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Abstract

In this paper we present a methodology and techniques for generating cycle-accurate macro-
models for RT-level power analysis. The proposed macro-model predicts not only the cycle-by-
cycle power consumption of a module, but also the moving average of power consumption and
the power profile of the module over time. We propose an exact power function and
approximation steps to generate our power macro-model. First order temporal correlations and
spatial correlations of up to order 3 are considered in order to improve the estimation accuracy.
A variable reduction algorithm is designed to eliminate the “insignificant” variables using a
statistical sensitivity test. Population stratification is employed to increase the model fidelity.
Experimental results show our macro-models with 15 or fewer variables, exhibit <5% error for
average power and <20% errors for cycle-by-cycle power estimation compared to circuit
simulation results using Powermill.

I. INTRODUCTION

Due to rapid progress in the semiconductor manufacturing, the device density and operating
frequency have greatly increased, making power consumption a major design concern. High
power consumption exacerbates the reliability problem by raising the die temperature and by
increasing current density on the supply rails. It also reduces the battery life which is a key
concern in portable devices. Therefore, low power design requirements are driving a new breed of
computer aided design methodologies and tools which in turn rely on accurate and efficient
estimation tools at various design abstraction levels.

Power estimation at RT level is crucial in achieving a short design cycle. The standard
hierarchical simulation approach to RT-level power estimation consists of three steps: 1)
functionally simulate the RT-level description and collect the input sequences for each circuit
block. 2) simulate each block at gate or circuit-level using the collected input sequences. 3) add
the power consumption for all blocks to produce the power consumption of the whole circuit. The
disadvantage of this approach is that it requires the interaction between RT-level simulators and
low-level simulators and that power evaluation is actually done at gate-level or circuit-level
where the simulation speed is low.

Alternatively, one could use the macro-modeling technique for power estimation at RT-level. In
this technique, low-level simulations of modules under their respective input sequence is replaced
by power macro-model equation evaluation (which can be performed very fast).

Macro-modeling techniques use capacitance models for circuit modules and activity profiles for
data or control signals [1-5]. The simplest form of the macro-model equation is given by:



Power=-§-vz-f-CL,ﬁ--SW (1.1)

where C,4 is the effective capacitance, SW is the module activation ratio, and f is the clock
frequency. The Power Factor Approximation (PFA) technique [1] uses an experimentally
determined weighting factor, called the power factor, to model the average power consumed by a
given module over a range of designs.

To improve the accuracy, more sophisticated macro-model equations have been proposed. Dual
Bit Type model, proposed in [2], exploits the fact that, in the data path or memory modules,
switching activities of high order bits depend on the temporal correlation of data while lower
order bits behave similarly to white noise data. Thus a module is completely characterized by its
capacitance models in the MSB and LSB regions. The break-point between the two regions is
determined based on the signal statistics collected from simulation runs. The Activity-Based
Control (ABC) model [4] is proposed to estimate the power consumption of random-logic
controllers. An Input-Output model has been proposed in [5] to capture the relation between
power and input signal probability, input transition density, and output transition density. By
introducing variables related to output activity, the Input-Output model improves the estimation
accuracy compared to the models which do not make use of the output information. One common
feature of the above macro-model techniques is that, they only provide information about average
power consumption over a relatively large number of clock cycles.

The above techniques, which are suitable for estimating the average-power dissipation, are
referred to as cumulative power macro-models. In some applications, however, estimation of
average power only is not sufficient. Other important tasks include the estimation of the k-cycle
moving average of the power, power profiling on a cycle-by-cycle basis, and estimation of the
rate of current change from one cycle to next. This information is crucial for circuit reliability
(maximum current limits, heat dissipation and temperature gradient calculation, latch-up
conditions) analysis, DC/AC noise analysis (DC drop and inductive bounce on power and ground
lines), and design optimization (power/ground net topology, construction and sizing, number and
placement of decoupling capacitors, buffer insertion, etc.). For example, the k-cycle average
power can provide power consumption information for any given window of time. To perform
these tasks requires knowing the power consumption value for every clock cycle. If the macro-
modeling technique does not provide such information, the circuit designers will have to resort to
gate-level or circuit-level simulation again. Consequently, cumulative macro-models are
considered to have limited use.

The notion of cycle-accurate macro-models which was proposed in [6] is described next. Let Py
denote the power consumption of some module in clock cycle &, then we can write:

P =F(Vi, Vi) (1.2)

where V and V., denote the input vectors applying to the module at cycles k and k-1, and F is
some function of the input vector pairs. The goal of power macro-modeling is to find function F,
given an input vector sequence V (the so called fraining ser) for the module and given the
corresponding power consumption values.

In this paper, we propose the methodology of building cycle-accurate macro-models for circuit
modules. Compared to previous work, our approach makes the following tangible contributions:

1. The macro-model generated by our approach can predict the cycle-based power consumption,
as well as the average power. Our cycle-accurate macro-model equation can be easily
transformed into a cumulative macro-model equation.



2. We present an exact power consumption function which captures the relation between the
circuit power consumption and the spatial-temporal correlations of primary inputs. This is
used as the starting point for our macro-model generation. It can be a useful guide for
generating macro-models for other purpose.

3. We introduce piecewise linear power macro-model equations to increase the fidelity of the
macro-model.

4. A statistical significance test is proposed to eliminate “insignificant variables™ and therefore
simplify the macro-model equation.

5. Because of the statistical nature of our macro-model, it can be validated and improved by
statistical methods. The estimation error can be predicted for given confidence level.

Experimental results show that, our cycle-accurate macro-models having 15 or fewer variables,
exhibit <5% (3.2% maximum and 1.1% minimum) error in average power, and <20% (19.3%
maximum and 6.2% minimum) error in cycle power compared to circuit simulation results using
Powermill [7].

This paper is organized as follows. Section II gives the theoretical background for regression
analysis. Section III discusses a procedure of building the macro-model whereas Section IV
presents the experimental results. Section V will discuss some applications of cycle-accurate
macro-models. Section VI is the conclusion of our work.

II. BACKGROUND

2.1 Introduction to linear regression analysis

We define a cycle-accurate power macro-model as a linear function between estimated power
dissipation of a vector pair and the characteristic values of the vector pair, that is, we write:

ﬁ=ﬁ()+ﬁ1X1+B2X2+'“+kak (2.1)

where P is the predicted power dissipation, fB,B,,-, B, are constants called the regression
coefficients or parameters of the macro-model, and X, X,,--,X, are characteristic variables
extracted from the input vector pair. The methods for extracting values of X, X,,---, X, will be
discussed in Section 3.1. The regression parameters are calculated by doing least-squares-fit
during the linear regression analysis.

