Portable Implementation of Real Time

Signal Processing Benchmarks
on HPC Platforms

Jinwoo Suh and Viktor K. Prasanna

CENG 97-18

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213) 740-4483

October 1997

Portable Implementation of Real-Time Signal Processing
Benchmarks on HPC Platforms!”

Jinwoo Sulh and Viktor K. Prasanna

Department of EE-Systems, EEB-200C
University of Southern California
Los Angeles, CA 90089-2562
{jinwoo + prasanna}@halcyon.usc.edu
http://ceng.usc.edu/ prasanna

1 Introduction

Many embedded applications require high performance computing to achieve real-time performance. These
include Space-Time Adaptive Processing (STAP), Synthetic Aperture Radar(SAR), Sonar systems, Auto-
matic Target Recognition/tracking systems, and Vision applications, among others. In these applications,
high throughput is required in addition to satisfying a given latency requirement. Implementing such applica-
tions using High Performance Computing (HPC) platforms is becoming wide spread[1, 4]. HPC platforms are
being used for these applications because of their high performance, scalability of solutions, and portability of
the developed code. A typical HPC architecture for embedded signal processing is shown in Figure 1. Several
implementation results of real-time applications on HPC platforms have been reported[2, 5, 15, 17, 19, 21].

To evaluate HPC systems for real-time applications, several benchmarks have been proposed. These
include C31[3] and MITRE benchmarks[7]. Real-time benchmarks are designed to assess real-time signal
processing systems such as SAR. The following aspects distinguish real-time benchmarks from “conventional”
benchmarks to evaluate HPC platforms. (1) Real-time benchmarks incorporate deadlines for completion of
tasks. These deadlines must be met to achieve successful processing. (2) The execution is repeated many
times to evaluate the fluctuations in run-time. (3) Throughput is one of the critical requirements in real-time
embedded signal processing applications. In a real-time system, the input data rate is determined by system
parameters (e.g., data collection rate in SAR processing). The system throughput must be high enough to
process the input data stream in real fime.

In these benchmarks, one of the essential operations is communication between processors. Because
many processors are employed, algorithms for communication between processors must be efficient to obtain
high performance. In real-time signal processing that requires high throughput performance, software task
pipeline can be used. An example of software task pipeline for real-time STAP is shown in Figure 2 [11]. The
software task pipeline consists of several stages of processors. In the above example, the STAP application
is divided into 6 stages. Each stage processes incoming data and sends the processed data to the next stage.
Since each stage has a different computational requirement, each stage has a different number of processors
to meet the throughput requirement. In the pipeline, data remapping communication is needed between
consecutive stages. For example, 22-to-176 communication is needed between the Stage 1 and the Stage 2.
Since the number of processors in a stage is different from the other stages, M-to-N communication need
to be performed, where M # N. In the M-to-N communication, there are M source processors and N

* Effort sponsored by the DoD High Performance Computing Modernization Office, and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-2-0016. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.

t The experimental results were obtained at the Maui High Performance Computing Center (MHPCC) and at the Pittsburgh
Supercomputing Center (PSC).

Threshold [Sub-CPI

Datact Calapt

Spatial Filtering
FFT
Processor

Temporal Filtering

FFT
Processor

Low Latency Gigabil
Intarconnection Network

General Linear Algebra Problem Solvers: I
| QR Decomposition, |

Singular Value Decomposition... ==
N ey BLAS 2 Basa || e
l Module Medule Module | lbriace
N e B e/

Adaplive Beamforming

Figure 1: Typical HPC platform for embedded signal processing

destination processors. Each of the M source processors partitions its data into N sets and sends a data
set. to a destination processor. The M-to-N communication also arises in HPF (High Performance Fortran)
when the REDISTRIBUTE directive is used[10].

To analytically evaluate the communication cost of the proposed algorithm, the General-purpose Dis-
tributed Memory (GDM) model[13, 20] is used. The GDM model captures the features of the message
passing systems and has been recently used to understand communication cost and scalability. This model
is simple and accurate when the number of processors is not large and the link and node contentions are
not high. To send data from one processor to another, the two processors first set up a communication
channel, and then send and receive the data. The overhead incurred for the initial set up is called start-up
time and the data transmission overhead is transfer time. Therefore, the communication time to perform a
data permutation is modeled as T, + Dry, where T} is start-up time, 74 is data transfer time per byte, and
D is the amount of data transferred from each processor in bytes. Similar models have been employed by

Stage-1: Data Input by 22 Channels
Stage-2: Video-to-1/Q Conversion

Stage-3: Pulse Compression and Calibration
Stage-4: Doppler Processing (O Number of Processors

71 Data Remapping (M-to-N Communication)

Stage-5: Weight Computation
Stage-6: Weight Application

Figure 2: An example of real-time STAP (a radar signal processing technique) software task pipeline

others[6, 9, 18]. :

In this paper, we develop a communication algorithm for M-to-N communication. In our approach, we
first divide M-to-N communication problem into two subproblems: (1) M 1-to-N/M personalized commu-
nication, and (2) N/M All-to-all communication among M processors. The intermediate destinations for
the data are deliberately determined so that the two subproblems are combined smoothly. Then, each sub-
problem is abstracted to a matrix transform problem to derive an efficient algorithm. For the abstraction,
destination processor table and circulant matriz form are used. In the abstracted problem, row circular-shift
and column circular-shift operations are used to represent the actual data movement.

The number of communication steps in the proposed communication algorithm is reduced to as small
as [lg([N/M] +1)] + [lsM] = lg(M + N)!. The communication time of the proposed algorithm is
(Ng(N/M + 1)) +d+ [35] = 1)Ts + (N + Md/2+ ([M/24] = 1)2%)214, where d is degree of indirection and
x is the data block size in bytes.

