Parallel Implementation of
a Class of Adaptive
Signal Processing Applications

Myungho Lee, Wenheng Liu,
and Viktor K. Prasanna

CENG 98-09

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213 740-4483)
April 1998

Parallel Implementation of
a Class of Adaptive
Signal Processing Applications

Myungho Lee, Wenheng Liu,
and Viktor K. Prasanna

CENG 98-09

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213 740-4483)
April 1998

Parallel Implementation of

a Class of Adaptive Signal Processing Applications *

Myungho Lee, Wenheng Liu, and Viktor K. Prasanna
Department of EE-Systems, EEB-200C
University of Southern California
Los Angeles, CA 90089-2562
http://ceng.usc.edu/ prasanna

{mlee + liu + prasanna}@halcyon.usc.edu

Abstract

Recently, High Performance Computing (HPC) platforms have been employed to realize many
computationally demanding applications in signal and image processing. These applications require
real-time performance constraints to be met. These constraints include latency as well as throughput.
In order to meet these performance requirements, eflicient parallel algorithms are needed. These
algorithms must be engineered to exploit the computational characteristics of such applications.

[n this paper, we present a methodology lor mapping a class of adaptive signal processing applica-
tions onto HPC platforms such that the throughput performance is optimized. We first define a new
task model using the salient computational characteristics of a class of adaptive signal processing
applications. Based on this task model, we propose a new execution model. In the earlier linear
pipelined execution model, the task mapping choices were restricted. The new model permits flexi-
ble task mapping choices, leading to improved throughput performance compared with the previous
model. Using the new model, a three step task mapping methodology is developed. In consists of 1) a
data remapping step, 2) a coarse resource allocation step, and 3) a fine performance tuning step. The
methodology is demonsirated by designing parallel algorithms for modern Radar and Sonar signal
processing applications. These are implemented on IBM SP-2, a state-of-the-art HPC platform, to
show the effectiveness of our approach. Experimental results show significant performance improve-
ment over those obtained by previous approaches. Our code is written using C and the Message

Passing Interface (MPI). Thus, it is portable across various HPC platforms.

*Work supported in part by the US Defense Advanced Research Projects Agency (DARPA) Embeddable Systems

Program under contract no. DABTG3-95-C-0092 monitored by Iort. Hauchuca.

1 Introduction

Recently, High Performance Computing (HPC) platforms have been employed to realize many com-
putationally demanding applications in signal and image processing. Many computationally intensive
algorithms have been proposed for these applications. For example, in Radar signal processing, Space-
Time Adaptive Processing (STAP) techniques have been developed for the next generation radar sys-
tems which will be required to provide longer range detection of increasingly smaller targets [33]. It
employs adaptive array processing techniques and simultaneously combines the signals from spatial
domain (collected by an array of sensor elements) and temporal domain. Such techniques have been
shown to improve the accuracy and reliability of target detection in the presence of jamming sources
and environmental clutter.

Such Adaptive Signal Processing (ASP) applications are typically composed of a sequence of compu-
tation stages. Each stage consists of a number of identical tasks (i.e., FFT’s, QR decompositions, etc.).
Each stage repeatedly receives its input from the previous stage, performs computations, and sends its
output to the next stage. The first stage receives the external input data (usually a 2-D or a 3-D data
from the sensors) while the last stage produces the results (ex. Doppler bins, beam-patterns, etc.) as
output. The data access pattern of the stages is usually different from one another. Hard real-time
performance constraints are to be met in these applications. These include latency (i.e., the time for
processing one input data set) and/or throughput (i.e., the number of outputs per unit time).

Based on the computational complexity and real-time performance constraints, ASP applications
demand sustained performance in the range of 1 GFlops/sec to 50 TFlops/sec. Therefore, parallel
computing platforms are needed. State-of-the-art HPC platforms are integrated using commercial off-
the-shelf components. Typically, these platforms consist of powerful compute nodes, memory modules,
[/O devices, and high speed interconnects [5]. These systems offer programmability, system scalability,
and design flexibility. Recently, many systems have been designed for ASP applications by using HPC
technology. Such ASP systems process signals from an array of sensor elements on-the-fly in an em-
bedded environment such as on an air-borne or a sea-borne vehicle. Therefore, these systems must be
designed to meet physical constraints such as size and weight, and meet constraints on power.

In using HPC platforms for parallelizing ASP applications, algorithmic techniques are needed for
realizing high performance. These techniques must be developed so that the available computing power
of a HPC platform can be effectively utilized in performing the application. In this paper, we address

the problem of optimizing the throughput performance of an ASP application on a HPC platform.

Traditional HPC applications which typically employ supercomputers for large scale simulations have
not paid much attention to optimizing the throughput performance. However, in ASP applications, a
sequence of input data is continuously received. The outputs must be produced to keep pace with the
data input rate. Therefore, throughput performance is a key performance measure in these applications.

Previously, a number of researchers have addressed parallelizing signal and image processing ap-
plications. 1In [12], key techniques and issues in parallelizing applications on HPC platforms are ad-
dressed. Issues in mapping image processing and vision applications onto HPC platforms are addressed
in (3, 9, 22, 23, 34]. Parallelizing irregular problems arising in vision are addressed in [7, 24]. Parallel
architectures for image processing and vision are discussed in [2, 20, 35].

In [26, 27], the throughput optimization problem for sensor-based applications is addressed. The
application is represented as a sequence of computation stages. They used a dynamic programming
approach to assign processors to the computation stages. A linear pipelined execution model was used
for the mapping. In this model, each stage is mapped onto a disjoint set of processors. The processors
assigned to a stage receive their input from the processors assigned to the previous stage, perform
the computations, and send their output to the processors assigned to the next stage. Clustering and
replication of stages are also considered. However, the mapping choices allowed in the linear execution
model are restricted. As shown in this paper, previous solutions obtained under the linear execution
model can be improved. Choudhary et. al. [6] also considered the problem of optimal processor mapping
for signal and image processing applications. They considered the case when a sequence of data sets is
processed by a collection of stages and the inter-stage data dependence forms a series-parallel partial
order. They also assume that each stage is mapped onto a disjoint set of processors. Their solution
applied to the problem considered in this paper is similar to the one in [26, 27]. However, clustering
and replication of stages are not considered in [6]. Also, the modeling of communication costs in [6] is
different from that in [26, 27].

We approach the throughput optimization problem from a task mapping perspective. We first define
a task model for ASP applications by capturing their salient computational features. The task model
exploits the independent activitites among the tasks in a stage. Furthermore, to efficiently exploit the
state-of-the-art HPC platforms (which consist of powerful compute nodes), coarse grain (task level)
parallelism is considered in our model. We then define a new execution model. In the linear execution
model (that has been used in the earlier approaches), a disjoint set of processors is assigned to the

tasks in each stage. The one-to-one mapping between the stages and sets of processors offers restricted

mapping choices. We propose a new execution model which can relax this restriction. It leads to
higher throughput performance compared with the throughput obtained using the linear execution
model. A novel stage partitioning technique is used to realize the new execution model by exploiting
the independency of tasks in each stage.

Based on the new model, we propose a three-step task mapping methodology. Step 1 performs
Data Remapping. This step considers the data access pattern of each stage. If adjacent stages have
different data access patterns, data remapping is performed to reduce the communication cost. Step 2
performs Coarse Resource Allocation. This step allocates the available processors to the computation
stages according to their computational complexity. A linear pipeline is formed in this step. The data
remapping algorithms needed between adjacent stages (as specified in Step 1) are inserted. Inter-stage
communication cost is computed based on the inserted data remapping algorithms. Step 3 performs Fine
Performance Tuning. This step realizes the new execution model by reassigning processors, partitioning
stages, and redistributing the tasks between adjacent stages. The inter-stage communication algorithms
are also modified accordingly. A heuristic algorithm is used in this step to reduce the period of the
pipeline in an iterative manner.

The rest of the paper is organized as follows: Section 2 introduces background information including
computational characteristics of ASP applications, characteristics of the state-of-the-art HPC platforms,
our task model for these applications, and the key issues in designing and engineering parallel algorithms
for the ASP applications considered in this paper. Section 3 summarizes related previous approaches.
A new execution model is introduced in Section 4. Using the new model, a three step task mapping
methodology is presented in Section 5. In Section 6, parallel algorithms are designed for Radar and
Sonar signal processing applications using our methodology. These algorithms have been implemented on
IBM SP-2. Our code is written using C, LAPACK (a standard linear algebra library), and the Message
Passing Interface (MPI). Therefore, our code is portable across various HPC platforms. Experimental
results show the effectiveness of our approach in optimizing the throughput performance compared with

the previous approaches. Section 7 concludes the paper.

2 Background

In this section, we describe the characteristics of Adaptive Signal Processing (ASP) applications by
illustrating examples from Radar and Sonar signal processing. Then we describe the computational

and communication characteristics of the state-of-the-art HPC platforms. A task model is derived for

CPI DATA CUBE SPACE -TIME PROCESSING TARGET

DETECTION
Space Time . 3. WEIGHT
TARGET AppLIcA| Z 4. THRESHOLD TARGET
DATA TION DEECTOH DECISION
z=whe ”
Tw | CFAR
i
2. WEIGHT j A
ANTENNA gomreel T ’
=
ELEMENTS Aen
TRAINING
DATA
PRIs
cPI | 1. TRAINING
DATA STRATEGY

Figure 1: Overview of STAP processing

ASP applications based on their salient computational features and by considering the characteristics of
HPC platforms. Finally, we discuss the key issues in designing algorithms for optimizing the throughput

performance.

2.1 Characteristics of a Class of Signal Processing Applications

We first describe example ASP applications [rom Radar and Sonar signal processing to illustrate their

computational features.

