Efficient Algorithms for Block-Cyclic Redistribution of Arrays

Young Won Lim, Prashanth B. Bhat and Viktor K. Prasanna

CENG 97-10

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213) 740-4483

May 1997
Efficient Algorithms for Block-Cyclic Redistribution of Arrays *†

Young Won Lim, Prashanth B. Bhat, and Viktor K. Prasanna
Department of EE-Systems, EEB-200C
University of Southern California
Los Angeles, CA 90089-2562
{lrm + prabhat + prasanna}@halcyon.usc.edu
http://ceng.usc.edu/~prasanna/

Abstract

The block-cyclic data distribution is commonly used to organize array elements over the processors of a coarse-grained distributed memory parallel computer. In many scientific applications, the data layout must be reorganized at runtime in order to enhance locality and reduce remote memory access overheads. In this paper, we present a general framework for developing array redistribution algorithms. Using this framework, we have developed efficient algorithms that redistribute an array from one block-cyclic layout to another.

Block-cyclic redistribution consists of index set computation, wherein the destination locations for individual data blocks are calculated, and data communication, wherein these blocks are exchanged between processors. The framework treats both these operations in a uniform and integrated way. We have developed efficient and distributed algorithms for index set computation that do not require any interprocessor communication. Data communication is performed in a conflict-free manner using direct, indirect, and hybrid algorithms. In the direct algorithm, a data block is transferred directly to its destination processor. In an indirect algorithm, data blocks are moved from source to destination processors through intermediate relay processors. The relay processors combine data blocks with the same destination, thereby reducing the total number of communication steps. The hybrid algorithm is a combination of the direct and indirect algorithms.

Our framework is based on a generalized circulant matrix formalism of the redistribution problem and a general purpose distributed memory model of the parallel machine. Our algorithms sustain excellent performance over a wide range of problem and machine parameters. Experimental results on the IBM SP-2 and the Cray T3D show superior performance over previous approaches. When the block size of the cyclic data layout changes by a factor of K, the distribution can be performed in $O(\log K)$ communication steps. This is true even when K is a prime number. Our algorithms result in improved upper bounds on the communication time in comparison with those obtained using the all-to-all communication primitive. Our algorithms are implemented using MPI, and can be easily ported to other HPC platforms.

Our framework can be used for developing scalable redistribution libraries, for efficiently implementing parallelizing compiler directives, and for developing parallel algorithms for various applications. Redistribution algorithms are especially useful in signal processing applications, where the data access patterns change significantly between computational phases. They are also necessary in linear algebra programs, to perform matrix transpose operations.

*Work supported by DARPA under contract no. DABT63-95-C-0092.
†A preliminary version of this paper appears in Proc. SPDP 1996 [11].
1 Introduction

The choice of data distribution strongly influences application performance on coarse-grained distributed memory parallel machines. In these machines, access to local data is much faster than access to remote data located at any of the other nodes. This is because remote data access incurs expensive interprocessor communication overheads. These overheads can be reduced by choosing a data distribution that enhances data locality. However, in many High Performance Computing (HPC) applications, including signal processing, the data access patterns of the application change during the computation [20]. Hence, it is desirable to redistribute the data at intermediate points of the computation. In such scenarios, it is important to perform data redistribution using efficient algorithms. Otherwise, the interprocessor communication overheads due to redistribution would offset the performance benefits resulting from data locality. [12] gives an example of the benefits of interstage data redistribution in a typical HPC application.

Data distribution and redistribution can be specified at various levels of detail in application programs. If a parallelizing compiler is used, application programmers specify data distribution using high level compiler directives. For example, parallel programs developed in HPF use the ALIGN, DISTRIBUT, and REDISTRIBUTE directives to specify data distribution and redistribution of arrays [9]. When HPC applications are specified using explicit parallel algorithms, the data distribution and redistribution between the processors are managed by the programmer. Message passing calls (such as calls to MPI) are used to perform interprocessor data communication. In either approach, efficient redistribution algorithms are important. When parallelizing compilers are used, the data redistribution schemes are used to efficiently implement the functionality specified through directives. In the parallel algorithm design approach, efficient redistribution algorithms can be used to implement collective communication routines, such as MPI.Alltoall. Alternatively, these algorithms can be used to develop data redistribution libraries built on top of MPI [14].

In this paper, we present a framework for developing efficient redistribution algorithms. We focus on the class of block-cyclic distributions, which are commonly used to partition an array over multiple processors. For a specified block size x, the distribution first partitions the N array elements into blocks of x consecutive elements each. The blocks are then assigned to P processors in a round-robin fashion. Such a distribution is denoted as $cyclic(x)$. The block-cyclic data redistribution problem consists of reorganizing an array from one block-cyclic distribution to another, i.e., from $cyclic(x)$ to $cyclic(y)$. The most frequently encountered version of this redistribution problem
is the cyclic(x) to cyclic(Kx) redistribution. We denote the cyclic(x) to cyclic(Kx) redistribution among P processors as $\mathcal{R}_x(K, P)$.

The block-cyclic distribution matches the data access patterns of many HPC applications. For example, in signal processing applications, the block-cyclic distribution is the natural choice for radar and sonar data cubes. Many of the commonly occurring communication patterns, such as the corner turn operation [10], can be then viewed as block-cyclic redistribution operations where the block size changes from x to Kx. Further, frequently used data layouts such as the block and cyclic distributions are special cases of the block-cyclic distribution. HPF directives support block-cyclic data distribution and data redistribution of arrays. ScaLAPACK, a widely used mathematical software for dense linear algebra computations, also uses a block-cyclic distribution for good load balance and computation efficiency [2]. In this paper, we consider the $\mathcal{R}_x(K, P)$ problem. We are also developing algorithms for the general cyclic(x) to cyclic(y) redistribution problem [13]. Although we focus on one dimensional arrays, our algorithms can be easily extended to multidimensional arrays.

The block-cyclic redistribution problem has been well studied in the literature. The important case of $\mathcal{R}_x(K, P)$ has attracted the most attention. The previous research efforts attempt to reduce either of the two main overheads incurred by redistribution algorithms: index computation overheads and interprocessor communication overheads. Index computation overheads are incurred when each processor computes indices of array elements that are to be communicated with the other processors, as well as the destination processors of such array elements. The communication overheads are incurred when the processors exchange array elements. These include software start-up overheads for invocation of the send and receive system calls, transmission costs for sending data over the interconnection network, and overheads due to node contention.

Table 1 compares the performance of some previous research efforts. The direct approach refers to the scheme presented in [18]. Here, an algorithm which takes K communication steps is developed for $\mathcal{R}_x(K, P)$. In [7], a multiphase approach is derived for the same problem. Here, K is factored such that $K = k_1 \cdot k_2 \cdots k_n$. The redistribution is then performed in n phases; the ith phase takes k_i steps. A two-phase variant of this scheme is also presented in [7]. When K is a prime number, both the multiphase and two-phase approaches take K communication steps. The indirect approach refers to our new algorithms presented in Section 3. Our indirect algorithms
<table>
<thead>
<tr>
<th>Cyclic Redistribution Problem</th>
<th>Direct Approach</th>
<th>Multi-phase Approach</th>
<th>2-phase Approach</th>
<th>Our Indirect Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclic(x) → cycle(Kx) or cyclic(Kx) on P processors</td>
<td>For a composite $K = \prod_{i=1}^{n} k_i$</td>
<td>K</td>
<td>$\sum_{i=1}^{n} k_i$</td>
<td>$k_1 + k_2$</td>
</tr>
<tr>
<td></td>
<td>For a prime K</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>cyclic(x) → cycle(y) on P processors</td>
<td>For pairwise relatively prime numbers x, y, and P</td>
<td>$x + y$</td>
<td>$x + y$</td>
<td>$x + y$</td>
</tr>
</tbody>
</table>

Table 1: Number of communication steps required by various approaches to perform block-cyclic redistribution.

To perform $R_x(K, P)$ in at most $\lceil \log K \rceil + 2$ steps. The algorithm is applicable for any value of K, including prime numbers. For example, when $K=31$ and $P=64$, the redistribution can be performed in 6 communication steps. In contrast, previous approaches in [18] and [7] take 31 communication steps for this problem.