Previously, some simple approaches have been proposed for the M-to-N communication problem: (i)
using MPI_All{o_all primitive [8], (ii) a serial algorithm, (iii) a simple parallel algorithm, and (iv) a simple
indirect algorithm. In the method using MPI_All_to_all primitive, all of the M + N processors are regarded
as a set of processors and MPI_All_to_all primitive is used. It is not efficient since it introduces extra data
communication. Even though only M source processors have to send data, N destination processors also
send dummy data. Other approaches are not efficient because (1) they do not minimize the startup cost,
and (2) they do not fully exploit the available network bandwidth.

The number of communication steps in a previous serial communication algorithm[5] was M N. The
proposed algorithm significantly reduces the number of communication steps. For example, if M = 16, N =
112, the number of communication steps is only T instead of 22 and 112 in the simple indirect algorithm and
in the simple parallel algorithm respectively.

Another advantage of our algorithm is that it can achieve high throughput performance. The proposed
algorithm consists of two stages, and after the first stage, the M source processors are free to processes other
tasks. However, if MPI_All_to_all communication primitive[§] is used, all the processors are busy during the
entire communication which can reduce the resulting throughput.

Implementation results of the MITRE benchmarks on HPC platforms using the proposed algorithm are
also shown. Our implementation using C and the Message Passing Interface(MPI) standard[16] is portable.
For the sake of comparison, the serial communication algorithm([5] was also implemented. The execution
times were measured using the MITRE real-time benchmark evaluation guidelines[7]. 1BM SP2 and Cray
T3D were compared using the implemented MITRE benchmarks. In general, SP2 showed large fluctuations
in execution time which is undesirable for real-time applications. Thus, Cray T3D showed higher performance
for real-time benchmarks. Also, our proposed algorithm results in: (1) reduction of the total communication
time, (2) reduction of the minimum number of processors needed to process a specific size data, and (3)
increase in the maximum input data size that can be processed.

The organization of this paper is as follows: In Section 2, the MITRE benchmarks are described briefly.
Section 3 describes the previous communication algorithms for M-to-N communication. In Section 4, we
discuss our approach and analyze the execution time of the proposed algorithm. Experimental results are
presented in Section 3.

2 MITRE Real-time HPC Benchmarks

The MITRE benchmarks[7] were designed to provide a methodology to assess the performance of HPC
platforms for real-time embedded applications. These use the design-to-speci fication methodology. In this
method, both the timing and the functional specifications are given. The minimum size of a machine that
can process the given problem is determined. In this section, the 2D Real-Time FFT and Corner Turn
Benchmarks are briefly described.

The input data for 2D real-time FFT operation are complex vectors of size n x n, where n is a
positive integer. The real-time FFT consists of two stages: Row FFT and Column FFT. In the first stage,

L All logarithms in this paper are to base 2.

I'FT operation is computed on each row of the input data which results in intermediate data. In the second
stage, the FI'T operation is computed on each column of intermediate data which results in the final output.

The timing specification consists of two cases as follows: (1) Period = latency = 1 second, and (2) Period
= 1 second, latency = no restriction.

The period is the time interval between successive input matrices to the machine. The latency is the
elapsed time between the data input to the machine and the corresponding output. For Case 1 and Case 2,
the minimum size of the machine in terms of the number of processing nodes is to be determined.

The corner turn operation is the transpose of a matrix distributed on more than one processor.
This consists of three stages: local data rearrangement, data redistribution, and unpacking of the received
messages. In the local data rearrangement, the data stored in row major order are rearranged by columns. In
the second stage (data redistribution), the data are communicated among the processors for data remapping.
In the third stage, in each destination processor, the received data are rearranged by columns.

3 Simple Communication Algorithms

In this section, several simple algorithms for M-to-N communication are discussed. In an M-to-N commu-
nication problem, there are M source processors and N destination processors. The M source processors
and N destination processors are distinct. Each of the M source processors partitions its data into N blocks
and sends a data block to a destination processor. Let 2 denote the amount of data in a block in bytes. Note
that the total data D = M Nwz. Let Py;,0 <i < M — 1, be the i*" source processor, P, 0<j<N-1,
be the j** destination processor. Also, let C(7,),0<i< M —1,0< j < N — 1, denote the data in the i**
source processor to be sent to the j** destination processor. In the following discussion, M is assumed to be
less than N. If M = N, the communication is similar to the All-to-all communication which is a special case
of the M-to-N communication. Note that if A > N, the communication can be performed by reversing the
roles of the senders and receivers of M < N case.

1. All_to_all communication primitive: The easiest way of performing M-to-N communication is
by using MPI_All_to_all communication primitive supplied by the MPI library[8]. The M + N processors are
regarded as a set of processors performing an All-to-all communication. Then, the MPI_All_to_all primitive
is used to distribute the data in the M processors. This method is easy to program. However, it incurs
extra communication time due to the transfer of the dummy data from the N processors (even though the N
processors have no data to send). Also, the resulting throughput is low because all of the M + N processors
take part in the communication during the entire communication phase. In the following simple algorithms
as well as in the proposed algorithm, only a subset of the processors is involved in the communication so
that others can perform useful computational tasks.

2. Serial Algorithm [5]: The algorithm consists of M N steps. In the s'" step ,0 < s < MN —1, source
processor Po |/N| sends data C(|s/M],s mod N) to the destination processor Py s mod N - The amount of
data transferred in each step is .

In the GDM model, this algorithm takes M N (T + x74) time to complete, where Ty is the startup time
and 74 the data transfer time per byte. The advantage of this algorithm is simplicity. The schedule is very
simple and there is very little overhead in implementing the algorithm. However, the communication time
for this algorithm is proportional to both M and N resulting in poor scalability. Also, most of the available
bandwidth of the system is not utilized.