1. Space-Time Adaptive Processing (STAP):

STAP techniques are being developed for the next generation radar systems which will be required
to provide longer range detection of increasingly smaller targets [33]. Such techniques simultane-
ously combine the signals received on multiple elements of an antenna array (the spatial domain)
and from multiple pulse repetition periods (the temporal domain) in a time interval called Co-
herent Processing Interval (CPI). STAP offers the potential to improve the radar performance in
several areas such as 1) improving low-velocity target detection, 2) detecting small targets that
might otherwise be obscured, 3) detection in combined clutter and jamming environments, and 4)
robustness against system errors and capability to handle various types of interference.

STAP consists of three major steps. First, a set of rules called training strategy is used to
estimate the interference. The second step is weight computation. Based on the training data, an

adaptive weight vector is computed. Weight computation requires the solution of a linear system

ot

of equations. This step is usually computationally intensive. Finally, in weight application step,
the computed weight vector is applied to obtain the test statistic. This step involves vector dot
product operations. The output of the processing, the test statistic, is a scalar for each range,
angle, and velocity. Using the output, a target presence is queried at a specified angle and Doppler.

Figure 1 shows the overview of STAP processing.

A fully adaptive STAP processing computes and applies a separate adaptive weight to every
element and pulse. This requires the solution of a M N-dimensional linear system of equations,
where N is the number of antenna elements and M is the number of pulses transmitted in one
CPL. Typically, N and M vary [rom ten to several hundreds. I (number of range gate) varies
from 500 to 50,000. For many radar systems, the product MN ranges from several hundreds
to several thousands. Many partially adaptive approaches have been developed to break down
prohibitively large problems arising in fully adaptive STAP algorithms into a number of smaller,

more manageable adaptive problems while achieving near-optimum performance.

Sampling Rate

=10 Hz~25 KHz Frequency Domain
=y Adaptive Output Rate=1 Hz~100 Hz
< FET Beamforming
O
@]
O P
(@)
O -
O Beam Space Adaptive | pep
2 Conventional Beamionning 100 ~5000 Beams
i N Beamtatming Time Domain per Qutput
Sensors

Figure 2: Adaptive sonar beamforming techniques

2. Sonar Beamforming:
Beamforming is a technique which spatially filters the signals received from an array of sensors
and estimates the spatial features of the sources [31]. A typical sonar beamformer has an array
of sensor elements (usually a towed array or a hull-mounted array with 20 to 1000 hydrophone
elements). It passively receives the acoustic propagation wave-field signals and samples the sig-
nals. In most cases, the sampling rate is less than 25 KHz. The input data (time-domain or
frequency-domain) is linearly combined with a weight matrix (known as amplitude shading) to

form a sonar beam for a particular direction-of-look. The requirements of high resolution and high

i

signal-to-noise ratio in sonar systems have led to the development of adaptive sonar beamforming
techniques. Various signal models as well as noise models have been used to characterize the envi-
ronmental features. Based on such models, steering vectors are derived. These vectors are used for
optimal estimation of the shading for each direction-of-look. The adaptation of the entire sensor
element domain is called fully adaptive processing. Since fully adaptive processing is computation-
ally demanding, partially adaptive processing is sometimes used to reduce the dimensionality of
adaptive weight matrices [31]. Numerical methods form the basis of the weight adaptation stage.
Data decomposition-based least-squares algorithms are generally employed. These algorithms
include QR decomposition (QRD), singular value decomposition (SVD), and Cholesky IFactoriza-
tion, among others. As more advanced numerical methods are used for weight adaptation and as
the problem size increases, the computational complexity increases rapidly. Figure 2 shows the
overview of adaptive sonar beamforming techniques. In real-time sonar beamforming, the latency
constraint is in the range of few seconds while the throughput constraint is in the range of few

results per second.

From the above example ASP applications, some computational characteristics (that are different

from those of scientific and engineering applications) can be identified. These include:

e ASP applications are typically composed of a sequence of computation stages. [Jach stage repeat-
edly receives its input from the previous stage, performs computations, and sends its output to
the next stage. A large number of identical tasks are performed in each stage. For example, each
task can be a FFT or a QRD. Each task executes on its own portion of the input data. Thus,
tasks in each stage are independent and can be executed in parallel. The first stage receives the
external input data (usually a 2-D or a 3-D data from the sensors) while the last stage produces
the results (ex. Doppler bins, beam-patterns, etc.) as output.

e The data access pattern of each stage changes as the computation proceeds. For example, in
Figure 3, processors access the two dimensional input data along columns in Stage 1, along rows
in Stage 2, and along diagonals in Stage 3. Thus, initially, the matrix must be distributed such
that each processor has a number of columns of the matrix. By data remapping (Remapy 2 and
Remaps 3 operations), each processor can have all the necessary data to perform the tasks in each
stage. Without data remapping, the data needed to perform a task is located in many processors.

This incurs a lot of communication. Thus, hinders scalable performance.

Input

Data
- -
Data Z -
Access Lo
Patterns
%,
Computation s
> S > S

Stages ! Remap 5 2 Remap; 3 ?

D : Data accessed by P : Data accessed by P

. : Data accessed by P, D : Data accessed by P3
Figure 3: An illustration of data remapping

e Real time performance constraints are usually imposed on ASP applications. These constraints
include latency (i.e., response time) and/or throughput (i.e., number of results per unit time). The
latency constraint specifies the time interval in which an input data set is processed by all the
computation stages. The throughput constraint is set so that the processing can keep pace with

the data input rate.

An example ASP application is illustrated in Figure 4. A Real-Time STAP (RT_STAP) benchmark
suite has been developed by the MITRE Corporation [30]. A range of benchmarks have been defined
based on the computational complexity. Figure 4 shows the most computationally demanding case. It
illustrates the computation stages, the computational kernels involved in each stage, the data access
pattern of each stage, and the latency and throughput performance constraints. The computational
complexity of each task and the number of parallel tasks in each stage are also shown. Different stages
have different degrees of parallelism and computational complexities. The sequential execution time
for each stage is measured on a Sun UltraSPARC (143 MHz, 128 Mbytes of main memory). GNU
C-compiler was used with level-2 optimization. It was observed that an optimization level higher than 2
resulted in minor performance improvement. The sequential execution time for each task was obtained

by dividing the sequential execution time of each stage by the number of parallel tasks.

oo

Video-to-l/Q Calibrati d
Input Data Z on an
P Conversion Pulse Compression
(Vector Multiplication and .)
Range gates Discrete Convolution) (FFT ‘s and IFFT's)
(1920)
Antenna — / //(7
Elements / -
(22) =
Pulse Repetition
Interval
(64)
;|—;" " ceed h ,
Weight Weight Doppler
Application Computation Processing
(Vector Dot Products) (QRD’s) (FFT’s)
Performance Constraints: Tiapency = 161.25 msec
Tperiod = 32.25 msec
" . Sequential Sequential
g Computan?nal Number of ComputaﬂP gl Execution Execution
Computation Stages Complexity Complexlity / = :
(MFlops) Parallel Tasks Task (MFlops) Time | Time/Task
P P (sec) [(msec)
(i) Video-to-1/Q Conversion 79.0 1,408 0.056 4.81 3.42
(ii) Calibration and Pulse 93.6 1,408 0.067 4.77 3.39
Compression
Preprocessing Total 172.6 9.58
(iii) Doppler Processing 21.8 10,560 0.002 1.67 0.16
(iv) Weight Computation 1083.2 128 8.463 40.82 318.91
(v) Weight Application 16.3 128 0.127 0.93 7.27
Adaptive Processing Total 1121.3 43.42
Total 1293.9 53.00

Figure 4: Computational characteristics and sequential execution time of a STAP benchmark

9

2.2 Characteristics of Target Architectures

The target architectures for our task mapping is HPC platforms with explicit message passing. Most
of the state-of-the-art HPC platforms are built using commercial off-the-shelf (COTS) components.
These platforms, typically, consist of three main components: 1) powerful com pute nodes and memory
modules, 2) I/O devices, and 3) a high speed interconnect [5]. Each of the compute nodes and the 1/0
devices are coupled to the interconnection network using a network interface. Examples of such HPC
platforms include IBM SP-2, SGI/Cray T3E, and Intel Paragon. The high computational power, ready
availability, and cost effectiveness of these systems have led to their use in parallelizing signal and image
processing applications.

In these machines, the overheads for performing communication at the user level are very high com-
pared with the computational power of processors. The total communication time for sending a message
consisting of m bytes from one processor to another can be modeled as Ty + m x 1. Ty is the start-up
lime to initiate a communication between the sender and the receiver. 74 is the unil transmission time
per byte of data. In a typical HPC platform, T is much larger than 7;. Table 1 shows the peak per-
formance of a single node, observed start-up time, and transmission time per byte for message passing
on IBM SP-2 and SGI/Cray T3E using the Message Passing Interface (MPI), a standard library for
message passing. (Since the MPI is a standard library, a parallel code developed using MPI is portable
across various HPC platforms.) For example, for IBM SP-2, the values of T and 74 are 40 psec and
9.56 nsec per byte respectively. It is important to reduce the number of communication steps to min-
imize the overall communication time. Therefore, these machines are suitable for coarse grain parallel

computations.

Table 1: Computation and Communication Features of some HPC Platforms

Peak Stair_t-up Time 'Transmisslqh
Machine Performance. (usec) Time per Byte
of a Single Node (nsec/byte)
IBM SP-2 640 Mflops 40 9.56
Cray T3E 1200 Mflops 16 5.45
(T3E - 1200)

As exemplified in Figure 4, the typical problem size of an individual task in ASP applications is
small. For example, each QRD — the most computationally intensive task in RT _STAP — decomposes a
(complex) matrix of size 240 x 66. Parallelizing such a QRD results in a large number of communication

steps. Invoking a communication step takes tens of pseconds as shown in Table 1. However, for exam ple.

