Accuracy Sensitive Word-Length Selection
for Algorithm Optimization

Suhrid Ashok Wadekar
CENG 98-28

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213-740-4476)
August 1998

ACCURACY SENSITIVE WORD-LENGTH SELECTION
FOR ALGORITHM OPTIMIZATION

by

Suhrid Ashok Wadekar

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY

(Electrical Engineering)

August 1998

Copyright 1998 Suhrid Ashok Wadekar

Dedication

This dissertation is dedicated to my mother Sou. Sanjeevanee Ashok Wadekar.

i

Acknowledgments

I could not have completed this research without the guidance, support, friendship, and
love of many. I am very delighted to express my sincere gratitude. First, I would like to
thank my advisor Prof. Alice Parker. From the very beginning, she trusted me and guided
me as I explored my own ideas. Along the way, she trained me to think deeper and wider,
and to investigate not only the solutions, but also the problems that push the technology
forward. I am truly grateful to Dr. Parker for providing me this invaluable knowledge. Dr.
Parker is also very kind and considerate in solving problems outside the research domain.
It has been a privilege to be her advisee.

I would also like to thank Prof. Peter Beerel for his interest and assistance in my re-
search. He always had time for me and on countless occasions he has entertained my ques-
tions about algorithms and design automation. I would like to thank the members of my
qualifying examination and final defense committee, Prof. Sandeep Gupta, Prof. George
Papavassilopoulos, Prof. Aristides Requicha, and Prof. Dennis McLeod for their com-
ments, suggestions, and encouragement. I also wish to thank Prof. C.P. Ravikumar. Our
discussions helped me understand my rough, fresh ideas better, and develop them into this
research project.

My wife Swapna has been a constant source of love, encouragement, and inspiration
during this work. She was by my side in all the problems, and assisted me in every single
way while simultaneously completing her own doctoral research. I thank her very sin-
cerely for her love and support. She is my very best friend! I also thank my parents Ashok
and Sou. Sanjeevanee Wadekar. From my childhood they have taught me the importance
of learning. They have sacrificed their desires so that T would get all the opportunities to
pursue my studies. I am forever indebted to them. My parents—in-law Sudhir and Sou.
Mugdha Gokhale have been very supportive, and patient during my studies, and I thank

them for their love and trust in me. I thank my sister Subhagya for her best wishes, and

iii

for constantly reminding me to have some fun while staying focused on my work. I also
thank my brother—in—law Salil for his love and best wishes.

A number of friends and colleagues have been very helpful during this research. I
would like to thank Dong—Hyun Heo, and Diogenes Silva for all their help, and also Yosef
Gavriel Tirat-Gefen, Sami Habib, Rohini Montenegro, Mary Zittercob, and Bill Bates for
their friendship and assistance. My friends Ivan Hom, Arani Sinha, Shivanand Bhajekar,
and Dr. Tai with whom I worked as a teaching assistant are among many others who have
made my years at USC pleasant.

This research is funded in part by the Advanced Research Projects Agency and moni-
tored by the Federal Bureau of Investigation under the Grant J-FBI-94-161. The informa-
tion reported here does not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred. It is also funded in part by the National
Science Foundation under the Grant GER-9023979. 1 would like to thank these organiza-

tions for their support.

v

Contents

Dedication

Acknowledgments

List Of Tables

List Of Figures

Abstract

1

Introduction
Effect of word lengths on computation accuracy and designcost
I.1.1 Sources of computation error in hardware
1.1.2 ‘Word length optimization . . . ¢ « 54 55 s s « 25 & v % & &
Motivation for algorithm-level word-length optimization
Overview of word-length selection at the algorithmic level

1.

1.
1.
l:

1

2
3
4

Organization

Related work
Related work in analysis of computationerror
2.2 Design for specific arithmetic computation
2.3 Architecture level word length minimization

2.

1

Problem formulation
Analytieal errormodel Lo oL p ch v i e s e s e e
3.1.1 Modelof ruticabon 8Or « & ¢ + v s s v s s 2w v w32 w v 5 s
3.1.2 Modelof errorpropagation ¢ i .o osos s v s e o 5o s

3.1.2.1 Anexample of error propagation
3.1.3 Computation error in algorithms
Formulation of the cost function
3.2.1 Resource area e e
3.2.2 Multiplexer and bus driverarea

3.

Lo's]
o

1

3.2.3 Register area

iii

ix

xii

12
12

13
13

15
16
17
20
20
21
22
24
26
28

3.24 Interconnectarea u e e
3.3 Word-length optimization problem formulation
33.1 Costof system level components
34 Problemcomplexity Lo
3.4.1 Minimum functional resource area with known word lengths . . .
3.4.2 Word length selection in scheduled data flow graphs
3.5 Overview oftheapproach - « - v ¢ 55 v v 4 5 543 9o s 8 o v 5 3 @ s

Computation error analysis

4.1 Analysis of error in addition and subtraction
4.1.1 Basic analysis of error in addition
4.1.2 Manipulations to avoid unnecessary errors in addition.
4.1.3 Basic analysis of error in subtraction
4.2 Analysis of error in multiplication L0000
4.3 Error analysis in simple data flow graphs L
4.3.1 Analysis of error in the computation of other functions
4.3.2 Analysis of error in the final outputs of a simple DFG
4.3.2.1 Example: Twoadditions . . . : ¢ o s ¢ 0w 5 5 5% » 3
4.3.2.2 Example: Three multiplications

4.3.2.3 Generalized form of the error equation of the final result
R o Y Y E R R TR
4.3.2.4 Control structures in flow graphs
4.4 Tight upper bound on word lengths for minimum worst—case error :
4.5 Automatic tool forerroranalysiso

Clustering

5.1 Background
52 Motivation oL e e e
5.2.1 Clusters of operations Lo
5.2.2 Complexity of cost function minimization
5.3 Word-length compatible clustering
5.3.1 Selection of characteristic word lengths

5.3.1.1 Ordered clustering using normalized estimated resource
o
5.3.1.2 Cluster formation using dynamic programming
5.3.1.3 Complexity analysis of clustering
5.4 Review of related prediction methods
5.5 Prediction of the number of resources required in a cluster
5.5.1 Nonpipelined implementation
5.5.2 Pipelined implementation
5.5.3 Sharing resources between clusters
5.5.4 Analysis of resource prediction procedures

36
36
36
38
41
42
44

45
45

50
50
52
33

55
56
57
57
58
59
61

vi

6 Word-length selection using genetic algorithms
Word-length selection using classical optimization techniques

6.1
6.2
6.3

Overview of genetic algorithms

Genetic algorithm for word-length selection
6.3.1 Chromosome representation o.wa ...

6.3.2 Fitness of a chromo
6.3.3 Initial population

6.3.4 Mutation
6.3.5 Crossover
6.3.6 Gene repair . . .
6.3.7 Selection
6.3.8 Genetic algorithm

SOME: . 2 o o 5 w = 8 o 0 2 5 = Wi 0 & = 1= = =

6.4 Word-length selection — overall procedure

7 Experimental results

7.1

7.2
7.3

Discrete cosine transform

7.1.1 Primary inputrange anderror
7.1.2 Word-length optimization

Gauss—3 elimination algorit

hm.

Determinant of a SX5matrix e

8 Conclusion and future work

8.1
8.2
8.3

Conclusion
Contributions
Future research
8.3.1 Synthesis
8.3.2 Numerical analysis
8.3.3 Algorithm analysis

Appendix A
Statistical estimation of system energy and power

Al

Motivation

A.2 Prediction accuracy at different levels of abstraction
A.3 Behavioral system-level predictions L.

