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Abstract

Classical linear regression methods are applied to estimate the per-
formance of micropipelines. A data set of the system performance
measures (i.e., cycle time and latency) is first created by recently de-
veloped performance evaluation tool based on Markovian analysis. The
performance measures are fitted using stepwise linear regression to the
relevant system parameters which are served as independent variables.
The resulting models are then simplified through various statistics and
hypothesis testing. Finally, the simplified models are validated using
another independent data set. The fitted regression models reveal sev-
eral explicit relationships between the performance measure and the
system timing parameters.

1 Introduction

We report an application of the classical linear regression methods on the
performance analysis of an important class of electronic systems, i.e., mi-
cropipelines [1]. In modern electrical engineering, system performance, e.g.,
the rate at which a system can process the data, is one of the dominating
system design criteria.

'This work is funded in part by a NSFF CAREER Award MIP-9502386, NSF Grant
No. CCR-9812164, a gift from the Intel Corporation, and a research seed grant from the
James H. Zumberge Faculty Research and Innovation Fund at USC.



Most electronic systems such as today’s personal computers work at a
fixed rate. Specifically, these systems have a built-in clock that periodically
generates a global signal that controls every other system component so
that the entire system marches at the same speed. Because of this, they
are called synchronous systems. Consequently, their performance such as
data processing rate can be easily determined by the rate of the clock. One
critical disadvantage of synchronous systems is that the clock cannot run
at a rate that is higher than the speed of the slowest system component.
Otherwise, the slowest component would not have enough time to finish its
current job before a new job arrives. Since a modern electronic system rou-
tinely contains thousands of components with very different data processing
speeds, the system clock rate is necessarily to be slow, thus limits the sys-
tem performance. Meanwhile, faster components must wait until next clock
signal comes although they may have finished their current job way earlier,
resulting a wasting of system resource.

More recently, another type of systems, called asynchronous systems,
demonstrates many potential advantages over synchronous systems. These
systems run without a built-in clock. All system components work at their
own speeds except some necessary synchronization between adjacent com-
ponents when they have to exchange their results. Thus, the systems do
not have a fixed data processing rate, and they are expected to have better
average performance (over the time) than synchronous ones. Micropipelines
belong to this category.

Unfortunately, analyzing the average performance of an asynchronous
system is not trivial. Not only do system components work at different
speeds, but a given system component may also have different speed de-
pending on the type of data (or job) it currently works on. In other words,
the system is stochastic in nature. Many researchers have studied the per-
formance of these systems [2, 3, 4, 5, 6]. A common way to do this is to
first model the system as a time-homogeneous finite state Markov chain and
then compute its stationary probability distribution from which the system
performance measures can be conveniently obtained. However, because the
resulting Markov chain may have a huge state space size, these methods are
limited to analyzing small systems. Moreover, even it is possible to compute
the performance measure using this method in a reasonable amount of time,
it is still unclear how the system performance would change if some of the
system component were to change (for example, redesigned).

In this work, we are targeted to explore possible direct (explicit) re-
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Figure 1: Block diagram of an N-stage micropipeline.

lation between the system performance and the system parameters using
linear regression method. If there is any such direct relationship, it is desir-
able to find a good regression model for it. More precisely, we wish to find
regression models that accurately estimate/predicate corresponding system
performance. For instance, whenever possible we would like to find a regres-
sion model with the coefficient of determination R? higher than 95% or with
the prediction error less than 5%. In particular, we focus on the analysis of
micropipelines.

1.1 The mechanism of micropipelines

Figure 1 shows the block diagram of a micropipeline. It consists of N (N > 1)
data processing units which we call stages. The environment at the left side,
labeled as Env1, is the source of the data to be processed by the system. It
sends data to the first stage. The first stage then processes on that data and
when it finishes sends the result to the next stage. The data then flows down
the line towards the environment at the right side, labeled as Env2 which
consumes the final result. Once the first stage finishes current data, it can
start processing new data if Envi has new data ready to send out. This way,
there can be multiple data being processed at different stages of the system
at a given instant of time. In other words, the Envi does not necessarily
have to delay sending a new data to the system until the previous data has
been consumed by the environment Env2 at the other side, and thus the
name of micropipeline.

