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Abstract

We develop and present an approach to modeling resource allocations and dependencies within
cut-through and wormhole interconnection networks. We also present a theoretical framework
which allows the precise description of various types of message blocking behavior including
deadlock. We show that a knot within a channel wait-for graph is a necessary and sufficient condi-
tion for deadlock. Our framework allows for distinguishing between messages involved in dead-
lock and those simply dependent on deadlock, and it shows that recovery from deadlock requires
“removal” of messages in the knot. Finally, we describe an implementation of deadlock detection
in a network simulator used for detailed deadlock characterization and give its time and space
complexity.

1. Introduction

Interconnection networks that allow unrestricted use of channel resources are susceptible to dead-
lock. Deadlocks are caused by cyclic dependencies formed as consumers hold resources while
waiting to acquire additional resources. In interconnection networks, messages are the consumers
of resources and virtual channel buffers are the resources. Deadlock, if not properly resolved,
results in the permanent blocking of messages being routed.

Previous studies have not provided insight into the frequency and characteristics of deadlock in
interconnection networks, nor have they identified network parameters and the degrees to which
they influence deadlock [1, 2, 3, 4]. A practical approach to better understanding deadlock is
through detailed simulation. We have developed an interconnection network simulator capable of
true deadlock detection. We use this simulator to perform detailed deadlock characterization.

This paper describes our approach for detecting deadlock. We first develop and present a theoreti-
cal framework which precisely defines deadlock within interconnection networks and prove the
necessary and sufficient conditions for deadlock. We then describe our approach for detecting
deadlock and present details of our implementation of deadlock detection. We begin by introduc-



ing our approach for modeling resource dependencies within a network in Section 2. Section 3
presents a formal model of deadlock. Section 4 describes our approach for detecting deadlock.
Related work is discussed in Section 5, and we conclude with a summary of significant findings in
Section 6.

2. Network Resource Model

We present here through example our approach to modeling resource dependencies, deadlock, and
other types of message blocking behavior within interconnection networks. Our model supports
maximally adaptive routing, and thus accommodates both restricted (deadlock avoidance-based
[5, 6, 7]) and unrestricted (deadlock recovery-based [2, 3, 4]) routing algorithms. The model is
formalized in Section 3.

Our resource model uses channel wait-for graphs (CWGs) to represent resource allocations and
requests existing within the network at a given point in time. We describe CWGs through example
here and precisely define them in Section 3. The CWGs consist of a set of vertices vc;...vc,, each
representing an independently allocatable virtual channel resource in the network. The messages
in the network at a given time are uniquely identified as m;... m;. We assume a fixed number of
reusable virtual channels and a dynamically variable number of messages which can be in the net-
work at a given time for a given network configuration. We describe how vertices in the CWG are
connected to reflect resource allocations to and requests by messages in the following subsections.
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Figure 1- Network and CWG states for message m; being routed from source s, to destination dyin
a unidirectional ring network with one VC per physical channel.
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2.1 Messages and Blocked Messages

When a message progresses through the network, it acquires exclusive ownership of a new virtual
channel (VC) prior to each hop. If the message header blocks, it awaits the exclusive use of one of
possibly many alternative VCs in order to progress to the next hop. A blocked message can
resume once a new VC is acquired. As the tail of a message moves through the network, it



releases (in the order of acquisition) previously acquired VCs which are no longer needed, and
these VCs then become available for other messages to acquire.

We represent VCs owned by message m; as the set owns(m;) and the order in which the VCs were
acquired using the functions first and next. As an example, Figure 1 shows the network and CWG
states for a message m; being routed from its source node s; to its destination ¢; in a unidirec-
tional ring network (4-ary /-cube) with one VC per physical channel. Figures 1 (a), (b), and (c)
show the network and CWG states as the message header moves towards and reaches its destina-
tion (assuming a message length > 3 flits). The order in which this message acquired the VCs it
owns at a given time can be expressed by first(owns(m;)), next(first(owns(m;))),
next(next(first(fowns(m;)))), etc. Figure 1 (d) shows the state after the tail of the message has left
the source node and has released the first VC it acquired.

The routing function determines the alternative VCs a message may use to reach the next node for
a given current node and destination node pair. When none of the VCs supplied by the routing
function are available (due to those VCs being owned by other messages or link failure), the mes-
sage becomes blocked. For a blocked message m;, the set requests(m;) represents the set of alter-
native VCs it may use to resume (thus reflecting the set of VCs supplied by the routing function).
As an example, Figure 2 shows four messages m;...n, within a 4x2 unidirectional torus network
with one VC per physical channel and which uses minimal adaptive routing. In this example, mes-
sages m, and my have acquired all of the VCs needed to reach their respective destinations, while

message m; and mj3 are blocked waiting for resources owned by the other messages (a listing of
the owns and requests sets for each of the messages is included in Figure 2). Message m; has yet
to exhaust its adaptivity and, therefore, is supplied with two alternative VCs by the routing func-
tion (as reflected by the set requests(m;)). On the other hand, message m; has exhausted its adap-
tivity and is therefore supplied only a single VC by the routing function.

In the CWG illustrations, dashed arcs (also referred to as “request arcs”) are used to represent the
relationship between the last VCs owned by blocked messages and the set of VCs they “wait-for”
in order to continue. The vertices from which these request arcs originate are referred to as
“fanout vertices”, as they are the only vertices in the CWGs which may have multiple outgoing
arcs (all but the last owned VC of a message have a single outgoing arc). The number of possible
outgoing arcs at the fanout vertices is determined by various factors including the number of
physical and virtual channel resources in the network and the amount of routing freedom allowed
in the use of these resources by the routing algorithm.

In order for a blocked message m; to resume, it must acquire any one of the VCs in the set
requests(m;) after it is released by its previous owner. Continuing the example in Figure 2, when
message my releases vey (after its tail flit has traversed this channel), the VC can be acquired by
message m3. The CWG state resulting from this along with the updated owns and requests are
shown in Figure 3a. Subsequently, message m, may release vc;3, thus allowing message m; to

continue. The CWG depicting this is shown in Figure 3b. In such cases where a blocked message
resumes, its requests set becomes empty as any one of its members is acquired and becomes a
member of the owns set. In essence, a message has dashed arcs (in the CWG illustrations) to all of



its alternative VCs when it is blocked, and these dashed arcs are replaced with a single solid arc to
the newly acquired VC upon resumption. We discuss exceptions to this for supporting VC buffer
sharing in Section 3.1.
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Figure 2 - Network and CWG state for messages my...
network.
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Figure 3 - a) CWG state when message mj acquires vcz and b) CWG state when message my
acquires vcy3.