A4

Statistical power estimation

A4.1 Estimating power consumption of a functional unit
A4.1.1 Switchingnetsmodel . . « . o o 4oL L v s v s
A.4.1.2 Mathematical model to predict functional unit power . .

A.4.2 Estimating power consumption foradesign
A42.]1 Fonetional Bnits : - o + v v % ¢ 5 5 2.9 8 5 & % 8 ¥ 6 %
AA2.2 Briemalnets : : . v s s v s v e i 6 @68 s w

A.4.3 The energy/power prediction algorithm

Experimental verification

80
81
82
82
82
83
84
85
87
89
90
96
97

99
99
100
101
107
109

114
114
116
117
117
118
118

120
121
122
123
126
126
126
128
130
130
130
131
132

Vil

A6 Conclusions L e e e e e e e e e 135
A.7 Low power design and word-length selection 136

Reference list 136

viii

List Of Tables

3.1
4.1

7.l
7.2
73
14
7.5

Al
A2
A3
A4

Notation for the cost function

....................... 23
Numerical range of variables and the tight upper—bound word lengths . . . 53
1-D DCT optimized word lengths (7=8) 103
1-D DCT optimized word lengths (r=12) 104
1-D DCT optimized word lengths (A=2) 106
Gauss—3 elimination pipelined implementations 107
5x5 matrix multiplicationo 111
Standardcelldata . . . o « v aw v v v ww v w v v e s w e 133
Macro cell data (16-bit components) 133
Experimental results (Estimates of energy consumption) 134
Experimental results (Estimates of power consumption) 134

ix

List Of Figures

Word length optimization after architecture synthesis
Major steps in word-length selection at the algorithmic level
Behavioral-level word length optimizations and the overall design process

Set representation of operation, resources and word lengths mapping . . .
A typical operation, resources and word lengths mapping
Word-length selection for algorithm optimization

Sign extension and zero fill applied tothesum.
Binary point alignment when b, < &,
Binary point alignment when k. > &,
Twoadditions DFG
Three multiplications DFG
‘Distribute’ node in flow graphs and associated error

Unconstrained formation of clusters
Boundaries of GluSIeIs : « v v 3 5 8 v+ 5 6 % § 9 5 5 & ¥4 5w E 5 @@ ¥
3—way and 4—way cluster formation
Edgesinclusteringgraph v o ¢ 6 o v v v o o s 8 o o b 8B e e
Changes in cluster execution intervals
A procedure to predict lower bounds on the number of required resources

A procedure to share resources between clusters
A procedure to determine the execution interval of acluster

Chromosome representation for word-length selection
An example of crossover operation Lo L
An example of gene repair operation
A procedure to select chromosomes
A procedure to select chromosomes—Case 1
A procedure to select chromosomes—Case 2
Genetic algorithm for word-length selection
The overall word-length selection procedure

Comparison of DCT area using single and multiple word lengths (7 = 8) .

10

72
7
78

12
13
74
43

7.6

7.7

7.8

Al
A2
A3
A4
AS

Comparison of DCT area using single and multiple word lengths (7 = 12) 104
Comparison of DCT area using single and multiple word lengths (A = 2) . 105
Gauss—3 elimination area requirements for different accuracy constraints 108
Gauss—3 elimination fitness improvement: pipelined implementation,

latency=3 majoreycles, e=0A% « « v v s s w e s cw s v s 5w 858w 109
Gauss—3 elimination variation in the computation error corresponding to

the best solution in the population 110
5x5 matrix determinant normalized estimated functional-resource area

using multiple and single word lengths 112
5x5 matrix determinant fitness improvement: nonpipelined implemen-

tation, execution delay = 14 majorcycles, e = 1% 113
Limitations at various levels of prediction 121
System Task—Flow Graph and implementation 124
System-level power prediction 125
Wire-length switching activity relation L. 127
Estimated DCT energy/power . . « « w v o 5 w v v v v 5 5 wow o 0 5w s 135

Xi

Abstract

In typical hardware implementations of an arithmetic—intensive algorithm, designers must
determine the word lengths of resources such as adders, multipliers, and registers. This
dissertation presents algorithmic level theory and optimization techniques to select dis-
tinct word lengths for each computation which meet the desired accuracy and minimize
the design cost for the given performance constraints. The reduction in cost is possible
by avoiding unnecessary bit—level computations that do not contribute significantly to the
accuracy of the final results. Thus we have introduced a new optimization variable, compu-
tation accuracy, into data—path synthesis. Using these distinct word lengths during high—
level synthesis, highly efficient designs in terms of area, power consumption, and cost can
be produced. The high efficiency is achieved by simultaneously taking advantage of two
relationships: one between the area of an individual resource and its word length, and the
other a trade off between word lengths of operations in an algorithm and numerical accu-
racy of the final result. While some computations in the algorithm may require high pre-
cision, others may require low precision, and hence relatively fewer bits. Therefore, using
resources of smaller word lengths to execute the low—precision operations, the design cost
can be reduced. However, resources with small word lengths cannot directly execute oper-
ations requiring large word lengths. Therefore, the choice of word lengths affects resource
sharing, and in turn the design cost. Thus a straightforward selection of the minimum word
lengths that meet the accuracy requirement does not necessarily result in alow—cost design.

The theory we developed forms the basis for techniques to analyze the flow of computa-
tions and produce analytical models of computation accuracy, and implementation cost in
terms of word lengths of algorithm variables and resources. Using these models, resource
usage, and operation and resource word lengths are identified simultaneously while satis-
fying the desired accuracy and performance requirements. Our results show on an average,
a 30% reduction in functional-resource area using distinct word lengths as opposed to use

of a single optimized word length for the entire algorithm.

xii

Chapter 1

Introduction

With new VLSI technologies it is easy to build circuits for applications such as secure
mobile communication using spread spectrum techniques, robots for automobile naviga-
tion, and satellite guidance control. In such applications, a large number of computations
are performed that require varying levels of accuracy. In traditional software implementa-
tions, such operations are performed either in single, double or extended double precision.
However, in hardware implementations, word lengths of the operands and results, inter-
mediate as well as final, need not be fixed throughout the hardware. They could vary over
a vast range. By appropriately choosing the adequate word length for each computation,
significant savings in the design cost can be achieved. In resource—dominated circuits cost
minimization is intuitive because smaller functional operators can be used for operations
requiring less precision. As a result, the total number of transistors in the circuit decreases
and in effect, the size, power consumption and delay of the circuit reduce. In the case of
low—cost circuits, where a small number of resources are shared by many operations, a
resource with the largest required word length must be used to execute many operations
even though some operations using the resource do not require all of the bits available.
Word length optimizations are still important because the cost of resource sharing (regis-
ters, multiplexers and the interconnect) depends on the number of significant bits in each
computation. Furthermore, advanced control schemes may be implemented to prevent the
unused bits from switching in a large resource. This implies savings in power consump-
tion and delay. Accurate modeling of the error introduced in a computation by a specific
choice of word length and its impact on the cost of the implementation are two important

aspects of the word length optimization problem.

1.1 Effect of word lengths on computation accuracy and

design cost

The numerical accuracy of the final results in a sequence of computations is less sensi-
tive to the precision of some computations compared to the others. Only the computations
having a significant impact on the accuracy and reliability of the final results need be im-
plemented using high—precision arithmetic while the other operations can be implemented
with relatively less precision [41]. In a finite—precision representation the accuracy of a
computation is proportional to the word lengths of its operands. Consequently, resources
with larger word lengths may be necessary for some computations, but those with fewer
bits may be adequate for computations that have a smaller impact on the accuracy of the fi-
nal results. The size of a resource is also proportional to its word length. Resources of spe-
cific and distinct word lengths may be implemented easily using module generators. Thus
the use of smaller resources is likely to reduce the design cost. However, it also restricts
resource sharing between operations because operations requiring large word lengths can-
not be implemented by resources of smaller word lengths without the use of additional
hardware and control.

