8000

6000 |

4000

- 2000

48x48 BOxBD 112x112 144x144 48x48 BOXBO
G4x64 96x96 128x128 6464 96x96
(e) (M
[EHA [JL [JthisPivot |

48%48 80x80 112x112 144x144 48x48 80x80 112x112 144x144
G4xB4 OB6x96 128x128 64x64 O6x96 128x128
(a) (b)
20000 1000
el CTSM . 25 PTSM
10000 |- i 500 |
oL L] .
48x48 80x80 112x112 144x144 48x48 B0xB0O 112x112 144x144
B4xB64 O6x96 12Bx128 64x64 0Bx96 128x128
(c) (d)
100 30000
5| PFSM 25000+ Total
I 20000} —
50 - § 15000 |- =i
10000 |- T
25} - =
/] 1 omf
oL L]

112x112 144x144

128x128

N

Figure 51. Simulation results in LU,

126

Prediction results: In LU, as shown in Tables 22 and 23, due to the regularity of
data communications among processors, the prediction errors of each type of misses are
extremely small. In particular, the predicted values for the total miss rates for large data

sets and 64 processors are perfect.

Prediction-1: 288 Prediction-2: 512
Empirical Model simulation | prediction | error% | simulation | prediction | error%
A Reference 1.332N3%4+6.358N%4-27.840N+691.126 32349490 32341280 0.025| 1B0532208| 180444752 0.048
PCM 0.250N0.036N+4.100 20739 20745 -0.030 (5538 65570| -0.050
Reference 0.667N%-0.032N%+2 275N-85.238 15925054 16925757 -0.004 BO4T78144 89485728(-0.008
L PCM 0.125N240.772N-2.472 10583 10s80| 0.026 33151 33136| 0.043
CTSM (0.875N245.272N-40.482 74049 74046 0,004 232032 232010| 0.009
Referance 1.000N=+2.000N-2.968 83517 83517 0.000 263165 263185 0.000
thisPivot PCM 0.125N+1.000 37 37 0.000 G5 85 0.000
TSM 0.875N+3.000 1783 1793 0.000 3193 3196| -0.093
FSM 0.562M-12.932 148 148 -0.652 276 274 0.500
Referance 1.960N+7 327N2-23 566N+803.06 4B358061| 48350554 0.018| 270273517| 270193645 0.030
PCM 0.375N240.86 1N+2.629 31859 31362 -0.010 98754 98771 0.000
Total TSM 0.875N%+11.543N-51.624 75842 75838 0.003 235225 235208 0.007
FSM 0.562N-12.932 148 148 0.000 276 274 0.725
Total Miss 1 050MZ4 12 067M-61.028 107349 107349| 0.000 334255 334253| 0,000
MissRate(%) 1,250N° + 12.967N - 61.928 0.2220 0.2220| 0.000 0.1237 0.1237| 0.000

1.‘599:\1:3 + 7.32?N2 23.5566N + B03.06

Table 22. Empirical models and prediction results for data set size (LU).

Prediction-1: 32 processors Prediction-2: 64 processors
Empirical Model simulation | prediction | error% | simulation | prediction | error%
A Reference 22764012 22764012 22764012 0.000 22764012 22784012 0.000
PCM 16384 16384 16384 0.000 16384 16384 0.000
Reference 11184638 11184638 11184638 0.000 11184638 11184638 0.000
L PCM 8256 8256 8236 0.000 8256 8256 0.000
TSM B057.018 * P - 6689.170 254511 251135 1.326 508959 508960| -0.000
Reference 66045 66045 66045 0.000 GE045 £6045| 0.000
thisPivot PCM 3z a2 az| oo00 az 32| 0.000
TSM 221,650 * P - 74,557 7325 7018 3.476 14111 14111 0.000
FSM 10.032° P - 3.019 318 318 0.000 639 63g| 0.000

Table 23. Empirical models and prediction results for number of processors (LU).

127

Relerence 34014695 34014605| 34014695 0000 34014695 34014695| 0.000

PCM 24672 24672 24672| 0.000 24672 24672| 0.000

Total TSM 8278.668 * P - 6763.727 261836 258153 1.408 523070 s23071| 0000
FSM 10,082 P - 3.019 418 ag| o000 639 §30| '0.000

Total Miss | B288.700 * P - 6766.746 286828 283143| 1.284 548281 548382 0.000

MissRate(%) @%%?:am 0.8432 0.8324| 1.280 1.6121 1.6121| 0.000

Table 23. Empirical models and prediction results for number of processors (LU).

6.2 MP3D

Shared Variables: MP3D repeatedly calculates the positions and velocities of par-
ticles during a preset number of time steps. The data set size, N, is the number of mole-
cules in the one dimensional array Particles. The size of each element of
Particles is 36 bytes. 16 molecules in Particles array form a clump and the
clumps are allocated to processors statically so that particle 7 is allocated to processor (i/
16) mod P, where P is the number of processors. Cells is a three dimensional array of 48
byte elements, each of which is a location of the space where the molecules are moved.
Unlike Particles, elements in Cells are shared by all processors. When a molecule
is moved, the Cells component is modified.

In each iteration, every Particles element is accessed and moved in cell space.
Each time a particle is moved, an element of Cells is updated to reflect the changes of
the three-dimensional coordinates of the particle. The shared memory locations accessed
by a processor are largely unpredictable. When a processor moves one particle in cell
space, a randomly generated number decides if the processor should simulate a collision.
These collisions are the only source of coherence misses for Particles. Moreover, the
memory location of an element of Cells is selected by the space coordinates ol the parti-
cle and is independent of the processor or the index of the particle. This unpredictable
behavior might cause serious prediction errors. However, robust estimation is rooted in

statistics and the basic algorithmic step does not change as the data set size increases.

128

Static and behavioral sharing description for MP3D shared arrays are in Figure 52
and 53. As shown there, the Particles elements are mainly accessed by the Home
while Cells elements are mostly accessed by remote processors. The /C loop (or,
FORALL loop) for Particles (line | in Figure 52) is regarded as an RC loop of size N
(line 3 in Figure 53). There is no processor effect on the number of PCM for Cel 1s since
the first access is a write operation. The accesses of type E;,.¢ result in the magnitude

order of O((P - 1)/P) as shown in Table 24.

//' Size of an element: 36 bytes ‘\\
Dimension: ol
Size in dimension 1: N

Partition in dimension 1: Block-Cyclic, Block=1l6

(a) Static sharing information

1. RC-loop (10 times) BEGIN
2 E;: Read;

3 E,: Read;

4. E,: Write;

5 E,: Read;

6 E;: Read;

T E v.¢t pn; Read;

8. E,: Read;

9 Eyy.g: pn, Read;

10. RC-loop END

\ (b) Behavioral sharing description /

Figure 52. Static and behavioral sharing description for array Particles in MP3D.

Simulation results: When particles collide, a processor may modify the coordi-
nates of a particle which is allocated to a different processor. However, due to the low col-
lision probability, the resulting number of true sharing misses of Particles is not
outstanding (Figure 54 (¢))). Accesses to 36-byte Particles elements result in false

sharing misses (Figure 54 (f)) because the cache block size is normally a power of two.

129

1=y
oo
g
W
o+
0]
0

//’ Size of an element:
Dimension:
Size in dimension

1
Size in dimension 2:

=3 N =W
(== (

Size in dimension 3:
Partition in dimension 1: Cyclic
Partition in dimension 2: Cyclic

Partition in dimension 3: None

(i) Static sharing information

1. RC-loop (10 times) BEGIN

B { E,: and E;: and E;: } Write;

1 RC-loop (N times) BEGIN

4. { Biy.g: and Ep, g: and E;y o: 1 Read;
5i { Bryp.s: and Epyg: and Bz)} Writeg
B { Eip.g: and Epyq: and Epys:)} Write;
Ta RC-loop END

8. RC-loop END

\ (b) Behavioral sharing description /

Figure 53. Static and behavioral sharing description for array Cells in MP3D.

Array Metrics Sealing Effects
Data Set Processor

Particles References O(N) -
PCM O(N) QP -1)/P)
TSM /FSM O(N) aor-1)/r)

Cells References O(N) -

PCM O(N) -
TSM / FSM O(N) 0P -1)/P)

Table 24. Effects of data set size and number of processors

Most of true and false sharing misses are observed in Cells (Figure 54 (e), (1)) while
negligible amount of cold misses (PCM, CTSM and CFSM) are experienced due to the
small size of array Cells. Thus, in Table 24, the orders of the numbers of PCM, CTSM

and CFSM of cells are omitted because Cells has the constant size of 94,080

130

50000000

40000000
30000000
20000000

10000000

0
2K 4K 8K 18K 32K B4K 128K

(a)

40000

CFSM
30000 -]

20000 4

10000 | i

2K 4K BK 16K 32K 64K 128K
(c)

2500000
2000000 - PTSM

1500000 -

1000000 1

500000 I:I
Q — [r:l

2K 4K 8K 16K 32K 84K 128K

(e)

3000000
2500000} Total 1
2000000 | 1
1500000 | 1
1000000 | I 1

500000 | l i

B]

2K 4K 8K 18K 32K 64K 128K

(9)

160000

120000

80000

40000

0

7500
6000
4500

300

1500

400000

300000

200000

100000

2K 4K BK 16K 32K 64K 128K

(b)

CTSM

2K 4K BK 18K 32K 84K 128K

(d)

PFSM

2K 4K BK 16K 32K 64K 128K

)

[cels

Wrarticles

Figure 54. Simulation results in MP3D.

131

bytes.The collisions in Ares cause true sharing misses (Figure 54 (e), (f)) and, unlike

Particles, every particle in reservoir space experience exact one collision.

Prediction-1: 256K Prediction-2: 512K

Empirical Model simulation | prediction | error% | simulation | prediction | error%

References 146.780 N + G86.656 384758860 38476804 -0.002 76861752 76954296 0.009

PCM 1.127 N +1.314 295420 295410 0.003 590648 590818| -0.028

Particles

TSM 0.170 N -1.703 44370 44365 0.011 89578 BB732 0.944

FSM 1.101 N +1608.389 292524 200424 1.064 543500 579251| -B.578

Relerences 195.085 N + 42710.3 51182884 51183032 -0.000 102322920 102323352 -0.000

Cel[TSM 16.821 N -1034.9 4411209 4408433 0.062 BB40015 8817801 0.250

FSM 1.319 N +2071.14 345947 347954 -0.580 6586345 693838 -1.091

Reference 341,865 N + 43396.956 89658764 89659836 -0.001 179284672 178277648 0.004

PCM 1.127 N +1.314 295420 295410 0.003 590648 590818| -0.028

Total TSM 16.991 N -1036.603 4455579 44527498 0.062 B929593 BY06633 0.257

FSM 2.420 N + 3679.529 838471 638378 0.015 1229845 1273088 -3.516

Total Miss 20.538 N + 2644.240 5389470 53865806 0.054 10750086 10770540| -0.180

MissRate(%) 20.538N + 2644.240 6.0111 6.0078 0.055 5.9961 6.0077| -0.193

341.865N + 43396.958
Table 25. Empirical models and prediction results for data set size (MP3D).
Prediction-1: 32 processors Prediction-2: 64 processors
Empirical Model simulation | prediction | error% | simulation | prediction | error®
References 4808082 4808082 4808082 0.000 4808082 4808082 0.000
PCM 63,942 (P-1) / P + 36971.992 36907 36910 -0.008 36909 36909 0.000
Particles _
TSM 7030.883 (P-1) / P - 544.440 54972 6266 -4.935 5394 6376 0.272
FSM 26709.281 (P-1) /P + 17392.337 43267 43268 0.000 43577 43684 0.665
References 6434519 65434519 6434519 0.000 5434519 6434519 0.000
Cell TSM 750231.812 (P-1) / P - 114912.906 654388 650624 0.575 695470 662971 4.672
FSM 18123.068 (P-1) / P + 34385,582 43762 51942| -18.692 686345 693838 -1.091
Reference 11242601 11242601 11242601 0.000 11242601 11242601 0.000
PCM -63.942 (P-1)/ P + 36971.992 36907 36910 -0.008 36909 36909 0.000
Total TSM 797262688 (P-1)/ P --115457.344 6860360 656890 0.525 701864 669347 4.633
FSM 26711.701 (P-1)/ P + 51777.922 87029 95208 -8.398 730322 737522| -0.986
Total Miss 823910.438 (P-1)/ P + 797203.062 784296 769008 0.054 1468025 1443778 -0.190
MissRate(%) 823901.438 3 (P 1)/ P+ 797203.062 6.9761 7.0180 -0.601 13.0672 12.8420 1.723
11242601

Table 26. Empirical models and prediction results for number of processors (MP3D).

132

Prediction results: In MP3D, shared memory locations accessed by a processor
are decided randomly. This unpredictable behavior may cause serious variations in the
observations. Using the robust estimation method, even if’ some of the observations
include outliers, the effect of the outlier was eliminated. Nevertheless, the prediction
results in Tables 25 and 26 are highly accurate and the prediction errors of overall miss

rates are mostly near 1% for larger data sets and number of processors.

6.3 WATER

Shared variables: WATER performs an N-body molecular dynamics simulation
of the forces and potentials in a system of water molecules. The data set size parameter N
is the number of molecules in array VAR. The molecules are represented by 600 byte
objects in VAR, which is the only shared variable in WATER. /P molecules are allocated
statically to each processor. In each iteration every element of VAR is accessed to compute
the intra-molecular and inter-molecular interactions with N/2 elements ahead of it (Figure
55, lines 8,9 17).