3. Straightforward Parallel Algorithm: In this algorithm, the M source processors send their
data in parallel. In the s step ,0 < s < N — 1, the source processor Pp;,0 < < M —1, sends data
C(i,(i + s) mod N) to destination processor Py (its)mod N simultaneously. Thus, after N steps, all the
communication is accomplished. In each step, the communication time is x74. The total execution time
of the algorithm is N (7. + z74). The speed-up of the algorithm compared with the straightforward serial
algorithm is A/. However, the communication time is still proportional to N which results in poor scalability.

4. Simple Indirect Algorithm: In this algorithm, the N destination processors are partitioned into
[N/M] groups. The i*" group ,0 <i < [N/M] -1, is denoted G;. G; consists of M processors P j,iM <
j < (i+ 1)M — 1. For simplicity, we assume that N/M = w, where w is a positive integer. During the s**
step ,s=0,1,..., N/M — 1, the source processor P ;,0 <i< M —1,sends C(i,k),sM <k < (s+1)M -1,

Po Pt P2 Py Pa Ps Pe P7 P8 PoPrloPi Pl PiaPia Pis Po Pt P2 Py Ps Ps Ps P7 P8 PoPigPii Pr2 P13 PaPis

4[4]4]4 4| 5]6]7]8]910[11]12[13]14]15
5|5|5|5 45| 6| 7|89 |10[11]12[13[14[15
6|6|6|6 4| 5|67 |8l ol10]11]12[13]14]15
717]7]7 4|5|6|7|8|9|10|11]12[13]14]15
8lala|s

AR

10[10|10[10

1l it PR

sl Initial Distribution : Final Distribution
13/13(13]13

14]14]14] 14

1515]15]15

Figure 3: M-to-N communication problem represented using a dpt for M = 4 and N = 12. (Each square in
the diagram denotes an 2 byte data block.)
to Py ipsar- In the 5" step, the amount of data transferred from a source processor is 2 M. Therefore, the
communication time for each step is T, + Mx7y. Within each group, the processors need to exchange the
data. Therefore, the total communication time is ([N/M] + M —)T, + (M ([N/M] — 1)+ M — 1)74.
This algorithm has better performance than the serial and straightforward parallel algorithms. The
speedup is MN and N compared with the serial and straightforward parallel algorithm respectively, if
N > M. However, the proposed algorithm which is discussed in detail in the next section shows better
performance. Thus, the simple indirect algorithm is not implemented in our experimental evaluations.
However, a comparison of the simple indirect algorithm with the proposed algorithm is shown in Figure

14.

4 Proposed Algorithm

In this section, we show an efficient algorithm for M-to-N communication. In our algorithm, we assume
that M < N. Il M > N, then the communication can be performed by reversing the roles in the the
senders and receivers in the M < N case. Let w denote M/N. For simplicity, we assume that w is a positive
integer. In our approach, we first divide the M-to-N communication problem into two subproblems. The first
subproblem is a set of M 1-to-w personalized communication. By determining the intermediate destinations
for the data blocks deliberately, the second subproblem becomes a set of w All-to-all communication among
M processors. Then, each subproblem is abstracted to a matrix transform problem to derive an efficient
communication algorithm.

Communication between processors in a message passing system incurs cost. The cost involves software
cost for invocation of the send and receive system calls, buffer copy overheads, and time for data transmission
over the network. Data transfer costs contribute to most of the total communication time in case of large
arrays. Startup costs are dominant when the array size per node is small.

In our approach, node contention is eliminated by reorganizing the communication events. Startup cost
is reduced by reorganizing the communication pattern. The array elements are combined and transferred to
reduce the startup cost.

Our approach uses the notion of destination processor table and cireulant matriz form [12].

Definition: An [x J destination processor table (dpt) is a table where the j**,0 < j < J — 1, column
consists of distinct indices of the destination processors of data items that processor p; has to send.
Definition: An M x M matrix M is a circulant matriz if m; ; = mo (i4jymoanr,0 < 4, < M —1. An
N x N matrix A is a generalized circulant matrix if (i) A" can be partitioned into n x n macroblocks each
of which size is N/n x N/n,1 < n < N, (ii) macroblock; ; = macroblocko (i+j)mod n: 0 < i,j <n-—1,and
(iii) each macroblock is in the circulant matrix form.

An example of a dpt and an example of an N X N circulant matriz are shown in Figures 3 and 4
respectively. The M-to-N communication problem can be divided into two subproblems as follows.

<

Cu Cl e CN_. 1

€ €z -+ Ca
C — Cﬂ C"j 23 X C[
Cper Co % Crea

Figure 4: An example of circulant matrix.

M Source
Processors

7\
®| (o7 &
(@D P
W groups
w1 C oo Stage 2
(& & @
Yt _/ uP(W-H)M-I

|

M groups defined in Stage 1

Figure 5: Partitioning of processors in the first and the second stages.

Subproblem 1 (Stage 1): The destination processors are partitioned into M groups as in Figure 5. Let
P; denote the j**, 0 < i < M —1, source processor, and Pj,p denote the jt%,0 < i < N —1, destination
processor. it" (0 <i < M — 1, group (G1i) consists of the (w+1) processors Pparyi,0 < k < w. Each
source processor P;,0 < j < M — 1, distributes array elements that need to be sent to P, kM < [<
(k+1)M — 1,1 <k < w, to Praryj. After Stage 1, the data to be sent to P, M < i < N — 1_, are
located in the M processors P, [i/M|M < j < |i/M + 1|M — 1. Thus, the next stage becomes a set
of w All-to-all communication among the M processors.

Subproblem 2 (Stage 2): In this stage, a new processor partition consisting of w groups is defined. Let
G'a; denote the i, 0 < i < w — 1, group. Gs; consists of Pj,(i+1)M < j < (i+2)M —1. In each

group, All-to-all communication among the M processors is performed.