An important contribution of our research is a uniform framework for the design and evaluation of these different redistribution algorithms. In this framework, the direct and indirect communication algorithms are special cases of the general class of hybrid algorithms. The key idea of the framework is a generalized circulant matrix representation of the redistribution problem. This representation allows for the choice of a suitable direct, indirect or hybrid algorithm based on problem parameters such as array size, and block size, as well as parallel machine parameters. Each algorithm consists of a local data reorganization phase and an interprocessor communication phase. The local reorganization phase permutes data blocks within the memory of each processor so that the communication phase can be performed efficiently. Apart from reducing communication overheads, our approach also minimizes index computation overheads by utilizing the periodic characteristics of the block cyclic distribution. Index computation is performed by the processors in a distributed way, and no interprocessor communication is needed.

Implementations of our algorithms on the IBM SP-2 and Cray T3D show superior performance over previous approaches. Our algorithms have been implemented using MPI and can be easily ported to various HPC platforms. Our techniques can be used for developing scalable redistribution libraries, for optimizing ScaLAPACK [2], for implementing the REDISTRIBUTE directive in HPF [9].

1All logarithms in this paper are to base 2.
and for developing parallel algorithms for various HPC applications.

The rest of the paper is organized as follows. Section 2 discusses some previous research efforts on block cyclic redistribution. In Section 3, we present our approach to the redistribution problem and show illustrative examples. Section 4 presents our algorithms and gives proofs of their correctness. In Section 5, we report experimental results on the IBM SP-2 and the Cray T3D. Section 6 concludes the paper.

2 Related Work

Several research efforts have been focused on the problem of redistributing an N element array over P processors from $cyclic(x)$ to $cyclic(Kx)$, i.e., $R_x(K, P)$. Many of these research efforts have been targeted towards efficiently implementing high level compiler directives, such as the REDISTRIBUTE directive of HPF.

Sadayappan et. al. [7] and Walker et. al. [18] have proposed algorithms which reduce communication overheads. In [18], a K step schedule is given for $R_x(K, P)$. At each step, processors exchange data in a contention free manner: each processor sends data to exactly one processor and receives data from exactly one processor. A similar communication schedule is presented in [7]. Although the communication schedule presented in [18] is based on modular arithmetic and that in [7] is based on tensor products, the resulting communication schedules are similar. Both these communication schedules are special cases of the family of “direct schedules” that can be derived from our framework.

Walker et. al. [18] implemented cyclic redistribution algorithms using a synchronized and an unsynchronized scheme. In the synchronized scheme, each of the K communication steps posts a receive, sends a message, and then waits for the completion of the receive. In the unsynchronized scheme, all the K receives are posted and the K corresponding sends are then performed. The unsynchronized scheme requires temporary buffers of size $\frac{N}{P}$ per processor (as large as the local portion of the array). The synchronized scheme incurs excessive synchronization overheads and is vulnerable to communication hot spots. Implementations on the IBM SP-1 and on the Intel Paragon show that the unsynchronized scheme executes faster than the synchronized scheme. To improve the performance of the synchronized scheme while retaining its low buffer size requirements, random and optimal scheduling algorithms were developed in [18]. However, the optimal schedule in [18] does not minimize the number of communication steps. The schedule only ensures that each
communication step is conflict-free. This schedule consists of \(K \) steps. Their experimental results show that the performance of the synchronized "optimal" algorithm is comparable to that of the unsynchronized scheme, for small \(N \) and \(K \).

Sadayappan et al. [6, 7, 8] presented a multiphase approach for \(\mathbb{R}_x(K, P) \). Here, array redistribution is performed as a sequence of redistributions so that the total communication cost of the sequence is lower than the cost of the direct redistribution. In their scheme, each of the intermediate distributions is a cyclic distribution. The communication schedule for each phase is determined using a tensor product formalism. Using this formalism, each processor computes the set of source processors, the set of destination processors, the local indices of elements to be sent, and the local indices of the elements to be received. The multiphase approach in [7] first factors \(K \) into \(k_1 \cdot k_2 \cdot \ldots \cdot k_n \). The redistribution is then performed in \(n \) phases. The \(i^{th} \) phase consists of \(k_i \) communication steps. All the \(N \) array elements are moved during each phase. To determine the sequence of intermediate distributions, heuristic optimization algorithms are developed in [7]. When \(K \) is prime, this approach takes \(K \) communication steps.

Indirect algorithms for collective communication have also been addressed in [1]. Here, interprocessor data communication is performed in a "combine and forward" manner. A library of efficient communication schedules, called CCL, is developed. The library supports operations such as broadcast, scatter, gather, and shift. Communication schedules are derived from a circulant graph representation of strided communication patterns.

Several other research efforts have focused on reducing index computation overheads. However, communication scheduling is not addressed in these efforts.

In [16, 17], Choudhary et al. present efficient index computation algorithms for the special case when \(P \mod K = 0 \). They also consider the redistribution from \(\text{cyclic}(x) \) to \(\text{cyclic}(y) \), for general \(x \) and \(y \). Although it is possible to explicitly calculate the destination and source processor of each element of the local array, such a scheme is expensive to be used in practice. [17] proposes \(\text{gcd} \) and \(\text{lcm} \) methods. These are two phase algorithms where \(\text{cyclic}(x) \) is first redistributed to \(\text{cyclic}(m) \), followed by the redistribution of \(\text{cyclic}(m) \) to \(\text{cyclic}(y) \). Here, \(m \) can be \(\text{gcd} \) or \(\text{lcm} \) of \(x \) and \(y \). It is shown in [17] that multidimensional arrays can be redistributed by applying these algorithms to each dimension of the array separately.

In [15], Banerjee et al. use a line segment formalism to represent a \(\text{cyclic}(x) \) distribution. The array elements that map to a processor are represented as a set of strided line segments. For every
pair of processors, the array elements whose indices are in the intersection of the respective line families are exchanged. Their techniques handle arbitrary source and target processor sets and multidimensional arrays.

In [5], Ni et al. provide new logical processor numbers (lpids) for the target distribution, so as to minimize the amount of data to be communicated during redistribution. Data blocks which have the same lpids across source and target distributions, do not need to be moved. However, index computation becomes complicated. This approach is only applicable when the source and target processor sets for the redistribution are the same.

3 Our Approach to Redistribution

We shall now examine the block-cyclic redistribution problem in detail. As mentioned in Section 1, we focus on the case where the block size changes by a factor of K, i.e., $R_x(K, P)$. Section 3.1 gives an example of such a redistribution problem. Section 3.2 discusses the costs involved in performing block-cyclic redistribution. Section 3.3 explains our table-based framework for the design of efficient redistribution algorithms. Section 3.4 explains the communication schedules that are incorporated in our algorithms.

3.1 The Block-Cyclic Redistribution Problem

The block cyclic distribution of an array can be defined as follows [18]: given an array of size N, P processors, and a block size x, the distribution first partitions the array elements into contiguous blocks of x items each. b_i is the i^{th} block, $0 \leq i < \frac{N}{x}$. The blocks are then assigned to processors in a round robin fashion so that b_i is assigned to processor $(i \mod P)$. We denote a block-cyclic distribution of block size x as $cyclic(x)$. We now consider the $cyclic(x)$ to $cyclic(Kx)$ redistribution problem, $R_x(K, P)$. Since this redistribution problem becomes the all-to-all communication problem when $K \geq P$, we consider the case of $K < P$.

Figure 1 shows the example of $R_2(3, 4)$. The array A which has $N = 48$ elements is shown in Figure 1(a). Figure 1(b) shows the initial distribution, $cyclic(2)$. Here, b_i is of size 2 elements, and has a global block index i. The blocks are assigned to $P = 4$ processors in a round robin fashion. If the block size is increased by a factor of $K(= 3)$, i.e., the new block size becomes 6, each set of three consecutive blocks becomes a new block. This increase of block size is shown in Figure 1(c).

\[\text{For simplicity, we assume that } x \text{ divides } N. \]
A. Array Point of View

x=2, K=3, P=4

(b) CYCLIC(2)

(c) CYCLIC(6)

(d) CYCLIC(6) with new global block index

B. Processor Point of View

CYCLIC(2)

CYCLIC(6)

Initial Distribution Table S

Final Distribution Table R

Figure 1: Redistribution from cyclic(x) to cyclic(Kx) on P processors
Figure 1(d) shows the cyclic(6) distribution. The blocks have a size of six elements each, and have new global indices.