Based on the theory of linear regression analysis [8], we can define the relation between the
actual power P (e.g. the power value simulated by Powermill) and the estimated power as:

P=P+e=By+B X, + By Xy ++B X, +€ (2.2)
where € is called the residual term of the linear regression model and follows a normal

distribution with mean value 0 and variance ¢ Equation (2.2) means that P is a random variable
which follows a normal distribution with mean value P and variance o

Assume that we have been given the equation form of the macro-model as in Eqn.(2.1) and have
performed Powermill simulations (observations) on m randomly sampled vector pairs in the
population (this set of m vector pairs is referred to as the training set) so that we have obtained m
simulation results (observation values) of power consumption. The linear regression model for
vector pairs from the training set can be written as:

Po=Po+ Prxiy + Paxip+ooo+ Brxg €, 1=12,0m (2.3)

or in matrix form as:



P=XB+e 24
where P;’s are random variables corresponding to observations: (x;;,%;5,+5X;) i=12,.,m;
Bo. By, B, are the regression coefficients; x;,x;,,---,x;; are known values derived from the
input vector pair (V;;,V;,); and &’s are independent random variates representing deviation from
the mean value of power with variance VAR[g; =07, and Covlg;,g;]=0, for i=j.

Consequently, the random vector P has an expected value of E[P]=XP and the variance-
covariance matrix of P is Cov[P]=0*I where I is the identity matrix.

The B coefficients are estimated using the least squares estimator by substituting the actual power
values for P:

b=XT-x)"".XT.p (2.5)
where
b =[bg.bye by [ (2.6)

(k+1)=1
It has been proven in [8] that the least squares estimator is an unbiased estimator for B, i.e., E[b]=
B.The estimated (fitted) power from macro-model is given by the multiplication of input variables
and the estimated coefficients:

- ~

P=[R. Ay, B, |=Xb Q.7

o

and the residual terms (error) are defined as the difference between the fitted power and observed
(actual) power:

e=[e,,e;,¢,|=P-P=P-Xb (2.8)

In the following, we define some relevant terms for regression analysis:

m
sum of squares error: SSE = Zejz
i=l
mean squares error: MSE = SSE/(m—k -1)
m . A
regression sum of squares: SSR= Z(P,- -P)*
i=1

regression mean squares: MSR = SSR/k
coefficient of multiple correlation: R =,/SSR/(SSR + SSE)

The above terms will be used in many discussions in the rest part of this paper. The statistical
nature of the macro-model enables us to predict the accuracy level of fitted power value as
follows. Given any input vector pair, the values of its characteristic variables (x;, x3, ..., x;) are
first computed. The fitted (predicted) power is given by P =by+byx, +byx, +---+bx, . Given a

confidence level 1-c, the confidence interval of the actual power P is defined as an interval [P,
P5] such that the probability that the actual power value lies inside this interval is  1-¢.. From this
definition, we can compute the confidence interval for actual power P at any confidence level I-«
as!

[P—1(1 —of2;m—k=1)- s[P],P+1(l —af2;m—k—1)-s[P]] (2.9)

where t(1-a/2;m-k-1) is the (1-0/2)x100 percentile point of the 7 distribution with degree of
freedom of (m-k-1) and s[P] is the standard deviation of the new observation which is given by:

s{P)=MSE-(1+ X T(XTX)™' X) (2.10)



where X and MSE are the variable matrix and mean squares error of the training set, respectively.

2.2 Evaluating the quality of a macro-model
The quality of the macro-models can be evaluated in terms of the following criteria:

1. Correlation factor: From the coefficient of multiple correlation R, we derive a similar quantity
ras:

r=1/(1-R*)=1+SSR/SSE (2.11)

We call r the correlation factor of the macro-model. » is a monotonic-increasing function of R. In
many applications of linear regression, r is a general measure of the quality of a regression model
since it represents linearity of the model and the magnitude of the error. It also reflects the
stability or fidelity of a macro-model. The higher the r value, the better the quality of the
regression model. The r value may differ from one population to next for the same macro-model.
Therefore, the r values of different macro-models should be compared only when they are
subjected to the same input population.

2. Errors: Error in cycle power (ECP) gives the average error when estimating power on cycle
by cycle basis while error in average power (EAP) gives the average error when estimating
the average power. More precisely, we can write:

n n
YP-YP

: EAP=f£L = (2.12)
P
i=1

In most cases the training set only represents a small portion of the target population, and in some
extreme cases, the training set will be totally different from the population. Designed based on
such training sets, the macro-models can exhibit good quality on the training set and on
populations which have similar characteristics as the training set, but not on other populations. To
assess the quality of macro-model, accuracy comparison of macro-models should be carried out
on populations (the set of input vector pairs and corresponding Powermill power values) whose
behavior is different from that of the training set. On the other hand, the design of training set is
very important. The more closely the training set represents the target population, the more
accurate the resulting macro-model will be. In addition, it is very difficult to predict in advance
what type of population that macro-model will be subjected to. Therefore, careful design of a
good macro-model equation form is the key to reducing the estimation error. Last, but not least,
extracting the X,,X,,--, X, variables in Eqn.(2.1) from the input vector pair is important in

designing a good macro-model.

F-F

l n
ECP= ;Z

i=l

1

ITI.  MACRO-MODEL CONSTRUCTION

The overall macro-model generation procedure is described in Figure 1. The macro-model
generation procedure consists of four major steps: variable selection, training set design, variable
reduction, and least squares fit. Notice that the macro-model equation design refers to not only
the form of the equation (linear function, values of coefficients), but also the procedure for
extracting variable values from the input vector pair.



Variable Selection Training Set Design

Exact Power Function Large Population

Order Reduction Random Sampling
Variable Grouping Powermill Simulatio

Initial Macro-model Training Set
Equation {(vector pair, power), ...}

Sensitivity Analysis/
Variable Reduction

Least-Square Fit

Good Model *
( Model Evaluation

YES
DONE

NO

Figure 1 The workflow of generating a cycle-accurate macro-model

In the variable selection step, we start with an exact function that relates the cycle power and the
input vector pair. The function terms are organized according to the order of spatial correlations
between bits of the input vector pair. During order reduction, high order terms are dropped based
on a performance-cost trade-off consideration. Variable grouping is performed to collapse the
variables which have similar influence on power into the same groups. At the end of this step, we
obtain an initial macro-model equation which is a reduced form of the original exact function and
define the procedure for extracting variable values from the input vector pair.