In these illustrations, the VC labeling is done only to facilitate explanation and is not intended to
convey information regarding the relative positions of VCs within the network. Also, to
facilitate explanation, we label the outgoing arc(s) at each CWG vertex with the message which
currently owns that VC. As described above, a path formed by a series of solid arcs with the



same label implies the temporal order in which the VCs represented by the vertices in the path
were acquired and continues to be owned by a particular message. Given exclusive ownership of
VC resources, there can be at most a single outgoing solid arc at any given node. At any vertex,
the labels of incoming dashed arcs represent the group of messages that desire to use that VC at
this instant in time. While we showed all of the vertices of the CWGs in Figures 1, 2, and 3,
from now on we will show only those connected components of the CWGs useful for illustrative
purposes.

2.2 Acyclic Paths, Cycles and Reachable Sets

Paths in CWGs are formed when two or more vertices are connected by a series of arcs. For
example, in the CWG in Figure 2 a path exists from ve; 3 to veg, from veg to ves, and from ve; ;3 to

vey (through veg), etc. A path can be represented using an ordered list, and it may contain VCs
owned by different messages, as in the path from vc; to ve; in Figure 2. Here the path is repre-
sented by the ordered list (vc;, vesy, ves, vey, vey;) and contains VCs owned by messages m;, mj3
and my. When all of the vertices in a path are unique, an acyclic path is said to exist. All of the
paths in Figures 1, 2 and 3 are acyclic.
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Figure 4 - Network and CWG state for messages my, my, and m3 being routed within a 2x4 unidirec-
tional network. There is a cycle in the CWG.

Figure 4 shows an example of a cycle within a CWG for a 2x4 unidirectional torus network with
minimal adaptive routing. In general, a cycle in a CWG can be viewed as being composed of an
acyclic path and an additional edge from the end of the path to the beginning of the path. The only
cycle in the CWG depicted in Figure 4 consists of the set of vertices {vcy, ves, veg vey, J and can
be viewed as being composed of the acyclic path (vey, ves, veg, vey) and the edge (vez, vey). Alter-
natively, it can be viewed as being composed of the acyclic path (ves, veg, vez, vey) and the edge
(vey, ves), among other variations. All of these variations represent a unique cycle in that they all
refer to the same set of vertices and edges. Note that another unique cycle involving the set of ver-
tices {vcy, ves, veg vey } can exist if, for instance, edges (vez, veg), (veg, ves), (ves, vey), and (vey,
ve) also exist in the CWG. However, since there can be at most a single edge in a given direction



between any two vertices, we can refer to a unique cycle by an ordered list of vertices.

A reachable set of a vertex in a CWG is the set of vertices comprising all acyclic paths and cycles
starting from that vertex. In Figure 4, the reachable set for vertex vc;y is {ves, veg/; for vey is

{veol; for veg is {; and for vertices vey, ves, veg and vey is fvey, ves, veg, vey vey, ve vep).
2.3 Deadlocks and Cyclic Non-Deadlocks

Figure 5 shows five messages being routed within a 4-ary 2-cube network with one VC per phys-
ical channel and which allows minimal adaptive routing. Here, message m; has acquired vey and
ve, message my has acquired vey and vey, message my has acquired vey and ves, message my has
acquired veg and vey, and message mjs has acquired veg veg and veyy. While message ms has
acquired all of the VCs needed to reach its destination, each of the other four messages are wait-
ing to acquire an additional VC in order to reach their respective destinations. In the accompany-
ing CWG, there is a cycle containing the set of vertices {vc;, vez ves, vez}. The set of vertices in
this cycle has the property that the reachable set of each of its members is the set itself. A set of
vertices which has this property is referred to as a knot. A network whose CWG contains a knot is
said to contain a deadlock because none of the messages which own the vertices in the knot are
able to advance. So we will use the terms knot and deadlock interchangeably. In a deadlocked
state, For example, each of the messages m;, m,, m3, and my in Figure 5 will wait for one of the
others in the group to release a required VC, thus waiting indefinitely assuming that this deadlock
is not properly resolved. Messages not directly involved in a knot, but whose progress also
depends upon the resolution of the deadlock are discussed in the next subsection.
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Figure 5 - Network and CWG state for messages m;...m; being routed within a 4-ary 2-cube network
with one VC per physical channel. There is a cycle in the CWG which constitutes a knot (single-
cycle deadlock).



From the description of a knot, it is implied that a cycle is necessary for a knot since a cycle must
exist in order for a vertex to be in its reachable set. However, a cycle is not sufficient for a knot or
deadlock [8]. For example, the CWG in Figure 4 contains a cycle with vertices {vey, ves, veg,
vcz}), and the reachable set of all of its members is {vcy, ves, veg, vey vepy, ves veg). However,
notice that this set contains members which have different reachable sets than the set itself (i.e.,
vey, ves and veg have different reachable sets), thus violating the requirements for a knot. Such
network configurations which contain one or more unique cycles, but no knot (deadlock) are said
to contain what are referred to as cyclic non-deadlocks. Although cyclic non-deadlocks do not
cause messages to block indefinitely, the “drainage dependencies™ caused by large cyclic non-
deadlocks can lead to substantial performance degradation [7, 9, 10]. Both deadlock avoidance
and recovery based routing algorithms are susceptible to the formation of cyclic non-deadlocks.
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Figure 6 - Network and CWG state for messages m,...mgbeing routed within a 4-ary 2-cube network

with two VCs per physical channel. There are 24 unique cycles in the CWG which constitutes a knot
(multi-cycle deadlock).

The deadlock depicted in Figure 5 is what is referred to as a “single-cycle deadlock” (the knot is
composed of a single unique cycle). The number of unique cycles in a knot, referred to as knot
cycle density, is a measure of deadlock complexity. All single-cycle deadlocks have a knot cycle
density of one. The deadlock set represents the set of messages which own the VCs represented
by the vertices in the knot (messages m;, my, m3, and my in this example). Once a deadlock forms,
it must be resolved by either removing [1, 2] or routing using some additional resources [3, 4] one
of the messages in the deadlock set. The resource set of a deadlock, also used for characterization,
represents the set of all resources owned by members of the deadlock set (the set {vcg, vey, vep,

Ve vey, Ves veg vey/ in this example).



Figure 6 presents a more complex example of a knot---the reachable set for each of the nodes in
the set {vey, vez, ves, vey veg, veyy, veyz veps) is the set itself. There are 24 unique cycles formed

by the vertices in the knot, which is referred to as a multi-cycle deadlock. The deadlock set for this
knot is {m, my, m3, my ms, mg, my mg/ and its resource set is {vcg...ve;s/.