When Stage(i) (i = 1,--+,n — 1) finishes processing current data, it
issues a signal, labeled as Req(2), to Stage(i+ 1), meaning that it has data
ready to dispatch and requires processing. If Stage(i+1) is current idle, i.e.,
it is not working on any data, then it takes in the data from Stage(i) and
issues a signal, labeled as Ack(i + 1), back to Stage(:), meaning that the



data has been taken in. At that point, Stage(z) can start working on new
incoming data if there is any. If, on the other hand, Stage(i+1), is current
busy on the previous data, then Stage(i) has to wait (called blocked) until
Stage(2+ 1) finishes the previous data and receives a the signal Ack(i + 1)
from Stage(i-1). This type of communications between adjacent stages is
sometimes called handshaking. The environment Envi communicates with
Stage(1), and environment Env2 communicates with Stage(/N) both in a
similar way.

1.2 The timing model

We call the time a system component needs to finishing process a given
data the delay of the component on that data. In practice, a delay can take
any non-negative real values. Moreover, a component delay is usually data-
dependent, i.e., its value varies with different types of data to be processed,
and has a probability distribution over some interval.

In our micropipeline model, we assume the delay of Stage(i) (: =
1,---n) , denoted by d(7), takes values in an interval, [6(:), A(z)] with a
probability density function fyi;). We further assume that all N stages of
the micropipeline are roughly balanced. That is, their delays are indepen-
dently identically distributed (i.i.d.). Therefore, we just have one common
delay interval, denoted by [d, A], with a common probability density func-
tion fy for all stages. In this report, we set this delay interval to be [1,3].
Finally, we assume that both environments have a fixed delay of 1.

We define p to be the mean of the stage delay d, i.e., p = E{d}, ¢* to
be the variance of d, i.e., 0 = E{(d — p)*} and mj to be the third central
moment of d, i.e., m3 = E {(d — p)*}.

The rest of the report is organized as follows. In section 2, we list the
important hypotheses that we have tested along with the final regression
model we arrived. In Section 3, we described in detail the development of the
model using stepwise regression method (7] for variable selection. Statistics
such as R?, k2. C,, are used to choose a good subset size and thus simplify
the model. The models are then validated using an independent data set in
Section 4. Conclusions are given in Section 5.



2 The Tested Hypotheses

There are two performance measures that are of primary interest in mi-
cropipeline design. They are the average throughput and average latency.

Average throughput, denoted by A, measures the expected data process-
ing rate of the system. It is defined as the reciprocal of the expected cycle
time T of the system, or equivalently the average frequency at which the
environment Env1 injects data to Stage(1). That is, we have A = T,

Average latency, denoted by L, measure the expected time a data has to
experience in the micropipeline once it starts been processed by Stage(1)
until it is consumed by the environment Env2.

In the sequel, when we say cycle time or latency, we mean their expected
values to simplify the description.

Several hypotheses regarding these two performance indices are of great
interest.

Hypothesis 1 Cyecle time of our micropipeline model can be adequately es-
timated by only the number of stages N and the first moment of the stage
delay, d. That is, variance and other higher moments of the stage delay do
not have significant impact on the cycle time.

Hypothesis 2 Cycle time of our micropipeline model can be adequately es-
timated by the number of stages N, and the first two moments of the stage
delay, d. That is, the third and other higher moments of the stage delay do
not have significant impact on the system cycle time.

Similar hypothesis regarding the system latency are:

Hypothesis 3 Latency of our micropipeline model can be adequately esti-
mated by only the number of stages N, the first moment of the stage delay,
d. That is, variance and other higher moments of the stage delay do not
have significant impact on the system latency.

Hypothesis 4 Latency of our micropipeline model can be adequately esti-
mated by the number of stages N and the first iwo moments of the stage
delay, d. That is, the third and other higher moments of the stage delay do
not have significant impact on the system latency.



Using linear regression, regarding the cycle time, we tested that Hypoth-
esis 1 is false while Hypothesis 2 is true. Regarding the latency, we tested
that Hypothesis 3 is true and thus of course 4 is also true since it requires
to incorporate more independent variables.