The intra- and inter-interactions of atoms are simulated during a predetermined
number of time steps which is a constant. Thus the number of references is O(N?) and the
PCM count is O(N). In addition, for each element of VAR, a processor must accessed N/2
components, which were mostly modified by the Home of each element. Thus, the TSM
count is O(Nz). The number of cache misses is estimated as O(FP) due to the accesses to
the consecutive elements whose access distances from the center of computation are larger
than the partition block size (N/2>N/P).

Simulation results: There are only PCM, CTSM or PTSM and no FSM.

Prediction results: Due to regular program behaviors, the prediction is precise.

133

Size of an element: 600 bytes
Dimension: 1

Size in dimension 1: N
Partition in dimension 1: Block

() Static sharing information

1. RC-loop (10 times) BEGIN
2 E,: Read;

3 E;: Write;

4 E;: Read;

5 E;: Write;

6 E,: Read;

7 E.: Write;

8. Eyre-n: 0, 0, N/2, Read;
e Byre-y: 0, 0, N/2, Write;
10. E;: Read;

11. E,: Write;

£33 E,: Read;

14. E; : Write;

1.5. E;: Read;

16. E;: Write;

17. Eygey: 0, 0, N/2, Read;

18. RC-loop END

(b) Behavioral sharing description

Figure 53. Static and behavioral sharing description for array VAR in WATER.

Array Metrics Scaling Effects
Data Set Processor
VAR References O(N7) -
PCM O(N) or)
TSM / FSM O(N) o(P)

Table 27.

Effects of data set size and number of processors

134

10000000

8000000 |-

6000000 L

4000000 |

2000000 [

0

REF

_alll

100000

2K 4K 8K

16K 32K 64K 128K

{a)

80000

60000 (-

40000

20000 |-

0}

PTSM

2K 4K 8K 16K 32K 64K 128K

(©)

10000

8000 |- PCM

6000 rf

4000

et

|

2K 4K 8K 16K 32K BAK 128K
(b)
100000
aoooo | Total =
60000 |- _
40000 | gl
20000 | ﬂ B
L

2K 4K BK

(d)

16K 32K 64K 128K

Figure 56. Simulation results in WATER,

Prediction-1: 512K

Prediction-2: 1024K

Empirical Model simulation | prediction | error% | simulation | prediction | error%

Reference 540.016N%4+2038. AN+644 .47 71035088 | 71044592| -0.013| 282029536 282080832(-0.011

VAR/Total PCM 20.000N-0.001 7200 7199 0.000 14401 14399 0.006
TSM 4. 400NZ+131.164N-221.482 629556 628841 0.114 2424102 2421590 0.104

Total Miss 4.490N*+151,165N-221.482 636756 636040 0.112 2438503 2435989 0.103

MissRate(%) 0.8964 0.8953 0.122 0.8646 0.8636 0.115

2
4.490N° +151.164N - 221.48

5:!0.016N2 2938.3N + 644.47

Table 28. Empirical models and prediction results for data set size (WATER).

135

Prediction-1: 32 processors Prediction-2: 64 processors
Empirical Model simulation | prediction | error% | simulation | prediction | error%
Raference 36138850 36138850 36138850 0.000 36138850 36138850 0.000
PCM 5120 5120 5120 0.000 5120 5120 0.000
VAR/Total
TSM 4102.024 P + 295082 .662 427572 426357 0.154 557622 557622 0.000
Total Miss 4102.024 P + 300212,562 427572 431477 -0.913 562742 562742 0.000
MissRate(%) 4102.024 P + 300212.562 1.1831 1.1839(-0.913 1.5572 1.5572(0.000
36138850

Table 29. Empirical models and prediction results for number of processors (WATER).

6.4 OCEAN

Shared variables: The OCEAN program simulates the prediction of large-scale
ocean movements. The algorithm is composed of many predefined constant time steps. In
every time step several spatial partial differential equations are solved on sets of two-
dimensional fixed-sized grids. Each set corresponds to an horizontal cross-section of the
ocean basin. The solution method is a multi-grid Gauss-Seidel iteration with Successive
Over Relaxation (SOR).

There are 25 double precision two-dimensional arrays that store discretized func-
tions associated with the equations of the model. g multi and rhs_multi are multi-
level grids; their size 1s ()(sz. Thus the number of cold misses is ()(NZ). In each iteration,
two grids are accessed repetitively and the number of repetitions is independent of data set
size. Hence, the number of references is O(N?). Data sharing is observed only at the parti-
tion boundaries, and thus the PTSM count is O(N).

Except for the g_multi and rhs_multi, behavioral characteristics of arrays
are uniform and simple. Furthermore, since two or three of them form another data struc-
ture, those data structures are considered instead of each array. The g multi and

rhs_multi implement the multi-level grids and the working level of the grids moves up

136

and down according to whether the eddies and the mean flow reach to the balance or not.
As the level is changed, does the grid size, too, and smaller grid size presents more data-

sharing. The size of all shared variables are in Table 30. They are commonly O(N?).

Variables | fields | fields2 | wik? wik2 | wik3 | wekda [wik6 | wik6 | freng | guess

VAR 4NZ EINE aN? N2 an? AN 4N N2 e 2NF

Table 30. Numbers of data elements of shared arrays in OCEAN.

Array Metrics Scaling Effects
Data Set Processor

g_multi References o(N°) -
PCM O(N") 0P)
TSM /FSM O(N) o(JP)

rhs_multi References o(N’)

PCM O(N") O(JP)
TSM / FSM O(N) O(JP)

Other References O(N?) -
arrays PCM O(N?) OCIP")
TSM / FSM O(N) o(.[P)

Table 31. Effects of data set size and number of processors.

Simulation results: Among many arrays, g_multi presents the most PTSM
(Figure 60 (¢)). But the number of the combined misses of other arrays including huge
amount of PCM and PFSM (Figure 60 (b), () exceeds the number of misses of g_multi
(Figure 60 (g)).

Prediction results: OCEAN has been the most challenging program analytical
model in two aspects. First, because of the huge memory requirement we could only col-
lect sample for three small data sets. This is the minimum needed to estimate the three
unknown coefficients of a polynomial of order N?. Furthermore, the execution time of

OCEAN is strongly dependent on the values of the data since it runs until the changes in

137

Size of an element: 8 bytes
Dimension: 2
Size in dimension 1: N
Size in dimension 2: N
Partition in dimension 1: Block
Partition in dimension 2: Block
(a) Static sharing information
1. { E;: and Ej: } Read;
2. RC-loop (O(l) times) BEGIN
3. { Eyre-st 1 and Eyppe.g: 1} Read:
4. { E,: and E;: } Write;
5. { Byic-yr 0,0,3 and Eprepy: 0,0,3) Read;
6. { E,: and E;:)} Write;
T { E.: and E;: } Write;
8.RC-1loop END
9. { Eyseg: 1 and Byre.g: 1Y Read;
10.E,: Write;
11.RC-loop (O(1l) times) RBEGIN
12. { B,: and E;: } Read;
13, RC-loop (O(1) times) BEGIN
14. { E;: and E;:) Read;
L5. RC-loop (O(1) times) BEGIN
16. { Byze.st 1 and Eype_g: 1)} Read;
17 { E,;: and E;: } Write;
18. { Eysen: 0,0,3 and Eyze.p: 0.0,3}) Read;
19, { E,: and E;: } Write;
20. (E,: and E;: } Write;
21 RC-loop END
22 { BE,: and E;: } Write;
23 { E,: and E;:) Read;
24. { E,: and E;: } Write;
25 { E,: and E;: } Read;
26. RC-loop END
27 .RC-loop END
(h) Behavioral sharing description

/

Figure 57. Static and behavioral sharing description for array 0_multi in OCEAN.

138

Size of an element: 8 bvtes
Dimension: 2
Size in dimension 1: N
Size in dimension 2: N

Partition in dimension 1: Block
Partition in dimension 2: Block

{a) Static sharing information

{ E;: and E;: } Read;
{ E,: and E;: } Write;
{ Eyre-g: 2 and Eyrpg: 2) Read;
{ E;: and E;:)} Write;
RC-loop (O(1) times) BEGIN
{ E,: and E;: } Read;
RC-loop (O(l) times) BEGIN
{ E,: and E;: } Read;
RC-loop (©O(1l) times) BEGIN

| e = S = = N B W2 B S o6 I

0. { Eyzeest 1 and Eyye.gt 1) Read;
2 [{ E,: and E;: } Write;
12. { Eyreegty 1 and Eyrc.gt 1} Read;
1.3 . { E;: and E.: } Write;
14. RC-loop END
15 . { B,: and E;: } Write;
1l6. { E,: and E;: } Read;

15 . RC-loop END
18.RC-loop END

(h) Behavioral sharing description

/

Figure 58. Static and behavioral sharing description for other arrays in OCEAN.

139

.

=

|t ¥ = S = = Mo » WL » BT = O I 6 |

13.
14.
L5 .
16.
L7
18.
19.

Size of an element: 8 bytes
Dimension: 2
Size in dimension 1: N
Size in dimension 2: N

Partition in dimension 1: Block
Partition in dimension 2: Block

() Static sharing information

{ E;: and E;: } Write;
{ E,: and E;: } Read;
RC-loop (O(1l) times) BEGIN
{ E;: and E;: } Read;
RC-loop (O(1l) times) BEGIN
({ E,: and E;: } Read;
RC-loop (O(1l) times) BEGIN

{ Byre-g: 1 and Eyp-_g: 1)} Read;

{ E,: and E;: } Write;

{ Eyre: 0,0,3 and Eypopy:

{ E,: and E;: } Write;

{ E;: and E;: } Write;
-lo

RC op END

(E,: and E,: } Write;
(E,: and E;: } Read;
{ E.: and E;: } Write;
{ E,: and E;: } Read;

RC-loop END
RC-loop END

(h) Behavioral sharing deseription

0,0,3} Read;

Figure 59. Static and behavioral sharing description for array @_multiin OCEAN.

140

40000000

30000000

20000000

10000000

34 66 130

10000

gooo | CTSM {

6000

4000

2000

150000

120000
90000
60000

30000

0

500000

400000
300000
200000

100000

0

34 66 130

120000
PCM V7
80000 +
60000 |
30000 | E
0 e
34 66
(h)
5000
4000]. CFSM
3000} i
2000
1000
0
34 66 130
(h
150000
120000 PFSM
90000
80000
30000
[¢]
34 66 130
()
'/)f wrks @ wrké
Egg wrk3 [:] wrkd
] weks wik2
freng i:l guess
[] tietas B recse
- q_multi D rhs_multi

Figure 60, Simulation results in OCEAN.

computed values are smaller than a preset threshold. Table 32 include prediction results of
all kinds of metrics of all variables for large data sets with extreme accuracy. The overall
miss rate is almost perfectly predicted. Table 33 shows the prediction results for large
number of processors. in there, we combined all shared arrays, except for ¢ _multi and
rhs_multi, into a set of rows since their sharing behavior are quite similar to each
other. The prediction results in this table are also highly accurate. Consequently, the per-
formance model built on the basis of sharing pattern works accurately even when there are

critical difficulties as discussed earlier.

Prediction-1: 512K Prediction-2: 1024K
Empirical Model simulation | prediction | error®% | simulation | prediction | error%
q_multi Relerences 1601.66N2:66590N-2884388 122340548 120036976 1.154| 454333088 4s4551456| -0.048
PCM 0.332N°£0.547N+16.560 22259 22258 0.000 BBO19 BRBO18 0.000
TSM 743.669N+5466.656 202766 167331 2.680 375802 387709| -3.168
FSM 394.174N+2809, 42 107470 104506 2.758 200857 205415 -20371
l'hs_muiti Relerences 259 86N2+10586.8N-463576 19787814 19565040 10125 73597080 73631600| -0.048
PCM 0.332N240,109N+0.436 22130 22129 0.000 B7778 87777 0.000
TSM 23.236N+400.526 6400 6399 0.016 12234 12344 -0.899
FSM 42.B16N+351.367 11676 11388 2.381 22847 22359 2.138
fields References 444,00N2-960,24N+992.28 29307602 29307710| -0.000| 116810424 116810624| -0.000
PCM 1.000N240.001N+0.959 656565 66564 0.000 264197 264195 0.000
TSM B8.451N+53.098 22812 22873 -0.267 45658 45516 0.311
FSM 103.547N+19.069 26712 26735 -0.086 52064 53245| -0.53
fields2 Referances 12.001NE-2.427N4+17 222 798199 798226| -0.003 3169046 3169388| -0.010
PCM 0.500N+0.000N+0.000 33282 aszg2| o0.000 132008 132088| 0.000
FSM 11.924N+3.152 3095 3079 0.157 6213 6132 1.304
freng Refarences 26.000N-0.019N+2.780 1730666 1730669 | -0.000 369098 6869118 | -0.000
PCM 0.250N%40,000N-0.019 16841 16640 0.000 66049 86048 0.000
FSM 3.984N-4.468 1019 1022 -0.294 2052 2042 0.487
guess Relerences 48.000N%-86.061N+98.078 3170400 3170408 0.000 12632160 12632220 0.000
PCM 0.500N43.000N-5.989 34050 a4050| 0.000 133634 133633| 0.000
FSM 33.000N B514 8514 0.000 16862 16862 0.000

Table 32. Empirical models and prediction results for data set size (OCEAN).

