Optimization of BIST Resources
During High-Level Synthesis

Ishwar Parulkar

CENG 98-31

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213-740-4469)
May 1998

OPTIMIZATION OF BIST RESOURCES DURING HIGH-LEVEL SYNTHESIS

by

Ishwar Parulkar

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
[n Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(Electrical Engineering)

May 1998

Copyright 1998 Ishwar Parulkar

Dedication

To

Aai and Dada

Acknowledgements

An undertaking such as a Ph.D. is not possible without the guidance, love, support

and companionship of many people...

Prof. Melvin Breuer and Prof. Sandeep Gupta for guiding and directing my doctoral
research. Prof. Breuer for teaching me the value of perfection and meticulosity in
scientific research. Prof. Gupta for teaching me that any problem can be looked at

in n different ways.

Professors Alice Parker, Peter Beerel, Doug lerardi and Michael Arbib for serving

on my guidance and dissertation committees.

Prof. Edward McCluskey and Dr. LaNae Avra from Stanford University for pro-
viding the TOPS software which formed the experimental setup for the ideas in this

dissertation.
Many other professors for honing my research skills through courses and discussions.

Charlie, Amit, Sridhar, Deb and Mody for countless discussions on topics ranging

from Combinatorics to the 49ers.

Gopal and Henri for tolerating my numerous phone calls while sharing an office with
me. Gopal for his level-headed advice on any academic matter. Henri for never

failing to accompany me to a film screening... even the most obscure of obscure
films.

Lana and Natalie for being my co-conspirators in exploring la-la-land in the early
years. Lana for showing me the subtle difference between a lutz and a salchow and
Natalie for showing me the difference between créme briilée and créme caramel and

other subtleties of French cuisine.

iii

Jean-Luc for helping me fulfill my dream of experiencing what Jonathan Livingstone
Seagull did - the beauty of flight...

Michael for putting up with me as a room-mate and for refreshing my German.

Numerous other friends (whom I shall refrain from listing for fear of doubling the
pages in this dissertation) for lively conversations, sweaty tennis games, sunny beach-

bumming days, bumpy Cessna flights, starry movie nights...

The nameless many working at the USC cafe for making my cappuccino just the

way I like it, everyday, for the last six years.

Soma, Ema, Paro and Kirti for being there for me through the years. For creating a
home away from home. Soma and Ema for keeping the child in me alive. Paro and

Kirti for making sure that the adult did not die.

Athena and Nitin for their trust, support and comfortable companionship. For being

the kind of friends only they can be.

And finally, my parents and my sister Padmaja for loving me unconditionally. For

believing in me and for teaching me to believe in myself.

Thank you.

Contents

Dedication i1
Acknowledgements iii
List Of Figures 1x
List Of Tables xi
Abstract xiil
1 Introduction 1
1.1 Testing of Digital Circuits v v v s v s v wiow o os 2
1.2 VLSIDesign Flow . . & « v s v« wom v v 8 w0 v v v s o mow s s w0 v s s 3
1.3 High-level Synthesis 4
1.3.1 Constraints in High-level Synthesis 5

1.3.2 Sub-tasks in High-level Synthesis 5

1.4 Motivation and Goals 7
15 Ontlineof Thesis . : o w0 552 0@ g5 3 cssmesensswmasa 9

2 Background 12
2.1 Testability at the RT-level 12
2.2 Previous Approathes v o s 5 3 s v 5 60 w5 w8 8w s s e e e w 14
2.2.1 Test Generation Efficiency 14

2.2.2 Partial Scan Overhead
2.2.3 BIST Concurrency o oo v v v v v v v v v v v un s
2.24 BIST Area Overhead« v v o v 64 oo v 0 o o a a e o o

3 Synthesis and Testability Models

3.1 High-level Synthesis Model
3.1.1 Data Flow Graph Model . . . « =& ¢ ¢ v v o5 e ¢ 0 0 0w -
3.1.2. Data Path Hardware Model o o v o v v v oo
3.1.3 Data Path Execution Model

32 Testabilify Model . « o 5 5 5 5 50 s v 5 5o 5 4 mw s w @@ o v m e 4w
3.21 BIST Resourceso vt v i v v it e oo
3.2.2 Minimal Intrusion BIST
3.2.3 ILP Formulation for Minimum Area BIST
3.24 Case Study e

33 DUHEIY s o c s v s 5 ¢ 58 B B E R E 5 R B G F 3 W EF e D a

4 Estimation of BIST Resources

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

Introduction e e e e e e e e e e e e e e

Storage Concurrency of Variables
Y

Mutually Independent Operations

Lower Bounds on BIST Resources« v v v v v v ..

A4] C-TEHOUTCES & v s 5 & @ s 5 ¥ 5 56 6 b o % 8 & oia & 3 o 1 5 @

442 G-TESOUTCES « « + v v e e e e e e e e e e e e e e e

4.4.3 CBILBO ReSOUICES . .« « v v v e e e e e e e e e e e e e e e

Tightness of Boufids o s ¢ =« 00 ¢ n s w58 0 866w 59w o s ws

Efficient Computation of Bounds

Use of Lower Bound Estimation in Synthesis

Experimental Results . . « v o« 2 o v v v v vm o v w0 v 0 n e

Summary

.................................

30
30
31
34
38
39
41
44

51
53
54
58

vi

5 Assignment for Reducing BIST Resources 59
TN 61775 e 7o) 1 R SR A S R YRR E R R 59
5.2 BIST Considerations During Assignment 60
5.3 Test Variables and BIST Registers 64

5.3.1 Sharing BIST Resources between Modules 67
5.3.2 Essential BIST Registers oo .o v v i v v v v 70
5.4 Register Assignmento oL Lo 73
5.0 Interconnect Assipnmient . « . . w5 5 59 8 80 w8 53 00 54w v oo 80
5.6 Experimental Results L. 83
DT SUBBIAEY o 2 o o v 0 s o 0on 2 o mom # 2 8 % & 6§ 5 @ E§ 3 & 6838 8 44 87

6 Scheduling for Reducing BIST Resources 88
6.1 Intreduebion« v o v s i v mmw s am s umas e e .. 88
6.2 Scheduling and BIST Resources 89

6.2.1 Effect of Scheduling on Variable Lifetimes 89
6.2.2 Effect of Scheduling on Module Assignment 92

6.3 Scheduling Procedureo 94
6.3.1 Phase 1: Adding Temporal Constraints 95
6.3.2 Phase 2: Detailed Scheduling and Module Assignment . 100
6.3.2.1 Estimation of BIST Area Overhead 102

6.3.2.2 Estimating BIST Cost, AggsT - - -« « « o v v . 107

6.3.2.3 Estimating Multiplexer Cost, Aprx . . . 0 . o . .. 108

6.4 Experimental Resalbsi « « ¢ o s 6 o o v 5 9% 6 5 9w s 3 o0 6 550 & 5 4 111
6.5 SUMIMATY o o v e e e e e e e e e e e e 115

7 Computational Redundancy and BIST Resources 116
T Iobroduebion - « ¢ 5 5 w2 5 5 53,6 v 8 8 R kS Boa s A S s E A DR EE b 116
7.2 Redundancy in RTL Data Paths 117

7.2.1 Spare Capacity of Modules 117

vil

7.2.2 Adding Redundant Computations in Data Flow 119

7.3 Effect of I-nodes on BIST Resources. 121
7.3.1 Type 1l Istransformation« o. .. 121

7.3.2 Type 2 I-transformation 123

7.4 Properties of I-transformation 124
7.5 Strategy for Introduction of I'nodes 129
7.5.1 Identifying BIST Resource Sharing Problem (Task 1) 129

7.5.2 Choosing an I'-node (Task 2)v ... 134

7.6 Experimental Resultso v i v i i v i oo vw e 136
T.7T SUIMMATY . . o o v o e e e e e e e e e e e e e e e e e e e 141

8 Conclusions 142
81 BISTatRT<level . .. v v vw v is o v mavmwwsnwso 142
8.2 BIST during High-level Synthesis 143
8.2.1 Estimation of BIST Resources 144

8.2.2 Register and Interconnect Assignment 145

8.2.3 Scheduling and Module Assignment 146

8.2.4 Redundancy and BIST Resources 146

8.3 Future Work and Extensions 147
8.3.1 High-level Synthesis. oo oL 147

832 Testabilify ¢ s » v v 595 smsgs 5w e samesanessoesa 148
Reference List 150

viil

List Of Figures

1.

1

3.
3.
3.

1

.3

1
2
3

3.4

3.

4.
4.
3

4

Ut (a1}

s

o N o> W

(]

[1

oo
o

5

1

2

[

= W

VISIdessgn flow . .« o v o v wie v v s wm v s e s s e e e e
Three-dimensional design space

Reduction in design cycletime,

DFG representabion « . + « s 5,0 ¥ 5 5 %@ 55 s ¥4 W W EF W 8 F§
Structural view of RTL design« . o v v v oo v i oo o v
Partial intrusion BIST in RTL design
Selection of test registers for BIST
A data path synthesized from AR _filter

Lifetime of variablesina DFG
Mutually independent operations

Lower bound on C-resources (LBge) o v v v i v oo

Lower bound on CBILBOS (LBgcBILBO) « « « « « v v v v v v v v v v

Assignment without BIST considerations
Assignment with BIST considerations (a) Register (b) Interconnect

Assignment for sharing of test functionality
Self-adjacency and CBILBOs
Conflict graph of variables
Sithplicial Vertices . oo v 5 5 5. w5 5 5 8 ® & ¥ % W E YA EE s E® B B
PVES based on SD(v) and MCS(v) v v v v v v i i vt

Trade-off between BIST functionality and interconnect

63

71
74
75
77
81

Ix

5.9 Effect of connectivity assignment on BIST registers 81
6.1 Scheduling and variable lifetimes: (a) Schedule I (b) Schedule IT . . . 90
6.2 Scheduling and module assignment: (a) Schedule I (b) Schedule IT . . 93
6.3 Phase 1 - Adding temporal constraints 100
6.4 BIST Solution from TestVar 104
6.5 Phase 2 - Detailed scheduling and module assignment 110
7.1 Itransformation L oL 118
7.2 Read and Write Cycles of Operations 119
7.3 DFGI and synthesized datapath 121
7.4 Type 1 I-transformation of DFG1 122
7.5 DFG2 and synthesized datapath 123
7.6 Type 2 I-transformation of DFG2 125
7.7 Transformation of feed-forward cuts 128
7.8 Elimination of extra MUX input 130
7.9 Logic optimization of extra MUX input 130
7.10 Finding sharing bottlenecks 133

Tl Choositig 6t FOORE w5 4 ww 5 53 % 6 5 53 % 6 § @ 5 & wow o 5 wiin 136

List Of Tables

4.1
4.2
4.3
4.4

4.6
4.7
4.8

6.1
6.2
6.3
6.4

Types of Test Regigbers ..« o « « v v v c s v v wa v v ww s 5 wiw o e 23
Effect of BIST register cost on ILP solution 29
Typical values of I;7** for benchmarks, 38
Lower bounds for minimum latency schedules of Diffeqgn 55
Lower bounds for Diffeqn o 55
Lower bounds for AR_Filter 55
Lower bounds for EW_filter (L=19) 55
Lower bounds for FIR filter 57
Variation in C-resource lower bounds for Tseng. 57
Variation in G-resource lower bounds for Tseng 57
Registers and their BIST functions for Data Path I (Fig. 5.1) 67
Flipping choices for connectivity assignment 83
Hardware characteristics of data paths 84
BIST registers using Approach I (Approach IT) 85
BIST area overhead comparison 85
Comparison of register and multiplexerarea 86
Effect of scheduling on variable lifetimes 93
Effect of scheduling on module assignment 94
Temporal-spatial relation of operations 97
Test functions of BIST registers in Fig. 6.4(b) 105

x1

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

-1
—

7.2
7.3
7.4
7.5
7.6
i
7.8
79
7.10
7.11

Synthesis algorithms used in experiments 111

Characteristics of data paths synthesized from Diffeqgn. 113
Area overhead comparison of Diffeqn 0oL 113
Characteristics of data paths synthesized from AR_filter 113
Area overhead comparison of AR _filter 113
Characteristics of data paths synthesized from FIR_filter 114
Area overhead comparison of FIR _filter 114
Characteristics of data paths synthesized from EW_filter 114
Area overhead comparison of EW_filter 114
Available spare capacity of benchmark algorithms 120
Comparisons of benchmark DFGs 138
Characteristics of data paths synthesized from ez 138
Area comparisons of data paths synthesized from DFG ex. 138
Characteristics of data paths synthesized from Diffeqgn. 139
Area comparisons of data paths synthesized from DFG Diffeqn 139
Characteristics of data paths synthesized from Tseng 139
Area comparisons of data paths synthesized from DFG Tseng 139
Characteristics of data paths synthesized from AR_filter 140
Area comparisons of data paths synthesized from DFG AR_filter . . . 140
BIST resources for synthesized data paths 140

xil

Abstract

Built-in Self-test (BIST) techniques modify functional hardware to give a design
the capability of testing itself. The modification of functional registers into BIST
resources that can generate pseudo-random test patterns and/or compress test re-
sponses, incurs an area overhead. Insertion of BIST resources after the synthesis
stage in the VLSI design cycle, often leads to problems such as increased chip area,
reduced performance, inability to achieve good fault coverage and restricted appli-
cability of certain test methodologies. Hence there is a need for considering BIST
requirements and their effects on the design, in the earlier stages of the design cycle.
This thesis proposes optimization techniques that can be incorporated into the high-
level synthesis stage of a design cycle such that, minimal area penalty is incurred in
making a synthesized data path self-testable, while achieving all functional and test
objectives. The testability model targeted by the optimizations is minimal intrusion
BIST in which only a subset of the registers in the data path are modified for test.
Techniques for estimation of BIST resources during high-level synthesis have been
developed. Incorporation of testability optimization in all three phases of high-level
synthesis is studied: 1) allocation and assignment (spatial domain), 2) scheduling
(temporal domain), and 3) behavioral transformations (behavioral description do-
main). Each domain is shown to effect BIST resource requirement of a data path in
a different way. Properties of each domain with regards to effect on BIST resources
have been studied and techniques that exploit these properties to reduce BIST area
overhead have been developed. Depending on the actual behavior, the degree of
BIST resource optimization in a specific domain varies. Some behaviors lend them-
selves easily to BIST resource optimization in the assignment domain, some in the
scheduling domain, while others require transformation of the behavior. Together,
these techniques provide an efficient way of cutting down design cycle time and

minimizing BIST resource overhead and total area of synthesized data paths.

Xiil

Chapter 1

Introduction

Test is required to verify that a fabricated VLSI chip or a multichip system is fault-
free or operates satisfactorily. With increase in the number of transistors on a chip
and limited I/O, built-in self-test (BIST) techniques have gained importance as cost-
effective means of testing digital circuits. BIST techniques involve modification of
the hardware on a chip such that the chip has the capability of testing itself. One
consideration in evaluating a BIST technique is the extra area needed for the test

circuitry to achieve a certain level of testing.

The testability insertion phase normally occurs after the logic synthesis and
verification phase in the VLSI design cycle. Considering testability at such a late
stage in the design flow can often lead to problems such as exceeding chip area,
inability to achieve the required throughput, degraded performance and inability
to apply certain test methodologies effectively. The objective of this research is
to incorporate BIST considerations in the high-level synthesis stage of the design
cycle. Optimizing for BIST hardware resources during high-level synthesis reduces
the number of design cycle iterations and the BIST area overhead of the synthesized
data paths. In the following sections we give a brief overview of the VLS5I design

cycle and how testing and high-level synthesis (HLS) fit into this cycle.

1.1 Testing of Digital Circuits

Testing of digital circuits has become a formidable task with chip densities currently
at 5 million transistors per chip and projected to grow up to a billion transistors
per chip in 10 years [1]. Vast amounts of time, money and effort is invested by the
semiconductor industry just to ensure high testability of products. A number of
semiconductor companies estimate that about 50% of the cost is spent on enhancing

testability of a design and on actual testing of a design.

The testability of digital circuits can be addressed using different methodologies.
In external testing deterministic test generation is performed on a circuit. A test for a
fault is an input (a vector or a sequence of vectors) that will produce different outputs
in the presence and absence of the fault, thus making the fault effect observable.
Test generation is a NP-hard problem and numerous heuristics and cost functions
have been developed to prune the search space and speed-up test generation [2].
The complexity of test generation, especially on todays designs, gave rise to design-
Jor-testability (DFT) and built-in self-test (BIST) techniques. Design-for-testability
techniques deal with reducing the test generation effort for sequential circuits. These
techniques improve the controllability and observability of the circuit that contribute
to the complexity of test generation. Examples of DFT include full and partial
scan. Full scan techniques modify all storage elements (latches and flip-flops) to
have shift capabilities while partial scan modify only some of them. Test vectors are
scanned in serially from circuit I/Os and the responses are scanned out through the
scan chains. Though scan techniques reduce the test generation effort for sequential
circuits, they result in an increase in gate count, pin count, routing overhead and
test time [3],[4],[5],[6].

Built-in self-test involves the modification of a design to give it the capability
to test itself. In BIST two basic test functions are required on chip: 1) capability
of generating and supplying test patterns to the logic under test, and 2) capabil-
ity of collecting and compressing test responses of logic under test. A wide variety
of such BIST techniques, ranging from partial intrusion BIST to full BIST have

been studied [6]. Depending on the test function performed, different types of test

registers (called BIST resources) can be designed for performing the two test func-
tionalities mentioned above. A BIST design is tested by first initializing (seeding)
BIST registers,running the circuit in the test mode for thousands of clock cycles, and
finally comparing compacted signature(s) with the golden signature(s) to determine
whether the circuit is good or bad. The important issues in BIST are selection of
appropriate registers to be modified as BIST registers, design of efficient BIST reg-
isters that produce test vectors that achieve high fault coverage in a short time and
with low aliasing probabilities. If is desirable to attain all these goals with minimal
area overhead [6],[7]. One way of minimizing BIST area overhead at the RT-level is

using minimal intrusion BIST which is described in detail in Chapter 3.

1.2 VLSI Design Flow

The state-of-the-art overall VLSI design flow is shown in Fig. 1.1. It has the following

three synthesis tasks.

1. High-level synthesis starts with a behavioral description of a digital system and
synthesizes a register-transfer level (RTL) macroscopic structure consisting of

functional units, registers and multiplexers (or buses).

2. RTL/logic synthesis starts with an RTL description and synthesizes a logic or

gate level netlist using a standard cell library of cells.

3. Physical synthesis deals with placement, layout and routing of the gate level

netlist.

Each synthesis task goes through a number of iterations until the design con-
straints are met. The test tasks are shown in bold in Fig. 1.1. In the current
synthesis flow, testability is considered after the RTL/logic synthesis stage. Test
pattern generation or modification of design for scan or BIST is done after the logic
level netlist has been synthesized. There is a trend towards incorporating more and
more of testability features in an RTL design before the logic synthesis stage. To
ensure that testability insertion at RT-level meets the testability goals of area over-

head and test quality, testability considerations need to be incorporated into the

3

DESIGN SPECIFICATION

¥ Y
TEST METHODOLOGY DECISION HIGH-LEVEL SYNTHESIS

| 4
RTL/LOGIC SYNTHESIS

\
TESTABILITY MODIFICATION

Y
| PHYSICAL SYNTHESIS

¥ 3 v
TEST PROGRAMMING | FABRICATION

v
»| TESTING

DEVICE

Figure 1.1: VLSI design flow

preceding stage in the synthesis flow, namely, high-level synthesis. A brief overview

of high-level synthesis is presented next.

1.3 High-level Synthesis

High-level synthesis consists of the construction of a macroscopic RTL structure
of a digital circuit that implements a given behavior and satisfies a set of design
constraints. The behavior is modeled by data-flow graphs (DFGs) or sequencing
graphs [8]. The synthesis problem addressed here is for synchronous mono-phase
digital circuits. The target applications are computation-intensive and data path

dominated digital architectures such as DSP, video and graphics applications. The

outcome of high-level synthesis is a data path comprising of functional modules such
as adders and multipliers, registers that store data values and steering logic circuits
(multiplexers or buses) that transports data to the appropriate destination at the

appropriate time.

1.3.1 Constraints in High-level Synthesis

Constraints in high-level synthesis can be classified into two groups: interface con-
straints and implementation constraints. Interface constraints are additional spec-
ifications to ensure that a circuit can be embedded in a given environment. They
relate to the format and timing of I/O data transfers. For example, the timing sep-
aration of I/O operations can be expressed as timing constraints that ensure that a
synchronous I/O operation follows/precedes another one by a prescribed number of

clock cycles.

Implementation constraints reflect the desire of the designer to achieve a struc-
ture with certain properties. Area constraints and performance constraints are ex-
amples of implementation constraints. Circuit implementations are evaluated on the
basis of area, cycle-time (i.e. the clock period) and latency (i.e. the number of cycles
required to perform all operations). The synthesis process explores the design space
to search for a design satisfying the all the given constraints and optimizing some
(or all) of them. The goal of this thesis is to incorporate testability constraints of

BIST area overhead and fault coverage of a design.

1.3.2 Sub-tasks in High-level Synthesis

The fundamental high-level synthesis and optimization problem can be stated as

follows.
Given 1) a behavior in the form of a data-flow graph or a sequencing graph, 2) a

set of functional resources, fully characterized in terms of area and execution delays,

and 3) a set of constraints, synthesize a design that satisfies all the constraints and is

optimum with respect to some (or all) design parameters such as area, performance

and power consumption.

The main steps involved in high-level synthesis are stated below.

e Behavioral Transformations: These transformations aim at optimizing the
behavior of the design. Obvious transformations are compiler optimizations
such as constant propagation, dead code elimination, common subexpression
elimination and loop unrolling [9]. Other transformations are more specific to
high-level synthesis such as substituting multiplication by a power of two with
selection of appropriate bits, taking into account commutativity of operators,
increasing operator-level parallelism and reducing the number of levels in the
data flow graph. Transformations have been studied for variety of goals in
high-level synthesis, including area, performance, fault tolerance and partial
scan overhead [10],[11],[12],[13],[14].

e Scheduling (The temporal domain): In this stage each operation in the
behavior is assigned to a point in time. In synchronous systems, time is mea-
sured in control steps. The two fundamental scheduling approaches in relation
to high-level synthesis are: resource constrained scheduling which aims at op-
timizing the number of control steps given a constraint on the number of re-
sources, and time constrained scheduling which aims at optimizing the number
of resources required given a constraint on the number of control steps. Other
approaches that try to optimize both have also been studied. Scheduling is
high-level synthesis is an NP-hard problem [15] and several heuristic scheduling
techniques have been proposed such as As-Soon-As-Possible (ASAP) schedul-
ing, As-Late-As-Possible (ALAP) scheduling, list scheduling, force-directed
scheduling and path-based scheduling [16].

e Allocation or Assignment (The spatial domain): In this phase each
operation, variable and data transfer is assigned to a piece of hardware. Al-
location involves determining the number of resources whereas assignment (or
binding) refers to the actual mapping to the resource instances. We will use
the term assignment to refer to the combined tasks of allocation and bind-

ing, unless allocation is being referred to specifically. Assignment naturally

6

falls into three parts: functional module assignment, register assignment and
interconnect assignment. The goal of assignment is to minimize the overall
hardware by sharing hardware, i.e. operations can share functional units, vari-
ables can be mapped onto common registers and data transfers can share buses
and multiplexers. The three parts are interdependent and various orders of as-
signment have been studied in addition to concurrent assignment of modules,
registers and interconnect. The types of assignment algorithms studied can
be classified into heuristic assignment, linear programming approaches and

graph-based approaches [16].

The scheduling and assignment tasks are interdependent. A schedule dictates
the minimum number of resources required whereas a constraint on the assignment
of resources may impose constraints on the schedule. Concurrent optimization of
scheduling and binding is intractable and some linear programming approaches have

been investigated [17],[18].

Many high-level synthesis systems have been developed in universities. Research
in academia has helped create an algorithmic basis for the field of high-level syn-
thesis [19],[20],[21],[22]. More recently, the acceptance of high-level modeling and
functional simulation has spurred the development of high-level synthesis systems
in the industry. Efforts in the industry by IBM [23], SIEMENS [24], IMEC [25],
AT&T [26] and GM [27],[28] have contributed significantly to making high-level
synthesis practical and bringing it closer to production use. The transition of high-
level synthesis systems to the marketplace has been a slow one, but recently they
have come of age and are being used by ASIC designers to significantly cut design
cycle times [29],[30],[31].

1.4 Motivation and Goals

To reduce design cycle time and keep test costs under control, testability consid-
erations need to be incorporated at early stages of synthesis flow. For BIST of a

data path, functional registers in the data path are modified to give them the test

=~1

functionalities of generating and supplying test patterns and collecting and com-
pressing test responses from different portions of logic under test. Depending on the
test function, four different types of test registers (called BIST resources) can be
designed: 1) test pattern generation capability only (TPG), 2) test response com-
pression or signature analysis capability only (SA), 3) test pattern generation and
response compression capability at different times (BILBO), and 4) simultaneous
test pattern generation and response compression capability (CBILBO). Different
mappings of test register type to functional registers exist so that all functional
modules in the data path are tested. The important issues in BIST are selection
of appropriate registers for modification and design of efficient BIST registers that
generate test patterns with high fault coverage and compress test responses with
low aliasing probability [32]. Issues such as fault coverage and aliasing probabilities
require detailed structural information of logic blocks which is not available before
the RTL/logic synthesis stage. Hence these issues are best dealt with during later
stages of synthesis. One way of reducing BIST cost at RT-level is by selecting a

small number of registers for BIST modification.

Once the RTL design has been synthesized by high-level synthesis, there is
limited flexibility in choosing registers for BIST modification. The choice of a BIST
solution for a synthesized data path is restricted by the given RTL architecture. To
test all modules, a considerable amount of area penalty can be incurred. The area
penalty comes from 1) requirement of a large number of BIST resources, and 2)
requirement of expensive BIST resources to test a data path. Ignoring BIST area
during high-level synthesis has two consequences. Firstly, a significantly larger BIST
area overhead might be incurred than the minimum possible. Secondly, the design
cycle time is lengthened. Fig. 1.2 shows a three-dimensional design space. The
testability axis corresponds to test cost which is reflected by parameters such as test
generation time, fault coverage, test area overhead and test application time. In our
case, the testability axis corresponds to impact on area because of testability. Design
point A might have a low area and delay after synthesis but adding testability to this
design might result in an inferior design point, B. On the other hand if testability
is considered during synthesis a design point such as C', even though inferior to A,

will result in a superior design point D after testability has been added. Fig. 1.3

co

shows the reduction in design cycle iterations as a result of considering testability
during high-level synthesis. If the total area of the design after BIST modification
exceeds the allowable chip area, many synthesis iterations might be required before
finding an RTL design with BIST area overhead such that the total area is within

constraints Fig. 1.3(a).

The goal of this thesis is to incorporate BIST resource optimization techniques
in high-level synthesis. Many different RTL implementations can be synthesized
from a given behavior. Of those some are optimum in terms of functional area
and performance. Among the area-performance competitive implementations, some
require fewer BIST resources than others. This thesis proposes optimization tech-
niques that can be used in high-level synthesis to target good testability solutions
in the optimum area-performance solution space. Optimization techniques in all
the domains of high-level synthesis, namely assignment, scheduling and behavioral
transformation, are considered under the purview of this thesis. Each domain affects
the solution in a different way. Properties of each domain with regards to effect on
BIST resources required to test a synthesized data path are studied. Techniques that
exploit the properties in each domain have been proposed. Depending on the actual
behavior, the degree of BIST resource optimization in a specific domain varies. Some
behaviors lend themselves easily to BIST resource optimization in the assignment
domain, while others in the scheduling domain. Together, these techniques provide
an efficient way of cutting down design cycle time and minimizing BIST resource

overhead and total area of synthesized data paths.

1.5 Outline of Thesis

In the next chapter an overview of previous work in high-level synthesis for testabil-
ity is presented. The work described deals with different testability objectives such
as test generation time, partial scan overhead and BIST overhead. In Chapter 3,
the high-level synthesis model used in this research is presented. The concepts of
BIST resources and BIST embeddings in a data path are presented. A low area over-

head BIST methodology based on these concepts, called minimal intrusion BIST,

TESTABILITY

> AREA

’

I

|

I

|

|

|

|
Rz b ,

[

I s

e

DELAY

e A: HLS WITHOUT TEST CONSIDERATION
eB: A + TEST MODIFICATION

e C: HLS WITH TEST CONSIDERATION
oD: C + TEST MODIFICATION

Figure 1.2: Three-dimensional design space

HLS HLS
WITHOUT TEST WITH TEST
CONSIDERATION CONSIDERATION

TEST MODIFICATION | FEST MODIFICATION

RTL SYNTHESIS RTL SYNTHESIS

() (b)

Figure 1.3: Reduction in design cycle time

is described. Structural properties of RTL data paths that contribute to optimum
BIST solutions are discussed. Chapter 4 deals with estimation of BIST resources
during high-level synthesis. Estimation is crucial for efficient design space explo-
ration in any high-level synthesis system. We develop concepts that are useful in
deriving lower bounds on the number of BIST resources required for a data path.
Efficient algorithms to compute these bounds are described. The use of lower bound

estimation techniques at various stages of synthesis is also discussed.

The next three chapters deal with each domain of high-level synthesis. In Chap-
ter 5 we describe register and interconnect assignment techniques for reducing BIST
area overhead. We develop the concepts of test variables and BIST function of a
register that are used in constructing a register and interconnect assignment with
low BIST area overhead. In Chapter 6, we present properties of the scheduling
and module assignment domain that can be exploited for reducing BIST resources.
An algorithm which performs scheduling and module assignment simultaneously is
presented. In Chapter 7 we discuss how transforming a behavior can be useful in
reducing BIST resources. The concept of redundancy and identity-nodes is intro-
duced and a technique for modifying a behavior by adding redundant computations
is described. The introduction of redundancy enables subsequent synthesis stages
to search a design space with lower BIST resource requirements. We conclude in

Chapter 8 with a summary of the contributions made by this dissertation.

11

Chapter 2

Background

In this chapter we present a brief overview of prior work in high-level synthesis for
testability. Different testability objectives that can be used at the RT-level, such as
increasing BIST concurrency and decreasing difficulty of test generation, partial scan
overhead and BIST area overhead, are discussed. A summary of previous research

targeting these different objectives is presented.

2.1 Testability at the RT-level

The success of high-level synthesis in optimizing area and performance can be at-
tributed to ease of abstraction of these design metrics to higher levels. Testability
is a broad term that refers to the ease of testing manufactured circuits. It manifests
itself in quantities such as test generation time, fault coverage, test application time
and test control complexity. Testability has been well characterized at the gate-
level. For high-level modeling of testability, identification of testability-determining
properties that are independent of the gate-level details is necessary since gate-level
circuit information is not available during high-level synthesis. Various notions of a

testable data path can be used as objectives in high-level synthesis algorithms.

o Test pattern generation: RTL data paths can be synthesized for which
a sequential test generator can generate tests in a short time for a high fault
coverage. RTL structural properties such as number of lines difficult to control

12

&

or observe, sequential depth and number of loops are indicators of ease of test
generation and high fault coverage. The concept of hierarchical testability
in which high-level module information is used to justify and propagate pre-
computed test sets also lends itself very well to RTL data paths. However,
sequential test generation is inherently a very complex process and might not
be realistic for very large data paths in spite of this improvement. Besides, this
approach does not assume any pre-defined test methodology which is usually

the case in practical designs.