In particular, the cycle time of our micropipeline model can be ade-
quately captured by the following model:

T = 2.36 + 0.861p + 0.645 log(N) o (1)

where IV is the number of stages in the system, u and ¢? are the mean and
the variance of the stage delays, respectively, as defined in section 1.2.

The latency can be adequately captured by the following model:

L =0.271+ 1.62np (2)

3 Model Development

In this section, we develop the linear regression model for the cycle time
and latency of our micropipeline model. Specifically, based on the data set
which we obtained using our recently developed performance analysis tool
[4, 5], we first use stepwise linear regression method to find a good model
for each subset size. Next, we combine different statics such as R?, R},
MS(Res) and Cj to determine a good subset size and simplify the model.
Testing of various hypotheses will also be given.

3.1 The data set

The data set is derived as follows. Given the number of stages N and
a particular probability density function f; for the stage delay d, we use
our Markovian analysis based performance evaluation tool to compute the
cycle time and the latency of the micropipeline. In particular, we vary the
number of stages N from 1 to 6. For each fixed number of stages, we apply
10 different probability distribution function fy. Therefore, for both cycle
time and latency, we have 6 x 10 = 60 data. That is, the data set size n =
60.

For clarity, we put the resulting data set in Table 5 of the appendix.
Specifically, the independent variables there include N, pu, 0%, mz. The



Source of

variance d.f. 5SS MS F
Total(uncorr) 60 1.2065 x 103
Mean 1 1.1963 x 10°
Total(corr) 59 10.1898
Regression 4 9.3019 2.3255 144.1

Residuals 55 0.8879 0.0161

Table 1: Summary analysis of variance for the simple linear model of cycle
time.

dependent variables are T" and L.

3.2 Determine the independent variables for regression

Because both dependent variables, especially the cycle time 7', could be
extremely complicated functions of the system timing parameters such as
N, i, ¢® and ma. In particular, this function is unlikely to be linear so that
a direct use of linear regression with these independent variables may not be
adequate. For this reason, we first check if a simple linear regression model
based on these 4 parameters will be sufficient. If not, we will try to added
more variables into the data set .

Let us first test the adequacy of the following linear model for cycle time:

T = Bo+ BilN; + Bapt; + Pac} + Ba(ma); + ¢ (3)
where 5 = 1, -+, n. Or equivalent in the vector form
T =XB+e (4)
1 Bo
N B
where X = | pu and B = | f
o’ B3
m3 B

! Alternatively, one may resort to nonlinear regression methods (see e.g., [8]).



The coefficient of determination R?* = gg ?:f:ﬂi‘;ff computes to 91.3%

. _ MS(R ion) .
whereas the adjusted R?, R, = 1 — MS(Tofal(eorr) COMPUtes to 90.65%.

Both of them do not meet our requirement of 95%. Further, 3 is computed to
1.768
0.1234
0.9620 |. Take o = 0.05, we have ¢,y 55 = 2.009, which yields the 95%
0.6227
0.1240
1.768 £ 0.9615
0.1234 +0.0193
confidence interval for the coefficients as CL(8) = | 0.9620 + 0.4770
0.6227 + 0.1880
0.1240 £ 0.5762
which are rather wide. Therefore, this simple model is not adequate. This
means that we need to incorporate more independent variables.

As we discussed earlier, we may not be able to capture the cycle time of
the system as linear combination of the system parameters. Instead, it might
well be a complicated nonlinear function of the parameters. Therefore, we
try to add more variables derived nonlinearly from given independent vari-
ables. According to our inspection of the data set and previous experience,
we conjecture that the cycle time might be related to following six variables
defined as:

log(N)p,
log(N)a?,
U3 a log(N)ms,

A
v =

A
U9 =

A

vy = Ny,
A

vs = No?,

Vs é ng.
Now, the new linear model for the cycle time as given by equation 4 has
t
10 independent variables %, i.e., X = ( 1 N p o> mg vy vy -+ vs )
t
and B=(fo B - Buo ).

2The last 6 of these variables are clearly dependent on the first 4 variables. But for the
description purpose, We still call them independent variables as in the context of linear
regression.