142

wrki References 210,00M%464.06N+36.962 13994902| 13094072 o.000| s5514096| 5s513992| 0.000
PCM 0.750N+0.003N-0.022 49323 49922 0.000 198147 198145 0,000

TSM 3.500N+71.000 974 974 0.000 1868 1868 0.000

FSM 155.090N-85.05 39861 39927 -0.166 79128 79631| -0.636

wrk2 Relerences 348.00N2-1150.1N+1659.1 22868724 22868836) 0.000| 91350256 91asose0| 0.000
PCM 0.250N%+0.250N+0:471 16706 16705 0.000 56178 es177| o0.000

TSM 66185.5N472.75 5781 5780 0.000 11445 11444 0.000

FSM 35,824N-57.136 9180 9185 -0.054 18400 18356 0.239

wrk3 References 684.00N2-2304.0N+2310.6 44037848 44937852 0.0001 179528112 179528112 0,000
PCM 0.750N%40.003N-0.022 48923 asa22(0.000 1989147 198145| 0.000

TSM 63.000N+188.000 16452 16452 0.000 32580 32580 0.000

FSM 96.969N+77.062 25226 25094 0.523 50896 49918 1.922

wrkd References 216.00N%-479.05N+383.62 14254368 14254325 0.000 56820000 56819804 0.0c00
PCM CONE L0 OR0NE0I000 65564 66564 0,000 264196 264198 0.000

TSM 42.000N+65,992 10902 10801 0.008 21654 21653 0.005

FSM 690146N+24.000 17791 17862 -0.399 35952 35564 1.079

wrk5 Rafarences R30.099N2-2783 . BN+2655.8 55196176 55197784 0.000] 220496352 220494848| 0.000
PCM 1 000N40,000N40.000 66564 66564 0,000 264196 264196 0.000

TSM 83.999N+191.999 21864 21863 0.005 43368 43367 0.002

FSM 90,27 1N-60.587 24051 24189 -0.574 47289 47834 -0.772

wrk6 References 24.000N%+0.016N+427.26 1597964 1597962 0.000 6341132 5341118 0.000
PCM 0250NCA0.000M #1014 16642 w642 0.000 66050 68050| 0.000

TSM 0.000N+7030 7090 7090 0.000 7080 7090 0.000

FSM 23.645N-10.790 6172 6082 1.345 12315 12142 1.405

Total Reference 4713.52N%469573,5N-3339941 320996291 328360560 0.49G| 1277460884 | 1277713200 -0.020
PCM 6.914NZ3013N413.360 461249 ag1241| 0.002 1828669 1828678| 0.001

TSM 1069.981N+6616.99 282645 282664 -0.007 544708 556578| -2.1478

FSM 1062.879N+3086.639 280767 277299 1.235 545655 549399| -0.686

Total Miss 5.014N242136,77N+9717.01 1030084 1021204 0.860 2919052 2934655| -0.835

MissRate(%) 03121 0.3110 0.352 0.2285 0.2297(-0.525

G‘E]MN2 +2136.77N +8717.01

4713.52N° + 69573.5N - 3330941

Table 32. Empirical models and prediction results for data set size (OCEAN).

143

Prediction-1: 16 processors Prediction-2: 64 processors
Empirical Model simulation | prediction | error% | simulation | prediction | error%
q_multi References 30609328 30609328 30609328 0.000 30609328 30609328 0.000
PCM 0.000./P + 5680950 5717 5717 0.000 5753 5753 0,000
TSM 68471.312./P - 72730.601 196336 201181 -2.468 475067 475086 0.000
FSM 28492.214./F - 12682990 98030 101285 -3.321 216340 215254 0.501
rhs_mu[ﬁ References 4952992 4952992 4852992 0.000 4952992 4952832 0.000
PCM 5626 5626 5626 0.000 5626 5626 0.000
TSM 2234.143./P - 2652.001 6084 6284| -3.2967 152688 15221 0.437
FSM 2865.714./P + B7.098 11367 11550 <1617 23075 23013 0.265
All Relerences 47204070 47204070 47204070 0.000 47204070 47204070 0.000
g?;;; PCM . — 108556 108555 0.000 107578 107578| 0.000
TSM 28838.513./P - 29126.130 84883 BG227 -1.584 201582 201581 0,000
FSM 30071.044 /P + 21702.458 142532 141986 0.382 262089 262270| -0.069
Total Refarences 82766330 82766390 82766390 0.000 82766390 82766390 0.000
PCM 264.638./P + 116830.977 117893 117898 0.000 117898 118957 | -0.898
TSM 09543.960./P - 99204,734 287303 293692 -2.224 691937 691868 0.010
FSM GMEBH??JE‘ +9107.454 251929 254821 -1.148 501504 500537 0.193
Total Miss 161237.504.JP + 26742.605 657131 666411 -1.412 1311339 1311362 -0.002
MissRate(%) 161237,504..JP + 26742695 0.7940 0.8052 -1.411 1.5844 1.5844 0.000

827663380

Table 33. Empirical models and prediction results for number of processors (OCEAN).

6.5 FFT

Shared variables: FFT is a one-dimensional version of the radix-./v six-step FFT
algorithm. Two JN -by-./¥ data arrays of complex numbers are x which contains the data
points, and trans which contains the roots of unity. Two other data structures, umain and
umain2, are only accessed by their home processors. To reflect the fact that the arrays are
JN -by-./N, we choose n=.J/N to represent the data set size. FFT is not iterative and each
element of x and trans (size (-)(”2)-) is accessed O(1) times. So, the total number of ref-

. 2
erences and the cold miss count are Q(n~).

144

Data-sharing is observed when processors perform the transpose steps (three
times). Each time, arrays are partitioned so that contiguous rows are statically assigned to
P processors. A processor transposes its contiguous submatrices of ./ /P-by-./N/P from
every other processor and transposes one submatrix locally. The PTSM count is O(n?).
The number of misses and miss rate are predicted within very small errors.

The effect of the number of processors on TSM is O((P - 1)/P) (see Figures 61,
62 and Table 34). Note that the effects of the number of processors on PC are distinct for
two arrays. The reason is as follows. In 3, many processors make their first accesses to the
elements that have not been modified (line 2 of Figure 61). On the other hand, The Home
of trans array elements modifies their elements before remote processors access them
(line 2 in Figure 62). This results in no effect of the number of processors on the number

of PCM (Table 34).

//’ Size of an element: 8 bvtes i\\
Dimension: 2
Size in dimension 1: Jn
Size in dimension 2: JN
Partition in dimension 1: None

Partition in dimension 2: Block

() Statie sharing information

1. { E,: and E;: } Read;

2. { Eyp: and Epy:)} Read;
3. { By and E,: } Write;
4. { E;: and E;: } Write;
5. { Epy: and E;y: } Read;

\ (b) Behavioral sharing description /

Figure 61. Static and behavioral sharing description for array X in FFT.

Array Metrics Scaling Effects
Data Set Processor

X References O(Jn") -
PCM O(Jn’) O(P-1)/P)
TSM / FSM o’y | our-typ

trans References OJi) -

PCM OCn") -
TSM / FSM O(Jn’) OP-1)/P)

Table 34. Effects of data set size and number of processors.

Size of an element:

Dimension:

Size in dimension 1:
Size in dimension 2:
Partition in dimension 1:

Partition in dimension 2:

an u

SR R

() Static sharing information

B T
T}
L1

8]

E;: and E;:
E,: and E;:
E;: and E;:
and E;:
and E;,: } Read;

} Read;

} Write;
} Write;
} Write;

L and E;:)} Write;

(b) Behavioral sharing description

None
Block

v

Figure 62. Static and behavioral sharing description for array trans in FFT.

Simulation results: Two arrays yield TSM but no FSM (Figure 63). Interestingly,

CTSM are caused only by trans and PTSM by x. In FFT program [6, 82], because there

are only three places where data-sharing are observed when transposing two large JN -by-

JN matrices, the cold misses (PCM, CTSM) prevail the true sharing misses (PTSM).

146

1500000
1000000
500000

20000

10000

64 256 1K 4K 16K

10000

3000000 30000
2500000 PCM
2000000 20000 |

’ B4 256 1K 4K 16K B4 258 1K 4K 16K
(a) (b)
10000 10000
| CTsSM | 2000 PTSM
6000 |- 1 6000
4000} |- 4000
2000} 7 | 1 2000
L__=@il] =
64 256 1K 4K 16K 84 256 1K 4K 16K
() (d)
50000
- Total
30000 [CTrans

X

S/

Figure 63. Simulation results in FFT.

Prediction results: The six step FFT algorithm used in this study works on /-
by-/N matrices, instead of one-dimensional vectors. Thus, the numbers of references and
cache misses seem to depend on /N. Table 35 includes the prediction models and their
results in terms of » = J/N for large data sets and Table 36 is for large number ol proces-

sors. As expected, the prediction quality is extreme with less than 1% of prediction errors.

147

Prediction-1: n =»\/2_m Prediction-2: n = J?T\
Empirical Model simulation | prediction | error®% | simulation | prediction | errar%
X References 103.10n%-4058.9n+ 74832.6 5734400| s57aze24| -1.015| 25034752| 25024186 0.042
PCM 0.0373n% + 8.0050n-10.322 G3488 63492 -0.006 249852 249855| 0.000
TSM 0.4373n%7.09530-10.335 30464 aodes| -0.013 118272 118271 0.000
trans Relerences 111,10n%-4058.9n+74832.6 6258688 6316912 -0.930 27131804 27121318 0.039
PCM 0.5040n2 +0.9460n-1:6187 33272 33263| ©.006 132600 132600 0.000
TSM 0.4400n256.1946n412.0528 30468 30494 -0.087 118776 177t 0.004
Total Reference 21420028117 8+ 149665 11903088 12100538 0971 s21ee656| 52145484 0.041
PCM 1.441n%+9,041n-11.941 96760 96761 -0.001 382456 382455 0.000
TSM 0.8782n2+13.2899n+1.7178 60932 60962 -0.049 237048 237042 0.003
Total Miss 2.320n%+22.330n-10.223 157692 157723 -0.020 618504 6519470 0.0
MissRate(%) 2 1.3149 1.3025 0.943 1.1875 1.1880| -0.042
2.320n " +22.330n - 10.223
214 20112 - B117.8n + 149665

Table 35. Empirical models and prediction results for data set size (FFT).

Prediction-1: 32 processors Prediction-2: 64 processors
Empirical Model simulation | prediction | error% | simulation | pradiction | error®
3 References 5734400 5734400 5734400 0.000 5734400 5734400 0.000
PCM 54636.625 (P-1)/P + 19863.195 72704 72792 -0.121 73815 73646 0.229
TSM 54636.625 (P-1) /P - 13160.803 39680 39768 -0.222 40837 40622 0.528
trans Relerences 625868 625868 625868 0.000 625868 625868| 0.000
PCM 33278 33278 33278 0.000 33278 33z78 0.000
TSM 54372.164 (P-1) /P - 12896.730 39680 39776 -0.242 40882 40625 0.629
Total Reference 6360268 6360268 6360268 0.000 6360268 6360268 0.000
PCM 54636.625 (P-1) /P + 53141195 105882 106070 -0.083 107093 108924 0.158
TSM 109008.789 (P-1) / P - 26057.533 79360 79544 -0.232 81718 B1247 0.578
Total Miss 163645.406 (P-1) / P + 27083.662 185342 185614 -0.147 188812 188171 0.339
MissRate(%) 1636452406 (P-1) / P + 27083.662 29141 2.9183 -0.144 2.9686 2.9585 0.340
6360268

Table 36. Empirical models and prediction results for number of processors (FFT).

6.6 BARNES

Shared variables: This application simulates the interaction of a three dimen-
sional system of bodies for a number of time-steps using the Barnes-Hut hierarchical N-
body method [7]. A primary one-dimensional shared array bodytab of size N keeps the

particles’ information. It is partitioned and allocated (o the processors. In each iteration,

148

however, the particles are possibly allocated to another processor according to their posi-
tion in octree. This also yields data-sharing. Two more arrays form an octree: Itab with
O(N) elements is an array of bodies at the leaves of the tree and ctab with O(logN) ele-
ments is an array with the non terminal nodes of the tree.

The number of cold misses is O(N+logN). In each iteration, every element of
bodytab traverses the octree to visit O(logN) non-terminal cells (elements of ctab).
Then, an element of Itab is accessed. Thus, the number of references to ctab and
bodytab are respectively O(NlogN) and O(N). Total number of references can be
expressed as O(NlogN)+O(N)+0(logN)+0O(1) and the number of PTSM is estimated as
O(N)+O(logN)+0(1).

Static and behavioral sharing information of shared arrays are found in Figures 64
through 66. Note that the /C loop for bodytab is regarded as an RC loop to ctab. From
them, the effects of data set size and number of processors on performance metrics are
summarized in Table 37. The reason for O((P - 1)/P) is the random accesses to all array

elements during the execution.

Array Metrics Scaling Effects
Data Set Processor

bodytab References O(N) -
PCM O(N) 0P -1 /1)
TSM / FSM O(N) OP-1)/P)

ctab Relerences O(N) -
PCM O(N) OuP-1/pP)
TSM / FSM O(N) O((P-1)/P)

ltab References O(N) -
PCM O(N) OUP-1)/P)
TSM / FSM O(N) ar-=1/r)

Table 37. Effects of data set size and number of’ processors.

149

Size of an element: 112 bytes ‘\\
Dimension: 1
Size in dimension 1: N
Partition in dimension 1: Block

() Static sharing information

E;: Read;

RC-loop (O(1l) times) BEGIN
E;: Write;
B Read;
E;: Write;

RC-loop END

RC-loop (O(1l) times) BEGIN
E;y.¢: P, Read;

M~ O U R W

Ej st ¥, Read;
| .RC-loop END
.E;+ Read;

)
H oo

12.E;: Write;

13.RC-loop (O(1l) times) BEGIN

14 Eiy.s: pl, Read;

15, RC-loop (O(1l) times) BEGIN
16 ; Eiy.s? p2, Write;

7 s E;y ¢t p3, Read;

18. Epygt pd, Write;

62 1 RC~loop END
20, RC-loop (O(1) times) BEGIN

2% . Ervest D5, Read;
22. E;y.ct pb6, Read;
23 . RC-loop END

24. By gt D7, Read;
25. Byt P8, Write;

26 .RC-loop END

(b) Behavioral sharing description

&

Figure 64. Static and behavioral sharing description for array bodytab in BARNES.