From Figures 1(b) and 1(c), a periodicity can be seen in the block movement pattern of \(R_x(K, P) \). Every set of \(PK \) blocks starting at index \(cPK \), \((c = 0, \ldots, \frac{N}{PK} - 1) \), has the same communication pattern. Such a set of \(PK \) data blocks is referred to as a superblock in [18] and as a course in [7]. In this example, each superblock consists of 12 blocks. Figures 1(b) and 1(c) show the two superblocks of the initial and final distributions. To redistribute from cyclic(2) to \(cyclic(6) \), blocks \(b_0, b_1, b_2 \) are moved to \(p_0 \), blocks \(b_3, b_4, b_5 \) are moved to \(p_1 \), blocks \(b_6, b_7, b_8 \) are moved to \(p_2 \), and blocks \(b_9, b_{10}, b_{11} \) are moved to \(p_3 \). In the next superblock, blocks \(b_{12} \) to \(b_{23} \) are moved in the same manner.

Figures 1(a) – 1(d) show the array point of view of the redistribution problem. The elements of the array are shown along a single horizontal axis. The processor numbers are then marked above each element. The periodicity of the redistribution pattern and the structure of the superblock can be better observed using a two-dimensional table representation, as shown in Figures 1(e) and 1(f). The table consists of \(P \) columns. Column \(i \) contains blocks assigned to processor \(p_i \). This representation is therefore called the processor point of view. The table can be further “folded” at each superblock as shown in Figures 1(g) and 1(h). Each “layer” corresponds to a superblock, and consists of \(K \) rows and \(P \) columns. The data communication pattern is identical for each layer.

Blocks which are located at the same relative position within a superblock are moved in the same way during redistribution. These blocks can therefore be transferred in a single communication step. The MPI derived data type provides an efficient mechanism to handle these blocks as a single unit of data. Without loss of generality, we will consider only the first superblock (the first layer) to illustrate our algorithms in the following. We refer to the tables representing the first superblocks of the initial and the final distribution as the initial distribution table and the final distribution table, respectively. These are shown by \(S \) and \(R \) in Figures 1(i) and Figure 1(j), respectively. It should be noted that the global block indices are ordered in row (column) major in the initial (final) distribution table. In other words, the entries of \(S \) and \(R \) are ordered in row and column major order, respectively. Thus, the cyclic redistribution problem essentially involves reorganizing blocks within each superblock from an initial distribution table \(S \) to a final distribution table \(R \).

So far, we have discussed the cyclic(\(x \)) to cyclic(\(Kx \)) redistribution problem. A dual relationship exists between the cyclic(\(x \)) to cyclic(\(Kx \)) and the cyclic(\(Kx \)) to cyclic(\(x \)) redistributions. In the
cyclic(Kx) to cyclic(x) redistribution, the entries of S are in column major order, while the entries of R are in row major order. Hence, our algorithms for \(R_x(K, P) \) can be used for cyclic(Kx) to cyclic(x) redistribution, with a few modifications.

3.2 The Cost of Redistribution

As mentioned in Section 1, the data redistribution process incurs two kinds of overheads: index computation overhead and interprocessor communication overhead. A clear understanding of the nature of these overheads will be useful in reducing them.

For each array element, an index computation overhead is incurred in calculating its destination processor and the location of the element within that processor. In HPF, each array element can be referenced by a global index and a local index. The global index is the index of an array element from the array point of view, in Figure 1(a). From the global index, we can calculate the processor number as well as the local memory location, i.e., the local index. These refer to the column and row indices in the two-dimensional table of Figure 1(e). Similarly, the position in the table of Figure 1(f) can be calculated from the global block index, once \(K \) is known. However, frequent computation of this information from the global index leads to significant index computation overhead. To reduce the index computation overhead, an intelligent scheme that utilizes the regular structure of the block-cyclic array distribution will be discussed in Section 4. Observe that explicit index computation must be performed for only one superblock. Across superblocks, the corresponding elements are distributed in an identical fashion. For reasons of efficient data transmission, a redistribution algorithm should perform packing and unpacking of messages. The array elements which have the same destination processor are packed into a single message and sent together. The received message must then be unpacked and elements must be placed in the correct locations in the processor’s local memory, according to the desired final distribution.

The interprocessor communication overhead is incurred when data is exchanged between processors of a coarse-grained parallel computer. The communication overheads can be represented using a simple analytical model of typical distributed memory machines, the General purpose Distributed Memory (GDM) model [19]. Similar models are reported in the literature [1, 3, 4]. The GDM model represents the communication time of a message passing operation using two parameters: the start-up time \(T_d \) and the unit data transmission time \(\tau_d \).

The start-up time is incurred once for each communication event. It is independent of the message size to be communicated. This start-up time consists of the transfer request and acknowledg-
crement latencies, context switch latency, and latencies for initializing the message header. The unit data transmission time is the cost of transferring a message of unit length over the network. The total transmission time for a message is proportional to the message size. Thus, the total communication time for sending a message of size m units from one processor to another is modeled as \(T_d + m\tau_d \). A permutation of the data elements among the processors, in which each processor has m units of data for another processor, can be performed concurrently in \(T_d + m\tau_d \) time. The model assumes that the network is not heavily loaded, and the unit data transmission time is independent of the number of hops the message traverses.

The model also assumes no node contention at the source and destination of messages. Thus, a processor can receive a message from only one other processor in every communication step. Similarly, a processor can send a message to only one other processor in each communication step. Contention at switches within the interconnection network is not considered. The interconnection network is modeled as a completely connected graph. Hence, the model does not include parameters for representing network topology. This assumption is realistic because of architectural features such as virtual channels and cut-through routing in state-of-the-art interconnection networks. Also, the component of the communication cost that is topology dependent is insignificant compared to the large software overheads included in message passing time.

The model can be used to represent interprocessor communication costs of many general purpose HPC systems such as the IBM SP-2 and the Cray T3D. In the current generation of HPC platforms, the network (hardware) latency is small compared to software overheads in message passing. \(T_d \) is in the range of micro-seconds and the switch latencies are in the range of nano-seconds. Thus, the ratio of \(T_d \) to \(\tau_d \) is in the range of several hundreds to a few thousands. To reduce communication time, the high start-up cost and the message length must be considered.

3.3 A Table-Based Framework for Redistribution

The pattern of redistribution of an array from one block-cyclic distribution to another can be represented using the 2-dimensional distribution tables \(S \) and \(R \), introduced in Section 3.1. Each table has the dimensions of a superblock, i.e. \(K \) rows and \(P \) columns for the redistribution problem \(R_d(K,P) \). The \(j^{th} \) column of the table contains the global indices of the blocks that are owned by the processor \(p_j \), \(0 \leq j < P \). Since the redistribution pattern is identical for each superblock, it is sufficient to consider the redistribution problem with respect to one superblock.

Each block in the table (\(S \) or \(R \)) is identified by a global block index. Note that, if the
redistribution parameters \((K \text{ and } P)\) are given, then each block’s location in \(S\) and \(R\) can be determined. As a result of redistribution, each block moves from its initial location in \(S\) to its final location in \(R\). Thus, the processor ownership and the local memory location of each block are changed by redistribution. Redistribution can thus be conceptually viewed as a table conversion process from \(S\) to \(R\). This conversion process can be decomposed into independent column and row transformations. In a column transformation, blocks are permuted within a column of the table. This is therefore a local operation within a processor’s memory. In a row transformation, blocks within a row are permuted. This operation therefore leads to a change in processor ownership of blocks, and requires interprocessor communication.

The overall communication pattern of the redistribution can be defined by the destination processor table, shown in Figure 2(a). The \(j^{th}\) column of the destination processor table \(P\) contains all the destination processor indices of blocks in the processor \(p_j\), \(0 \leq j < P\). \(P\) can be obtained by replacing each entry in \(S\) with the destination processor index of the corresponding block. Figure 2(b) shows the set of communication events in \(R_F(K, P)\). It can be seen that every processor communicates with \(K\) processors (including itself). Since a processor can send data to only one other processor at a time, it is evident that this communication pattern must be broken down into a set of communication events. This constitutes communication scheduling.