The major decisions in data—path synthesis are often related to the usage of functional
resources. Optimization techniques are commonly used during data—path synthesis to
maximize the resource sharing and to improve the quality of the circuits in terms of cost
as well as performance [11]. Standard arithmetic operations in the circuit specification are
typically implemented using resources of a common predetermined word length so as to
meet the desired level of accuracy in the final results. Since the word lengths of operations
and resources are not treated as variables, the optimization techniques used in data—path
synthesis cannot take advantage of the variation in the individual resource area with word
length. The principal objectives of selecting resources with different word lengths are to
guarantee a certain accuracy in the final results, to ensure that resource sharing is not ad-
versely affected, and to reduce redundant bitlevel computations — thereby minimizing the
cost of the design in terms of area, delay, energy and power.

We examine the impact of word-length optimizations at the chip and system levels.
Our word—length selection technique operates on the algorithm and is independent of the

optimization techniques used during data—path synthesis. Therefore, design cost can be

o

minimized using the word lengths selected by our technique in conjunction with any au-

tomated or manual data path synthesis procedure.

1.1.1 Sources of computation error in hardware

Typically truncation/quantization errors are introduced in the primary inputs of a system
due to finite word length representation. In application—specific hardware, implementa-
tions using fixed—point representation of numbers are usually preferred over those using
floating—point representation because the former are faster and smaller [1,24,30,64]. For
typical arithmetic operations, the word length of the result is greater than that of the in-
puts. For example, addition of two /N bit numbers generates an NV + 1 bit sum. Multipli-
cation of an A/-bit and an N-bit bit number generates an (M + N) bit product. When
several interdependent operations exist in a computation, the word lengths of intermediate
results could be significantly larger than those of the primary inputs, if all the bits are al-
ways preserved. However, the least—significant bits of the results are commonly truncated
or rounded off, leading to additional error in the computation. Depending on the nature
of the flow and types of operations involved in a computation, errors in the intermediate

results could contribute significantly or negligibly to the error in the final results [2,18,36].

1.1.2 Word length optimization

In the past, the word—length optimization problem has been researched in the design of
specific algorithms such as sine, cosine, and reciprocal computation [23,27,50,63]. Word—
length optimizations are also implemented at the architectural level [16,24,52,53,57,59].
In the case of a hardware design for a specific algorithm, the numerical properties of the
algorithm are analyzed and taken advantage of in order to optimize the data path. In con-
trast to these manual methods, we perform word-length optimization automatically for any
given algorithm. The numerical robustness of the algorithm is implicitly contained in the
error analysis. In research reported at the architecture level, optimizations related to re-
source usage have already been made and the focus of the reported methods is on mini-
mizing the number of bits [16,24,52,53,57,59]. The size and power consumption of a
resource are proportional to its input/output word lengths. Hence, optimizations leading

to an architecture are affected by word length optimizations. Moreover, the interconnect

cost and resource-sharing cost are also dependent on word lengths. The motivation be-
hind our word-length optimization is to minimize the implementation cost, not merely the
number of bits. Another significant difference between our method and the architecture—
level methods is that in the latter case, error is observed through exhaustive simulation.
We use an analytical model of the error function expressed in word lengths. By analyzing
the contribution of error in all the intermediate results to the error in all the final results,
we determine the maximum number of bits to be truncated from each intermediate result
such that the worst case final error is less than the maximum permissible value. These
truncations directly reduce the number of bit—level computations and the cost of the im-
plementation in consequence. From a system-level perspective, eliminating only a few
bits in inter-chip communication, or in the values stored in a look—up table might allow
the designer to reduce the overall system cost significantly. Thus, the optimal choice of
input/output word lengths of functional resources that minimizes the implementation cost
considering resource sharing is important.

In large systems, thousands of computations are performed in tasks such as calcula-
tion of the Riccati gain for navigation control [34]." As stated earlier, some of these com-
putations may require less precision compared to the others. Thus, using functional units
with smaller word lengths for such operations will reduce the system cost. This problem is
loosely similar to the module selection problem [11] where different modules of a function
type compute the function using different methods. Depending on the method selected,
each module has a distinct area—delay characteristic. Relatively faster and larger modules
are used in the critical path and relatively slower but smaller ones are used in non—critical
paths. An important distinction between the module selection and word—length selection
problem is that in the former, all candidate modules to be used in the implementation and
their word lengths are known a priori. Even if the most generalized case where modules
of distinct word lengths are considered,? the word length of each module is known. The
word—length optimization problem is to determine the optimum number of resource word

lengths of each type, and the corresponding word lengths. In other words, the optimum

'In control systems, 15 or more variables are typically observed for parameter estimation. The size of
the corresponding Hamiltonian matrix is 30 or more. It is well-known that many matrix operations involve
O(N?) or O(N?) computations where N is the size of the matrix.

*The module selection problem reported in the literature [8, 11.21] does not consider word length as a
variable. However in the most general formulation, different modules of a function type may have distinct
word lengths as well as different methods of function computation.

module set to be used in the implementation itself is to be determined. Also, in the mod-
ule selection problem any module of the same function type is able to execute any oper-
ation of that type. For example, all additions could be performed by ripple carry as well
as carry look—ahead adders. When operators of different word lengths are used this is not
true. A 16-bit adder could be used for 10-bit addition but the converse is not true (at least
not without use of additional control and hardware). Thus resource sharing is constrained.
Moreover, the size of many operators increases superlinearly or even quadratically with
the number of bits. The carry look—-ahead adder, Booth multiplier, and arithmetic shifter
are a few examples of this observation. Using many small resources of a function type and
a fewer large ones implies that the high—precision operations of the same type in a task are
executed more sequentially compared to those requiring less precision. If the timing con-
straints are satisfied, such assignment could lead to implementations with reduced cost due
to the nonlinear relation of operator size to word length. The cost of resource sharing i.e.,
the cost of registers, multiplexers, control, and wiring, also depends on the word lengths of
the associated values and is significant in large designs. Thus, the word—length optimiza-
tion problem is strongly correlated with the traditional resource utilization optimization
problem. In the next section, we illustrate the importance of considering the word—length

optimization problem at the algorithmic level, prior to architecture synthesis.

1.2 Motivation for algorithm-level word-length
optimization

Without the knowledge of word lengths before synthesis, all resources of a certain type
are assumed to have a common pre—determined word length. Therefore, high level design
decisions cannot take advantage of variation in the area of individual resources accord-
ing to their word lengths. This is illustrated in the following small example. Figure 1.1
shows two scheduled graphs of an algorithm that performs four multiplications. The cor-
responding architectures are also shown. Both architectures require two multipliers, and
without the knowledge of word lengths of resources prior to synthesis both multipliers are
assumed to have the same area. Thus design (b) cannot be claimed to be better than de-
sign (a). Assume that the word-length optimization and numerical analysis before synthe-

sis has revealed that the optimum word length of the first two multiplications (shown as

16-bit

Figure 1.1: Word length optimization after architecture synthesis

unshaded circles in Figure 1.1) is 12 bits. Now if both 12 and 16-bit multipliers are con-
sidered, one 12-bit multiplier can be used in place of a 16-bit multiplier. This is possible
if and only if the two 16-bit multiplications are assigned to the same multiplier using the
schedule in design (b). Once again, the high—level synthesis decision that determines the
operation to resource assignment (binding) cannot make the optimization illustrated above
without the knowledge of word lengths. From this exercise we observe that, if the two 16—
bit multiplications are assigned to different multipliers, either by selecting schedule (a), or
by choosing the alternate binding in design (b). word length optimization at the architecture
level cannot reduce the word length of any multiplier. Considering word length selection
before synthesis however, it is possible to reach a low—cost design using one 16-bit and
one 12-bit multiplier. This reinforces our claim that knowledge of resource word lengths
prior to data—path synthesis, and their use in high-level synthesis significantly increases
the possibility of reaching a low—cost design.