(/f Size of an element: 96 bytes \\

Dimension: i
Size in dimension 1: log (N)
Partition in dimension 1: Block
() Static sharing information
1. RC-loop (O(1l) times) BEGIN
2. RC-loop (N times) BEGIN
3 RC-loop (O(1) times) BEGIN
4. E;: Read;
5. E;: Write;
6. RC-loop END
T= E.: Write;
8. RC-loop (O(1l) times) BEGIN
&, E;y_s: 4ql, Read;
10. RC-loop END
12. Ev_g: g2, Read;
13. Ery.s: 93, Read;
14. Eiv.st 94, Read;
15% RC-loop END
16.RC-loop END

\\‘ (h) Behavioral sharing deseription

Figure 65. Static and behavioral sharing description for array ctab in BARNES.

Simulation results: Since there are only a few iterations and small amount of
data-sharing on ctab, 1taband bodytab, the cold misses (PCM and CTSM) in BAR-
NES are dominant over the invalidation misses (PTSM and PFSM). So are the true sharing
misses (CTSM and PTSM) over false sharing misses (CFSM and PESM). Especially,
ctab and ltab seldom present false sharing misses (Figure 67 (d), (D). While
body tab produces the most PCM due to the largest size, ctab contributes to PTSM, the
most. It is because, like Cells in MP3D which consists of a few elements and accessed
once by every particle, the number of elements of ctab is quite small and the octree is

traversed once per every particle.

151

//’ Size of an element: 120 bytes q\\

Dimension: xf
Size in dimension 1: N
Partition in dimension 1: Block

() Static sharing information

1. RC-loop (O(1l) times) BEGIN

RC-loop (O(1l) times) BEGIN
E;: Read;
E,: Write;

RC-loop END

E,: Write;

E;: Write;

E;: Read;

s E;y.5: rl, Read;

10. Ery-g: ¥2, Write;

y fu [Eiv-s: r3, Read;

12 .RC-loop END

k (b) Behavioral sharing description /

Figure 66. Static and behavioral sharing description for array Itabin BARNES.

L8]

Prediction results: Overall, in Tables 38 and 39, prediction quality in BARNES is
not collectively as good as that of other applications. It is because the sharing patterns are
quite irregular due to the dynamically changing nature of the particle distribution, unstruc-
tured long-distance communication and the fact that different phases of computations in
program prefer different data partitioning. By the way. the prediction quality of the overall
miss rate is better than that of individual predictions. The reason is that, for the programs
whose runtime behavior is decided in a somewhat random manner, the different possible
sequences of accesses of distinct processors to the same cache line result in a redistribu-

tion of the misses in different categories.

/

15000000
12000000
9000000
6000000
3000000
0

50000

30000
25000
20000
15000
10000

5000

100000

80000 -

60000
40000
20000

0

REF

2048

512 1024
1 792

1536
768 1

280
(a)

512 1024 1536
768 1280 1792

2048

(c)

512 1024
1280

1536 2048
768 1792
(e)

512 1024
768 1

1538
1

2048
2

280 79

(g)

20000
16000
12000

8000

4000

1000
800
600
400

200

5000

4000 |

3000
2000

1000

512 1024 1536
768 1280 178

(b)

| PCM I]
L !..

2048
2

512 1024
768 1280

- (d)

1536
1

2048

792

512 1024
768 1280

£

1536
179

(0

D ltab
Dctab

[l bodytab

2048

792

Figure 67. Simulation results in BARNES.

Prediction-1: 4K Prediction-2: 8K
Empirical Model simulation | prediction | error® | simulation | prediction | error%
References 364.774N+30855.0 1525892 1524970 o080 3018576 3019086| -0.083
PCM 364.774N-73.709 19251 19607| -1.852 39438 30280 0.377
bodytab TSM 365.064N+483.034 11025 10828 1787 21393 21173 1.028
FSM 1.375N+3498.981 5897 6050(-0.8e4 11670 11687| -0.146
Refarences 1937.16NIogN-4315971logN+11821738 25855402 | 26206320 -1.704| G2030080| 6188s8TE| 0.233
ctab PCM 0.3677NlogN+908, 10logN-2290.24 7378 7386 0,160 14690 14636 -0.046
TSM 2.163NIlogN+13386.05logN-24127 55599 56226| -1.128 102165 102026 0.136
FSM 0.076NIogN+838, 346logN-2089.8 2591 2514 2.969 4229 4252 | -0.552
Refarences 1180.61N+541097 6351969 s537ess1| 15381 as78B41| 10212825| -5514
Itab PCM 3.576N+4,963 14443 14649 | -1.426 29373 29203 0.271
TSM 10.525N+5067.44 46717 48177| -3.125 91429 91288| 0.154
FSM 0.071N+108.698 491 399| 1B.667 853 689 -5663
Refarence 1937.16Nlogh +1545.381N-431597 1l0gN+12393602 33733353| 33198151 1587| 7avesaer| 75117587 0523
PCM 0.368NlogN+8.380N+908,10logN-2358.9 41072 41622| -1.339 83501 83278 0.287
TSM 2.163NIogN+13,051N+13366.05logN-27123.2 112512 115231| -2.417 214987 214487 | 0.233
Total FSM 0.076NlogN+1.446N+838.346l0gN-17018.699 9072 A963| 1278 16552 16628 0459
Total Miss 2.607NIogN+22.877N+15112.5logN-31065 652663 655816| -1.938 315040 314393 0.205
MissRale(%) 2,607 NlogN + 22 877N + 15112.5logN - 31065 0.4822 0.4995| -3.581 0.4216 0.4185(0.725

1937.16MIogN + 1545.381N - 43159710gN + 12393692
Table 38. Empirical models and prediction results for data set size (BARNES).
Prediction-1: 32 processors Prediction-2: 64 processors

Empirical Model simulation | prediction | error% | simulation | prediction | error%

References 405830 405830 405830 0.000 405830 405830 0.000

PCM 2330.514 (P-1) / P + 2962.669 5256 5220| 0.678 5401 5256| 2670

bodytab ™5 10888.731 (P-1) / P - 5020,632 5749 sse7| 3847 5960 5607| 4.413

FSM 4974.394 (P-1)/ P - 2039.115 2858 2779| 2735 3014 2857| 5200

Referances 4687310 4687310 4687310 o.000| 4687310 4687310 0.000

ctab BCM -GB5.457 (P-1) / P + 2999.743 2244 2335| -4.086 2325 2324 0.000

TSM 134450781 (P-1) / P - 75300.804 55727 54867| 1.543 58162 56986(2022

FSM 6522676 (P-1) / P - 3533.383 2802 2785|0580 2953 2887 2235

References 1517418 1517418 1517418 0.000 1517418 1517418 0.000

Itab PCM .4B75,343 (P-1)/ P + BO71.845 3362 33d8| 0.386 3319 3272 1.401

TSM 75196.531 (P-1)/ P - 33864.765 34249 32081| 3699 36754 34156(7.069

FSM 101.390 (P-1) / P+ 134.744 177 232| -31.619 276 234| 15.081

Reference 6610558 6610558 6610558 o0.000] 6610558 6610558| 0.000

PCM -3230.286 (P-1) / P + 14034.057 10862 10903| -0.377 11045 10852] 1.747

TSM 220545.047 (P-1)/ P - 120276.203 95725 93375 | 2455 100876 g683a| 4.002

Total FSM 11698.460 (P-1)/ P - 5437754 5837 5796 0702 5243 5978 4.245

Total Miss 208913.219 (P-1)/ P - 111679.906 112424 110074| 2.0%0 118164 113669| 3.804

MissRate(%) 220813.219 (P-1) / P- 111679.906 1.7007 1.6651 2.093 1.7875 1.7195| 3.804

6610558

Table 39. Empirical models and prediction results for number of processors (BARNES).

6.7 RADIX

Shared variables: RADIX performs integer radix sort. In each iteration, an r-bit
digit field of the keys are sorted, r being the radix. Two principal array, key (0] and
key[1], are one dimensional. Most data accesses are made to key [0] and key[1].
Hence, the number of cold misses is O(N). The number of iterations depends on the largest
possible key values and on the radix, both of which are run-time parameters. Thus the
number of iterations is O(1). In each iteration, every O(N) element of one of the two arrays
key[0] or key [1] is accessed to compute a local histogram and partially sorted results

are stored into the other array. The numbers of references and of PTSM are both O(N).

/ Size of an element: 4 bytes \

Dimension: ¥
Size in dimension 1: N
Partition in dimension 1l: Block

(a) Static sharing information

1. RC-loop (O(1l) times) BEGIN
2. E, : Write;

3. E;: Read;

4. Eiv.g: a, Write;

5. RC-loop END

\ (b) Behavioral sharing description /

Figure 68. Static and behavioral sharing description for array key [0] in RADIX.

At the beginning stage of each iteration, the data to be sorted are stored in one of
two arrays and block-partitioned manner to the processors. Using the allocated data, pro-
cessors build local histograms which will be accumulated to form a global histogram.
Then, each processor uses the global histogram to permute its keys into another array for
the next iteration. Data-sharing is observed in subsequent iterations when the array which

keeps partially sorted data is partitioned and assigned, again.

=

= W N

Size of an element: 4 bytes
Dimension: 1

Size in dimension 1: N
Partition in dimension 1: Block

(a) Static sharing information

RC-loop (O(1l) times) BEGIN
E;v.s: b, Write;
E;: Read;

RC-loop END

(b) Behavioral sharing description

#

Figure 69. Static and behavioral sharing description for array keyv [1] in RADIX.

As shown in the static and behavioral information of both arrays in Figures 68 and

69, the first accesses to them are write operations. This results in no effects of the number

of processors on the number of PCM (Table 40). Due to the random selection of memory

locations when the processors are building the global histogram, the effects of the number

of processors on TSM is denoted by O((p—1)/(p)).

Array Metrics Scaling Effects
Data Set Processor
kev[0] References O(N) =
PCM O(N) -
TSM/FSM O(N) O(P-1)/P)
kev[1] References O(N) -
PCM O(N) -
TSM /FSM O(N) OUP=1)/P)

Table 40. Effects of data set size and number of processors.

Two more shared array of densities and ranks show invariant sharing pat-

terns. That is, as the data set size varies, the numbers of their cache misses remain the

156

same. As shown in Table 41, they do not contribute much to cache misses. So, when

consider the effects of the number of processors, they are not counted.

//”

500000

400000
300000
200000

100000

0
2K 4K BK 8K 10K 12K 14K

(a)

10000

8000
6000
4000

2000

2K 4K 6K 8K 10K 12K 14K
(c)

12000

2000

6000

3000

2K 4K 6K 8K 10K 12K 14K
(e)

25000

20000
15000
10000

5000

2K 4K BK 8K 10K 12K 14K
(g)

4000

3000

2000

1000

2K 4K 6K 8K 10K 12K 14K
(h)

150

120 1
90
60

30

2K 4K 6K 8K 10K 12K 14K
(d)

1000
gool. PFSM

600 |-]
400] [] H 4

200} -

2K 4K 6K 8K 10K 12K 14K
n

Bl ranks

[]densities
[]KEY[]
B <EY(0)

Figure 70. Effect of the data set size on the number of misses in RADIX.

we

Simulation results: In RADIX, true sharing misses are dominant (Figure 70 (c),
(e)) over only a few false sharing misses. This is because of all-to-all communication in
permutation step. That is, before each step, all array elements in one of key[0] or
key [1] were updated, and all read accesses to them by other processors result in either
CTSM or PTSM. Additionally, the constant number of negligible misses are presented by

densities and ranks.

Prediction-1: 512K Prediction-2: 1024K
Empirical Model simulation | prediction | error% | simulation | prediction | error%
KEY[[)] References 17.000N+0.004 8912896 8912895 0,000 17825792 17825790 0.000
PCM 0.125N+1.000 65537 65537 0.000 131073 131073 0.000
TSM 0.554N+1379.67 291118 292255 -0.391 583680 583132 0.094
FSM 0.003N+444.242 2235 1815 18.792 2074 3186 -7.128
KEY[1] Refarences 16.000N-0.034 8388608 B3B8E0Y 0.000 16777216 16777218 0.000
PCM 0.125N+3.013 65539 65538 0.000 131075 131074 0.000
TSM 0.626N+742.87 329710 329262 0.136 657556 657893| -0.051
FSM 0.002N+180.083 1691 1682 0.532 73 3177| -0.128
densities References 64B4B4B4 64646464 | G4646464 | 0000| GIG4BAGA | B4G4E4B4A| 0.000
PCM 45 45 45 0.000 45 45 0.000
TSM 336 336 336 0.000 336 336 0.000
ranks Relerences 4096 4096 4096 0.000 4096 4006 0.000
PCM 36 36 36 0.000 6 36 0.000
TSM 288 288 288 0.000 288 288 0.000
Total Reference 33,000N+10560.0 17301504 17301504 0.000 34603008 34603008 0.000
PCM 0.250N+85.013 131076 131075 0.001 282148 262147 0.000
TSM 1.1B1N+2746.3 620828 821517 0111 1241236 1240814 0.026
FSM 0.006N+634.326 3826 3497 10,927 G147 B363| -3.514
Total Miss 1.437N+3465.7 755830 756089 -0.082 1509531 1509425 0.007
MissRate(%) 1.437N +2913.7 4.3686 4.3701 -0.034 4.3624 4.3621 0.006

33.000N + 10560.0

Table 41. Empirical models and prediction results for data set size (RADIX).
Prediction results: Usually, according to the experience in predicting the number
of misses, the false sharing misses are not as easy or precise as true sharing misses to pre-
dict. The variable of key[0] in RADIX exhibits a huge prediction error in PESM. But

the absolute amount of error is too small to influence overall prediction quality. The shared

158

data structures of densities and ranks have performance parameters which are inde-
pendent of the data set size. On the whole we have extremely good prediction results for
RADIX, too.