Source of

variance d.f. SS MS F
Total(uncorr) 60 1.2065 x 10%
Mean 1 1.1963 x 102

Total(corr) 59 10.1898
Regression 10 10.1359 1.0136 921.5
Residuals 49 0.0539 0.0011

Table 2: Summary analysis of variance for the new linear model of cycle
time with 10 independent variables.

The model with these 10 variables give B? = 99.5%, which is sufficiently
accurate for our purpose.

A similar test shows that these 10 independent variables are also ade-
quate for the linear regression of latency L. In the remaining of this section,
we use further regression methods to eliminate unimportant independent
variables from this new model, and find good simple linear models for both
cycle time and latency.

3.3 Model simplification using stepwise regression

Let us first focus on regression for the cycle time 7. We follow the stepwise
regression method described in [7]. The significance levels are chosen to
be SLE = 0.2 and SLS = 0.1 The procedure terminates when the model
incorporates 7 independent variables when no more remaining variables can
enter and all 7 incorporated variables meet the requirement to stay. Table
3 summarizes the result of the stepwise regression.

3.4 Choosing a good subset size

According to Hocking’s argument for estimation purpose [9], the Mallows’
C, statistics [10] should satisfies C, < 2p’ —t where ¢ is the number of
variables in the full model, in our case, t = 10. With this eriterion, we are
forced to choose the last model with 7 variables in Table 3 which merely
satisfies the criterion with C, = 6.0 < 2 x (74 1) = 10. All other models in
the table would be unsuitable.



) 3
subset Rk* R: di

size | (%) (%) C, MS(Res) |N pu o* mz v vy vy w4

Vs Vs
1 58.1 57.4 3824 0.271 X
2 96.7 96.6 251.6 0.078 X X
3 98.0 97.9 131.3 0.060 X X X
4 99.1 99.0 36.5 0.041 X X X X
5 99.2 99.1  25.0 0.038 | x x X X X
6 99.4 99.4 7.8 0.033 [ x x x X X X
7 99.5 99.4 6.0 0.032 | x x «x % X X X

Table 3: Summary of stepwise regression on cycle time.

This result is not satisfactory since the model with 7 variables is too
complicated for us to get a good intuition about the relationship of the
system cycle time and its parameters. For this reason, we adopted other

criteria based on R?, Rgdj and M S(Res) to choose a good subset size.

Figure 2 plots R? and Rﬁdj for the models listed in Table 3. We see
that the model with 2 variables has R* ~ R2,. = 96.6 > 95%, well satisfy-
ing our requirement. With more added variables, both R* and R2,; increase
marginally. Moreover, this observation is consistent with the MS(Res) statis-
tics plotted in Figure 3 where MS(Res) decrease dramatically from the best
I-variable model to the 2-variable one. After that, it decreases marginally
with more variables.

Therefore, we decide to choose the subset size as 2, and the correspond-
ing model for the cycle time is given by Equation 1. For convenience, we
replicate it here:

T = 2.36 4 0.8611 + 0.645 log(N)o?

3.5 Hypothesis testing

The four hypotheses we posted in Section 2 related to the adequacy of the
resulting models. Ideally, we would like to adopt the F-test on the mean
square of deviation from re?ressz'.on' versus mean square of experiment error
(pp. 125, [7]), ie., F = hh—fs(%—tm’?, to test the adequacy of the model.
Unfortunately, our data set does not contain pure replicate so that we can

10
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Figure 2: R? and R2, plot against p' for the model selected by stepwise
regression for each subset size.
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Figure 3: MS(Res) plot against p' for the model selected by stepwise regres-
sion for each subset size.
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not estimate the quantity of the pure error which is required in the above
mentioned F-test.

To overcome this difficulty, we combine several other statistics to judge
the adequacy of the models.