The two subproblems are abstracted using a matrix notation and matrix operations. Any communication
problem can be regarded as transforming the initial dpt to another. In our abstraction, two types of eircular-
shifts are performed on a dpt: row circular-shift and column circular-shift. In a column (row) circular-
shift, elements in a column (row) are circular shifted. Thus, a column circular-shift corresponds to data
rearrangement within a processor, and a row circular-shift corresponds to interprocessor communication.

The Hybrid algorithm[12] is an efficient All-to-all communication algorithm when initial dp? is in circulant
matrix form. The Hybrid algorithm for All-to-all communication[12] is as follows.

Hybrid Algorithm [12]: If an M x M dpt is a circulant matrix, then the specified communication can
be performed in d + [2£] — 1 steps, where d,0 < d < lg M, is the degree of indirection. The degree of
indirection is the number of indirect communication steps in which data are sent to their final destinations
via intermediate processors. The remaining (lg M — d) steps are performed as direct communication steps in
which the data are directly sent to their final destinations. The total communication time is (d + [M/29] —
)T + (Md/2+ ([M/29] = 1)2D) 2.

If the above two subproblems can be represented in a circulant matrix form, then the M-to-N commu-
nication can be solved efficiently using the Hybrid algorithm. Theorem 1 shows that the two subproblems
can be represented in a circulant matrix form. In addition, in Theorem 2, we show how the Subproblem 1
can be further optimized. The complete M-to-N algorithm is shown in Corollary 1.

Theorem 1 The initial dpt in each stage of M -to-N communication can be represented in a circulant matriz
Sform.

Proof: (1) Stage 1: The initial N x N dpt of M-to-N communication is given by,

i : i>M and j<M-1
dpt; ; = A
{ ¢ : otherwise

where ¢ denotes an empty entry in the cell. An example of dpt is shown in Figure 6(a). Let a macroblock
denote each M x M portion of the dpt. Each macroblock is first transformed to a circulant matrix using
row circular-shifts as in Figure 6(b). The i**,0 < i < M/n — 1, column in each macroblock is up circular-
shifted by i rows. Then, the entire dp! is transformed into circulant matrix form as follows. The elements
dpt; j,i > M or j < M —1, are empty. Thus, we may insert any dummy data as in Figure 6 (¢). The dummy
data is for representation purpose only; it does not actually need to be sent. Thus, if we consider Figure 6
(c), then dpt is in circulant matrix form.

(2) Stage 2: After the construction of the initial dpt, the Hybrid algorithm is used. Figure 8 shows the
steps. After lg(w + 1) steps, the resulting dpt is as shown in Figure 9(d). Note that all the data to be sent
to processors in Ga;,0 < i < w— 1, are located in Ga;. Thus, the resulting dpt is the initial dpt for Stage 2.
Therefore, the initial dpt of Stage 2 is also in circulant matrix form. o

Note that the circulant matrix in Figure 7(¢) is simpler than the one in Figure 6(c) because ith 0<i<
N — 1, column is up circular-shifted by i rows. However, the data transfer time is longer than that using
the circulant matrix in Figure 6(c). The data transfer time in each step using the Hybrid algorithm when
d = lg(w + 1) is Nz74/2. Since there are lg(w + 1) steps, the total data transfer time is N7y lg(w + 1)/2.
In Theorem 2, we show that the data transfer time is reduced to Na7g using dpt in circulant matrix form

W10 X1yew jue[naain oy pdp [eryul Sunuiojsuely, 19 s

SHWS-1E[N2ILD) Moy oY (q)

EEED

Zlisl|rt

SlPLIET

SIGHAOTG N0 6d vd 4 9] s td td

T 1d od

PPOALIY Vv

eiee] Awungg Suruasug 2y (9)

AT
QAL 1
AANG ziisi[FI el
Llolglr {riletizl
| | eriEtizigl & ?|!l
SRENEE A |

1
o1
&
| _jeteli elfe
I P i
9
g
F
72

||| jreieErisijoris @ jx
||| JtEnehE 6 @ Lot
|| Ztisiipiien @ 110115

2
CLEL L
15T

Silrlceiat|i1iolis | @
Zljs)

|
ENCTEERA] [g I
sidndadiig nidotd od o id o 54 vd od Td I od

RIEIE] 3
T=lwleln]wlo

3l

ilfi
t

(T1=N put p=N)
uonnguIsi(] TR eI (%)

ENEEED
| T
| i
feilzileilz
| [
Jatlatotor
1 6

= |wn|o|Nx
AR 1R
7 |n| o N
oW

SN OG T N0 6f 84 14 od Sd rd B T 0D o

Po Pi P2 Py Pa Ps Po P7 Px B9 PuoPu Pz P Pubis Po Pt Pz Py Pe Ps Po P1 Pr PoPioPr PrzPi PraPis

4
4] 5
4|5|6
404|414 4|5|6|17
5|5(55 5|6|7]8
sl6lsl6 é|7|8le
AEAEdE HEIEI
sl8ls|s 8| 9|01
[AEARAE 9 [10]11]12
10/10{10 10 10(11]12[13]
njnlnfn 1112[13[14
1212|1212 12|13)14]15
13(13[13)13 13| 14]18]
14| 14]14] 14 14|15
15|15(15/15 15