10

it takes 318.92 msec to perform each QRD on a single processor UltraSPARC. Thus. the communication
overhead in parallelizing each QRD can be high compared with the computation time. This leads to
poor utilization of processors. Therefore, exploiting parallelism finer than the level of each task is not

desirable for ASP applications.

2.3 A Task Model for Signal Processing Applications

Based on the computational characteristics of the ASP applications and the features of HPC platforms,
we define a task model for these applications. As described in Section 2.1, ASP applications are composed
of a sequence of computation stages. Each stage consists of a number of identical tasks that can be
executed independently. The data access pattern of the stages is usually different from one another.
We exploit only coarse grain (task level) parallelism in each stage and consider possible data remapping
between adjacent stages.

Our task model is defined as a set of pairs (n;, t;), where 1 < i < 5. n; is the number of tasks in Stage
i, and t; is the sequential execution time of each task in Stage i. n; and ¢; may vary from stage to stage.
Figure 5 illustrates our task model representation for the RT_STAP benchmark. For example, nqy = 128,
and ¢y = 318.91 msec, where S, is the weight computation stage involving QRD’s. Note that a task in

Stage i+ 1 can begin execution only after all tasks in Stage 7 are completed, where 1 <7< S5 — 1.

2.4 Key Issues in Algorithm Design and Implementation

Assume that a given ASP application is represented using our task model and a fixed number of pro-
cessors (F?) are given. Our problem is to map the ASP application onto P processors such that the
throughput performance is optimized. As described, the ASP applications considered in this paper have
regular computation and communication characteristics that are known apriori. Thus, the task map-
ping can be performed at compile time or during parallel algorithm design phase. We perform the
task mapping at the parallel algorithm design phase. Therefore, alter the task mapping is performed,
each processor is assigned a number of tasks (from the same stage or from different stages). Possible
communication activities with other processors are also specified for each processor. Note that only
coarse grain (task level) parallelism is exploited in each stage.

A trivial solution to our task mapping problem can be obtained by mapping all the stages of the
application onto a single processor. ach data set from the incoming sequence of data sets is assigned

to a processor in a round-robin fashion. Hence, P data sets are executed concurrently by P processors.

11

Input Data

Vector Multiplication and . ,
Discrete Convolution FFT ’s and IFFT’s

Stage 5 Stage 4

ts=7.27 ~ty=318.91
n; =128 ng =128

Vector Dot Products QRD’s FFT's

Figure 5: A task model representation of RT_.STAP benchmark. (Note: ¢;’s are in msec.)

The resulting throughput can scale linearly with the number of processors. However, this is not an

acceptable design due to the following reasons:

1. Each input data set of a ASP application is usually collected by a number of sensor elements.
The collected input data must be sent to a single processor for performing all the computations.
This may incur a large communication overhead, because the input data size is large and the
communication steps from the sensors are serialized. Let Typpmm denote the time for sending the
input data collected by the sensor elements to a processor. Let Ty = Teomm + Teomp be the
total time for communication and computation using a single processor. Let Tperioq denote the
resulting period. Then, if P processors are used, Tjcrio¢ can be computed as '17} Note that
Treriod 2 Teomm- In case Teomm > "‘—;;“’—, then, processors will idle, due to the late data delivery
from the sensors to the processors. Therefore, large Tepmm is undesirable. For example, consider

the RT_STAP benchmark described in Section 2.1. The data cube size is 10.8 Mbytes. Assuming

12

an interconnection network (such as the one used in IBM SP-2) in which the start-up cost is
approximately 40 psec and the transmission rate is approximately 100 Mbytes/(sec x processor).
Teomm > 300 msec. 300 msec is very large. Hence, the processors will be idle if we try to meet the
throughput requirement. Furthermore, T, alone far exceeds the desired period (32.25 msec)
specified in the benchmark suite. Therefore, this design can never satisfy the given throughput
requirement.

2. An entire input data set must be stored in a single node. Besides the input data, there are some
data structures generated during the execution of the application. Furthermore, memory buffer
space is needed for receiving the incoming data sets. Therefore, the above solution requires large
memory in each processor. A task mapping requiring a large memory space is not desirable for the
class of ASP applications considered here. In addition, due to size, power, and weight constraints.
if the total memory required in the application exceeds the capacity of the local main memory,
then the performance will suffer due to excessive disk accesses.

3. Due to the sequential processing and due to the above overheads, the resulting latency may be too
high. For example, in Figure 4, the sequential execution time for RT _STAP benchmark running on
Sun UltraSPARC is 53 seconds without considering Te.pmm. 93 seconds is too high to be acceptable

for this application. The benchmark specifies a latency of 161.25 msec.

Therefore, in the remainder of this paper, the above trivial mapping is not considered.

3 Previous Task Mapping Approaches

Previously, several efforts have addressed the throughput optimization problem [6, 26, 27]. In this
section, we describe those approaches and illustrate their limitations.

A linear execution model has been widely used for parallelizing ASP applications. In this model, each
computation stage is mapped onto a disjoint set of processors. The output data from the processors
assigned to a stage is fed forward to the processors assigned to the next stage. Thus, concurrency
among the stages is exploited. Subhlok, et. al. [26, 27] considered the processor assignment problem
for applications that consist of a sequence of computation stages (called data parallel tasks in their
notation), using the above linear execution model. The execution time of a stage is given as a function
of the number of processors assigned to that stage. Also, the communication time between two adjacent
stages is modeled as a function of the number of processors assigned to these stages. A dynamic

programming approach was used for optimizing the throughput (or latency) based on this model. This

13

technique produces optimal throughput when the linear execution model is used. Techniques including
clustering and replication of stages were also used. In order to reduce the high complexity of the dynamic
programming algorithm, a fast greedy solution was also developed. They argue that the greedy algorithm
generally produces optimal or near optimal mapping.

Choudhary et. al. [6] considered optimal processor assignment problems when a sequence of data
sets is processed by a collection of computation stages (called tasks in their notation). The problem
is to optimize the latency (throughput) with a given throughput (latency) requirement. They assume
that the inter-stage data dependence forms a series-parallel partial order. Each stage is assumed to
be mapped onto a disjoint set of processors. The execution time of a stage is given as a function of
the number of processors assigned to that stage. They assumed that the communication cost can be
incorporated into the computation time. They also developed a dynamic programming solution for
obtaining the processor assignment. When an ASP application with a sequence of computation stages
is mapped onto a given set of processors, their approach is similar to that in [26, 27]. However, they do
not employ clustering or replication of stages.

The techniques in [26, 27] and [6] assume the following:

I. A disjoint set of processors is assigned to each stage.
2. All tasks in a stage can be executed on one or more processors and the execution time of each

stage is a function of the number of processors assigned to the stage.

Even though they were motivated by signal and image processing applications, their task model does not
exploit the fact that tasks in each stage can be independent. Therefore, they do not consider scheduling
of independent tasks in a stage.

Clustering and replication of stages are well known techniques for improving the throughput perfor-
mance using the linear execution model. In the stage clustering technique, adjacent stages are clustered
into a module. Such a module is mapped onto a set of processors. If the clustered stages have the same
data layout, their data transfer between these stages is not needed. Otherwise, the processed data in a
stage is fed back (remapped) to the same set of processors for executing the next stage.

Replication technique can also be used to improve the throughput performance of an application using
the linear execution model. In this technique, a stage is replicated such that a sequence of incoming
data sets use the replicated instances of the stage in a round robin fashion. Thus, instead of assigning a
large number of processors to a stage, multiple instances of the stage are created using a small number

of processors. Replication is effective in the following cases:

14

A A —————]
| | |
PS, PS,
g
H)
s PSy| 1 : 8 PSi| 1 1 :
= | | ; | Time R '_I—'_‘i T = Time
I
I . . I
II LR Ci2 : Ty | : T ! Cu: Ta |
1 | i !] u i —> [¢
X . To' +Cys
Period =T, + Cqp Period = —2-2—12-
(a) Task mapping without replication (b) Task mapping with replication

["]: stage1 [I]]: Stage2

% . communication Between
Stage 1 and Stage 2

Figure 6: Hiding and amortizing communication cost using replication

1. In ASP applications, the computational requirements of adjacent stages can be significantly differ-
ent. Thus, the number of processors assigned to the stages may vary significantly. This may cause
a large communication overhead between these stages, because a large number of communication
steps are involved. Replication can result in a smaller number of communication steps, because
the number of processors assigned to those stages are more balanced. Thus, the communication
cost is reduced. Furthermore, the communication cost is amortized over multiple instances of the
replicated stage. Figure 6 (a) shows a task mapping without replication. Here, Ty > 7. The
period for this linear pipeline is 15 + C42, where (12 denotes the communication cost between
Stage | and Stage 2. Figure 6 (b) shows a task mapping with replication. The period of this
pipeline is -1333;(4'3—‘, assuming ili—’l",'iui > Ty + C12'. Note that Cyy' can be less than or equal to
C'12. This can happen since the number of processors used for an instance of Stage 2 is only half
of that in Figure 6 (a). Thus, the number of communication steps to perform the inter-stage
communication is reduced. Furthermore, the communication cost (C'3') for one instance is hidden
and the communication cost for the other instance is amortized over two instances. Therefore,

. ” o v
each instance pays a communication cost of %L only.

15

2. Some computationally demanding stages may have a low degree of parallelism, i.e., the speed-up
curve is sub-linear. In such a situation, the processors assigned to that stage will not be utilized
efficiently. Replication can be used such that each data set is processed by a subset of these

processors. This can improve the processor utilization.

For a given number of processors, replication can increase the system throughput, however, it results in
a larger latency compared with the case when replication is not used.