2.4 Deadlock Dependent Messages

In addition to those messages in the knot, an unresolved deadlock may also force other messages
not in the deadlock set to wait, indefinitely in some cases. Such messages are referred to as
deadlock dependent messages. Figure 7 shows an example of a single cycle deadlock (knot {vey,

vey, vey, vez)), with deadlock set {mj, m,} and resource set {vcy, vey, vey, ves}. Here, message
m3 and my, although not in the knot, must wait until the deadlock is resolved. Also, the progress
of message mg is affected by blocking caused by the deadlock. These messages are

distinguished from those properly in the deadlock since removing these deadlock dependent
messages will not resolve the deadlock.
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rectional network. There is a knot (deadlock), and message my s fully directly deadlock dependent,
message mj is fully indirectly deadlock dependent, and message mg is partially deadlock depen-

dent.

Deadlock dependent messages can be further categorize into directly and indirectly deadlock
dependent as well as partially and fully deadlock dependent. In the example shown in Figure 7,
message my is fully and directly deadlock dependent as each and every member of requests(ny)

is owned by a message in the deadlock set. Message my is fully and indirectly deadlock
dependent because at least some members of requests(mz) are owned by other fully directly or

fully indirectly deadlock dependent messages and all remaining members are owned by
messages in the deadlock set. Both fully directly and fully indirectly deadlock dependent



messages can be referred to simply as “fully deadlock dependent messages.” Fully deadlock
dependent messages do not necessarily have to be dependent upon a single deadlock. Figure 8
presents an example of a 3D-torus network with unidirectional channels and a single VC which
contains two distinct deadlocks: knots {vey, vey, vep, vez) and {vey, ves, veg, vey). Here, message
ms is fully directly deadlock dependent since all vertices in requests(ms) are owned by members
of the deadlock sets, although different deadlock sets. Although both deadlocks need to be
resolved, the resolution of only one of the two will allow m5 to resume. This example also points

out that multiple deadlocks, each requiring an independent resolution, may exist simultaneously
within a network.
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Figure 8 - Network and CWG state for messages m;...mjs being routed within a 3D unidirectional
network. There are two independent knots (deadlocks) and message mj is fully directly dependent
upon the two deadlocks.

Partially deadlock dependent messages are those messages whose requests sets contain VCs
which are owned by non-blocked and/or blocked but non-fully deadlock dependent messages.
These messages may resume even if the deadlock is not resolved. Message mg in Figure 7 is an

example of a partially dependent message; it may resume when message mj relinquishes vc;
despite the deadlock remaining unresolved.

Classifying dependent messages as such provides a basis for evaluating the accuracy of
deadlock detection and recovery mechanisms. It also allows us to precisely describe and
differentiate between previous notions of deadlock and ours. For instance, “deadlocked
configurations” in [11] encompass not only messages in deadlock sets, but also all types of
deadlock dependent messages and non-blocked messages as well. “Canonical deadlocked
configurations” in [11] include both messages in deadlock sets and fully deadlock dependent
messages but excludes partially deadlock dependent and non-blocked messages. Also, neither of
these definitions of deadlocked configurations distinguish between a single and multiple



deadlocks, and more importantly, they do not distinguish between the causes and consequences
of deadlock. In contrast, our model allows identification of each independent deadlock and
distinguishes between causes (messages participating in knots) and consequences (indefinitely
postponed dependent messages) of deadlock, thus enabling us to identify more fundamental
components (knots) which require resolution for deadlock recovery.

In measuring the total impact of a deadlock, not only should the resources held by the deadlock
set be taken into consideration, but also the resources held by deadlock dependent messages. We
use the notion of extended resource sets when describing all of the resources indefinitely occu-
pied by both members of the deadlock set and fully deadlock dependent messages. When a dead-
lock is allowed to persist, the number of deadlock dependent messages will grow to eventually
encompass all of the messages within the network, and the extended resource set of the deadlock
will grow to include most, if not all channel resources in the network. Therefore, the number of
deadlock dependent messages and the size of extended resource sets are time-dependent, just as
the canonical deadlocked configurations in [11].

2.5 Fault-Dependent Messages

While unresolved deadlocks can lead to permanent blocking of messages, there are non-deadlock
related occurrences which can also cause this type of permanent blocking. Specifically, faults
which disconnect the routing function can cause messages to block indefinitely and can eventually
lead to all messages in a network becoming permanently blocked. Figure 9 shows four messages
being routed within a 4x2 unidirectional network with one VC per physical channel and which
allows minimal adaptive routing. In this example, the link for vc, has failed causing the routing

function to be disconnected (i.e., at the node marked ‘d,’, the routing function cannot supply a
usable VC for message m; which is destined for node ;). Despite there not being a knot in the
CWG, messages m;...my will wait indefinitely or until the failed link is functioning once again.
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Figure 9 - Network and CWG state for messages my...my being routed within a 2x4 unidirectional
network containing a faulty link (vc,). Messages my and mj are fully directly fault dependent while
messages myand my are fully indirectly fault dependent.

Allowing faults such as the one in this example to persist may result in the eventual blocking of
all messages in the network---the same consequence as allowing a deadlock to remain unresolved.
Despite this similarity in consequence, we do not consider this scenario to be deadlocked since 1)
it does not meet the necessary conditions for deadlock as there are no cyclic resource dependen-
cies and 2) it requires different means of resolution (i.e., repair of faulty link) than can be used for



deadlock resolution (i.e., removal of a deadlock set message). Note that both deadlock-avoidance
and deadlock-recovery based routing algorithms are susceptible to this type of fault-related per-
manent message blocking. Nevertheless, we will assume networks with connected routing func-
tions for the formal model of deadlock presented in Section 3.

Messages which are forced to wait (possibly indefinitely) due to faults are referred to as fault-
dependent messages. Fault-dependent messages can be further categorized based on whether they
are waiting only on faulty resources (fully directly fault dependent) or are waiting only on
resources owned by other messages which are fully directly or indirectly fault dependent (fully
indirectly fault dependent). In the example in Figure 9, messages m; and mj3 are fully directly
fault dependent while messages m, and my are fully indirectly fault dependent. As with partially

deadlock dependent messages, partially fault dependent messages are those messages whose
requests sets contain VCs which are owned by non-fault dependent messages. These messages
may resume despite persistence of the fault. Various types of message blocking behavior and their
properties are summarized in Table .