Test application time: Most sequential circuits use some form of DFT tech-
nique to alleviate the test generation problem or some form of BIST technique
to avoid it completely. DF'T techniques such as full scan and partial scan have
large test application times because the patterns have to be shifted in and out
of the scan paths. In circuits using BIST, test schedules can result in a large
number of test sessions which in turn results in high test application time.
Reducing the number of scan registers in the case of DFT and test sessions in

the case of BIST, reduces the total time required to test a data path.

Test area overhead: DIFT and BIST techniques involve the modification of
the hardware on the chip for test purposes. In partial scan and full scan, the
storage elements selected to be scan elements have to be modified to possess
the shift capability and have to be connected in a chain to form scan paths. In
partial scan the objective is to select a subset of the storage elements such that
it eases the test generation effort but keeps the area overhead to a minimum.
Data paths that use this definition of testability synthesize data paths which
which require a small number of scan elements to achieve the desired fault
coverage with a reasonable amount of test generation effort. In BIST, regis-
ters are reconfigured to support test pattern generation and signature analysis
during the test mode. The area overhead is proportional to the number of reg-
isters modified for this purpose. At the RT-level, the number of scan or BIST
resources required to achieve a desired level of fault coverage can be used as a

measure of testability.

13

2.2 Previous Approaches

2.2.1 Test Generation Efficiency

At the gate-level, difficulty of test generation is characterized by lines that are hard
to control and/or hard to observe. It has also been shown that sequential depth
and cycles with many flip-flops increase test generation effort significantly. During
high-level synthesis there is no control over the gate-level structure of modules.
However these structural properties can be also be identified at the RT-level and
hence used during high-level synthesis [33],[34],[35]. In [33] testability optimization
is achieved during the register assignment phase. The register binding uses the
following testability goals: 1) minimize sequential depth between input and output
registers, 2) minimize the number of cycles and 3) maximize the number of input
and output registers. The scheduling algorithm [34] uses these same testability goals
to generate a schedule such that the possible module assignments will not affect the
optimization to be achieved in the subsequent register assignment phase. Partial
scan implementations of the synthesized designs were studied in [35]. Genesis is a
high-level test synthesis system that uses the notion of hierarchical testability to
reduce test generation effort [36],[37]. Given a gate-level test set for each module,
Genesis guarantees that a sensitizable path through the module embedded in the
data path is established during synthesis so that the module can receive the test set
from the primary inputs and the module outputs can be observed at the primary
outputs. The complete system level test set is therefore obtained as a byproduct of
high-level synthesis in much shorter time when compared with gate-level test pattern

generation.

2.2.2 Partial Scan Overhead

Partial scan is used to reduce test generation complexity by modifying some storage
elements in a data path into scan elements. An area overhead is incurred as a result
of the modification. Storage elements that cut loops have been shown to be good

candidates for scan elements [5].

14

A module and register binding algorithm with the objective of minimizing regis-
ters in loops was proposed by Mujumdar et al. [38]. The binding algorithm attempts
to minimize cost that is a function of the number of loops and the number of input
and output registers in the generated data path logic. If breaking all sequential
loops is the goal of partial scan then a better objective for minimizing partial scan
overhead is to have a small set of registers which, when made scannable, break all
loops. Dey et al. proposed an assignment method that uses low cardinality mini-
mal feedback vertex set of registers as the objective [39]. An extension of this work
deals with behavioral transformations and techniques to achieve low partial scan
overhead [13].

2.2.3 BIST Concurrency

One of the costs associated with BIST is the test time required for high fault cov-
erage. Increasing test concurrency of a data path, increases the number of parts
of a design that can be tested simultaneously thus reducing total test time. The
data path characteristic that limits test concurrency is the existence of hardware
sharing conflicts between different tests of the design [40]. A test path is defined as
a subgraph of the data path through which test patterns must propagate in order
for a component to be controlled or observed. At the high-level synthesis stage, test
paths are not known, so test path conflicts cannot be directly avoided. In [41] and
[42], metrics are defined that evaluate a DFG and identify test concurrency prob-
lems during synthesis. The effect of scheduling and binding on test concurrency is
characterized. Test concurrency problems that remain after high-level synthesis are
dealt with during definition of test paths and test plans by insertion of additional

test registers and pipelining of test data through non-test registers [43].

2.2.4 BIST Area Overhead

BIST requires the modification of registers in a data path. For designs that support
parallel BIST, Avra proposed a register assignment technique that aimed at mini-

mizing the number of self-adjacent registers in the design [44]. The assumption in

15

this work is that every self-adjacent register has to be modified into CBILBO [45] in
order to test the data path and hence the overhead is high. Avra also showed that
using orthogonal scan paths in data path logic allows for greater sharing of functional
and test logic when testability techniques such as scan and circular BIST are imple-
mented [46]. A synthesis procedure that assumes that the data path logic has an
orthogonal scan path structure, then biases the register binding algorithm such that
the occurrence of the types of functions that allow for logic sharing is maximized, is

presented in [47].

Papachristou et al. presented a combined register and module assignment
method that generated self-testable designs that did not have any self-loops [48].
The approach is based on constraining the assignment to generate a self-testable
template and hence results in exploring a small subspace of the testable design
space. Later they presented an improved method of generating self-testable designs
by extending the self-testable template to include self-loops only in one specific
configuration [49]. Though more general than the previous approach in terms of
allowable templates, this approach is still restrictive because it merges modules, reg-
isters and interconnect simultaneously thus not utilizing the flexibility provided by

the separate optimization of these sub-problems.

None of the previous approaches address the minimal intrusion BIST method-
ology which involves testing as much of the design as possible using a minimal
number of resources for the purpose of test. All the previous approaches are based
on a very rigid BIST template. Moreover, they deal only with the assignment phase
of high-level synthesis [44],[50],[49]. The scheduling and behavioral transformation
phases have not been explored in previous work. The subsequent chapters of this

dissertation will address these issues.

16

Chapter 3

Synthesis and Testability Models

In this chapter we present the high-level synthesis model used in the research. We
also introduce the BIST model. Different types of BIST resources and a minimal

intrusion BIST methodology for data paths using these resources is described.

3.1 High-level Synthesis Model

3.1.1 Data Flow Graph Model

The input to high-level synthesis is a behavioral specification that consists of high-
level language constructs such as conditional statements, assignment statements and
loops, and the output is a RTL structural description of the design. The behavioral

specification is stored internally as data flow graph(DFG).

Definition 1 (Data Flow Graph) A date flow graph (DFG) is a graph G =
(V,E), where:

1. V = {v1,v2,...,0,} 1s a finite set whose elements are nodes, and

2. E CV xV is an asymmetric dala flow relation whose elements are directed

edges.

The nodes in a DFG represent operations. A directed edge (v;,v;) from v; € V

to v; € V exists if the data produced by operation o; (represented by v;) is consumed

17

by operation o; (represented by v;). A data flow graph example is shown in Fig. 3.1,
representing the computation e := (a*c)+(b+d). The data flow graph G = (V, E) is
composed of three nodes, v, representing operation #, and v, and v representing a +
operation each. Both data produced by v, and v, are consumed by v3. An alternative
representation of a DFG Gy, = (V, E, 5,t) consists of two additional pseudo-nodes.
A source node s with no incoming edge and primary input variables as outgoing
edges and a sink node ¢ with primary output variables as incoming edges and no
outgoing edges. (The representation of G will be used for all discussions and G
will be used wherever required.) In the synchronous data flow model we assume that
an edge may hold at most one value. Then, we assume that all operators consume

their input values before new input values are produced on their input edges.

p:=asx*c;
Vq Vo
g:=b+d; =) P q =
e.= :
p+q Vs
e

Figure 3.1: DFG representation

3.1.2 Data Path Hardware Model

The output of high-level synthesis is a RTL structural description of the design.
It has two parts: an operative part, called the data path and a control part called
the controller. The two parts are different, structurally and functionally. Hence

the synthesis algorithms used for these two parts are different. Also the testability

solutions tend to be different. In this research we focus on the data path portion of

a design. A data path is composed of three types of components:

1. Functional units (Modules): These execute operations specified in the
behavioral description. The modules could be simple units such as adders and

multipliers or more complex units such as co-processors.

2. Storage units: These hold values of variables and constants generated and
consumed during the execution of the behavior. Registers, register files, RAMs

and ROMs are examples of these types of components.

3. Communication units: These construct the communication network for
data transfers between the functional modules, the storage units and external

ports. Buses, multiplexers and switches are examples of communication units.

We assume a data path model consisting of single operation non-pipelined func-
tional modules. Each functional module executes in one clock cycle and can perform
only one type of an operation such as addition or multiplication. A storage model
with individual registers and a communication network with point-to-point multi-
plexers is assumed. Fig. 3.2 shows a structural view of the output of high-level

synthesis.

3.1.3 Data Path Execution Model

The data path is synchronous with respect to a single-phase clock. In each clock
cycle the following actions take place: 1) the controller enters a new state, computes
the control signals and the next state; 2) the controller sends the control signals to
the data path; 3) the data path executes the operations corresponding to the control
signals; and 4) the results of the operation executions are stored in registers. The
operation execution model assumes that chaining of operations or multi-cycling is
not allowed. A result of an operation execution is stored in only one register even
if the result is used by different functional modules. Storage value forwarding is not
allowed. If a result is not used for consecutive clock cycles, it is stored in one register

with a hold mode that enables the register to hold the data until it is used. The

19

INPUT / OUTPUT

W=, Mz, s Mk A DATA PATH
& —| R={Rq,Re, . R}
COMM (IES -/‘
— | FUNCTIONAL - > UNICATION —> N
UNITS NETWORK i
. R
S
A A
_[conTroL]
| UNIT

Figure 3.2: Structural view of RTL design

complete computation is done in a non-pipelined manner. Computation on input

data is started only after computation on previous input data is completed.

The emphasis of this thesis is on studying synthesis and establishing the prop-
erties of various synthesis stages relevant to optimizing BIST resources. For the
purpose of demonstrating the validity and feasibility of the techniques proposed in
this research a complete current generation high-level synthesis system developed
at the Stanford University called TOPS (Testability OPtimized System) was used.
The input to TOPS is behavioral VHDL and the output is structural RTL VHDL.
The synthesis flow of TOPS and the subset of VHDL that TOPS is able to handle

is described in detail in [51].

3.2 Testability Model

The high-level synthesis process assumed in this research is directed towards synthe-
sizing data paths that are to be tested using a pseudo-random BIST methodology. In
pseudo-random BIST, two test functionalities are necessary on the chip: 1) capabil-

ity of generating pseudo-random test patterns, and 2) capability of compressing

test responses into a signature. Functional registers in the data path can be modi-
fied by adding extra hardware to provide these test functionalities in the test mode.
One way of making a data path self-testable is to modify all functional registers
and give them test capabilities. Such an approach is an overkill in terms of the
area overhead. The self-test methodology adopted in our approach employs mini-
mal intrusion BIST, in which only a subset of the functional registers are modified
for self-test of the data path. Usually portions of a data path, such as multiplexers,
interconnect and functional registers can be easily tested using functional patterns.
The components that are hard to test using functional patterns are the modules such
as ALUs, adders and multipliers. Hence we modify a subset of the registers and give
them the capability of generating pseudo-random test patterns for the modules in
the data path and for compressing the responses from these modules into signatures.
A partial intrusion BIST version of an RTL data path is shown in Fig. 3.3. The
goal of partial intrusion BIST is to test all the functional modules using a subset of
registers in the test mode. A part of the communication network (multiplexers and
interconnect) are tested for free in the process as depicted in Fig. 3.3. Any portion
of the data path not tested by this self-test methodology is tested using functional
patterns. Note that in this partial intrusion BIST methodology the test resources and
paths used to generate, transport and collect test data are a subset of the functional
data path. No additional data path components such as registers, mulliplexers or

interconnect are added for the purpose of testing.

3.2.1 BIST Resources

In minimal intrusion BIST, while in the test mode some registers in the data path
can be configured to support test pattern generation, some to support test response
compression (or signature analysis), and some to perform both of these test func-
tionalities. When both the functionalities are performed by the same register, the
issue of concurrency of these functionalities arises. The functionalities of generation
and compression can be performed at different times (non-simultaneously) or they

can be performed simultaneously. Depending on the test functionalities performed

INPUT / OUTPUT

W= s, My oo Mok A DATA PATH
R R= {Rh HZ! iy Rr}
% H

— COMMUNICATION - é n

B

R

S

Y

»| CONTROL |
UNIT

— PORTION OF DATA PATH TESTED

] — TEST RESOURCES FOR PARTIAL INTRUSION BIST

Figure 3.3: Partial intrusion BIST in RTL design

and their concurrency, four different types of BIST registers are possible. Table 3.1

summarizes the four types of BIST registers.

3.2.2 Minimal Intrusion BIST

Different mappings of functional registers to BIST register types are possible in par-
tial intrusion BIST. Minimal intrusion BIST is a mapping that requires a minimal
number of BIST resources such that the area overhead for modification is minimum.
The various possible mappings can be explored using the concept of a BIST em-
bedding. Consider a typical data path as shown in Fig. 3.4(a). Any register that
is connected to an input port of a functional module through only multiplexers can
supply test patterns to that input port. Such a register is a possible choice for

modification as a BIST register that can generate patterns. Let IR“? denote the

8]
o

Table 3.1: Types of Test Registers

Test, Test Activity Concurrency of Type of Areal
Register performed Test Activities | BIST Register | (16-bit)
1 Generate patterns - TPG 528
2 Compress responses - SA 528
3 Generate patterns, | Non-Simultaneous BILBO 638
Compress responses
4 Generate patterns, Simultaneous CBILBO 960
Compress responses

tCell units using a macro-cell library from LSI Logic Corp. [52]

set of registers connected to the left input port of module M; through only mul-
tiplexers and [Rf denote the set of registers connected to the right input port of
M; through only multiplexers. The registers belonging to [R} and I RE are called
input registers of M;. Similarly any register that collects data from the output
port of a module through only multiplexers is a possible choice for modification as a
BIST register to compress test responses. Let OR; denote the set of these output

registers of module M;.

Definition 2 In a RTL data path, « BIST embedding of a module M; is a se-
lection of registers from IR_{-‘ U IR“? U OR; such that each input port of M; receives
test patterns from a distinct register and the output port transfers test responses to

a register.

Consider the RTL data path shown in Fig. 3.4(a). Fig. 3.4(b) and (c) show
BIST embeddings for the multiplier and the adder module, respectively. The high-
lighted arrows indicate the registers selected to generate test patterns for each input
port and the register selected to compress test responses for the output port. The
type of the test register (TPG, SA, BILBO or CBILBO) is determined by the test
function that the register performs in the chosen embeddings. If the embeddings for
different modules are chosen such that the same register generates test patterns for

one module and compresses test responses for a different module, then the register

23

has to be modified to be a BILBO, since it needs to perform both test function-
alities of generation and compression, however, not simultaneously. For example,
in the embeddings chosen in Fig. 3.4(b) and (c), R, generates test patterns for the
multiplier and compresses test responses for the adder. Hence Ry will have to be
modified to a BILBO. Note that the two modules in such a case would be tested
in different test sessions. First, the adder would be tested completely and then the
multiplier would be tested (or vice-versa). If an embedding is chosen such that the
a register generates test patterns for a module and compresses test responses for the
same module, the register has to be converted to CBILBO, since it would have to
perform functionalities of generation and compression, simultaneously. For example,
if the embedding shown in Fig. 3.4(d) was chosen for the adder, R; would have to
be modified to a CBILBO. An embedding such as the one chosen in Fig. 3.4(e) is
not valid even though both the input ports of the adder receive test patterns. The
correlation between the test patterns at the left and right input port would decrease
the number of unique patterns that can be applied to the input of the module by
R4, resulting in poor test quality. Hence such embeddings are forbidden in our BIST

methodology.

3.2.3 ILP Formulation for Minimum Area BIST

We now present an ILP formulation to find BIST embeddings for all modules in a
data path such that the cost of modification is minimum. Consider a synthesized
data path comprising m modules My, Ms, ..., M,, and r registers Ry, Rs, ..., R.. We
associate with each register R;, four integer variables, namely, B!, R¥, RP and RY.
Each of them has a value of 0 or 1. The superscripts 7', S, B and C' denote modi-
fication to TPG, SA, BILBO and CBILBO, respectively. If R; is modified into a
BIST register, the value of the variable corresponding to the type of BIST register
is 1. Otherwise the value of that variable is 0. In a BIST solution each register R;

is either a normal register (unmodified for BIST) or one type of a BIST register, i.e.
TPG, SA, BILBO or CBILBO. This gives us the following constraint for every R;.

RI+R+RE+RY <1 (3.1)

IR“={Ry} IR" = { Ry, Rg, Ry }

IRf = { Ry, Ry) IR = {Ry, Rs)
Re OR={Rg} OR ={Ry, Rs}

(a) (b) (c)

(d) (e)

Figure 3.4: Selection of test registers for BIST

25

A BIST solution should have an embedding for every module in the data path.
An embedding for a module M; has at least one input register that can generate
patterns for the left input port and at least one input register that can generate
patterns for the right input port. It also has at least one output register that can
compress test responses from the module. A TPG, BILBO or a CBILBO can be
used to generate test patterns. An SA, BILBO or CBILBO can be used to compress
test responses. This gives us the constraints for covering every port of M; with a
BIST register.

S (RT+RP+R{)>1 (3.2)
1'EIR}"
> (R{ + R+ RY) > 1 (3.3)
ie!Rf
S (BF 4+ RBP4+ B)21 (3.4)
J'EOR_,

Suppose there exists register R; that is an input as well as an output register
of M;. The variables RY and R? would appear in an input port constraint (3.2 or
3.3) as well as in the output port constraint (3.4). The above constraints would
then be satisfied with RY = 1 (or RP = 1) and the rest of the variables in the
equations equal to 0. This implies that R; is the only register that generates test
patterns for an input port and compress responses for M;. This is possible if R; is
a CBILBO and RY = 1 corresponds to a valid embedding. However the situation
where RP = 1 corresponds to an embedding where R; is a BILBO and it generates
test patterns and compresses responses for the same module. This corresponds to
an illegal embedding. To avoid embeddings where a register selected to be a BILBO
is the only one to generate patterns for an input port and compress responses for an
output port of the same module, the following constraints are required for M;. These
constraints ensure that for each input-output port pair, there exists one CBILBO or

two non-CBILBO registers, precluding the one BILBO scenario.

S (RF+R+RP+2.-RY)>2 (3.5)
i€IRFUOR,

26

S (RT4+RS+RP4+2-RP)>2 (3.6)
ieIRquRJ

An invalid embedding is still possible with the above constraints. Suppose there
exists a register R; that is an input register connected to both input ports of M;, i.e.
R; € IRE‘,IR?. Rl-T = 1 would satisfy constraints 3.2 and 3.3. If that is the only
variable satisfying the constraints, it would imply that R; is the only register that
supplies test patterns to the left and the right input port. This corresponds to the
case in Fig. 3.4(e) and is forbidden in our methodology. To avoid this embedding
the following constraint which forces each input port to have a distinct register to

supply test patterns is required.

>, (RI+RP+RY)22 (3.7)

i€IRFUIRE
The optimization objective is to minimize the total area of the test registers.
r r r r
min(}(¢" - BY) + 22(c® - BY) + 3 (e - RP) + 3 0(° - BY))
t=1 i=1 =1 i=1

Constants ¢’, ¢%, ¢® and ¢ are cost (area overhead) of a TPG, SA, BILBO and
a CBILBO respectively. The size of the ILP is linear with respect to the number
of registers and modules in the data path. There are four variables per register.
Hence a total of (4 - r) variables are required. Constraint 3.1 is defined for each
register R;,7 = 1,2,...,r. Constraints 3.2 through 3.7 are defined for each module
M;,7 = 1,2,...,m. Hence a total of (6 - m 4 r) constraints are required for the
ILP. The software package LINDO was used for solving the ILP for a minimum area
overhead BIST solution [53].

3.2.4 Case Study

The effect of different costs of BIST registers on a minimum area overhead
BIST solution is demonstrated on a data path synthesized from the 4 R_filter bench-

mark [54]. The data path consists of 12 modules (8 multipliers and 4 adders) and

27

RE [R9] [R10] [R11][R12 @ri_l_@z} REE@

e
g

@—i

_E_u
NE—

@Qﬁﬁﬁw@mwww@‘

[——]

Figure 3.5: A data path synthesized from AR_filter

16 registers as shown in Fig. 3.5. The ILP constraints for the data path were de-
termined as explained in the previous section. Table 3.2 shows four different sets
of BIST register costs (¢, ¢%, ¢® and ¢“) and the optimum area overhead BIST
solution generated using each set of costs. In Experiment 1, all costs are equal to
100 and the optimum BIST solution has 7 TPGs and 8 CBILBOs. The test func-
tionality of a CBILBO subsumes that of the other three type of BIST registers and
a large number of CBILBOs are selected since they are relatively inexpensive. In
Experiment 2, we increased the cost of a BILBO to 200 and that of a CBILBO to
400. Now since CBILBOs are very expensive, the optimum solution does not select
any register to be a CBILBO. Next to CBILBO, a BILBO register has the most test
functionality and it can be seen that 7 BILBOs are selected in this case. However
if the cost of BILBO is made equal to the cost of a CBILBO, as in Experiment 3,
1 CBILBO is selected. It can be seen from the first three experiments that even
though the cost of a TPG is small, the optimum solution selects at least 7 TPGs.
In Experiment 4, a very high cost was used for a TPG to bias the optimum solu-

tion towards selecting fewer TPGs. In spite of the high TPG cost, 7 TPGs were

28

Table 3.2: Effect of BIST register cost on ILP solution

Experiment || BIST register cost Optimum solution || Total
No. [[B[[#T[#S|#B|#C| cost

1 100 | 100 | 100 {100 || 7 | O 0 8 || 1500

2 100 | 100 | 200 | 400 || 8 1 T 0 | 2300

3 100 | 100 | 400 | 400 | 8 1 6 1 3700

4 400 | 100 | 100 | 100 7 0 | 7 3600

selected resulting in a very high total area overhead. It can be seen from Fig. 3.5
that R10, R11, R12, R13, R14, R15 and R16 have to be made TPGs in any chosen
embedding. One of the causes of high BIST area overhead in a data path is the
presence of such BIST registers that are essential and expensive. In the subsequent
chapters we will show how sharing test functionality of BIST registers between mod-
ules and minimizing expensive and essential BIST registers leads to data paths with

low BIST area overheads.

3.3 Summary

In this chapter we have introduced the high-level synthesis model and the testability
model used in this research. The minimal intrusion BIST methodology guarantees
that all functional modules in a data path are tested with a minimum area overhead.
Testing of the functional modules using BIST and the rest of the data path using
functional tests, assures a high quality of test for the complete data path at very low
cost. We have developed a 0-1 ILP that determines a minimum BIST area overhead
solution for a RTL data path. In the rest of the chapters we discuss how the area
overhead can be further reduced by considering BIST resource requirements early

during the synthesis process.

29

Chapter 4

Estimation of BIST Resources

4.1 Introduction

Estimation of data path resources during high-level synthesis is essential for two
reasons. Firstly, it enables the designer to evaluate the design quality by comparing
the estimates of any design metric with the constraints specified for that metric. For
example, if the estimated number of functional resources in the design corresponds
to an area that is greater than the area constraint, then the schedule may have to be
modified to allow a functional resource allocation that is within the area constraint.
Secondly, estimates enable the designer to explore design alternatives by providing
quick feedback for any design decision. This way a designer can explore a greater
number of alternatives instead of synthesizing a complete implementation and mea-
suring the particular design metric for each design alternative. Lower bounds on
resources not only greatly reduce the size of the solution space but also provide a

means to measure the proximity of the final solution to the optimal one.

There is some prior work for estimating lower bounds on functional resources
[55], [56], [57], [58], [59], [60]. These works are concerned with functional resources
such as registers, adders and multipliers. None of the approaches have a mechanism
for estimating the effect of a decision on the number of BIST resources required for

a data path.

30

In this chapter we derive lower bounds on BIST resources assuming that the
schedule and module assignment is known. The lower bounds can be used as an
estimate to determine the quality of a schedule, a module assignment or a regis-
ter assignment in terms of BIST resources required for the synthesized data path.
The bounds also serve as an independent measure of comparing the performance
of different high-level synthesis systems and algorithms that perform test resource

optimization.

4.2 Storage Concurrency of Variables

In the scheduling stage of high-level synthesis, a temporal sequence for execution of
operations in a DI'G is determined. The time of execution of various operations as
determined by a schedule in turn determines the time when operands of operations

are read and results of operations are written.

Definition 3 A schedule of « DFG G = (V, E) is a mapping S : V — {1,2,..., L}
where for operations o;,0; € V, S(o;) < S(o;) if (0:1,0;) € E. {1,2,3,...,L} corre-
spond to control steps. L is called the latency of the schedule and L,,;, denotes the

minimum latency for which the DFG can be scheduled.

Definition 4 The birth time of a variable v, denoted by v.birth, is the control step
in which v is first defined. The death time of a variable v, denoted by v.death, is

the control step in which v is last used.

Definition 5 The lifetime of variable v, denoted by L(v), is the interval [v.birth,

v.death)]. A variable is said to alive during a control step ¢ if ¢ € [v.birth, v.death].

The lifetime of a variable denotes the control steps during which the variable
is alive. A lifetime table of variables can be derived by performing lifetime analysis
on the scheduled DFG [9]. Consider the scheduled DFG shown in Fig. 4.1(a). The
lifetime table of the variables in the DFG is shown in Fig. 4.1(b). In a lifetime table,

31

the control steps are shown on the vertical axis and the variables on the horizontal
axis. The lifetime of each variable v is denoted by a bold line segment whose top
endpoint corresponds to the control step in which the variable is defined (v.birth)
and whose bottom endpoint corresponds to the last control step in which the variable
is consumed (v.death). Any two variables with overlapping line segments cannot be
assigned to the same register. The register assignment problem can be formally

defined as follows.

Definition 6 Given a scheduled DFG G = (V, E), a register assignment is de-
fined as a partition llp = {Ry, Ra,...R.} of the set of variables V' such that for any

two variables v; and v; in Ry, 1 < k <r, their lifelimes do not overlap.

Note: In the rest of this dissertation, symbol Ry will be used to refer to the name
of a register as well as the set of variables assigned to that register. The correct

meaning of the symbol should be inferred from the context.

Definition 7 The storage concurrency of a sel of variables @, SC(Q)) is the

mazimum number of variables in Q) having overlapping lifelimes.

Consider the set of variables Q = {f,g,h,1,7,k} from the DFG in Fig. 4.1(a).
It can be seen from the lifetime table in Fig. 4.1(b) that variables f, g and h have
overlapping lifetimes during control steps 0-1, variables f, g,7 and j have overlapping
lifetimes during control steps 1-2 and variables j and k have overlapping lifetimes
during control steps 2-3. The maximum number of variables from @) alive at the same
time is 4 and hence SC(Q) = 4. The storage concurrency indicates the minimum
number of registers that need to be synthesized to store variables in Q. It is equal to
the size of the largest maximal subset of () such that all variables are pairwise alive at
the same time. In any valid data path implementation, the number of registers that
store the variables in @ is greater than or equal to SC(Q). The storage concurrency
of E, the set of all variables in a DFG gives the minimum number of registers
required in implementing any data path from the DFG. For the DFG in Fig. 4.1(a),
SC(E) = 8.

(b)
Figure 4.1: Lifetime of variables in a DG

33

4.3 Mutually Independent Operations

Associated with each operation o; (and module M;) is the type of the operation such
as addition or multiplication, denoted by type(o;) (type(M;)). Two operations sched-
uled in the same control step execute concurrently. Concurrent operations cannot
be assigned to the same functional module. Two operations that execute in different
control steps execute sequentially - one after the other. Sequential operations of
different {ypes cannot be assigned to the same module. Sequential operations of the

same type can be assigned to the same module.

Definition 8 Given a scheduled DFG G = (V,E), a module assignment is
defined as a partition 1y = {My, My, ..., M} of the set of operations V such
that for any two operations o; and o; in My, 1 < k < m, S(0;) # S(o0;) and
type(o:) = type(o;) = type(My).

Note: In the rest of this dissertation, symbol My will be used to refer to the name
of a module as well as the set of operations assigned to that module. The correct

meaning of the symbol should be inferred from the conteat.

Numerous module assignments are possible based on the constraints in Defini-
tion 8. Depending on a chosen module assignment Ilj;, we define the concept of
mutually independent operations. The mutual independence is with regards to the

hardware exclusivity of the modules that execute the operations.

Definition 9 Given a scheduled DFG and a module assignment, a pair of operations
0; and o; are mutually independent operations if they are assigned to distincl

functional modules.

Definition 10 Given a scheduled DFG, G = (V, E) and a module assignment, a set
of operations Vi C V is called « maximal independent operation set if it is

a mazimal set of mutually independent operations.

A maximal independent operation set consists of one operation from each func-

tional module. If there are m functional modules assigned, then |V} |= m. A

34

Figure 4.2: Mutually independent operations

module assignment of the scheduled DFG from Fig. 4.1(a) is shown in Fig. 4.2 where
M, = {#1,%3}, My = {#a,%4,%5}, Mz = {+:} and My = {—;,—2}. For the given
module assignment, concurrent operations #; and #, are mutually independent since
they are assigned to different modules, namely, M; and M;, respectively. Operations
#5 and —; are examples of sequential operations that are also mutually independent.
VE = {#;,%9,+41,—1} is an example of a maximal independent operation set. It

maxr

has exactly one operation from each functional module.

Lemma 1 If the operations of a scheduled DFG G = (V,E) are assigned to m
functional modules, then ([%ll)’" is an upper bound on the number of mazimal
independent operation sets if each module is assumed to implement all operation

Lypes.

Proof: Let | V |= k and k; be the number of operations assigned to module
M;, 1 <i <m. We have

kitha+ o thit o +kn =k

35

The number of maximal independent operation sets

To find the value of all k; such that [,, is maximum we differentiate [,, w.r.t. each

k; and equate to 0. Differentiating [, w.r.t. ki,

dl,,
— =1
dkl
o kg kg R o) =0
dk‘l 1 2 " e BT e m) —
Substituting k, = k — 277" k;
d m—=1
d!u] f=1
m—1 m—1 m—1 m—1
=2 1=2 1=2 1=2
m—1
=hk—2k—> k=0
=2
m=1
i=2

:>2A1:k1+km

= kl = km'

Similarly differentiating w.r.t. each k; and substituting each variable k;,j # @

we have the condition for [, to be maximum which is
klzkgz...:k,‘:...zkm.
This is possible only when k; = (k/m) for all k; and the maximum value of I,,,
k

f:::aa: — (;L.) . (n—l) - ... m limes.