The training set design step is simple and straight forward compared to other parts. It starts from a
very large set of vector pairs, which is in turn obtained either from real application or is
synthetically generated. Random sampling is performed to obtain a much smaller sub-set of
vector pairs which is representative of the original set. Finally, the module under analysis is
simulated using Powermill and by applying the vector pairs in the sub-set. The vector pairs in the
sub-set and their power values form the so called training set.



In the third step of the flow, a statistical variable reduction algorithm is applied on the initial
macro-model equation using the training set. The goal of this algorithm is to eliminate the
variables which have the least impact on the circuit power dissipation, and therefore, limit the
number of variables in the final macro-model equation. Subsequently, we obtain a final macro-
model equation consisting of the most power-significant variables, that is, we obtain the final
macro-model equation in the form of Eqn.(2.1) with a relatively small number of variables
(k<15).

In the fourth step of the flow, the training set is used once again to form the linear regression
model in Eqn.(2.2). By using Eqn.(2.5), least-squares fit is performed to calculate the regression
parameters of the macro-model. Power estimation and error calculation for the training set is done
using Eqn.(2.7) and Eqn.(2.8), respectively. When estimating power consumption for any
arbitrary vector pair, the estimation error is predicted using Eqn.(2.9) and Eqn.(2.10) for any
given confidence level.

Model evaluation should be carried out before the macro-model is used in real applications. The
standards for evaluating the quality of a macro-model were discussed in the previous section.

In our approach, to improve the fidelity of macro-model, we build different macro-models for
different ranges of variable values. We call this procedure the population stratification approach
(cf. Section 3.2) and the resulting macro-model the piecewise linear macro-model.

In the remainder of this section, we will focus on discussing variable selection and variable
reduction steps which are the key procedures for building a good macro-model. Other steps either
will be discussed briefly, or have been addressed in previous paragraphs.

3.1 Variable selection
3.1.1 The exact functional relation between the cycle power and the input vector pair

If we ignore the power consumption of floating nodes within gates (it is less than 5% in practice),
the power consumption of a combinational module is only a function of transitions at the primary
inputs. We can thus write:

P=f(f_]st_23'“vrk) (3‘1)

where k is the number of primary inputs (notice that this “k” is different from the “k” that was
used in Section II) and #,,f,,--,f, are the so called transition variables which are encoded by a

bit vector as follows:

t=la b c], i=12,k

a=0,b=0,c=0 if input i:0—=0
a=1,b=0,c=0 if input i:0—1
a=0b=1lc=0 if input i:1—0
a=0,b=0,c=1 if input i:1—1

(3.2)

We use 3-bit encoding scheme instead of 2-bit encoding (which is the minimum length encoding)
because 3-bit encoding is more effective in expressing the exact power function.

Define the ® operation and + operation (normal addition) between two vectors as follows:
[ty sty ooty J® [y Vg ey v 1= [V Vo gV UV gV s gVt oy V1 U Vs Uy V] (3.3)
[ty sty eyt 1 H vy va vy = [y vy g + vy, 00, v, -
We give the exact functional relation between the cycle power and the input vector pair (the
transition variables) as:



k i kook q V-0
P=ay+ 35 |a™ [+ Y 1, ®f, | "
i=l 1=l | =l j=il ;
4 11,11
a;;
0—1,0=31,-4,0—31,031
1y 2k
0—=1,0-1.+-0-1,1=0
- i [ T
+--+ll®12 ®"'®!k' pe . (3'4)

1= 1=1 =1 1=1

k ko k
=ag+ D0 a4y, 35 ®F G+l ®F, @ ®F,, -d)y,_4
o

i=l j=it]
where 7; is called order 1 transition variable of input i, t; ®1; is called order 2 joint transition

variable of inputs i and j, etc. ag,@; ,--,@,..,, are constant real numbers. Entries of these vector
variables are either 0 or 1 and the sum of entries in each vector add up to 1. Notice that each
vector variable includes multiple scalar variables, when we are talking about the “number of
variables” in the function, we refer to the number of scalar variables.

Example:

Given an input vector pair (101—011) with bit 1 to bit 3 listed from left to right, #, ={010},
7, ={100}, 7 ={001), 7 ®F={000100000}, 7®7%={000001000}, 7, ®7={001000000},
i, ®f, ®1, = {000000000001000000000000000}.

The power consumption calculated by Eqn.(3.4) is:

150 | ; S0051 0ol 150,051,
P=ag+a,” +c:20_” g +a,13’°n_’l +a,'3’ ’ +a23’| Al +a,55 AR

Theorem 1 Equation (3.4) gives the exact power consumption for any vector pair applied to the
inputs of any combinational module with k inputs. Furthermore, coefficients in the equation are
unique for a given module.

Proof: We first do some analysis on (3.4). The number of coefficients in Eqn. (3.4) is:
143xC) +3°CE +..+3*Cf = (1+3)* =4*
A k-input circuit has 4* different input transition combinations and corresponding power
consumption values. Inserting these values to (3.4) we obtain a linear system of equations (A.1).
XA P (A.1)

4t T gt

where X, . is the input switching matrix. Each row represents a different input vector pair

which is denoted by the set of variables 1 in  Eqn. (34), ie,
Xt = o Tar s Bye o B30 s gt s 2,001 - Agry, 18 the coefficient matrix which consists of the
coefficients @ in Eqn. (3.4), i€, Auy,=[a".a @, @12 a3 v slpern s 812, | - TO
prove the theorem we only need to prove that the solution of Eqn. (A.1) exists and is unique.

Lemma 1 For any sub-matrix X’ of X which consists of a subset of row vectors of X, there is at
least one column, which has only one nonzero entry.

Proof: Each column of matrix X can be denoted by Xj,Iethe power set of inputs, x is the
transition type of I. Each row of matrix X represents a different input vector pair. The entry of



column Xj of row j is nonzero if and only if the input set I of the vector pair j has transition x.

Because each row represents a different input transition, for any set of input vector pairs (that is,
for any x), there must be a set of switching input I and its transition type x, which is different
from others. The column corresponding to this combination has a single nonzero entry.