3 - Formal Framework

Here we formalize the intuitive model of deadlock and other message blocking behavior
introduced in the previous section. Since we are interested in allowing deadlocks to form and not
in preventing them, our formal framework has been generalized to support maximally flexible
routing algorithms---those which allow unrestricted routing in any dimension and on any
available VC at intermediate nodes. Therefore, more restrictive algorithms which also allow
deadlocks (i.e., those that limit the number of misroutes, etc.) are included in our framework as
well.

3.1 - The Formal Model of Deadlock
The following are some important assumptions we make in order to define deadlocks:

Assumption 1:
A node can generate messages destined for any other node at any rate, and the messages may be
of any length greater than one flit.

Assumption 2:
A message arriving at its destination is eventually consumed.

Assumption 3:

Flits from two different messages may not be in the same queue at the same time. Therefore, a
tail flit of a message must leave the queue before the header flit of another message enters the
queue. An extension of which allows multiple messages to share a queue simultaneously is
presented in Section 3.2.1.
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Table 1 - Summary of various types of message blocking behavior and their properties.




Assumption 4:

Once the queue of a particular virtual channel accepts the header flit of a message, it must
accept all of the remaining flits of the message before accepting flits from any other message.
This satisfies the “no preemption” condition necessary for deadlock.

Assumption 5:

A blocked message, while holding onto previously acquired VCs, remains waiting in the network
until a VC becomes available. This satisfies the “resource wait-for” condition, and creates poten-
tial for the “circular wait” condition, both of which are also necessary for deadlock.

We use the following definitions to prove the necessary and sufficient conditions for deadlock
within interconnection networks.

Definition 1:

An Interconnection Network I is a strongly connected directed graph, I = G(N, C), where the
vertices N represent the set of router nodes and the edges C represent the set of channels that

connect the routers. For a particular channel ¢;€ C, s;,d;e N represent its source and
destination nodes, respectively.

Definition 2:
A routing function R is of the form R(N x N) = P(C) (where P denotes the Power Set). That is,
for a given node n; € N, and a destination node n ;€ N, R(n; ny), n;#n  provides a set of

alternative channels (¢}, ¢5,....¢,/, ¢; € C, 1 i< r through which a message may be routed to its

next hop in route to n,. We have used a routing function of the form R(N X N) — P(C) instead

of R(Cx N)— P(C) because it better suits our purpose here. Also, the selection function [7] is
not relevant in the present context, and therefore, we will simply assume a random selection func-
tion.

Definition 3:
The set of messages currently being routed through network I is defined as M. We denote the

source and destination nodes of message m; € M using source(m;) € N and dest(m;) € N,
respectively.
Definition 4:
We define the function status(c;) = free v busy to indicate the availability of a channel

c; € C for allocation to a message.

Definition 5:
For each m; € M, we define a set owns(m;) representing the set of channels that message m; has

currently reserved (hence “owns™) for its route through /. So for a given owns(m;)={Cj..., ¢/,

n21, status(c;) = busy for i=I..n. We also define the inverse function ownedby(c;)=m;. The
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value of ownedby(c;) is undefined when status(c;) = free.

Definition 6:

For each set owns(m;), m; € M, we define a function first(owns(m;) )=Cfirs» Where ¢y, represents
the least recently acquired of the channels currently owned by message m;. We define the function
last(owns(m;))=c},s, Where ¢y, represents the most recently acquired of the channels currently
owned by m;. To help establish the partial order in which message m; has reserved the channels in
owns(m;), we define the function next(C) — C, where next( cj)=ck implies that ¢; was reserved by

m; immediately after ¢; was reserved by m; The value of next(c;) is undefined when
c:,-:last(owns(m,—)).

Definition 7:

For each m; € M, we define the set requests(m;)={c,, c;,..., ¢,/ representing the set of channels
requested by message m; when it becomes blocked, any one of which allows m; to proceed.
When m; is not blocked, lrequests(m;)l= 0. When m; is blocked, R(d,, dest(m;))=requests(m;)
where last(owns(m;))=c;. Note that desf(ml-)¢d‘,- A ¢j€ owns(m;), which is to say that m;

does not already own the channel which is connected to its destination, thus implying that
R(dest(m;),dest(m;))={}].

Definition 8:
A Deadlock in an interconnection network I is a condition in which there exists a set of messages
D={my,..., m,}, mj..m,€ M, n=21 which holds the relationship that V m;e D, (1)

Irequests(m;)l > 0, (2) V ¢j€ requests(m;), ownedby(cj) = mj for some my € D, and (3) Y
owns(m;), 1 ¢; € owns(m;) such that ¢; € requests(mp) for some my € D. This is to say that a

deadlock is formed when a set of messages meets all three of the following conditions: (1) all of
the messages in the set are blocked, (2) each channel waited upon by every message in the set is
owned by messages also in the set, and (3) every message in the set owns at least one channel
which is waited upon by a member of the set. By allowing » to be equal to one, and by not restrict-
ing m;, my, and mj, to be distinct, we allow deadlocks involving a single message as well. D is the

deadlock set for this deadlock. The resource set for this deadlock is \_Jowns(m;) ¥ m; € D.

Definition 9:
A fully directly deadlock dependent message is one for which lrequests(my)l > 0 and ¥V

cj€ requests(m;), ownedby(c;)=m; where m; € M and m € D for some deadlock D. This is

to say that m; is fully directly deadlock dependent if it is blocked and all of the channels it is wait-
ing-for are owned by members of a deadlock set.

Definition 10:
A fully indirectly deadlock dependent message m;€ M is one for which (1) lrequests(m;)l > 0



and (2) there is at least one ¢ d € requests(m;), ownedby( cj)zmk where my, 1s either fully directly

or indirectly deadlock dependent and (3) for all remaining ¢ € requests(m;) , ownedby(cj)=my,

where m i € D for some deadlock D. This is to say that m; is fully indirectly deadlock dependent
if it is blocked, at least one of the channels it is waiting for is owned by a fully directly or indi-

rectly deadlock dependent message, and all of the remaining channels it is waiting for (if any) are
owned by members of a deadlock set.

Definition 11:
A partially deadlock dependent message m; e M is one for which (1) lrequests(m;)l > 0 and (2)

there is at least one ¢ € requests(m;), ownedby(cj)zmk where mj € D or my is either fully

directly or indirectly deadlock dependent and (3) there is at least one cj€ requests(m;),

ownedby( c;)=my where m; ¢ D for some deadlock D and my is neither fully directly nor indi-
rectly deadlock dependent. This is to say that m; is partially deadlock dependent if (1) it is

blocked, (2) at least one of the channels it is waiting for is owned by a fully directly or indirectly
deadlock dependent message or a member of the deadlock set, and (3) at least one of the channels
it is waiting for is not owned by a fully directly or indirectly deadlock dependent message or a
member of the deadlock set.