(a) Initial Data Distribution

(M=4 and N=12) (b) After Row Circular-shifts

Po Py P2 Py P4 Ps Pa P17 PR BOPoPI iz PaPiaPis
5|6|7|8|%[1011121314]15
6| 7|a|210[11]12 13 14|15
8l 9|10{111213 1415
8| 2|10[11(12|13]14| 13|
o100 11{12{13| 14 15
Q|10 11]12{13]14] 15|
o |10 11[1213]14[15
10[1112/13{14|15
gl1011|{12 131415
10/11]12|13 14/ 15
10[11(12{13[14]15
11|12{13]14) 15]
12|13]14]15
13| 14|15
14|15 4

ol N O | &
~

LA E-NETIES

Nt &

0| Ba| | O tn| &

al@m|N|on s

11
10,1112
1213
12,13 14

oo~ |en| s

Qllm (NSt &

CNETIEN
(o] =
IR EES
|~ o o b
=
=8

=

(¢) After Inserting Dummy Data

Figure T: Transforming initial dpf to a circulant matrix in the straightforward method

Po P P2 Py P4 Ps Pe Pr Py P ProPiPiz P PraPis Po P1 Pz Py P4 PSP P71 Px PaPpoPiPrz P Pubis

SRRARAL;

1]
4|5]6[7] —» |d|5]8]|7|
s5(el7]4] — [STElE 10
L2l KA1 — |&|7]4[5]
745 1| AMacroblock o [T TS T8
8|91l L
9 [10l11] 8 i
NI
1108|210
—
—
=i
1 —
(a) Initial Data Distribution (b) After Step 0
(M=4 and N=12) :
Po 1 P2 Py P4 Ps Ps P1 Ps PoPoPuPizPioPiePis
Pa Py PPy PaPs PePr Px PaPoPu PraPuPiebis
4(516|7 4]5]sl7] [a]eliof11 51
5|6|7|4 s5|al7z]a
6lz]4|5] s|714l5
714ls]6] | | 7|4]|5]8
alelio
o |10i11
10(11).8
1jale
]
(c) After Step 1 (d) After Removing Dummy Data

Figure 8: Communication steps in the Stage 1 using the Hybrid algorithm

10

as in Figure 6(c). Also, in Theorem 2, we show that index computation does not incur data movement in
intermediate processors. Index computation refers to the operation to compute the location of the data in
an array to be used for communication. I the data to be sent are not in consecutive locations, the data
must be compacted.

Theorem 2 The transform of inilial dpt in Slage 1 can be further optimized with respect to data transfer time
and index computation time. The data transfer time is reduced to Naty from Nzralg(w +1)/2. The indez
computation cost is one bilwise shift operation and does not incur local data movement in the processors.

Proof: (1) Data Transfer Time: In the Hybrid algorithm, the data transfer time in each step is Na7y/2.
Since there are lg(w + 1) steps, the total data transfer time is N—”ﬂ%-("’—"']l To optimize the data transfer
time, a “partition and shrink” operation is used after each communication step. Let z = 2[ls(w+1)1 Using
the Hybrid algorithm, the macroblocks are circular-shifted as follows. During s, s=0,1,..., [lg(w + 1)] -1,
communication step, macroblocks in the i* row, such that i mod 2/2° > z/s**+!, are right circular-shifted
by z/2°%1. The resulting dpt after the Step 0 is shown in Figure 9(b). After each row circular-shift, the dpt
1s partitioned into 4 subdpts as in Figure 9(c). The upper-right subdpt and lower-left subdpt contain dummy
data only. They are discarded. Then, the number of rows are reduced which results in less data transfer
time (see Figure 9(d)). After partitioning and removing the two subdpts, the remaining subdpts maintain
circulant matrix forms. Thus, in the next step, same procedure can be repeated.

The data transfer time in the first step is (w+1— z/2)Mz71,4. Then, in the s** step, s = 1,2, ..., [lg(w +
1)] — 1, the data transfer time is z/2°F! M a7y, Thus, the total data transfer time is

Nglw+1)]-1
Ty = Mzerg(w+1-2/2+ Z 2/2""']) = Mwzty = Naty.

=1

(2) Index Computation Cost: In each step, the first data element to be sent is [D/2] because an
intermediate processor always sends the second half of the received data, where D is the amount of data
in the processor. Thus, index computation can be performed using one bitwise right shift operation on the
index variable which points to the last data element in the data array.

Also, because the the second half of the received data are sent out, the data in an intermediate processor
need not be reorganized. Thus, data movement in a processor is not needed.

Note that if Figure 7 is used, index computation needs to incur actual data movement in each step in the
sender processors. This contributes high index computation time. Also, more data transfer time is required
because the number of rows is not reduced. (u]

The communication steps in Stage 2 are shown in Figure 10 and Figure 11 for d = 0 and d = IgM
respectively.

Corollary 1 M-to-N communication can be performed in ([lg(w+1)] +d+[M /241 =)T, + (N + Md/2+
([M/2%] = 1)2Y)274 communicalion lime.

Comparisons of the previous algorithms and the proposed algorithm are shown in Figure 12.

5 Experimental Results

The Real-time FFT and corner turn benchmarks were implemented on the IBM SP2 at the Maui High Perfor-
mance Computing Center (MHPCC) and on the Cray T3D at the Pittsburgh Supercomputing Center(PSC)
using our communication algorithm.

A comparison of the proposed algorithm and the simple algorithms are shown in Figure 13 (proposed
algorithm vs. the MPI_All_to_all primitive) and Figure 14 (proposed algorithm vs. the simple indirect algo-
rithm). These results show that the proposed algorithm has better performance than the simple algorithms.

For the sake of comparison, the FF'T and corner turn benchmarks were implemented using the previous
serial algorithm for M-to-N communication[5]. d = 0 was used in our algorithm implementation.