Hypothesis 1 concerns whether the cycle time can be sufficiently esti-
mated just by the number of stage N and the first moment of the stage
delay p. Let us exam the model that incorporates all independent variables
that are related to either N or p alone or both of them. Thus, in this model,

1 Bo
N I3}
we have X = | u and B =1 B
log(N)p B3
Np Ba

Variance analysis shows that R* and Ridj of this model are 90.7% and
90.1%, respectively, both of which are not satisfactory to our targeted value
of the coefficient of determination. Further, the regression coefficients and

1.8377 £ 0.4388
0.2578 £ 0.1114
their 95% confidence interval are: CL(8) = | 1.1318+ 0.2137
0.3104 £ 0.1095
—0.1736 £ 0.0664

Although the t-test for the individual 3;(7 = 1,---,4) with t-ratios =
(8.493,4.651,10.641,5.695, —5.252) all beyond the critical value ¢g.02555 =
2.009, meaning all of them are significantly different from zero, the relatively
large 95% confidence interval suggest that the model is not sufficient for our
estimation purpose.

Combining R?, R2,; and 95% confidence interval of regression coefficient,
we conclude that the we can not accept Hypothesis 1. In other words, we
deduce that the cycle time also heavily depends on the quantities of other

higher moments of the stage delay.

Hypothesis 2 concerns whether the cycle time can be sufficiently esti-
mated by just the number of stage N and the first two moments of the
stage delay but not other higher moments. It is clear that if the 2-variable
model given in Equation 1 is an adequate model, then Hypothesis 2 should

be considered true.
Our variance analysis shows that R? ~ R2, = 96.6 in this 2-variable
model, well satisfying our requirement of the R? value. Further, the re-

12



Predicted | Observed | Prediction Error
P T 0=P-T
4.9391 5 -0.0609
3.7597 3.75 0.0097
3.8736 3.8923 -0.0184
4.4446 4.4826 -0.0384
4.1274 4.203 -0.0756
4.8160 4.9073 -0.0910
4.1150 4.1914 -0.0760
4.0381 4.0005 0.0331
3.8057 3.8018 0.0007
4.7976 4.956 -0.1584
Mean | 4.2717 4.3192 -0.0475

Table 4: Prediction error for model validation.

gression coefficients has very narrow 95% confidence interval, i.e., CL(83)
236 £ 0.115

= | 0.86140.055
0.645 £ 0.050

These statistics lead us to conclude that Hypothesis 2 is true.

Conducting similar analyses, we found that both Hypothesis 3 and 4
regarding the relationship between the latency and the system timing pa-
rameters are true. The result is that system latency depends mainly on
the number of stages and the first moment of the stage delay and has little
relation with the variance and other higher order of the stage delay.

4 Model Validation

To confirm the effectiveness and confidence of the fitted regression equa-
tions, we use an independent set of data. This data set which contains 10
very different data from those used in regression is listed in Table 8 of the
appendix. We would like to see how good our regression models are.

Table 4 shows some statistics comparing the observed values and the
predicted ones for the system cycle time.

13



The average prediction bias is § = —0.0475; the cycle time is underes-
timated by approximately lerror is s?(8) = 7= 312, (8() — 8)2 = 0.0032,
or 5(6) = 0.0568. The standard error of the estimated mean bias is s(8) =
s(6)/v/10 = 0.0189. A t-test of the hypothesis that the bias is zero gives
t = &§/s(8) = —2.50 which, with 9 degree of freedom and a = 0.025, is
slightly beyond the critical value ¢t = 2.26.

The mean squared error of prediction is

MSEP =3¢
—1)s?
= [10=170) o (5)2 (5)
= 0.0029 + 0.0023 = 0.0052

Although the bias term contributes about 44% of MSEP, but the square
root of MSEP gives only 0.0718 which counts to an approximately 1.66%
error in prediction.

In summary, the cycle time is slightly underestimated by the final 2-
variable regression model given in Equation 1 by approximately 1%. The

model serves very well for prediction purpose with predication error about
1.66%.

Similar analysis for the final regression model for latency (Equation 2)
shows that the prediction error of the model is approximately 3% (i.e.,
VMSEP/L, where L is the sample mean). In particular, the ¢-test of the
hypothesis that the bias is zero gives t = 1.345 < 2.26, implying the bias of
the prediction is insignificant.