Definition 12:
The extended resource set of a deadlock D is the set \_Jowns(m;) where m; € D or m; is either

fully directly or indirectly deadlock dependent.

Definition 13:
A Channel Wait-for Graph is a directed graph CWG=(V,, E_) representing a particular state of

resource ownership and requests within /. The vertices V,. represent the channels C of /. In any
given state of the CWG, 3 an edge (c; cj) e E, if 3 mpe M such that either (1)

Cjs Cj € owns(m}) and next(c;)=c;, or (2) c;=last(owns(my)) and cj€ reqeusts(my) Case (1)
refers to the solid arcs and case (2) refers to the dashed arcs of the CWG illustrations in the
previous section. Also, there does not exist any ¢; such that (¢;, ¢;) € E ., thus implying that no
channel has the same network node as both its source and destination, and therefore a message is
unable to request a channel immediately after acquiring that channel. By this we eliminate /-

cycles in the CWG.

Definition 14:
An Acyclic Path in a CWG is an ordered list of unique vertices (¢, €3,...,¢,.pp €y)s €1...¢, € V.

such that there are edges (¢, ¢2), (¢9, ea)y oi{Cpy _ 1€} € Eq.

Definition 15:
A Cycle containing vertex ¢; in a CWG is an ordered list of vertices (¢; CjyppensCpp Ci)s



¢j...c, € V. such that there is an acyclic path from ¢; to ¢, and an edge (eysci) € E,..

Definition 16:

A reachable set for a vertex c;€ V. is the set of vertices R e P(V,) such that ;€ Ry if

there is an acyclic path from ¢; to ¢j and ¢; € Ry if there is a cycle containing c;.

Definition 17:

A knot in the CWG is a non-empty set K € P( V.) such that V ¢; € K, the reachable set of ¢; is
exactly K. The cycle density of this knot (referred to as knot cycle density) is 1Zgl where Zy is the
set of all cycles involving vertices ¢; € K .

Definition 18:
We define the legal state transition of a CWG to reflect the allocation of a channel ¢;, sta-
tus(c;)=free to message m; as follows:

- if lowns(m;)I=0, owns(m;) becomes {cj} where cj€ R(source(m;),dest(m;)), and sta-

tus(c;) becomes busy.
- otherwise, owns(m;) becomes owns(ml-)u{cj} where cj€ R(dy, dest(m;)) and
last(owns(m;))=cy, E. becomes E . {(last(owns(m;)), Cj)}’ and status(c;) becomes

busy.
In the CWG illustrations of the previous section, this refers to simply adding a solid arc from the
vertex representing the last channel owned by m; to the vertex representing the newly acquired

channel Cj-

Definition 19:
We define the legal state transition of a CWG to reflect the request for use of channels by a mes-

sage m; where status(c;)=busy \4 ¢j€ R(dy, dest(m;)), last(owns(m;))=c;. as follows:
- E. becomes E. U {(cp, cj)} v Cj€ R(dp, dest(m;)) and requests(c;) becomes R(d,
dest(m;)) where last(owns(m;))=cy.

In the CWG illustrations, this corresponds to adding dashed arcs originating from the vertex rep-
resenting the last channel owned by message m; to every vertex which represents an alternate VC

that m; may use to continue.

Definition 20:
We define the legal state transition of a CWG to reflect the resumption of a blocked message m;

(Irequests(m;)|>0) as follows:
- E. becomes E, - {(last(owns(m;)), cj)} Y ¢ € requests(m;), requests(m;) becomes {}, and
we then allocate a new channel ¢; to m; according to Definition 18.

In the CWG illustrations, this corresponds to removing all of the dashed arcs originating from the
vertex representing the last channel owned by a message m; and then adding a solid arc from this



vertex to the vertex representing the newly acquired channel cj-

Definition 21:
We define the legal state transition of a CWG to reflect the release of channel cjzﬁrsr(own.s'(mf) )
by a message m; as follows:
- if lowns(my)l>1, E. becomes E. - {(first(owns(m;)), next(first(owns(m;))))}, owns(m;)
becomes owns(m;) - {first(owns(m;)}, and status( ¢;) becomes free.
- otherwise, owns(m;) becomes {/ and status( cj) becomes free.

This reflects the fact that a channel is released after its use by a tail flit of a message, hence chan-
nels are acquired and released in the same order.

We now propose and prove the following theorems:

Theorem 1: A deadlock with a deadlock set D exists in an interconnection network I iff there
exists a knot K in the channel wait-for graph of I.

Outline of proof:
-> A deadlock in I implies that there is a group of one or more blocked messages D where each

message m; € D owns at least one channel waited upon by some message m € D . 1t then fol-

lows that for each m;, there is an edge (last(o-.vns(mj)), c;) € E, where cj € owns(m;) (this is
a request arc to a vertex which represents a VC owned by m;). So for each m;, there is a subset of
owns(m;) which is “reachable” (contains a path) from each and every member of owns( mj). We
will refer to this set as reachable(m;, m;). For a given m;, there can be different reachable(m;, m;)
sets (one for each distinct mj), and we identify the largest of such sets as max_reachable(m;). Note

that for any Ireachable(m;, nj)l > lreachable(m;, my)l,

reachable(m;, mk)creachable(mi, mj). Also, a deadlock implies that for each m; € D,
every member of requests(m;) is owned by some m; € D, suggesting that all members of
max_reachable(m;) are reachable from all members of owns(m;) for some m; € D . By transitive
properties of paths, we can show that every member of max_reachable(m;) is reachable from
every member of max_reachable(mj) and vice-versa for all my, mje D . Therefore, the set
Umaxreachable(mi) Y m i€ D meets the requirements for, and thus constitutes, a knot.

<- Using Definitions 18-21, assume that the network CWG has reached some state where it con-
tains a knot K. Also assume that there is no deadlock, thus implying that there is some series of

reductions of the CWG using the transitions in Definitions 18-21 to eliminate edges (¢;, ¢ j) € E,
where ¢; € K . The existence of such reductions suggest that there exists a path from ¢; € K to

some node ¢ € V. such that message m;=ownedby(c}) is not blocked (lrequests(m p1=0). It then

follows that there is no edge in E, which originates from last(owns( my)). However, ¢, is reachable
from ¢;, but ¢; is not reachable from ¢y, a contradiction of the properties of a knot.
O



Corollary 1.1: All vertices in a knot are owned by members of a single deadlock set.