36

Since k; is number of operations in a module, we are concerned with only integer
values for each k;. Each term in the above expression is upper-bounded by [ﬁ]
Hence

k . | V|
— ¥ e limes = (| —
m]) m times = (] m

nli,'
e = (=) (1 i

Corollary 1 If the operations of a scheduled DFG G = (V, E) are assigned lo a
total of m modules such that m; modules are of type 1 (1 <1 < t), then an upper

bound on the number of maximal independent operation sels is

TVl

11([D™,

my

where V; TV is the set of all operations in 'V of type 1.

Proof: The number of maximal independent operation sets
. =kl kaxl‘Jms

where £; is the number of operations assigned to module . Considering the type of
an operation and module,

Ly =kt < &3 + uubel,)oi(Rd < Kol » ikl Y = oo (RS < b < olly),

my

where kj, is the number of operations of type i assigned to the kth module of type i.

Since an operation of type i cannot be assigned to a module of type j (i # j),
FMECTE TS LY S

where I, is the number of maximal independent operation sets considering opera-
tions in V; assigned to the m; modules of type i. Therefore, the maximum value of

I

mar __ jmar _ Jmar . Jmaz
['m _Iﬁu 11?12 [mg ’

37

Table 4.1: Typical values of I7**" for benchmarks

DFG # Operations || # Modules | I
N EA

FIR filter || 4 | 4 - 1 14| - 4

2 (4] - 4

Diffeqn 216 2 1 (2] 1 144

2 13| 1 16
AR filter || 12 | 16 | - 4 (4] - 20736
6 8] - 16384
EW filter || 26 | 8 - 513 - || 209952
13 4] - || 131072

From Lemma 1

s | WA [5somy gl Vo Lssing | 3% Jaane
Im - ([W—D my o ({F]) ‘

O

Table 4.1 shows typical values of I'** for some benchmarks. It can be seen that
even though the number of maximal independent operations sets grows exponentially
with respect to the number of operations, the actual number is not significantly large

for typical cases.

4.4 Lower Bounds on BIST Resources

Definition 11 A BIST register that can generate pseudo-random test paltterns is
called a G-resource and a BIST register that can compress test responses is called

a C-resource.

As described in Chapter 3, the TPG type of BIST register is a G-resource and
the SA type of BIST register is a C-resource. BILBO and CBILBO types are G-
resources as well as C-resources. The input and output variables of operations in

a maximal independent operation set are significant in terms of BIST resources of

38

the data path. The testing of a functional module using pseudo-random patterns
corresponds to the execution of an operation assigned to that functional module in
the test mode. The registers to which the input and output variables of an operation
are assigned are candidates for BIST resources for the module to which the operation
is assigned. The set of input variables and the set of output variables of all operations

assigned to a module define all BIST resource candidates for that module.

Definition 12 The input variable set [Var(P) of a set of operations P is the
union of input variables of all operations in P. The output variable set OVar(P)

of set of operations P is the union of output variables of all operations in P.

The notions of input and output variable sets can be used for a set of opera-
tions such as a maximal independent operation set V; . It can also be used for

a module M; where M; is a set of operations assigned to the module. In Fig. 4.2,
1

II‘TI'BI

{i,7,e,m}. Similarly, OVar(M,) = {7,l,n}.

= {#1, %9, 41, —1} is a maximal independent operation set and OVar(V})=

4.4.1 C(C-resources

A register with C functionality is required to compress the test responses of each
module. In this section we derive the minimum number of registers that can be

synthesized to provide C functionality for all modules in a data path.

Example 1 Consider two different module assignments of the scheduled DFG shown
in Fig. 4.3(a).

o Assignment [:(Fig. 4.3(b)) Operations +, and +3 are assigned to one module

and operation +4 is assigned to a second module. M, = {+1, +3} and M, =

{+2}.

o Assignment Il:(Fig. {.3(c)) Operations +1 and +, are assigned to one module

and operation +3 is assigned to a second module. My = {+1, +2} and M, =

{+s}.

39

(a) SCHEDULED DFG (b) ASSIGNMENT | (c) ASSIGNMENT I

Figure 4.3: Lower bound on C-resources (L Byc)

Consider all possible register and interconnect assignments for the above two
module assignments. Any register which is assigned at least one variable from the
output variable set of a module can be used as a C-resource for that module. For
Assignment I, variables a and ¢ can be assigned to the same register since their
lifetimes do not overlap and this register can be used as a C resource to test both
M, and M, since a € OVar(M;) and ¢ € OVar(M,). Hence the lower bound on
the number of C-resources in this case is LBye = 1. For Assignment [it is not
possible to find such a register assignment. In this case OVar(M,) = {a,c} and
OVar(M,) = {b}. Since the lifetime of b overlaps with the lifetimes of both a and c
it cannot be assigned the same regisler as a or ¢. Hence for any register assignment

the minimum number of C-resources required lo test My and M, is LBye = 2.

Theorem 1 For a given scheduled DFG, G = (V,E) and a module assignment,
a lower bound on the number of C-resources required to test all the modules in a

synthesized data path is given by
LBye = min SC(OVar(V}),
t

where the minimum is over all mazimal independent operation sels.

40

Proof: Let min; SC(OVar(V}))=n and the total number of modules assigned
be m. Assume that there exists a way of assigning variables to registers such that

the C functionality for m modules can be provided by n' registers and n’ < n.

For a register to be a C-resource for a module M;, at least one variable from
output variable set OV ar(M;) must be assigned to that register. Since m modules
can be tested using n’ C-resources, there exist m variables each belonging to a distinct
output variable set OVar(M;) (i = 1,2,...,m) such that they can be assigned to n'’
registers. Let the set of operations that have a variable from these m variables as
an output variable be denoted by V.. Each of the operations in V. is mapped to a
distinct module and | V; |= m. Hence V. is a maximal independent operation set
from Definition 10. Since the output variables of operations in V. can be assigned
to n’ registers, the storage concurrency SC(OVar(V.)) < n'. Since V; is a maximal
independent operation set of the given module assignment, this contradicts the fact
that

miin.S'C’(OV(M'(V’;W)) = 7.

Hence the lower bound on the number of C-resources required to test the m modules

1S 1. O

For Assignment I in Example 1, the maximal independent operation sets are
Vi = {+1,+2} and V? _ = {+3,+2}. Hence the lower bound on the number of
C-resources, LByc = min {SC(OVar(V}), SC(OVar(V{ ,.))} = min {2,2} = 2.

For Assignment II, the maximal independent operation sets are V;! = {+1,+3}
and V7 = {+42,+3}. Hence LByc = min {sCc(OVar(V}), SC(OVar(VE)}
= min{2,1} = 1.

4.4.2 (-resources

The lower bound computation for G-resources is similar to that for C-resources with
the exception that we have to consider multiple input ports of modules as opposed
to a single output port in the previous case. Almost all operations in a DFG are
binary operations, hence we shall restrict the discussion to two input ports denoted
by L and R for left and right, respectively. Given a scheduled DFG G = (V, E) and

41

a module assignment, we create a new set of operations V. V has two instances for
each operation o; € V - a left instance denoted by of and a right instance denoted
by of. Each instance has only one input variable feeding it. The left input variable
of o; is the only input variable of ol and the right input variable of o; is the only
input variable of off. Note that operation instances o, off € V are not mutually
independent since they are instances of the same operation o; € V and are associated

with the same functional module.

Definition 13 A pair of maximal independent operation sets ‘?Iimz and Vfr'nu form
an input cover if for every module M, I‘l/ar(f/f;m U er) contains two distinct
variables from [Var(M;).

v m‘(ff’}m”) is a set of variables with one input variable for each operation.
Since the set of operations is a maximal independent set, the variables cover at least
one input port of each module. For testing all modules, a distinct G-resource is
required for the input ports of each module. Another maximal independent oper-
ation set ‘?}{nn can be chosen such that [/ Var(?ffmr) contains input variables that
cover the other input port of modules not covered by [Var(f?f;n“). For that to be
guaranteed /Var(f/}'m L U an) should be such that it contains two distinct input
variables for each module. The registers formed by any valid assignment of variables
in ﬂ/ar(f/}mu U 1717{“”) can be connected to the modules such that each input port of
each module has a register connected to it. However, it is possible that the assign-
ment is such that one register gets connected to both the input ports of a module.
Since there are distinct input variables for the input ports of each module, an as-
signment that ensures a distinct register for each input port can be found. These

registers are then candidates for G-resources in valid BIST embeddings of modules.

Lemma 2 Consider assignments of variables in ﬂ/ar(f;}in” U 173;"“) to registers
with the constraint that each input port of a module has a distinet input register.
The minimum number of registers required for an assignment with this constraint is
the same as the minimum number of registers required for any register assignment
of variables in IVar(Vi UV]).

42

Proof: Given a schedule with latency L, any set of variables @) can be divided
into sets Q1, Qa,..., Q1 such that Q; is the set of all variables in () that are alive
during control step i. Considered the sets @1, Q3,..., @r sorted in decreasing order
of their cardinality. Without loss of generality we can assume that the order is the
same as indicated by the subscript, namely, @, Q2,..., @r. Hence | @, |=]| @2 |
> ... |Qr| Let |Q;|= n. From Definition 7, SC(Q) = SC(Q1) = n. One way
of constructing a minimum register assignment of variables in @) is to assign the
variables of Q;,1 < i < L, to distinct registers in increasing order of i. There are
two properties of sets @1, @z,..., @ that ensure a minimum register assignment.
1) All variables belonging to @); are alive at the same time, hence they have to be
assigned to distinct registers; and 2) any distinct variables a, b, such that a € Q;
and b € Qj, i # j, are not alive at the same time and can be assigned to the same

register.

The minimum register assignment can be constructed as follows. The n variables
of Q are first assigned to n registers. The variables of any set @; require | Q;| distinct
registers. Since |Q;|< n the variables can be assigned to | Q;| distinct registers from

the n available registers such that there is no conflict of variables in a register.

To prove the lemma we need to show that such a minimum register assignment
can be achieved even with the constraint that each input port of a module has
distinct input register. Let @) = IVm'(f’fmm u f/jim). Since () forms an input cover
it has two distinct input variables for every module. If any of the sets Q); contains
two input variables of the same module they get assigned to two different registers,
satisfying the constraint. Now consider two input variables of the same module,
say ¢ and b, belonging to Q; and @; (i # j), respectively. If variables in @Q; are
assigned first, a is assigned to one of the n registers, say R,. When variables in @;
are assigned, b can be assigned to a register other than R,, say R,, with which it
does not conflict from the n registers. The rest of the variables in @; can now be
assigned to any of the (n—1) registers other than R, without violating the constraint

for other modules, since |Q;|< n. O

43

Theorem 2 For a given scheduled DFG, G = (V, E) and a module assignment, a
lower bound on the number of G-resources required to test all the modules in the data
path is given by

marx

LByg = min SC(IVar(V{, UV),
1,7
where the minimum is over all i,j such that Vi _and Vi form an input cover.

-~

Proof: Let min;; SC(IVar(V}

m

“Uf’im)) = n. Since 17,’;""1 and f}jinu form an input
cover, ﬂ/ar(ffl‘;nu U fflj;nu) has two distinct input variables for each module. Using
reasoning similar to the proof of Theorem 1, we can show that n is the minimum
number of registers that can be synthesized such that they cover both input ports of
all modules. From Lemma 2, even with the constraint on the assignment that each
input port of a module have a distinct register, the minimum number of registers

required is n. O

4.4.3 CBILBO Resources

Registers that have the test functionality of generating test responses and compress-
ing test responses simultaneously are candidates for CBILBO. The CBILBO is a
very expensive BIST register and hence the goal of BIST techniques is to minimize
the usage of these expensive registers. In this section we derive a lower bound on
the number of such BIST registers that are necessary to test a data path synthesized
from a given schedule and a module assignment. It is essential to modify a register
to CBILBO in a data path only if it is the only register with G functionality for an

input port and the only register for C functionality for the output port of a module.

Theorem 3 Given a scheduled DFG G = (V,E) and a module assignment, a
CBILBO is essential to test module M; for all register assignments iff

1. M; has only one operation assigned to it, and

2. one variable is an input as well as an output variable of M;.

44

Proof: If (=): Let the common input and output variable of M; be assigned to

register I. Since M; has only one operation assigned to it, it has only one output
variable and R is the only register to provide the C function. Also M; has one input
variable for each input port and Ry is the only register to provide the G function for

one input port. Hence R} is an essential CBILBO.

Only if («): Let module M; require an essential CBILBO register in any register
assignment. The essential CBILBO register is the only one that can provide C
function to M; and the only one that can provide G function to an input port
of M;. This implies that in all possible register assignments the input variables
corresponding to one input port and the output variables of M; are assigned to only
one register. This is possible only if M; has one operation assigned to it with a

common input and output variable. O

Definition 14 An operation o; is an essential independent operation if it exists
in all mazimal independent operation sets of a given module assignment. The set of
all essential independent operations of a DFG for a given module assignment will be

denoted by V..

From the definition of a maximal independent operation set, the module to
which an essential independent operation is assigned has only one operation as-
signed to it. In Fig. 4.2, operation +; is an essential independent operation. If a
module assignment has the property stated in Theorem 3, any register assignment
and interconnect assignment that follows cannot avoid a CBILBO. If the register and
interconnect assignment is performed without regard for functional area but with
the sole objective of minimizing CBILBOs, the number of CBILBOs would depend
on the number of essential independent operations with the same input and output

variable.

Theorem 4 For a given scheduled DFG G = (V,E) and module assignment, a
lower bound on the number of CBILBOs required to test all the modules in the data
path is given by

LB#CB]LBO =:SC (U ([V(LT‘(OI') n OV&T(O;‘))) .

Yo;EVess

45

Proof: Given a schedule and a module assignment, the condition for essential
CBILBO is given by Theorem 3. Only a register to which the common input
and output variable of an essential independent operations is assigned forms a
CBILBO in any data path. The minimum number of registers to which such vari-
ables can be assigned gives the lower bound on the number of CBILBOs. Hence
SC(Uvosev,..(IVar(o;) N OVar(o;))) is the lower bound on CBILBO:s. o

Example 2 Consider the scheduled DFG shown in Fig. 4.4(a). Note that the output
and one input variable of operations +3 and +, is the same, namely, a and d. This
occurs in the case of iterative computations in which the loop is broken for scheduling

purposes. Consider the following three module assignments.

o Assignment I: (Fig. 4.4(b)) Operations +1, +2 and +3 are all assigned to a
different module. i.e. My = {+1}, My = {42} and M3 = {+3}. Since
IVar(4+2)NOVar(+;) = {d} # ¢ and [Var(+3) NOVar(+3) = {a} # ¢, reg-

isters to which variables a and d will be assigned will be self-adjacent registers.

There is only one mazimal independent operation set Vi = {41,42,+3} and
each of the operation is an essential independent operation. However the in-
tersection of the input and output variable sets is non-empty only for two of
the three operations, namely 43 and +3. The lower bound on the number of
CBILBOs according to Theorem 4 is SC({a,d}) = 2 since both variables are

alive at the same time.

o Assignment I1: (Fig. 4.4(c)) In this assignment the essential independent op-

eration -3 in Assignment [is assigned to the same module as operation +,.
Now we have My = {+1,+3} and My = {+2}. This module assignment
has only one essential independent operation, namely, operation +,. Since
IVar(+z) N OVar(+,) = {d}, therefore according to Theorem 4 the lower
bound on the number of CBILBOs is SC({d}) = 1. Note that even though
IVar(M)NOVar(M,) = {a, f} it does not require a CBILBO since two oper-
ations are assigned to it and a register assignment can be found that does not
necessitate a CBILBO.

46

SCHEDULED DFG ASSIGNMENT |

d

d e

Figure 4.4: Lower bound on CBILBOs (LBycpirso)

o Assignment III: (Fig. 4.4(d)) In this assignment we have My, = {+1} and

My = {+2,+3}. This module assignment also has only one essential inde-

pendent operation like in Assignment I, namely, operation +,. However,
IVar(4+1)NOVar(4+;) = ¢. Hence the lower bound on the number of CBILBOs
is 0. Note that each of the operations assigned to My have a common input
and output variable. However, since there are two operations assigned to M,

a register assignment can be found such that My does nol require a CBILBO.

4.5 Tightness of Bounds

The lower bounds LBy, LBgg and LBgcpirpo have been derived assuming that a
schedule S and a module assignment ITy; was known. Any register assignment, given
S and II5; will result in a data path that requires L Byc or more C-resources, LBug
or more G-resources and LBxcpirpo or more CBILBOs. Next we demonstrate the

tightness of the bounds.

Theorem 5 Given a schedule S and a module assignment Iy, the lower bound

LByec is the tightest possible bound on the number of C-resources.

Proof: To prove tightness we need to show that there exists at least one valid
register assignment that results in a data path that can be tested using ezactly
LByc C-resources. Let LBygc = n. From Theorem 1, there exists a maximal in-
dependent operation set Vj such that SC(OVar(V})) = n. Let @ be the set
of variables OVar(Vj). Since the maximum number of variables in @ alive at
the same time is n, they can be assigned to a minimum number of n registers. Let
1% = {Ry, Ry, ..., R} correspond to one such partial register assignment. The re-
maining variables of the DFG from E — @) can be assigned independent of 19 to a
new set of registers, namely, Hg_Q. The register assignment lIp = Hg UIIE % isa
valid register assignment for the variable lifetimes as determined by schedule S. In
the data path synthesized using S, Il and Ilg, the n registers belonging to Hg have
at least one output variable from each module in the data path and hence these n

registers are sufficient as C-resources for all modules in this data path. 0

43

Theorem 6 Given a schedule S and a module assignment 15, the lower bound

LByg is the tightest possible bound on the number of G-resources.

Proof: The proof is similar to that of Theorem 5. Here) = IVar(i?im Uf}i“)

where i and j are such that SC(IVar(Vj UV{)= LBgand, Vi and V} _

form an input cover. g

Theorem 7 (liven a schedule S and a module assignment Iy, the lower bound

LBycpirso is the tightest possible bound on the number of CBILBOs.

Proof: The proof is similar to that of Theorem 5 with

Q= U (IVar(o;) N OVar(o;)).

VD‘,‘ EVess

Here the n registers corresponding to H% will be essential CBILBOs according to
Theorem 3. The variables in E — @ can always be assigned to registers such that
none of them are essential CBILBOs. One such simple register assignment, 15~ %,
would be where each variable in F — @ is assigned to a distinct register. The register
assignment [Ip = H% U Hﬁ“*‘ is a valid register assignment for the variable lifetimes
as determined by schedule S. In the data path synthesized using S, IIy; and I,
the n registers belonging to Hg are essential CBILBOs and the rest of the registers

are not. O

In demonstrating the tightness of bounds we have imposed certain constraints
on the register assignment. The constraints necessary for achieving a particular
lower bound might possibly disallow the constraints necessary for achieving another
lower bound. Hence all three lower bounds are individually tight and achievable
but might not be achievable simultaneously in the same register assignment. Next
we describe how each of the lower bounds can be determined subject to a register

assignment constraint in the form of a partial register assignment.

Assume P is a subset of variables from the complete set of variables £ that
is already assigned to p registers. Let 115 = {R, Rs,..., R,} denote the partial

register assignment. Each lower bound, LByge, LBxg and LBucpriso, depends on

49

computing the storage concurrency of a specific set of variables. Let @ denote the
set of such variables for which the storage concurrency needs to be determined.
The concept of storage concurrency was introduced in Section 4.2 to determine the
minimum number of registers required to store a set of variables. From Definition 7
it can be seen that the storage concurrency of a set of variables @ is the size of the
largest maximal subset of @ such that all variables of the subset are pairwise alive
at the same time. With a partial register assignment, such as II};, storage (registers)
is already allocated for some of the variables. We introduce the concept of pairwise
concurrence of variables and registers to extend the notion of storage concurrency

to partial register assignments.

Definition 15 1. Variables v and w are pairwise concurrent ¢f they are alive

at the same time.

2. A variable v and a register R; are pairwise concurrent if there exists at least

one variable w € R; such that v and w are alive at the same time.

3. Registers R; and R; are always pairwise concurrent.

Pairwise concurrency of variables is the same notion as two variables being alive
at the same time. Pairwise concurrency of a variable v and a register R; indicates
whether v can be assigned to R;. If v cannot be assigned to R; then the pair
is said to be concurrent since they need to be stored separately. Two registers
are always pairwise concurrent because they are already allocated as two separate
registers. Now given a set of variables () and a partial register assignment 115, we
can determine its storage concurrency as follows. We first construct a set Q' of
variables and registers such that if v € Q is an unassigned variable, then v € Q' and
if v € Q is assigned to a register R;, then R; € Q. The storage concurrency of Q' is
the size of the largest maximal subset of Q' such that all elements of the subset are
pairwise concurrent according to Definition 15. Note that for 15 = ¢, i.e. without
assuming any register assignment, the computation of storage concurrency is the
same as in Section 4.2. Using the above described method of determining storage
concurrency, the lower bounds on C-resources, G-resources and CBILBOs can thus

be determined given S, I1; and L.

4.6 Efficient Computation of Bounds

To use lower bounds as estimators or cost functions in synthesis algorithms, an effi-
cient way of computing them is required. The lower bound computation for a DFG is
essentially determining the storage concurrency of a few intelligently chosen subsets
of its variables. A simple way of computing the lower bounds is to enumerate all the
maximal independent operation sets and find the minimum storage concurrencies of

their input variable sets and the output variable sets.

Theorem 8 The worst case complexity of computing LByc and LByg of a scheduled
. £ ' Wlym

DFG G = (V, E) with latency L and requiring m modules is O(L - (*=)™).

Proof: The storage concurrency of a set of variables @@ can be determined by find-
ing the number of variables in () that are alive at every control step boundary of
the scheduled DFG. The control step boundary that has the maximum number of
variables alive gives the storage concurrency of (). Hence the storage concurrency of
@, SC(Q) can be determined in O(L- |Q]) time. For determining input (or output)

storage concurrencies of a maximal independent operation set, |Q |= m.

The worst case complexity of computing LBe (LBg) is the complexity of com-
puting the output (input) storage concurrencies of all maximal independent opera-
tion sets for a given module assignment. From Lemma 1, an upper bound on the
number of maximal independent operation sets is (f%l])m Therefore, the worst

case complexity is O(L - m - (1134;')?") =O(L - ("“—i)m) s

m

The complexity is exponential with respect to | V|, the number of operations in
the DFG. The algorithm is efficient in spite of the exponential complexity because
the number of modules m is typically very small. Also, typically, as | V| increases,
so does m and %l does not increase significantly. Furthermore, properties of module
assignments and maximal independent operation sets can be used to reduce the size
of the exponential space. For example, consider two maximal independent operation
sets Vp . and V2 . If all the operations in V}! are scheduled in the same control
step, then it can be shown that SC(OVar(VZ)) < SC(OVar(V{). Hence

. . . | . 1 . = -
maximal independent operation sets such as V! can be ignored during the lower

bound computation.

Definition 16 Given a scheduled DFG G = (V, E) the width of a set of operations
Vi, C V, denoted by width(V,), is the mazimum number of operalions in V; scheduled

in the same control step.

Lemma 3 For any mazimal independent operation set ‘/Il‘mux’ SC(OVar(Vi) >
width(V}). For any mazimal independent operation set 17}‘;"”, S’C(IV&?'(V}MJ;))
= width(ﬁ}i"“) if input variables of concurrent operations in f/}‘;nw are notl multiple-
edged.

Proof: Consider a maximal independent operation set V/ of width w. According
to Definition 16 this implies that w operations from V} are scheduled in the
same control step. Therefore they define w distinct output variables in the same

control step. The storage concurrency of these w output variables is w. Hence

SC(OVar(Vi) is at least w.

In the case of input variables, a single variable could be an input variable for
more than one operation. Such a variable is called a multiple-edged variable (e.g.
variable e in Fig. 4.1(a)). If the w concurrent operations have only single-edged
input variables, an argument similar to the one made for output variables can be
made for input variables and SC(IVar(V{)= w.]

Lemma 3 can be used to prune the search space during lower bound computation
of BIST resources. From Theorem 1 the lower bound L Byc is the minimum output
storage concurrency of all maximal independent operation sets. At every point dur-
ing the computation of the lower bound, the minimum output storage concurrency
of the maximal independent operation sets considered up to that point is known. If
the width of the next maximal independent operation set is greater than or equal to
the minimum output storage concurrency at that point, that maximal independent
operation set is ignored, thus pruning the search space. A similar argument holds

for computation of LByg.

Theorem 9 The worst case complexity of computing LBgcpirpo of a scheduled
DFG G = (V, E) with latency L and requiring m modules is O(L - m).

Proof: Finding the set of essential independent operations V..s can be done in
O(m) time. There are at most m essential independent operations with common
input and output variables. The complexity of computing the lower bound is the
same as determining the storage concurrency of these variables which can be done
in O(L -m).]

4.7 Use of Lower Bound Estimation in Synthesis

The ability to predict area-performance characteristics of designs without actually
synthesizing them is vital to produce quality designs in a reasonable time. Using a
high-level synthesis system, a designer often needs to repeat the synthesis process
several times while searching for a satisfactory design. Comparison of synthesis
results using different module sets, module assignments and schedules are made to
locate the desired design. Computation of lower bounds on BIST resources provides
a synthesis system with a quick way of evaluating the testability overhead of the
design. More specifically, the proposed lower bounds can be used for the following

applications.

1. To select schedules from a set of schedules with the same latency and resource
requirement. For a given behavior different schedules are possible such that
they have a desired latency and satisfy a constraint on the number of modules.
However the minimum number of BIST resources required to test the designs
synthesized using these schedules could vary significantly. The lower bounds

on BIST resources can be used to select an appropriate schedule.

Lo

Given a schedule, to find a module assignment that requires few BIST re-
sources. For a given schedule, different module assignments have different
lower bounds on BIST resources. The lower bound estimation technique can
be used to compare different module assignments for the same schedule. Alter-

natively, the lower bound estimation can be done incrementally during module

53

n

assignment using information from partial module assignments. For example,
if at some stage in the module assignment process there is a choice between
many assignments, then an assignment that results in a maximal independent

operation set with a lower output storage concurrency should be chosen.

To trade-off latency for area. Sometimes latency is increased if a reduction in
the number of modules is desired. In some cases, increasing the latency by
a few clock steps does not reduce the module requirement. However it does
increase the number of different possible schedules, and thus a schedule that
has a small lower bound on the number of BIST resources may be identified.

Such a schedule could lead to savings in area.

To prune the search space and direct the search during register and intercon-
nect assignment towards low testability overhead designs. The information
used in the estimation of the lower bounds (e.g. maximal independent op-
eration sets and storage concurrency) can be used to prune the search space
and select assignments that will achieve those bounds or will be close to the

bounds.

To provide an independent measure of comparing the performance of differ-
ent high-level synthesis systems and algorithms that perform testability op-
timization. High-level synthesis systems that have testability overhead as an
optimization criterion use a variety of heuristics and cost functions in their
algorithms. The bounds provide a common base to evaluate the quality of the

various synthesis algorithms.

4.8 Experimental Results

To demonstrate the use of the proposed lower bound computation in evaluating
the testability qualities of schedules and module assignments, we applied it to some
well-known high level synthesis benchmarks: 1) the 2nd order differential equation -
Diffeqn [61], 2) the Tseng data flow graph - T'seng [62], 3) the auto regression filter
element - AR_Filter [63], and 4) the 5th order elliptic wave filter - EW_filter [64].

Table 4.2: Lower bounds for minimum latency schedules of Diffeqn

Schedule Type of Latency | Number of | LBge | LBxg | LBgcBiLBO
schedule (L) | modules (m)
S1 ALAP 4 5 3 5 1
Sy ASAP 4 5 2 4 0
Ss3 Intermediate 4 5 3 4 0
Table 4.3: Lower bounds for Diffeqn
Schedule | Latency | Number of | LBye | LByg | LBacirBo
(L) modules (m)
S 6 4 2 4 I
Ss 6 4 2 4
Sy 6 4 1 4 0
Table 4.4: Lower bounds for AR_Filter
Schedule | Latency | Module Number of | LByc | LBgg | LBgcBiLBo
(L) assignment | modules (m)
Sy M, 12 5 16 0
ALAP 8 M, 12 4 12 0
My 12 2 8 0
S M, 12 5 12 0
ASAP 8 M, 12 3 3 0
M, 12 2 8 0
Table 4.5: Lower bounds for EW._filter (L = 19)
Module Number of | LByc | LByg | LBucsirso
assignment | modules (m)
M, 8 3 6 2
M, 8 2 4 1
M 8 1 3 0

55

Table 4.2 depicts bounds for three different schedules of Diffegn. The minimum
latency for this benchmark is 4. As-late-as-possible (ALAP) scheduling and as-soon-
as-possible (ASAP) scheduling are two popular scheduling techniques for achieving
minimum latency schedules. Both ASAP and ALAP schedules of the Diffeqn require
5 modules. In Table 4.2 schedule S; is the ALAP schedule and schedule 5; is the
ASAP schedule. It can be seen that the lower bound on C-resources, G-resources
and CBILBOs required if schedule S; is used is lower than the lower bounds of
schedule S;. The bounds for an intermediate schedule, S3, with the same latency
are also shown. Three more schedules each with a latency of 6 and using 4 modules
are shown in Table 4.3. These results demonstrate that schedules that are equally
attractive from the functional resources and latency point of view can differ greatly

in the minimum BIST resource requirement.

Table 4.4 shows the bounds for different module assignments of the ASAP and
ALAP schedules for the AR Filter benchmark. The latency of both schedules is 8
and the minimum number of modules for this latency is 12. All module assignments
in Table 4.4 use 12 modules. Table 4.5 shows the bounds for different module
assignments for a schedule of the EW_Filter benchmark. The latency of the schedule
used is 19. These results show that a significant variation in test resources exist for
different module assignments of the same schedule as well as different schedules of

the same latency.

The Tseng benchmark does not have any variable that is an input as well as
an output variable of the same operation. Hence according to Theorem 4, the
lower bound on CBILBOs is zero. We used the Tseng benchmark as a case study to
investigate the lower bounds on C-resources and G-resources for all possible schedules
and all possible module assignments for this benchmark. For this particular case
it was assumed that a module could perform any type of operation. Table 4.7
shows the lower bounds on C-resources and Table 4.8 shows the lower bounds on
G-resources. Each entry in the tables corresponds to the minimum lower bound
among all possible schedules and module assignments for that particular latency and
number of modules. For example, among all module assignments using 6 modules
that were possible for different schedules of latency 5, the minimum lower bound

on the number of C-resources was 3. A ‘-7 entry indicates that no schedule and

56

Table 4.6: Lower bounds for FIR filter

Schedule | Latency | Number of | LBgc | LBy¢ | LBgeBILBO
(L) modules (m)

Sy H 3 4 10 0
Sy 5 4 1 4 0
S 5 4 1 4 0

Table 4.7: Variation in C-resource lower bounds for Tseng

Number of modules (m)
|Latency([,)(1|2|3|4]5[6|7 8
4 —|=11(2[2|3|3|4
5 -1]1]11(2]3]|3(4
6 — |1 |1]1]2]|2]|2]|4
7 -1 (1]1(2]|12]|2]|4
8 111 (1({1]2]2]|2]|4

Table 4.8: Variation in G-resource lower bounds for Tseng

Number of modules (m)
Latency (L) [[1|2 [3[4]5 678
4 —|1—1213|3[4]|5]|5
5 —12]12]|3|3(4]|5]|5
6 —12]2]|13|3(4|4]|5
7 - 12 (2|3|3[4|4]5
8 212(2|3|3|4]4]|5

module assignment solution is possible for that (L,m) value of the DFG. It can
be observed that the bounds increase as the number of modules increases. Note
that the actual functional area corresponding to the modules is not being considered
here. The actual functional area depends on the particular module assignment and
a higher number of modules does not necessarily imply a larger functional area [65].
The lower bounds have a strong corelation to the number of modules. The lower
bounds on the BIST resources increase with number of modules because there are
more modules to test which results in a larger number of input and output variable
sets, while the storage concurrency of the variables remains the same. Tables 4.7
and 4.8 demonstrate that among two module assignments II}, and II3, such that
| 113, | < | I}, |, assignment 113, might be desirable from the BIST resources point

of view even if Area(I1%,) > Area(Il};).