5 Conclusions

We applied linear regression methods to analyze the system performance of
micropipelines. Various statistics and hypothesis testing establish several
interesting relationship between system performance and system timing pa-
rameters. In particular, we find that the cycle time and thus throughput of
a micropipeline can not be sufficiently captured by the first moment of stage
delays. This essentially invalidates the approach proposed in [6] where the
second and all other higher moments of the timing parameters are ignored.
Instead, we see that the cycle time of a micropipeline can be adequately
described by the number of stages and the first two moments of stage de-
lays. In particular, the variance of stage delay affects the cycle time through

14



the logarithm of the number of stages. On the other hand, the latency of
a micropipeline can be capture by the first moment of stage delay, demon-
strating a rather strong insensitivity to the higher moments. These results

promise many interesting applications in both analysis and optimal design
of micropipelines.
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Appendix. The Data Sets

N p o ms T L

1 2 02 0 4 3
12 06 0 4 3

L 2 04 0 4 3

1 2 08 0 4 3

1 13 04 0504 |33 23
1 1.6 0.64 0432 |3.6 2.6
1 1.9 0.69 0.108 |39 29
1 21 0.69 -0.108 |41 3.1
1 24 064 -0432|44 34
1 27 041 -0.504 | 4.7 3.7
2 2 02 0 4.18 6.18
2 2 06 0 442 6.42
2 2 04 0 4.32 6.32
2 2 08 0 4.48 6.48
2 13 04 0504 | 3.55 4.85
2 1.6 0.64 0432 |4 5.6
2 19 0.69 0.108 | 435 6.25
2 21 0.69 -0.108 | 4.55 6.65
2 24 064 -0432|48 7.2
2 27 041 -0.504 | 4.95 T7.65

Table 5: The data set for regression.
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w0t mg i L

2 02 0 4.237 9.45

2 06 0 4.59  9.941
2 04 0 4.451 9.729
2 08 0 4.679 10.085

1.3 04 0.504 | 3.734 7.953

1.6 0.64 0.432 | 4.224 8.754

1.9 0.69 0.108 | 4.547 9.719

2.1 0.69 -0.108 | 4.721 10.303
4 0.64 -0.4324.922 11.066
2.7 041 -0.504 | 5.077 11.491
2 0.2 0 4.32  12.709
2 06 0 4.675 13.506
2 04 0 4.531 13.174
2 08 0 4.776  13.744
1.3 0.4 0504 |3.86 10.334
1.6 0.64 0432 | 4.351 11.969
1.9 0.69 0.108 | 4.648 13.24

2.1 0.69 -0.108 | 4.803 14.003
24 0.64 -0.432 | 4.957 14.992
2.7 041 -0.504 | 4.998 15.626

A.&A&aaggaawwwwwwwwwwz
[av]
s

Table 6: The data set for regression (continued)
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uo ol ms r L

2 0.2 0 4.35 16.022
2 0.6 0 4,729 16.893
2 0.4 0 4.581 16.643
2 0.8 0 4.829 17.441

1.3 04 0504 | 3.948 13.154
1.6 0.64 0.432 | 4.429 15.218
1.9 0.69 0.108 | 4.706 16.792
2.1 0.69 -0.108 | 4.848 17.735
24 0.64 -0.432|4.978 18.934
2.7 041 -0.504 | 5.001 19.624

2 02 0 4412 19.328
2 06 0 4.761 20.716
2 04 0 4.616 20.134
2 08 0 4.863 21.162

1.3 04 0.504 | 4.011 15.997
1.6 0.64 0.432 | 4.481 18.49
1.9 0.69 0.108 | 4.744 20.369
2.1 0.69 -0.108 | 4.877 21.494
24 0.64 -0.432 |5 22.89
2.7 041 -0.504 | 5.045 23.648

C:GBC:GJCDG}C}GEG':G}U\OTCHCHUU‘CNWQHCHZ

Table 7: The data set for regression (continued)
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N p o ms T L

2 3 0 0 5 8

2 1.5 025 0 3.75  5.25

3 14 044 0408 | 3.892 7.946
3 18 0.76 0.264 | 4.483 9.463
4 1.6 044 0.192 | 4.203 11.688
4 24 044 -0.192 | 4.907 14.798
5 15 045 0.3 4.191 14.341
5 1.7 0.21 -0.084 | 4.005 14.521
6 1.2 0.36 0.576 | 3.805 15.032
6 25 025 0 4.956  22.696

Table 8: The data set for model validation.
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