This arises from the fact that \Umaxreachable(m )Y om i € D is exactly the same as a knot K,
thus helping us establish a one-to-one correspondence between the messages in the deadlock and
the knot. So we can alternatively define a deadlock set to be a set of messages (m,..., m,}, n =1

where for each m; in the set, 3 a channel represented by a vertex ¢ i€ K where ownedby( cj)=m,-.

Theorem 2: A deadlock with deadlock set D in network I can be resolved if one or more of the
messages in D is removed from the network.

Outline of proof:

<-Given a deadlock D, assume that we select a message m I € D to be removed from the network.

Message m; releases all the VCs ¢; € owns(m 1-) one-by-one (according to Definition 19) so that

status(cy) becomes free V ¢ € owns(m j). If |IDI=1, then none of the messages in the deadlock
set exist after n; releases its resources, and therefore the deadlock seizes to exist (resolved). If

IDI>1, then by definition of deadlock, 3 D,.c D such that (requests(m;) N owns(mj)) OV

m; € D,. This is to say there is at least one message owned by m; that is needed by another mes-
sage in D (condition (3) of Definition 8). Therefore, having m; release its resources will allow at

least one m; € D, to continue, thereby resolving the deadlock.
a

Theorem 3: Removing fully directly, fully indirectly, and partially deadlock dependent messages
from the network is not sufficient to resolve a deadlock.

Outline of proof:
> Assume that a deadlock D can be resolved by having deadlock dependent messages removed

from the network. This implies that 3 some message m;€ M —-D such that

]
enables m; to continue, thus resolving the deadlock. However, by definition of a deadlock

owns(m;) N requests(m j)¢® for some m;e D and that having m; release its resources

(condition (2) of Definition 8), ownedby(c;) = my, mp € D Ve requesrs(.rnj) v m; € D.
That is to say that every channel requested by every member of the deadlock set is owned by a
member of the deadlock set. Therefore, owns(m;) N requests(m j) =@ VmjeM-D and A4

m g e D, a contradiction.

0

What we have demonstrated here is that removing one of the messages in the deadlock set is
sufficient for deadlock resolution. We have also shown that removing deadlock dependent
messages is not sufficient for deadlock resolution. When a deadlock remains unresolved, the



messages which meet the requirements of the first two conditions of Definition 8, but not the
third condition are also indefinitely delayed. However, we impose the third condition so as to

restrict the deadlock set to only those messages which can be removed from the network to
resolve deadlock, thus excluding dependent messages.

Next we present possible extensions to our formal model.

3.2 - Extensions to the Model

Here we present two possible extensions to the basic model presented above.
3.2.1 - Sharing of Queues

Our earlier assumptions restrict flits of different messages from being in a single queue at the
same time. Since our framework allows deadlocks to form, this restriction is not necessary. We
present here an extension to the theory presented above which allows multiple messages to simul-
taneously share a queue. Figure 10 shows the routers and their VC queues for a portion of a unidi-
rectional ring network with two VCs per physical channel along with the corresponding CWG. In
the networks, flits A;, d;, and ¢; correspond to the header, data, and tail flits of message m;. This

figure shows that with restrictions on buffer sharing, the leading flits of message m3 cannot enter
the queue for vey despite there being room to accommodate some of these flits, thus limiting the
maximal utilization of resources.
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SWX XSWX_\ SWX
g 1d ! dAdbdddd —~
]-)—a’- VC3 [ d_ d_d_'_]d‘_‘( 2 vcs 4 1( Jdqaxls vc?
queue for vcs queue for vcs queue for vey
Router Node 1 Router Node 2 Router Node 3

ms

T m 3 m;
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Figure 10 - Internal state of network routers and the corresponding CWG state when sharing of
queues is not allowed.

ms

Our model can be extended to allow queue sharing by replacing Assumption 3 with the following
assumption:

- Flits of different messages may simultaneously occupy the same queue but cannot be
interspersed. We designate the message whose flits are at the head of the queue as the



sole owner of the queue. Another message may “own” the queue only when the tail flit
of the previous message has vacated the queue. Therefore, we allow physical sharing of

resources, but maintain a logical model of “exclusive ownership”, a necessary condition
for deadlock.

When a message enters a queue which it does not own (given that the tail flit of another message
still occupies this queue), it commits to using that VC and is no longer able to use any of the other
alternative VCs supplied by the routing function. To reflect this in the CWG, our model requires
that all of the request arcs (dashed arcs) be removed except the one request arc to the VC being
committed to when the message was blocked immediately prior to entering the new queue or that
a dashed arc be placed between the last channel owned and the channel committed to when the
message was not blocked immediately prior to entering the new queue. This single dashed arc
becomes a solid arc only when the message acquires ownership of the VC (when the tail flits of
other messages in the queue have vacated the queue).

The following defines the legal transition for committing to a VC owned by another message:

Definition 22:
We define the legal state transition of a CWG to reflect the committing of a message m; to a chan-

nel ¢;, ownedby(cj) = my, my #m; as follows:
- If m; is blocked (lrequests(m;)|>0), E, becomes E. - ({(last(owns(m;)), c)} ¥

cj € requests(m;), c;# ¢j and requests(m;) becomes {cj}.

- Otherwise (lrequests(m;)|=0), E, becomes E . {(last(owns(m;)), c j)} and requests(m;)
becomes {c;/.

In the CWG illustrations, this corresponds to removing all of the dashed arcs originating from the

vertex representing the last channel owned by a message m; except the one dashed arc to the ver-

tex representing the channel (¢;) to which the message commits when the message was previously

blocked or simply adding a single dashed arc from the vertex representing the last channel owned
by a message m; to the vertex representing the channel ¢; when the message was not blocked. The

transition to reflect subsequent ownership of the channel ¢; by message m; follows Definition 20.

Figure 11 shows an example of allowing queues to be shared. Here, the leading flits of message
mj3 have entered the queue for vey, thus committing to the use of vey. By “committing early” to

using vey, m3 is no longer able to use ves (as reflected by the lack of a dashed arc to ves in the
CWG) even though the queue for ves may become available for ownership prior to vey. Empirical
results suggest that reducing “fanout” as done here by committing to VCs early increases the
probability of deadlock formation [10].
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Figure 11 - Internal state of network routers and the corresponding CWG state when sharing of
queues is allowed.