Figure 7 illustrates various task mappings using the linear execution model with and without clus-
tering and replication of stages. In this example, a two-stage application is mapped onto 6 processors,
where ny = 5, ng =7 and £; = 1 second, t» = | second. For the sake of simplicity, we assume that the
communication cost between the adjacent stages to be zero. As discussed in Section 2.4, the solution
that maps all the 12 tasks in one initiation onto a single processor is not considered. Figure 7 (a) shows
the mapping using the linear execution model without clustering and replication. Such a mapping is
obtained by the techniques proposed in [6]. Figure 7 (b) and (¢) show the mapping with clustering or
replication. Both of them result in a throughput of 0.33/sec. Fig 7 (d) shows a mapping with clustering
and replication. It results in a throughput of 0.43/sec. These mappings are obtained by the techniques

I.)

in [26, 27]. However, the optimal throughput that can be achieved for this application is ;=77 =

% = 0.5/sec. We will show in sections 4 and 5 that we can improve their solutions and achieve the

optimal throughput for this example.

4 An Execution Model

[n this section, we propose a new execution model for mapping an ASP application onto a HPC platform.
The proposed execution model is based on our task model defined in Section 2.3. The execution model is
realized using a technique called stage partitioning. The benefits and the overheads in implementing the
new execution model are also discussed. Based on this new model, an optimal task mapping algorithm

using dynamic programming is derived.

4.1 Proposed Execution Model

As discussed in Section 3, the approach using the linear execution model may result in inefficient
processor utilization due to unbalanced workload. Thus, the throughput of the resulting pipeline design

may not be optimal. By clustering and replicating stages, the workload unbalance can be mitigated

16

Task Mappings_

Throughput=0.33/sec

o
5 22 2] 2
@ 2 2
S E 1
Rl EIE
IEESEIE _
" Time

(a) Linear pipeline

Throughput=0.33/sec

o A
Given Application 5 313 2%%@ 1
0
Q . sy
§ T2 T2 First Initiation
a
Stage 1 Stage 2 1 588_;. 2
. - 2
112|2|1|2|2 .
. Second Initiation
Time
(b) Linear pipeline (clustering)
I —— -
Third Initiation
Throughput=0.33/sec
ny = 5 9 A
t1 =1 n2 =7 §]2 2 2 @
o= @ 2|12|2 Unused
8 2] 2 Computing Power
B A2|2 /2 2
1 1881 1
111 1]1]1 _
" Time

(c) Linear pipeline (replication)

Throughput=0.43/sec

ok
g :1 EiR
a
8 1 BE
B 1[7] 1,22]2] 2
11 2|12|2
1] 1] 1 2l2|2

" Time

(d) Linear pipeline (clustering and replication)

Figure 7: Various task mappings using the linear execution model with clustering and replication

17

to some extent. However, as shown in the example in Section 3, these two techniques are not always
effective in optimizing the throughput.

Our new execution model is defined to exploit the independent activities among the tasks of a com-
putation stage. Note that, cach task is mapped onto exactly one processor in our execution model.
Therefore, only task level (coarse-grain) parallelism is exploited. In the linear execution model, each
computation stage is mapped onto a disjoint set of processors. Therefore, there is a one-to-one mapping
between the stages and the sets of processors. Our execution model, on the other hand, allows the
processor sets for adjacent stages to overlap. That is, a subset of tasks of a stage (or the entire stage)
can be mapped onto the processor set assigned to one of its adjacent stages. This technique relaxes the
restricted choices for task mapping allowed in the linear execution model.

To realize the new execution model, we propose a technique called stage partitioning. Using this
technique, a computation stage can be partitioned into disjoint subsets. ach subset consists of a
number of tasks from that stage. Unlike the task mappings considered in the linear execution model,
such a subset of tasks can be clustered with a subset of its adjacent stage (i.e., tasks from Stage 7 can be
clustered with tasks in Stage ¢ — 1 and/or Stage i+ 1). The resulting clusters are mapped onto disjoint
sets of processors.

We place some restrictions on partitioning stages. A stage (e.g., Stage ¢) can be partitioned at most
two times, thus, partitioned into at most three subsets (e.g., subset; , subset; s, subset;s). subsel; is
clustered with Stage i — 1 and subset; s is clustered with Stage i + 1. subset;y is a separate cluster. In
this case, Stage ¢ — 1 (Stage ¢ + 1) can be partitioned at most once, thus, partitioned into at most two
subsets (e.g., subset;_y (subsetiyy,)), subseli_y o (subseliyy2)). subsel;_y o (subsetiyy;) is clustered
with a subset in Stage ¢, that is, subset; (subsel;s). subset;_y, (subsetiy;2) can be clustered with
Stage i — 2 (Stage i + 2). Therefore, two adjacent stages can be partitioned into at most five subsets
and clustered into at most four consecutive clusters.

In Figure 8, the linear execution model and our new execution model are illustrated using a two-
stage example. A task mapping using the linear execution model is shown in Figure 8 (a). The system
throughput is determined by Stage 2, since it has the longest execution time (T3). T3 includes the
computation time of Stage 2 and the communication time between Stage 1 and Stage 2. Using the
new execution model, the throughput can be improved by stage partitioning. In this example, Stage 2
is partitioned into two subsets of tasks: Stage 2’ and Stage 2". Some tasks in Stage 2 are associated

with Stage 2/ and the remaining tasks are associated with Stage 2. When these tasks are mapped onto

Fy A
2 = 2
2 PS, = 2 Ps,
4 = 2 o ree 2
o = (5]
2 = e
& PS | 4 E [& pPs/| o [
- I . [
PELEEN T ' i LTy | ! !
T 5 J Time T [Fime
[) I |
Period = T2 E Communication between Period = T2'
Stage 1 and Stage 2
(a) Using the linear model (b) Using the new model

Figure 8: An illustrative example showing processor mappings using the linear execution model and the

proposed model

processors, tasks in Stage 2" are clustered with Stage 1 and are mapped onto the same processor set,
PS;’ (see Figure 8 (b)). This results in a shorter period. Note that the processors can also be reassigned
during stage partitioning so that PS,’ (PSy') can be different from PS; (PS;). The reassignment of
the processors offers more flexible choices in task mapping.

Our model ensures that the precedence between successive stages is satisfied. Thus, no task in Stage
i (Stage 2 in this example) can be initiated until all the tasks in Stage ¢ — 1 (Stage 1 in this example)
have completed their execution. Stage 2" is scheduled immediately following the completion of Stage
1. This task scheduling is shown in Figure 8 (b). Similarly, if Stage 7 is partitioned such that a subset
of tasks is mapped onto the processor set assigned to Stage i+ 1, this subset of tasks is scheduled
immediately prior to the execution of Stage i 4+ 1. Stage partitioning is not considered in the previous
approaches [26, 6]. In fact, their task models are not amenable to stage partitioning, whereas our task

model facilitates stage partitioning.

4.2 Benefits and Overheads of the Proposed Execution Model

To illustrate the effectiveness of the new model using the stage partitioning technique, compared with
the linear model with and without clustering and replication of stages, consider the same example used
in Section 3. In this example, n; = 5, ny = 7 and {; = 1 second, t; = | second, and P = 6. Based on the
linear execution model using clustering and replication techniques, the “optimal™ throughput achieved
is 0.43/sec (as shown in Figure 7 (d) and in Figure 9 (b)). Using our new model, the throughput can

be further improved. In Figure 9 (c), Stage 2 is partitioned. Five of the tasks in Stage 2 are mapped

19

1} Throughput=0.33/sec

) 22:22
(=]

PS; PS, g P 228922

7 NN\ N 8 2|2|2]2|2]|2
o

U\J ! I

PSil1| 11|

= Time

(a) Linear pipeline

m A Throughput=0.33/sec
G~
P S 3 il

PSs

Processors

(b) Linear pipeline
(clustering and replication)

A Throughput=0.5/sec
PS5 2(2)2]2
@
: o I I
PS; PS> o
@
rf2j1]2
IR S
\J - x PS5 J K& [&
rg2p1]2
112111)2
= Time

(c) General pipeline
(stage partitioning)

1 O 0 &

First Second Third Unused
initiation initiation initiation computing
power

Figure 9: Illustration of task mapping using the linear execution model and the new execution model

for a two-stage application

20

onto the 5 processors assigned to Stage 1. The remaining two tasks in Stage 2 are performed on the last

processor. In this mapping, there is no unused computing power. The throughput increases to 0.5/sec.

Note that, the upper bound on the throughput of this application is _,——!‘X{]f:mxt = 0.5/sec. Thus, for
2 2

this example, our new execution model results in the optimal throughput performance.

Figure 10 shows the general scenario of pipelined execution based on our execution model. There are
five clusters, denoted C'luster; through C'lusters. A cluster may consist of tasks from more than one
stage. IZach cluster is mapped onto a processor set. It can be observed that clustering (as used in earlier
approaches) is implicitly considered in our approach. However, clustering in our approach is different
from the one used in the linear execution model. In that model, stages are clustered and mapped onto
the same set of processors. In our model, a stage can be first partitioned into subsets. Then, the subsets
are clustered and are mapped onto the processors. Therelore, the clustering in our approach is more
general than the clustering considered in the linear execution model. Furthermore, replication is also
considered in our model. This will be addressed in our task mapping methodology in Section 5.