The destination processor table \((dpt)\) defines the required set of communication events in redistribution. One way to perform the row transformations is to regard the \(i^{th}\) row of \(P\) as the set of events to take place in the \(i^{th}\) communication step. Thus, the \((i,j)^{th}\) entry of \(P\) will be the destination processor of the \(i^{th}\) communication event at the processor \(p_j\). In general, this can lead to node contention, since multiple processors can attempt to send messages to a single processor in
the same communication step. However, if every row of \(P \) is a permutation of the processor indices \(\{0, 1, \ldots, P - 1\} \), then every processor has a distinct destination processor in each communication step. Thus, node contention can be avoided. This observation is the motivation for the column transformations.

Figure 3 shows the key steps in our table conversion approach to redistribution. The lower portion of the figure shows the desired overall result: the initial distribution table \(S \) is to be converted to the final distribution table \(R \) by a communication pattern specified by \(P \). Our approach consists of first transforming \(S \) to an intermediate form \(S' \) by applying only column transformations. Remember that the \((i, j)^{th}\) entry of the \(dpt\) gives the destination processor number for the \((i, j)^{th}\) entry of \(S \). To maintain this correspondence between \(S \) and \(P \), the same set of column transformations are also applied to \(P \). This results in the table \(P_s \).

\(S' \) is then converted to \(R' \), by applying row transformations based on the communication pattern specified by \(P_s \). \(R' \) is then converted to \(R \) by applying an additional set of column transformations. The key idea of the framework is to choose a \(P_s \) such that the required row transformations (communication events) can be performed efficiently.

For example, assume that the local data reorganization (column transformation) creates a \(P_s \) wherein the entries along each diagonal are the same. The communication events (row transformations) will then be required to vertically align these diagonals, i.e., elements which were present
along a diagonal of \(\mathbf{P}_s \) are to be moved into a single column. It will be shown in Section 3.4 that this can be achieved in a logarithmic number of steps by circularly shifting rows of \(\mathbf{P}_s \) in a strided way. Since \(\mathbf{P}_s \) has \(K \) rows, the communication can be performed in \(O(\log K) \) steps.

In the following section, we shall define the notion of a generalized circulant matrix. Once \(\mathbf{P}_s \) is in generalized circulant matrix form, a class of efficient and contention free communication schedules for \(\mathcal{R}_x(K, P) \) can be easily derived.

3.4 Communication Scheduling for Efficient Redistribution

As discussed in the previous section, our approach to redistribution consists of local rearrangement of data within each processor as well as interprocessor communication. Our framework for communication scheduling utilizes the notion of a generalized circulant matrix. We now explain the characteristics of such a matrix and how it is used to develop communication schedules.

Definition: An \(m \times n \) matrix \((m \leq n) \) is a *circulant matrix* if row \(k \) = row 0 circularly right shifted \(k \) times, where \(0 \leq k < m \).

Definition: Given an \(M \times N \) matrix \((M \leq N) \), suppose the matrix can be partitioned into submatrices of size \(s \times t \), where \(M = m \cdot s \) and \(N = n \cdot t \), for some \(s, t > 0 \) and \(m \leq n \). The matrix is a *generalized circulant matrix* if row \(k \) of submatrices is the same as row 0 of submatrices circularly right shifted \(k \) times \((0 \leq k < m) \), and each submatrix is either a circulant matrix or a generalized circulant matrix.

The generalized circulant matrix formalism and the *dpt* provide a systematic and flexible framework for developing contention free communication schedules. In Figure 3, the initial column transformations convert \(\mathbf{P} \) to a generalized circulant matrix form, \(\mathbf{P}_s \). Using this form of \(\mathbf{P}_s \), we have derived three kinds of schedules for \(\mathcal{R}_x(K, P) \). These are the direct, indirect and hybrid schedules.

An example of a \(K \times P \) generalized circulant matrix \(\mathbf{C} \) is shown in Eq (1). The matrix \(\mathbf{C} \) is partitioned into submatrices \(C_j \) of size \(G \times G \). Here, \(G = \gcd (K, P) \), \(K = K'G \), \(P = P'G \) and \(K \leq P \). (The choice of parameters in this example will become clear in Section 4.) Thus, the matrix \(\mathbf{C} \) has \(K' \) submatrix rows and \(P' \) submatrix columns. Each submatrix row is the circularly right shifted version of the first submatrix row \([C_0 \ C_1 \ \cdots \ C_{P'-1}] \). Therefore, the matrix \(\mathbf{C} \) can have at most \(P' \) distinct submatrices. Each submatrix \(C_j \), \(0 \leq j < P' \) itself is a \(G \times G \) circulant
matrix.

\[C = \begin{bmatrix}
C_0 & C_1 & \cdots & C_{P' - 1} \\
C_{P' - 1} & C_0 & \cdots & \vdots \\
C_{P' - 2} & C_{P' - 1} & \cdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
C_{(P' - \lfloor K' + 1 \rfloor) \mod P'} & C_{(P' - K' + 2) \mod P'} & \cdots & C_{P' - K'}
\end{bmatrix} \]

\[C_j = \begin{bmatrix}
c_{j,0} & c_{j,1} & \cdots & c_{j,G - 1} \\
\vdots & \vdots & \ddots & \vdots \\
c_{j,1} & c_{j,2} & \cdots & c_{j,0}
\end{bmatrix} \] \hspace{1cm} (1)

We make the following two observations about generalized circulant matrices: (i) Using the above notation, all the K' submatrices (C_j's) along each diagonal are identical, (ii) If all the P elements in a certain row i are distinct, then every row is a distinct permutation of the elements in row i. The graphical representation of Eq (1) in Figure 4 clearly shows these properties. The submatrices along each diagonal of Figure 4(a) are identical, depicted by their uniform shading. Within each submatrix, the elements of each diagonal are also identical, as shown in Figure 4(b). The diagonals in the generalized circulant matrix can be aligned vertically by circular shift operations. Figure 5 shows the first two steps of such an alignment. In the first step, the second and the fourth rows of submatrices are circularly left shifted. In the second step, the third and the fourth rows of submatrices are circularly left shifted with the stride increased by a factor of two. At this point, each column of submatrices has identical elements. The circular shift operations can be applied recursively to each submatrix. As a result of these operations, each of the diagonals within the submatrices will be vertically aligned.

Consider the example of $H_{2}(6, 9)$. Figure 6 shows the column transformations which convert the dpt P to its generalized circulant matrix form P_s. Figure 6(a) shows the initial distribution table, while Figure 6(b) shows the corresponding dpt, P. In this example, $G = 3$, $K' = 2$, and $P' = 3$. In Figure 6(a) and 6(b), S and P can be partitioned into submatrices of size 2×9. Next, the rows in these submatrices are shuffled, as shown in Figure 6(c) and 6(d). Now we can partition the
shuffled S_1 and the corresponding dpt into submatrices of size 3×3. The diagonalization of these 3×3 submatrices and diagonalization of elements in each submatrix are shown in Figures 6(e) and 6(f). This results in the generalized circulant matrix P_s. It consists of 2 rows and 3 columns of 3×3 submatrices. Observe that the elements within each column of P (or S) are the same as the elements in the corresponding column of P_s (or S'). Hence, no interprocessor communication is incurred during this column transformation phase.

Figures 7 and 8 illustrate the direct and indirect schedules for the example of $R_x(6,9)$. Note that P_s is in the generalized circulant matrix form, as shown in Figures 7(a) and 8(a). In the direct schedule, the i^{th} communication event permutes the i^{th} row of P_s, as shown in Figures 7(c)
Figure 7: Communication steps and patterns in the direct schedule

Figure 8: Communication steps and patterns in the indirect schedule. In (a), submatrices of size 3×3 are moved as a unit. In (c) and (d), elements within a submatrix are circularly shifted.
and Figure 7(d). For example, the 0^{th} row of P_s is $(0, 6, 3, 2, 8, 5, 1, 7, 4)$. Thus, processors $(p_0, p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8)$ send the blocks which correspond to the 0^{th} row to processors $(p_0, p_6, p_3, p_2, p_8, p_5, p_1, p_7, p_4)$. After 6 steps, Figure 7(b) is obtained. In each step of the direct schedule, each processor sends only one message and also receives only one message, as shown in Figure 7(d). This is therefore a communication schedule wherein each step is contention free. Figure 7(c) and Figure 7(d) show only one of the many possible direct schedules for this example. Observe that the K rows of P_s specify K communication steps. These steps can be performed in any order. Hence, there are $K!$ possible direct schedules that can be derived from P_s.