3.2.2 - Inclusion of Injection and Reception Channels

The resource dependency model using CWGs we have presented takes into account only those
messages which have “entered” the network, and therefore have acquired at least a single resource

(i.e., lowns(my)! > 0¥ m;e M). So it does not take into account those messages which are wait-

ing in the injection queues (from the processor) to acquire their first VCs. When a deadlock
occurs, messages waiting in the injection queues may be impacted similar to other dependent
messages. To properly account for this, our model can be expanded to include messages in the
injection queues as well.

Our model can be easily expanded by including all of the injection channels in the set of vertices
V. in the CWG. Ownership rules for the injection channels remain the same as those for the VCs.
The representation of wait-for relationships between messages in the injection channels and VCs
owned by other messages is similar as well. An example is presented in Figure 12, which shows
messages 1, and ms in injection channels ic; and ic, (respectively) waiting for channels owned
by messages m; and m,. If vertices vey...vc7 in the CWG belong to a knot, then messages 1y and
ms would be considered deadlock dependent messages. So extending our model to include injec-
tion channels may be useful for more detailed deadlock characterization. Dependence on recep-
tion channels (to processor) can also be modeled in a similar fashion. Note that messages in
injection and reception channels cannot participate in a deadlock set unless injection and recep-
tion channels are dependent upon each other (i.e., share buffer resources). However, we assume
that a message reaching its destination gets consumed eventually. Therefore, removing messages
in injection channels will not help resolve deadlock.
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Figure 12 - Internal state of network routers and the corresponding CWG state when including
injection channels in the resource model.

4 - Implementation of Deadlock Detection

Our approach for deadlock detection is based on the formal framework presented in Section 3.
Deadlock detection has been implemented in a flit-level interconnection network simulator called
FlexSim (an extension of FlitSim 2.0). Our implementation of deadlock detection involves main-
taining a CWG, detecting cycles within the CWG, and identifying groups of messages and cycles
which form knots. Each of these areas is discussed in the following subsections.

4.1 - Building and Maintaining the Channel Wait-for Graph

We dynamically build and maintain a CWG reflecting the resource allocations and requests of an
on-going network simulation. The CWG is implemented using an array of linked lists. Each array
element represents a message (m;) within the network, and each linked list represents the set of
VCs owned by a particular message (owns(m;)), with additional links to desired VCs for blocked
messages (requests(m;)). Figure 13 provides an overview of data structures used to maintain the
CWG, cycle list, and deadlock list. The state of the data structures in this figure corresponds to the
example in Figure 7.

When a VC is allocated to a message, the “VCNode” data structure for the VC is appended to the
linked list for that message and the VCNode is annotated with its new owner. Similarly, when a
VC is released, the VCNode is removed from the beginning of the linked list and the ownership
information is removed accordingly. When a message blocks, special request links are placed
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from the end of the linked list to the VCNodes representing each of the alternate VCs the message
may use to continue routing. When a message resumes, these request links are removed and
replaced Wi[l:l a link to the VCNode representing the newly acquired VC. These CWG mainte-
nance operations are formally described in Definitions 17-20 presented in the previous section.
The direct links from the elements of the array of messages to the last VCNodes of each linked list
are used as an optimization for efficient traversal of the linked lists. The use of the cycle list and
the deadlock list data structures are discussed in the subsequent sections.
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Figure 13 - The CWG, Cycle List, and Deadlock List data structures. The state of the data structures
reflects the example in Figure 7.

4.2 - Detecting Cycles

We detect all cycles within a CWG in order to facilitate the detection of deadlocks. Cycles in the
CWG are detected by performing depth-first search of the graph with backtracking (starting with
each linked list in linear order). Each node visited is marked as such, and therefore visiting a
node which has previously been marked as having been visited indicates the presence of a cycle.
Annotations indicating visitation are removed upon backtracking. To avoid detection of each
unique cycle more than once, the partial order of message IDs is used to prune the search (i.e.,
restrict visiting a VCnode owned by a message with a lower message ID). For example, the VCN-
odes in the CWG in Figure 13 are visited in the following order where **' indicates cycle detec-
tion, b indicates a backtracking step, and p indicates a pruning measure: [m;], veg, vey, Vez, Vs,

vez vey, % b, b, b, b, b, b, [my], vey vez ves veg p, b, b, b, b, [m3], vey ves, vez p.b, b, b, [my], veg
vez, p, b, b, [ms), veg, veg, veyg,

When a unique cycle is detected, it is placed in the cycle list as shown in Figure 13. A list of mes-
sages involved and their corresponding “branches” are sufficient to uniquely identify a cycle (i.e.,
m:1 in the figure indicates the first branch of message m, representing the first of possibly many
VCs the message is waiting for). When previously detected cycles are again detected during a dif-
ferent run of the algorithm, their entries in the cycle list are updated to indicate the time of their
most recent detection. Our cycle detection algorithm guarantees detection of each unique cycle in
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the CWG during each invocation. Therefore, those cycles which were not detected during the
most recent invocation of the algorithm are removed from the cycle list. Since a very large number
of cycles can exist within a congested network, we use advanced indexing functions and search
techniques to compare cycles in determining their uniqueness. Formally, the cycle detection algo-

rithm generates a set Z={} or (Z}, Z,,..., Z,}, n> 1, where each Z; represents a cycle which is

uniquely represented by {(m, idx;), (my, idxy),...,(my, idx;)}, k = 1, and where each (m, idx;) rep-
resents a message and a “branch index” as described above.

4.3 - Detecting Deadlocks

Once the cycle detection algorithm identifies all cycles within the CWG, the deadlock detection
algorithm is invoked to identify groups of these cycles which form a knot (as we have shown a
knot to be necessary and sufficient for a deadlock in Theorem I). A number of heuristics are used
to make this possible. First, a group of blocked messages whose request arcs are all involved in
cycles is identified using information provided by the cycle detection algorithm (i.e., messages
my, my, mz, and my in Figure 13). Each message in this group is examined to see if all of the chan-
nels they are waiting for are owned by messages also in this group (as required by condition (2) of
Definition 8). The subset of messages which meet this condition are further distinguished based
on whether they own at least one message requested by a message also in the group (as required
by condition (3) of Definition 8). Note that these conditions hold for messages m, ny, m3, and ny
in Figure 13. Cycles are then examined to identify a group of them which only includes messages
from this group. A group of cycles which meets this condition forms a knot, and is therefore iden-
tified as a deadlock and placed in the deadlock list as shown in Figure 13. Detected deadlocks are
“broken” by removing a single message in the deadlock set in a flit-by-flit fashion so as to simu-
late an optimal recovery procedure.