Inter-stage communication cost can be an overhead in implementing the designs based on our model.
The linear execution model generates simple communication activities. A set of processors assigned to a
stage communicates with the sets of processors assigned to its adjacent stages. In the proposed model,
the communication activities can be more involved. Based on our model, the tasks in two consecutive
stages can be partitioned into at most four consecutive clusters (for example, see Stage 1 and Stage 2 in
Figure 10 (a)). Therefore, a cluster may send its results to at most three successive clusters. Figure 10
(b) illustrates these communication activities using a directed graph representation. Compared with the
linear execution model, communication scheduling is needed to implement the communication activities.
For instance, the processor set for Cllustery (which consists of some tasks from Stage 1), PSy, needs
to send its results to the processor set for Cllustery (which consists of some tasks from Stage 2), PS,.
However, the execution of Cluster; is completed before the execution of C'luster, starts as shown in
Figure 10 (a). In order for PS; to communicate with PSy, PS; needs to synchronize with PSy. This
incurs additional idle time for PSSy and/or PS;. In this case, asynchronous communication can be useful.
By using asynchronous communication primitives, PS;, after completing execution of the tasks from
Stage 1, can send the resulting data to C'lustery. Then, it can immediately resume the computation
corresponding to the tasks from Stage 2. Hence, PS; does not need to wait for the initiation of C'lustery

on PS, to receive the data sent from F5s.

21

Cluster; Clusters Clusters Cluster, Clusters

A
= 1
PS;
(%] P v
3 PS: 1~ [2] =
w !
1] PS3 2 |
8 T T
o b | |
PS, T L 1=
Ty —
PS, VI N e -

' Ty ’ Time

(a) A scenario depicling task mapping using our proposed execution model

(b) Communication activities among the processor sets.

Figure 10: Task mapping and communication activities among the processor sets for a four-stage appli-

cation using the proposed execution model

4.3 A Dynamic Programming Solution

In this subsection, we describe a solution based on dynamic programming for the th roughput optimiza-
tion problem. The inputs are an ASP application and the available number of processors. The ASP
application is represented by the task model defined in Section 2.3. The output is a task mapping
specified by a sequence of clusters and a number of processors assigned to each cluster. This task map-
ping results in optimal throughput for performing the given application. Qur solution extends the one
presented in [26] to suit our execution model.

Based on our new execution model, the computation stages of the application can be partitioned
into clusters by exploiting parallel activities among the tasks in a stage. Fach cluster is mapped onto
a disjoint set of processors. A cluster consists of a consecutive sequence of tasks. Since we use coarse-
grain computation, each task in this cluster is mapped onto exactly one processor. To fully utilize the
computing power, the number of tasks [rom each stage in a cluster must be a multiple of the number of
processors assigned to that cluster. For a number of processors, the computation time to perform the
tasks in a cluster is known. The communication cost between any two clusters is also known. The cost
is a function of the number of tasks mapped from each stage and the number of processors assigned to
each of the two clusters. Note that the communication cost between two clusters also depends on the
data layout and the communication algorithms used. These issues are not considered in this approach.
In the next section, the proposed heuristic algorithm considers data remapping.

As in Section 2.3, let S denote the number of computation stages. Let n; denote the number of tasks
and t; denote the sequential execution time of each task in Stage ¢, | < < 5. Let P denote the number
of available processors. For the dynamic programming formulation, the stages of the application are first
expanded as shown in Figure 11 (a): all the tasks in each stage are lined up from left to right. Therefore,
the application is converted into a sequence of K = Ef:1 n; tasks. Then, dynamic programming is used
to optimize the throughput of an increasing subsequence of tasks starting from the left-most task.

To illustrate our ideas, we first assume that the communication occurs between adjacent clusters only.
We also assume that the cluster that starts from Task; (ends in T'askyr) communicates with its next
(previous) cluster only. Figure 11 (b) shows the basic structure of an optimal task mapping of the tasks

from Task, to Tasky, 1 < k < K. Such a mapping can be characterized by five variables:

e /i the index of T'ask..

o Clusterye(k): the cluster starting from T'askjy;. This parameter is required to obtain the

23

(a) A signal processing application expanded to form a sequence of tasks

Tasky Taskj Clusterpeyy (k)

A |

P total (k) P last (k) next (k)

(b) Step k of the dynamic programming formulation

Cluster;gg; (k)

Clusterpayt (k)
Taskp, next

Tasky

Protat (K) = Piast (k) Piast (n) ~ Piast (k) Prext (k)

(c) A subproblem considered for optimizing the solution in Step k

Figure 11: Dynamic programming solution

communication time between Cluster,,..;(k) and its previous cluster.
® Puezt(k): the number of processors assigned to Cluster, .. (k).
® Fusi(k): the number of processors assigned to the previous cluster of ('l USter ezt (k).

® Pia(k): the total number of processors assigned to all the clusters upto Tasky.

Based on these parameters, the optimal throughput of the first k tasks is denoted as Thri(Piotar(k),
Prasi(k), Preat(k), Clusterpe(k)). We define Clusteryey (K) = ¢ and Ppep (K) = 0 as the bound-
ary conditions. The optimal throughput of the application is given by the maximum of Thr (P,
Pus(K), 0, ¢), 1 £ Pug(K) < P, assuming all the P processors are assigned. There are K steps in
the dynamic programming solution. The optimal solutions of an increasing subsequence of tasks are
obtained from Step 1 to Step K. In Step k, given Pioyai(k), Plast(k), Prext(k), and Cluster,e.(k),
The(Piotat (k) Prast(k), Poegt(k), Cluster,eq(k)) is obtained based on the subproblems solved in the
earlier steps.

Figure 11 (c) shows a subproblem considered to obtain T'hri(Protai (k) Plast(k)y Prezt(k), Clustery ez (k)).
This subproblem is solved in Step h, where h < k. Let Clustery,s(k) denote the previous clus-
ter of Cluster,e.i(k). Let Exe(Clusterias(k), Past(k), Clusteryeet(k), Pest(k)) denote the computa-
tion and communication time for C'lustery,g (k) when Clustery, (k) is performed on P,q (k) proces-
sors and Clusterye.(k) is performed on Py (k) processors. If h = 0, C'luster;,s(k) consists of all

the tasks from Task; to Taskr. Thus, Thri(Piotai(k), Pasit(k)s Prest(k), Cluster,.:(k)) is given by

E.?'.c(('fusl.m';,,_.,(I\‘.],Pg,,“(ﬂf).(:lll.'.ifer"._-;:(k),:pu.-.r:“-')]' Otherwise, if 1 < h < k, the optimal throughput is deter-
mined based on the solutions obtained in the earlier steps. As shown in Figure 11 (c), let P,y (h) denote
the number of processors assigned to the previous cluster of Clusteriasi(k). Plast(h) can be varied from
| t0 Piotat(k) = Pase(k). For a given h and Pag(h), the optimal throughput of the first i tasks in
Figure 11 (c) is given by Thrj(Protar(k) = Prasi(k)y Pasi(h), Prase(k), Clusteriose(k)). Given such a sub-
problem, the throughput of the subsequence upto Tasky, is given by the minimum of Thr, (Potar(k) —
Prasi(k), Prast(h), Prasi(k), Clusteriys(k)) and the throughput of Clustergg (k). The maximum through-
put, over all possible h and PFg(h), is Thrg(Protat(k)y Prast(k) s Prest(k), Clusterpezi(k)). Thus, the

optimal throughput at the k-th step is given by:

o If h =0 (if Clusteri,s (k) starts with T'ask,):

1
Exe(Clusterjast (k). Pract (k) Clusternere (k),Pnex (k)

o Ifh > 0:

M a1 <k 1 <Py e h) < Protat (1)~ Prasc (8) (

Min(Thrp(Priotat(k) = Plast(k), Past(h), Piast(k), Clusteryyg: (k)),

1
Ezxe(Clusteriqse (k) Prase(k),Clusterneze (k),Prest (k)))

In this formulation, Fae(Clusterius(k), Pasi(k), Clusternepi(k), Poeet(k)) must be computed at the
k-th step. It is the sum of the computation time of Clustery,s (k) and the communication time between
Clusterysi(k) and its adjacent clusters. Since Clustery,s (k) is performed using Py, (k) processors, the
computation time of C'luster,q (k) is known. Besides, the communication time between Clusteryysi (k)
and Clusterpe¢(k) is also known, since Clustergs(k), Plast(k), Clusterpes:(k), and Ppepi(k) are all
known. Similarly, the communication between C'lustery,s (k) and its previous cluster is known in Step
h. Thus, Exe(Clusteriys(k), Pasi(k), Clusterpyes(k), Prext(k)), can be computed. Note that the cluster
that starts from T'ask; (ends in T'asky) does not have a previous (next) cluster. Thus, the corresponding
communication time is zero.

In Step k, 1 < k € K, solutions to Thri(Protat(k), Past(k), Prert(k), Cluster,.;(k)) are obtained.

The dynamic programming algorithm is described in the following:

Fork =1to K
For Piotar = 1 10 P, Plast = 1 to Piotat, and Py = 1 to P — Piyag and every possible Clusteryes: (k)

Compute T'hri(Piotar(k), Puast(k), Paext(k), Clusterpes (k)).

Now, we estimate the complexity of the dynamic programming formulation. First, we estimate the
number of solutions obtained in Step k. Each of Puai(k), Plast(k), and P, (k) can be assigned
O(P) distinct values. Besides, when P,c¢(k) processors are assigned to Cluster,e.¢(k), the number
of tasks to be clustered is a multiple of P,ezt (k). Therefore, the number of solutions obtained in step
kis O(P?* x Zf;l IT‘) = O(P?*KInP). Then, we estimate the computational complexity to obtain
cach Thri(Piotai(k), Prast(k)y Paest(k), Clusteryey(k)). The variable, Ps:(h) can be varied from 1 to
Piorai(k) = Piast(k), while the variable C'lusteri,s (k) can be assigned O(#‘;(k-)-) = O(K) distinct values
(since the number of tasks in this cluster is a multiple of P (k)). With given C'lusteri (k) and
Piasi (), the resulting throughput is computed in constant time. Thus, the time complexity to obtain
an optimal solution is O(PK). In summary, there are I steps in the dynamic programming formulation.
Each step obtains O(P2KInP) optimal solutions. The time to compute each solution is O(PK). Thus,

the total computational complexity is O(P?K®InP). Note that this is an off-line procedure.