4.9 Summary

In this chapter we have derived lower bounds on BIST resources that would be
required to test a synthesized data path. The lower bound estimation techniques
are performed on scheduled data flow graphs with a module assignment. The lower
bounds are shown to be tight and given complete flexibility in the assignment of
registers, each of the bounds can be individually achieved. The bounds give a
mechanism for comparing the quality of area-performance competitive schedules
and module assignments with respect to BIST resource requirement. The bounds
along with a library of BIST registers can give an estimate of the actual BIST area
overhead. The theory developed in this chapter on BIST resource bounds can be
used in conjunction with that for estimating functional resources so that the total

area of the synthesized design can be accurately estimated.

Chapter 5

Assignment for Reducing BIST Resources

In this chapter we explore the contribution of register and interconnect assignment
to BIST resource cost of data paths and develop techniques to synthesize data paths
with low BIST area overhead. It is assumed that a schedule and a module assignment
has already been determined. BIST resource optimization during those stages of

high-level synthesis is the subject of discussion in the next chapter.

5.1 Introduction

The hardware assignment task in high-level synthesis comprises three subtasks: 1)
assignment of operations to functional modules (module assignment), 2) assignment
of variables to registers (register assignment), and 3) assignment of data transfers
to interconnect and appropriate ports of functional modules (interconnect assign-
ment). Various approaches to data path assignment with different ordering of these
subtasks have been studied [22],[16], [25],[19]. Each has its merits and limitations.
All three components of hardware assigned during the subtasks contribute to func-
tional area. However, from the point of view of testability area overhead, the three
components are different. In the self-testable version of the data path, registers are
modified as BIST resources and interconnect is used to transfer test data to and
from the modules. Modules are the hardware components that are under test in
the proposed minimal intrusion BIST methodology. Hence the considerations for

testability area overhead optimization in register and interconnect assignment are

fundamentally different from those during module assignment. Complete informa-
tion about the hardware to be tested (i.e. functional modules) makes estimation
of required BIST registers more accurate and hence in this thesis we propose that
register and interconnect assignment be performed independent from module assign-
ment and after module assignment is known. Module assignment can be performed
simultaneously with scheduling such that register and interconnect assignment that
follows can benefit from it to optimize BIST area overhead. That is discussed in
the next chapter. In this chapter, we focus on register and interconnect assignment

assuming that scheduling and module assignment has already been performed.

5.2 BIST Considerations During Assignment

Consider a data path with a schedule and module assignment as shown in Fig. 5.1(a).
Fig. 5.1(b) shows an implementation of the data path assuming a register and in-
terconnect assignment that requires a minimum number of registers. The register
and interconnect assignment has been done without any regard for BIST resources
required to test the data path. The register assignment chosen is R, = {a,d},
Ry = {b,f}, Rs = {c¢} and Ry = {e,g,h}. For interconnect assignment, the left
operands from the DFG are connected to the left input ports of the module and the
right operands to the right input ports. The minimal intrusion BIST solution shown
in Fig. 5.1(b) determined using the 0-1 ILP, has a minimum BIST area overhead of
816 cell units. Note that for the left input port of the adder and the right input port
of the multiplier, there is only choice of test pattern generator, namely, R, and Ry,
respectively. For the multiplier, i is the only choice for test response compression
also. Since Ry does generation and compression for the multiplier, and it is the only

register that can provide these test functionalities to the multiplier, the only choice

is to modify it to a CBILBO.

An optimum BIST area overhead solution would select embeddings such that
the BIST resources are shared between several functional modules. Traditional as-

signment techniques synthesize data paths without any consideration of how input

60

1 M TPG
E SA

2 B BILBO
CBILBO

3 —— Path for test patterns
------- Path for test responses

S S &

Data Path | (BIST Area = 816)
(b)

Figure 5.1: Assignment without BIST considerations

registers or output registers of modules can be shared between modules. For exam-
ple, if a synthesized data path with m modules had disjoint sets of output registers,
then each module would require a SA dedicated to it and hence m registers would
have to be modified for test response compression capability. However, if the data
path were synthesized such that the sets of output registers of the modules are not
disjoint, then less than m registers could perform test response compression of the
m modules. There are several other scenarios where if the same behavior was syn-
thesized in an alternate way, lesser number of TPGs, SAs, BILBOs and CBILBOs

would be required to test the data path.

61

The two factors contributing to a reduction in BIST resource cost are: 1) sharing
of test functionality of BIST registers between different modules, and 2) minimizing
the number of registers that would necessarily have to be modified as expensive
BIST registers in the BIST version of a data path. In the second factor, we are
primarily concerned with CBILBO registers because a CBILBO costs more than

twice a normal register (as seen in Table 3.1).

Fig. 5.2(a) shows another hardware implementation of the DFG from Fig. 5.1(a).
The schedule and module assignment is the same. However an alternate register
assignment - Ry = {a, f}, Ry = {b,d,h}, Ry = {c} and Ry = {e,g} - is used for
this data path. There are two things to note about the register assignment for Data
Path II as compared to the one for Data Path I. Firstly, in Data Path II, variables
d and h are assigned to the same register, namely, R,. Variable d is an output
variable of an operation assigned to module M; and variable % is an output variable
of an operation assigned to M. Assigning these variables to Ry makes the register a
candidate for test response compression for both M, and M;. The test functionality
of response compression for the modules is shared by R; and it gets chosen as an
SA in the minimal intrusion BIST solution as shown in Fig. 5.2(a). The second
thing to be observed is that the register connected to the right input port of M,
namely, R4 does not have to be modified as a CBILBO. M, has a choice of R, and
Ry for test response compression and R, for test pattern generation. R4 could be
chosen as a CBILBO, but that would result in an expensive BIST solution. The
flexibility accorded by the register configuration in Data Path II in the choice of
test response compressors for M, is utilized to avoid an expensive BIST solution
involving a CBILBO. The minimum area BIST solution for Data Path II has a cost
of 392 compared to 816 in Fig. 5.1(b).

Data Path III in Fig. 5.2(b) is yet another implementation of the same DFG.
The register assignment here is the same as in Iig. 5.2(a). However, the connectivity
of the registers to the input ports has been changed. Module M; needs operands
¢ and e in the second control step and operands f and g in the third control step.
Based on the register assignment and the fact that ¢ and f are left operands of
M, and f and g are right operands, Data Path II is obtained. In Data Path III,

advantage is taken of the commutativity property of multiplication and operands f

N NS SN EEEESE RSN e sEEMEEE
EEEEEEEEEEEEESEEERSEEEE.
EE RN EEEEENSEENEEES

(a) (b)

Figure 5.2: Assignment with BIST considerations (a) Register (b) Interconnect

and g are switched between the input ports. Now R4, which holds g, is connected to
the left input port and R;, which holds f, is connected to the right input port. This
creates a choice of R; and R, as test pattern generators for the right input port of
M,. Since R; is also a candidate for test pattern generation for M), the minimum
area BIST solution selects R3 as a TPG, resulting in saving R4 as a BIST resource.

The cost of the minimum BIST solution in this case is further reduced to 294.

The two alternate register assignments of the DFG in Fig. 5.1(a) use the same
number of registers, 4, which is the minimum for this particular DFG. In fact, for this
particular DFG, there are 288 distinct ways of assigning the variables to 4 registers.
For a given scheduled DFG, a number of distinct assignments of variables to the
minimum number of registers is possible. Only a subset of these are preferable in
terms of interconnect complexity. Also only a subset of these result in data paths that
can be self-testable with a low BIST area overhead. The discussion in this section
shows that certain register assignments are beneficial to reducing BIST resources
in a synthesized data path. Also, the interconnect assignment chosen can have an
effect on the BIST resources. The properties of register and interconnect assignment
that facilitate the reduction of BIST resources were discussed above. In the next
sections, these properties are formalized and a structured technique for constructing

assignments is presented.

63

5.3 Test Variables and BIST Registers

For directing assignments to low BIST area overhead data paths, a mechanism that
relates variables to test functionality in a data path is required. For this purpose
we define BIST functions and view each variable as a test variable in addition to a

functional variable to be stored in a register.

A BIST function, f&, is a subset of {G,C, NS, S}, where G represents test pat-
tern generation functionality, C represents test response compression functionality,
NS represents non-simultaneous G and C functionality and S represents simultane-
ous G and C. The BIST function is defined for 1) a register and iii) a single variable.
The notation used in the two cases is the same and the context will be clear from

the argument of f5.
Definition 17 The BIST function of

1. a register R, denoted by fB(R), is the combination of BIST functions that R

could perform in a synthesized data path;

S

a variable v, denoted by fP(v), is the combination of BIST functions that a
register could perform in a synthesized data path if the variable v was the only

variable assigned to thal register.

Corresponding to the four combinations of test functionalities required for BIST,
we define candidacy of registers as BIST registers. R being a candidate for a
certain type of BIST register implies that R can be modified to that type in some
valid BIST embedding. Note that it is not necessary to modify R for a valid BIST

solution. R is just one of the choices for a valid BIST solution.

Definition 18 1. If {G} C fB(R), then R is a candidate for TPG.
2. If {C} C fB(R), then R is a candidate for SA.
3. If {G,C,NS} C fB(R), then R is a candidate for BILBO.
4. If{G,C, 8} C fB(R), then R is a candidate for CBILBO.

64

In the above definition, note that a register can be a candidate for both a BILBO
and a CBILBO. Moreover, a register that is a candidate for a CBILBO or a BILBO
is always a candidate for a TPG and an SA. The BIST solution selects a subset of
the candidate registers to perform test pattern generation and response compression
for all the modules in the data path. The BIST solution will be denoted by using an
asterisk # as the superscript for the test functionality utilized for BIST. For example,
a register R with fB(R) = {G,C,N'S} is a candidate for TPG, SA and BILBO. If
the BIST solution selects R as TPG, then f?(R) = {G*,C,N'S}. Corresponding to
the four test functions of BIST, we define four types of test variables.

Definition 19 A variable v is called «

1. G-variable if it is only an input variable for modules. For a G-variable,

fP(v) = {g}.

2. C-variable if it is only an output variable for modules. For a C-variable,

fB(v) ={c}.

3. NSGC-variable if it is an input variable for a module and an output variable

for a different module. For a NSGC-variable, f2(v) = {G,C,N'S§}.

4. SGC-variable if it is an input variable and an output variable for the same

module. For a SGC-variable, f2(v) = {G,C,S}.

In the register assignment process, as variables are assigned to a register, the
BIST function of the register changes. The BIST function of the register at any
point in the assignment process depends on the test functionalities of the variables
assigned to it. If a variable v was the only variable assigned to a register R, the BIST
function of v, fZ(v), reflects the test functionalities that R could perform for BIST.
For example, a register to which a SGC-variable is assigned would be a candidate
for CBILBO in the BIST version of the data path. Hence, under the assumption of
single variable assignment, fZ(v) = fB(R). If more than one variable is assigned
to R, then for each variable v € R, fP(v) C fB(R). When variables are merged

(assigned to the same register), the register can perform the BIST functions of all

65

the variables, and in addition the concept of simultaneity must now be considered.
When variables of the same type are assigned to the same register, the register
acquires the same test functionality as the variables. If variables of different type
are assigned to the same register, the register acquires the test functionality of all
the variables and in addition could acquire the N'S and/or S functionalities. For a

pair of variables v and w assigned to a register R, the following cases are possible.

Case (i): Homogeneous variables
(a) v and w are both input only variables (G-variables)

(b) v and w are both output only variables (C-variables)

Case (ii): Heterogeneous variables (G € fB(v),C € fB(w))
(a) 3M; and M;,1 # j such that v € IVar(M;),w € OVar(M;)
(b) IM; such that v € IVar(M;),w € OVar(M;)

In Case(i)(a) and (b), since both the variables add only G or C functionality to R,
simultaneity is not an issue. In Case(ii)(a) and (b), variable v adds G functionality
and variable w adds C functionality. In Case(ii)(a), the G and C functionality is not
required at the same time since M; and M; can be tested in separate test sessions.
However in Case(ii)(b), the G and C functionality is required simultaneously to test
M;. Hence if Case(ii)(a) is satisfied, then 'S € fB(R) and if Case(ii)(b) is satisfied,
then § € fB(R). Note that variables v and w could satisfy both Case(ii)(a) and (b).
The above discussion gives us the following lemma to determine the BIST function

of a register.
Lemma 4 The BIST function of a register R is

PR =(U rPeNu(U Fv,w)
VvER Vu,weR
where fB(v,w) = ¢ for Case(i)
= {NS8} for Case(ii)(a) only
= {S} Jor Case(ii)(b) only
= {NS,S8} for Casefii)(a) and (b)

66

Table 5.1: Registers and their BIST functions for Data Path I (Fig. 5.1)

Register || Variables | BIST function Candidacy Type in
R in R fB(R) of R BIST soln.
Ry {a,d} |{G~,C,NS.S} | TPG, SA, BILBO, CBILBO TPG
R, {b, f} {G,C*, NS} TPG, SA, BILBO SA
R; {c} {G~} TPG TPG
R, {e,g,h} {G=,c*, 8"} TPG, SA, CBILBO CBILBO

Example 3 (Fig. 5.1)

The classification of test variables of the DFG in Fig. 5.1(a) is as follows. Vari-
ables a,b,c, and e do not belong to either OVar(M;) or OVar(M,) and they are
only input variables (G-variable). Similarly h does not belong to either I'Var(M,)
or [Var(M,), hence it is a C-variable. Variable f belongs to OVar(M,) and
IVar(M,), hence it is a NSGC-variable. Varitables d and g are SGC-variables
because d € OVar(M,) and d € IVar(M,); g € OVar(M;) and g € 1Var(My).

The variables can be assigned to a minimum of four registers. Fig. 5.1(b) shows
a data path synthesized using a register assignment corresponding to the minimum
number of registers. The assignment was done oblivious of any BIST considerations.
The modification for BIST is also indicated in the figure. Note that, many possible
valid ways of making the data path self-testable exist, but the BIST solution depicted
in the figure is one with a minimum area overhead which is 816 cell units. Table 5.1
shows the variables assigned to each register, the BIST function of each register, the
candidacy of each register as a BIST register and the actual modification of each

register in the self-testable version of the data path.

5.3.1 Sharing BIST Resources between Modules

As seen in Example 5.3 in the previous section, the BIST solution modifies some
of the registers into BIST registers with the constraint that for each module, each

input port has a BIST register with G functionality and each output port has a

67

BIST register with C* functionality. The objective in making a data path self-
testable is to perform the selection of BIST registers from candidates such that this
constraint is met with minimum area overhead. Assignment of each variable to
a register gives the register some test functionality, depending on the type of the
variable. If the assignment is done considering which input and output variable sets
the variables belong to, then the test functionalities of the registers can be shared
between modules. Sharing of the test functionalities of registers between modules
results in lower number (and area overhead) of BIST registers to provide all the test

functionalities for each module in the design.

[I]]%ﬂ] Ri={a,f,..} °={G s

67

==R,={d,h,.} PB={5c9

Figure 5.3: Assignment for sharing of test functionality

Fig. 5.3 shows a partially synthesized data path corresponding to the schedule
and module assignment of Fig. 5.1. From Table 5.1, it can be seen that variable
a is a G-variable and variable f is a NSGC-variable. Also, « € IVar(M,) and
f € IVar(M,). Assigning a and f to register R; makes R, a candidate for providing
G functionality to the input ports of M; and M;. The multiplexers at the input ports
of M; and M, would be required if the remaining input variables of the modules
were assigned to registers other than R;. Similarly, register R, has variables d and
h assigned to it. Since d € OVar(M,) and h € OVar(M;), Ry can share the
C functionality for the output ports of M; and M,. The effect of sharing of test

68

functionalities between modules is quantified in the notion of sharing degree of

variables and registers.

Definition 20 1. The sharing degree of a variable v, SD,,.(v) is the sum
of the number of modules for which v is an input variable and the number of
modules for which v is an output variable.

If v e IVar(M;), let X} =1, else X} =0; if v e OVar(M;), let Y} =1, else
Y = 0. Then SDyy(v) = XL, (X} +Y}"), where m is the total number of
modules assigned.

2. The sharing degree of a register R, SD,.,(R) = :,-';l(Xf + Y:,-R), where

R _ ry ‘R _ 7
_XJ- — \/)\j and }”J- — \/ YJ
YveER YveR

Note that variables X} and Y} are treated as integers in 1) and as boolean

variables in 2).

The sharing degree of a register R is the sum of distinct input variable sets
and distinct output variable sets each of which contain at least one element of R.
SD,.,(R) is the number of modules for which R can provide either G functionality

or C functionality.

Consider a register R that has been assigned some variables. Let the sharing
degree of R after another variable v is assigned to it be denoted by SD,,(RU {v}).
Now SDyeg(RU{v}) = SDrey(R) + S Dyar (v) — Ty (X5 XY+ Y4 Y}). Using this
measure, register assignment can be guided by choosing merges that result in larger
increases in sharing degrees of registers over those resulting in smaller increases.
This would result in registers with high sharing degrees, thereby requiring a fewer
number of BIST registers globally in the design. The increase in the sharing degree
of a register R as a result of assigning variable v to it is denoted by ASD"(R), where
ASD¥(R) = SDres(RU {v}) — SDyeyl B).

69

5.3.2 Essential BIST Registers

Two parameters can be associated with a functional register R when it is being
considered to be a BIST register, namely, 1) the BIST function f?(R), and 2) the
sharing degree SD,.,(R). fP(R) indicates the type of BIST register for which R is
a candidate. SD,.,(R) indicates the number of modules for which R is a candidate,
and hence the probability that R will be selected in an minimum BIST area overhead
solution. A third factor affecting the selection of a candidate BIST register in the
BIST solution is the availability of other candidates for the same BIST function
for the same module. For example, if the output port of a module is connected to
two registers, then both registers are candidates for test response compression and
the one with a higher sharing degree will be chosen in the optimum BIST solution.
However, if there was only one register connected to the output, then selecting this

candidate for test response compression cannot be avoided.

Definition 21 A register R in a data path is an essential BIST register of a
certain type (TPG, SA, BILBO or CBILBO) if for any module in the data path, R
is selected as that type of BIST register in all BIST embeddings of the module.

A CBILBO candidate, in addition to providing G and C capabilities also provides
the S capability (simultaneity of G and C). From Table 1 it can be seen that a
CBILBO register consumes more area than two normal registers. The area overhead
of a CBILBO is a high price to pay for the added functionality of simultaneity since
simultaneity is not necessary as long as the G and C requirements are satisfied for
the input and output ports respectively. In previous work, assignment techniques
incorporated the objective of minimizing CBILBOs in the design by minimizing
self-adjacent registers in the data path [44], [48],[49]. However, self-adjacency is
only a necessary condition for a register to be made CBILBO. Fig. 5.4 shows three
scenarios with self-adjacent registers. In Fig. 5.4(a) register A is self-adjacent. But
the presence of output register B precludes the need for a CBILBO. In Fig. 5.4(b)
both the output registers A and B are self-adjacent, but because of the presence of
other input registers, such as C', a CBILBO is not required. In Fig. 5.4(c), however,
a CBILBO cannot be avoided since register A is essential to generate test patterns

and compress responses for the module.

Figure 5.4: Self-adjacency and CBILBOs

The identification of such essential CBILBOs can help minimize BIST area
overhead by performing register assignment that avoids (or minimizes) essential
CBILBOs. Next we derive conditions for register assignment which, when followed
by minimum interconnect assignment, leads to essential CBILBOs in the synthesized
data path. A register R; is a CBILBO candidate only if it can provide the G and
C functionality for an input port of the same module. Hence it is necessary that
{G,C,8} C fB(R;). R;isan essential CBILBO to test M if it is essential to provide
G functionality to an input port of My and essential to provide C functionality to

the output port.

Definition 22 An instance i of a module My, M} is the ith operation executed by

My from the operations assigned to it.

Definition 23 The temporal multiplicity of @ module My, T M(My) is the num-

ber of operations from V' assigned to M,

Lemma 5 A register R, is an essential CBILBO w.r.t. module M;. iff

OVar(My) C Ry and R, N I[Var(Mi) # ¢ forj = 1, 2, ..., TM(My).

Proof: The assignment of input registers to input ports of a commutative operation
maps to a double clique partitioning of a register compatibility graph, where each

vertex is an input register and there is an edge between two registers only if they can

71

be connected to the same input port [66]. From the two disjoint cliques, each one
corresponds to registers connected to one input port. The rest of the vertices (input
registers) are connected to both input ports. A minimum connectivity assignment

is one that minimizes registers connected to both input ports [66].

R, N IVar(ﬂ/I,“:) # ¢ for j =1, 2, ..., TM(M;), implies that every time module
M. executes its operation (i.e. executes instance j), it receives one of its operands
from R,. Hence, the vertex corresponding to R, in the input register compatibility
graph is disjoint for the vertices corresponding to the other input registers. Moreover
since, the other registers hold operands of M}, that are required in different control
steps (i.e. different instances j), they are fully connected to each other. A minimum
connectivity assignment corresponds to R, being the only input register connected
to one input port and the rest of the input registers connected to the other input
port.

If (<):
If R, N [Va.r(M'ﬁ) #¢forj=1,2, .. TM(M), then from the above discussion, it

can be seen that R, is the only register connected to one input port of M. Hence it

is essential to provide G functionality for M. Since OVar(M;) C R,, it is essential

to provide C functionality for M. Therefore, R, is an essential CBILBO.

Only if (=):
R, is an essential CBILBO for M. Hence R, is essential to provide the G func-
tionality and essential to provide the C functionality to M. Since R, is essential to
provide G functionality, it must be the only register connected to an input port of
M. This is possible only if the register assignment is such that, for every iteration
of data through M, R, supplies an operand. This implies R, N [Var(Mj) # ¢
for j = 1, 2, ..., TM(My). Since R, is essential to provide C functionality, R,
holds the output variable of M, after computation of each instance of My, implying
OVar(My) C R,. O

The above lemma enables us to check if a particular assignment would result in
an essential CBILBO in the data path. The register assignment algorithm (described
in the next section) includes this check at every assignment step to avoid assignments
leading to essential CBILBOs.

-1
o

Lemma 6 Given a schedule S, a module assignment 11y, a partial register assign-
ment llgr = {Ry, Ra, ..., Ry} and a new variable to be assigned, x. Let 11§, corresponds
to an assignment of = that creates an essential CBILBO and II}¥-° corresponds to
an assignment that does not create an essential CBILBO. If (¢ — ¢P) > B, then
Areaprsr(Il¥-°) < Areaprsr(11§), where Areagrst denotes the area overhead of

essential BIST registers in a data path.

Proof: Let ¢, ¢P,¢? and ¢ be the cost of modification of a normal register to a
CBILBO, BILBO, TPG and SA, respectively.

Consider register assignment 1% and without loss of generality assume that x is
assigned to K; making it an essential CBILBO. There are four possible choices for
the test functionality of Ry in IIg. It could have been either an essential BILBO,
an essential TPG, an essential SA or none of the above. If it were to become an
essential CBILBO, the BIST area overhead would increase by (¢¢ — c?), (¢ — ¢T),

&

(¢ — ¢%) or ¢, corresponding to the four cases, respectively. Of the four cases, the

smallest increase is (¢ — c?).

Consider register assignment [17-“ and without loss of generality assume that =
is assigned to R such that it does not create an essential CBILBO. In the worst case
R, could become an essential BILBO and the BIST area overhead would increase
by 0, (¢? = ¢T), (¢B — ¢%) or ¢P, corresponding to the four cases, respectively. Of

the four cases, the largest increase is c?.

Since (¢ — ¢B) > ¢P, the smallest possible increase in area overhead due to

essential BIST registers in 1% is worse than the largest possible increase in the case

of II}-. Hence Areaprsr(Ilf=) < Areaprsr(IlR). N

5.4 Register Assignment

The register assignment problem can be modeled as coloring of the variable conflict

graph.

73

Definition 24 A variable conflict graph C' = (V¢, E¢), is a graph with vertices
corresponding to variables in a scheduled DFG with an edge between two variables
only if they have overlapping lifetimes. A coloring of this graph corresponds to a

valid register assignment with each color corresponding to a register.

h
Oabcdefgh o ®
I ol g a g a
| | ||:
1 == ::I /
1o ol
o P f b f b
29— |
[N (A T |
R T I :
R o o e c g c
| AT N N (Y A [|
EEEENE g d
4
(a) (b) (c)

Figure 5.5: Conflict graph of variables

The lifetime table for the DFG in Fig. 5.1(a) is shown in Fig. 5.5(a) and the
corresponding conflict variable graph in Fig. 5.5(b). A coloring of the graph corre-
sponding to the register assignment in Fig. 5.1(b) is indicated in Fig. 5.5(c). In the
rest of this paper we will use the terms color and register interchangeably. Similarly
the terms coloring and assignment are used interchangeably. Minimum coloring of
general graphs has been proven to be NP-complete [15]. However polynomial time
algorithms exist for special graphs such as chordal graphs and interval graphs [67].
If a data flow graph does not contain mutual exclusion constructs, the resulting

variable conflict graph is an interval graph [68].

The greedy optimum coloring algorithm uses the hereditary property of interval
graphs which is defined through simplicial vertices. A vertex v of C' = (Vg, E¢) is
simplicial if its adjacency set Adj(v) induces a clique in C. The adjacency set is the
set of all vertices that are connected to v. In Fig. 5.6(a), vertex b is a simplicial vertex
because its adjacency set {a,e,c} induces a clique shown highlighted. An interval
graph has at least two simplicial vertices. If a simplicial vertex and all its incident

edges are removed, the remaining graph is also an interval graph with at least two

74

h h
7 a g) a g) a
f b f / f /
e c e c e c
d d
(a) (b) (c)

Figure 5.6: Simplicial vertices

simplicial vertices. Fig. 5.6(b) is the same graph in Fig. 5.6(a) with the vertex b re-
moved. A simplicial vertex of the remaining graph, namely, d is shown. An ordering
of the vertices such that each vertex is a simplicial vertex of the remaining graph is
called perfect vertex elimination scheme (PVES). An interval graph has many such
perfect vertex elimination schemes. One such PV ES for the example conflict graph
is constructed in Fig. 5.6 and is b,d, e, after which the remaining vertices can be
chosen in any order as all of them are simplicial vertices. The optimal coloring al-
gorithm constructs one PV ES scheme arbitrarily and colors the vertices greedily in
the reverse order (reverse PVES) [69]. Our heuristic is different from the optimal
coloring algorithm in two respects: 1) it selects the PV ES in a more structured way
taking into account information such as the sharing degree of variables and size of
maximum cliques; and 2) the vertices are then colored using this scheme. However
instead of assigning colors greedily, many more coloring possibilities are explored
and the one most suited for maximizing the sharing of BIST resources for BIST is
selected. We have already defined sharing degree of a variable v, SD,,.(v). We

define another useful parameter, mazimum clique size, that is useful in determining

a PVES.

Definition 25 The maximum clique size of a variable v, denoted by MCS(v) is

the size of the mazimum clique in the variable conflict graph to which v belongs.

The maximum clique size is an indication of the number of variables with which
a given variable conflicts in terms of sharing a register. During incremental register
assignment, a variable with a high MCS value is likely to conflict with a higher

number of registers from the ones already assigned.

1. Selection of a PV ES: With each vertex of the conflict graph we associate

a sharing degree as per Definition 2. In addition we also find the size of the maximum
clique to which each vertex belongs as per Definition 25. The vertices are ordered
in increasing order of their sharing degrees. Among vertices with the same sharing
degree they are ordered in increasing order of the maximum clique sizes. Thus the
ordering of the vertices is such that if v is before w, then S Dy, (v) € SDyer(w) and
if SDyar(v) = SDyar(w0) then MCS(v) < MCS(w). At every step of constructing
the PV ES there is a choice of simplicial vertices. The PVES is now determined such
that at each step a simplicial vertex that is earliest in this order is selected. Since
vertices are colored in the reverse PVES order, this results in vertices with higher
sharing degrees to be considered earlier when there is maximum flexibility in the
assignment of colors. Also since vertices with a higher MC'S value are considered
earlier more colors are fixed in the earlier stages thus creating more coloring options
to explore. This enables the heuristic to search the design space more efficiently for
finding a coloring with low testability area overhead keeping the number of colors
close to optimum. Fig. 5.7 demonstrates the selection of a PV ES using the MCS
and SD values. At each step there is a choice of many simplicial vertices indicated
by the bold vertices. Among them the one circled is chosen by our algorithm. After
the stage shown in Fig. 5.7(e), the vertices are chosen in the order g, f,d, and c. The

PV ES chosen by our scheme is therefore h,a,b,e, g, f,d and c.

2. Coloring in reverse PV ES order: For the purposes of the following dis-

cussion the vertices will be referred to by their number in the reverse PV ES. Let
the coloring after the kth vertex is colored be denoted as 11§, = (Rf, Rj,..., RE)
where RFN R = ¢ if ¢ # j and Ui, R = { 1, 2,...,k }. The total number of colors
after the kth vertex is colored is ¢;. Coloring vertex (k + 1) implies adding it to one
of Rf, R, ..., RE orif it conflicts with all registers, creating a new set RHL =0 k

Cht1
+ 1 } to produce a new coloring II5, where cpyy = ex + 1.

Variables v abcde f gh
Sharingdegree SD(v) : 1 1 2 2 1 2 2 1
Max. clique size MCS(v): 4 4 4 3 4 2 2 1
O
g@ a
ge a /
\ ;
f/ b { l /
e Cc
e ¢
d
d
(a) (b)
ge
-/
| /
@i__ ¢
e c e /. c ./
d d d
(c) (d) (e)

Figure 5.7: PVES based on SD(v) and MCS(v)

The vertex (k + 1) is colored in the following way. If (k£ + 1) conflicts with all
registers Rf, RS, ..., RX then a new register Rf;'x] ={ k + 1} is created. Otherwise,
out of the registers that do not conflict with (k + 1) pick a register R¥ such that
ASDMY(RE) = SDyoy(RE, k+1) — S D,y (RY) is maximum. Such an R} corresponds
to a register that can best utilize (k + 1) to improve its sharing as a BIST resource.
If there is more than one such register then the tie is broken by considering the
sharing degree of the registers and the one which has the higher sharing degree is
chosen. There are two cases in which a register other than R might be preferable.
Case(i): Suppose variable (k+1) is an output variable of some module M;. If there is
a register R with which (k+1) does not conflict such that R} already has an output
variable of M; assigned to it and if SD,.(RF) > SD,ep(RE, k + 1) then assigning
(k +1) to R¥ does not help the situation. On the other hand it might increase the

interconnection cost. So it is preferable to assign (k + 1) to R}.