We formally describe the deadlock detection algorithm as follows:

- Find a set of messages M p c M such that Vm;e Mp, lrequests(m;)l > 0 and (¢ s idx) € Z;
for some cycle Z; € Z and some branch index idx V Cj€ requests(m;).

- Find a set of messages Mp c Mp such that V. m; e Mp, ownedby(cﬂ:mk where m € Mp v
¢j€ requests(m;).

- Find a set of cycles Zp € P(Z) such that ownedby(cj) e Mp v (cj, idx) € Z; for some
index idx ¥V Zl € ZD ]

- The set \Uc i Y (¢ s idx) € Z; for some index idx ¥ Z; e Zpy constitutes a knot and, therefore,
a deadlock.

4.4 - Time and Space Complexity
The operations to build and maintain the CWG are invoked automatically by the simulator on an

as-needed basis, and each of the operations requires constant time. The deadlock and cycle detec-
tion times are invoked based on user specified time intervals. For a simulation run of length T,
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simulation cycles (sim-cycles), we allow the cycle detection algorithm to be run once every Teq
sim-cycles, Tc ds Ts ings and the deadlock detection algorithm to be run once every

(Tchn) <T

sinp 2 1 sim-cycles.

We use the following variables to express the computational complexity of the algorithms:

M}, - Average number of blocked messages in the network.
R¢- Routing freedom (average number of routing options per blocked message).
M, - Average length of a message (number of distinct network nodes a message spans).

C - Number of unique cycles found in the current invocation of the algorithm.
V.. - Average number of vertices in a cycle.

M,.- Average number of messages in a cycle
C, - Average number of active cycles in the network.
1,, - Average size of set of cycles with the same index (based on distribution generated by a hash

function)
D - Number of unique deadlocks found during the current invocation of the algorithm.

The computational complexity of the cycle detection algorithm (edy;,,,) can be expressed as fol-
lows:

ctime (0 (5) [ (Mo o (e (mx2t

(@) (b)

In the above expression, the component (a) corresponds to the time required for full traversal of
the CWG. The M, parameter is limited by the average inter-node distance of a network, thus
allowing us to easily traverse the CWGs of large multidimensional networks (i.e, 16-ary 2-cubes,
8-ary 3-cubes, etc.). The component (b) corresponds to the time required for “processing” (deter-
mine uniqueness, record characteristics, etc.) of each cycle found within the CWG. Currently, we
are able to detect all cycles formed in networks which provide a moderate degree of routing free-
dom (i.e., true fully adaptive routing [3, 4] in 2D and 3D networks with as many as 4 VCs per
physical channel) for up to saturation loads. Given the theoretical worst case for C and C, of

(Rf)Mb, simulations can become impractical as a very large number of messages with high fanout
may block within some networks at loads beyond network saturation.

The computational complexity of the deadlock detection algorithm (dd,;,,,) can be expressed as
follows:

dd =Mp+{DxCxM_.}

time
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The M), component of this expression corresponds to the examination and selection of a set of
blocked messages which are candidates for participation in deadlock while the {DxCxXM,_,}

component corresponds to the validation of the properties of a set of messages in a deadlock. The
time required for this algorithm has been greatly optimized by the use of heuristics based on infor-
mation provided by the cycle detection algorithm. Since this deadlock detection algorithm relies
on all cycles being detected, it is of limited use for detecting deadlock in deep saturation for some
networks. We are currently implementing an alternative deadlock detection scheme which does
not require that all cycles be identified and which therefore can be used to detect deadlock behav-
ior during network conditions beyond saturation.

We use the following variables to express the space complexity of our implementation:

*Maxvc - The maximum number of VCs in the network.

#

Max,, - The maximum number of messages allowed in the network.

*Maxﬁ, - The maximum number of routing options (freedom) allowed for any message.

ET ]

Max,.,, - The maximum number of cycles expected in the CWG at any given time.

**Maxdl - The maximum number of deadlocks expected in the network at any given time.
C, - Average number of active cycles in the network.

M, - Average number of messages in a cycle

D,, - Average number of deadlocks in the network.

C, - Average number of cycles in a deadlock.

M,; - Average number of messages in a deadlock set.

¢; cg - Small constants representing the sizes of various data structures.

The variables marked ~ are automatically determined based on simulation parameters while the

variables marked ** can be specified by the user. The space complexity of our implementation can
be expressed in terms of the space needed to maintain the channel wait-for graph, cycle list, and
deadlock list as follows:

CWEjze = (Max, X c)+ (Maxy,, X )+ (M“xfr Xc3)

cyclelist = (M(IxchC4)+(CaXMCX Cs)

size
deadlocklistg;,, = (Max; ;X cg) + (DX Cyxeq)+(DyXMgX cg)

5 - Related Work

Static channel dependency and wait-for graphs which represent connections allowed by routing
algorithms have been presented in previous work [7, 8, 12]. In contrast, the channel wait-for
graphs presented in this work are dynamic and represent the state of resource allocations and
requests existing within a network at a given point in time. While the dependency and wait-for
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graphs in previous work are intended for developing deadlock avoidance based routing algo-
rithms, our channel wait-for graphs are used to precisely define deadlocks and related blocking
behavior, to model resource dependencies within networks which allow unrestricted routing, and
to implement deadlock detection in a network simulator.

Previous definitions of deadlock within interconnection networks include “deadlocked configura-
tions” and “canonical deadlocked configurations” [7, 8, 11]. These notions of deadlock encom-
pass not only messages which are directly involved in deadlock, but also other types of messages
which are affected by deadlock. Furthermore, these definitions do not distinguish between single
and multiple instances of deadlock which may exist simultaneously. In contrast, our definition of
deadlock allows identification of every instance of deadlock, and distinguishes between the causal
components of deadlock and those messages which are affected by deadlock. Therefore, our defi-
nition enables us to precisely define optimal deadlock resolution.

A summary of work characterizing deadlocks as knots in generalized resource graphs intended to
describe deadlocks in operating systems is presented in [13]. The resource model presented here
is a specialized version of this work, intended to precisely define deadlocks within interconnec-
tion networks.

5 - Concluding Remarks

We have presented here an approach to modeling resource allocations and dependencies within an
interconnection network. We have formally defined various types of message blocking behavior,
and have shown knots in channel wait-for graphs to be necessary and sufficient for deadlock. The
framework we have provided distinguishes between messages involved in deadlock and those
simply dependent on deadlock, thus providing a specification for deadlock recovery-based algo-
rithms for properly resolving deadlock. We have also presented an approach to implementing
deadlock detection for the purpose of simulation. Results of deadlock characterization performed
using our implementation of deadlock detection is presented in other work [9, 10].
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