26

When the communication between non-adjacent clusters is considered, the computational complexity
further increases. As shown in Figure 10 (b), in the extreme case, a processor set can communicate
with three successive processor sets. Thus, the task mapping for four consecutive clusters should be
considered in the formulation. This increases the number of optimal solutions to be obtained by a
multiplicative factor of O(K?(InP)?). But, the time complexity to obtain each such solution remains
the same. Therefore, the total complexity becomes O(P?K®(InP)?). Even though the task mapping is
performed off-line, the high complexity makes this solution unattractive. A simple approach for reducing
the complexity is to initially group a number of tasks (say N tasks) into one super-task. Thus, K can
be replaced by K' = %L In the next section, we propose a simple heuristic algorithm which drastically

reduces the complexity of the task mapping.

5 A Heuristic Task Mapping Methodology

Based on our task model and our execution model, in this section, we describe a three-step task mapping
methodology. This methodology is used to maximize the throughput of an ASP application on a
given number of processors of a HPC platform. The output of this methodology is a task mapping
specified by a sequence of clusters and the number of processors assigned to each cluster, and the data
remapping to be performed between clusters. Communication costs between clusters are considered
in the throughput optimization. Techniques including data remapping, replication of stages, stage
partitioning, and clustering are used in our design methodology. Iigure 12 gives an overview of the
methodology. Details of the methodology are given in Section 5.1. An illustrative example using our

methodology is shown in Section 5.2.

5.1 A Three-Step Task Mapping Methodology

As described in Section 2.3, let S denote the number of computation stages. Let n; and t; denote the
number of tasks and the sequential execution time of each task in Stage i respectively. Let P denote
the number of available processors. Based on our execution model, these stages can be partitioned into
clusters. Each cluster is mapped onto a disjoint set of processors. Coarse-grain parallelism is exploited
for task mapping. Thus, each task in a cluster is mapped onto exactly one processor.

The computation time to perform the tasks in a cluster using a number of processors is given. The
communication time between any two processor sets to perform a given data remapping is also given.

This cost depends on the number of processors assigned to the clusters, the number of tasks in the

27

SP Application
Represented Using
Our Task Model

Techniques: i 1

- Data Remapping / Three Step

- Replication X Task Mapping Qur Proposed
- Partitioning _ 'Mé'mo‘do'li':‘gy' Execution Model
- Clustering . 7

Parallel Algorithm

[igure 12: Overview of the task mapping methodology

clusters, the data layouts, the data size, and the communication algorithm used to perform the data
remapping. As in Section 4.2, a processor set may communicate with several other processor sets to
perform data transfer among the clusters mapped onto these processor sets.

Our methodology consists of three steps. In Step 1, data remapping between stages is considered.
Coarse resource allocation is performed in Step 2 based on the amount of computation to be performed
in each stage. Possible replication of stages are also considered in this step. In Step 3, a fine performance
tuning is performed using stage partitioning. A fast heuristic algorithm is developed for this step. The

details of these steps are described in the following:

Step 1: Data Remapping

In this step, the data layout of each computation stage is chosen based on its data access pattern. Data
remapping is used to modify the data layout of successive stages so that each processor contains all the
data needed to execute a task.

Data remapping is a crucial step in the overall mapping process. Efficient data remapping algorithms
are required to reduce the communication cost by decreasing the number of start-ups and by scheduling
the messages to be delivered in a conflict-free manner. A straightforward approach for data remapping
is to use a direct schedule: data blocks are sent directly from the source nodes to the destination nodes.
This approach incurs minimum data transmission cost but communication start-up cost can be high.

To minimize the start-up cost, indirect schedules [16, 17] can be used. In this approach, data blocks are

28

sent to their destination through intermediate “relay” nodes. At these intermediate nodes, messages
destined to the same node are combined. This approach reduces the start-up cost by combining the
data to be sent to the same destination.

Note that the previous approaches [6, 26] do not consider data layout optimization using data remap-
ping in their task mapping methodologies. Therefore, the performance of the resulting implementations

may be severely degraded due to remote memory accesses during the execution.

Step 2: Coarse Resource Allocation

This step performs an initial task mapping onto the given number of processors. A coarse resource
allocation is performed and a linear pipeline is generated. Thus, the computation stages are mapped
onto disjoint sets of processors. To balance the workload, the number of processors assigned to Stage

i, 1 <1< 85, is determined in proportion to the computational complexity of that stage (i.e., n; X t;).

Let P; denote the number of processors assigned to Stage i, 1 < i < S. We set P = [z’:‘_f"x‘ur |. We
oy Xt

also define r; to be the number of unused processors in Stage . If P; < n;, all of the P; processors are
m‘

used and r; = 0. The computation time of Stage i is [Pl X t;. On the other hand, if P; > n;, Stage

i is replicated [%‘[times. Fach replicated instance of the stage is mapped onto exactly n; processors.

This results in r; = P — [%J % n; unused processors in Stage ¢. If replication is used, the average
L}
computation time of Stage i is I{_;L—J—

1

Let Pp denote the number of free processors. After the above allocation, Pp = P — Y5 (P — ry).
We adopt a greedy approach to assign these free processors to the computation stages. The greedy

approach is summarized as follows:

1. Compute the period of each stage.
2. Let SSuuz_period denote the set of bottleneck stages (stages with the largest period).

3. Find the minimum number of processors required to reduce the period of each of the stages in

SSmaz period- Let P, denote the total number of processors required for these stages.
4. If Pp — Py, < 0, then Stop.

5. Assign the P, processors to the stages in SSpaz period S0 that the throughput of the pipeline is

improved.

6. Pp = Pr— P,. Go to Step 1.

29

D o ft A . ’ o it] 3
If Pr > 0 after the above assignment, the remaining free processors are assigned to an arbitrary stage

with the largest period.

Step 3: Fine Performance Tuning

In Step 3, stage partitioning is used to further improve the throughput. A bottleneck stage is defined
to be the stage with the largest period. The period of a stage includes its computation time and the
communication time with its previous stage and its successor stage. The communication cost between
adjacent stages is known based on the data remapping algorithm chosen in Step 1. A heuristic algorithm
is used to improve the period of the pipeline in an iterative manner. In each iteration, stage partitioning

is performed to balance the workload among the processors. Each iteration is summarized as follows:

3.1 Let A (> 0) be a bound on the performance improvement per iteration.

u

3.2 Compute the set of bottleneck stage(s), SSax_period- Let maa, . o0 be the period of the bottleneck

stage(s).

3.3 Loreach Stage ¢, Stage i € SSnas_period, Minimize the period of the pipeline by a local optimization

as follows:

(a) Reassign the processors assigned to Stage ¢ and Stage 141 and redistribute the tasks in those
stages including the associated data remapping.
(b) Reassign the processors assigned to Stage ¢ and Stage i — 1 and redistribute the tasksin those

stages including the associated data remapping.

’

pendod D€ the period of the bottleneck

3.4 Compute the set of bottleneck stage(s), SSmar_period- Let maz

stage(s) after the above performance tuning.

" ’ 1
3.5 If mazperioda — MAT Y,y i00 < A, then Stop.

Else, set maxperiod = TT?-fL-'f:;,(,,.l;mf and go to step 3.3.

Figure 13 shows a stage partitioning using an example. Stage partitioning between Stage ¢ and Stage
i+ 1 is shown, where Stage i is the bottleneck stage. Let P and Py denote the nu mber of processors
assigned to Stage i and Stage i + 1, respectively in Step 2. These processors are reassigned. After
processor reassignment, Stage ¢ or Stage i+ 1 is partitioned to improve the period of the pipeline design.
Figure 13 shows two (:ziseas, where Stage ¢ and Stage i + 1 are partitioned. In this figure, I, processors

are assigned to Stage i and P, processors are assigned to Stage i + 1 alter processor reassignment and

30

A Tasks re-distributed

from Stage i A
N ¢ fiia
Py _ . I Py i+1
l i i+ |
T PP, . | » Tasks re-distributed
P, i aiee ! i »‘/frorn Stage i+1

\j

(a) Stage iis partitioned (b) Stage i+1 is partitioned

Figure 13: Examples of stage partitioning

task redistribution. Note that P, + 1% = P+ P;4y. The same procedure is applied between Stage ¢ and
Stage ¢ — 1. The time to perform one iteration of Step 3.3 in the above algorithm is O(F).

The period of the bottleneck stage(s) generated by the above heuristic is a monotonically decreasing
sequence. Thus, the above heuristic terminates after a finite number of iterations.

Also note that, if a stage is replicated in Step 2, only one instance of the replicated stage needs to be
considered in stage partitioning. The same stage partitioning optimization is applied to the rest of the

replicated instances.

In the following, the steps of our task mapping methodology are illustrated using an example. Consider
a two stage application in Figure 14 (a). Stage 1 consists of n; tasks, each having an execution time of
t1. Bach task uses a one-dimensional array of ny elements. Stage 2 consists of ny tasks with an execution
time of {. Bach task uses a one-dimensional array of ny elements. The first step of our methodology
determines whether the data access patterns in these stages are different (See Figure 14 (b)). If so,
a data remapping is performed. A data remapping, corner turn, is inserted between the stages (See
Figure 14 (c)).

In the next step. a coarse resource allocation is performed. Based on the estimated execution

time of each stage, processors are assigned. Stage 1 and Stage 2 are assigned Py = I.*"L_l_‘m?;- ffill}f!]:fgj'

JD2 —_ L 1o Xty X P

nlxt]ql_nthj processors, respectively. In this example, we have assumed that there are no free

processors. With the assigned number of processors, the execution time for each stage is computed.
Based on the data remapping pattern (corner turn) and the number of processors assigned to the stages

(P, and Py, respectively), the time for data remapping (Tcr) is computed. In the illustration, 7% > T.