In the indirect schedule, each diagonal of submatrices is first aligned by circularly shifting the 3^{rd}, 4^{th}, and 5^{th} rows to the left, as shown in Figures 8(a) and (b). Figure 8(c) shows the diagonal elements within each submatrix of size 3×3, which are to be aligned. Figures 8(c) and (d) show circular shift operations performed in each group of three processors. Thus, after $\lceil \log 2 \rceil + \lceil \log 3 \rceil = 3$ steps, every element is vertically aligned, as shown in Figure 8(e). Figure 8(f) shows the communication pattern of the circular shift operations.

For large sized messages, the transmission cost constitutes most of the total communication time. In such situations, the direct schedule is the most efficient. In the direct communication schedule, messages are sent directly from the source processor to the destination processor. For small sized messages, the start-up costs dominate the transmission costs in the total communication time. This situation is often encountered, for example, when redistributing a small sized array or redistributing an array among a large set of processors. The excessive start-up costs can be reduced by sending messages to their destination processors through intermediate "relay" processors. At these intermediate processors, messages which are destined to the same processor, are combined and forwarded. Thus, the indirect transfer of messages refers to reorganizing the initial communication pattern. The indirect schedule reduces the start-up costs; however, it increases the total message volume to be transferred. For large sized messages, the communication time of the indirect schedule increases faster than the direct schedule due to the extra data transmission.

A hybrid schedule with degree of indirection d, performs the first d steps of the indirect schedule. Each data block of size 2^d that has the same destination is then transferred using a direct schedule. This schedule thus balances the start-up and data transmission costs. The desired degree of indirection d can be computed based on problem specific parameters (P, K, N) and machine specific parameters (T_d and τ_d) to minimize the overall redistribution cost. Note that the indirect schedule
is a hybrid schedule with \(d = \lfloor \log K' \rfloor + \lfloor \log G \rfloor \) and the direct schedule is a hybrid schedule with \(d = 0 \). The next section gives pseudocode for these algorithms and analyzes their complexity.

4 Redistirbution Algorithms and Their Complexity

As already discussed, we view the redistribution problem \(\mathcal{R}_x(K, P) \) as a process of converting a table from row major order \(S \) to column major order \(R \). We now present results that establish the correctness and complexity of this operation.

The table conversion process consists of an initial set of column transformations (local reorganization) followed by a set of row transformations (interprocessor communication events). Theorem 1 shows that the initial \(dpt \ P \) can be converted into a suitable generalized circulant matrix form \(P_s \) by column transformations alone. Note that the column transformations convert \(S \) into \(S' \) in the same way as they convert \(P \) into \(P_s \). Theorem 2 gives formulae for efficiently computing the entries of \(P_s \). This represents the index set computation. Theorem 3 analyzes the complexity of the direct, indirect, and hybrid communication schedules for performing the row transformations.

In the following, \(i/K \) denotes the integer quotient of the division. Also, \(G = \gcd(K, P) \), \(K = K'G \), \(P = P'G \), \(i_1 = i/G \), \(i_2 = i \mod G \), \(j_1 = j/G \), and \(j_2 = j \mod G \).

Theorem 1 The initial \(dpt P \) of \(\mathcal{R}_x(K, P) \) can be reorganized via column transformations to obtain a \(P_s \) such that (i) \(P_s \) is a generalized circulant matrix, and (ii) Every row of \(P_s \) is a distinct permutation of \(\{0, 1, \ldots, P - 1\} \).

Proof: Consider the initial distribution table \(S \). Each element of \(S \), \(S(i, j) \) has the value \(iP + j \), since the data blocks are in row major order. The corresponding elements of the \(dpt \) are obtained from \(S \) by \(S(i, j)/K \). In the following, we reorganize the elements in each column of \(S \) in two stages, obtaining \(S_1 \) and then \(S' \) (Figure 6). We then show that \(P_s \), obtained by \(P_s(i, j) = S'(i, j)/K \), is in the generalized circulant matrix form. We also show that row 0 of \(P_s \) is a permutation of processor indices. Therefore, it follows that every row of \(P_s \) is a distinct permutation of processor numbers.

The column reorganization in any column \(j \) of \(S \) proceeds as follows:

(a) **Stage 1** (S to \(S_1 \)): We observe that elements whose row indices differ by a multiple of \(K' \) have the same modulo value with respect to \(K \). This is because

\[
S((i/K')K' + i \mod K', j) - S(i \mod K', j) \equiv (i/K')K'P \equiv 0 \pmod{K}
\] (2)
In each column, for each \(r, 0 \leq r < K' \), there are exactly \(G \) elements such that \(i \mod K' = r \). In the first stage, these elements are brought together by moving row \(i \) to row \(i' = (i \mod K')G + i/K' \). This constitutes the new table \(S_1 \).

Figure 6 shows the tables \(S \) and \(S_1 \) for \(R_x(6,9) \). Here \(G = 3 \) and \(K' = 2 \). Consider the table \(S \) in Figure 6(a). Rows 0, 2, 4 are moved to positions 0, 1, 2 in \(S_1 \), respectively. Similarly, rows 1, 3, 5 are brought together in rows 3, 4, and 5 of \(S_1 \), as shown in Figure 6(c).

\(S_1 \) has \(K' \times P' \) submatrices, each of size \(G \times G \), as shown in Eq (4) and Figure 6(c). These submatrices are denoted by \(B_{i_1,j_1} \), \((0 \leq i_1 < K', 0 \leq j_1 < P') \). The element \(S_1(i,j) \) is contained in submatrix \(B_{i_1,j_1} \), and is located at position \((i_2,j_2) \) within \(B_{i_1,j_1} \). Note that \(0 \leq i_1 < K', 0 \leq j_1 < P', 0 \leq i_2, j_2 < G \). Any element \(S_1(i,j) \) is given by:

\[
S_1(i,j) = S((i \mod G)K' + i/G, j) = S(i_2K' + i_1, j) = (i_2K' + i_1)P + j = (i_1P' + j_1)G + (i_2K'P + j_2)
\] (3)

Eq (3) has 2 components. The first component depends only on \((i_1,j_1) \) and is fixed for all elements of submatrix \(B_{i_1,j_1} \). The second component depends on the position \((i_2,j_2) \) within each submatrix. Eq (5) shows the elements in submatrix \(B_{i_1,j_1} \). The fixed component is shown outside the matrix while the variable component is shown at the position of the respective element. This equation can be validated using the example of Figure 6(c).

\[
S_1 = \begin{bmatrix}
B_{0,0} & B_{0,1} & \cdots & B_{0,P'-1} \\
B_{1,0} & B_{1,1} & \cdots & B_{1,P'-1} \\
\vdots & \vdots & \ddots & \vdots \\
B_{K'-1,0} & B_{K'-1,1} & \cdots & B_{K'-1,P'-1}
\end{bmatrix}
\] (4)

\[
B_{i_1,j_1} = (i_1P' + j_1)G + \begin{bmatrix}
0 & K'P & K'P + 1 & \cdots & G - 1 \\
1 & K'P + 1 & \cdots & K'P + G - 1 \\
\vdots & \vdots & \ddots & \vdots \\
(G - 1)K'P & (G - 1)K'P + 1 & \cdots & (G - 1)(K'P + 1)
\end{bmatrix}
\] (5)