The above example illustrates another important aspect of optimal word-length selec-
tion. Consider the case where the computation shown in Figure 1.1 is to be completed in
5 major cycles. In this case, it is sufficient to use only one 16-bit multiplier. However, the
numerical analysis may reveal that the desired accuracy is also achieved if all four multipli-
cations are performed using 15 bits. Then, using one 15-bit multiplier is a better choice.
This demonstrates that the optimum operation word lengths required to achieve a speci-
fied accuracy cannot be determined independently of the optimum resource word lengths

and resource sharing. In the next section, we introduce the optimal word-length selection

problem at the algorithmic level, and present an overview of the optimization procedure

that makes it feasible to select operation and resource word lengths prior to synthesis.

1.3 Overview of word-length selection at the algorithmic

level

Our overall objective is to minimize the cost of hardware implementation of an algorithm
while keeping the computation error below its maximum permissible value and meeting
performance constraints. There are two steps required to achieve this goal. The first step is
to model the error in the final result of an algorithm in terms of word lengths of the variables
in the algorithm. We show that the error model is a nonlinear function. The second step
is to minimize the implementation cost function by selecting resource word lengths. The
error model is used to verify whether the selected word lengths satisfy the accuracy require-
ment. The feasible design space of the hardware implementation of large and small tasks
is vast and discrete under the given area, timing, energy, power, and accuracy constraints.
For a given algorithm several implementations are feasible ranging from the fastest to the
slowest. The resource requirement for each implementation is different. If resources of

different word lengths are to be used, the designer must answer two questions:

1. How many distinct resource word lengths denoted ' should be used by each func-

tion type ¢ in the algorithm?® i.e. what is the word-length set size?

2. What word lengths will minimize the implementation cost for a desired level of ac-

curacy? i.e. what are the values of the members of the word—length set?

The answer to the second question obviously depends on the answer to the first one. How-
ever, the answer to the first question is not independent of the word lengths to be used. This
is because the number of distinct resource word lengths directly depends on the number of
resources used in the implementation. The number of resources is selected to minimize
the implementation cost, which depends on the resource word lengths. The two questions
above jointly represent the word—length optimization problem at the algorithm level. Fig-
ure 1.2 gives an overview of our solution procedure. The first steps in solving these prob-

lems are

*There could be a different number for each function type t in the algorithm.

Algorithm Error in the algorithm inputs
and their numerical range

Word lengths of
algorithm variables for
maximum accuracy Performance
,ﬂ requirement

Generate combinations of the number of
distinct resource word lengths of each operation type

Generate a cost function for each combination
and minimize it

.

A set of optimized cost functions
one for each combination

for maximum accuracy Maximum
ﬁ permissible

error
Genetic algorithm minimizes cost
by selecting a word-length set size, and
word lengths for each operation type

.

The number of distinct resource word lengths, and
word lengths of resources and operations
of each operation type

Figure 1.2: Major steps in word—length selection at the algorithmic level

(i) What is the range of ¢/, the number of different resource word lengths selected to

be used by each function type?

(it) Foreach vector 1/ formed by a unique combination of values of /! (within the above
range) for each function type, what is the optimized cost function for the implemen-

tation?

Figure 1.2 shows that the error analysis is used to determine the smallest word lengths for
each operation that yield the maximum achievable accuracy in the final result of the algo-
rithm, for the given error environment [61]. The error analysis also determines the range of
1! for each function type ¢. As shown in the overview, all unique combinations of U are ex-
plored. A cost function in terms of the resource requirement, and resource word lengths®
is formed corresponding to each . Initially the resource word lengths determined from
the error analysis that yield the maximum achievable accuracy are selected. The resource
requirement is determined according to the performance requirement, and by taking into
consideration the use of ! different word lengths for each type . Then the cost function
1s optimized by minimizing the use of larger word length resources in the implementa-
tion of operations that do not require high precision. Thus only a few large word length
resources become necessary, which leads to cost reduction. This important optimization
step is defined as clustering. Now we have a set of optimized cost functions, each func-
tion corresponding to a unique), that guarantees the maximum accuracy for the given
error environment. We also have an error constraint equation expressed in terms of word
lengths. If the required accuracy is smaller than the maximum accuracy, each cost func-
tion can be further minimized by manipulating the word lengths, while satisfying the error
constraint. In this thesis we show that this is a nonlinear optimization problem. As seen in
Figure 1.2, a genetic algorithm is used to obtain a set of word lengths for each w such that
the corresponding cost function is minimized. From this set of minimized cost functions
we select the one that yields the minimum cost by predicting the cost of a design obtained
with the associated word lengths. The corresponding ' answers the first question posed
in the word-length optimization problem, and the corresponding word length set resulting
in the minimum—cost implementation is the answer to the second question posed in that

problem.

1 As stated earlier, the area (cost) of an individual resource is a function of its word length.

This process can be iterated for all feasible execution delays and pipeline initiation
rates. Thus optimized word lengths can be obtained for all the predicted implementations.
Figure 1.3 emphasizes the role of behavioral-level word—length optimizations in the over-

all design process. A synthesis tool that incorporates resources of different word lengths

CDFG: Control Data ‘Q: p’ -1& "
Flow Graph
umerical range Q‘ » ©

Cost l and error
N v ¥

constraints of inputs
Word- length

=*>| optimizer |<*
(2 tasks)

* Synthesizer handles
@ multiple word lengths

Output error
constraints

Performance
constraints

Variable & resource [:> l Data path
|
L

4r)
té :95 O8O word lengths synthesizer”
» O
Q T
N/
(? Low cost design satisfying

accuracy & performance constraints

Figure 1.3: Behavioral-level word length optimizations and the overall design process

can explore the design space and make high—level decisions regarding the number of re-
sources and their usage such that the implementation is likely to meet the specified perfor-

mance and accuracy constraints with minimized cost.

1.4 Organization

In the next chapter we present a brief overview of previous work in the area of selecting
minimum word lengths. A comprehensive problem formulation is given in Chapter 3. A
mathematical model to represent the worst—case computation error in simple flow graphs®
and a tool developed to analyze the error are described in Chapter 4. Then, the two—step

cost optimization through word—length selection is given in Chapters 5 and 6. In Chapter 5,

®A DFG with no unbounded data-dependent loops and conditional branches is assumed.

we describe clustering and the derivation of the optimized cost function for maximum ac-
curacy. As shown in Section 1.2, for maximum reduction in the design cost it is impor-
tant to consider word-length optimization at the behavioral level. Since the cost function
requires the number of resources of different word lengths, we also present a new behav-
joral prediction technique involving multiple word length use in this chapter. A genetic
algorithm for selecting the optimized word—length set that minimizes the overall imple-
mentation cost, while satisfying the accuracy and performance requirements, 1s described
in Chapter 6. The word—length set comprises the number of distinct resource word lengths
of each operation type, and the word lengths of operations and resources. The results of
reduction in resource area using resources of multiple word lengths optimized for the de-
sired accuracy are given in Chapter 7. Conclusions and contributions of our research, and

future research directions based on multiple word length use are given in Chapter 8.