We mark the row vectors of X to be r,7,--, 7, . To prove that they are linearly independent, let
us give a contradict assumption: they are linear dependent. We can write:

ery oy ot eury =0 (A.2)

4t

Assume that {c, , 5Cay} is the subset of {¢;}, which are not 0, Eqn.(A.2) can be rewritten as:

(A.3)

”| "-\ 1

Cip Xy TGy +HC =0

mn L

mon 4% x1

According to Lemmal, for any sub-matrix, which consist of row vectors of X, there is at least one
column which has only one nonzero entry, so we can not find a set of ¢#0 which causes
Eqn.(A.3) to hold. This leads to a contradiction to our assumption. Therefore, we conclude that all
the row vectors are linearly independent and the rank of matrix X is 4,

Let X(-t‘)xm 41 [15(4,t 4*P4*x1] Because of its dimension, we know that
Rank of X* <4* (A4)
Because X is a sub-matrix of X",
Rank of X" > Rank of X. (A.5)

From (A.4), (A.5) we get: Rank of X" = Rank of X = The number of the variables.

Therefore the equation system in Eqn. (A.1) is consistent and has a unique solution. The theorem
is proved.

3.1.2 Transitive fanout correlation between primary inputs

It is obvious that a, = 0 since power consumption for vector pair (00...0)—(00...0) must be zero.
All other coefficients in Eqn.(3.4) can be uniquely determined from circuit-level simulation on
some specific vector pairs.

0—1

For example, to compute coefficient a; ", we simulate the module using the vector pair

{(0,0...0), (1,0...0)} and obtain the power consumption value of P,“”l. From equation (3.4) we
know:

0—;1 f("lo_)[ 0—)0l 0—»0)_[1?—>I
To compute a);"”" we simulate the module using the vector pair {(0,0...0), (1,1,0...0)} and

obtain the power consumption value of P’;""*”'. Again from Eqn.(3.4) we know:

-] 1
Pl A 31,01 f(!l()wé 01 r%}—m’. ()—)[l) _ a +a2—)l + I]D—}! 0=l

( 0
= a{]:)l 031 PL)Z_H —1 _Pl(lw)l _ PQD—)I

and so on.

Definition Inputs iy,is,...,i; are transitive fanout correlated if and only if their transitive fanout
cones in the circuit have at least one common node, that is, there exists at least one node (internal
node or output) of the module whose logic function includes all inputs iy,i,...,i;. j is called the
order of the correlation.



For the sake of simplicity, we use “correlation” to stand for “transitive fanout correlation” in the
remainder of this paper.

iy

order | corr. | order 2 corr. |order 3 corr.

i

) i Iz, I3 (i1, 12); (i2, 13) None
i3 ‘
(a) (b)

Figure 2 Example of Transitive Fanout Correlation

Figure 2(a) shows a simple 3-input 2-gate circuit. Since it has only 3 inputs, the highest possible
order of correlation between inputs is 3. The table in (b) shows the correlated inputs for different
orders. Notice that the input pair (i, i3) is not on the list of order 2 correlations and triplet (iy,i2,3)
is not in the list of order 3 correlations because the corresponding inputs have no common nodes
among their transitive fanout cones.

The coefficients in Eqn.(3.4) essentially reflect the correlation between the corresponding (joint)
transition probabilities and the power consumption in a circuit.

Proposition 1 If i},i...,i; are not correlated, all entries of @, ;, ..; are zero.

Proof : Consider the power-transition function for each node in the circuit. These power
functions are written in the form of Eqn.(3.4). The variables are the appropriate circuit input
transitions for the nodes. Since inputs iy, i,...5; are not (transitive fanout) correlated, there is no
node whose logic transition includes all of these inputs. So the entries of dj jy..j, AT ZEro in the

power functions of these nodes. The circuit power function is the sum of the power functions for
each node in the circuit. Therefore, the entries of &, ., are also zero in the circuit power

function.

Corollary IfJ is the highest order of correlation among inputs of a module, the first J+1 terms of
Egn.(3.4) are sufficient to model the exact power for any input vector pair applied to the module.

Proof : All coefficients are zero for other terms.

3.1.3 Function order reduction

Eqn.(3.4) gives an exact representation of the relation between power and input transition.
However, this form is too complicated for practical use. In this section, we will discuss the first
step to simplify the macro-model function, which is order reduction.

From Eqn.(3.4), we know that the complexity of the macro-model increases exponentially with
the order of the input correlation we which consider. Evidently, ignoring the high order term
leads to some estimation error. The first question, is how much error will be introduced if we
drop certain high order terms. The second question is what the cost will be if we keep more terms
in the original function. Table 1 shows some examples of the percentage error caused by ignoring
the high order input correlations. Column 1 gives the circuit name. Circuit A is a 4-bit multiplier,
B is a 4-bit ripple carry adder without carry in, and C is an 8-input random logic circuit. In the
experiment, all the coefficients of the exact power function in Eqn.(3.4) are calculated in the way
discussed in section 3.1.2. Then we do power calculation on the population of all possible (4 ks

10



the number of inputs) input vector pairs to the module using the reduced-order functions of
Eqn(3.4), i.e., ignoring the high order terms (by assuming that the coefficients of high order
transition variables to be all zero). The power values calculated by the reduced-order functions
are compared with the actual power values. The average relative errors are then reported in Table
| from the 1% data column to the 8" data column. The integer number i on top of each column
indicates the maximum order to which the function terms are kept. For example, in the 4" data
column, number “4” means that, the reduced-order function is the same as Eqn.(3.4) except that
transition variables (and their coefficients) with order higher that 4 are ignored. The last row of
the table shows the total number of variables in the reduced-order functions for each of the
circuits.

Table 1 Average percentage error on power calculation by reduced-order functions

Circuit

Table | shows that keeping higher order terms tends to, although not monotonically, to provide
more accurate power estimation results. One significant improvement shown in the table is from
the 1% data column (keeping only order 1 terms) to the 3™ data column (keeping order 1, 2 and 3
terms). From this point on, the complexity of the reduced-order function increases much faster
than the percentage error decreases.

We therefore approximate Eqn.(3.4) by ignoring terms with order higher than 3. The reduced-
order function is written as:
p-fﬂ.()—n 0—-1,0—-1,0-1

01 i j i
i 0—1,0=1,1=0

; ko k k k&
Paa+ X7 |al 0 [+2 X700 W |+ X T heren W e
i=l

-1 i=1 j=i+l : i=1 j=it+ll=j+1 :
a; 1—1,1-31 1-31,1-31,1-1 (3.5)
i il
k ko k . k k k p
- T - ax =T - —_ 7 .=
=ao+zt'-‘ﬂ‘- ‘l“'z 2{,@ J'al-]+zz ZIT®If®II a,-lj.,+£
i=l i=1 j=i+] i=l j=i+ll=j+l

where £ is the error caused by approximation.