-1
=~J

Case(ii): Suppose variable (k4 1) is an input variable of some module M;. If among
the non-conflicting registers there are two registers R¥ and R such that each of

them already has an input variable of M; assigned then if their sharing degrees are

higher than SD,.,(Rf, k + 1), it is preferable to assign (k + 1) to one of them.

In general both the cases can arise in which case a set of candidate registers is
created of all such registers Rf, R* and R® and (k+1) is assigned to the one which

results in the highest increase in its sharing degree.

Step 1: [Ip = @
Step 2: While (L # @)
Step 2.1: cand_reg = ®
Step 2.2: Remove first vertex v [rom L
Step 2.3: Find set of registers compatible with v, compat_Ilg
Step 2.4: If (compat 11p = ®)
Step 2.4.1: Allocate new register R,.,, and assign v to it
Step 2.4.2: lIg = g U { Rpew }
Step 2.5: Else
Step 2.5.1: Select R; € compat_Ilg s.t. ASDY(R;) is maximum
Step 2.5.2: If 3R, € output_compat IR s.t. SDyey(Ri) > SDreg(Riyv)
cand_reg = cand_reg U { R; }
Step 2.5.3: If IR;, Ry, € input_compat_TlR s.t.
SDyeg(R;) > SDreg(Riy v) and SDyeq(Ry) > SDyreg(Ri;v)
cand.reg = cand_reg U { R;, Ry }
Step 2.5.4: If (cand_reg # @)
R break_tie(cand_reg)

R=RU{v}
Step 2.5.5: Else
H;=R; U { v }

Algorithm for register assignment - assign_reg(L)

The optimality in the minimum coloring algorithm is guaranteed by assigning
the vertex (k + 1) to the first ¥ with which it does not conflict. Since our heuristic
does not make such an assignment we cannot guarantee optimality in terms of the
number of registers allocated. However the heuristic is near-optimal since it still
relies on a PV ES of a conflict graph. In all the examples considered it resulted in

the minimum number of registers.

The register assignment algorithm assign_reg(L) is shown above. It takes as
input a list of vertices L in the reverse PVES order and outputs a register assignment
IT1z. The algorithm iterates over each vertex v selected from L. compat_IlR is the set
of registers that are compatible (do not conflict) with variable v. Let v € IVar(M;)
and/or v € OVar(My). input_compat Ilg is a subset of compat_Ilg such that every
register R; € input_compat Ilg is such that ;N I[Var(M;) # ¢. These are registers
that can provide G functionality to the module for which v is an input variable.
Similarly, output_compat Il is a subset of compat Il such that every register R; €
output_compat_Ilg is such that B; N OVar(M;) # ¢. These are registers that can
provide C functionality to the module for which v is an output variable. Registers
from output_compat Il and input_compat Ilp that satisfy cases(i) and (ii) above
form the set of candidate registers cand_reg. The procedure break_tie selects a register

from cand_reg with the maximum increase in sharing degree.

Lemma 5 gives a condition that checks if a certain assignment leads to essential
CBILBOs. The algorithm assign_reg(L) can be modified to assign_reg-noCBILBO(L)
that includes this check. In assign_regnoCBILBO(L), a set of compatible registers
compat Iy for a variable v is identified just as in assign_reg(L). However a check is
performed to identify if assignment of v to a register from compat_Ilg creates the
conditions defined in Lemma 5. Such registers are dropped from consideration for
assignment and a subset noC' BILBO_compal Il is created. The rest of the assign-
ment procedure remains the same. It is possible that noC' BI LBO_compat Ilg = ¢
while compat 11z # ¢ which implies that a new register will have to be allocated.
But since it is desirable to keep the total number of registers close to minimum, in
a case like this, noC BILBO _compatl_ 1l is made the same as compat_ Il implying
that a CBILBO will be required. Our experiments indicated that the assignment

space is large enough so that this situation does not occur frequently.

5.5 Interconnect Assignment

The register assignment algorithm does not take into account the effect on intercon-
nect area except to resolve ties. The area due to interconnect hardware is usually
abstracted to the area of multiplexers. For a given module assignment different reg-
ister assignments have different effects on interconnect area. The typical situations
that occur when two variables or intermediate registers are merged into one regis-
ter are shown in Fig. 5.8. In the figure, the circles and ellipsoids indicate partial

registers. In all cases, fB(v;) = fB(vy) = {G,C, N8} and SD(v;1) = SD(v2) = 2.

In Fig. 5.8, cases (a) and (b) result in an extra multiplexer. In case (a),
B({vy,vs}) is the same as fB(vy) (or fB(vy)) but SD({vi,v2}) = 4. The G and
C functionalities for the four modules can be covered by this one partial regis-
ter instead of two. In case (b), merging v; and v, adds the S functionality and
fB({v1,v2}) = {G,C,N'§,8} and SD({vy,v2}) = 3. The G and C functionalities for
the three modules can be covered by one partial register instead of two. Thus, in
these two cases the extra multiplexer cost is compensated by the increase in the shar-
ing of BIST functionality, which in turn reduces the BIST register requirement for the
data path. In cases (c) and (d), fB({vi,v2}) = {G,C, NS} and SD({vy,v2}) = 3. In
both cases, after merging v; and vy, the multiplexer requirement remains the same
and one partial register is required for providing the BIST functionalities for the

three modules.

The above discussion shows that a register assignment with consideration for
BIST overhead and without any consideration for interconnect area will still result
in a data path with lower overall area. However more reduction in the BIST area
overhead can be achieved by assigning interconnect so as to make the most use of
the register assignment. Given a module M. and the set of input registers [R, each
input register can be connected in one of the following three possible ways: 1) it is
only connected to the “left” input port of My, 2) it is only connected to the “right”
input port of My, and 3) it is connected to both the “left” and the “right” input port
of M. Assignment of interconnect Il can be thus seen as a partition of /R into
sets IRF, IRE and I RER corresponding to the cases 1), 2) and 3), respectively. For

making the most use of the register assignment in reducing the BIST overhead, the

30

Figure 5.8: Trade-off between BIST functionality and interconnect

connectivity assignment can be directed to ensure that registers with high sharing
degrees have a better chance of being selected as BIST registers. To test a module
M, two registers each with G functionality and each connected to a distinct input
port of My are required. Among all candidates for an input port, selection of a
register with the highest sharing degree results in a globally minimum BIST area
overhead. Hence it is advantageous to have a register with high sharing degrees
in both, IRY and [RE. The output connectivity assignment has no effect on the

selection of BIST resources.

Figure 5.9: Effect of connectivity assignment on BIST registers

81

Consider the multiplier module M; from the example in the previous section.
Fig. 5.9(a) shows the multiplier and its input registers and also the complete data
path with BIST registers. The sharing degrees of the registers is shown on top of the
registers: SD,.,(R1) =3, SDyey(R3) = 3, and SD,,(R4) = 2. Fig. 5.9(a) shows the
input connectivity of R;, Rz and R, to the input ports of M;. In this data path, R4
is the only register connected to the right input port of M; and it has a lower sharing
degree compared to the other two. Fig. 5.9(b) shows an alternate input connectivity
assignment. Using the commutativity of the multiplier for the second instance of
the multiplication in control step 3, R; and R4 can be flipped between the left and
right input ports. Now each input port is connected to a register with high sharing
degree - the left input port has Rz and the right input port has R;. Data paths II
and IIT in Fig. 5.2 correspond to Fig. 5.9(a) and Fig. 5.9(b), respectively. It can be
seen that in Data Path III, R; can be shared as a TPG between the two modules

resulting in further reductions in BIST area by saving R4 as a TPG.

To determine an interconnect assignment that increases the possibility of regis-
ters with higher sharing degrees connected to both input ports, we use the following
two parameters for each module My. The maximum sharing degree of the registers
connected to the left input port of a module My, denoted by MaxzS DY, is the maxi-
mum of the sharing degrees of registers connected to the left input port of M. The
average sharing degree of the left input port of a moduleMy, denoted by AvgS D,
is the average of the sharing degrees of registers connected to the left input port of
Mj.. Similarly for the right input port. For each module M} an initial interconnect
assignment is first determined for minimizing the number of multiplexers at its input
ports [66]. Based on the connectivity, each instance j of a module M), has a left input
register and a right input register. For each instance 7, new values of MazSD" and
MazSD® are computed assuming that the input registers are flipped between the
left and right input ports. The instance for which a flip results in a maximum value
of (MaxSDY + MaxzSD?) is selected. In the case of more than one instance with
the same maximum, the one that results in the lowest difference between AvgSDY
and AvgSD?® is selected. The interconnect assignment is constructed by flipping
the pair of input registers corresponding to the selected instance and keeping the

connectivity of the remaining instances unchanged.

82

Table 5.2: Flipping choices for connectivity assignment

Module L port R port || MaxzSD | MazSD | AvgSD | AvgSD
instance || Reg | SD [Reg [SD| L | R | L+ R L | R ||L-R|
1 A I B 4 4 5 9 3 3 0
2 C |2 | D| 4 4 | 5 9 2.75 | 3.25 0.5
3 E | 3 F |5 5 | 4 9 2.75 | 3.25 0.5
4 G| 3| H| 2 315 8 2 4 2

Example 4 Consider a module with registers A,C, E and G' connected to the left
input port and registers B, D, F' and H connected to the right input port based on
an initial interconnect assignment. Table 5.2 shows the sharing degrees of each
register. The last siz columns of the table refer to mazimum and average sharing
degree values assuming that the registers corresponding to that particular instance
are flipped. Column 8 is the sum of MazSD¥ and MaxSD®, and column 11 is the
difference between AvgS DY and AvgSDR. It can be seen that flipping in the case of
instances 1, 2 and 3 results in a higher sum of mazimum sharing degrees, namely 9,
than instance 4. Among them instance 1 has the least difference between the average

sharing degrees of the left and right input ports and hence is chosen for flipping.

5.6 Experimental Results

The assignment techniques proposed in this chapter were integrated into the Stan-
ford CRC synthesis-for-test tool, TOPS [51]. To demonstrate the advantage of
the proposed technique in synthesizing data paths with low BIST area overhead,
experiments were conducted on some scheduled DFGs. For each DFG, a module as-
signment using a greedy approach was constructed. Then the scheduled DFGs were
synthesized using two different register and interconnect assignment approaches.
Approach I uses traditional assignment algorithms with the objective of minimizing
registers and multiplexers. Approach II uses the assignment algorithms proposed
in this chapter, which in addition to minimizing registers and interconnect, also

minimizes BIST area overhead. The BIST registers required to test data paths

83

Table 5.3: Hardware characteristics of data paths

DFG Schedule Module Approach I Approach 11
Assignment # Reg | # Mux || # Reg | # Mux
Inputs Inputs
exl S 1+, 1* 4 10 4 13
Sy 14, 1% 4 10 4 13
Diffeqn Si 14, 4%, 1- 7 26 7 30
Ss 14, 2%, 1- 5 30 5 30
Tseng S 24, 1%, 1-, 1&, 1| 4 17 4 14
Sy 24, 1%, 1-, 1&, 1 4 17 4 14
AR filter S1 4+, 8* 16 48 16 84
Ss 24, 4% 8 66 8 77
FIR filter S 4+, 4* | 8 31 8 | 30 |
EW filter S| 5+, 3* | 10 50 | 10 | 72 |

synthesized using both these approaches were determined using an ILP formulation
that minimizes BIST area overhead described in an earlier chapter. The BIST area
overhead and the total area of the designs were then compared. All data paths
were synthesized using a LSI Logic standard cell library and the area is given in cell

units [52].

Table 5.3 summarizes the hardware characteristics of the designs synthesized
using the two approaches. The module assignment was the same for both the ap-
proaches. It can be seen from Table 5.3 that the number of registers in Approach II
is the same as that in Approach I. Approach I did not take into account any BIST
considerations and tried to minimize the number of registers in the design. Our pro-
posed approach, while taking into account BIST considerations, synthesized a design
that is area competitive with that of Approach I in terms of number of functional
registers. It can be seen that the number of multiplexers in the two approaches is

not the same in all the cases.

Tables 5.4 show the actual number of BIST registers required to test data paths
synthesized using Approach I. The reduction or increase in the number of BIST

registers using Approach II over Approach I is indicated in brackets in each table

34

‘able 5.4: BIST registers using Approach I (Approach II)

DFG BIST registers
CBILBO [# BILBO | # TPG | # SA
exls, 1 (-1) 0 (0) 2 (0) 1 (0)
exls, 1 (-1) 0 (0) 2 (0) 1 (0)
Dif feqns, 1(-1) 2 (+1) 2(0) | 2(1)
Diffeqns, | 00 | 00 [3() [2(]
T'sengs, 2 (-1) 1 (0) 0(+1) | 0(0)
T'sengs, 2 (-1) 1(0) 0(+1) | 0(0)
AR_filters, 0 (+1) 7 (-4) 8 (+2) | 1(0)
AR_filters, 0 (+1) 8 (-5) 8 (+2) | 0 (+1)
FIR_filters, 2 (-1) 4(2) [1(+3) [1(0)
EW _filters, 2(-1) | 0@ | 5(0) [2(+1)
Table 5.5: BIST area overhead comparison
| DFG | Approach I | Approach IT | % Reduction |
exls, 816 294 63.97
exls, 816 201 63.97
Dif feqns, 1424 1056 25.84
Dif feqns, 480 288 40.00
T'sengs, 1312 880 32.93
T'sengs, 1312 380 32.93
AR_filterg, 1328 1176 11.45
AR_filters, 1408 1176 16.48
| FIR filters, || 2272 | 1520 [3310 |
| EW _filters, || 1728 | 1296 | 25.00 |

Table 5.6: Comparison of register and multiplexer area

DFG Area (Reg + Mux) % Reduction in
Approach I | Approach IT | Area(Reg + Mux)

exls, 5232 5030 3.86
exls, 5232 5030 3.86
Dif feqns, 5728 5552 3.07
Dif fegns, 4256 3984 6.39
T'sengs, 3968 3376 14.92
Tsengs, 3968 3376 14.92
AR_filters, 6229 7081 -13.67
AR_filters, 6256 5987 4.23

| FIR filters, | 7632 7232 | 5.24 |

| EW _filters, | 9456 9349 | 1.14 |

entry. For example in the case of AR_filters,, the number of BILBOs was reduced
by 4 from 7 in Approach I to 3 in Approach II and the number of TPGs increased by
3 from 8 in Approach I to 10 in Approach II. The number and type of BIST registers
were determined using the ILP formulation described in Chapter 3. It can be seen
that fewer BIST registers are required in Approach Il as compared to Approach I.
Note that even if the number of cheaper resources (such as TPG and SA) increases,
the number of more expensive resources (such as CBILBO) decreases, which results
in significantly lower BIST area overhead. Table 5.5 shows the actual BIST area
overhead and the percentage reduction achieved using the proposed approach. The

percentage reduction achieved by Approach II is as high as 60%.

Since we assume the same schedule and module assignment for the two ap-
proaches, the functional module area is the same in both the cases. The trade-off
in minimizing BIST area overhead is the functional area required for registers and
interconnect (multiplexers). In Table 5.6, the register and multiplexer area is com-
pared for the two approaches. Note that the register area is the area after BIST
modification in both the cases. It can be observed that the area reduction is small
for FIR_filter and EW _filter. These benchmarks do not provide much flexibility

in the assignment phase for improvement in BIST area overhead. The savings that

86

are achieved in BIST area overhead indicated in Table 5.5 are significant for these
two benchmarks. However they get offset by the increase in multiplexer complexity.
The other domains of high-level synthesis are more suited for BIST area overhead

optimization of these benchmarks.

5.7 Summary

In this chapter we have presented a register and interconnect assignment approach
to synthesize data paths with low BIST area overhead. The proposed assignment
algorithms synthesize data paths in which the sharing of BIST registers between
functional modules is maximized and the number of CBILBOs essential to test a
data path is minimized. We have shown that there is sufficient flexibility during reg-
ister assignment to explore solutions that are competitive in terms of functional area
significantly better in terms of BIST area overhead. The proposed register assign-
ment approach synthesizes data path with the same number of modules and registers
but requiring lesser number of BIST registers. A small amount of multiplexer com-
plexity is added to achieve that. However, the increase in multiplexer complexity is
more than compensated for by reduction in BIST area overhead, resulting in lower
area for a data path. Experimental results on examples demonstrate the ability
of our algorithms to achieve a reduction of up to 60% in BIST area overhead of

synthesized data paths.

oo
e |

Chapter 6

Scheduling for Reducing BIST Resources

In the previous chapter we described how register and interconnect assignment can
be performed to minimize BIST resources. The assumption there was a schedule
and module assignment was available. In this chapter we discuss how scheduling

and module assignment can be performed to minimize BIST resources.

6.1 Introduction

Among the various types of data path components, registers are the BIST resources
and interconnect, the test paths from and to the BIST resources. Modules are the
components under test. Hence the properties of high-level synthesis tasks used for
optimization of BIST area overhead are different for different data path components.
Register and interconnect assignment affect BIST resources directly in that the objec-
tive of these tasks synthesizes the BIST resources. Module assignment, on the other
hand, affects BIST resources indirectly by synthesizing a configuration of modules
from the numerous possibilities that will require few BIST resources. From Chapter
4 we know that a module assignment that has a maximal independent operation set
with very low input and output storage concurrency would require very few BIST
resources. Module assignment is tightly coupled with scheduling. Scheduling assigns
a temporal sequence on execution of operations in a DFG. The temporal sequence
determines which operations can be assigned to the same module and which cannot

be assigned to the same module. In the past, it has been shown that considering

88

scheduling and module binding simultaneously results in a more efficient exploration
of the design space [70], [71]. This, coupled with the fact that module assignment
is inherently different than register and interconnect assignment for BIST resource
minimization, makes a combined scheduling and module assignment approach very

appropriate.

6.2 Scheduling and BIST Resources

In this section we will discuss how scheduling has an effect on BIST resources of a
data path. Scheduling affects BIST resources in two ways. 1) It determines lifetimes
of variables and hence affects the register assignment solution space. 2) It determines
temporal sequence of operations and hence affects the module assignment solution
space. 1) and 2) correspond to the concepts of storage concurrency and mazimal
independent operation sets, respectively, that were introduced in Chapter 4 and
were shown to influence BIST resources. Formal definitions of a schedule, variable

lifetimes and module assignment are given in Chapter 4 (Definitions 3, 5 and 8).

Definition 26 The as-soon-as-possible value ASAP; of an operation o; is the
earliest control step in which o; can be scheduled. The as-late-as-possible value
ALAP; of an operation o; is the latest control step in which o; can be scheduled.
ASAP; = minys S(0;) and ALAP; = maxys S(o;) where the minimum and the maa-

imum is over all schedules S :V — {1,2,..., Lmin}-

Definition 27 The mobility M(o;) of an operation o; is the interval [ASAP,,
ALAP], and the slack of an operation o; is slack(o;) =| M(0;)| =1 or (ALAP; —
ASAP).

6.2.1 Effect of Scheduling on Variable Lifetimes

Two variables can be assigned to the same register only if their lifetimes do not
overlap (Definition 6). Fig. 6.1 shows a portion of a DFG scheduled in 4 control

steps. Assume that all the shaded nodes are of a different type (i.e. not addition)

89

and the slack of all the shaded nodes is 0 because of constraints not indicated in
the figure. Since they are of a different type they do not interfere with the module
assignment of the addition operations. Since the slack of these operations is 0,
they have to be scheduled in the control steps as shown in the two schedules. The
mobilities of the addition operations are M(+;) = [1,2], M(+2) = [2,3] and M(+3)
= [2,3]. Also assume that 2 adder modules M, and M, are available to which the
addition operations can be assigned. Fig 6.1(a) shows one valid schedule. Given this
schedule, two module assignments are possible, 11}, : My = {+1}; My = {+2,+3}
and 113, : My = {+3}; Mz = {+1, +2}.

For a module, any register to which an input variable of one of its operations is
assigned can provide G functionality to that module. Similarly, any register to which
the output variable of one of its operations is assigned can provide C functionality.
To reduce the number of registers required to supply test patterns to M; and Ms, we
need to assign the input variables of operations assigned to the two modules to as

few registers as possible. Consider all possible register assignments of this scheduled

DFG.

(b)

Figure 6.1: Scheduling and variable lifetimes: (a) Schedule I (b) Schedule II

For 11}, a register assignment that results in minimum BIST area overhead
includes registers Ry = {c,...}, R2 = {b,...} and Ry = {a,h,k,..}. R; and Ry

90

are TPGs and Rs is a CBILBO. Note that input variables of +;, namely a and b,
can share a register with only one input variable of an operation belonging to My,
namely h. The variable A is the only output variable for module M; and hence
the register to which it is assigned has to be a C-resource as well. For II3;, a
register assignment that results in minimum BIST area overhead includes registers
Ry ={c,..},Ro={i,...}, Rs={l,..} and Ry = {h,j,...}. Ry and R are TPGs, R;
is a SA and Ry is a CBILBO. The output variable of M;, namely [, cannot share a
register with either variable h or k which are the output variables for M;. Hence two
registers are required for C functionality. Also at least three registers are required

for G functionality.

Now consider an alternative schedule as shown in Fig. 6.1(b). Given this sched-
ule, two module assignments are possible, I3, : M; = {4+2}; My = {+1,+3} and
M, : M; = {+3}; My = {+1,+2}. For II};, a register assignment that results
in minimum BIST area overhead includes registers B, = {b,...}, R = {c,...} and
R3 = {a,h,k,...} where Ry and R, are TPGs and R3 is a CBILBO. The optimum
BIST solution for this case has the same cost as module assignment II}, in the case
of schedule I. Module assignment I}, in the case of schedule II is the same as II3; of
schedule I. However, the optimum BIST solution in this new case is different. Since
input variables of M;, namely i and j, can share registers with input variables a
and b of My, only two registers with G functionality are required. In addition, out-
put variable [of M; can share a register with A which is an output variable of Mj.
Hence a register assignment which includes registers Ry = {a,1,...}, Rs = {b, J, ...}
and Rz = {h,l,...}, where R, and R; are TPGs and I3 is a SA, gives the optimum
BIST solution.

Schedules I and 1T gave different optimum BIST solutions for the same module
assignment I13,(= I1},). Schedule II changed the lifetimes of the input and output
variables of M; and M; such that the variables were able to share registers. These
registers can then be shared as BIST resources between the modules. A quantitative
measure of overlap of lifetimes of input and output variables of operations can be
used to compare schedules. Let £, C E denote the set of edges in a DFG incident

on o; (operands and result of o;).

91

Definition 28 The disassociation between two operations o; and oj in a scheduled
DFG is

| {(z,y) | (x.y) € E,; x E,, s.t.z.y have overlapping li fetimes} |

d(O;,Oj) = E0| % EoJ I

Definition 29 The S_degree of disassociation of a schedule S is

_ ZV(G,.oJ).i;&j d(o;, 0;)

~ H{(ei,05) i # 3} |

D(S)

Definition 30 The S_II_degree of disassociation of a schedule S and a module

assignment Ily; is

1)(5. Hw) _ ZWD,.DJ),l'IM(o.)il'[_r\‘g(o_,) d((){,()j)
- | {(0:,05) | Mar(o:) # ar(o;)} |

The lower the degree of disassociation, the higher the possibility of sharing of
BIST resources between different modules and the lower the BIST area overhead.
Table 6.1 shows the module assignments, BIST area overheads assuming 16-bit regis-
ters and the S_degree of disassociation for Schedules and IT and the S_II_degree

of disassociation for module assignments [T}, 113, [13, and II3},.

6.2.2 Effect of Scheduling on Module Assignment

Scheduling determines which operations can be assigned to which modules from a
set of available modules. Operations that are concurrent (scheduled in the same
control step) have to be assigned to different modules. Also an operation can be

assigned to a module only if the module can perform that type of operation.

Consider a portion of a scheduled DFG shown in Fig. 6.2(a). Assume that all the

shaded operations have zero slack. The mobilities of the addition and the subtraction

92

Table 6.1: Effect of scheduling on variable lifetimes

Schedule Module Optimum BIST
S D(S) | Assignment | D(S, ar) BIST Overhead
[18Y; Solution | (cell units)
I L 0.44 oT. 1 740
I, 056 | 2T, 1S, 1C| 846
I 0.29 I3, 0.4 5T, 10 740
Iy,(=105) | 0.17 2T, 1S 318

operations are M(—;) = [2,2], M(—2) = [4,4], M(+1) = [2,4] and M(+,) = [2,4].
Furthermore, assume that two modules are available, M; and M, such that M; can
perform only subtraction and M, can perform both addition and subtraction. For
schedule I (shown in Fig. 6.2(a)) only one module assignment IT}; is possible. Both

+, and 43 have to be assigned to M, since it is the only module that can perform

Figure 6.2: Scheduling and module assignment: (a) Schedule I (b) Schedule IT

Since —; is concurrent with +; and —, is concurrent with +2, neither of the
subtraction operations can be assigned to M; and hence they are both assigned
to M;. Of all possible register assignments, the one that results in an optimum
BIST solution includes Ry = {a,...}, Ry = {b,...}, Rs = {e,...}, Ry = {d,...} and
Rs = {e,j,...}. Ry, Ry, R3 and R, are TPGs and Rs is a SA. The input variables

of —; and —; cannot share the same registers with the input variables of +, and

93

Table 6.2: Effect of scheduling on module assignment

Schedule Module Optimum BIST
S D(S) | Assignment | D(S,11yr) BIST Overhead
15Y} Solution | (cell units)

[0.50 Ik, 0.64 4T, 1S 530

I1 0.49 1%, 0.44 2T, 1S 318

+2 and hence 4 TPGs are required. Note that the input variables of —; and —,
can share registers since they have disjoint lifetimes. However the schedule and
the resulting module assignment prevents the two subtractions to be assigned to
different modules, thus precluding the possibility of the shared register acting as

test resources for different modules.

Consider an alternative schedule of the same DFG shown in Fig. 6.2(b). By
scheduling +, in control step 3, a different module assignment II3, is possible. +
and +; still have to be assigned to M, since this is the only module that performs
addition. However, since —; is not concurrent with any of the additions and since
M, performs subtraction also, — can be assigned to M. Now a register assignment
that includes registers R, = {a,g,...}, Ra = {b,h,...} and Rs = {e,i,...} is possible
which corresponds to an optimum BIST solution of 2 TPGs (R, and R;) and 1 SA
(Hs3).

Schedules I and II have about the same S_degree of disassociation. However
Schedule II allows a module assignment which has a lower S_TI_degree of disas-
sociation. Table 6.2 summarizes how a schedule effects BIST area by influencing

only module assignment and not influencing the lifetimes of variables in DFG.

6.3 Scheduling Procedure

In the previous section we have shown how scheduling can affect the BIST solution of
a data path. Given a schedule, a module assignment that satisfies the schedule and

a constraint on resources, different register assignments are possible. Using register

94

assignment techniques such as the ones presented in Chapter 5 and in [49] and
[44], a data path can be synthesized that requires a low number of BIST resources.
However, the optimum BIST area overhead that can be achieved is constrained by
the chosen schedule and module assignment. In general, different schedules and
module assignments that have a desirable latency and functional area can differ
significantly in their BIST resource requirement. For a given schedule and module
assignment, establishing what can be achieved in terms of register and interconnect
assignment to minimize BIST resources is a key question in incorporating BIST area
overhead optimization techniques in the scheduling phase of high-level synthesis.
Theory on estimating lower bounds on BIST resources from scheduled DFGs has

been developed in Chapter 4.

We propose a scheduling approach in which the module assignment is done si-
multaneously with scheduling. It has been shown that considering scheduling and
module binding simultaneously results in a more efficient exploration of the de-
sign space [70], [T1]. Our approach has two phases: 1) adding temporal testability
constraints between selected operations, and 2) performing scheduling and module
assignment of each operation on the DFG with the modified constraints. In Phase
L, pairs of operations o; and o; are selected such that it is beneficial (in terms of
BIST area overhead) for the operations to execute in different control steps and be
assigned to different modules. The scheduling of such operations is constrained to
occur in different control steps by adding a temporal relationship (an edge in the
DFG) between the operations. Phase 1 can be viewed as coarse scheduling, where
only concurrency and sequentiality of operations is influenced but the exact control
step is not assigned. Phase | requires an analysis of the DFG which is done in a pre-
processing step. In Phase 2, detailed scheduling is performed where each operation
is assigned to a control step and to a module taking into account the constraints
added in Phase 1.

6.3.1 Phase 1: Adding Temporal Constraints

A schedule induces a temporal sequence on operations. Operations that are exe-

cuted sequentially can share functional modules. Sequentiality of operations is thus

95

beneficial to minimizing functional resources and desirable when the objective is
to minimize functional area. Also a pair of sequential operations has low disas-
sociation, i.e. the operations have a high possibility of sharing input and output
variables. Hence if sequential operations are distributed across modules (as opposed
to sharing modules) then BIST resources and testability area overhead can be min-
imized. We define the concepts of sirictly sequential, strictly concurrent and weakly

sequential (or weakly concurrent) pairs of operations for an unscheduled DFG.

Definition 31 Operations o; and o; are

1. strictly sequential if VS, S(0;) # S(0;),

2. strictly concurrent if VS, S(o;) = S(0;),

3. weakly sequential (or weakly concurrent) if 35, such that S\(0;) = Si(o;),
and 35, such that Siy(0;) # Sa(0;),

where S, Sy and S, are schedules with latency Lomin.

Strict sequentiality implies that the two operations have to be scheduled in
different control steps for a valid schedule of latency L., and strict concurrency
implies that the two operations have to be scheduled in the same control step for a
valid minimum latency schedule. Weak sequentiality, on the other hand, implies that
it is possible but not necessary to schedule the two operations in the same control
step for a minimum latency schedule. [n the DFG shown in Fig. 6.3(a), operations
=y and *, are strictly sequential, operations #; and %, are strictly concurrent, and

operations *; and +; are weakly sequential.

The temporal (order of execution) and spatial (assignment to hardware units)
relationships of a pair of operations determines the nature of the data path as shown
in the Table 6.3. Two operations executing in the same control step cannot be as-
signed to the same module. The other three cases are functionally possible. If two
operations are strictly concurrent, they fall in the first column (same control step)
and test optimization is not possible. Strict sequentiality falls in the second column

(different control steps). Scheduling has no control over strict concurrency and strict

96

Table 6.3: Temporal-spatial relation of operations

Control steps
| Modules | Same [Different
Same - Does not contribute to
BIST resource reduction
Different High storage concurrency Low storage concurrency
of input/output variables of input/output variables
(cannot share BIST resources) | (can share BIST resources)

sequentiality if minimum latency schedules are desired. Strict sequentiality can be
leveraged to reduce BIST resources by deciding an appropriate control step and as-
signing the operations to different modules. This fine (i.e. detailed) scheduling is
addressed in Phase 2. The case of interest in Phase 1 is weak sequentiality which
spans the whole table. Weak sequentiality can be exploited to add temporal con-
straints such that the operations fall in the second column. Phase 2 can then take
advantage of the constraints to push the operations in the direction of the lower
right hand box in Table 6.3. A temporal constraint between a pair of operations
that constrains the operations to occur in different control steps is formally defined

helow.