11

Chapter 2

Related work

The effect of word lengths on the accuracy of computation and the cost of design has been
studied for various reasons in the past. These efforts can be mainly classified as (a) work
related to error analysis of application—specific hardware, (b) experience with design for
specific arithmetic computation, and (c¢) architecture level minimization of the number of
bits in the design. We present an overview of this work, and comment on its application

to our research in this chapter.

2.1 Related work in analysis of computation error

In the work related to error analysis of application—specific hardware, the emphasis was
to quantify the error introduced in the final results output by a digital system due to finite—
precision arithmetic, in terms of input error. Largely, the effects of truncation and round off
errors were studied. This work mainly considered synthesized hardware implementations
of common signal processing applications (such as digital filters [5, 65] and image cod-
ing [33]), and digital communication applications (such as Adaptive differential PCM [53]
and Spread spectrum receivers [9]). The input error was typically assumed to be additive
white Gaussian noise and was specified using mean and variance. Then, mean and stan-
dard deviation of the output error were derived using statistical analysis. The techniques
described here are less useful during circuit design because it starts with the knowledge of
the circuit. It can be used to estimate the circuit behavior and quality of outputs when the

environment in which it is operated is specified using statistical parameters.

2.2 Design for specific arithmetic computation

From the circuit design perspective, efforts were initially made to determine the minimum
hardware required to implement a specific computation. Wadekar er al. implemented high
speed chips to compute nonlinear functions such as reciprocal, square—root and trigono-
metric functions for IEEE single and double precision standards [23]. This implementa-
tion produced error in the least significant bit and was improved by Schulte and Schwart-
zlander [50]. Similar implementation of exponential functions was reported by Kantabu-
tra [27]. In these designs, several implementation algorithms were explored and their nu-
merical properties were analyzed. The most robust algorithm with acceptable speed was
selected. Then, the word lengths of resources such as memory and arithmetic operators
were determined using numerical analysis. These algorithms had only a few operations.
The corresponding designs were also small and used only 4 or 5 functional resources;
therefore, the design size was estimated quickly. Also, the numerical analysis was per-
formed manually. The analytical model of computation error in our research was moti-
vated by the effort reported previously [23,27,50]. However, we consider the general class
of arithmetic—intensive algorithms involving hundreds or thousands of computations, and

different performance and accuracy requirements.

2.3 Architecture level word length minimization

From the design automation perspective, methods were developed to minimize the number
of bits in the design. Here again, the minimization starts with a known architecture. Tech-
niques to find the smallest word lengths for a given implementation of discrete cosine trans-
form (DCT) were reported by Uramato et al. [59]. Similar methods for discrete wavelet
transform (DWT), and block filters were reported by Grzeszczak et al. [16], and Jang and
Kim [24], respectively. All the techniques listed above employ exhaustive simulation of
the architecture where error in the final result is computed. and verified against constraints
in each simulation step. Sung and Kum propose a simulation—based word length optimiza-
tion technique for signal processing systems at the architecture level [57].

These architecture—level techniques have three limitations. First, the objective of opti-
mization is to minimize the number of bits. In our research we minimize the overall imple-

mentation cost which is related to, but not the same as the number of bits. Second, error in

13

the final results is observed through simulations. In large algorithms having several inputs,
exhaustive simulations are impractical. Hence, accuracy of results cannot be guaranteed.
We perform numerical analysis of the algorithm and model the worst—case error as a func-
tion of word lengths. The numerical analysis comprises range analysis and error analysis.
For example, if two M -bit numbers A and B are multiplied, a 2M/-bit product C' is gen-
erated. If the magnitude of A is always less than 1, then the magnitude of C is always
less than B. From this range analysis we conclude that the number of integer bits required
in C' is no more than that in B. Assuming L bits must be truncated from the product, we
first omit the unnecessary integer bits. This truncation does not change the value of C' and
no error is introduced. However, if more bits must be truncated after omitting all unnec-
essary integer bits, the least significant bits of €' are truncated. The error introduced is a
function of M and L, the word lengths of the operands of multiplication, and the number
of bits truncated in the product. Naturally, if C' is used in other computations the error in
C' propagates. The numerical analysis described in Chapters 3 and 4 allows us to make the
best use of available word lengths, and to express the error analytically in terms of word
lengths of algorithm variables. For a given choice of word lengths, the worst—case error is
then readily computed using the analytical expression. Thus, the accuracy of results can
always be guaranteed using our analytical technique. Finally, methods described in the lit-
erature start with an architecture obtained by ignoring the effect of word length on resource
size, which in turn affects high—level decisions already taken while determining the archi-
tecture. We consider the word length optimization problem prior to architectural synthesis,

where cost minimization is achieved by incorporating multiple word length use.

Chapter 3

Problem formulation

Given an algorithm, the set of operations to be performed and the connectivity of those
operations are known. Each operation has one or more inputs and outputs. These are the
variables (or constants) in the algorithm. A word length is associated with each primary
input/output and internal variable. The desired accuracy of the computation is specified
in terms of the tolerable error. The implementation of the algorithm is a set of resources'
and interconnects. Input/output word lengths are also associated with each resource. The
word length optimization problem is to select the word lengths of variables in the algo-
rithm and resources in the implementation such that the implementation cost (total area)
is minimized while preserving the desired level of accuracy, and the desired performance.
Although the set of operations to be performed is known, the resource set and the word—
length set are open sets. The number of resources, the size of the word-length set (i.e.,
the number of different word lengths to be used) and the elements of the set (i.e., the word
lengths) are all unknowns. Note, that the number of required resources depends on the
desired performance. Since resources of different word lengths are used, operations re-
quiring larger word lengths cannot be implemented by resources of smaller word lengths.
In effect, the number of resources needed also depends on the word length set. The cost
of the implementation comprises resource and interconnect costs. These costs are propor-
tional to the associated word lengths. Finally, the numerical accuracy of the result of the

algorithm is also proportional to the number of bits preserved in each computation hence,

In the problem formulation, the cost of functional resources and related registers and multiplexers is
taken into account. For simplicity however, we primarily considered the functional resources in the devel-
opment and implementation of the optimization techniques described in Chapters 4, 5, and 6. In general,
word—length selection must also be performed for related registers and multiplexers, whose cost must be
taken into account, as described in this chapter.

15

the word lengths of all variables. The word length optimization problem is then a problem
of determining (a) the optimum size of the word length set, (b) the optimum values of its
elements, i.e. the word lengths of resources and variables, and (c¢) the optimum number of
resources of each word length. We formulate this problem by expressing the computation
error constraint and the implementation cost as functions of word lengths. Then, appropri-
ate optimization techniques can be used to select the best word lengths.

In this chapter we introduce an abstract model of the joint assignment of operations,
word lengths and resources. The model is based on the final architecture—level design and
not the synthesis methods, hence it is valid for any design style. Our comprehensive cost
model includes the functional resource cost, register and multiplexer cost, and intercon-
nect cost. The resource cost depends on resource word lengths while other costs depend on
word lengths assigned to the variables in the algorithm. Therefore, the comprehensive cost
model is developed using the model of the joint assignment of operations, word lengths and
resources described above. The control cost is dominated by the number of resources and
the performance, and is only weakly correlated with the word lengths. In Section 3.1 we
develop an analytical model of error in the final result. The comprehensive cost model is
described in Section 3.2, and the word length optimization problem is formulated in Sec-
tion 3.3. The problem complexity is discussed in Section 3.4. An overview of our approach

is presented in Section 3.5.