The number of FSM is much more difficult to predict than the number of true shar-
ing misses. The number of false sharing misses to key's is poorly predicted. However, the

number of these misses is very small and does not affect overall prediction quality.

Prediclion-1: 32 processors Prediction-2: 64 processors
Empirical Model simulation | prediction | error% | simulation | prediction | error%
KEY[Q] Relerences 2228240 2228240 2228240 0.000 2228240 2228240 0.000
PCM 16385 16385 16385 0.000 16385 16385 0.000
TSM 139000.375 (P-1)/ P - 34083.289 101839 100563 1,252 110313 102735 6.870
FSM 18156.074 (P-1) / P - 11356.676 6903 6232 9.720 B124 6515 19.806
'KEY[']] References 2097137 2097137 2097137 0.000 2097137 2097137 0.000
PCM 16384 16384 16384 0.000 16384 16384 0.000
TSM 141441.875 (P-1)/ P - 34635.703 104818 102386 2.1333 112515 104598 7.038
FSM 2348.941 (P-1)/ P - 1419.567 949 855 $.803 967 B92 7.756
Total Reference 4325377 43256377 4325377 0.000 4325377 4325377 0.000
PCM 32769 32769 32768 0.000 32769 32769 0.000
TSM 280442250 (P-1) / P -68728.992 206457 202949 1.699 222828 207331 6.955
FSM 20505.016 (P-1)/ P -12776.243 7852 7087 9.743 9091 7407 | 18.524
Total Miss 300847.250 (P-1) / P - B1505.234 247078 242805 1.729 264688 247507 6491
MissRate(%) a00047.250 (P-1) / P- B1505.234 5.7123 5.6135 1.730 6.1194 5.7222| 6.491

4325377

Table 42. Empirical models and prediction results for number of processors (RADIX).

6.8 Summary

Table 43 summarizes the prediction results for data set size of all applications. In
addition, Table 44 is for the number of processors. Finally, Table 45 shows the prediction
errors when all variables are treated together as in Section 3 and when they are treated
individually as in this section. In most cases, we have achieved marked improvements in

prediction errors.

159

Benchmark Empirical Model for Miss Rate Prediction - 1 Prediction - 2
simulation | prediction | error% ||simulation | prediction | error%
3
Lu ‘-3250"’ 4 "'23-957” - 61,928 0.2220 | 0.2220 | 0.000 || 01237 | 01237 | 0.000
1.999N" +7.327N" - 23,5566N + 803.06
21.453N +4111.13
21a3a0 il 1308 1484 6.15 -0, 6.1332 6.1507 | -0.
MP3D o YT 6.149 1 0.035 7 | -0.285
4.400N7 + 161.164N - 221.48
WATER 48 Z ALk : 0.8964 0.8953 | 0.122 || 0.8646 0.8636 | 0.115
540.016N" - 2938.3N + 644.47
2 -
OCEAN SQIAN H213B7 Nit ST 0] 03121 | 03110 | 0352 || 02285 | 0.2297 |-0.525
4713.52N° + 68573.5N - 3339941
2
e 23200+ 22 3300 10223 13149 | 13025 | 0.943 || 1.4875 | 1.1880 | -0.042
2142007 - B117.8n + 149665
2,607 NlogN + 22.877N + 15112.5loaN - 31065
BARNES ||7937.16NIogN + 1545.381N — 4315971ogN + 12393602 || 04822 | 0.4905 | -3.581) 0.4216 | 04185 | 0.725
1.437N +2913.7
RADIX T T T LT 4.3686 43701 | -0.034 || 4.3624 43621 | 0.006

Table 43. Empirical models for cache miss rates and prediction results for data set size.

Benchmark Empirical Model for Miss Rate Prediction - 1 Prediction - 2
simulation | prediction | error% || simulation | prediction | error%
B2BB.700P - B76G6.746

LU 24014695 0.8432 0.8324 1.280 1.6121 1.6121 0.000
B03G01.438 % (P - 11/ P + 797203.062 6.9761 7.0180| -0.601 13.0672 12.8420 1.723

. 1242601
4102.024 P + 300212.562 1.1831 1.1939| -0.913 1.5572 1.5572 0.000

WATER 36138850
161237.594 /P + PET42.695 0.7940 0.8052| -1.411 1.5844 1.5844 0.000

OCEAN 82766390
1636452406 [P-1)/ P + 27083.662 29141 2.9183(-0.144 2.9686 2.9585 0.340

FFT 6360268
2209813.218 [P-1)/ P- 111679.908 1.7007 1.6651 2.093 1.7875 1.7195(3.804

BARNES 6610958
300947.250 (P-1) [P- B1505.234 5.7123 5.6135 1.730 6.1194 5.7222 6.491

RADIX 4325877

Table 44. Empirical models for cache miss rates and prediction results for number of processors.

; FFT | = BARNES ADIX
Typical Variuble Size O(N) (HN) ((N) (N7 O(n") NY& O ogN) (N
Prediction All viriubles -0.080 -0:280 0113 -3.938 -3.023 0.071 2924
Lrror (%) Individual 0.000 -0.285 0015 -0.525 0,042 0.725 0.006

Table 45. Comparison of prediction errors for data

set szie.

160

Chapter 7

CONCLUSION

An empirical modeling technique for primary performance metrics such as the
numbers of references and of various types of cache misses was introduced in this thesis.
To overcome the huge resource requirements and excessively long execution time of soft-
ware simulations, many researchers proposed diverse analytical modeling techniques. Tra-
ditional analytical models are referred to as structural models which are abstracted from
the expected behavior of the workload and formalized with a set of statistically defined
parameters. It is in general difficult to estimate the effects of variables such as the data set
size or the number of processors. Thus a model is only valid for a particular application
with a given data set size and a given number of processors.

Owing to the wide availability of general-purpose hardware and existing mathe-
matical curve fitting technique, empirical models can be developed. In our empirical per-
formance model, a few samples of performance metrics are collected by simulating a few
small-size problems running on small systems. On the other side, the magnitude orders of
selected performance metrics are found from static workload analysis. Then, statistical
extrapolation techniques produce an analytical model which can be applied to estimate the
values of the performance metrics for realistically large data set size and number of pro-
CeSSOrS.

With the simulation environments and mathematical technique, the only remaining

problem is to obtain the magnitude orders of the performance metrics in big-oh notation

161

along which the sample points tend to be located. Since our target is the cache miss rate
model whose primary source is the data-sharing, the research was started with the data-
sharing analysis.

The data-sharing analysis can be carried on using the traces collected from the
actual execution of parallel programs, or on the parallel application codes. In general, the
traces are valid only for the hardware and software configurations from which they are
collected. For this reason, the level of accuracy in data-sharing analysis is higher when the
application codes are used.

However, in directly using the program codes for data-sharing, there is one mani-
fest obstacle. For example, consider a program segment given in Figure 71. Since the
index of Particles array in line 8 depends on the run time results of preceding compu-
tations, we cannot statically identify which memory location is accessed by a processor.
Therefore, it is practically impossible to define the sharing information from the source

code of general scientific SPMD model applications.

- \

1. Part = &Particles[pn];

2. U = Part->u;

3. v = Part->v;

4. Part->x += u;

5. Part->y += vj

6. Acell = &Cells|[CELL{Part-x] [CELL[Part->v];
7. space_val = ACell-»>space;

8. Collide(&Particles|[space_val], Part);

/

Figure 71. Shared array and index variables.

As an alternative, the development of a formal descriptor called an access pattern
descriptor (APD) was proposed. The program statements in an application will be substi-

tuted by appropriate data-sharing representation of APDS (APD statement). Then, algo-

162

rithmic procedures made direct use of the APDS to produce the models for the miss rates.
The validity of this methodology is supported by the fact that the researchers involved in
HPF and ALPSTONE projects take the similar direction as ours.

The data objects are normally represented by array data structures and the compu-
tations on them are performed within iterative loops. The information regarding the mem-
ory locations of the data objects can be found in the program. The index expressions of
array variable bear the information regarding possible data-sharing in the program. There-
fore, the data-sharing analysis started with the array index expression analysis.

Our research goal is to establish a method to translate the source code into the
APDS by means of index expression analysis. To this goal, we tried to characterize the
data-sharing patterns for various types of array index expressions that are found in general
scientific parallel applications. First of all, we investigated which types of factors are asso-
ciated with data-sharing. Once we understood the sharing factors and their ways of mak-
ing unique contributions on data-sharing, the components used in array index expressions
and the composite index expressions composed of the index expression components were
enumerated. At this moment, the effects of the data set size and the number of processors
on the amount of data-sharing were included. The models for the number of data refer-
ences and the number of cache misses were built based on the knowledge we obtained by
applying the algorithms to count the number of data references and the number of misses.

Generally, overall quality of the modeling technique is determined by comparing
the resulting models against experimental results. In addition, the prediction accuracy for
very large data sets and processor numbers is also important in judging the usefulness of
analytical models. Once the model is proved to be accurate, the whole technigue including
the definition of sharing factors, grouping their values into categories, capturing the values
of sharing factors from applications and formularizing the factors into a numeric expres-

sion is appraised to be accurate, as well. In this regard, the extreme accuracy of our empir-

163

ical models for miss rates based on sharing analysis evidences the high quality of
modeling technique introduced in this thesis.

Followings are the contributions of the empirical performance modeling technique
introduced in this thesis.

In structural modeling, the parameters are statistically evaluated from execution
histories or traces. The traces are usually so large that dealing with the traces is very time-
consuming. Additionally, since a structural model is valid only for the configurations in
which it is built, the parameters must be reevaluated whenever different data set size or
number of processors is considered. By contrast, in the empirical technique, performance
models are obtained very quickly by robust estimation method. Furthermore, having the
data set size and the number of processors as variables, an empirical model does not
require repetitive parameter computation for various problem and system sizes.

The usefulness of our empirical model is substantiated by its correct representation
and accurate prediction of expected performance for varying data set size and number of
processors. Therefore, researchers can quickly foresee the potential performance of the
target system running realistically heavy workloads without suffering from large resource
requirements and long simulation times.

Simple syntax of APDS and easy transformation of SPMD applications into APDS
allow easy representation of rich sharing characteristics. Fast interpretation procedure of
APDS codes reduces the estimation time for the performance model parameters. Finally,
we can locate the places in APDS descriptions where the performance bottlenecks are pos-
sible due to the huge amount of data-sharing. This is possible because the data access

information in the given SPMD applications are maintained in APDS.

164

Chapter 8

RELATED WORK

Scientific applications simulate physical phenomena by discretizing continuous
problems in both space and time into numerically approximate algorithms. In order to
simulate new aspects of physical phenomena or to improve the simulation accuracy, multi-
processor systems are used to run much larger problems than can be run on a uniprocessor.
The issues arising when scaling scientific problems are addressed in [69]. Besides the data
set size, other parameters, such as the time step or the total simulated time, which affect
simulation errors should be scaled as well, The effects of these time parameters on the
miss rates are easy to evaluate. Thus, the work in this proposal has been started with the
study of the effects of the data set size on the miss rates.

Cache misses play a key role in the performance of shared-memory systems. They
are customarily classified into cold, coherence and replacement misses [27]. Cold misses
are due to the first access to a memory block by a processor. Coherence misses are the
misses following invalidations in a system with infinite cache sizes. Replacement misses
are all the other misses caused by the finiteness of the cache size [82]. Thus the numbers
of cold and coherence misses are independent of the cache size and can be counted in a
system with infinite caches. The general effects of cache sizes on replacement misses have
been shown in [64]. Each application has a hierarchy of a few, well defined per-processor
working sets. For a given problem size, as the cache size is increased, the (replacement)

miss rate drops abruptly every time a new working set fits in the cache. The conclusion is

165

that most of the miss rate reduction is obtained for very small caches. The classification of
cold misses and coherence misses can be further refined [26, 29, 76]. Some coherence
misses are essential in the sense that they communicate a new word value (true sharing
misses) [26]. Other misses, often called false sharing misses, are useless misses.

Because the performance of shared-memory multiprocessors is known to depend
strongly on the way concurrent processes communicate by writing and reading the shared
data, the data-sharing characteristics of programs have been the subject of many previous
research papers. Data-sharing patterns result from the algorithmic movements of data
among the processors and they represent the necessary data communications among the
processors for the correct execution of an application. A good understanding of data-shar-
ing patterns helps in designing better memory hierarchies and cache coherence protocols.
Thus, several models were developed in the past to estimate the number of misses in a
shared-memory system based on the structural characteristics of applications with respect
to data-sharing.

In [23], Dubois and Briggs defined a synthetic program model with data-sharing.
Different access patterns are defined for S-blocks; the shared writable blocks, and P-
blocks, the other shared blocks plus the private blocks. The effects of cache coherency on
the misses and on the traffic between the caches are then evaluated analytically. A draw-
back of this model is that the locality of accesses to shared data was not modeled. In [24]
the model was extended to reflect the fact that shared writable data are typically accessed
in critical or semi-critical sections.