Definition 32 A temporal constraint on a pair of operations o; and o; is defined
as a modification of G = (V. E) to G' = (V, E") where E' = E U {0;,0;} or E' =
E U {oj,0;}. However, there is no variable associated with the added edge. The

constraint s denoted as (0; < 0;).

Theorem 10 [f operations o; and o; are weakly sequential operations in an unsched-
uled DFG, G = (V, E), then adding a temporal constraint (o; > 0;) still guarantees
a schedule of G with latency Loin.

Proof: The proof follows directly from the definition of weakly sequential operations
(Definition 31). Since there exists a minimum latency schedule S; such that S;(0;) #
S3(05), an edge can be added from o; to o; (if S3(0;) < Sa(0;)) or from o; to o; (if
S2(0j) < S2(0;)) and schedule S; would be still valid. a

97

Theorem 10 allows us to constrain the scheduling of a DFG in a manner that
is beneficial for BIST overhead without compromising the latency of the schedule.
However, adding a temporal constraint can have an adverse effect on the number of
modules required. In Phase 1 of our approach, pairs of weakly sequential operations
are identified and testability temporal constraints are added to selected pairs. The

following theorem is used to identify pairs of weakly sequential operations.

Theorem 11 Operations o; and o; are weakly sequential iff all of the following
conditions are irue.

1) there is no path from o; to o; or from o; to o

2) [ASAP,, ALAP,] N [ASAP;, ALAP;] # ¢

3) at least one of slack(o;) and slack(o;) is not equal to 0.

Proof: If (<):

Since the operations are weakly sequential, from Definition 31, 3 S; such that
Si(0;) = Si(oj). Therefore, Si(oi)(= Si(oj)) € [ASAP, ALAP] and S,(0;)(=
Si(e;)) € [ASAP;, ALAP;] which implies Condition 2. Also since the synthesis

model does not allow chaining of operations, scheduling operations o; and o; in the

same control step implies Condition 1.

35 such that S)(o;) = 5i(0;), and 35; such that Sy(0;) # S2(0;). A minimum
of two distinct values of control steps are required to satisfy these S, and S,. Since
Sy(01), Salo;) € [ASAP. ALAP] and Sy(0;), Sa(o;) € [ASAP;, ALAP}), at least
one of [ASAP;,, ALAP;] and [ASAP;, ALAP;] should have two control steps which

implies that at least one of the operations has non-zero slack (Condition 3).

Only if (=):
Condition 2 implies that 3 a control step ¢ such that ¢ € [ASAP;, ALAP;| and
c € [ASAP;, ALAP;]. According to Condition 1, there is no path from one operation
to another and hence they can be scheduled as per schedule S, where Si(0;) =
Silo;) = (1)
As per Condition 3, let us assume that slack(o;) > 0. So even if o; is scheduled
in control step ¢ € [ASAP,, ALAP;] and ¢ € [ASAP;, ALAP;], o; can be scheduled

in control step ¢’ # ¢. It is possible to schedule o; in ¢ after scheduling o; in control

98

step ¢, because of Condition 1. Hence a schedule S, exists such that ¢ = Sy(0;) #
S2(0j) =c. (2)

Irom (1) and (2), o; and o; are weakly sequential. O

The minimum latency of the DFG is not affected by adding temporal constraints
between weakly sequential operations according to Theorem 10. The number of
registers required for the DFG is also not affected because it has been shown to be
insensitive to different schedules [72]. But two other effects need to be considered: 1)
effect on the mobility of other operations, and 2) effect on the number of functional
modules required. For a weakly sequential pair of operations, the effect of adding
a temporal constraint on the mobility of other operations is quantified as the total
change in slack of operations, Ag,.. All weakly sequential operation pairs are
considered in an increasing order of the value of Ag,... If a temporal constraint
between a pair of operations violates the constraint on the number of functional
modules, the pair is dropped from consideration. Of the remaining candidates, a
pair is selected such that it is most beneficial for BIST resources. Note from Table 6.3
that operations in the lower right hand box of the table are most beneficial in this
regard. Hence, candidate pairs that have a high probability of being assigned to
different modules are selected. If operations in a candidate pair are of different
types, this probability is 1. A temporal constraint is added to a pair of operations
selected in this manner. The ALAP and ASAP values of all operations are updated

after addition of a temporal constraint.

Example 5 The addition of temporal constraints to the Diffeqn benchmark [61]
is demonstrated in Fig. 6.3. The original [ASAP;, ALAP;] values of each opera-
tion o; are indicated in Fig. 6.3(a). Consider the pair or weakly sequential opera-
tions (*s,+1). The addition of an temporal constraint between these two operations
changes the mobility of operation +,. (The mobilities that change are highlighted
in the figure.) In Fig. 6.3(b), the lotal change in slack of operations, Agack, s 2.
However, if a temporal constraint is added to the operation pair (%5,42), as shown in
Fig. 6.3(c), Agtack = | and hence this constraint is preferred. Note that a temporal
constraint has a preferred precedence relationship. The same temporal constraint as

in Fig. 6.3(c) with the opposite precedence relationship is shown in Fig. 6.3(d). In

99

this case, As!nck = Aslﬂck(,sl + Aslack(’g} + Aslack{+2) = 142+2=0>5. This constrains
the schedule severely and hence the temporal constraint with the precedence order in
Fig. 6.3(c) is preferred.

3]

Figure 6.3: Phase 1 - Adding temporal constraints

6.3.2 Phase 2: Detailed Scheduling and Module Assignment

The proposed scheduling procedure is based on list scheduling techniques [16]. List
scheduling techniques are widely used in high-level synthesis because of low compu-
tation complexity and near-optimum solutions. We use slack of an operation as the
priority function in picking an operation to be scheduled since we desire minimum
latency schedules. In addition to assigning operations one by one to a control step,

the procedure simultaneously assigns them to the available modules. The types

100

of modules and the number of instances of each type available, are known to the

procedure.

INPUT: DFG, Lpin and M = {My, Ma, ..., M, }

Step 1: Pick an unscheduled o; with least slack
Step 2: Find all possible tuples 7; =< C'Step;, Mod_index; > s.t. o;
can be assigned control step C'Step; and module Maod_indes,
Step 3: For each tuple T; s.t. Myfod_inder, 15 not empty
Step 3.1: Calculate Cost(T;) = Agrst — Amux
Step 4: If there exists 7} s.t. C'ost(T}) is positive
Step 4.1: then select 7; with highest cost
Step 4.2: else select T s.t. Mpsod_indes, 15 empty
Step 5: Assign o; to selected T);
Step 6: Go to Step 1

Procedure for Phase 2 - Schedule_and_Assign()

The procedure is iterative in nature and at every step from the operations
that have not yet been scheduled and assigned, an operation o; with the small-
est slack is selected. The set of all control step and module assignment tuples
(T; = < CStep;, Mod_index; >) is then determined such that o; can be scheduled
in control step C'Step; and assigned to module Myfod_indez, from the set of avail-
able modules M = {M,, My, ..., M,,}. Note that while considering such tuples for
o; some other operations are already scheduled and assigned to modules. A cost
function, Cost(T}), is computed for each tuple T} to determine the control step and
the module to which an operation should be assigned. Cost(7T}) has two compo-
nents. The primary component of the cost is Aprsy, the decrease in BIST area

overhead corresponding to the assignment as defined by the tuple. A decrease in the

101

number of BIST resources can adversely affect the multiplexing complexity. Hence
the second component of Cost(T;) is Aypx, the increase in multiplexer area corre-
sponding to the assignment defined by 7. A tuple T} is chosen chosen such that the
decrease in BIST area overhead after compensating for an increase in multiplexer
area (Cost(T;) = Aprst — Ayux), is maximum. The detailed description of the

components of the cost function is given next.

6.3.2.1 Estimation of BIST Area Overhead

The estimation of BIST area overhead is first discussed for a complete schedule and
module assignment. The extension to partial schedules and module assignments and

use as Apgjygr is straightforward.

Let £ = {V} .. Vi .. Vi .} denote the list of all maximal independent
operation sets. Since V} contains one operation from each module, the registers
to which variables of /Var(V}) are assigned correspond to a BIST solution, where
these registers provide G functionality for all modules in the data path. Similarly,
the registers to which the variables of OVar(V}J"MI) have been assigned correspond to
one BIST solution where these registers provide C functionality for all modules. The
actual type of the test register (i.e. TPG, SA, BILBO or CBILBO) is determined by
how the variables in [1-”&:‘(1“‘,"““)UOL"(U'(VI{MI) (1 < 1,5 <) are distributed across
the BIST registers. Let [Var(V})UOVar(V}) be denoted by TestVar“i, the

set of test variables.

Remark 1 Given a scheduled DFG and a module assignment, for any register as-
signment, the registers to which variables in TestVar'™ have been assigned define a
minimal intrusion BIST solution for the synthesized data path. In this BIST solu-
tion a register R is a
1) TPG, if Vv € TestVar™i that are assigned to it, v € [Var(V{), UQOVar(_Vim)
2) SA, if Yv € TestVar*? that are assigned to it, v € OVar(L’}J;“), v@IVar(Vi)
3) BILBO, if it is assigned

z,y € TestVar'’ such that z € OVar(V}{MI)_. y € [Var(V},), and the opera-
tion of which x is the output and the operation of which y is the input do not belong

to the same module.

102

(Note: z and y could be the same variable)
4) CBILBO, if it is assigned

z,y € TestVar'™” such that z € OVa.r(V}{MI), y € [If’ar(VI';MI), and the opera-
tion of which x is the outpul and the operation of which y is the input belongs to the
same module.

(Note: © and y could be the same variable)

Example 6 Consider the DFG in Fig. 6.4(a) with a schedule as shown and a mod-
ule assignment such that My = {#,%3}, My = {#o,%4,%s5}, My = {—1, =2} and
My = {+1}. Out of all the mazimal independent operation sets consider V! =
{*1, %5, —2,+1} and V7 o = {*3,*2,—2,4-1} The corresponding sets of input and
output variables are [Var(V; = {b,c,j,m,n,0,e,h}, OVar(V})= {i,o,p,e}
and [Var(V?)= {i.j.d.e,n,o, h}, OVar(VE) =1{l,J,p, €}

Consider TestVar*' = [Var(VE YU OVar(V},). Fig. 6.4(b) shows a data
path that has been synthesized using one register assignment of the several possible.
It can be seen that registers to which the variables of TestVar*' have been assigned
(shown shaded in the figure) define one BIST solution for the data path. According
to Remark 1, each of the shaded registers has the following functionality.

I. Re = {h,n} is TPG since h.n € TestVar*': hon € [Var(VZ); hyn ¢
OVar(V}). Similarly Ry = {d,m} is TPG.

i

Rs = {p.l, [} is SA since p € TestVar®';p € OVar(V); p & IVar(VE).

3. Ry = {j.o.c} is BILBO since j,o € TestVar®' such that o € OVar(Vy,),
j € IVar(VZ), and the operation of which o is the output (*5) and the
operation of which j is the input (x3) belong to different modules (M, and My,
respectively).

j. Rr = {e} is CBILBO since e € TestVar*' such that e € OVar(Vy,), e €
[Var(V}), and the operation of which e is the output (+1) and the operation
of which e is the input (+1) belong to the same module (My). Similarly Ry =
{i, b} is CBILBO because of variable i.

103

The test functionality of the registers with respect to each of the § modules is
summarized in Table 6.4. In Fig. 6.4(b) the paths used to transport test data are
shown highlighted. The functionality of the test registers derived above and the cor-
rectness of the BIST solution can be verified from Table 6.4.

Rq{1.0¢]

(b)

Figure 6.4: BIST Solution from TestVar"

For a given schedule and a module assignment, each T'estVar/(1 < 1,7 <)
gives a minimal intrusion BIST solution as defined in Remark 1. Depending upon

the register assignment chosen, the number of registers defined in 1), 2), 3) and 4)

104

Table 6.4: Test functions of BIST registers in Fig. 6.4(b)

Module | Test pattern generation | Test response

Left input | Right input | compression
M, Ry Iy R,
M, R Rz R
M. 3 Rﬁ Rl Rg
M, R R R+

of Statement 1 changes, thus changing the cost of the BIST solution. Assuming
complete flexibility in register assignment, the minimum number of registers of each
type could be found which would give a lower bound on the cost (area overhead)
of the BIST solution, lbg;sy(i,), corresponding to TestVar*/. The minimum of
the lower bounds over all TestVar'? (i = 1,2,...,l and j = 1,2,...,1) would give an

estimate on the optimum BIST solution, L Bgrsr(L), of the final data path.

Definition 33 Lef TestVar™ = Ty Sy B JCH where T, 5%, B* and C*
are all disjoint and defined as

)T ={v|ve IVar(V}), véOVar(Vf’;ﬂ“)},

2) §% = {v | v@IVar(V}), v € OVar(Vi)},

3) B ={v|velVar(V]), vE O‘v"ar(lf’f;u). v is not an operand and result of
operations belonging to the same module },

4) C ={v|velVar(V}), vE O'\”ar(‘.*’,{nu). v 18 an operand and result of

operations belonging to the same module }.

Theorem 12 Given a scheduled DFG and a module assignment, a lower bound on

the BIST area overhead of the BIST solution corresponding to TestVar'’ is given
by

Ibgrst(i,j) = ¢ - SC(C™) + 8- (SC(BY UCH) - SC(C))

+ ¢! (SC(B% U C™ U TH) — SC(BY U C))
+ 5 (SC(BWUCH U SH) — SC(B™ U CY)),

105

where ¢©,cB, ¢l and ¢ are costs of modification of a normal register to CBILBO,

BILBO, TPG and SA, respectively, and € > ¢ > ¢f + ¢°.

Proof: The storage concurrency of a set of variables gives the minimum number of
registers to which those variables can be assigned. According to Definition 33, ¢
is the set of variables that when assigned to a register, require the register to be
CBILBO for a correct BIST solution. Similarly B* is the set of variables that when
assigned to a register, require the register to have at least the BILBO functionality.
If two variables, b € B* and ¢ € C'*", were assigned to the same register, the register
would have to be CBILBO. (Note that, a CBILBO performs the functionality of a
BILBO as well).

The minimum number of CBILBOs required is therefore the minimum number of
registers that can store the variables in C'*7 which is given by SC(C*). Similarly the
minimum number of registers that can store the BILBO variables B*/ is SC(B™).
However, if a BILBO variable shares a register with a CBILBO variable. the register
would become a CBILBO. SC(B"UC") gives the minimum number of registers that
have to have at least the BILBO functionality. Since ¢ > ¢B, the minimum overhead
of these registers would result when a minimum number of the SC(B* U C*)
registers are CBILBOs and the rest are BILBOs. Hence the contribution of the
CBILBO component is ¢© - SC(C™) and that of the BILBO component is cZ -
(SC(BW U ™) — SC(C™)). (1)

Similarly, a register to which an input only variable (€ T") is assigned is re-
quired to have at least the test pattern generation capability, i.e. the register could
be TPG, BILBO or CBILBO. Some of the input only variables could share regis-
ters with the BILBO and CBILBO variables. Assuming assignment of BILBO and
CBILBO variables corresponding to (1), the minimum number of TPGs would be
(SC(B% U C™ U T™) - SC(BY UC™)). (2)

With an argument similar to the TPG case, the minimum number of SAs is
(SC (B U iy §) — SC(BY U CH)). (3)

If variables t € T"7 and s € S*7 were to share a register, the register would be

BILBO as per Remark 1. However, since ¢® > ¢! + ¢, this case does not correspond

106

to the minimum cost solution. So from (1), (2) and (3), we have the theorem for the

minimum cost of a BIST solution corresponding to T'estVar®i. o

Note that the relationship between the costs for the modification of registers to
test registers used in Theorem 12 is true for the cell library used in this work [52]. An
alternative library could be used such that a different relationship exists between the
costs. In that case, the principle behind the theorem can be easily applied to derive
a modified expression for the lower bound. The scheduling and module assignment
procedure, and all other concepts discussed in this chapter can be used without any

change.

Theorem 13 Given a scheduled DFG, a module assignment and £ = {V}} | Vﬁnu,
. Vi }, a lower bound on the area overhead of an optimum minimal intrusion

BIST solution is given by

LBgisr(L) = {l}izl}(ibslﬂ(i-,j))-

The lower bound on the optimum BIST area overhead can also be calculated
for a partial data path, corresponding to a partial schedule and module assignment
and the associated list of maximal independent operation sets. This is used as
Apgrst in every step of the scheduling procedure. Since all the operations are not
scheduled, the lifetimes of all the input and output variables of scheduled operations
is not known. The storage concurrencies required for computing the lower bound are
determined by the worst case lifetimes of the variables. These can be easily found

from the ASAP and ALAP values of the appropriate unscheduled operations.

6.3.2.2 Estimating BIST Cost, Agjsr

Consider the i** iteration of procedure Schedule_and_Assign (), when o; is being sched-
uled. Assume that up to this point in the scheduling and module assignment, out of
the My, M,, ..., M, modules available, & modules, M, through M} have been assigned
one or more operation and the other (m — & + 1) modules have not been assigned

any operation yet. A list of maximal independent operations L£;_; corresponding to

107

the £ modules exists after the (i — 1)** operation was scheduled and assigned. Let
T; = < CStepj, Mod_index; > be a possible control step and module assignment
for o; such that 1 < Mod_index; < k. If o; is assigned to Mfod_indez,, @ new list
of maximal independent operations, £ is created corresponding to the assignment
of o; to tuple T;. The new list E;f contains all the maximal independent operation
sets from L£;_;. But in addition, it also contains maximal independent operation
sets each containing o; and one operation each from rest of the (k —1) modules. Us-
ing Theorem 13, the lower bound on BIST area overhead for the partial data path
resulting from assignment of o; to tuple 7 can be computed as LBgst(L]). The
decrease in the lower bound. Agjsr = LBgist(Li_1) — LBBIST(Ef), is the BIST

cost of the assignment to tuple T}.

6.3.2.3 Estimating Multiplexer Cost, Aypx

Minimizing BIST resources for minimal intrusion BIST in a data path corresponds
to an increase in multiplexing area. Registers can be shared as test response com-
pressors only if they multiplex output data from different modules. If a module has
more than one input register connected to an input port, a multiplexer is required for
that port. When two modules share registers as test pattern generators, the number
of registers connected to an input port of each of the modules increases. Hence
reduction in the number of BIST resources (due to sharing), results in an increase
in multiplexers for a fixed number of modules. Estimating fotal multiplexer area at
the scheduling stage of high-level synthesis is difficult because the total number of
registers is not known. However, the number of test registers is known at this stage
according to the theory presented in this section. The change in the number of BIST
resources resulting {rom an assignment is also known. Hence the corresponding in-
crease in multiplexer area can be estimated. The estimated increase in multiplexer
cost has two components: 1) A’ | the increase in multiplexer cost at the input

muzx?

of registers (i.e. multiplexing of output variables), and 2) A™% the increase in

multiplexer cost at the input of modules (i.e. multiplexing of input variables).

108

At the i*" iteration of the scheduling procedure, A™ can be found from the
change in the number of test registers that compress the responses of modules re-
sulting from an assignment of o; to tuple T;. A decrease in the number of such test
registers implies that the same number of output variables (one from each module)
have to be multiplexed into a smaller number of registers. The corresponding in-
crease in multiplexer area in the worst case can be calculated from the available
library. For computing AZ%% corresponding to assignment of o; to tuple T}, only
module Mafod_indez, t0 Which o; is assigned needs to be considered. The input vari-
ables of Mafod_index, that are assigned to the shared test pattern generation registers
and the registers that hold the rest of its input variables are multiplexed onto the
input ports of Masod_inder, - If the numbers of these registers after the (i — 1)“" step
and after assignment of o; to 7} in the i** step are known, then A™°% can be com-

puted. The total increase in multiplexer area, Ay x, is computed as the sum of
Amod E!Jld Areg

mur mux”’

For every tuple T}, the cost of the tuple assignment is calculated as C'ost(T}) =
Aprst—Apux. A high value of this cost refers to a decrease in total area and is hence
preferred. The tuple corresponding to the highest cost is selected and operation o;
is appropriately assigned. If there is no tuple for which Cost(7;) > 0, then o; is
assigned to a module that is non-empty. If such a module is not available, then a
tuple T; is selected such C'ost(7}) is the highest (least negative). This assignment
corresponds to a scheduling move in the direction of a worse testability solution but
preserves the functional module requirement and hence keeps the functional area
within acceptable bounds. The scheduling and module assignment is followed by

register and interconnect assignment to synthesize the complete data path.

Example 7 In this ezample estimation of BIST cost in Phase 2 is described using
the unscheduled DFG in Fig. 6.5(a). The DFG requires 4 modules to implement
it - 2 multipliers M, and M,, one subtractor Ms; and one adder My. Operations
1, %q, %3, — and —y have a slack of 0 for a minimum latency schedule. Hence they
get scheduled in control steps 1, 1, 2, 3, and 4, respectively. Operations *, and *3
are assigned to multiplier M, and %, to multiplier M,. The unscheduled operation
*4 has a slack of 1 and is considered next. Assigning it to control step | would

require an additional multiplier, hence it is assigned to control step 2 and module

109

(b) (©)

Figure 6.5: Phase 2 - Detailed scheduling and module assignment

My (since =3 is already assigned to M,). The next unscheduled operation is *s and
that case is shown in Fig. 6.5(b). The possible tuples for 5 are T\ =<3, M; > and

Ty =<3, My>. The minimum storage concurrencies for the two tuples are

1
ma

Ty: minSC(IVar(Vi) =3; min;SC(OVar(V},,.)) =1,

Ty: min SC(IVar(Vi) =2; min;,SC(OVar(V})= L.

Tuple T, is preferable since it corresponds to a data path with a smaller requirement
of BIST resources. Hence =5 is assigned to control step 3 and module M,. Fig. 6.5(c)
shows the next scheduling step, that of scheduling operation +,. The operation can
be assigned only to the adder module My. However, there is a choice in terms of
the control step in which il can be scheduled. The possible tuples are Ty =<1, My>,
T =<2 . My>, Ts =<3, My> and Ty =<4, My>. Depending upon the tuple chosen
the lifetimes of the input and output variables of +, change which in turn affects the
BIST resources. The mintmum storage concurrencies for all the tuple are

Ty : min;SC(I[Var(V;

'8]
mazr

)) =2 min,SC(OVar(Vi) =2,

Ty: min;SC(IVar(V}) =4; min;SC(OVar(V},) = 4,
Ts: min;SC(IVar(V}) =4; min;SC(OVar(V},)) =4,

Ty: minySC(IVar(Vi) = 4; min;SC(OVar(V},) =4.

110

Table 6.5: Synthesis algorithms used in experiments

SYNTHESIS TYPE DESCRIPTION
TASK
Scheduling | Without Testability Traditional scheduling algorithms
SWT such as ASAP
For Testability Scheduling and module assignment
SFT algorithm proposed in this chapter
Assignment | Without Testability Traditional register and/or module
AWT assignment without BIST Consideration
For Testability Register assignment with
AFT BIST consideration (Chapter 5)

Hence tuple Ty is preferred and +, is scheduled in control step | and assigned
to .‘Jr.-;.

6.4 Experimental Results

The proposed scheduling and module assignment procedure has been integrated
into the Stanford CRC synthesis-for-test tool, TOPS [51]. To demonstrate the use
of the proposed scheduling technique in synthesizing data paths with low BIST
area overhead, experiments were conducted on the following benchmarks: 1) the
2nd order differential equation - Diffegn [61], 2) the auto regression filter element
- AR_filter [63]. 3) an S-point FIR filter - FIR_filter [73], and 4) the elliptic wave
filter - EW._filter [64]. Different synthesis flows were experimented on using two
scheduling techniques and two register assignment techniques shown in Table 6.5.
Using a combination of these techniques, the following three synthesis flows were

used to synthesize data paths.

o Flow I (SWT-AWT): This is traditional high-level synthesis without any BIST

consideration. A traditional scheduling technique is followed by traditional

assignment techniques. Neither of them consider optimization for testability.

a

o Flow II (SFT-AWT): This flow uses the scheduling and module assignment

technique proposed in this chapter, followed by a traditional register assign-
ment that is oblivious to BIST considerations. The data paths synthesized
using this flow demonstrate the effect of scheduling on savings in BIST over-

head, independent of optimization during register assignment phase.

e Flow III (SFT-AFT): This flow uses the scheduling and module assignment

technique presented in this chapter followed by a register assignment algorithm
that can make the best use of the schedule to further minimize BIST overhead

(from Chapter 5).

Tables 6.6, 6.8, 6.10 and 6.12 show the characteristics of the data paths synthe-
sized from Diffeqn, AR_filter, FIR_filter and EW_filter, respectively. The functional
module requirements used in Flow Il and Flow III that use the proposed SFT ap-
proach were derived from the requirements of Flow I. It can be seen from the results
that the latency and the total number of functional modules in all the three syn-
thesis flows is preserved for all the benchmarks. However, there is an increase in
the number of multiplexers as BIST considerations are incorporated into the various
stages of synthesis. In the case of EW_filter (Table 6.12), the SWT-AWT technique

results in more registers than the synthesis flows that incorporate testability.

The data paths synthesized by each synthesis flow were made self-testable using
the minimal intrusion BIST methodology described in Chapter 3. The 0-1 ILP model
was used to find a minimum area BIST solution for the data paths. Tables 6.7, 6.9,
6.11 and 6.13 compare the areas of synthesized data paths, both, before and after
making them self-testable. Components designed using a macro-cell library supplied
by LSI Logic Corp. were used for synthesis and the area is given in cell units [52].
[t can be observed that for all four benchmarks, the BIST area overhead, B in the
case of Flow II is less than that of Flow I and the BIST area overhead B for Flow
[1I is less than that for Flow II. This decrease in BIST area overhead is accompanied
by an increase in the area A of the original data paths (non self-testable versions).
In the results, the only exception to this is the EW._filter benchmark (Table 14), in
which case the area of the non self-testable version improves for Flow II and Flow

[II. The increase in the area of the non self-testable version in the other benchmarks

112

Table 6.6: Characteristics of data paths synthesized from Diffeqn

Synthesis | Latency | Registers Modules Muxes
Technique L Mult | Add | Sub | 2:1 | 3:1
SWT-AWT 4 3 3 1 1 6 :

SFT-AWT 4 3 3 1 1 8 3
SFT-AFT 4 5 3 1 1 9

Table 6.7: Area overhead comparison of Diffeqn

Synthesis || Area before | BIST % BIST Total % decrease
Technique BIST overhead | overhead area in total area
A B (BJA-100) | C = A+ B | w.rt. Clyp
SWT-AWT 5306 1552 29.25 6858 -
SFT-AWT 5306 1136 21.40 6442 5.50
SFT-AFT 5402 1008 18.66 6410 6.53

TCwr is the total area using SWT-AWT technique

Table 6.8: Characteristics of data paths synthesized from AR_filter

Synthesis | Latency | Registers | Modules Muxes
Technique L Add [Mult [2:1 | 3:1 | 4:1 | 5:1 [6:1
SWT-AWT 8 16 4 8 112 | 2 3
SFT-AWT 8 16 4 8 11 | 4 2 3 0
SFT-AFT 8 16 2 8 14 | 5 3 : 0
Table 6.9: Area overhead comparison of AR_filter
Synthesis || Area before | BIST % BIST Total % decrease
Technique BIS overhead | overhead area in total area
A B (BJA-100) | C = A+ B | wrt. Clyp
SWT-AWT 14496 2560 17.66 17056 -
SFT-AWT 14748 1792 12.15 16540 3.2
SFT-AFT 15137 1072 7.08 16209 5.

"Cyr is the total area using SWT-AWT technique

113

Table 6.10: Characteristics of data paths synthesized from FIR_filter

Synthesis | Latency | Registers | Modules Muxes

Technique L Add | Mult | 2:1 | 3:1 [4:1 | 5:1
SWT-AWT 5 8 4 4 6 | 1|0 |1
SFT-AWT 5 8 4 4 6 | 2|2 |1
SFT-AFT 5 8 4 4 71210 2

Table 6.11: Area overhead comparison of FIR_filter

Synthesis | Area before | BIST % BIST Total % decrease
Technique BIST overhead | overhead area in total area
A B (B/A-100) | C = A+ B | w.rt. Clyp
SWT-AWT 7363 3392 46.06 10755 -
SFT-AWT 3099 2592 32.00 10691 0.6
SFT-AFT 8110 2224 27.42 10334 4.0

fCwr is the total area using SWT-AWT technique

Table 6.12: Characteristics of data paths synthesized from EW._filter

Synthesis | Latency | Registers | Modules Muxes

Technique L Add | Mult | 2:1 | 3:1 [4:1 |51 [6:1]T:1
SWT-AWT 14 10 5 3 8 13 |2 |21 1
SFT-AWT 14 8 5 3 6 | 7|6 | 2 0

| SFT-AFT 14 8 5 3 5 | 6 | 7 1 110
Table 6.13: Area overhead comparison of EW._filter
Synthesis || Area before | BIST % BIST Total % decrease
Technique BIST overhead | overhead area in total area
A B (B/A-100) | C = A+ B | wrt. Clyp

SWT-AWT 10905 1776 16.28 12681 -
SFT-AWT 10608 736 6.94 11344 10.54
SFT-AFT 10661 736 6.90 11397 10.13

"Cyw is the total area using SWT-AWT technique

114

is due to the increase in the number of multiplexers. Even in the case of EW_filter
where A decreases, the multiplexer area increases as the BIST overhead decreases.
The total area of the self-testable data path, C' decreases from Flow [to Flow II
and from Flow II to Flow III. The last column in Tables 6.7, 6.9, 6.11 and 6.13
indicates the reduction in total area of the self-testable versions of the data paths
with respect to the self-testable version of the data path synthesized without any
BIST considerations (Flow I). It can be seen that in the case of Diffeqgn and EW_filter,
most of the reduction in total area comes from SFT and in the case of FIR_filter
most of it comes from AFT. In the case of the FIR_filter, SFT produces a schedule
that requires a register assignment algorithm capable of utilizing the testability
optimization potential of the schedule to synthesize a data path with low BIST area
overhead. The results indicate that the proposed scheduling and module assignment
technique give a reduction of 30-50% in BIST area overhead and up to 10% in total

area over traditional high-level synthesis techniques.

6.5 Summary

In this chapter we have shown how scheduling can affect the BIST area overhead
of a data path. For minimizing BIST area overhead, it is desirable to share BIST
resources across functional modules. We have shown how scheduling affects lifetimes
of variables and module assignment and thus influences BIST overhead. The prop-
erties of schedules and module assignments that influence BIST overhead have been
incorporated into a 2-phase scheduling technique. In Phase 1, coarse scheduling is
performed such that the latency and module requirement of the final data path is
not compromised. In Phase 2, detailed scheduling is done by assigning operations to
control steps and modules. The data paths synthesized by the proposed scheduling
technique, while having significantly lower BIST overhead, are competitive in terms
of performance and area of registers and functional modules with those synthesized
by traditional techniques. However, the savings in BIST area are at the expense of
increased multiplexer cost. The results indicate a reduction of up to 10% in overall

area of the BIST version of the synthesized data path.