We can minimize error € by re-computing the coefficient values by doing least-squares fit for
Eqn.(3.5). However Eqn.(3.5) is too complicated to be our macro-model equation since the
number of variables in it is3-k+9-C7 +27-C;, which is too high! Furthermore, the use of 0-1
variables in (3.5) makes it very difficult to significantly reduce the number of variables using a
regression approach.

3.1.4 Variable grouping

To further reduce the function complexity in Eqn.(3.5), we use a variable grouping approach as
will be described next. This approach offers two advantages: 1) uses integer variables which are
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easier to work with and offer more flexibility compared to 0-1 variables, 2) has a constant number
of variables which is independent of number of primary inputs, .

We define G, as the set of all inputs, G as the set of all possible combinations of two inputs, G;
as the set of all possible combinations of three inputs:

G, ={1,2,--,k},

G, ={(1,2),(1,3),---.(1,k),(2,3),---, (k= 1,k)},

G, ={(1,2,3),(1,2,4),---,(1,2,k),(1,3,4),-- -, (k =2,k - L,k)}

Note that G; consists of indices for order i transition variables. The variable grouping technique
forms N, subsets of G;, N, subsets of G,, and N; subsets of G5 such that:

N, N N, N, Ny Ny

nGl.g =0, UGI,;: c G, nGz.g =9, UGz.,,- cG, nGlg =0, UGB.,Q cGs

=1 g=1 N 2=l g=1 3 o=l =1 (36)
G1e| < Ky (Ga| < Ky Gse|= K

where K, K3, K5 bounds are given. The size constraints are specified to manage the complexity of
macro-model equation characterization and evaluation.

We approximate equation (3.5) by assuming that:

00—l 01

a;
i lLg
1=0 _ 1=0 .

a; =\ b, Vie G, g=12, N,
151 1-1

a; by,

L 3x1 3xl

[ 01,051 031,01

a;.j bly

aO—)I.l—)O bﬂq],lqﬂ
b =| 2 Vi, j)e G?.,g‘ g=12,--- N,
]—}1,[—)! bD—}!.]—)l

L 91 2.8 9l

[ 01,0101 0-31,0-1,0-31

i jq by,

ao_u.o_»l.mo bO—)l.O—rl.l—)D
ijd ‘ o (i, j,De G3.y- g=12,-- N,
1=1,1-1,1-1 0—=1,1—1,1=1

L e 27 lg 271

where bjj,3, are constant real numbers. To minimize the error introduced by the above

approximation, we should do a careful variable grouping. We firstly calculate the coefficients for
terms of orders 1,2 and 3 in Eqn.(3.4) by using the method discussed in Section 3.1.2. In our
approach, the grouping criteria are based on the following quantities:

1 . i ; ;
¢ = E(a?"‘ +a!?" +al?"), i=12,k for grouping single inputs,
1 . o e ; i ;
¢ j =—9—( PO )M e @7V, 0 j=12,-k, i< j for grouping pairs of inputs,
0—=1,0—-1,0-1 0-1,0—1,1-0 1=1,1=1,1=1 R . . 5 >
Ciji :E( i +ag +ota ) b ju =12k, i< j<l for grouping

triplets of inputs.

Transition variables of order i are sorted in increasing order of the corresponding c-values for
order i. The domain of the c-values is divided into several sub-domains such that the number of
transition variables with c-values in different sub-domains is approximately equal, but is less than
the corresponding K; values. The indices of transition variables with c-values in different sub-
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domains define the groups. The first Ny groups with largest absolute c-values are adopted as Gy,
(g=1,2,....N,) as defined in Eqn.(3.6). Other groups with smaller c-values are abandoned.
Similarly, the first N> or N3 groups with largest absolute c-values are adopted as G, or Gs,
(g—_—] ,2,...,N2 or Nj,)

Example Let N, = 3, N, =4, N3 = 2. Assume we want to do variable grouping for a macro-model
equation corresponding to a 6-input circuit. The group size constraints are set as: K\= Ko= K3 = 3.
Firstly we calculate the value of ¢; (i = 1,2,...,6). Assume, the c-values are given as:

Cl :0, C:;_ :0.5, C3 =1.9, C‘! =2.0, C's =0, Cﬁ :O
We divide the domain of c-values, [0, 2.0], into 3 sub-domains: [0, 0.5), [0.5, 1.5), and [1.5, 2.0].
The grouping for single inputs is: G, ={1.5,6},G,, ={2},G,; = {34} . We keep G, through G, 3.
Then we compute the value of ¢; ; (ij = 1,2,....k, i <j). Again, suppose:

€12=10,¢3=03, ¢;4=-02, ¢;5=-04, ¢;5=1.6, c33=1.6, ¢, =0.8, ¢;5 =14,

€26 =07, c34==11, ¢35=02, ¢;5=02, cy5=1.6, 46 =-07, ¢56 =09
The division of c-values is: [-1.1, -0.5), [-0.5, 0), [0, 0.5), [0.5, 1.0), [1.0, 1.5), and [1.5, 1.6]
The grouping for input pairs is: G, ={(1,6),(2,3),(4,5)}, G,, ={(2,5),(1,2)}

Gy3 ={(24).(2,6),(56)}, Gy4 =1{(13),(35),(36)}, Gy5={(14),(1.5)}, G,6={(34),(46)]

We only keep G'“, Gg_g, Gglg, and Gz.(,,

The case for grouping variables of order 3 is solved similarly.

Let’s introduce some notation:
i—
I : the total number of transitions of type i—j in group G,
Ti- ik _ N _ _
2 : the total number of pair-wise joint transitions of type (i—j k—/) in group G,
T i— jk— m—n )
3.8 : the total number of joint transitions of type (i—j, k=!I, m—n) in group Gi

o = 0-1 1-0 1—1
Tl.g - Z'ri' _[ Tl.g Tl.y Tl,g ] 13

ieGy ,
. =5 B 01,01 0—1,1-0 - [—1,1-1
The= X5 ®F; =| ‘B s T
(1. /)Gy
5 @7 @7 —| 7010101 01051150 l—rl.l-al.[ﬂl]
T34 = Z’i ®1; &1 _[ Tss Tsy iy 127
(i, j)EG;

We can thus write our initial cycle-accurate macro-model as follows:
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0—=1,0-1
. b,
bl(?u l i

M o | y N, br-}'f)u.mn
= —1 —0 1-1 1=0 0=1,0-1 0=1,1-0 11,11 2
P=by+ z[fo Tl-x Tia ] bl..‘: + 2 [Tz.g Tz.g TZ.g ] d
g=l -1 | g=l :
by, plotiol
2.8 (3'7)
b{J—)],U—;I.U—ﬂ
3g
Ny it b()—)(].ﬂ—}l.l—)o
0-31,0-1,0-1 S10001-0 |—>1.|—»|.|—n] B
53 5 i, Fratay
&=l

I=L1=l -1
blg

In terms of N;, Na, Ns, values, the number of variables in the macro-model is 3N, +9N,+27N5,
which is independent of the number of circuit inputs .