(b) Stage 2 (\(S_1 \) to \(S' \)): We can transform \(S_1 \) into \(S' \) by moving the element at position \((i',j) \) of \(S_1 \) to position \((i,j) \) of \(S' \) such that
\[i_1 = (i'_1 P' + j_1) \mod K' \]
\(i_2 = (j_2 + i'_2) \mod G \)

\[P_s \] will have the following form, where \(P_s(i, j) = S'(i, j)/K' \):

\[
P_s = \begin{bmatrix}
A_{0,0} & A_{0,1} & \cdots & A_{0,P'-1} \\
A_{1,0} & A_{1,1} & \cdots & A_{1,P'-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{K'-1,0} & A_{K'-1,1} & \cdots & A_{K'-1,P'-1}
\end{bmatrix}
\]

\[A_{i_1,j_1} = \frac{(i'_1 P' + j_1)}{K'} + \begin{bmatrix}
0 & (G - 1)P' & \cdots & P' \\
P' & 0 & \cdots & (2)P' \\
\vdots & \vdots & \ddots & \vdots \\
(G - 1)P' & (G - 2)P' & \cdots & 0
\end{bmatrix}
\]

We now show that \(P_s \) is a generalized circulant matrix. Each \(G \times G \) submatrix \(A_{i_1,j_1} \) of Eq (8) consists of two components, shown in Eq (9). These are referred to as the base and the offset components. Figure 9 shows the base and offset components of \(S' \) and \(P_s \), for \(\mathcal{R}_x(6,9) \). The rows and columns of the base component are indexed by \(i_1 \) and \(j_1 \), respectively. The rows and columns of the offset component are indexed by \(i_2 \) and \(j_2 \), respectively. Thus, the entries of the base component are independent of \(i_2 \) and \(j_2 \). The entries within any \(G \times G \) submatrix of \(P_{\text{base}} \) are therefore all identical to one another, and are given by \((i'_1 P' + j_1)/K' \). Similarly, the entries of the offset component are independent of \(i_1 \) and \(j_1 \). All the \(G \times G \) submatrices are therefore identical to one another. Each of these is a \(G \times G \) circulant matrix. This fact can be proved as follows: in the offset term of Eq (5), each row has the same quotient when divided by \(K \). All elements of row \(i_2 \) have a quotient of \(i_2 P' \) when divided by \(K \). The transformation \(i_2 = (j_2 + i'_2) \mod G \) of Eq 7 converts each of these \(G \) rows into a diagonal in the offset term of Eq (9). Thus, this is a circulant matrix whose rows are obtained by shifting \([0 \ (G - 1)P' \ \cdots \ P']\) circularly.

Consider a row major indexing \(r = i_1 P' + j_1 \) imposed on submatrices \(B_{i_1,j_1} \) of Eq (4). Here, \(0 \leq r < P'K' \). We refer to each collection of \(K' \) adjacent submatrices starting at global index \(lK' \) as a \textit{run}. Run \(l \) contains submatrices whose indices range from \(lK' \) to \((l + 1)K' - 1\). Within a run, \(r \mod K' \) ranges from 0 to \(K' - 1 \). During the transformation from \(S_1 \) to \(S' \), the \(k^{th} \) submatrix of the run moves to the position of submatrix \(k \) within the column, \(0 \leq k < K' \). Thus, these \(K' \)
Figure 9: Decomposition of S' and P_s

Submatrices of a run constitute a diagonal of submatrices of S'. From Eq (3), it can be seen that the first component $(i_1'p' + j_1)G$ yields the same quotient when divided by K, for each of the K' submatrices in a run. Since the elements of $P_s(i, j)$ are obtained by $S'(i, j)/K$, each diagonal of P_s contains identical submatrices.

We now show that row 0 of P_s is a permutation of processor numbers. Since $i_1 = 0$ for this row, Eq 6 gives $(i_1'p' + j_1) \mod K' = 0$. Therefore, $(i_1'p' + j_1) \in \{0, K', \ldots (p' - 1)K'\}$ and $(i_1'p' + j_1)/K' \in \{0, 1, \ldots p' - 1\}$. The first row of the second term of Eq. (9) is given by $[0 \ (G - 1)p' \cdots p']$. Thus, it is easy to see that row 0 of P_s is a permutation of the processor ids.

Thus, P_s is a generalized circulant matrix. Also, every row is a distinct permutation of processor numbers.

Note that, if $G = 1$, then $K' = K$, $P' = P$, $S_1 = S$. Also, the second term in Eq. (5) and (9) will reduce to 0.

With reference to Figure 3, observe that P_s helps to specify the row transformations that convert S' to R'. The initial column transformations convert S to S' and P to P_s. Although Section 3 indicates that the column transformations reorganize data within a processor, this operation can
be expensive for large array sizes. Instead, the reorganization can be done by maintaining pointers to the elements of the array. This is achieved using a send data location table D_s. Each entry of D_s, $D_s(i, j)$ shows that the block corresponding to the entry $S'(i, j)$ was initially located at the row $D_s(i, j)$ and the column j in S. Therefore, $S'(i, j) = S(D_s(i, j), j)$. Similarly, $P_s(i, j) = P(D_s(i, j), j)$. The row transformations are specified by the destination processor table P_s with respect to S'. Each entry of P_s, $P_s(i, j)$ shows that the block corresponding to the entry $S'(i, j)$ must be moved to the row i and the column $P_s(i, j)$ in R'. In other words, $S'(i, j) = R'(i, P_s(i, j))$.

In an analogous way, the source processor table P_r specifies the row transformation with respect to R' by $R'(i, j) = S'(i, P_r(i, j))$. Another set of column transformations are required when R' is not equal to R. The receive data location table D_r specifies such column transformations by $R'(i, j) = R(D_r(i, j), j)$.

Theorem 2 gives the formulae to compute the individual entries of P_s and D_s efficiently. Each row of P_r is the inverse permutation of P_s. Since P_r and D_r can be computed in a similar manner as P_s and D_s, we do not discuss them further.

Theorem 2 A destination processor table in generalized circulant matrix form (P_s) and the corresponding send data location table D_s can be constructed as follows:

$$P_s(i, j) = \{n(j_1 - i_1)\! \mod\! P' + P'(i_2 - j_2) \mod G\}$$
$$D_s(i, j) = \{m(j_1 - i_1)\! \mod\! K' + K'(i_2 - j_2) \mod G\}$$

where n and m are solutions to $nK' - mP' = 1$.

Proof: From Theorem 1, the $(i, j)^{th}$ element of S' is

$$S'(i, j) = (i_1'P' + j_1)G + (i_2'K'P + j_2)$$

where

$$i_1 = (i_1'P' + j_1) \mod K'$$
$$i_2 = (j_2 + i_2') \mod G$$

Let $a = (i_1'P' + j_1)$. From Eq (13) and the definition of a,

$$a = XK' + i_1 = YP' + j_1$$

23
Hence,

\[XK' - YP' = (j_1 - i_1) \]

(16)

We wish to find \(X \) and \(Y \) in the range \(0 \leq X < P', 0 \leq Y < K' \). Since \(\text{gcd}(K', P') = 1 \), we can find \(m, n \) using the Euclid algorithm such that

\[nK' - mP' = 1 \]

(17)

Comparing Eq (16) and Eq (17),

\[X = \{ n(j_1 - i_1) \} \mod P' \]

(18)

\[Y = \{ m(j_1 - i_1) \} \mod K' \]

(19)

Because \(0 \leq i_2, j_2 < G \), Eq (14) becomes \(i'_2 = (i_2 - j_2) \mod G \). Therefore, \(P_s(i, j) = S'(i, j)/K = [(XK' + i_1)G + \{(i_2 - j_2) \mod G\}K'P + j_2]/K \) becomes Eq (10) since \(i_1G + j_2 < K \). Similarly, we can prove Eq (11).

Note that the above formulae for computing the entries of \(P_s \) and \(D_s \) are computationally efficient compared to the approach used in [18]. Our algorithms as well as the scheme in [18] compute \(\text{gcd}(P, K) \). We use the extended Euclid algorithm to find \(m \) and \(n \) as a byproduct of computing the \(\text{gcd} \). Using the above formulae, we can then compute entries of \(P_s \) and \(D_s \) with very little computational overhead, and without any interprocessor communication.

The following corollary gives a more efficient scheme to compute \(P_s \) and \(D_s \). Using these formulae, processor \(p_j \) can iteratively compute column \(j \) of \(P_s \) and \(D_s \). Eq (10) and Eq (11) are used to compute \(P_s(0, j) \) and \(D_s(0, j) \). The formulae below can be converted into a simple for loop which computes the remaining entries in column \(j \). Thus, expensive operations like mod and multiplication can be avoided in index computation. The formulae can also reduce the space requirements for storing the tables. When a direct schedule is used, only a single entry of the table needs to be stored at a time.