11

Po Po Pz Pa Ps Po P2 Px Po o PP PPias

A Macroblock

olm|w|o|n]|a

Irg

b1
1=]s
slel=|=elunlals

—-=
=
FE
o

(a) Initial Data Distribution
(M=4 and N=12)

Po PiPr Py Py RS Po Pro PR P PPy P PO s
‘ T

N || &
&Nt
o AN
O |||~

(¢) After Partitioning

PoPr P2 Py Po P3P Pr PapioPn PP Pubis

8leli1n
e
10/11/8[9
11]8] #[10]
4[5]6]7
5|6|7|4 3
67|45 i
714|5]8

(e) After Step |

P P PPy Pa Ps Po P1 P P ProPi PP PiePis

4|5|6|7] I

5|6|7|4 Wi

slzlals] [T

71 4|5|6 |20] =5
89 |10l11
#|1o11]8’
101189
11{8| 2|1

PoPr P2 Py PaPs Po Pt

—w | 4|5|6|7
—= |5|6[7]4
—» | d]7|4]|5
—e |7|4|5]|6

(d) After Removing Dummy Data

PoPiP2Py PaPs e Pr Py PPPoPl PuPoPuPis
12]1314] 15

(f) After Partitioning and Removing
Dummy Data

Figure 9: Communication steps in the Stage 1 using Theorem 2

12

Ps Ps P P

3

Ps Py ProPn PizP1sPia Pis P: Ps Ps Pr Ps Py ProPis

P12P13 P14 Pis

4[5]8]7 8| 9l1olrn] [12[13[14]15 8| olaln| [12]13[14]15
5)8]|z|4 9 [10[11] 8 13(14(15{ 12 8| olmoln| [12]13]14]15
6|7]4[s 1o11] 8| 9| [14]15]12]13 — 1al11) 8| 2| [14]75]12]13
7Z|4|5|8] [ms]ge|ra [15]12[13]14 1] 8] efia [15]12[13]12
(a) Initial (b) After Step 0
P+ Ps Pa Pr Pa Py ProPny P12 P1s P14 Pis Ps Ps Po P7 Pi Py ProPi P12 P13 Pa Pis
4]5[s]7] [8]¢ JGFE 12{1314] 18] 4[s[s]z] [a[o[iolm] [12[13]i4liz
4|s5|sl7] [8]9liofns| [12|13]14]15 4|5|6lz2| |8|elmojir [12]13]14]15
4[5|s]z| |[8]ofmofit] [12[13[14[15] a|slslz] [a|ofidn] [12)13]14]15
7Zl4]sls| [mlslelio] [18[12[13[14] alslelz] [alololm| [12[13l7475)
() tter Stepi | (d) After Step 2
Figure 10: Communication steps in the Hybrid Algorithm (d = lg M)
P4 Ps Pa P7 s Po PP PizPiaPlaPis P-l_Ps Pa Py P P PraPn P2PiaPuis
4|5]6|7 gl eoliolin] [12]13]14]18] alololn| [12]13]14]15]
5(6]7[4 911011 8 13[14|15|12] — 9 |10l11| 8 13]1415] 12|
— [s|Z[4]5] [10]i7] || [r4l78[1213 8| oliofn| [12)13
—= [7Z]|4]5]¢ 11[8] 9]0 [15[12]13]14 — 9 [10]11] 8 1314|1512
(a) Initial (b) After Step 0
Pa Ps Po 7 Pe Py ProPut Pz P Pra Pis
4[506lz] [a[elmofnn] [12[13]14]15]
4|s5lslz| [8]e]mfnr] [12[13[14]15
4|5lelzl |8]|eliofrr] |12]13]14}15
4|5|6|7 8| ¢lmofrr] |[12]13]14]i5]
(c) After Step |
Figure 11: Communication steps in the Hybrid Algorithm (d = 0)
S TR AT . Total Number of
Algorithm Startup Time Data Transfer Time - || AL
. | 'a=4, N=256 || M=4, N=1024
Serial MNTy MNxt, 1024 4096
Parallel NTs Nxty 256 1024
Simple Indireet (w M= 1)Ts (M+N-1)x1, 67 259
Proposed ; M Ay M M J
Algorithn (Flog(n + 1)1+d+[£‘{|- l]“ N+gdtls—1 P)ﬂ‘r 10(d=1) 12(d=1)

Figure 12: Comparison of the communication algorithms

e—a Proposed Algorithm
&—o MPI_All_to_all

30.0 T T 150.0 : T

no
e
o
iy
o
o
[=)

T

:

L
50.0 f\,h._,_,/—ﬂ

Execution Time (msec)
Execution Time (msec)

00,5 32 B4 28 0.0i5 3 B4 128
Number of processors (M+N) Number of processars (M+N)
(a) x= 4 Bytes (b) x = 4 KBytes

Figure 13: Comparison of the MPI_All.to_all primitive and the proposed algorithm (for d = 0) for M = 4
on the SP2.

20.0 : ‘ ; -
/
®—=® Proposed Algorithm / /
O—=1 Simple Indirect Algorithm /
g /
3 /
E 150 / -
£ /
= /
c .
el A
.g S S~) /’/
2 100 = "
E .-—\\.———-.
Q
4 3 7 15 31 63

Figure 14: Comparison of the simple indirect algorithm and the proposed algorithm for M = 2, x = 256
Kbytes, on the SP2.

14

SP2 Results SP2 Results

100 - T 80 - T
0w BOT U,
8 Q
S 60t c40r
o o
B G
@ @
£ 4o} g
3 3
= = 20t 4
E E
3 =]
E20f E
£ £
s =

[L
256x256 512x512 1Kx1K 2K x 2K 256 x 256 512;:512 1K x 1K 2K x 2K
Data Size Data Size
(a) latency = throughput = 1 sec. (b) latency = infinity,
. throughput = 1 sec.
T3D Results T3D Results
100 4 ' 60 v T

40

201

Minimum Number of Processors
Minimum Number of Processors

256 x 256 512x512 1K x 1K 2K x 2K 256 x 256 512x512 1K>€1K 2K x 2K
Data Size Data Size

(c) latency = throughput = 1 sec. (d) latency = infinity,
throughput = | sec.

e—= The Proposed Algorithm

+— The Previous Serial Algorithm

Note: Input data of size 1K x 1K can not be processed using the previous
serial algorithm because (i) if the number of processors is small, the
data transfer time is longer than 1 second and (ii) if the number of
processors is increased, then the startup time becomes longer than
1 second.