3.1 Analytical error model

In hardware or software implementations of an algorithm, there are three main sources of
computation error: namely (i) finite—precision representation of external as well as inter-
nal operands, (ii) practical limitations of function evaluation, and (iii) error propagation.
The error introduced due to a finite—precision representation is commonly known as trun-
cation or round off error. Finite precision implies that the number of bits (digits) used is
limited. The original number may be represented in infinite or finite precision. In the for-
mer case, error is always introduced due to finite—precision representation, and is inversely
proportional to the number of bits preserved, i.e. the word length of the operand. In the
latter case, error is introduced if the original word length is greater than that of the new

representation. Second, some computations such as evaluation of e* using the Maclaurin

16

P L
series Y oo —, require an infinite number of terms to be evaluated to get the correct re-
n

sult. Since this is impractical in an implementation, a finite number of terms are evaluated
and an error is allowed which is the second source of error. Third, if the input operands
of an operation are not exact, the result computed also contains an error. This is the error
propagated from the preceeding operations that generated the input operands with error to
the present operation, and is the third source of error. More error may be introduced into
the present result due to truncation of some of its least—significant bits.

In this section we model error in the final result of an algorithm as a function of word
lengths of its variables. Given the specific choice of word lengths, we are then able to de-
termine the level of accuracy in the final result. In the following analysis, a fixed—point
representation is assumed as it is more common in application—specific hardware imple-

mentations compared to a floating—point representation [30].

3.1.1 Model of truncation error

We begin by defining two types of errors in numbers namely, under-approximation error,

and over—approximation error.

Definition 3.1.1 Let ¢ be the actual value of a variable V. Let v be the represented value
of V. If v < v, the error in representation is called under—approximation error. If v > v,

the error is called over—approximation error.

v and v are related as

) v+dT 6% >0 isthe under-approximation error 3.0
= .
v+0" 07 <0 isthe over-approximation error
Definition 3.1.2 The error introduced by w—bit representation of a binary (unsigned or 2’s
complement) number represented in w—bits, by omitting (W — w) least significant bits,

where w < w, is defined as truncation error.

Lemma 3.1.1 Truncation error is always a positive number that must be added to the
value of a variable to nullifv the effect of truncation (except when all the bits in a num-

ber are truncated).

17

Proof Let i be represented in W bits of which & are the fractional bits. Let be repre-

sented in w bits of which k are the fractional bits. Then,
k=k—(w—w) (3.2)

From Definition 3.1.2, the worst case truncation error in x is given by

5, = 2°(+D) o=(+2) 4 ok (3.3)

> 0

In the best case, d, = 0 where the coefficients of all the weights beyond 2% are 0. Thus,

the truncation error is always a positive number. Moreover, the value of & is given by the

summation
i —k i —k
—ag_j 2D 4 a;2' = [—aﬁ,_ﬁ_lQ{‘_""kml) + Z (1,;‘2'}
i=w—k—2 i=w—k—2
—k
+ > ¥ (3.4)
J==(k+1)
= x+4,

where a; are the coefficients in the 2’s complement representation of z. From Equa-
tion (3.4) it is observed that the truncation error is added to the truncated result to obtain
the original value before truncation. O

This result is also valid for unsigned binary numbers, where the weight of the most
significant bit is also positive. For numbers represented in 2’s complement notation, the
case where all bits are omitted may invalidate Lemma 3.1.1; however, this extreme case is

of no practical use.

Lemma 3.1.2 The worst case errorintroduced by truncating the m = [—[least significant
bits of a binary number is (27" — 271), where the weight of the least significant bit of the

number before truncation is 27, and 2 after the truncation.

18

Proof From Equation (3.3) we have

().J_- 7 2—(l+1} + 2—(l+'2) fforaie o 2—17
< 2—(14—1) + 2—{1’-{-2) i 2—U+TH-)
< 2—(!+m) [Qm—l 4 gm—2 Aoyl 1]
< o(l4m) om _ 1
- 2=1
< 27 [1-2""

5 < 27t—9o

O

If the number before truncation were represented using infinite precision, i.e. [= 0o,
then 6, < 2. Lemma 3.1.2 makes no assumptions regarding the values of [and [ex-
cept [> 1. Hence, it is applicable to binary numbers with or without fractional bits, and
is valid when fractional as well as integer bits are truncated. For example, if a number x
belongs to the set of integers before truncation, the weight of its least significant bit is 1.
The corresponding [= 0. If two least significant bits are truncated, m = 2 and | = —2.
The worst case truncation error is indeed 3, as obtained from Lemma 3.1.2. In the strict
sense, 27" is the weight of the least significant bit after truncation, which may be an integer
as well as fractional bit. However, a few fractional bits are preserved in typical computa-
tions. Equation (3.2) gives us the relation between the number of fractional bits and m, i.e.
the number of bits truncated. Combining this equation and the result from Lemma 3.1.2

we have
. % 381 - 2% (3.5)

Now, the worst case truncation error in a number is expressed as sum of values that are
powers of 2, where the exponents are linear functions of the total and fractional word

lengths of the number.

3.1.2 Model of error propagation

As stated earlier, error in a partial result is propagated through the flow of computations
when that result is an input of some succeeding computation. Without much loss in gener-
ality we consider an arbitrary arithmetic operation f, with two inputs and one output. Let
the represented values of the two input variables U and V" be u and v, respectively. Let

their correct values be % and , and the respective errors be d,, and d,, such that

w=u+ 4, (3.6)
vV=v+0, (3.7)

The errors ¢, and d, may be under— or over—approximation errors. If the computation of f
does not introduce any error, then the error in the result due to error propagation is given

by Taylor series expansion of a function of two variables as

; & 2
- fum =2 gy + Ly 4 L [—f_’{ (6.
du dv 2! | u?
- Py (3.8)
¢ . y - 2 . e
L Qu du (0ud0) + dv? (%) } i

In the equation above notice that the partial derivative terms evaluated at specific values U
and 17 are constants. In order to account for the worst case error these values are selected
from the respective numerical range of U and V" such that the magnitude of the propaga-
tion error given by the equation above is maximum. If §,, and d,, are truncation errors from
preceeding results, from Equation (3.5) we observe that the error in the present result is a
weighted sum of powers of 2, where the exponents are linear functions of total and frac-

tional word lengths of previous results. This is illustrated in the following simple example.

3.1.2.1 An example of error propagation

Let f(u,v) = 2u + v*, and let the numerical range of U and V" be [1, 100] and [-5, 5],

respectively. Further, assume that both @ and v are represented using 2 fractional bits, and

u and v are represented using only 1 fractional bit. Then, the worst case d, and 9, are

written using Lemma 3.1.2 as
by =y =271 =22 =272 (3.9)

From Equation (3.8) the propagation error in f is given by

8%

f(@,9) = flu,0) =268, + 208, + (8,)? (3.10)

The above error equation is a function of V. For its value v € [(d,/2), 5] the error is zero or
positive and represents the under—approximation propagation error. Its magnitude is max-
imum when v = 5. For v € [—5, (6,/2)) the error is negative, thus representing the over—
approximation error. The worst—case over—approximation error is obtained when v = —5.