115

Chapter 7

Computational Redundancy and BIST Resources

In the previous chapters we presented scheduling and assignment approaches that
reduce BIST resource cost of a data path. However, the degree of freedom that
can be exploited during scheduling and assignment to minimize BIST resources is
often limited by the data and control dependencies of a behavior. In this chapter we
propose transformation of a behavior by introducing redundant computations such
that the resulting data path is testable using few BIST resources. The transforma-
tion makes use of the spare capacity of modules to add redundancy that enables test
paths to be shared among the modules. A technique for identifying potential BIST
resource sharing problems in a behavior and resolving them by redundant compu-
tation is presented. Introduction of redundant computations is performed without

compromising the latency and functional resource requirement of the behavior.

7.1 Introduction

The degree of freedom available during scheduling and assignment for minimizing
BIST resources is often limited by the data and control dependencies of a behav-
jor. In such cases, alternate behavioral descriptions need to be explored. At the
logic level, it has been shown that introduction of redundancy can be beneficial for
certain testability objectives [74]. In this chapter we propose transformations that
introduce redundant computations in a behavior for achieving designs with a re-

duced number of BIST resources. The data flow graph (DFG) representation used

116

in behavioral synthesis has proved to be a suitable representation to perform all
kinds of optimizations. Transformations have been applied for optimization of a
great variety of goals, including area, performance, fault tolerance and partial scan
overhead [10],{11],[12].[13],[14]. We propose a semantic-preserving DFG transforma-
tion aimed at optimizing the cost of BIST resources required to make a synthesized
data path self-testable.

7.2 Redundancy in RTL Data Paths

7.2.1 Spare Capacity of Modules

Most synthesized data paths do not have 100% utilization of all modules during
a computation. Typically, most functional modules perform useful computation in
some clock cycles and are idle during other cycles. For example, consider the DFG
G shown in Fig. 7.1. Suppose that a data path is synthesized from this DFG that
executes in 3 clock cyvcles and the addition is performed by an adder module A, the
multiplication by a multiplier module M and the two subtraction operations by a
subtractor module S. Modules A and M perform computations only in clock cycle
1 and are idle during clock cycles 2 and 3. Module S is idle only in clock cycle 1
and computes in clock cycles 2 and 3. A and M are utilized 33% of the time and S
is utilized 66% of the time. By performing redundant computations in the modules
during the clock cycles they are not performing useful computations, sharing of paths

that carry test data can be increased.

Fig. 7.2(a) shows the state (busy or idle) of the read and write ports of the
various operations in DFG G of Fig. 7.1, assuming a minimum latency schedule.
The shaded boxes represent when the input ports (read ports) or the output ports
(write ports) are busy. Clearly the ports are idle some of the time. Also, note
that the read and write ports of the addition and multiplication operations are busy
at the same time. By introducing redundant reads and writes during idle times,
paths to operations can be created that can be shared for transporting test data.

For example, in Fig. 7.2(b), redundant read and write actions have been introduced

117

Figure 7.1: I-transformation

for the addition operation during idle time (shown hashed in the figure). Since
the redundant read of the addition occurs at a different time than the read of the
multiplication, the two reads can share hardware for the data transfer. The shared
hardware could be used to transport test data for both the operations. A redundant

write can similarly enhance sharing of test paths between the operations.

Definition 34 The percentage spare capacity of an operation type is defined as
the percentage of clock cycles during which the modules allocated for that operation

type do not perform useful computation.

[t can be seen from Table 7.1 that a significant amount of spare capacity is avail-
able in the well known benchmark algorithms [54]. The available spare capacity gives
a great deal of flexibility in introducing redundant computations to be performed

by modules with the goal of optimizing BIST resources.

118

Clock

Edge [+ | * |-
0-1
1-2 1-2
2-3 2-3
3-4 3-4
Read Data Write Data
(a)
f [T f [+ -
01 | | 0-1
1-2
= W
3-4
Read Data Write Data
(b)

Figure 7.2: Read and Write Cycles of Operations

7.2.2 Adding Redundant Computations in Data Flow

Many operations used in a behavioral specification have an identity value associated
with them. For example, a multiplication operation has an identity value of 1 and
addition operation has an identity value 0. If one of the operands of these operations
is equal to the identity value then the output of the operation is the same as the

other operand.
Definition 35 An identity mode DFG node (I-node) is a node whose operation

type has an identity value and one of its operands is set to a constant corresponding

to the identity value.

119

Table 7.1: Available spare capacity of benchmark algorithms

Algorithm || L || # Operations || # Modules || % Spare capacity

KN I N
Diffeqn 4 11216 2 1 (2| 1 | 50.0]25.0| 50.0
EW filter || 14 || 26 | 8 - 53| - || 56.7]84.6]| -
AR Afilter || 8 (|12 |16 | - 4 14| - | 62.5|50.0 -
FIR filter || 5 || 4 | 4 - 1 (4] - 0 |80.0] -

An I-node can be added between any two operations of a DFG without changing
the functionality of the DFG. Consider a DFG, G = (V. E). It can be transformed
into a DFG, G' = (V', E") by the following transformation.

Definition 36 (I-transformation) Introduce an I-node o} between any two oper-
ation nodes o; and o;, (0;,0;) € E. The node is introduced such that the output
(outgoing edge) of o; becomes one of the inputs (incoming edge) of of. and the out-
put (outgoing edge) of ol becomes the input (incoming edge) of 0;. The other input
(incoming edge) of ol corresponds to a constant, the identity value of the I-node

operation.

We denote the transformation as G =% G Fig. 7.1 shows a DFG G which is
transformed into the DFG G’ by the addition of an I-node (shown shaded in the
figure). A DFG has two pseudo-nodes (not shown in the figure) that correspond to
the primary inputs (source node) and primary outputs (sink node) of the data flow.
In the case of Fig. 7.1, the I-node is added between operation node —; and the sink
node. The variable input g of the I-node is the same as the output variable of —; and
a new variable g, is created that is the output of the new addition I-node. The value
of the variable g; in (&' is the same as variable g in (G. The concept of exploiting
identity modes of functional modules in synthesized data paths for transporting test
data was suggested in [75]. An I-node is an analogous concept at the behavioral level
with the distinction that the identity mode is used to move functional data without

changing it.

Theorem 14 The data flow graph G' obtained from G by an I-transformation is

Junctionally equivalent to G.

7.3 Effect of I-nodes on BIST Resources

We propose the use of I-transformations to modify DFGs which, when followed by
scheduling and hardware assignment, will lead to cost-effective BIST data paths.
The basic idea is to introduce redundant paths that can be used to 1) transport
test data, or 2) enable sharing of non-redundant paths in transporting test data.
Corresponding to 1) and 2), we have two types of I-transformations, Type 1 and

Type 2, respectively.

7.3.1 Type 1 I-transformation

(b)

Figure 7.3: DFGI1 and synthesized data path

The simple DFG shown in Fig. 7.3(a) illustrates the Type 1 I-transformation.
The minimum latency achievable for this DFG is 3. An adder, a multiplier and a sub-
tractor are required to implement the scheduled behavior. A data path synthesized

with the objective of minimizing BIST area overhead using assignment techniques

121

from Chapter 5 is shown in Fig. 7.3(b). The adder uses Ry and R, as input, and the
multiplier uses Rz and Ry. Thus the adder and multiplier cannot share any test pat-
tern generators. Also two distinct registers are required to compress the responses of
the multiplier and the adder, namely R, and R, respectively. The scheduling, mod-
ule assignment or register and interconnect assignment cannot improve the sharing
of test resources between the modules. The minimal intrusion BIST solution for the
data path involves modification of R; to CBILBO, R, to BILBO and R3; and R4
to TPGs for a BIST area overhead of 980 cell units (for a 16-bit data path using
library [52]).

L Lt L LT T PP T Y

(c)

Figure 7.4: Type 1 I-transformation of DFG1

122

Fig. 7.4(a) shows the same DFG with an I-node inserted. The I-node performs
a redundant addition in control step 3 when the allocated adder is idle. A data path
synthesized using this modified DFG is shown in Fig. 7.4(b) where the functionally
redundant path is shown highlighted. The redundant paths from 1) variable g to
the I-node, and 2) from the I-node to variable gy, make it possible for the adder
and multiplier to share BIST resources. Variables f (output variable of the mul-
tiplication operation) and g, (output variable of the addition operation created by
redundancy) can be assigned to the same register, K;, that can provide C function-
ality for both the modules. Similarly, input variables of multiplication and addition,
c and g, respectively, can be assigned to the same register, R, that can provide G
functionality for both the modules. As shown in Fig. 7.4(c), the redundant paths
created through the adder by the addition of I-node can be shared with other func-
tional paths through the multiplier, resulting in common BIST resources for the two
modules. The minimal intrusion BIST solution for the data path in Fig. 7.4(c) is Rs
is modified to CBILBO and R, and R4 to TPGs for a BIST area overhead of 724

cell units.

7.3.2 Type 2 I-transformation

(a) (b)

Figure 7.5: DFG2 and synthesized data path

123

In contrast to Type 1 transformation, Type 2 transformation creates redundant
paths that enable sharing of other non-redundant functional paths as test paths. In
this case the redundant path does not transport any test data. This is illustrated
on the DFG shown in Fig. 7.5(a). The minimum latency is 3 and the module
requirement is one adder, one multiplier and one subtractor. Fig. 7.5(b) shows a
data path synthesized from this DFG. It can be seen that it is possible to assign
registers such that the test response compression of the adder and multiplier can
be done by the same register, namely, ;. However, a distinct register is required
for G functionality for the right input port of the adder and multiplier, B, and Rs,
respectively. R; is modified to CBILBO and R,, R3 and R, to TPGs in the minimal
intrusion BIST solution and the overhead is 816 cell units. Fig. 7.6(a) shows the
same DFG modified using a multiplication I-node. The corresponding synthesized
data path is shown in Fig. 7.6(b) with the redundant path highlighted. The use of
the multiplier in the redundant path corresponds to the redundant multiplication
in control step 1. The addition of redundancy creates a data transfer to the right
input port of the multiplier. This enables the input variable of the multiplication,
¢z, and an input variable of the addition, b, to be assigned to the same register, Rs.
Ry can thus be shared as a G-resource between the adder and multiplier as shown
in Fig. 7.6(c). The minimal intrusion BIST solution modifies Ry as CBILBO and
R3 and R4 as TPGs for an area overhead of 720 cell units. Note that in this type of
transformation, the redundant path does not transport test data. It enables sharing

of test paths, thus reducing BIST area overhead.

7.4 Properties of I-transformation

The introduction of an I-node does not change the behavior. However, it does
change the structure and some properties of a DFG. It is essential to characterize
the effect of the I-transformation on the properties of the DFG to be able to apply

the transformation in an efficient and beneficial manner.

Definition 37 A critical path in a« DFG G = (V, E) is the longest path in the DFG.

124

(c)

Figure 7.6: Type 2 I-transformation of DFG2

Lemma 7 If the I-transformation is applied such that o). is introduced in a non-
critical path of the DFG, then the minimum latency for which the DFG can be

scheduled remains unchanged.

The length of the critical path is a lower bound on the achievable latency of a
DFG. Lemma 7 enables the introduction of I-nodes that do not effect the minimum
latency of the DFG. For optimizing BIST area overhead we have to maximize the
sharing of registers as BIST resources between different modules. The assignment
of variables to registers depends on the lifetimes of the variables. The lifetimes of

variables and hence the minimum number of registers required to implement a data

125

path is determined by the schedule of a DFG. For an unscheduled DFG G, the
minimum number of registers required for any schedule can be determined from cuts
of graph G, derived from G (refer Fig. 3.1). In the following discussion C'S;|C'S;11
denotes the control step boundary between the jth and (7 + 1)th control steps of a
scheduled DFG.

Definition 38 A feed-forward cut (S,7T) of DFG G,y = (V, E,s,1), ts a partition
of nodes in Gy into S and T such that s € S, t € T and any edge e € E between a
node v; € S and a node v; € T', if it exists, is directed from v; to v;. The number of

such edges e is called the size of the feed-forward cut and is denoted by size(S,T).

Lemma 8 Given a DFG Gy, for any schedule S;, the variables alive at any con-
trol step boundary C'S; | CSj1 correspond to a feed-forward cut (S,T) of Gy and

size(S,T) is the number of such variables.

Proof: Consider the C'S;|CS;41 control step boundary of schedule S; of G ;. Let S
be the set of operations in G scheduled in control steps 1 to C'S; and T be the set of
operations scheduled in control steps C'S;4+; to L. According to Definition 38, (S,T")
is a feed-forward cut and size(S,T) is the number of variables alive at C'S;|C Sj4;.
O

Lemma 9 An [-transformation increases the number of variables in the DFG by 1,
but the minimum number of registers required to store all the variables remains the

same.

Proof: Consider a DFG G,; which transforms to G, after an I-transformation.

Let of be the I-node replacing edge (o;,0;) in Gy,

Consider a feed-forward cut (S, 7") of G5, Depending on the partitions to which
0; and o; belong, the cut (S,T) of Gy is transformed into a feed-forward cut (5", 7")
of G',. There are three possible types of feed-forward cuts. (1) 0;,0; € 5, (2)
0;,0; € T, and (3) 0; € 5,0; € T.

1. 0;,0; € S: (Fig. 7.7(a)) Cut (S,T) of Gy, is transformed to cut (S',T") of G,
where S’ = SU{ol} and T’ = T Since 0;,0;, 0 € ', size(S",T") = size(S,T).

126

2. 0;,0; € T (Fig. 7.7(b)) size(S",T") = size(S,T) (similar to Type 1).

3. 0; € S,0; € T: (Fig. 7.7(c)) Cut (S,T) of G can be transformed to two cuts

depending on the partition to which o} belongs. If of € S, then the edge

(0:,0;) in cut (5,7 is replaced by edge (of,0;) in the transformed cut (5, 1").
Similarly, if ol € T, then the edge (0;,0;) in cut (S,T) is replaced by edge
(0;,0f) in the transformed cut (S',7"). Hence size(S',T') = size(S,T) for

both the transformed cuts.

If G has p,q and r feed-forward cuts of types 1, 2 and 3, respectively, they get
transformed into p, ¢ and 2-r feed-forward cuts in G ,. From Lemma 8, any schedule
of latency L of a DFG G, corresponds to a set of L feed-forward cuts of Gis;. From
the above discussion, it can be seen that after an I-transformation a schedule is still
possible such that a cut of type 1 in G, is replaced by a cut of type 1 in & ,, a cut
of type 2 in G, is replaced by a cut of type 2 in G, and a cut of type 3 in G is
replaced by any one cut of type 3 in 7 ,. Since the maximum size of a feed-forward
cut for a schedule is the minimum number of registers for that schedule, it remains
unchanged after the transformation. Since the argument is valid for any schedule of

(is,1, the lemma is proven. m)

Lemma 9 demonstrates that introduction of I-nodes is not harmful in terms of
storage resource requirement of a data path. The minimum storage requirement
(i.e. minimum number of registers required to implement the data path) before
and after any I-node transformation is the same. Thus we see that I-nodes can be
introduced such that the number of modules, number of registers and the latency
remains the same. However the transformation can have an adverse effect on the
interconnect complexity. A trade-off exists between reduction in BIST area overhead

and interconnect complexity.

Lemma 10 The number of multiplexer inputs at the input ports of a module to

which n; I-nodes have been assigned increases by at most ny + 1.

Proof: The n; I-nodes have 2 - n; operands out of which n; are constants equal to

the identity value of the module and n; are variables. The n; constant values can

127

(c) Type 3

Figure 7.7: Transformation of feed-forward cuts

be supplied to the same input port, resulting in one additional multiplexer input for
that port. The n; variable operands need to be supplied at the other input port
of the module. In the worst case, these variables cannot share registers with each
other or with the original operands of the module. In this worst case, ny new input
registers would be created for the input port, resulting in n; additional multiplexer
inputs. Hence a total of (n; + 1) additional multiplexer inputs are required in the

worst case. O

The increase in the number of multiplexers is due to the fact that one additional
operation (corresponding to the I-node) is assigned to a module and additional
operands need to be supplied to the module. However, one of the operands of the
I-node is a constant corresponding to the identity of the I-node operation. Taking
advantage of this fact, multiplexer area can be optimized. This can be achieved in

two ways.

1. Storing identity value in primary input register: The identity value of an I-

node corresponds to an extra multiplexer input at the input port of a module

to which the I-node is assigned. The identity value is required only during the

128

clock cycle in which the redundant computation is performed, hence a primary
input register that does not contain a valid value during that clock cycle can
be used to supply the identity value during that clock cycle. For example,
in Fig. 7.8(a), the primary input register Ry, does not have valid data during
clock cycle 3 as indicated by the utilization chart of the registers in Fig. 7.8(b)
(shaded boxes imply register has valid data). The identity value required for
the redundant operation in clock cycle 3 can be loaded from R,. Since Ry is
connected to the same input port as the identity value, the multiplexer at that

input port can be eliminated (Fig. 7.8(c)).

| S]

Logic optimization of multiplexers: Sometimes it is not possible to find a pri-

mary input register for storing the identity value. In such cases multiplexer
overhead can be reduced by logic optimization. For example, in Fig. 7.9(a),
the multiplexer input necessary to supply a 0 identity value can be replaced

by a simple AND gate as shown in Fig. 7.9(b).

7.5 Strategy for Introduction of I-nodes

The strategy for introduction of I-nodes involves two tasks, namely 1) identify pairs
of operations that will have a potential problem with sharing of BIST resources in
subsequent stages of synthesis; and 2) resolve the problem identified in Task 1 by

introducing an I-node.

7.5.1 Identifying BIST Resource Sharing Problem (Task 1)

A BIST resource sharing problem between a pair of modules arises out of the inability
to share registers by the input and output variables of pairs of operations assigned
to those modules. Hence, the task of identifying BIST resource sharing problems in
a DFG involves identification of pairs of operations that have 1) a high probability
of being assigned to different modules, and 2) a high probability of having disjoint
sets of BIST resources that cannot be shared. We identify pairs of operations that

get assigned to different modules with certainty.

R'l ={a,f,g1}
R, =(b,e,h}

| |Rs

R R3 ={c, g}
Ry =(d}

04 D D
Do 6 Do
/ TZO
~ 1-bit gate
[Zg
1-bit MUX

Figure 7.9: Logic optimization of extra MUX input

130

Lemma 11 A pair of operations o; and o; get assigned to different modules for all

minimum latency schedules and corresponding module assignments only if

L. | M(0:) |=| M(o;) |=1 and M(o;) = M(o;), or

2. type(o;) # type(o;).

If the operations are of different type then they will definitely get assigned to
different modules. If they are of the same type, then they will get assigned to dif-
ferent modules with certainty only if they are concurrent in all possible schedules.
We target only such pairs of operations for the following two reasons. Firstly, since
many parameters of the data path are not fixed at this point, it is eflicient to use
information that has a high degree of certainty. Secondly, from our experiments
we find that the process of introduction of I-nodes follows the law of diminishing
returns. As more I-nodes are added, the resulting savings in BIST area overhead
become marginal. Hence we target those pairs of operations that have a potential
problem with sharing of BIST resources to the highest degree and with the highest
certainty. The targeted pairs of operations are ranked based on the degree of diffi-
culty in sharing test resources. Since the schedule is not determined at this point,
the lifetimes of the variables are not known. Based on the probabilities of assign-
ing operations to a control step, a probabilistic estimate of the number of registers
for an unscheduled DFG can be derived. Let P, (CS) be the probability that o; is
scheduled in control step C'S. A simple way of computing this probability is given

in [76].

Lemma 12 The probability that edge (o0;,0;) crosses the CSy.|C Siy1 clock boundary
is

CSi ALAPj
Biagdl 0, 05, C185) = (> Pg,(C’S)) . (> POJ(C.S')).

CS=ASAP; CS=CS41

Proof: Given two operations o; and o;, where o; is a direct successor of o;, and given

a control step C'Si, the edge (0;,0;) crosses the boundary between control steps C'S

131

and CSgyy only if o; is scheduled in C'Sy or any clock step before that and o; is
scheduled in €Sy or any clock step after that. The probability that o; is scheduled
in C'Sy, or any clock step before that is given by the sum of the probabilities P,,(C'S)
for values of C'S from ASAP; to C'S. Similarly, the probability that o; is scheduled
in €' Sg41 or any clock step after that is given by the sum of the probabilities P, (C'S)
for values of C'S from CSy41 to ALAP;. O

If two or more edges coming from the same node (other than the source node)
cross a given control step boundary, only one register is needed. Since for a given
node o; and control step C'Sk, there can exist more than one edge from o; crossing

the boundary C'Sj, and CSj41, we consider the maximum probability,

m“"‘"(o,-,CSk) = max Pedge(Of,Oj,CSk).

d
= Yo,.(01,0;)€E

For a given control step C'Sk, the sum of probabilities of edges coming from
different nodes that cross the boundary represents the estimated number of registers
needed for this boundary. And the maximum of this value over all the control step

boundaries is the estimated number of registers for DFG G,

R(G) = max {Z ;35;'"(@ C.S'k)} .

h

The degree of difficulty of sharing of test resources for a pair of operations is
proportional to the number of registers required for the input and output variables
of the pair of operations. The register estimation technique mentioned above is used
on a subgraph of the DFG subtended by the input and output variables of the pair

of operations under consideration.

Definition 39 A neighborhood graph N/ = (Vy, Ex) corresponding to a pair of
operations o; and o; in DFG G is a subgraph of G' such that Exy = {e | € corresponds
to an input or an outpul variable of o; or 0;} and Vi = {ox | o is an operation that

consumes or defines a variable in Ex}.

132

The subgraph N%J contains only the edges corresponding to the input and out-
put variables of o; and o; and the operations that determine the lifetimes of these
variables. For an operation o, in N*/, ASAP, and ALAP;, are the same as in the
original DFG. Hence, the register estimate on subgraph N, R(N%), is an esti-
mate of the number of registers required to supply test patterns and compress test
responses to the pair of modules to which the pair of operations is assigned. A
pair of operations with the highest degree of difficulty, (largest value of R(N™)) is

targeted as the BIST resource sharing bottleneck to be solved in Task 2.

- =
e
@
R(N*™)=2 R(N**)=4
(a) PAIR 1 (b) PAIR 2

Figure 7.10: Finding sharing bottlenecks

Example 8 In Fig. 7.10, two pairs of operations are considered for determining the
degree of difficulty of sharing BIST resources. In Fig. 7.10(a), the register estimate
of the neighborhood graph of operations + and —, is the expected number of registers
required to store the input and oulput variables of operations + and —, namely,
a,be, f and g. Fig. 7.10(b) shows the register estimate of the neighborhood graph
of another pair of operations, namely, + and *. Since the register estimate in (b)
is greater than the register estimate in (a), the adder and multiplier has a greater
degree of difficulty in sharing BIST resources. Hence pair 2 is chosen as the problem

pair in Task 1.

133

7.5.2 Choosing an I-node (Task 2)

The second task of choosing an I-node to resolve the problem identified in Task 1 has
two parameters: 1) the operation type of the I-node, e.g. addition or multiplication,
and 2) the position of the I-node in the DFG. As shown in section 4, the introduction
of an I-node anywhere in the DFG preserves its functionality but changes some of
the properties of the original DFG and affects the synthesized data path in different
ways. To ensure that I-nodes are introduced in a manner that is beneficial for
BIST but not harmful in terms of functional constraints, the introduction of an
I-node should satisfy the following criteria: 1) not violate timing constraints; 2)
not violate resource constraints; 3) not limit scheduling mobility; 4) maximize re-
usage of interconnect to keep interconnect complexity low; and 5) optimize BIST
area overhead. Criteria 1 and 2 are strict in the sense that I-nodes that violate
them are not allowed. Criteria 3 and 4 are desirable and I-nodes with least impact
on scheduling mobility and interconnect complexity are preferred. From the I-nodes
that qualify for the first four criteria, an I-node with the highest impact on the BIST
resource sharing problem is selected. The impact of an I-node on BIST resources is

quantified using the probabilistic register estimate used in Task 1.

Criterion 1 can be satisfied by ensuring that I-nodes are introduced on non-
critical paths (Lemma 7). Efficient techniques for computing resource requirements
for a DFG are available [16]. Using these techniques the change in functional resource
requirement due to the presence of an I-node can be determined. This information
can be used to avoid I-nodes that violate criterion 2. The scheduling mobility in
criterion 3 is the degree of freedom available in scheduling operations in a DFG in

different control steps.

Definition 40 The scheduling mobility, SM(G) of a DFG G = (V, E), is the
sum of the slack of all operations in the DFG. SM(G) = ¥,,ev slack(o;).

Introduction of an I-node can change the ASAP and ALAP values of some of
the operations. The effect of introducing an I-node on the scheduling mobility of
a DFG G is denoted by ASM = SM(G) — SM(G"). Note that only the slack of

operations in the original DFG G is included in SM(G'), i.e. none of the I-nodes are

134

considered. Criterion 3 is satisfied by selecting an I-node with the smallest ASM.
The scheduling mobility is also used to determine whether more I-nodes should be
added to a DFG. I-nodes are introduced only while the scheduling mobility remains
over a certain predetermined threshold. If the scheduling mobility drops below the

threshold, no more transformations are performed.

The process of choosing an I-node of for solving the BIST resource sharing
problem of pair {o;,0;} proceeds as follows. Based on criteria 1 and 2, the set
of all possible I-nodes is pruned to a few choices. Criteria 3 is used to determine
a preference order among the choices of I-nodes with I-nodes with the smallest
ASM having the highest preference. Associated with every candidate of is a tuple
T =< type(o}), edge(ol) >. type(ol) is the same type as o; or o;. edge(of) is
the edge in the DFG that is replaced by the redundant operation. To evaluate the
tuples with respect to their effect on improving the BIST resource sharing potential
of the pair of operations, a cost function C'ost(T}) is associated with each tuple. To
compute Cost(Ty), the register estimates are computed for the neighborhood graphs
of the I-node candidate paired with o; and with o;. When type(o;) # type(o;),
the register estimate of the neighborhood graph of I-node (of) and the operation
which is not the same type as type(of) is considered. When type(o;) = type(o;) =
type(ol), neighborhood graphs of both pairs {o;, 0l } and {0}, 0f} are considered and
the mazimum of the register estimates is considered. The cost of T} is now defined

as,

R(N™) if type(of) = type(o;)(# type(oi))
Cost(Ty) = § R(N¥) if type(of) = type(o:)(# type(o;))
max{R(N"*), R(N?*)} otherwise.

The register estimate indicates the extent to which the introduction of of will
solve the BIST resource sharing problem of pair {o;,0;}. The lower the value of the
register estimate on a neighborhood graph with the I-node, the greater the impact
of the [-node in sharing of BIST resources. Hence, from the I-node candidates with
the least impact on scheduling mobility, an I-node of with the lowest Cost(T}) is

selected for insertion.

. i 01
ANt *1)=3 R(N*™1)=2

(a) I-NODE 1 (b) I-NODE 2

Figure 7.11: Choosing an I-node

Example 9 Fig. 7.11 shows two possible I-node choices for solving the pair targeted
in Task 1 (Fig. 7.10(b)). Since the types of operations in the pair are different we
consider only one neighborhood graph for each I-node. For the multiplication I-node
in Fig. 7.11(a), the register estimate is 3 and for the addition I-node in Fig. 7.11(b),
the register estimate is 2. This implies that the addition I-node increases BIST
resource sharing of the adder and multiplier to a greater extent since then number
of registers estimated for BIST resources is smaller than the multiplication I-node.

Hence the I-node in Fig. 7.11(b) is chosen for insertion.

7.6 Experimental Results

The I-node transformation was performed on some example DFGs. ez is the example
from Fig. 7.1 and Diffeqn, Tsengand AR._filter are benchmarks from [54]. Some of the
characteristics of these DFGs are shown in Table 7.2. Number of operation types is
the distinct types of operations used in the DFG such as addition and multiplication.

Scheduling mobility per operation is the slack of all operations averaged over the

136

number of operations in the DFG. This number is an indicator of the flexibility
available in scheduling, a higher number indicating more flexibility. All DFGs were
analyzed for BIST resource sharing problems and the DFGs were transformed by
introducing I-nodes. TOPS [51], a synthesis-for-test tool was used to synthesize
data paths from the original and transformed DFGs which were then made self-
testable using minimal intrusion BIST. Components designed using a macro-cell
library supplied by LSI Logic Corp. were used for synthesis and the area numbers

in the tables are given in cell units [52].

The DFG ez was used to study the effect of introducing I-nodes incrementally. ex
has a minimum module requirement of one adder, one multiplier and one subtractor.
In Table 7.3, ex-0 is the original DFG and the rest are transformed versions using
redundant operations. The number and type of redundant operations are shown in
the column labeled I-nodes. Table 7.4 shows the actual areas of the data paths before
and after they were made self-testable. The bottom half of the table represents, the
same data paths but with multiplexer optimization as described in an earlier section.
It can be seen that introduction of one addition I-node in ez-1 results in a significant
reduction in BIST area overhead and also total area. However, adding one more
redundant addition in ex-2 does not give any significant improvement over ez-1. In
ex-3, more redundant operations are added which result in a very large reduction in
BIST area overhead. However, the multiplexer complexity goes up and the savings in
total area are not as significant. The experiments on ez indicate that introduction of
I-nodes follows the law of diminishing returns. Also, as more I-nodes are introduced,

multiplexer complexity becomes an overriding factor.