Figure 15: FFT benchmark results

1. Real-Time 2D FFT Benchmark: The results of the 2D real-time F'FT experiments are shown in
Figure 15 (a) through (d). N/M = 3 was used in our experiments. The reason for using N/M =3 (instead
of N/M = 1) is that this implementation is to assess the performance of an M-to-N software task pipeline,
where the number of processors in each stage is different from the other stages.

The minimum numbers of processors required to process the FFT for various data sizes are shown in
Figure 15. The experiments were performed for two cases: (1) Case 1: latency = throughput = 1 sec, (2)

Case 2: throughput = 1 sec, latency = no constraint. The experimental results show that the proposed
algorithm required fewer processors than the previous serial algorithm when the data size was large. The
reduction in the number of processors was possible by reducing the number of communication startups.

Another advantage of our algorithm was that the maximum size of the input data that could be processed
was larger than that of the previous serial algorithm. The maximum input data size that could be processed
by our algorithm and the serial algorithm were 2K x 2K and 1K x 1K respectively, given that the total
number of processors (M + N) that could be allocated to a task was 128.

The results show that the required number of processors to perform real-time FFT on the SP2 was larger
than that on the T3D. The main reason was large fluctuation of the execution time on the SP2. Some of
the execution times on the SP2 are much longer than the average execution times for the same parameter
settings. Because of the large variation, there was a large difference between the performance determined
by using the longest execution time and that determined by using the average execution time. However, the
execution times on the T3D showed little fluctuation.

2. Corner Turn Benchmark: The experimental results for the corner turn operation are shown
in Figure 17. The data size was 1K x 1K in floating point format (4 bytes/data). N/M = 3 was used in
our experiments. The corner turn throughput/node and bandwidth utilization are shown in Figure 18 and
Figure 19 respectively. The maximum bandwidths of the SP2 and the T3D used in Figure 19 are from [14].

In TFigure 17, the communication time of the previous algorithm increases monotonically except when
the number of processors was 128 on the T3D. However, the communication time of the proposed algorithm
decreases as the number of the processors increases. The reason for the sudden reduction of communication
time when the number of processors is 128 on the T3D is being investigated.

In the proposed algorithm, there are two factors which affect the communication time. The first one is
increased communication startup time due to the increase in the number of communication steps. The other
one is reduced data transfer time from increased parallelism. As the number of source processors increases,
there is more available bandwidth which is exploited by the proposed algorithm. For the range of data sizes
considered in this study, the overall communication time continuously decreases as M increases. It is due to
the fact that the reduction in the communication time from increased parallelism was more significant than
the increase in the communication time due to the larger number of communication steps.

In the Corner Turn Behchmark, the SP2 and T3D showed mixed result. The T3D showed better perfor-
mance when the previous serial algorithm is used. However, the SP2 showed better performance when the

SP2 Results SP2 Results
150.0 Y T ¥ T 50.0 k : T T
40.0
@
2 100.01 §
o L
S 5 30.0
5 2
5] S 20.0
2 50.0 5
g a
2 5 _
Z 10.0
0 sallado e Al i 0 |
390 420 450 480 510 540 570 800 830 860 890 920 950 980
Execution Time (msec) Execution Time (msec)
(a) Proposed algorithm, Latency = Throughput = | sec. (b) Previous algorithm, Latency = Throughput = | sec.
Number of processors = 20, data size = 1K x 1K Number of processors = 28, data size = IK x 1K

Figure 16: FFT histograms

SP2 Results T3D Results

1500.0 . 250.0 . : .
=—s Proposed (average
=—a Senpal (a\a'Sarage)g) ¢ °®°Proposed (average)
6] e—e Proposed (maximum) T 200.0f =—*=Serial (average)
@ &=—a Serial (maximum) 2
~— 1000.0 =
g g 150.0
= = .
c ol
2]
8 8 100.0}
S 500.0 5
E E
E E
8 - (S 50.0f
L
- . 4 M L "
0046 32 64 128 005~ 46 32 64 128
Total Number of Processors (M+N) Total Number of Processors (M+N)

Figure 17: Corner turn benchmark implementation results

@®—® Proposed Algorithm
G—0 Previous Serial Algorithm

SP2 Results . ' T3D Results

3.0‘\[T T 4.0 T T T

Throughput (MByte/(node*sec))
Throughput (MByte/(node"sec))

NS
ey

8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

0.0

Figure 18: Corner turn throughput/node (data size = 1K x 1K, N/M=3)

proposed algorithm is used. This is due to the smaller startup time on the T3D. Because the proposed algo-
rithm reduces the number of startups, the effect of the the reduced communication time on the performance
was more significant on the SP2.

17

®—@ Proposed Algorithm
G—=© Previous Serial Algorithm|

SP2 Results T3D Results

16.0 T T : 16.0 T 1 T
£ 120} ! £
5 5
5 I~ g
5 8og - . 5
o \ L =
5 N\ \o T
= \ =
g 40| X \' g
o ’ . ! s}
N L

0.0 : Lo 0.0 e

8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

Figure 19: Corner turn bandwidth utilization (data size = 1K x 1K, N/M=3)

6 Conclusion

In this paper, we implemented real-time signal processing benchmarks on the SP2 and the T3D. For high
throughput implementation of the real-time benchmarks, we presented portable M-to-N communication

SP2 Results SP2 Results
80.0
180.01
® 150.0 @ 60.0
2 o
: s
5 12001 =
3 3
o] o 400}
5 90.0 5
i) b
3 @
E 600 t
=1 -
Z = 20.0
30.0(
%%00 400 600 800 1000 oQ
E - 60.0 . - 300.0 400.0 500.0 600.0 700.0
Communication Time (msec) Communication Time (msec)
(a) Proposed algorithm (d=0 is used for Stage 2) (b) Previous algorithn(Serial algorithm)

Figure 20: Histograms of the corner turn benchmark implementation (Data size = 1K x 1K, Number of
processors = 16) .