31

Stage 1 Stage 2 Stage 1

: e
— —
— m 3 f
— —r
i #] Input Data
(A1, ty) (2) Stage 1 - Task-i needs row-i only (1 <i<ny)
! Stage 2 - Task-j needs colj only (1<j<ny)
(a) A Given Two-Stage Application (b) Data Access Patterns
Stage 1 Data Remapping Stage 2

(c) Step 1: Data Remapping Inserted

L Tep
R Processors
& ldle
Stage 1
< i — =i e
T T | T | e
(d) Step 2: Coarse Resource Allocation
A
)
Py
|
A
P4
A
e Time

T,

(e) Step 3: Stage Partitioning

Figure 14: An illustrative example showing our methodology

32

Thus, the period of this pipeline is Tp = Ty + Ter. (See Figure 14 (d)).

[n the final step, we perform stage partitioning to further improve the throughput. Stage 2 is par-
titioned and a subset of tasks is mapped onto the same processor set as Stage 1 (See Figure 14 (e)).
Processor reassignment is not performed. Note that the resulting design eliminates idling of processors
shown in Figure 14 (d). The new execution time for Stage 2, 7%, is smaller than T5. Note also that the
new data remapping time, T, is likely to be smaller than T, because the amount of data received
by each processor is reduced compared with the linear pipeline design [29]. The resulting period for this

design, Tsp, is T + Tep!, assuming 15 > Ty + 15",

5.2 An Illustrative Example

In the following, the effectiveness of the above mapping methodology is illustrated by using the example
discussed in Section 3 and in Section 4.2. Our methodology is used to map the two-stage application
onto 6 processors. Let ny = 5,ne = 7. Let {; = 1 second and i, = | second. Step 1 determines the
data layout of each of the stages and the data remapping to be performed between adjacent stages. As
discussed in Section 2.3, the solution that maps all the 12 tasks in one initiation onto a single processor
is not considered. Based on the linear execution model with clustering or replication, as proposed in
[26], the “optimal” throughput achieved is 0.43/sec (as shown in Figure 7 (d)). Using our mapping
methodology, the throughput can be improved. The coarse resource allocation in Step 2 results in an

X6
12

Hx6
12

initial mapping such that 2 (= |%5°]) processors are assigned to Stage 1 and 3 (= | 55°]) processors

are assigned to Stage 2. Therefore, 1 (= 6 — (2 + 3)) processor is designated as free processor. After
coarse resource allocation, 7} = [3] x 1 = 3 seconds and T = [£] x 1 = 3 seconds. Assigning the free
processor to either Stage 1 or Stage 2 can reduce the period of Stage 1 or Stage 2 to 2 seconds. The free
processor is assigned to Stage 1, in this example. Then, fine performance tuning is performed. Figure 15
shows possible processor reassignments and task redistributions using stage partitioning. The optimal
throughput is obtained when P,=5 and =1 as shown in Figure 15. In this case, Stage 2 is partitioned.
Five of the tasks in Stage 2 are mapped onto the 5 processors assigned to Stage 1. The remaining two

tasks in Stage 2 are performed on the last processor. In this mapping, there is no unused computing

power. The throughput increases to 0.5/sec. This is the optimal throughput for this problem.

3 Tasks of Stage 1 are [2 =
P s re-distributed 2 2
b= 2 1 2
—
/> 2 | 2 T [2 [2 | Throughput=0.33/sec
2 | 2 T |2 | 2
= O T I 1 1
Time
2 2
Pp=4 2 2 2 2
=13 = =13
P=ol 1 1 1 1
a 7 T 1 : 7 Throughput=0.33/sec
Time
2 | @ 2| 2
Pb=3 2 2 2 2
Z |2 2]} — 2 | 2 | 2
1 i
P.=3
a 1 : : : Throughput=0.33/sec
Time
2 |2 | 2 2 | 2
Pp=2 212 | 2 2] 2 | 2
] . i 2
P.=4 ‘_/ 3 Tasks of Stage 2 h =
a T } are re-distributed e e
Time
Py=1 2 | 2 |22]2 2]2)] 2l 2 |
1 1 12
1 1 2 Throughput=0.5/sec
Pa=5 [" Tl
. . 5 Tasks of Stage 2 T -5
1 are re-distributed 1 2
Time
2 2
1 > 1 2
P.=6 1 g : 2 Throughput=0.33/sec
: 5 1] 2

Time

Figure 15: Illustration of stage partitioning for a two-stage application

34

6 Experimental Results

We have performed various implementations for a First-Order Doppler-Factored STAP benchmark [30]
and three-stage adaptive Sonar beamforming benchmark [14] on IBM SP-2 to show the effectiveness
of our mapping methodology. To compare our mapping methodology which is denoted as A3, we also
developed two designs based on the previous approaches. These are denoted as A1 and A2. These two
designs examine all possible task mappings under the linear execution model. However, no clustering or
replication is used in Al. A2 also uses the linear execution model but allows clustering and replication
of stages. Note that Al and A2 are the best performance that can be achieved using the techniques in
(6] and [26] respectively. It is not stated in [26] whether data remapping is explicitly performed or not.
Thus, A2 (as well as Al) may use a fixed data layout throughout the computation stages. Since data
remapping can significantly improve performance, the performance improvement using A3 can be due to
data remapping. To expose the performance improvement using our task model and stage partitioning,
we also perform data remapping between adjacent stages (Step 1 in our mapping) for both Al and A2.
Therefore, in the following, the observed performance improvement can be attributed solely to various

task mapping techniques.

6.1 Results for Radar Benchmark

A First-Order Doppler-Factored STAP [30] was implemented. It consists of two main components: pre-
processing step and adaptive array processing step. We implemented only the adaptive array processing
step, because the most important functions (interference and clutter suppression) are performed in this
step. Also, the preprocessing is not computationally demanding. A typical data cube of size 16 (number
of channels) x 64 (PRI's) x 480 (range gates) was used as input. There are three computation stages
in this application: Stage 1: Doppler processing; Stage 2: Weight computation by covariance matrix
factorization; Stage 3: Weight application. The sequential execution time of each task running on a
single node of IBM SP-2 and the number of tasks in each stage are shown in Table 2. Library routines
(IBM essl library and LAPACK) were used for implementing the computational kernels involved in each
stage. MPI was used to implement data remapping.

Figure 16 shows the throughput performance of Al through A3 on IBM SP-2. The number of
processors was varied from 80 to 120 (in increments of 10 processors). Latency is not a main concern in
this paper. However, those designs which generate latency greater than 0.3 seconds are not practical,

and, thus, were not considered. The results show superior performance of our design over Al and

35

Table 2: Characteristics of First-Order Doppler-Factored STAP

Processing Computations Sequential Execution Number of
Stages Involved Time of each task tasks
Stage 1 Doppler Processing 28 1sec 7680
Stage 2 Weight Computation 9,800 isec 384
Stage 3 Weight Application 100 usec 384
T T T T
25.0

20.0

15.0

10.0 |

Number of results per second

80 90 100 110 150

Number of processors

Figure 16: Performance Comparison of Al through A3

some improvement over A2. For instance, our approach increases the throughput by approximately
85.5% compared with Al and by 4.4% over A2 when 100 processors are used. Note that Al and A2
correspond to the best results possible using the approaches in [6] and [26] respectively, if data remapping

is employed.

6.2 Results for Sonar Benchmark

A parallel algorithm was designed for an adaptive sonar beamforming benchmark using our methodology.
The benchmark performs adaptive beamforming in frequency domain. The incoming time-domain
signals are first converted to frequency domain using FFT’s. Then, the resulting frequency-domain
signals are linearly combined with fully adaptive weight matrices. G4 sensor elements are used to sam ple
the acoustic signals. 64 frequency bins are chosen with 128 beams formed in each frequency bin. The

details of the beamformer can be found in [14]. Two experiments were performed on IBM SP-2. In

36

Experiment 1, the beamformer uses 64 sensor elements to sample the signals. 64 [requency bins were
chosen with 128 beams formed in each frequency bin. In Experiment 2, the beamformer uses 128 sensor
elements to sample the acoustic signals. 128 frequency bins were chosen with 256 beams formed in each

frequency bin. (See Table 3 for details.)

Table 3: Characteristics of the two MVDR sonar beamformers

Processing) . Experiment 1 Experiment 2
stage Functionality
T (1sec) N T (usec) N
Stage 1 FFT 88 64 260 128
Stage 2 Covariance matrix 68,500 64 807,718 128
factorization
Stage 3 Weight adaptation 1,900 8192 7,575 32,768
and beamforming

* The LAPACK subroutine, egesvd, is used to perform single-precision complex-number singular value decompo-
sition (SVD) on SP-2.

* T denotes the sequential execution time of each task in a stage.

* N denotes the number of tasks in a stage.

Figure 17 show the throughput performance of the implementations on IBM SP-2. In Experiment 1
(2), the number of processors is varied from 70 to 125 (100 to 220) in increments of 5 processors. As
in the radar benchmark case, those designs which generate latency greater than 1 (12) second(s) are
not practical and, thus, were not considered. In Experiment 1, when 75 or 100 processors are used, A3,
as well as Al and A2, effectively utilize the computing power based on their corresponding execution
models. The resulting throughputs, in these cases, are about the same. However, in most of the other
cases, the resulting implementations using Al and A2 cannot effectively utilize the computing power.
In these cases, our design methodology results in superior performance over Al and A2. For instance, in
Experiment 1, our approach increases the throughput by approximately 24.3% (21.4%) compared with
Al (A2) when 125 processors are used. In Experiment 2, our approach increases the throughput by
approximately 43.6% (13.5%) compared with Al (A2) when 210 (190) processors are used. Also, note
that in our implementations of Al and A2, data remapping was performed. Otherwise the performance

of these algorithms is significantly worse due to excessive communication overheads.