Table 2 shows the experimental results for three macro-models using different number of groups
and using different grouping strategies. For Macro-model 1, Ny = 1, N, = 1, N3 = 1; For Macro-
model 2, N; = 8, N> = 8, N3 = 2, and the single inputs, input pairs, and input triplets are grouped
randomly; For Macro-model 3, N, = 8, N, = 8, N3 = 2, and our variable grouping heuristic is used.
The input sequence is randomly generated.

Table 2 Experimental results of variable grouping

Macro-model 1 Macro-model 2 Macro-model 3
Module r ECP (%) r ECP (%) r ECP (%)
C1355 1.98 8.07 1.57 9.19 2.54 7.76
C1908 1.41 15.36 1.42 15.04 2.76 11.16
C2670 1.18 11.66 1.19 11.64 1.63 10.38
C3540 1.42 17.47 1.76 15.48 2.37 12.19
C432 1.11 29.07 1.12 29.00 2.46 20.15

C5315 1.21 9.87 1.30 94 279 8.1
C6288 2.15 8.10 247 7.6 2.79 6.82
C7552 1.04 33.00 [.11 30.94 6.39 9.24
C880 1.42 19.82 1.31 20.78 1.95 16.34
Mull6 2.34 8.90 2.57 8.32 2.96 7.04
Adderl6 2.05 8.63 2.12 8.44 4.08 6.15

Results show that macro-models 1 and 2 have similar correlation factors and ECP errors, while
the quality of macro-model 3 is clearly better than the other two.

From Table 2, we can draw the following conclusions:
e Using more groups in variable grouping improves the quality of macro-models.

e A good variable grouping technique is very important to obtain a high quality macro-model.



3.3 Population stratification

From our experiments we found that the regression factor r between the estimated power and the
actual power is different for different ranges of power dissipation. This means that the regression
model is not strictly linear over the range of all possible power values. This phenomenon occurs
in many practical situations. One reason for the lack of linearity is that the macro-model equation
is only an approximation to the power-transition function. During the variable selection, we
discard the high order terms in the power-transition function and group subsets of variables of
given order together. The approximation introduces some non-linearity into the macro-model
equation. This effect is more pronounced when the number of variables is small.

To improve the quality of our macro-model, we refine the macro-model to a piece-wise linear
regression model. At the first step, we stratify the training set into several disjoint subsets (strata)
based on the switching activity of the vector pairs in the training set. A vector pair will fall into
exact one of these strata. Then the macro-model is trained separately for each subset of the
training set. When we apply this piece-wise linear macro-model to estimate the power for a given
vector pair, we first examine the switching activity range of the vector pair, and then invoke the
macro-model equation which was trained using vector pairs with a similar switching activity.

Theorem 2 The correlation measure r,, of the macro-model obtained by the population
stratification is no worse than that without population stratification r,,., 1.e.,

21

Fo 2

-nu.rrr
Proof : Since r is a monotonic-increasing function of R, we can prove the theorem by proving:
RJ‘Jr 2 R

nostr

We first introduce some properties of least squares [8]:

1. The sum of the observed values Y equals the sum of the fitted values Y :

n

Y, =

!

(B.1)

i=1 i=1
2. The sum of the weighted residues is zero if the residue in the ith trial is weighted by the fitted
value of the corresponding variable in the ith trial:

Y'.e=0, where Y = [P,,fz,---,)?" ]r . e=[e,ep, e, ] (B.2)
Sincee=Y-Y, Eqn.(B.2) can be written as YToy=Y".v (B.3)

As for the proof, assume that we have a macro-model with n variables. From [8] we know that
Without population stratification, the SSE and SSR of the macro-model are given by [8]:

SSE, ., =¢" -e=Y'.Y-Y".Y

_eT . 1 kst
SSRyoar =Y - Y [n J , where J is a nxn matrix of 1s.
SSE + SSR

vt o [Lr
nostr rmsrr_Y Y ("} JY (B4)

After stratification, we have k group of observed values Yy, Y5,..Yy and k group of fitted values

k
Y,,Y,,.., Y, . Each group has n; trials such that Zn‘. =,

i=l

k k
SSE,, = > SSE; =Y (Y[ -Y,-¥-Y)

i=l i=l
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k - e
Notice that 3 Y-y, =Y"-Y

k
SSE,, =Y"- Y=Y ¥y, (B.5)
=1
k ”j . —
SSR, =9 3 (Y, -¥)? (B.6)
=l =l
Let L=[L11]f,.L; =[L1-1]f, , (B.5) can be written as:
k

SSR,; =" S, ~—L; LY IR, L PV
2 n n

i=1

= 2(?,?'"?,. -%?,.TL,.LTY—%YTLTL,.?,. +”L2YTLL"£L,.LTY)
e
Because of (B.1), SSRy, can be simplified as:
i i”r‘

SSR,,, = Ei’;"?,. —%YTJY (B.7)
Using (B.3), we get:

SSR., = 2?{" Y, —’llYTJY (B.8)
So SSE,, +SSR,, =Y'Y - %YTJY = SSE 1sir + SR, 050r (B.9)

Ne«Xt we W]l] pl"O\"ﬁ that SSE.‘-H'SSSEHH.\'"'!

Assume that the population is stratified into k disjoint strata. The form of the macro-model and
the variable selection is the same in each stratum. Let O, denote the un-stratified population
which includes both the vector pairs and the corresponding power consumption, also let Oy, ...,
O, denote the sub populations in the k strata.