Corollary 1 Elements within adjacent rows of \(P_s \) and \(D_s \) have the following relation:

\[
P_s(i+1, j) = \\
\begin{cases}
(P_s(i, j) + P') \mod P, & \text{if } ((i + 1) \mod G) \neq 0 \\
(P_s(i, j) + P' + n(j_1 - i_1 - 1) \mod P' - n(j_1 - i_1) \mod P') \mod P, & \text{otherwise}
\end{cases}
\]

\[
D_s(i+1, j) = \\
\begin{cases}
(D_s(i, j) + K') \mod K, & \text{if } ((i + 1) \mod G) \neq 0 \\
(D_s(i, j) + K' + m(j_1 - i_1 - 1) \mod K' - m(j_1 - i_1) \mod K') \mod K, & \text{otherwise}
\end{cases}
\]
where \(i = 0, 1, \ldots, K - 2 \) and \(j = 0, 1, \ldots, P - 1 \), and \(n K' - m P' = 1 \).

\[\square \]

We now give the pseudocode for the interprocessor communication operations (the row transformations) in Figure 10. Theorem 3 analyzes the complexity of these communication algorithms.

Theorem 3 If the destination processor table of size \(K \times P \) is in generalized circulant matrix form as shown in Eq(1) and if every row is a permutation of \(\{0, 1, \ldots, P - 1\} \), the redistribution specified by the dpt can be performed in a contention free manner in (i) \(K \) communication steps using a direct schedule, (ii) \(\lceil \log K' \rceil + 2 \) communication steps using an indirect schedule, and (iii) \(d + \lceil K/2^d \rceil \) communication steps using a hybrid schedule with \(d \) degree of indirection.

Proof: Consider a destination processor table \(P_s \), which is in generalized circulant matrix form and each row is a permutation. The communication schedules in all our algorithms are specified as a sequence of row transformations on \(P_s \) such that in its final form, column \(j \) of \(P_s \) contains all the \(K \) elements whose value is \(j \). A row transformation permutes the elements within a row of \(P_s \).

Consider a transformation that moves an element from position \((i, j)\) to position \((i, k)\) in row \(i\) of \(P_s \). This corresponds to an interprocessor communication event where processor \(p_j\) sends a data block to processor \(p_k\). The number of communication steps required by the algorithm is equal to the number of transformations performed on \(P_s \). We therefore prove the theorem in terms of the number of transformations required to bring \(P_s \) to its desired final form.

Direct Schedule: We know that each row of \(P_s \) is a distinct permutation of processor numbers. Transformation \(i\) permutesthe elements in row \(i\) \((0 \leq i < K)\) of \(P_s \) so that each element labeled \(j\) is moved to column \(j\), \((0 \leq j < P)\). After \(K \) such transformations, \(P_s \) is in the desired form.

Indirect Schedule: \(P_s \) consists of \(K' \times P' \) submatrices, each of size \(G \times G \). The algorithm first moves these submatrices such that each block diagonal of \(P_s \) is vertically aligned in \(\lceil \log K' \rceil \) transformations. Next, the \(G \) elements within each submatrix are aligned vertically in \(\lceil \log G \rceil \) transformations. At this point, all elements labeled \(x \) are in the same column, say column \(k \). In the last transformation, entire columns are permuted so that column \(j \) contains all the elements labeled \(j \), \(0 \leq j < P \). (In many applications, this transformation is not needed.) Thus, \(\lceil \log K' \rceil + \lceil \log G \rceil + 1 \leq \lceil \log K \rceil + 2 \) communication steps are required in the indirect schedule.

Hybrid Schedule: This algorithm performs the first \(d \) steps of the indirect algorithm \((0 \leq d \leq \lceil \log K' \rceil + \lceil \log G \rceil)\) and aligns data blocks of size \(2^d \) vertically. A direct schedule consisting of \(\lceil K/2^d \rceil \) steps is
Figure 10: Direct, indirect, hybrid, and multiphase algorithms
then performed. The total number of communication steps required in the hybrid schedule is thus
\[d + \left\lceil \frac{K}{2d} \right\rceil. \]

\(\square \)

Corollary 2 Consider an array with \(N \) elements, each of size \(b \) bytes, distributed over \(P \) processors. Using the GDM model, the communication complexities for \(R_x(K, P) \) are (i) \(KT_d + \frac{N}{2P} b \tau_d \) time using a direct schedule, (ii) \((\lfloor \log K \rfloor + 2)T_d + \left(\lfloor \log K \rfloor + 1 \right) \frac{N}{2P} + \frac{N}{P} b \tau_d \) time using the indirect schedule, (iii) \((d + \left\lceil \frac{K}{2d} \right\rceil)T_d + \left(\frac{Nd}{2P} + \frac{N}{P} \right) b \tau_d \) time using the hybrid schedule.

\(\square \)

5 Experimental Results

In the previous sections, we have discussed our approach to the design of efficient redistribution algorithms for \(R_x(K, P) \). We also showed pseudocode for the direct, indirect, and hybrid communication schedules and analyzed their complexity in Theorem 3. This section shows timing results from implementations of our redistribution algorithms on the IBM SP-2 and the Cray T3D, which are coarse-grain distributed memory parallel machines. The architecture of these machines is typical of current generation coarse grained parallel architectures. The results reported in this section are therefore representative of the entire class of distributed memory parallel machines. In terms of the GDM model, \(T_d = 40 \mu \text{sec} \) and \(\tau_d = 35 \text{nsec/byte} \) for the IBM SP-2; \(T_d = 93 \mu \text{sec} \) and \(\tau_d = 43 \text{nsec/byte} \) for the Cray T3D. The expected variations in performance due to different values of \(T_d \) and \(\tau_d \) are also discussed in this section.

Our methodology for evaluating performance is shown in Figure 11. The algorithms are coded in C, and MPI function calls are used for interprocessor communication. The redistribution time is measured using MPI_Wtime. First, the average time for \(n_2 \) consecutive runs of the redistribution subroutine is measured on each processor (node_time). The average of node_time over \(P \) processors is then computed (tavg). Our experimental results show that the variance of node_time over \(P \) processors is insignificant. To reduce the errors due to OS interference, we repeat the measurement of tavg \(n_1 \) times. The measured values are stored in an array T, as shown in Figure 11(b).

Figure 12 compares the performance of direct, indirect, and hybrid schedule (with \(d = 1 \)) on a 128 node IBM SP-2. The array size used is 1.6 Mbytes. The expansion factor \(K \) is varied in the range 3 \(\leq K \leq 128 \). Figure 12(a) shows the maximum value (Tmax in Figure 11(a)) for each experiment. Observe that there are a few points whose maximum value is very large. These arise
for (i=0; i<n1; i++) {
 ts = MPI_Wtime
 for (j=0; j<n2; j++) {
 redistribution subroutine
 }
 te = MPI_Wtime
 node_time = (te-ts) / n2
 compute tavg from each node_time of P nodes.
 $T[i] = tavg$
}
compute $T_{max} = \max\{T[i]\}$, $T_{min} = \min\{T[i]\}$
$T_{med} = \text{median}\{T[i]\}$, $T_{avg} = \text{avg}\{T[i]\}$

Figure 11: Set up for measuring the redistribution time.

due to OS interference. The effect of these outliers is also seen in Figure 12(b) which shows the average time (T_{avg} in Figure 11(a)). These cannot be eliminated unless the experiment is repeated a large number of times. Figure 12(c) shows that this effect can be reduced by using the median value T_{med} instead of T_{avg}. Figure 12(d) shows the best observed communication time T_{min}. This plot eliminates the variance due to OS interference, and allows an accurate comparison of the relative performance of the redistribution algorithms. In the remaining plots in this section, we shall show only T_{min}.

Figure 13 shows the result of a similar experiment on the Cray T3D. The array size used is 0.4 Mbytes. The figure shows only T_{min}.