Tables 7.5 and 7.6 show similar data for the Diffeqgn benchmark. Version Diffeqn-
1 has one redundant addition and one multiplication as compared to Diffeqn-0. The
savings of about 6% in area are achieved at the expense of about 22% reduction
in the scheduling mobility of the DFG. The data for the Tseng DFG is shown in
Tables 7.7 and 7.8. For the AR_filter (Tables 7.9 and 7.10), after adding 6 redundant
computations, the BIST area overhead is reduced significantly (from 16% to 8%)
sacrificing 60% of the scheduling mobility. However only about 2% saving in total
area is achieved after multiplexer optimization. From Table 7.2, it can be seen

that the AR_filter has a relatively higher scheduling mobility per operation and

137

Table 7.2: Comparisons of benchmark DFGs

DFG Number | Scheduling | Number of
of Mobility per | Operation
Operations | Operation Types
ex 4 0 3
Diffeqn 10 0.20 3
Tseng 7 0]
AR_filter 28 0.36 2

Table 7.3: Characteristics of data paths synthesized from ez

DFG | L | #Reg | #Mod #Mux I-nodes | Scheduling
Version # |+ - [21 [3:1]41 Mobility
ea-0) 3 4 1j1|11{6 | 01]0 - 100
ea-1 3 4 L{1|11}5]121]0 I 100
ex-2 3 4 Lj{1(1{5]13 1|0 2+ 100
ex-3 1 4 L1 1] 4] 4] 124,24 100

Table 7.4: Area comparisons of data paths synthesized from DFG ex

DFG || Area before | BIST % BIST Total % decrease

Version BIST overhead | overhead area in total area
A B (BJA-100) |C=A+B| w.rt. Cd

ex-0 6312 2272 25.01 9084 -

ex-1 7260 1088 13.03 8348 8.10

ex-2 7580 768 9.20 8348 8.10

ex-3 8188 576 6.57 8764 8.58

same data with multiplexer optimization

ex-0 6312 2272 25.01 9084 -

ex-1 T228 1088 13.08 8316 8.46

ex-2 7324 768 9.49 8092 10.92

ex-3 7900 576 6.80 8476 6.70

tCy is the total area of Version ex-0

138

Table 7.5: Characteristics of data paths synthesized from Diffeqn

DFG L | #Reg | #Mod #Mux I-nodes | Scheduling
Version # | 4| -[2:1[3:1]4:1 |51 Mobility
Diffeqn-0 || 4 6 3| 1(|1] 5 2 11 . 100
Diffeqn-1 || 4 6 3| 1110 1 0 | 14,1% 77.78

S B S

Table 7.6: Area comparisons of data paths synthesized from DFG Diffeqn

DFG Area before | BIST % BIST Total % decrease
Version BIST overhead | overhead area in total area
A B (B/A-100) |C=A+B| wurt. Cf
Diffeqn-0 6033 1072 15.09 7105 -
Diffeqn-1 5916 736 11.06 6652 6.38
same data with multiplexer optimization
Diffeqn-0 6033 1072 15.09 7105 -
Diffeqn-1 5900 736 11.09 6636 6.61

fCy is the total area of Version Diffeqn-0

Table 7.7: Characteristics of data paths synthesized from Tseng

DFG L | #Reg #Mod #Mux I-nodes | Scheduling
Version « [+ [-[A]V][21]3:1]41 Mobility
Tseng-0 || 4 4 1{ 2T 1f1]| 3 2 - 100
Tseng-1 || 4 4 121011 2 [2 1 1+ 100

Table 7.8: Area comparisons of data paths synthesized from DFG Tseng

DFG Area before | BIST % BIST Total % decrease

Version BIST overhead | overhead area in total area
A B (BJA-100) |C=A+B| wrt. Cf
Tseng-0 4078 1296 24.12 5374 -
Tseng-1 4094 1024 20.01 5118 4.76
same data with multiplexer optimization

T'seng-0 4078 1296 24.12 5374 -
Tseng-1 3998 1024 25.62 5022 6.56

tCy is the total area of Version Tseng-0

139

Table 7.9: Characteristics of data paths synthesized from AR_filter

DFG L | #Reg | #Mod #Mux I-nodes | Scheduling

Version "] + | 2:1]3:1]4:1]6:1 Mobility
AR filter-0 | 8 | 16 [8]| 4 [11 | 0 | 4 | 2 - 100
AR filter-1 || 8| 16 [8] 4 |25 | 4 | 2 | 2 | 24,4 40.00

Table 7.10: Area comparisons of data paths synthesized from DFG AR_filter

DFG Area before | BIST % BIST Total % decrease
Version BIST overhead | overhead area in total area
A B (BJA-100) |C=A+B| wurt. C
AR_filter-0 14000 2656 15.95 16656 -
AR_filter-1 15504 1440 8.50 16944 -1.73
same data with multiplexer optimization
AR_filter-0 14000 2656 15.95 16656 :
AR_filter-1 14928 1440 9.65 16368 1.73
tCy is the total area of Version AR_filter-0
Table 7.11: BIST resources for synthesized data paths
Data Path || # Registers BIST Resources
CBILBO | # BILBO | # TPG | # SA
ex-0 4 1 1 2 0
ex-1 4 0 1 2 1
er-2 4 0 0 2 2
er-3 4 0 0 2 1
Diffeqn-0 6 I 1 2 |
Diffeqn-1 6 0 1 3 2
Tseng-0 4 1 3 0 0
Tseng-1 4 0 4 0 0
AR_filter-0 16 0 7 8 1
AR_filter-1 16 0 3 3 2

140

hence there is not much scope for BIST resource optimization by transforming the

behavior.

Tables 7.4, 7.6, 7.8 and 7.10 show the actual BIST area overhead of various
data paths. Table 7.11 shows the number of different types of BIST resources in
the minimal intrusion BIST solutions of all the synthesized data paths. The cost
of the four different types of resources varies significantly (refer Table 3.1). From
Table 7.11 it can be seen that significant reduction in BIST area overhead is achieved
even if the number of cheaper resources (such as TPG and SA) increases because

the number of more expensive resources (such as CBILBO) is decreased.

The experimental results indicate that a few well-chosen I-nodes can reduce
BIST resources significantly. Introduction of I-nodes follows law of diminishing
returns - as more I-nodes are introduced, the savings gained in BIST area over-
head by each introduction decrease significantly as indicated by Table 7.4. The
[-transformation is especially useful where scheduling or assignment does not have
sufficient degree of freedom. From Table 7.2 it can be seen that ex, Diffeqn and
Tseng have a small degree of freedom in scheduling and assignment and hence the
[-transformation is very efficient in these cases in terms of BIST area overhead. In

terms of number of BIST resources, the AR_filter also shows a significant reduction.

7.7 Summary

We have demonstrated how the spare resource capacity available in DFGs can be
exploited for reducing BIST resources. A transformation that utilizes the spare
resource capacity in a behavior and introduces redundant computations has been
described. A technique based on identifying potential testability problems and re-
solving them by adding I-nodes has been presented. Experimental results demon-
strate that very few well-placed I-nodes can significantly reduce the BIST resource
requirements of a data path. The transformation is especially useful in cases where
there is not enough freedom in the subsequent scheduling and assignment stages to

optimize for BIST resources.

141

Chapter 8

Conclusions

High-level synthesis encompasses a variety of synthesis tasks, such as behavioral
transformations, scheduling, allocation and assignment, each of which has the po-
tential to influence a number of design parameters such as area, power and speed.
Testability of a design has traditionally been addressed after the design has been
synthesized to the logic level, and in recent years, to the RT-level. A need to con-
sider testability during high-level synthesis has clearly been established. It is also
widely recognized that testability of a circuits is dependent on the testing method-
ology adapted. The main contribution of this dissertation is addressing testability
during high-level synthesis, while the RTL structure is being designed, for a built-in
self-test (BIST) methodology of testing digital circuits. In this chapter we present a
summary of the contributions made in this thesis, and discuss some open problems
that might stimulate further research. As per the organization of this dissertation,
we will discuss the RTL BIST methodology, BIST resource estimation and the three

sub-tasks of high-level synthesis individually.

8.1 BIST at RT-level

BIST is a favored test methodology in that it provides support for a broad set of fault
models, is conducive to field test, requires short test development and application
time and results in a reduced need for expensive automatic test equipment. Two

main issues in a BIST methodology are the quality of test measured in terms of

142

fault coverage, and the area overhead incurred in modifying a design to perform
BIST functions. The accepted fault models are defined at the gate-level and hence
identification of testability-determining circuit properties that are independent of
gate level specifics is the main challenge in considering testability during high-level
synthesis. Good fault coverage of a module under test using BIST can be ensured
by a gate-level implementation of the module that is easily testable using random
patterns and appropriate design of BIST registers. What can be ensured at the
RT-level for good fault coverage is the existence of BIST registers in a design such
that each module can be supplied with uncorrelated pseudo-random patterns at its
input ports, and the test responses of each module can be gathered from the output
ports and compressed into signatures. Also it is desirable to ensure a very low cost
of implementation, which at the RT-level translates to minimizing the number of

BIST registers required to ensure the high quality of test.

Taking advantage of the nature of RTL data paths, we proposed a test method-
ology that is a combination of BIST for the hard-to-test modules in a data path and
use of functional patterns for the remaining portions. Based on the combinations
of test functionalities required, the BIST methodology uses four types of BIST re-
sources with varying costs. A minimal intrusion BIST methodology was described
such that each module gets tested with pseudo-random patterns of high quality with
minimal area impact on the whole data path. A 0-1 ILP was formulated for deter-
mining which registers to modify to BIST registers and to which type, such that
the BIST area overhead of a RTL data path is minimum. Testing of the functional
modules using minimal intrusion BIST and the rest of the data path using functional
test patterns assures a high quality of test for the complete data path at very low

cost.

8.2 BIST during High-level Synthesis

By considering optimization of BIST resources during high-level synthesis two ob-
jectives are achieved: 1) data paths with lower BIST area overhead and total area

are synthesized as indicated by experimental results in the dissertation, and 2) the

143

design cycle time is reduced because iterations due to violation of area constraint
after BIST insertion are no longer necessary. One of the most significant aspects of
the thesis is categorizing components of a behavior depending on their implication
on testability and identifying properties of each synthesis sub-task that affect these
components. Variables in a behavior are potential BIST resources and contribute
to BIST area overhead directly. Operations in a behavior are correlated to modules
which form the logic under test. Data transfers between variables and operations
correspond to interconnection paths that are potential test paths. Previous research
that addressed BIST area overhead did not make this distinction in searching the
design space. In this thesis, we have shown the importance of this categorization
in determining the contribution of each synthesis sub-task to minimizing BIST re-
sources. Depending on the actual behavior, the degree of BIST resource optimization
in a specific domain varies. Some behaviors lend themselves easily to BIST resource
optimization in the assignment domain, some in the scheduling domain, while others
require transformation of the behavior. Together, these techniques provide an effi-
cient way of cutting down design cycle time and minimizing BIST resource overhead

and total area of synthesized data paths.

8.2.1 Estimation of BIST Resources

Estimation plays a central role in a synthesis environment. The ability to estimate
design parameters during synthesis enables 1) efficient exploration of the design
space, and 2) different synthesis approaches and algorithms to be compared on a
common basis. Estimation of functional resources among other functional design
parameters has been well studied in the past. This thesis is the first one to address
estimation of fest resources. We have developed a theory for estimation of lower
bounds on the number of BIST resources required to test a data path. The concepts
of storage concurrency and maximal independent module sets have been developed.
Storage concurrency relates to variables that contribute to potential BIST resources
and maximal independent operation set relates to the modules under test. These

two basic concepts are the underlying theme in the thesis. The lower bounds can be

144

computed for a schedule and a module assignment or even partial module assign-
ments and partial register assignments. Efficient algorithms for computing the lower

bounds have been designed.

8.2.2 Register and Interconnect Assignment

The hardware assignment task in high-level synthesis comprises three subtasks: 1)
assignment of operations to functional modules (module assignment), 2) assignment
of variables to registers (register assignment), and 3) assignment of data transfers to
interconnect and appropriate ports of functional modules (interconnect assignment).
Register and interconnect assignment affect BIST resources directly in that the ob-
jective of these tasks synthesizes the BIST resources and the test paths. Module
assignment, on the other hand, affects BIST resources indirectly by synthesizing a
configuration of modules, from the numerous possibilities, that will require few BIST
resources. Hence we separate the assignment tasks and consider register and inter-
connect assignment together, while module assignment is performed simultaneously

with scheduling.

All variables in a behavior are treated in a homogeneous manner by traditional
assignment techniques since all of them are assumed to contribute to storage of
only functional data. We have developed a classification of variables into different
types of test variables with the objective of keeping track of how registers acquire
BIST functionalities as different variables are assigned to them. The classification
is based on the relation of variables to inputs and outputs of modules. We have
identified two properties of data paths that contribute to reduction of BIST area
and are influenced by register and interconnect assignment: 1) large number of
registers that share BIST functions of different modules, and 2) low number of
expensive BIST registers (CBILBO) that are essential to test any module. Previous
work in assignment made simplistic assumptions for requirement of CBILBO in
data paths, such as the presence of self-adjacent registers. We have identified exact
assignment conditions that identify structures that require CBILBOs. A register
assignment algorithm based on a greedy optimal algorithm has been developed. The

effect of interconnect assignment on these two properties has been integrated into an

145

interconnect assignment algorithm. Experimental results show that our assignment
technique, assigns a minimum number of registers, assigns them in such a way that

all modules can be tested with a low BIST area overhead.

8.2.3 Scheduling and Module Assignment

In Chapter 4 we showed that a module assignment with a maximal independent
operation set that has very low input and output storage concurrency would require
very few BIST resources. In register and interconnect assignment, the key concept
used was storage concurrency of some specific sets of variables. The key concept
considered during module assignment is mutually independent operations. Module
assignment is tightly coupled with scheduling. This, along with the fact that mod-
ule assignment is inherently different than register and interconnect assignment for
BIST resource minimization, makes our proposed combined scheduling and module
assignment approach very effective. We have demonstrated how scheduling affects
BIST resources in two ways: 1) it determines lifetimes of variables and hence affects
the register assignment solution space; and 2) it determines temporal sequence of op-
erations and hence affects module assignment solution space. A 2-phase scheduling
technique was developed that synthesizes schedules that are BIST resource-efficient
or are such that they are amenable to register assignment to minimize BIST re-
sources. In previous research the scheduling stage of synthesis was not investigated
for reducing testability area overhead. We have shown that BIST resource opti-
mization of some benchmarks is done most effectively during the scheduling stage
of synthesis, while others lend themselves to BIST resource optimization during

assignment.

8.2.4 Redundancy and BIST Resources

The degree of freedom that can be exploited during scheduling and assignment to
minimize BIST resources can be limited in some behaviors. In Chapter 7 we have

identified a property, namely, redundancy of operations in a behavior that can be

146

exploited in some cases to reduce BIST resources. We have proposed a transforma-
tion technique that introduces redundant computations in a behavior in such a way
that the synthesized data path is testable using few BIST resources. We introduced
the concept of an Identily-node and a transformation called I-transformation that
makes use of the spare capacity of modules to add redundancy that enables test paths
to be shared among the modules. As we move to higher levels of abstraction, the
number of design options increase exponentially and it is critical to identify those
characteristics of a behavior that impact testability the most. Using probabilistic
estimates we can find “bottlenecks” in a behavior that hinder sharing of BIST re-
sources. A technique for identifying such bottlenecks in a behavior and resolving
them by introducing redundant computation was developed. Introduction of redun-
dant computations is performed without compromising the latency and functional
resource requirement of the behavior. Transformation of a behavior has been studied
for objectives such as latency, functional area, fault tolerance, power, test generation
complexity and partial scan overhead. In this thesis we have addressed the objective
of BIST area overhead via transformations. Experimental results show that the I-
transformation is effective in reducing BIST resources, especially in behaviors where

the degree of freedom in scheduling and assignment is very limited.

8.3 Future Work and Extensions

This thesis has addressed BIST resource considerations during all stages of high-level
level synthesis. The scope for future work extends along the two dimensions of this

work, namely, high-level synthesis and testability.

8.3.1 High-level Synthesis

The synthesis model used in this work assumes single-cycle operations, individual
register storage and point-to-point multiplexer connectivity. The model can be ex-
tended to include multi-cycle and chained operations. In the multi-cycling model,
a single operation can be performed over multiple control steps and in the chaining

model, multiple operations can be chained in one control step. The basic concepts

147

of this thesis can be used for these models of operation execution. In the case
of multi-cycling, the same register and interconnect assignment techniques can be
used, but the scheduling and module assignment would necessitate modifications.
For chained operations, the register and interconnect assignment also would be af-
fected since some variables are not required to be stored in registers. In the case of
multi-cycling, the test control circuitry has to be modified to ensure that the gener-
ation of test patterns and collection of test responses for the multi-cycle operations
is performed with the correct period for the clocks feeding the BIST registers in the

test mode.

The storage model can be extended to the register file model, in which registers
are grouped into files that can be accessed through single (or multiple) read and
write ports. For a single port register file, only one register from a group of registers
assigned to the register file can be accessed. This adds the constraint that registers
that are selected to generate test patterns for each input port and a register that
is selected to compress test responses of a module have to reside in distinct register
files. In the case of multiple port register files, this constraint does not exist if the
number of ports of a register file is equal to or greater than the maximum number

of ports of a module in the data path.

An alternative connectivity model used in high-level synthesis is a bus-based
model. It has its advantages and disadvantages. A bus-based model increases global
interconnect area, but also increases sharing of interconnection paths between mod-
ules and registers. Complex arbitration circuitry and tri-state drivers are required
for the proper functioning of buses. Usually, based on the parallelism desired, mul-
tiple buses are used in a data path. In such a case, the problem of sharing of BIST
resources between modules translates to a problem of sharing of buses between dif-
ferent modules because the registers connected to the shared buses can be shared as

BIST resources between modules.

8.3.2 Testability

With regards to the BIST methodology that we have chosen, there are two issues

that need to be addressed in future work. The choice of BIST resources affects

148

the test application time and the test control complexity. If two modules share
G-resources they can receive test stimulus concurrently. However, if they share a
C-resource they cannot compress test responses concurrently because the test paths
are exclusive paths through a multiplexer. Hence sharing of C-resources decreases
test concurrency and increases test application time. The trade-off between BIST
resource sharing and test application time needs to be studied. In this work we
have focussed on data path synthesis. Considerations of BIST during data path
synthesis affect functional control as well as test control complexity. Functional
control synthesis has been well characterized in past research. However, effect of

synthesis on test control complexity needs to be studied.

The BIST model for RTL data paths can be extended to include the concept
of I-paths through functional modules [75]. In this thesis test paths from registers
to modules and from modules to registers through only multiplexers are considered.
Most functional modules in RTL data paths have an identity mode in which patterns
at one input port can be transported to the output port without any change if the
other input port is held at the identity value of the module. Such test paths can
enrich the BIST solution space and reduce BIST resources further though at the

expense of test control complexity.

This thesis has demonstrated the importance of considering BIST during high-
level synthesis. With regards to high-level synthesis for testability in general, several

other testability criteria and test methodologies remain a rich area to be explored.

149

Reference List

[1] The National Technology Roadmap for Semiconductors. Technical Report,
Semiconductor Industry Association (SIA), San Jose, California, December

1997.

2] V.D. Agrawal and S.C Seth. Test Generation for VLSI Chips. IEEE Computer
Society Press, 1988.

[3] T.W.Williams and K.P. Parker. Design for Testability - A Survey. In Proc. of
the IEEE, pages 98-112, January 1983.

[4] R. Gupta, R. Gupta, and M.A. Breuer. The BALLAST Methodology for Struc-
tured Partial Scan Design. IEEE Trans. on Computers, 39(4):538-544, April
1990.

[5] K-T. Cheng and V.D. Agrawal. A Partial Scan Method for Sequential Circuits
with Feedback. IEEE Trans. on Computers, 39(4):544-548, April 1990.

[6] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and
Testable Design. IEEE Press, 1990.

[7] E.J. McCluskey. Built-in Self-test Techniques. IEEE Design and Test of Com-
puters, pages 21-28, 1985.

[8] K.M. Kavi and B.P. Buckles. A Formal Definition of Data Flow Graph Models.
IEEE Trans. on Computers, 35(11):940-948, November 1936.

[9] A.V. Aho, R. Sethi, and J.D. Ullman. Compiler Principles, Techniques and
Tools. Addison-Wesley Publishing Company, 1986.

(10] A.P. Chandrakasan, M. Potkonjak, J. Rabaey R. Mehra, and R. Brodersen.
Optimizing Power Using Transformations. [EEE Trans. on Computer-Aided
Design, 14(1):12-31, January 1995.

[11] L. Guerra, M. Potkonjak, and J. Rabaey. High-level Synthesis for Reconfig-
urable Datapath Structures. In Proc. Intn'l Conf. on Computer-Aided Design,
pages 26-29, November 1993.

150

(12] R. Karri and A. Oraiglu. Transformation-based High-level Synthesis of Fault-
tolerant ASICs. In Proc. 29th Design Automation Conf., pages 662-665, June
1992.

[13] S. Dey and M. Potkonjak. Transforming Behavioral Specifications to Facilitate
Synthesis of Testable Designs. In Proc. Intn'l Test Conf., Oct. 1994.

[14] M. Potkonjak and J. Rabaey. Optimizing Resource Utilization Using Transfor-
mations. [EEE Trans. on on Computer-Aided Design, 13(3):277-292, March
1994.

[15] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[16] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
Inc., 1994.

[17] C.H. Gebotys and M.L.Elmasry. Global Optimization Approach for Architec-
tural Synthesis. [EEE Trans. on Computer-Aided Design, 12(9):1266-1278,
September 1993.

[18] C-Y. Wang and K.K Parhi. High-level DSP Synthesis Using Concurrent Trans-
formations, Scheduling and Allocation. IEEE Trans. on Computer-Aided De-
sign, 14(3):274-295, March 1995.

[19] D.E. Thomas, E.D. Lagnese, R.A. Walker, J.A. Nestor, J.V. Rajan, and R.L.
Backburn. Algorithmic and Register-Transfer Level Synthesis: The System
Architect’s Workbench. Kluwer Academic Publishers, 1990.

[20] A.C. Parker, J.T. Pizarro, and M. Mlinar. MAHA: A Program for Datapath
Synthesis. In Proc. 23rd Design Automation Conf., pages 496-499, June 1936.

[21] P. Michel, U. Lauther, and P. Duzy. The Synthesis Approach to Digital System
Design. Kluwer Academic Publishers, 1992.

[22] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-level Synthesis. Kluwer Academic
Publishers, 1992.

[23] R.A. Bergamaschi, R.A. O’Connor, L. Stok, M.Z. Moricz, 5. Prakash,
A. Kuehlmann, and D.S. Rao. High-level Synthesis in an Industrial Environ-
ment. IBM J. Res. Develop., Vol.39, pages 131-148, January/March 1995.

[24] J. Biesenack, M. Koster, T. Langmaier, S. Ledeux, S.Marz, M.Payer, M.Pilsl,
S.Rumler, H.Soukup, A. Stoll, N. Wehn, and P. Duzy. The Siemens High-
level Synthesis System CALLAS. IEEE Trans. on VLSI Systems, 1(3):244-253,
September 1993.

[25]

[26]

32

(33)

J. Vanhoof, K.V. Rompaey, I. Bolsens, G. Goossens, and H.De Man. High-level
Synthesis for Real-time Digital Signal Processing. Kluwer Academic Publishers,
1993.

C.-J. Tseng, R.-S. Wei, S.G. Rothweiler, M.M Tong, and A.K. Bose. Bridge:
A Versatile Behavioral Synthesis System. In Proc. 25th Design Automation
Conf., pages 415-420, July 1988.

R.W. Hunter, T. Fuhrman, and D.E. Thomas. Working Chips from High-level
Synthesis: A Case Study from Industry. In Proc. of the IEEE Custom Integrated
Circuits Conf., pages 144-147, May 1994,

T. Fuhrman. Industrial Extensions to University High-level Synthesis Tools:
Making it Work in the Real World. In Proc. 28th Design Automation Confer-
ence, pages 520-525, June 1991.

B. Tuck. Finally, Behavioral Synthesis is Production-ready. Computer Design,
pages 57-63, July 1997.

P.G. Paulin. DSP Design Tool Requirements for the Nineties: An Industrial
Perspective. In Proc. 6th Intn’l Workshop on High-level Synthesis, November
1992.

E. Roza, J. Biesterbos, B. De Loore, and J. Van Meerbergen. On the Applica-
tion of Architectural Synthesis in the Design of High-volume Production ICs for
Consumer Applications. In Proc. 6th Inin'l Workshop on High-level Synthesis,
pages 2-15, November 1992.

P.H. Bardell, W.H. McAnney, and J. Savir. Built-in Test for VLSI: Pseudo-
random Techniques. John Wiley & Sons, 1987.

T-C. Lee, W.H. Wolf, N.K. Jha, and J.M. Acken. Behavioral Synthesis for Easy
Testability in Data Path Allocation. In Proc. Intn’l Conf. Comp. Design, pages
29-32, 1992.

T-C. Lee, W.H. Wolf, and N.K. Jha. Behavioral Synthesis for Easy Testability
in Data Path Scheduling. In Proc. Intn’l Conf. Computer-aided Design, pages
616-619, 1992.

T. Lee, N. Jha, and W. Wolf. Behavioral Synthesis of Highly Testable Datap-
aths under the Non-scan and Partial Scan Environments. In Proc. 30th Design
Automation Conf., pages 292-297, June 1993.

S. Bhatia and N.K. Jha. Genesis: A Behavioral Synthesis System for Hierarchi-
cal Testability. In Proc. Euoropean Design Automation Conf., pages 272-276,
February 1994.

152

[37] S. Bhatia and N.K. Jha. Behavioral Synthesis for Hierarchical Testability of
Controller/Data Path Circuits with Conditional Branches. In Proc. Intn’l Conf.
Computer-Aided Design, Oct. 1994.

[38] A. Mujumdar, K. Saluja, and R. Jain. Incorporating Testability Considerations
in High-level Synthesis. In Proc. FTCS, pages 272-279, 1992.

[39] S. Dey, M. Potkonjak, and R.K. Roy. Synthesizing Designs with Low-
Cardinality Minimum Feedback Vertex Sets for Partial Scan Application. In
Proc. VLSI Test Symp., pages 2-7, April 1994.

[40] S-P Lin, C.A. Njinda, and M.A. Breuer. A Systematic Approach for Designing
Testable VLSI Circuits. In Proc. Intn'l Conf. on Computer-Aided Design, pages
496-499, November 1991.

[41] I.G Harris and A. Orailoglu. Microarchitectural Synthesis of VLSI Designs
with High Test Concurrency. In Proc. 31st Design Automation Conf., pages
206-211, June 1994.

[42] 1.G. Harris and A. Orailoglu. SYNCBIST:SYNthesis for Concurrent Built-In
Self-Testability. In Proc. Intn’l Conf. Comp. Design, pages 101-104, October
1994.

[43] A. Orailoglu and L.G. Harris. Microarchitectural Synthesis for Rapid BIST
Testing. IEEE Trans. on Computer-Aided Design, 16(6):573-586, June 1997,

[44] L. Avra. Allocation and Assignment in High-level Synthesis for Self-testable
Data Paths. In Intnl. Symp. on Circuits and Systems, pages 463-472, August
1991.

[45] L.T. Wang and E.J. McCluskey. Concurrent Built-In Logic Block Observer
(CBILBO). In Intn'l. Symp. on Circuils and Systems, pages 1054-1057, 1986.

[46] L. Avra. Orthogonal Built-in Self-test. In Proc. COMPCON*92, pages 452-457,
1992.

[47] L. Avra and E.J. McCluskey. Synthesizing for Scan Dependence in Built-in
Self-testable Designs. In Proc. Inin’l Test Conf., pages 734-743, 1993.

[48] C. Papachristou, S. Chiu, and H. Harmanani. A Data Path Synthesis Method
for Self-Testable Designs. In Proc. 28th Design Automation Conf., pages 378-
384, June 1991.

[49] H. Harmanani and C. Papachristou. An Improved Method for RTL Synthesis
with Testability Tradeoffs. In Proc. Intn’l Conf. on Computer-Aided Design,
pages 30-35, November 1993.

153

[50] C. Papachristou, S. Chiu, and H. Harmanani. A Data Path Synthesis Method
for Self-Testable Designs. In Proc. 28th Design Automation Conf., pages 378~
384, June 1991.

[51] L.J. Avra, L. Gerbaux, J-C. Giomi, F. Martinolle, and E.J. McCluskey. A
Synthesis-for-Test Design System. Tech. Report CSL TR 94-622, Computer
Systems Laboratory, Stanford University, May 1994.

[52] Data Book. G10-p Cell-Based ASIC' Products. LSI Logic Corp., May 1996.
[53] L. Schrage. LINDO: An Optimization Modeling System. Scientific Press, 1991.

[54] N. Dutt and C. Ramachandran. Benchmarks for the 1992 High-level Synthesis
Workshop. Tech. Report 92-107, Univ. of California, Irvine, 1992.

[65] R. Jain, A.C. Parker, and N. Park. Predicting System-Level Area and Delay for
Pipelined and Non-pipelined Designs. IEEE Trans. on Computer-Aided Design,
11(8):955-965, August 1992.

[56] M. Rim and R. Jain. Estimating Lower-Bound Performance of Schedules Using
a Relaxation Technique. In Proc. Intn’l Conf. Comp. Design, pages 290-294,
October 1992.

[57] Y. Hu, A. Ghouse, and B.S. Carlson. Lower Bounds on the Iteration Time and
the Number of Resources for Functional Pipelined Data Flow Graphs. In Proc.
Intn’l Conf. Comp. Design, pages 21-24, October 1993.

[58] A. Sharma and R. Jain. Estimating Architectural Resources and Perfor-
mance for High-Level Synthesis Applications. I[EEE Trans. on VLSI Systems,
1(2):175-190, June 1993.

[59] S. Chaudhari and R.A. Walker. Computing Lower Bounds on Functional Units
before Scheduling. In Proc. 7th Intn’l Symp. on High-level Synthesis, pages
36-41, May 1994.

[60] S.Y.Ohm, F.J. Kurdahi, and N. Dutt. Comprehensive Lower Bound Estimation
from Behavioral Descriptions. In Proc. Intn’l Conf. Computer-Aided Design,
pages 182-187, October 1994.

[61] P.G. Paulin and J.P. Knight. Force-Directed Scheduling for the Behavioral
Synthesis of ASICs. [EEE Trans. on Computer-Aided Design, 8(6):661-679,
June 1989.

[62] C. Tseng and D.P. Siewiorek. Automated Synthesis of Data Paths in Digital
Systems. IEEE Trans. on Computer-Aided Design, 5(7):379-395, July 1986.

154

[63] R. Jain, M. Mlinar, and A. Parker. Area-time Model for Synthesis of Non-
pipelined Designs. In Proc. Intn'l Conf. on Computer-Aided Design, pages 48—
51, November 1990.

[64] S.Y. Kung, H.J. Whitehouse, and T. Kailath. VLSI and Modern Signal Pro-
cessing. Prentice-Hall, 1985.

[65] K. Kiigitkcakar and A. Parker. Data Path Trade-offs using MABAL. In Proc.
27th Design Automation Conf., pages 511-516, June 1990.

[66] B.M. Pangrle. On the Complexity of Connectivity Binding. [EEE Trans. on
Computer-Aided Design, 10:1460-1465, 1991.

[67] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

[68] D.L. Springer and D.E. Thomas. Exploiting the Special Structure of Conflict
and Compatibility Graphs in High-Level Synthesis. In Proc. Intn’l Conf. on
Computer-Aided Design, pages 254-257, November 1990.

[69] F.Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Cov-
ering by Cliques, and Maximum Independant Set of a Chordal Graph. SIAM
J. Computing, pages 180-187, June 1972.

[70] S. Devadas and A.R. Newton. Algorithms for Hardware Allocation in Datapath
Synthesis. IEEE Trans. on Computer-Aided Design, 8(7):768-781, July 1989.

[71] R.J. Clotier and D.E. Thomas. The Combination of Scheduling, Allocation and
Mapping in a Single Algorithm. In Proc. 27th Design Automation Conf., June
1990.

[72] L. Stok. Architectural Synthesis and Optimization of Digital Systems. PhD
thesis, Eindhoven University, The Netherlands, 1991.

[73] N. Park and A.C. Parker. SEHWA: A Program for Synthesis of Pipelines. In
Proc. 23rd Design Automation Conf., pages 454-460, July 1986.

[74] A. Karasniewski. Can Redundancy Enhance Testability? In Proc. Intnl Test
Conf., pages 483-491, Oct. 1991.

[75] M.S. Abadir and M.A. Breuer. A Knowledge-Based System for Designing
Testable VLSI Chips. IEEE Design & Test of Computers, pages 56-68, August
1985.

[76] R. Moreno, R. Hermida, and M. Fernandez. Short Note: Register Estima-
tion in Unscheduled Dataflow Graphs. ACM Trans. on Design Automation of
FElectronic Systems, 1(3):396-403, July 1996.