Omr.wrz Ol & 01U dsi UOI:
OfUOj=(b,f¢j

Let the variable matrix X, and P, denote the variables drawn from O, and Xy, ..., Xi, Py,
..., P denote the variable matrixes and power values drawn from Oy, ..., Oy Because each
stratum is disjoint:

X:m.frr = Xl + x2 + o Xk’ (BIO)
P =P1+ P2+ ...+ P (B.11)

The macro-model without population stratification can be written as:

Foostr = Brosir p -

where B,,,, is obtained by least squares fit using a set of training values P, and X,,q. The
function can also be written as:

f:m.nr = Brm.\'lr X 1t Brmslr X 3 Tt Brm.rrr X k (B 12)

The macro-model function for each stratum can be written as:
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fi=B-Xy, /,=By-X5, ..., i =B - X,

Because of (B.11),the sum of the power values for each stratum is the power of the whole
population, we can thus obtain the macro-model function for the whole population as follows:

far=hHh+fat+f, =B -X;+B, - Xy +--+B, - X, (B.13)

Because of the macro-model coefficients generation procedure, we know that By, B,, ..., By are
least squares fit coefficients for f, f3, ..., fi. Since, however, the coefficients B,,,,, are not the least
squares fit coefficients with the respect to variables Xy, Xy, ..., Xy, SSE,<SSE, .

Because of (B.9), we know that SSR,,2SSR,.... Hence R, =R, .,

Experimental results in Table 3 shows the improvement on the regression factor » of the macro-
model with the population stratification approach (Macro-model 1) and without it (Macro-model
2). We use Eqn.(3.7) as the macro-model equation, and the input sequence contains both biased
(non-random, wider range of switching activity and power) and random vectors.

Table 3 Experimental results of population stratification approach

Module Macro-model 1 (w/ str) Macro-model 2 (w/o str)
r ECP (%) r ECP (%)
C1355 26.0 7.86 16.4 8.76
C1908 12.8 9.34 10.4 11.19
C2670 23.6 8.77 20.0 10.22
C3540 19.7 11.45 11.8 12.88
C432 6.5 19.07 53 22.96

C5315 279 7.64 26.8 8.72
C6288 46.5 6.03 37.0 7.16
C7552 43.7 6.58 39.0 7.36
C880 10.4 14.19 10.4 15.32
Mull6 30.0 6.32 279 6.90
ADDERI16 38.1 5.64 18.4 6.73

Notice that population stratification can be done not only according to the switching activity of
the input vector pair, but also according to the transition behavior of some special inputs such as
clock, mode control, etc. However, this is not the subject of this paper.

3.2 Variable reduction

In the initial macro-model equation (3.7), the number of variables is about 150. Although the
large number of variables improves the quality of the macro-model, we would like to avoid
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evaluating a large macro-model equation for every clock cycle. Therefore, we must reduce the
number of variables in the equation without incurring a large error.

In our approach, the modified forward stepwise regression procedure [8] is used to reduce the
number of variables. The search method develops a sequence of regression models. At each step,
one X variable is added to or deleted from the final macro-model equation. The criterion used for
adding or deleting variables is the F~ statistics of the regression theory. The algorithm is
described next:

Input of the algorithm: Given are a set of candidate variables { X\, X5, ..., X, } which is in the
initial macro-model, a training set (values of variables for input vector pair and corresponding
Powermill power value), a low threshold 7, for deleting a variable, a high threshold ¢, for adding a
variable, an upper bound of number of variables MAX,,, S is the set of selected variables.

Step 0 (Initialization) : Set S= P and C={ X|, Xo, ..., X, }
Step 1 (Find the first variable) : Fit a one-variable linear regression model for each variable X; in
C. The F" test for each model is given by:
o+ _ MSR(X,)
' MSE(X;)
where MSR and MSE were defined in Section II. Assume that X; is the variable with the
maximum F value. If F; >1, then move X; from C to S and denote it as X, . Otherwise, no

=12,-,N

macro-model can be found for the given #; value (#; must be reduced). The algorithm terminates.

This step finds the first variable for the final macro-model. The F’ test is used to find the “most
significant” variable (as far as power dissipation in the module is concerned).

Step 2 (Add a variable) : Assume S = {}, for each X; remaining in C, fit the regression model with
a+1 variables X, ,X,,---, X, and X; . For each of them, the partial F test statistics is:

(e

gt = MSR(X, 1X), X5, X,) _
MSE(X;,X|, X3, X,) sib}

i

where b; is the estimated value of B; coefficient and s{b;} is the standard deviation of b;. Let X; be
the variable with the maximum F;" value. If F; 21, then move X; form C to § and denote it as

*
a+l

X .., increase a by 1, and go to Step 3; Otherwise the algorithm terminates.

This step adds one more variable into the final macro-model. The F " test is used to find the “most
significant” variable to add to the set of existing (already selected) variables.

Step 3 (delete a variable) : Assume S={ X|,X5,---,X, }, and X, is the latest variable added in
Step 2. Compute the partial F test statistics for all other variables in S:
o _ MSROX1X7 X5 Xy X Xa) _ b o

F' = ® * . )"
MSE(X,‘,X],X?‘,"HX“) S{b[}

i

Let X; be the variable with minimum F* value. If F; <, then remove X ; form S.

After adding a new variable into the macro-model, the “significance” of some old variable may
be reduced due to the joint effect of the newly added variable and other old variables. In such a
case, we have to remove the old variable from the macro-model. The F test is used to find the
“most insignificant” variable to delete from the set of existing (already selected) variables.

Step 4 : Repeat Steps 2 and 3 until one of following conditions is true:
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1. Algorithm terminates in Step 2.
2. C=0.

3. The number of variables in § equals to MAX,,;.

In our approach, the number of variables in the candidate set is 162 at the beginning (since we set
N,=8, N>=8, and N;=2). We choose 1, = 1, = 10.0, MAX,,; = 15. For most macro-models, the
algorithm terminated at the 3" condition at step 4 when the number of variables equals to
MAZX.. Only for one of the macro-models the algorithm terminated at step 2 when F ; <L -

3.4 Evaluation speed of the macro-model

The time complexity of macro-model evaluation in real applications is an important measure of
macro-model performance. In applications where the macro-model has to be evaluated every
clock cycle, the speed of the evaluation is, of course, a big concern. We divide the macro-model
evaluation into 2 stages: variable extraction and equation evaluation. The variable extraction
stage computes the variable values from an input vector pair. The equation evaluation stage
multiplies the variable values with their coefficients and sums up all the terms. Our macro-model
generation method guarantees that the computational time in each stage is constant, independent
of the input number and the module size. To study the “absolute” speed of evaluation, we wrote a
fully optimized macro-model evaluation program which takes an input vector sequence and
produces power estimates for the given module at each clock cycle. The speed of execution is
about 5000 vectors per second which is acceptable (compare this with execution speed of
Powermill simulation which is on average 150 gate-vector/second’ which means that for a
module with 1500 gates, Powermill can simulate only 0.1 vector per second). The macro-model
used by the program is generated by our macro-model generation procedure and stored in a
library. Notice that the absolute evaluation speed can be further improved by setting smaller
number to the constants in model generation procedure, such as Ny, Na, N3, and K, K5, K3 in
variable grouping and MAX,, in variable reduction. The loss in accuracy depends on the
characteristics of the module itself (number of primary inputs, highest order of correlated inputs,
etc).