7 Conclusion

[n this paper, we developed a methodology to design parallel algorithms for optimizing the throughput

performance for a class of ASP applications. Throughput is a key performance measure in this class of

37

6.0 T T T T T T T T T L E—

| PSP Sy S - e = = o

Number of results per second

3":I?O 75 80 85 90 95 100 105 110 115 120 125

Number of processors

Number of results per second

02900 120 140 160 180 200 220

Number of processors

Figure 17: Performance Comparison of Al through A3 in Experiment 1 (above) and Experiment 2

(below)

applications. However, this performance measure has not been paid much attention in traditional HPC
applications.

A task model was first derived for ASP applications by exploiting their salient com putational features.
Coarse grain parallelism was considered in our task model to efficiently exploit the state-of-the-art HPC
platforms. Based on the task model, we defined a new execution model. The new model exploits the
independency of tasks in each computation stage of the ASP application. It also relaxes the one-to-
one mapping between the sets of processors and the computation stages assumed in the earlier linear
execution model. Therefore, the new model allows more flexible task mapping choices, hence, leads to
better throughput performance than the linear execution model. A novel stage partitioning technique
was used to realize the new model by partitioning a stage into several subsets and mapping those subsets
onto processors.

A heuristic task mapping methodology was developed based on the new execution model. It consists
of three steps: data remapping; coarse resource allocation; and fine performance tuning. Using this
mapping methodology, parallel algorithms were designed for modern Radar and Sonar signal processing
applications. These algorithms were implemented on IBM SP-2, a state-of-the-art HPC platform. The
performance results show that our approach results in significant performance improvement over previous
approaches.

Besides the task mapping problem addressed in this paper, there are a number of important future

research areas for ASP applications that are worthy of exploration:

1. Many of the computing platforms for ASP applications integrate heterogeneous components. For
example, some nodes may be specialized to do matrix factorization, while others may be designed
for FFT operations. In this scenario, task mapping to meet a given performance requirement and
synthesizing a system to minimize the number of processors are interesting problems that require

further attention.

2. The computing platform for ASP applications also have physical constraints such as size, weight,
and power. Algorithmic issues related to these constraints need to be studied to develop a com-

prehensive framework to aid system designers in developing ASP applications.

3. During the past few years, several new architectures have been proposed and implemented for
signal and image processing and/or commercial applications. These include Digital Signal Proces-

sor (DSP) clusters, Symmetric Multi Processors (SMPs) and Distributed Shared Memory (DSM)

39

machines. In these systems, to obtain high efficiency, the memory hierarchy must be carefully

managed.

We have used radar and sonar applications to illustrate our ideas. Qur related results in using HPC

for ASP applications can be found in [28, 29, 18].

References

[1] E. Anderson, et. al., “LAPACK Users’ Guide - Release 2.0,”
URL: http://www.netlib.org/lapack/lug/lapack lug.html.

(2] P. Athanas and A. Abbott, “Addressing the Computational Requirements of Image Processing with
a Custom Computing Machine: An Overview”, in Proc. Workshop on Reconfigurable Architectures,

at [PPS’95, Santa Barbara, CA, 1995,

(3] 1. Banicescu and S. Hummel, “Balancing Processor Loads and Exploiting Data Locality in Irregular
Computations,” IBM Research Report, February 1995.

[4] R. Bernecky, “Sonar Beamforming Challenge Problems,” presented at the DARPA/ITO Embed-
dable Systems Pl Meeting, San Diego, June 1996.

[5] P. Bhat, Y. W. Lim, and V. Prasanna, “Issues in Using Heterogeneous HPC Systems for Embedded
Real Time Signal Processing Applications,” in proceedings of the 2nd International Workshop on
Real-Time Computing Systems and Applications, Oct. 1995.

[6] A. Choudhary, B. Narahari, D. Nicol, and R. Simha, “Optimal Processor Assignment for a Class
of Pipelined Computations,” IEEE Trans. Parallel and Distributed Systems, Vol. 5, No. 4, April
1994, pp. 439-445.

[7] A. Ferreira and J. Rolim (Eds.), “Parallel Algorithms for Irregularly Structured Problems,” Pro-
ceedings of Second International Workshop (IRREGULAR 95), Lyon, France, September, 1995.

[8] R. A. Games, “Benchmarking Methodology for Real-Time IEmbedded Scalable High Performance
Computing,” MITRE Technical Report. MTR 96B0000010, March 1996.

[9] D. Gerogiannis and S. Orphanoudakis, “Load Balancing Requirements in Parallel Implementations

of Image Feature Extraction Tasks,” IEEE Trans. on Parallel and Distributed Systems, Vol. 4, No.

9, pp. 994-1013, 1993.

410

[10] “High Performance Fortran Forum,”

URL: http://www.crpe.rice.edu/HPFTF /home.html.

(11] S. D. Kaushik, C.-H. Huang, J. Ramanujam, and P. Sadayappan, “Multiphase Array Redistribution:
Modeling and Evaluation,” in proceedings of the 9th International Parallel Processing Symposium
(IPPS "95), Apr. 1995.

[12] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Parallel Algorithms, Benjamin/Cummings, 1994.

[13] M. Lee, W. Liu, and V. K. Prasanna, “A Mapping Methodology for Designing Software Task
Pipelines for Embedded Signal Processing,” in proceedings of the 3rd International Workshop on
“mbedded HPC Systems and Applications (EHPC *98) at the 12th International Parallel Processing
Symposium (IPPS "98), and the 9th Symposium on Parallel and Distributed Processing (SPDP "98),
Orlando, April 1998.

[14] M. Leonhardt, “Implementation of Minimum Variance Distortionless Response (MVDR) Adaptive
Beamforming Algorithm,” NUSC Technical Document 8453, July 1989.

[15] Y. W. Lim and V. K. Prasanna, “Efficient Algorithms for General Block-Cyclic Redistribution,”
Technical Report, Department ol EI5-Systems, USC, Aug. 1996.

[16] Y. W. Lim and V. K. Prasanna, “Scalable Portable Implementations of Space-Time Adaptive
Processing,” in proceedings of the 10th International Conference on High Performance Computers,
June 7, 1996.

[17] Y. W. Lim, P. B. Bhat, and V. K. Prasanna, “Efficient Algorithms for Block-Cyclic Redistribution
of Arrays,” IEEE Symposium on Parallel and Distributed Processing, Oct. 1996.

[18] Y. W. Lim, P. B. Bhat, and V. K. Prasanna, “Efficient Algorithms for Block-Cyclic Redistribution
of Arrays,” Algorithmica, to appear.

[19] W. Liu, C. Wang, and V. K. Prasanna, “Portable and Scalable Algorithms for Irregular All-to-all
Communication,” in proceedings of the 16th International Conference on Distributed Computing
Systems (ICDCS 96), May 1996.

[20] M. Maresca, “Polymorphic Processor Arrays”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 5, pp. 490-506, May 1993.

[21] “Message Passing Interface Standard,”

URL: http://www.mes.anl.gov/mpi/index.html.

41

(22] P. Narayanan, L. Chen, and L. Davis, “Effective Use of SIMD Parallelism in Low- and Intermediate-
Level Vision,” [EEE Computer, Vol. 25, No. 2, pp. 68-73, 1992.

[23] C.Ou and S. Ranka, “Parallel Remapping Algorithms for Adaptive Problems,” Proc. of Symposium
on the Frontiers of Massively Parallel Computation, pp. 367-374, 1995.

[24] V.K. Prasanna and C.-L. Wang, “Parallelizing Vision Computations on CM-5: Algorithms and
[Experiences,” Proceedings of IRREGULAR 95, September, 1995.

[25] A. Skjellum, “Embedded, Real-time MPI and MsgWay,”

URL: http://www.ito.arpa.mil/ResearchAreas/Embeddable.html.

[26] J. Subhlok, and G. Vondran, “Optimal Mapping of Sequences of Data Parallel tasks,” in proceedings
of the Fifth ACM SIGPLAN Symposium of Principles and Practice of Parallel Programming, July
1995.

[27] J. Subhlok and G. Vondran, “Optimal Latency-Throughput Tradeofls for Data Parallel Pipelines,”
Proc. Eighth Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA), June 1996.

(28] J. Suh and V. K. Prasanna, “Portable Communication Algorithms for Implementing SAR,” First
Annual High-Performance Embedded Computing Workshop, Lexington, MA, September 1997.

[29] J. Suh and V. K. Prasanna, “Parallel Implementations of Synthetic Aperture Radar on High Perfor-
mance Computing Platforms,” in proceedings of the IEEE International Conference on Algorithms
And Architectures for Parallel Processing, Melbourne, Australia, December 1997.

(30] J.A. Torres, and R.T. Williams, “RT_STAP: Real-Time Space-Time Adaptive Processing Bench-
mark”™, MITRE Corporation, Feb. 1997.

[31] B. D. Van Veen and K. M. Buckley, “Beamforming: A Versatile Approach to Spatial Filtering,”
[EEE ASSP Magazine, Apr. 1988.

[32] C. L. Wang, P. B. Bhat, and V. K. Prasanna, “High-Performance Computing for Vision,” in
proceedings of the IEEE, vol. 84, No. 7, July 1996.

[33] J. Ward, “Space-Time Adaptive Processing for Airborne Radar,” Technical Report 1015, Mas-
sachusetts Institute of Technology, Lincoln Laboratory, Dec. 1994.

[34] J. Webb, “High Performance Computing in Image Processing and Computer Vision,” Inlernational
Conference on Pattern Recognition, pp. 218-222, September 1994.

[35] C. C. Weems, S. P. Levitan, A. R. Hanson, and E. M. Riseman, “The Image Understanding

Architecture,” International Journal of Computer Vision, 2, 251-282(1989).

42