Eggers and Katz [27] characterized the sharing pattern by the write run obtained
from an interleaved reference trace. The average write run is an indicator of invalidation
misses and traffic in snooping protocols. It is a very parsimonious model, but the informa-
tion contained in the write run is not sufficient to characterize all possible coherence trans-

actions in complex protocols. Another drawback is that the write run relates to the

166

composite behavior of all shared data in a whole application. In practice an application
manipulates several data structures with distinct sharing patterns and, as the data set size
changes, it is possible that the coherence overhead will be dominated by different shared
data structures as shown in current research results.

Recognizing the need to characterize the behavior of each separate shared data
structure, Gupta and Weber [36] classified shared objects as read-only, migratory, mostly
read, or frequently read/written data. This classification is still vague and does not lead to
any quantification of the coherence overheads. Bennett ef al. [9] expanded this classifica-
tion of shared objects by defining additional classes of shared-data access patterns.

Tsai and Agarwal [77] constructed an analytical expression for cache miss rates by
first identifying the types of shared data blocks in the parallel program and by capturing
their individual caching behavior through a few parameters such as problem size, number
of processors and cache line size. The exact number of accesses to the shared data in the
program must be known in order to apply the model, which makes the analysis of complex
or irregular applications difficult.

In [72], a set of analytical models for predicting the performance of parallel appli-
cations were presented. The authors adopted the traditional shared data classification
where the access types are read or write and the number of processors are defined by sin-
gular or multiple. The parameters used in forming the analytical models were obtained by
investigating the traces of previous execution of an application even though the authors
claimed that compile-time analysis is possible. These parameters were used 10 €Xpress the
number of system events for each type of shared data and the correctness of their models
depend on the duration of interval during which the performance parameters were col-
lected. Their models are applicable only when the run time parameters are exactly the

same as the ones obtained when collecting traces.

167

Brorsson and Stenstrom [13, 14, 15] presented simple classification methods of
shared data blocks based on the accesses made to the blocks within a finite time slot. They
take the access mode and degree of sharing into account. These classification techniques
were finally used in a performance analysis tool called SM-prof [13] which, as a compli-
ment to other proposed tools [4, 33, 51, 52, 83]. visualizes the shared-data access pattern
in a diagram with links to the source code lines of parallel applications causing perfor-
mance degrading accesses.

As shown above, data-sharing behavior has been characterized in many different
ways. While classifications deal with the sharing behavior of data in the whole execution
or in finite time slots, they all combine the data access types and the number of processors
that make the accesses. In our context, the structural models built by some of the above
authors are problematic. First, they are hard to fit to a particular application. Second, the
model parameters depend on block size, data set size and number of processors; thus their
predictive value is limited. Third, they are not refined enough to model all classes of
misses.

In our research, the refinements of shared data classification were made by, first,
managing the individual shared data structures to reflect their unique sharing behaviors.
Second, to provide more specific and useful sharing information, the notations for the
number of processors are more finely defined to incorporate not only the number of pro-
cessors but also the logical relationships between accessed data and processors. Finally,
the data access patterns are created into APDS whenever distinct sharing behaviors are
observed in the execution time phases of an application. The descriptive power of APD is
such that, based on the sharing description, we can express the value of the diverse perfor-
mance metrics for each shared data structure in terms of a parametric polynomial func-
tions of the data set size. The accuracy of our method is verified by the extreme prediction

quality.

168

Because the ultimate goal in a performance study is the execution time, our goal of
research is the development of an automated prediction tool for the execution time. Funda-
mentally, many efforts have been made to achieve the performance prediction through
compile-time analysis [32, 38, 54, 59]. Even though the compile-time prediction tech-
nique may not fall in the scope of our methodology, relevant literature could offer helpful
hints in designing and developing the description language.

Driscoll and Daasch [22] focused on the execution time analysis of the traditional
Amdahl's Law [3] and Gustafson's Law [39]. Like other researchers [41, 66], authors in
[22] generalized Amdahl's Law and Gustafson's addition. The sequential and parallel por-
tions of applications are considered separately and thus the execution time model consists
of two empirical models built based on the experimental results and curve fitting methods.
In finding the best fit curves, they merely assumed the execution time to be increased or
decreased linearly, which may not be true in most applications as seen in our results in
previous sections.

A simple performance prediction toolset has been introduced [80] whose inputs
are the description of a parallel program execution in terms of a directed task graph, the
specification of the parallel system, and a correspondence between processors and each
task graph node is mapped. This model did not include the amount of computations so that
the execution time prediction model is too simple to consider all associated factors impact-
ing the execution time.

There is an on-going project, ALPSTONE [16, 45], which is composed of another
three sub-projects. The first one is for the development of an algorithm classification
scheme called BACS [18] which is actually the vocabulary and methodology for describ-
ing parallel algorithms. Another project is for developing the parallel programming lan-
guage suite called ALWAN [17] and BALI [46] which are the languages used for writing

algorithmic skeletons. The last one for developing the ALWAN compiler called TIANA.

169

In addition to ALPSTONE, more performance prediction systems called PPPE
[30] and PAMELA [31] are under development. The core of the work in all these projects
is the design and development of the programming languages. Since not much has been
published even though the systems have been developed for five or more years in large
research groups, we cannot make decisive comments, at this point. Many other literatures
suggested the issues to be considered in designing the sharing pattern descriptors [3, 8, 35,
57]. Anyway, continuous efforts will be made to understand the frameworks being carried
on in [30] and [31]. In the following, we briefly review the work in APLSTONE.

The researchers in each sub-project of ALPSTONE are currently working on their
own benchmarks whose execution time modeling and prediction is done in three steps. At
first, a parallel program is modeled by abstract notations defined in BACS including the
network topologies. Then, the execution time of each line written in BACS is estimated. If
the estimated execution time of the given benchmark is satisfactory, the programmers start
programming using ALWAN. Finally the compiled ALWAN program is run on the target
machine and the performance is measured to verify the accuracy of the predicted execu-
tion time.

The notations and the syntax of BACS is too specific for general users to use or
even to understand. Additionally, even though the architecture parameters are independent
of the application programs, their inclusion in BACS and ALWAN programs will increase
the complexity of the programs and will decrease the freedom of the programmers. Espe-
cially, the execution times of all possible combinations of network topologies, data place-
ments, data communications among processors and every kind of operations have to be
collected in advance by running on a set of existing physical machines such as SP2. These
times are then stored in the database. This type of database is defined for each of their own

benchmarks.

170

Therefore, besides the fact that the prediction results have not been posted since
the projects are still under development, the amount of the work in collecting the perfor-
mance data of every combination of BACS statements is prohibitively large. Furthermore,
the application area is limited and is not flexible since the database has been built for the
finite set of existing network topologies and physical systems.The syntactic and semantic
definitions of BACS will be troublesome for the general users to learn.

Compared to BACS or ALWAN, APDS is a lot easier to understand and to use
since the syntactic and semantic definitions are much simpler than that of not only BACS
and ALWAN but also the C language. Finally, instead of building a huge database that
maintains the execution time model of all possible combinations of every programming
object, we collected the simulation results by running problems with small data sets. This
requires much less time and efforts. Furthermore, many possible hardware configurations
of system under study can be tried for better prototyping of target systems.

Understanding the operational procedure in ALPSTONE project, one may first ask
why they use the formal description of underlying algorithm described in BALI instead of
directly using the source code written in high level languages such as the C or FORTRAN.
In fact, the source of scientific applications are too complicated to statically analyze. For
example, data partitioning portion of a parallel program includes some numeric computa-
tions using the variables whose values are known only at run time. Furthermore, the
sequence of program statements executing very complex computations are almost impos-
sible to be understood by compilers.

Many researchers formed a forum to design a syntax and associated language defi-
nitions for High Performance Fortran (HPF) [42]. Since they know that today’s compilers
cannot capture all useful information to improve the computational efficiency of a pro-
gram running on parallel machines, they decided to develop additive directives. The pri-

mary goals in HPF development are to support data parallel programming and to achieve

171

high performance on parallel computers. To these goals, the directives provide some fun-
damental factors affecting the performance of a parallel program such as the degree of
available parallelism, exploitation of data locality and choice of appropriate task granular-
ity. HPF supplies mechanisms for the programmer to guide the compiler with respect to

these factors. HPF directives appear as structured comments that suggest implementation

strategies or assert facts about a program to the compiler. When properly used, they affect
only the efficiency of the computation performed, but do not change the value computed
by the program.

In addition, HPF also features new library routines. The HPF library of computa-
tional functions defines a standard interface to routines that have proven valuable for high
performance computing. These additional functions include those for mapping inquiry, bit
manipulation, array reduction, array combining scatter, prefix and suffix, and array data
sorting.

The Stanford University Intermediate Format (SUIF) compiler system [40, 73] is
for researching compiler techniques for high performance architectures. One of the goals
of SUIF is to automatically translate sequential dense matrix computations into efficient
parallel code for parallel machines. Target parallel machines include distributed address
space machines as well as shared address space machines. The inputs to SUIF compiler
are sequential FORTRAN-77 or C programs. The source programs are first translated into
the SUIF compiler’s intermediate representation. After passing through the optimization
and parallelization, the resulting parallelized SUIF program is then converted to C and is
compiled by the native compiler on the target machine. The C program contain subroutine
calls to invoke a portable run time library which is linked in by the native compiler.

The key in optimization and parallelization in SUIF is the locality analysis. Given
a matrix computation application, the program must make effective use of the computer’s

memory hierarchy as well as its ability to perform computations in parallel. As a result,

172

reducing interprocessor communication by increasing the locality of data references is
important. In this regard, the SUIF restructures the array so that the major regions of data
accessed by a processor are contiguous in memory.

The SUIF makes the analysis by investigating the index expressions of array ele-
ments in locality analysis phase. The researchers participating in the SUIF project limit
themselves to the dense matrix computation applications in which the index expressions
are considerably simpler than other general scientific applications such as those in

SPLASH [67] and SPLASH-2 [82] benchmark suites.

Appendix A

PREDICTION RESULTS WITHOUT
DATA-SHARING ANALYSIS

In this appendix, brief descriptions of benchmark applications and their algorith-
mic behavior are provided. The tables include emprical models and prediction results for

all kinds of performance metrics of every shared data structure in each application.

A.l1 LU

LU Prediction-1; N = 288 Prediction-2: N =512
Total Empirical Mocel simulation | prediclion | error% | simulation | prediction | error%
Reference 1.994 N® + 8.764 N2 - 178.70 N + 3849.08 48358061 48321286 0.076| 270273517| 269893536(0.140
cM™ 1.250 N2 4 7.030 N - 36.233 105660 105662 0.005 331243 331225| 0.005
PTSM 5,396 N - 14.143 1532 1539 -0.457 2736 2748 -0.439
PFSM 0.562 N - 12.932 148 148 0.000 276 274 0.725
Essen. Miss 1.250 N+ 12.426 N - 50.376 107201 107201 0.000 333979 333973| 0.001
Total Miss 1.250 N2 4 12,988 N - 63,308 107349 107349 ©0.000 334255 334247 €002
MissRate(%) 1.2EDN2 T 0.2220 0.2220 0.000 0.1237 0.1238| -0.080

1.994 N3 +B.764 N2 178.70N + 3849.08

Table 46. Empirical models and prediction results for LU.

LU performs the LU-decomposition of a dense square matrix. The problem size,
N, is number of rows of the matrix as well as the number of iterations. The data structures
are two large matrices, A and L, of size N-by-N and one vector, thisPivot, of size N.

Thus, we expect O(N?) cold misses. In M iteration (i=0 to N-1), the rightmost N-i columns

174

of A (O(Nz)) are accessed once by the processors to which they are allocated, the i col-
umn of L (O(N)) N-i times (O(Nz_)), and the " element of thisPivot (O(1)) N-i times
(O(N)). Thus, the number of shared data accesses is ON). A and L only presents only
cold misses and O(V) sharing misses are on thisPivot.

As shown in Table 46, the prediction errors are extremely small for large problem
sizes. This is expected because the patterns of accesses to shared data and of data commu-

nications among processors are very regular and predictable in LU.

A.2 MP3D

MP3D repeatedly calculates the positions and velocities of particles during a pre-
set number of time steps. The data set size, N, is the number of molecules in the one
dimensional array Particles. The size of another array, Ares, is also proportional to
N and Cells is a three-dimensional array of size independent of N. Therefore, we esti-
mate the cold misses in MP3D as O(N).

The number of iterations is (O(1)). In each iteration, every one of the O(N) Par-
ticles is accessed and moved in cell space. Each time a particle is moved, an element of
Cells is updated to reflect the changes of the three-dimensional coordinates of the parti-
cle so that the elements of Cells are accessed O(N) times, in each iteration. Each ele-
ment of Ares is also moved once and experiences exactly one collision (O(N) accesses).
Thus, the number of references in MP3D is O(N) and the PTSM count is also O(N).

The shared memory locations accessed by a processor are largely unpredictable.
When a processor moves one particle in cell space, a randomly generated number decides
if the processor should simulate a collision. These collisions are the only source of coher-
ence misses for Particles. Moreover, the memory location of an element of Cells is
selected by the space coordinates of the particle and is independent of the processor or of

the index of the particle. This unpredictable behavior might cause serious prediction

errors. However, robust estimation is rooted in statistics and the basic algorithmic step
does not change as the data set size increases. The prediction results shown in Table 47 are
very accurate and the prediction error for each type of misses and for the miss rate is way

below | %.