IV. EXPERIMENTAL RESULTS

We have built our cycle-accurate macro-models for several modules, including the ISCAS-89
benchmarks. In our macro-models, we also included variables representing transitions on circuit
outputs, but only for two of the circuits (C432 and C880) variables related to outputs survived the
variable reduction phase.

The experimental setup is as follows. For each circuit, the population size is set to 80,000 vector
pairs (including both random and non-random sub-sequences). We first simulate each circuit for
the entire sequence using Powermill and record the cycle-by-cycle power. Size of the training set
is set to 3,000 . The macro-model is then trained using the training set. After the macro-model is
built, we apply it to different subsets of the population. These subsets are selected such that their
power behaviors are different from that of the training set. Average ECP and EAP are computed
by averaging the ECP’s and EAP’s of all sub-sets. The correlation factor r is computed based on

* On an UltraSparc IT workstation with 256MB of memory
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the fitted results on the entire population. Experimental results for our cycle-accurate macro-
models is summarized in Table 4.

Experimental results shows that our macro-model technique are very accurate when estimating
power consumption at RT-level. The average ECP and EAP are 10.2% and 2.0%, respectively.
Meanwhile, if we compare the results with those of macro—model 1 in Table 3, which is the full-
length macro-model before variable reduction, we see that our variable reduction algorithm is
significantly reducing the number of variables without incurring large error.

Table 4 Experimental results of cycle-accurate macro-models

Circuit No. of Variables ) ECP (%)
C1355 15 : 9.3
C1908 15 ; 11.6
C2670 15 . 9.6
C3540 15 : 12.5
C432 14 3 19.3
€5315 15 7.8

C6288 15 6.2
€552 15 6.9
C880 ; 14.3
Mul16 15 6.5
ADDERI6 6.4
AVE.

V. OTHER APPLICATIONS OF CYCLE-ACCURATE MACRO-MODELS

Application 1 : Estimation of moving average power

Cycle-accurate macro-models can be used to provide the average power consumption of a set of
input vector pairs {(Viy, Vi2), (Vai, Va2), ..., (Vu1, Via)}. As a special case, we want to estimate the
n+1-clock-cycle moving average of power consumption, which is {V,V3...V,;,}, the set becomes
{(Vh V'_g), (V'.’.s V3), ary (Vm vu+l)}'

The estimated average error is computed by:
PO P ST
P==3P, (5.1)
nis

where 15, is the estimated power for vector pair (V;, V;2). The estimation error is given by:

e=ﬁ—’i5=]—iﬁ,.—lil’,-=li(ﬁ,.—P,-)=lie, (5.2)
n

nim n o= i=1 n o

where P; is the actual power value for vector pair (Vj;, Vi).
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As mentioned in Section II, the error terms e; are random variables which follow the same normal
distribution with mean of 0 and variance of VAR(¢;) = ¢°. As a result, the error for average power

e also follows the normal distribution with mean value of 0 and variance of VAR(e) = l0‘2.

n

Proposition [8] For a given confidence level, the confidence interval for e is smaller than the

confidence interval of e; by a factor of J1/n .
Intuitively, the error for estimating average power will become smaller as n increases.

To demonstrate the impact of n on estimation error, Figure 3 shows the scatter plots of the
estimated power versus actual power for the circuit C1908. Figure 3(a) shows the plot for power
of each clock cycle (n = 1), Figure 3(b) shows the plot for average power over each 5 consecutive
clock cycles (n = 5), Figure 3(c) shows the plot for average power over each 10 consecutive clock
cycles (n=10).

Power for avery cycle
as T T

T 3 T T

Avarage powar for evary 5 cyclas
T v

~
n
)

n

Actual powar (mW)
@

Actual averaga powar (mW)
tn

05 05F

g
() s 1 15 2 25 3 35 ° ; 2 3
Estimaled power (mW) Estima” * ower (mWW)
(a) (b)
Averaga power for every 10 cycles
3 - - :
2.5¢ 4
Z o J
H i
=3 0y d
o i i
a5l : .
g,1,5 o érh ]
£ o
B . o
E |
<
; ; "
0 05 15 25 3

1 2

Estimatad avarana power (mW)
(c)

Figure 3 Scatter plots of estimating average power

It can be seen obviously from Figure 3 that, estimation error decreases when n increases from 1 to
10. Therefore we can predict (and we have already seen) that the error in estimating the average
circuit power (i.e., the moving average power for large n) is very small.
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Cycle-accurate macro-models can be transformed directly to cumulative macro-models which can
estimate the average power consumption, given average transition probabilities and joint
transition probabilities of the input sequence [6].

Application 2 : Estimation of power distribution

A good cycle-accurate macro-model is the basis for doing power analysis at RT-level. Figure 4
shows the experimental results when applying cycle-accurate macro-model to estimate the power
distribution of module C6288 under a 8000-vector sequence. Figure 4(a) shows the actual power
distribution, and Figure 4(b) shows the estimated power distribution. It can be seen that they are
quite close.
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Figure 4. Cycle-accurate macro-model for estimating power distribution

Application 3 : Estimation of rate of current change (di/dr)

Noise analysis requires information about the change in current flow between two clock cycles.
Figure 5 shows the experimental results of estimating the rate of current change and its
distribution using cycle-accurate macro-model for ADDER16.
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Figure 5. Cycle-accurate macro-model for estimating current

VI. CONCLUSION

In conclusion of our work, we present a method for generating cycle-accurate macro-models for
RT-level power analysis. The proposed macro-model predicts not only the cycle-by-cycle power
consumption of a module, but also the moving average of power consumption and the power
profile of the module over time. We present an exact power consumption function to derive our
final macro-model equation. A variable reduction algorithm has been proposed to eliminate
the “insignificant” variables based on statistical sensitivity test. First order temporal correlations
and spatial correlations of up to order 3 are considered in order to improve the estimation
accuracy. Population stratification has been used to increase the fidelity of the macro-model.
Experimental results show that, the macro-models have 15 or fewer variables and exhibit <5%
error in average power, and <15% errors in cycle-by-cycle power compared to circuit simulation
results using Powermill.
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