18

primitives.

Using our communication primitives, the number of communication steps was reduced to as small as
[lg(N/M +1)] + [lg M] ~ lg(M + N). The previous serial algorithm needed M N communication steps. By
using the proposed algorithm, the number of processors required to process 1K x 1K FFT was reduced by
33% on the SP2 and 40% on the T3D. For 1K x 1K corner turn, the communication time was reduced by
89% on the SP2 and 69% on the T3D when the number of processors was 64. By using our algorithm, the
maximum data size that can be processed is also increased. Using 128 processors, the maximum data size
that can processed by our algorithm was 2K x 2K and that by the previous serial algorithm was 1K x 1K.

Using the implemented benchmarks, we compared the performance of SP2 and T3D. In general, SP2
shows large fluctuations in execution time which is undesirable for real-time applications. Thus, T3D shows
higher performance for real-time benchmarks (using both the previous serial communication algorithm and
the proposed algorithm). We suspect that the fluctuation of the execution times was due to the lack of
gang-scheduling on SP2. Thus, we believe the execution times will have little fluctuation when SP2 employs
gang-scheduling, and the performance of real-time signal processing on SP2 will improve.

The proposed communication primitives can be used in applications that have heterogeneous character-
istics so that the computations can be partitioned into series of stages and each stage has different compu-
tational requirement. Typical examples of such applications are radar, SAR, automatic target recognition,
and vision problems.

19

References

(1] P. B. Bl}at, Y. W. Lim, and V. K. Prasanna, “Issues in Using Heterogeneous HPC Systems for Embedded
Real Time Signal Processing Applications,” Proc. of 2nd Intl Workshop on Real-Time Computing
Systems and Applications, Tokyo, Japan, October 1995.

(2] Y. Chung, and V. K. Prasanna, “Image Feature Extraction on Coarse-grain Parallel Machines,” sub-
mitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996.

[3] Defense Advanced Research Projects Agency/Rome Lab, “Real-Time Benchmark Summary,”
http://www.se.rl.af.mil:8001/benchmarks/c3ipbs_rt.html, 1997.

[4] Defense Advanced Research Projects Agency, “Embeddable Systems,” http://www.ito.arpa.mil/ Re-
searchAreas/Embeddable.html, 1996.

(5] T. Einstein, “Realtime Synthetic Aperture Radar Processing on the RACE Multicomputer,” Application
Note 203.0, 1996.

[6] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engi-
neering, Addison-Wesley Co., 1995.

[7] R. A. Games, “Benchmarking Methodology for Real-Time Embedded Scalable High Performance Com-
puting,” MITRE Technical Report MTR 96B0000010, March 1996.

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message
Passing Interface, MIT Press, 1994.

[9] J. JaJa, and K. Ryu, “The Block Distributed Memory Model for Shared Memory Multiprocessors,”
Proceedings of International Parallel Processing Symposium, pp. 752-756, 1994.

[10] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel, The High Performance Fortran
Handbook, The MIT Press, 1994.

[11] M. Lee and V. K. Prasanna, “High Throughput-Rate Parallel Algorithms for Space Time Adaptive
Processing,” 2nd International Workshop on Embedded HPC Systems and Applications (EHPC’97) at
IPPS 97, Geneva, Swiss, 1997.

[12] Y. W. Lim, P. B. Bhat, and V. K. Prasanna, “Efficient Algorithms for Block-Cycle Redistribution of
Arrays,” Eighth IEEE Symposium on Parallel and Distributed Processing, New Orleans, Louisiana,
1996.

[13] W. Liu, W. J. Kostis, and V. K. Prasanna, “Communication Issues in Heterogeneous Embedded Sys-
tems,” Proceedings of the Workshop on Parallel and Distributed Real-Time Systems, Honolulu, Hawai,
April, 1996.

[14] W. Liu, C. Wang, and V. K. Prasanna, “Portable and Scalable Algorithms for Irregular All-to-all
Communication,” Proceedings of the 16th ICDCS 96, Hong Kong, 1996.

[15] P. G. Meisl and M. R. Ito, “Parallel Synthetic Aperture Radar Processing on Workstation Networks,”
IPPS 96, Honolulu, Hawaii, 1996.

[16] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Technical Report
(S-94-230, University of Tennessee, Knoxville, May 1994.

[17] T. N. Phung, D. G. Payne, and B. Rullman, “Tutorial: Doing Parallel I/O on the Intel Paragon
Supercomputer,” ISUG 95, Albuquerque, NM, June, 1995.

(18] S. Ranka, R. Shankar, and K. Alsabti, “Many-to-Many Personalized Communication with Bounded
Traffic,” Symposium on the Frontiers of Massively Parallel Computation, pp. 20-27, February 1995.

20

(19] C.-L. Wang, “High Performance Computing for Vision on Distributed Memory Machines,” Ph.D. Thesis,
University of Southern California, August 1995.

[20] C-L. Wang, P. B. Bhat, and V. K. Prasanna, “High-Performance Computing for Vision,” Proceedings
of the IEEE, Vol. 84, No.7, July, pp. 931-946, 1996.

[21] J. Ward, Space-time adaptive processing for airborne radar, Technical Report 1015, MIT Lincoln Lab.,
December 1994,

21