MP3D Prediction-1: 256K molecules Prediction-2: 512K molecules
Total Empirical Model simulation | prediction | errorS | simulation prediction | error%
Reference 348,845 N + 41087.4 91485470 91488736 -0.003 182937948 182936384 0.000
CM 1.522 N - 23.046 398842 399127 -0.071 798626 798277 0.043
PTEM 17.321 N - 1507.18 4542127 4539559 0.056 9102790 9080176 0.248
PFSM 2.609 N + 5180.57 68481 689093 -0.622 1318448 1373006 -4.138
Essen. Miss 18.B43 N - 1530.2 4940969 4938686 0.046 99201416 0878453 0.231
Total Miss 21.452 N - 3650.3 5625800 5627779 -0.035 11219864 11251459 -0:281
MissRate(%) 21.452N - 3650.3 6.1494 6.1513 -0.030 6.1332 6.1504| -0.280

348.845N +41097.4

Table 47. Empirical models and prediction results for MP3D.

A.3 WATER

WATER Prediction-1: 360 molecules Prediction-2: 720 molecules
VAR/Total Empirical Model simulation | prediction | error% | simulation | prediction | errori
Reference 540.016N%- 20383 N + 6ad.47| 71035088| 71044592 -0.013| 282020536(282080B82| -0.011

CM 48.000'N - 28.015 17252 17252 0.000 34533 345321 '0.000
PTSM 4,490 N® + 103,164 N- 193.48 619504 6518789 0.115 2403970 2401458 0.104
Essen. Miss A4.450N2 4 161.184 N - 221.48 636756 636040 0.112 2438503 2435989 0.103
Total Miss 4490 N? + 151.164 N - 221.48 636756 636040 0.112 2438503 2435989 0.103
MissRate(%) 2 0.8964 0.8953 0.122 0.8646 0.8636| 0.115
4.480N " + 151.164N - 221.48
SJ!UVOIGN2 2938.8N + G44.47

Table 48. Empirical models and prediction results for WATER.

WATER performs an N-body molecular dynamics simulation of the forces and
potentials in a system of water molecules. The data set size parameter N is the number of
molecules in array VAR. In each of O(1) iterations every O(N) element of VAR is accessed

to compute the intra-molecular and inter-molecular interactions with N/2 elements (O(N))

176

ahead of it. Thus the number of references is O(Nl) and the CM count is O(N). In addition,
for each element of VAR, a processor must read N/2 components. which were mostly mod-
ified by other processors. Thus, the PTSM count is O(N?). From Table 48, we see that the

prediction is extremely accurate for WATER.

A4 OCEAN

This program performs the simulation to predict large-scale ocean movements.
The computation is composed of many time steps. In every time step several spatial partial
differential equations are solved on sets of two-dimensional fixed-sized grids, each set cor-
responding to an horizontal cross-section of the ocean basin. The solution method is a
multi-grid Gauss-Seidel iteration with Successive Over Relaxation (SOR). There are 25
two-dimensional arrays that store discretized functions associated with the equations of
the model. g_multi and rhs_multi are multi-level grids; their size is O(N?). Thus the
number of cold misses is (')(Nz). In each iteration, the two ()f_NE) grids are accessed repet-
itively and the number of repetitions is independent of the data set size. Hence, the number
of references is O(N?). Data sharing is observed only at the partition boundaries, and thus

the PTSM count is O(N).

OCAEN Prediction-1: 258 Prediction-2: 514

Total Empirical Model simulation | prediction | error% | simulation prediction | error%

Reference 4576.93 N2 - 53728.1 N - 1562387 | 329986291 316955936 3.951| 1277460884 | 1235256448 3.303

cM 6.911 N2+ 79,348 N 4+ 229,352 482821 ago7s?| 0,013 1BETA45 1867001 0.023
PTSM 1021.86 N + 6299.61 275316 265940 1.952 519512 531538| -2.315
PFSM 1036.85 N + 3052.20 273927 270479 1.258 532085 535860(-0.707

Essen. Miss 6.911 N2+ 1101.21 N + B528.96 756137 750697 0.719 2386957 2398539 -0.485
Total Miss 6,911 N2+ 2137.86 N + 9554.16 1030064 1021176 0882 2919052 2934398| -0.525
MissRate(%) 2 0.3121 0.3221 -3.204 0.2285 0.2375| -3.938

6.911N% 4 2157.86M + 9554.16
4595 93N° _ 53728.1N - 1562387

Table 49. Empirical models and prediction results for OCEAN.

177

OCEAN has been the most challenging program analytical model in two aspects.
First, because of the huge memory requirement we could only collect sample for three
small data sets. This is the minimum needed to estimate the three unknown coefficients of
a polynomial of order N?. Furthermore, the execution time of OCEAN is strongly depen-
dent on the values of the data since it runs until the changes in computed values are
smaller than a preset threshold. Nevertheless, Table 49 shows that the prediction errors are

well below 5% in all cases.

AS FFT

FFT is a one dimensional version of the radix-./v six-step FFT algorithm. The two
JN-by-J/N data arrays of complex numbers are x, which contains the data points, and
trans, which contains the roots of unity. Two other data structures, umain and umain2,
are only accessed by their home processors. To reflect the fact that the arrays are /N -by-
JN, we choose n=./N to characterize the data set size. FFT is not iterative and each ele-
ment of x and trans (size O(nz)) is accessed O(1) times. So, the total number of refer-

» 2 5 2 =
ences and the cold miss count are O(n~). The PTSM count is O(n~). As can be seen from

Table 50 the number of misses and the miss rate are predicted with an error below 5%.

FFT Prediction-1: 210 Prediction-2: 2'®
Total Empirical Model simulation | prediction | error% | simulation | prediction | error%
Reiference 197.952 n - 2614.8 0 + 241845 11993088 12327778 -2.790 52166656 50577338 3.046
cM 1878 02 + 15.903 n- 0.474 127228 127169 0.045 501232 500538| 0.138
PTSM 0.437 n? +7.005 n - 0,198 30464 30463 0.001 118272 118267 0.003
Essen. Miss 2315 n2 + 22.908 n - 0.672 157692 157632 0.038 619504 618805 0.112
Total Miss 5315 n2 4 22.908 1 - 0.672 157692 157832 o.038 619504 518805| 0.112
MissRate(%) 2 1.3149 1.2787 2.753 1.1875 1.2234| -3.023
2.315n +22.908n-0.672
197.952n2 2614.8n 4+ 241845

Table 50. Empirical models and prediction results for FFT.

178

A.6 BARNES

This application simulates the interaction of a three dimensional system of bodies
for a number of time-steps using the Barnes-Hut hierarchical N-body method [7]. A pri-
mary one dimensional shared array bodytab of size N keeps the particles’ information.
Two more arrays form an octree: 1tab with O(N) elements is an array of bodies at the
leaves of the tree and ctab with O(logN) elements is an array with the non terminal nodes
of the tree. Given the size of the three shared arrays, the number of cold misses is
O(N+logN). In each of the O(1) iterations, every O(N) particle element of bodytab par-
tially traverses the octree Lo visit O(logN) non-terminal cells (elements of ctab). Then, an
element of 1tab is accessed. Thus, the number of references to ctab and bodytab are
respectively O(NlogN) and O(N). The total number of shared data references is

O(NlogN)+O(N)+O(logN)+0O(1) and the number of PTSM is O(N)+O(logN)+O(1).

BARNES Prediction-1: 512K Prediction-2: 1024K
Total Empirical Model simulation | prediction | error®: | simulation | prediction | errar%
Relerance 1461.8 NlogN+3278.6 N-2741459 logN+6796908 33733353 33701928 0.093 74726397 74732568 | -0.008
CM 28.532 N - 108.061 logN + 4471.08 115856 120907 -4.360 239227 237740 0.062
PTSM 5.088 N + 10919.2 logN - 25920.3 39415 38597 2.073 62819 63078 -0.413
PFSM 1.323 N + 1154.58 log N - 2800.35 7382 7239 2.062 12994 13045 -0.400
Essen. Miss 33620 N + 10811.1 logN - 21449.3 155271 158504 -2.725 302046 301852 0.064
Total Miss 34.943 N + 11965.7 log N - 24249.6 162663 166743 -2.508 315040 314845 0.061
MissRate(%) 34.943N + 11965.7logN - 24249.6 0.4822 0.4947 -2.592 0.4216 0.4213 0.071

1491.8NiogN + 3278.6N - 27414591logN + 6786805

Table 51. Empirical models and prediction results for BARNES.

A.7 RADIX

RADIX performs integer radix sort. In each iteration, an r-bit digit field of the keys
are sorted, r being the radix. Most data accesses are made to two one-dimensional arrays
key[0] and key[1]. Hence, the number of cold misses is O(N). The number of itera-
tions depends on the largest possible key values and on the radix, both of which are run-
time parameters. Thus the number of iterations is (O(1)). In each iteration, every O(N) ele-

ment of one of the two arrays key [0] or key [1] is accessed to compute a local histo-

179

gram and partially sorted results are stored into the other array. Thus the numbers of

references and of PTSM are both O(N).

The number of false sharing misses is much more difficult to predict than the num-

ber of true sharing misses. The number of false sharing misses to key’s is poorly pre-

dicted. However, the number of these misses is very small and does not affect overall

prediction quality.

RADIX Prediction-1: 512K Prediction-2: 1024K
Total Empirical Model simulation | prediction | error% | simulation | prediction | error%
Refarence 34.009 N +219.030 17301504 17831184 -3.061 34603008 35662148| -3.060
cM 0.749 N + 1418.06 3983235 394264 -0.261 786957 787113| -0.018
PTSM 0.684 N + 1640.14 359634 360205 -0.158 718224 718769 -0.076
PFSM 0.004 N +519.106 2961 2435 17.752 4350 4351 -0.037
Essen. Miss 1.433 N + 3506.20 752869 754469 -0.212 1505181 1505882 | -0.046
Total Miss 1437 N 4 3575.31 755830 756904 -0.142 1509531 1510233 -0.046
MissRate{%) 34009N + 219.030 4.3686 4.2448 2.833 4,3624 4.2348 2.924

1.437N + 3575.31

Table 52. Empirical models and prediction results for RADIX.

180

Bibliography

[1] Agarwal, A. and Gupta, A., “Memory Reference Characteristics of Multiprocessor
Applications under MACH,” ACM SIGMETRICS, 1988.

[2] Aho, V. A., Hoperoft, I. E. and Ullman, I. D., “Data Structures and Algorithms,” Add-

ison-Wesley Publishing Company, 1983.

[3] Amdahl, G. M., "Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilitics," Proc. AFIPS Conf. 31, pp. 483-485, 1967.

[4] Anderson, T. E. and Lazowska, E. D., “Quartz: A Tool for Tuning Parallel Program
Performance,” Proc. of the 1990 Conf. on Measurement & Modeling of Computer Systems
(SIGMETRICS), pp. 115-125, May 1990.

[5] Bagrodia, R., Chandy, M. and Dhagat, M., “UC: A Set-Based Language for Data-Par-
allel Programming,” Journal of Parallel and Distributed Computing, 28, pp. 186-201,
1995.

[6] Bailey, D. H., “FFT’s in External or Hierarchical Memory.” Journal of Supercomput-
ing, 4(1): pp. 23-35, Mar. 1990.

[7] Barnes, J. E. and Hut, P., “A Hierarchical O(NlogN) Force Calculation Algorithm,”
Nature, Vol. 324, No. 4, p.p 446-449, Dec. 1986.

[8] Beguelin, A. and Nutt, G., “Visual Parallel Programming and Determinacy: A Lan-
guage Specification, an Analysis Technique, and a Programming Tool,” Journal of Paral-

lel Processing and Distributed Computing, 22, pp. 235-250, 1994.

[9] Bennett, J., Carter, J., and Zwaenepoel, W., “Adaptive Software Cache Management
for Distributed Shared Memory Architectures,” Proc. of 17th Int. Symp. on Comp. Arch,
May 1990.

[10] Blelloch, G. E., Leiserson, C. E., Maggs, B. M., Plaxton, C. G., Smith, S. J. and
Zagha, Macro, “A Comparison of Sorting Algorithms for the Connection Machine CM-2,”

Proc. of the Symp. on Parallel Algorithms and Architectures, pp. 3-16, Jul. 1991.

181

[11] Boyle, J., et al. “Portable Programs for Parallel Processors™. Holt, Rinchart, and
Winston Inc. 1987.

[12] Brorsson, M., Dahlgren, F., Nilsson, H., and Stenstrom, P., “The CacheMire Test
Bench--A Flexible and Effective Approach for Simulation of Multiprocessors.” Proc. of
26th Ann. IEEE International Simulation Symposium, pp. 41-49 Apr. 1993.

[13] Brorsson, M., “SM-prof: A Tool to Visualise and Find Cache Coherence Perfor-
mance Bottlenecks in Multiprocessor Programs,” Proc. of the ACM Sigmetrics Conference

on Measurement and Modeling of Computer Systems, pp.178-187, May 1995,

[14] Borosson, M. and Stenstrom, P., “Visualizing Sharing Behavior in Relation to
Shared Memory Management,” Proc. of the 1992 International Conf. on Parallel and Dis-
tributed Systems, pp. 528-5306, Dec. 1992,

[15] Borosson, M. and Stenstrom, P., “Visualization of Cache Coherence Bottlenecks in
Shared Memory Multiprocessor Applications,” IEEE Computer Society Technical Com-
mittee on Computer Architecture Newsletter, pp. 32-36, Fall 1993,

[16] Burkhart, H.. Frank, R. and Hachler, G., “Structured Parallel Programming: How

Informatics Can Help Overcome The Software Dilemma,” Scientific Programming, 1996.