Figure 14(a) shows the timing performance when the array size is reduced to 0.8 Mbytes on the IBM SP-2. This plot also includes the multiphase algorithm. The reduction in array size reduces the amount of data sent in each communication step, but does not reduce the number of communication steps. The timing performance is therefore not significantly different from Figure 12(d).

Figure 14(b) shows the difference between the redistribution time and the communication time only. It includes the time for computing index sets and for buffer copying operations (i.e., packing and unpacking), but not the interprocessor communication time. By comparing Figure 14(a) with Figure 14(b), it can be seen that the interprocessor communication time constitutes the major portion of the time for the direct schedule. The indirect schedule reduces this communication cost since it consists of fewer communication steps.

In Figures 12, 13, and 14, MPI_Sendrecv is used in all the communication steps, i.e., the communication schedules are synchronous. In the case of direct and hybrid schedules, we can
Redistribution from Cyclic(4) to Cyclic(4K)
(P=128, Array Size=1.6Mbytes)

(a) MAX Time

Redistribution from Cyclic(4) to Cyclic(4K)
(P=128, Array Size=1.6Mbytes)

(b) Average Time

Redistribution from Cyclic(4) to Cyclic(4K)
(P=128, Array Size=1.6Mbytes)

(c) Median Time

Redistribution from Cyclic(4) to Cyclic(4K)
(P=128, Array Size=1.6Mbytes)

(d) MIN Time

Figure 12: The maximum, average, median, and minimum times for redistribution of array of size 1.6 Mbytes on IBM SP-2 (n1=40, n2=20). Observe that the scale on the time axis is different for (a).
Figure 13: Timing results (Tmin) for direct, indirect, hybrid and multiphase algorithms on Cray T3D.

employ an asynchronous approach by using MPI_Irecv and MPI_Waitany. Each processor first posts K non-blocking receive commands, and then invokes send communication routines. The timing results for these algorithms are shown in Figure 15. By comparing Figure 15(a) with Figure 14(a), and Figure 15(b) with Figure 13, it can be inferred that the asynchronous approach reduces the synchronization overheads. However, the performance of the asynchronous direct algorithm is still worse than that of the synchronous indirect algorithm.

The multiphase algorithm improves on the direct algorithm for composite values of K. However, it reduces to the direct algorithm when K is a prime number. Our indirect algorithm is uniformly applicable for both prime and composite K. Apart from the fact that our algorithms use fewer communication steps, the amount of data moved in each step per processor is at most $\left\lfloor \frac{N}{P} \right\rfloor$, where N is the total number of array elements. In comparison, the multiphase approach moves the entire array in every phase. Thus $\left\lfloor \frac{N}{P} \right\rfloor$ array elements are moved in each communication phase by each processor. Figure 16 compares the performance of redistribution using MPI_Alltoall with other approaches. The redistribution time using MPI_Alltoall is very large for small values of K, because of large amounts of dummy message transfer.

Figure 17 shows the effect of varying the number of processors on $R_x(K, P)$. A fixed array size of 0.4 Mbytes is used and K is chosen to be equal to P. For small values of P, the portion of the array within each processor is large. This results in large data transmission costs. The direct algorithm performs better than the indirect algorithm in this situation. As the number of processors is increased, the start-up costs become dominant. The communication time of the direct
Figure 14: Comparison of *synchronous* direct, hybrid, multi-phase, and indirect schedules on IBM SP-2.

Figure 15: Comparison of *asynchronous* implementation of direct, hybrid, multi-phase, and *synchronous* indirect schedules on (a) IBM SP-2 and (b) Cray T3D.
Figure 16: The comparison of all-to-all, asynchronous direct, hybrid, multi-phase, and synchronous indirect schedules on IBM SP-2.

Figure 17: Comparison of asynchronous implementation of direct, hybrid, multiphase, and synchronous indirect schedules when the array size is fixed and the number of processors is varied (IBM SP-2).
Figure 18: Predicted time for redistribution using direct, indirect, and hybrid algorithms when the ratio of machine parameters \((R = \frac{T_d}{\tau_d})\) changes due to advances in technology. The algorithm increases significantly, and the indirect algorithm yields the best performance.

The above plots have been obtained based on experiments performed on the IBM SP-2 and the Cray T3D. However, the machine parameters \((T_d, \tau_d)\) change from one machine to another and also change with technological advances. Advances in the networking technology will reduce the unit transmission time \(\tau_d\). Progress in processor technology and communication software can reduce the startup time \(T_d\). Note that \(\tau_d\) also depends on the processor technology and will improve with processor technology. We believe that in future message passing systems the time for buffer copy, for invoking a system call, and for communication protocol processing can be reduced but it cannot be completely ignored. Figure 18 illustrates this when the ratio \(R = \frac{T_d}{\tau_d}\) changes due to technological advances. Figure 18(a) shows the case when \(T_d = 40\mu\text{sec}\) and \(\tau_d = 35\text{nsec/byte}\). These are the machine parameters for the IBM SP-2. The number of processors \(P = 128\), and \(K = P\). The horizontal axis shows \(N\), the number of elements in the array. The size of each element is assumed to be 4 bytes. For the indirect schedule, a value of \(d = 2\) is chosen. Figure 18 (b) shows the performance when \(T_d\) and \(\tau_d\) are reduced by factors of 2 and 4 respectively. Thus, the ratio becomes \(2R\). In Figure 18 (c), \(T_d\) and \(\tau_d\) are reduced by factors of 4 and 2 respectively.
In Figure 18 (d), T_d and τ_d are reduced by factors of 32 and 8 respectively. The plots show the performance of our communication schedules for various message sizes. It can be inferred that there always exists a range of message size where the startup costs dominate. This range depends on the machine features and array size.

6 Conclusion

In this paper, we have proposed a uniform framework for block cyclic redistribution of arrays. Arrays are one of the most commonly used data structures in many HPC applications such as signal processing and dense linear algebra. The block cyclic distribution represents typical data access patterns in these applications. Redistribution is necessary when the data access patterns of the application change at intermediate points in the computation. We have focused on an important case of block cyclic redistribution, $R_x(K, P)$, where the block size changes by a factor K. Our framework can be uniformly applied to all instances of $R_x(K, P)$. This is in contrast to some previous approaches which are inefficient for certain parameter values eg., when K is prime.

In our framework, the redistribution algorithm is viewed as a table conversion process. The destination processor table is first transformed into a generalized circulant matrix form by column-wise reorganization. This corresponds to arranging the entries which have the same destination processor diagonally. Efficient communication schedules are then derived based on this generalized circulant matrix. We discussed the direct, indirect, and hybrid communication schedules. The direct schedule is effective for large sized arrays while the indirect schedule is more suitable for smaller array sizes. The hybrid schedule is a combination of the direct and indirect schedules. We have developed formulae that estimate the performance of each schedule based on problem and machine parameters. Based on our framework, we have also developed efficient algorithms for index set computation that do not involve any interprocessor communication.

We have used the GDM model to estimate the performance of our redistribution algorithms. This model represents interprocessor communication events with a start-up cost component and a data transmission cost component. Experimental results on real HPC platforms validate the effectiveness of the GDM model and our communication schedules.

Our framework can be extended to derive communication schedules for other communication patterns by using a different set of column and row transformations. In the indirect schedule, entries along a diagonal of the destination processor table are aligned vertically in a logarithmic number of
circular shift operations. A similar communication pattern is used in many “combine-and-forward” redistributions. As shown in Figure 19, gather and scatter algorithms, which are developed using a binary tree, can be viewed as aligning a single diagonal into a vertical line or *vice versa*. In the block-cyclic redistribution from $\text{cyclic}(x)$ to $\text{cyclic}(Kx)$, P diagonals are aligned simultaneously in $\lceil \log K \rceil + 1$ steps.

In certain irregular problems, the index sets are not only determined at run time but they are also random in nature (variability in message size, destination and source processors, etc). To reduce this variability, a combine-and-forward schedule based on a fixed communication pattern is commonly used. Such schedules are not adequately general. Further, they yield low performance for small sized messages. Thus, current ScaLAPACK implementations that utilize such a schedule provide poor performance for small matrix sizes. Our indirect schedule is suitable for small message size communication. We believe that the generality, uniformity, and efficacy of our framework can improve the performance of the data remapping problems in irregular applications.

References