Substituting from Equation (3.9), the worst case under— and over—approximation errors in

f are
6 = 2-27%+2-5- 273+ (27%° (3.11)
6 = 2-(27%)+2-(-5)- (27 +(27%? (3.12)

3.1.3 Computation error in algorithms

Let V be the total number of variables (and constants) in the algorithm G. Let w; and
k; be the total and fractional word lengths of the i—th variable. From Lemma 3.1.2 and
Equation 3.8, we express the error in the final result of the algorithm as a function of word

lengths of its variables as
.
error (G) = Z a; 2% W B 9%k 4 (3.13)
i=1

where «v;, a;, 3;, b;, and ~ are constants. The desired level of accuracy is preserved for a

given maximum permissible error € if

error (G) < € (3.14)

which is a nonlinear constraint equation.

3.2 Formulation of the cost function

The joint assignment of resources, operations, and word lengths is shown in Figure 3.1.

For simplicity, two commonly used function types, addition and multiplication, are shown.

operations resources

-

~ = + B ~
7’ 1 N
op_map R+
/ 4
H' R2 vt \l
1 P
\ # R2 /
v R 1 /
~ # . /7

wil_map

” d - s k: ~
’ + + +
SOwWEowtow \‘
1

3 = x 7 o o

oWt owS WL word-lengths

- o

-
N e -

Figure 3.1: Set representation of operation, resources and word lengths mapping

However, the formulation is generalized for an arbitrary number of function types. In algo-
rithms represented as simple flow graphs, all computation operations are fixed and known.
Therefore, the set of these operations is a closed set as shown in Figure 3.1. The set of
resources is open because the number of resources required depends on the cost and per-
formance constraints. In a given architecture, one or more operations are implemented by
each resource. The assignment of operations to resources is given by the function op_map
defined in Table 3.1. The set of word lengths used in the implementation is also open
because it depends on the resource set, and operation-resource mapping. Word lengths
are assigned to operations as well as resources in the final design. These assignments are
shown by edges between the word-length set, and operation and resource sets. The latter
assignment given by the function wi_map is also defined in Table 3.1. The cost of a design
comprises several parameters such as design size, die cost. cost of designing the circuit,
fabrication and packaging cost, and energy/power consumption. Many of these cost pa-

rameters are closely related to the design area, hence, in the cost function considered 1n

22

this dissertation, the overall circuit area is assumed to represent the design cost. A dif-

ferent cost model to express the energy /power consumption of a circuit in terms of word

lengths of its resources is described in Appendix A. This model is based on our system

level energy /power prediction technique reported earlier [62]. We now derive a cost (area)

function in terms of the resource set and the word-length set. The area of the implemented

design is readily obtained from this function when the two sets are known. Table 3.1 sum-

marizes the notation used in the derivation. Note that Greek symbols represent resource

attributes and Roman symbols represent operation attributes.

Symbol

n

Table 3.1: Notation for the cost function

Interpretation Comments
Control data flow graph (CDFG)

representation of the algorithm

Total number of arithmetic

operations in the graph

Number of function types in the graph

Number of operations of type ¢ te(l,z]
i—th operation of type ¢ i € [1,n']
Number of resources of type t vt < nt
k—th resource of type ¢ ke (1,0
Set of operations mapped to R},

Number of operations in O}, Z;l nt = nf
0-1 mapping function between

operations and resources

A word-length vector consisting of i€ [1,nf]
input/output word lengths of o}

Word-length vector associated L€ [1,n}]

with operation o] in O},

Set of word-length vectors

assigned to operations in O,

Number of distinct word lengths (vectors) Ut < pt
used by resources of type

A word-length vector consisting of r€ (1,41

12
W

Symbol Interpretation Comments
input/output word lengths of I},
wl_map (k,r) 0-1 mapping function between
word lengths and resources
Q' Set of word-length vectors

assigned to resources of type ¢

3.2.1 Resource area

We first derive an expression for the area of adders in the design. Summation of such ex-
pressions over all function types yields the total functional resource area. In this we assume
that resources of one type are not used to implement operations of other types. Let area
(R;;) denote the area of k—th adder. Then,

vt

At = Zarea(R;:) (3.15)
k=1

is the area of all adders in the design. The adder R} is shared by additions in the set oF,
Therefore, the input/output word lengths of the adder must be as large as the corresponding

largest word length assigned to the operands of additions in O;". Thus,

F o e o _ ot

W, = max (W] Vi=1...n] (3.16)
Equation (3.16) implies that word lengths given by the r—th vector in Q" are assigned to
Ry, in other words, wl_map (k,r) = 1. Note that one or more adders in the design may
share the same word length?. Hence, the cardinality of Q7. denoted ', can be less than
or equal to the number of adders, denoted v*. This one—to—one or many—to—one relation

is modeled by the wl_map function as follows:

1 if k~th adder uses the r—th word length vector,
wl_map (k,r) =

(0 otherwise. (.17)

*In this thesis, the term word length when associated with operations or resources represents the word
length vector.

The area of an adder is a function f of its word lengths”. Thus,

Pt

area(R}) = Zwl_nmp (k,r) - fH(w]) (3.18)

r=1
Now, we can write an expression for the area of adders used in the design as

vt

wt
AT =" "wimap (k,7) - f*(w]) (3.19)
k=1 r=1
Finally, the area of resources of all types, used in the implementation of algorithm G is

given by

2z wt

ht
W
Afunctional-resource Z Z Z WL]HCI[) Ui, ,].) : f!(wi) (3.20)

=1 k=1 r=1
This equation indirectly depends on the word lengths of variables in G, through Equa-

tion (3.16)*. Functional-resource area is also given in the alternate form as

z L”f

Afunctional-resource Z Z vix fHw!) (3.21)
t=1 r=1
where v/} is the number of resources of r—th word len gth of type ¢.
Figure 3.2 shows a typical example, with only one type of operation considered for
simplicity. The number of operations in the graph n = n' = 6, and the number of re-
sources used = 3. However, the number of distinct word lengths used @ is 2. The

functions op_map and wil_map are also shown in the figure as matrices. For this example,
Equation (3.20) becomes

Afunctional-resource f((-l)[) + 0 k=1
+ flwr) +0 k=2 5.22)
+ 0+ fws) k=3

Adders having inputs of different word lengths are uncommon. However, this formulation is generalized
for any type of functional resources.
*In general, equations similar to Equation (3.16) are written for each operation type f.

(RS
wn

ol

Q={ol, w2}
(0]
2
op_map wl_map
[| r|—
k11 23456 k 1 2
vy 110 01 1 00 lLz]l1 a
210 0 0 0 1 0 2011 0
311 1 0 0 0 1 310 1

Figure 3.2: A typical operation, resources and word lengths mapping

3.2.2 Multiplexer and bus driver area

When a resource is shared by two or more operations, the inputs of those operations must

be multiplexed. This is done using a multiplexer tree or tristate buffers driving a shared

M-1

~— | m—way multiplexers or M

bus. In order for a functional resource to share M inputs, [
bus drivers are needed. We first derive an expression for the number of operations sharing
a resource, and use it to obtain the total multiplexer or bus driver area. We derive the area
equations for addition, and extend the final expression for all function types in the graph.

The mapping function of adders and additions is

_ 1 if the k—th adder implements i—th addition o;”
op-map (k,i) =
0 otherwise. (3.23)

Thus, the number of additions sharing the k—th adder, and the corresponding number of

m—way w-bit multiplexers are given by

nt
ny = Z op_map (k,1) (3.24)
i=1
nf—1
#muxes = [r;,; — 1] (3.25)

The area of each of these multiplexers is proportional to the word lengths of the associated
+
iy —1

variables. Consider the set of multiplexers X,", used by RR%. There are [ml multiplexers
and m x [’;‘;__il] w-bit nets in this set. We define a mapping function mux_map (z, e;), for

a multiplexer z € X, and anete; € X", such that

1 if net ¢; is an input of mux z,
mux_map (x,e;) = (3.26)

0 otherwise.