[17] Burkhart, H, Frank, R., Hachler, G, Ohnacker, P. and Pretot, G., "ALWAN Program-
mer’s Manual.” Tech. Report 94-4, Institur fur Informatik, University of Basel, Switzer-
land, Nov. 1994.

[18] Burkhart, H., Korn, C. F, Gutzwiller, S., Ohnacker, P. and Waser, S., “BACS: Basel
Algorithm Classification Scheme, Version 1.1.” Tech. Report 93-3, Institut fur Informatik,
University of Basel, Switzerland, March 1993,

[19] Censier, L. M., and Feautrier, P, “A New Solution to Coherence Problems in Multi-
cache Systems,” IEEE Trans. on Computers, Vol. C-27, No. 12, pp. 1112-1118, Dec.
1978.

[20] Chandy, K. M., and Misra, J., “Asynchronous Distributed Simulation via a Sequence
of Parallel Computations,” Conmunication of ACM, 24:11, pp. 198-206, Apr. 1981.

182

[21] Cormen, T. H., Leiserson, C. E. and Rivest, R. L., “Introduction to Algorithms,”
McGrow-Hill Book Co., 1989

[22] Driscall, M. and Daasch, W. R., "Accurate Predictions of Parallel Program Execu-
tion Time," Journal of Parallel and Distributed Computing, 25, pp.16-30, 1995.

[23] Dubois, M. and Briggs, F. A., “Effects of Cache Coherency in Multiprocessors,”
Proc. of 9th Ann. Int. Symp. on Computer Architecture, pp.299-308, May 1982.

[24] Dubois, M. and Wang, J. C., “Shared Block Contention in a Cache Coherence Proto-
col,” IEEE Transactions on Computers, Vol. 40 No. 5, May [1991.

[25] Dubois, M., Skeppstedt, J., Ricciulli, L., Ramamurthy, K., and Stenstrom, P.,
“Detection and Elimination of Useless Misses in Multiprocessors,” Proc. of 20th Ann. Int.

Symp. on Computer Architecture, pp.88-97, May 1993.

[26] Dubois, M., Skeppstedt, J., and Stentrom, P., “Essential Misses and Data Traffic in
Coherence Protocols,” Journal of Parallel and Distributed Computing, October 1995.

[27] Eggers, S. J. and Katz, R. H., “A Characterization of Sharing in Parallel Programs
and Its Application to Coherency Protocol Evaluation,” Proc. of the 15th Annual Int. Sym-

posium on Computer Architecture,” pp. 257-270, May 1988.

[28] Eggers, S.J. and Katz, R. H., “The effect of the Sharing on the Cache and Bus Per-
formance of Parallel Programs,” Proc. of the 3rd Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems, pp. 257-270, 1989.

[29] Eggers, S. J., and Jeremiassen, T. E., “Eliminating False Sharing,” Proc. of the 1991
Int. Conf. on Par. Processing, pp. 1-377-1-381, Aug.1991.

[30] Fahringer, T., “Toward Symbolic Performance Prediction of Parallel Programs,”
Proc. of Int’l parallel Processing Symposium, pp. 474-478, Apr. 1996.

[31] Gemund, A. I. C., "Performance Modeling with PAMELA: An Introduction," Tech.
Report 1-68340-44(1992)01, Delft University of technology, Dec.1992.

[32] Gemund, A. J. C., "Compile-time Performance Prediction of Parallel Systems,"

Proc. Computer Performance Evaluation Modeling techniques and Tools, Sept.1995.

183

[33] Goldberg, S. J. and Hennessy, “Mtool: An Intergrated System for Performance
Debugging Shared Memory Multiprocessors Applications,” IEEE Transactions on Paral-
lel and Distributed Systems, 4(1), pp. 28-40, Jan. 1993.

[34] Golub, G. H. and Van Loan, C. F,, “Matrix Computations,” 2nd Ed. The Johns Hop-
kins University Press. ch. 10, 1989

[35] Gorton, L., Gray, J. P. and Jelly, L., “Object-Based Modeling of Parallel Programs,”
IEEE Parallel and Distributed Technology, pp. 52-63, 1995.

[36] Gupta, A., and Weber, W-D., “Cache Invalidation Patterns in Shared-Memory Mul-
tiprocessors,” Proc. of IEEE Trans. on Computers 41(7): pp. 794-810, July 1992.

[37] Gupta, A. and Kumar, V., “On the Scalability of FFT on Parallel Computers,” Proc.
Frontiers 90 Conf. Massively Parallel Computation, 1990.

[38] Gupta, S. K. S., Kaushik, S. D., Huang, C.-H. and Sadayappan, P., "Compiling
Array Expressions for Efficient Execution on Distributed-Memory Machines," Journal of
Parallel and Distributed Computing, 32, pp. 152-172, 1996.

[39] Gustafson, J. L., "Reevaluating Amdahl's Law," Communication ACM, 31, 5, pp.
532-533, May 1988.

[40] Hall, M., et al., “Maximizing Multiprocessor Performance with the SUIF Compiler,”
IEEE Computer, pp. 84 - 89. Dec. 1996.

[41] Heath, M. and Worley, P., "Once Again Amdahl's Law." Communication ACM, 32,
2, pp- 262-263, Feb. 1989.

[42] High Performance Fortran Forum, “High Performance Fortran Language Specifica-

tion,” Version 2.0, Jan., 1997.

[43] Hogg, Robert V., “Adaptive Robust Estimation,” Jowrnal of American Statistics
Association, 69, pp. 909-927, 1974,

[44] Johnson, L. and Riess, R. D., “Numerical Analysis, 2nd Ed..” Addison-Wesley, 1982.

184

[45] Kuhn, W., “The ALPSTONE Project: An Overview of a Performance Modeling

Environment,” Institut fir Informatik, University of Basel, Switzerland, March 1995.

[46] Kuhn, W., Ohnacker, P. and Burkhart, H., “Support for Software Reuse: The Basel
Algorithm Library BALL” Parallel Computing Conference, Sept. 1995.

[47] Launer, R. L., and Wilkinson, G. N., “Robustness in Statistics,” Academy Press,
1978.

[48] Lavenberg, S. S., “Computer Performance Modeling Handbook.” Academy Press,
1983.

[49] Lawson, Charles L., and Hanson, Richard J., “Solving Least Squares Problems,”
Englewood Cliffs, N.J., Prentice Hall, 1974,

[50] Lazowska, E. D., Zahorjan, G. S. and Sevcik, K. C.. “Quantitative System Perfor-
mance, Computer System Analysis Using Queueing Network Models,” Prentice Hall,
1984.

[51] Martonosi, M., “Analyzing and Tuning Memory Performance in Seugential and Par-
allel programs,” Ph.D thesis, Dept. of Electrical Engineering, Stanford University, Jan.
1994.

[52] Martonosi, M., Gupta, A. and Anderson, T., “MemSpy: Analyzing Memory System

Bottlenecks in Programs,” Performance Evaluation Review, 20(1), pp. 1-12, Jun. 1992.

[53] McMillan, K. L. and Schwalbe, J., “Formal Verification of the Gigamax Cache Con-
sistency Protocol”, Proc. of the ISSM Int'l Conf. on Parallel and Distributed Computing,
Oct. 1991.

[54] Mounes-Toussi, F. and Lilja, D. J., "The Potential of Compile-Time Analysis to
Adapt the Cache Coherence Enforcement Strategy to the Data Sharing Characteristics,"
IEEE Trans. on Parallel and Distributed Systems, Vol. 6 No. 5, pp. 470-481, May 1995.

[55] Nanda, A. K. and Bhuyan, L. N., “A Formal Specification and Verification Tech-
nique for Cache Coherence Protocols™, Proc. of the 992 Int’l Conf. on Parallel Processing,
pp. [-22-1-26, 1992.

185

[56] Nussbaum, D. and Agarwal, A., “Scalability of Parallel Machines,” Comm. ACM,
Vol. 34, No. 3, pp. 57-61, Mar. 1991.

[57] Panwar, R. B., Kim, W. and Agha, G. A., “Parallel Implementations of Irregular
Problems Using High-Level Actor Language,” Proc. of Int’l Parallel Processing Sympo-
sium, pp. 857-862, 1996.

[58] Papoulis, A, “Probability and Statistics,” Prentice Hall, 1990.

[59] Parashar, M. and Hariri, S., "Compile-Time Performance Prediction of HPF/Fortran
90D," IEEE Performance Evaluation, pp. 57-73, Spring 1996.

[60] Pong, F., “Symbolic State Model: A New Approach for the Verification of Cache
Coherence Protocols,”, Ph.D thesis, Dept. Electrical Engineering, University of Southern
California, Aug. 1995.

[61] Press, W. I, Flannery, B. P, Teukolsky, S. A. and Vetterling, W. T., “Numerical Rec-
ipes,” Cambridge University Press, 1986.

[62] Rose, I. S., “Parallel Global Routing for Standard Cells,” /EEE Trans. on Computer-
Aided Design of Circuits and Systems, Sept. 1990.

[63] Rothberg, E. and Gupta, A., “Techniques for Improving the Performance ol Sparse

Factorization on Multiprocessor Workstations,” Proc. of Supercomputing *90, Nov. 1990.

[64] Rothberg, E., Singh, I. P. and Gupta, A., “Working Sets, Cache Sizes and Node
Granularity Issues for Large-Scale Multiprocessors,” Proc. of the 20th Annual Int. Sympo-

sium on Computer Architecture,” pp. 14-25, May 1993,

[65] Rudolf, L. and Segall, Z., “Dynamic Decentralized Cache Schemes for MIMD Par-
allel Processors™, Proc. of the 11th Int’l Symposium on Computer Architecture, pp. 340-
347, June 1984.

[66] Scherson, I. D. and Corbett, P. E, "Communications Overhead and the Expected
Parallel Speedup of Multidimensional Mesh-Connected Parallel Processors,” Journal of
Parallel and Distributed Computing, 11, 1, pp. 86-96, Jan. 1991.

186

[67] Singh, J. P., Weber, W-D, and Gupta, A., “SPLASH: Stanford Parallel Applications
for Shared-Memory.” Computer Architecture News, 20(1):5-44 March 1992.

[68] Singh, J. P. and Hennessy, J. L., “Finding and Exploiting Parallelism in an Ocean
Simulation Program: Experience, Results and Implications,” Journal of Parallel and Dis-
tributed Computing Vol 15, No. 1, pp. 27-48 May 1992.

[69] Singh, J. P, Hennessy, J. L., and Gupta, A., “Scaling Parallel Programs for Multipro-
cessors: Methodology and Examples,” IEEE Computer pp. 42-50 July 1993.

[70] Singh, J. P, Gupta, A. and Levoy, M., “Parallel Visualization Algorithms: Perfor-
mance and Architectural Implications,” IEEE Computer 27(7). pp. 45-55 July 1994.

[71] Soule, L. and Gupta, A., “Analysis of Parallelism and Deadlocks in Distributed-time
Logic Simulation,” Tech. Rep. CSL-TR-89-378, Stanford University, Mar. 19809.

[72] Srbljic, S., Vranesic, Z. G., Stumm, M. and Budin, L., *Models for Performance
Prediction of Cache Coherence Protocols”, Tech. Report CSRI-332, Computer Systems

research Institue, University of Toronto, July, 1995,

[73] Stanford SUIF Compiler Group, “SUIF: A Parallelizing & Optimizing Research
Compiler”, tech. Rep. CSL-TR-94-620, Computer Systems Lab, Stanford University, May
1994.

[74] Stenstrom, P., “A Survey of Cache Coherence Scheme for Multiprocessors,” IEEE
Computer, Vol. 23, No. 6, pp. 12-24, Jun 1990.

[75] Tawbi, N., “Estimation of Nested Loop Execution Time by Integer Arithmetic in

Convex Polyhedra,” Proc. of Int'l parallel Processing Symposiwm, Apr. 1994.

[76] Torrelas, J., Lam, M. S., and Hennessy, J. L., “Shared Data Placement Optimization
to Reduce Multiprocessor Cache Misses,” Proc. of the 1990 Int. Conf. on Par. Processing,
pp. 266-270, Aug. 1990.

[77] Tsai, J. and Agarwal, A., “Analyzing Multiprocessor Cache Behavior Through Data
Reference Modeling,” Proc. of ACM Sigmetrics Conference on Measurement and Model-

ing of Computer Systems, pp. 236-247, May 1990.

187

[78] Vernon, M. K., and Holliday, M. A., “Performance Analysis of Multiprocessor
Cache Consistency Protocols Using Generalized Timed Petri Nets,” Proc. of Performance
86 and ACM SIGMETRICS, pp. 9-17, May 1986.

[79] von Mises, Richard, “Mathematical Theory of Probability and Statistics,” Academy
Press, New York. 1964.

[80] Wabnig, H. and haring, G., "Performance Prediction of parallel Systems with Scal-
able Specifications - Methodology and Case Study," ACM Performance Evaluation
Review, Vol. 22 #2-4, pp. 46-62, Apr. 1995.

[81] Weber, W-D. and Gupta, A., “Analysis of Cache Invalidation Patterns in Multipro-
cessors,” Proc. of the 3rd International conference on Architectural Support of Program-

ming languages and Operating Systems, pp. 243-256, April 1989.

[82] Woo, S. C., Ohara, M., Torrie, E. Singh, J. P. and Gupta, A., “The SPLASH-2 Pro-
grams: Characterization and Methodological Consideration,” Proc. of 22nd Ann. Int.

Symp. on Computer Architecture, pp.24-36, May 1995.

[83] Wood, D. A. and Lebeck, A. R., “Cache Profiling and the SPEC Benchmarks: A
Case Study,” IEEE Computer Magazine, pp. 15-26, Oct. 1994,

188