The word length of an m-way multiplexer denoted w,, equals the largest of the word

lengths of its m inputs. Therefore
w, = max [we;,, ..., we;,] (3.27)

where we;, is the word length of the net ¢;,, and the nets e;, through e;, . are inputs to

multiplexer x. Incorporating this conjunction into the equation above we have

W, = Max [wejl A {muxmap (z,¢;,)}, ..., we;, A {muxmap (z, €jm)}],

ng — l]
m—1 (3.28)

V€ oo s =lcmx [

Of the total (m X {%‘T_;ll]) w=bit nets, word lengths of n;} nets are determined by the
word lengths of variables in (). The word lengths of the remaining nets are determined
by Equation (3.28). Now, the area of multiplexers required by R} is given by
=
AP = N P w,) (3.29)

r=}

27

The area of all drivers multiplexing variables of the set O, on a shared bus is propor-

tional to word length vectors of operations in the set, and is given by

Tl+

+ .
Adrivery — ([”k - 1]) X Z op-map (ki) - f*™ (wi) (3.30)

”k =1

It is likely that certain operations have dedicated resources (for example, operation w in

. . . = . =1 .
Figure 3.2). A driver is not needed for such cases where n!. is 1. Then the term | 51+ | in

Equation (3.30) becomes 0, and the driver area corresponding to that resource is appropri-

ately 0. For values of ;] > 1, the value of ("i:]] is always 1.

Depending on the type of functional 1‘esourkce being shared. one or more sets of vari-
ables are shared. For example, multiplexers used in additions must select both operands
needed for addition. One way to model this is to scale the number of multiplexers (or
drivers) by the number of input operands. We assume that functions f™* and f%"¢ in-
corporate the necessary scaling. Finally, the total area of multiplexers and drivers in the
design is obtained by summing Equations (3.29) and (3.30) over all resources of all func-

tion types in the graph. Thus we have

nt —]

(m l.|
. L Z Z Z /”““ p (33 l)
=1 k=1 =z=1

) Zop.map K f"“‘”(5 (3.32)

Adriver Z Z (
=1

3.2.3 Register area

The Boolean function that assigns registers to variables, denoted reg_varonap (p,v), is
defined as

L if v—th variable is stored in the p-th register.
reg_var_map (p,v) =

0 otherwise. (3.33)

The word length of the p-th register, denoted Wy, 1 given by

Wy = max [reg_var_map (p,v) - w,] Yv=1...m (3.34)

where w, is the word length of the v—th variable, and m is the number of variables (and
constants) in the algorithm, previously defined in Section 3.1.3. If there are 1" registers

in the design the total register area is given by

v reg

A =" [(wp) . (3.35)

p=1

3.2.4 Interconnect area

The nets in a chip may originate from four different sources: namely, input ports, func-
tional resources, multiplexers and registers. This implies that the number of nets is the
sum of the number of output bits of modules in each of the above categories. Let 7 be the
number of input ports, each of word length w;;,. We also define a function out_bits (w),
which gives the total number of output bits in the vector w. Now, the total number of nets

in the design is written as

s

s
VJ!EN‘ — Z“"JIP —|— Z Ol“‘_})i{s (wp)
p=1

i=1
Ut

- Z Z Z wlmap(k,r) - out_bits (w?) (3.36)

=1 k=1 r=1

nr_—l
=3

m—1

+ Z out_bits (w,)

o=

T

B nt
+ (dy- | ".”, 1) x Z op_map (k. i) - out_bits (w})
'k

i=1

The first and second summation terms in the equation above give the number of nets orig-
inating from the input ports and registers, respectively. The third summation comprises
three terms. The first term gives the number of nets originating from the functional re-
sources. The second and third terms give the number of nets starting from multiplexers and
drivers, respectively. The new Boolean variable dy, is “1” if R! is connected to a shared bus.

The word length vectors w,, w', and w, are given by Equations (3.34), (3.16), and (3.28),

respectively. If the average net length is [, and the average net width is @, the total net

area is written as

Aners — puets T (3.37)

3.3 Word-length optimization problem formulation

: : : .6
The total design area is obtained by summing areas of all the constituent components.
-;ldc.vr‘gn = Afxrr|cn'mm!—rt.'.\‘nurce 4 ,_lmu.\' I , __.1:!:'1'\‘01' s 478 o= Ane! (3 38)

Terms on the right hand side in the equation above are defined by Equations (3.20), (3.31),

(3.32), (3.35), and (3.36). In these equations, the unknowns to be solved are

W word lengths of the algorithm variables,
v the number of resources used,
€2 word lengths of functional resources, and

¢ the number of different word lengths used by functional resources.

The latter two unknowns depend on W, v/, and the mapping function op_map. The number
of resources v/, and the mapping function directly affect the desired performance; hence, £
also directly affects the performance. The choice of word lengths of variables in G, i.e. the
elements of W, affects €2, which in turn affects the cost [ref. Equations (3.20) and (3.38)].
It is obvious that £, v, and 1) cannot be chosen independently of W. Hence, all four un-
knowns stated above must be chosen simultaneously to achieve the design with minimum

cost, desired performance, and desired accuracy.

“The width of the net also includes the space between adjacent nets,
“This total does not include unused area, which has an approximate monotonic relationship with the de-
sign area, or control area, which is not directly related to word lengths.

The functions JF, relating area and word lengths of resources of various types are non-
linear in general. The carry look—ahead adder and multiplier are two examples of this ob-
servation. For a given algorithm G and performance requirement 7-, we can abstractly state

the cost of implementation C as
C=F (W, R,) (3.39)

Now we formulate the optimal word-length selection problem for data path optimization

as

Given G, T,and €
select W.r, €0 such that (3.40)
= F (W, v, Q ¢) isminimum,

C
error (G,W) < €, and performance (G,v) < T

3.3.1 Cost of system level components

The implementation of a complete system may comprise more than one chip on an MCM
or PC board. On—chip or off-chip memory modules may also be used. The cost of inter—
chip communication, especially in terms of energy and power consumption, is significant,
and is directly proportional to the number of bits involved. Similarly, the size of mem-
ory is directly proportional to the word lengths of the variables stored. Trade offs, such as
using larger computational resources (with higher precision on chip), and in effect fewer
interconnects between chips are feasible. Inclusion of cost functions of these (and other)

components in the overall system-level cost function allows optimum word length selec-
tion for system-level designs.

3.4 Problem complexity

The actual area of the implementation can be determined only after allocation and bind-
ing of functional resources have been performed and layout generated. Layout generation
involves placement of functional and other resources and routing, which are well-known
difficult problems. Additionally, resource allocation for minimum area under performance

requirements is also believed to be an intractable problem [11]. Therefore selection of the

31

optimum W, €, and v is an extremely difficult problem to solve. We now consider two

constrained versions of the problem and discuss their complexity.

3.4.1 Minimum functional resource area with known word lengths

Since our objective is to determine the optimal operation and resource word lengths, if we
assume that they are known, our problem is solved. Assume we know the optimum set
of word length vectors assigned to each type of resource and operation. What we demon-
strate here is that even so, finding the optimal joint assignment of operations, resources,
and word lengths (shown in Figure 3.1 on page 22), that only minimizes the functional
resource area, is still a difficult problem. Under the assumption that the optimum 2 is
known, we have a set of modules for each function type ¢ where each member of the mod-
ule set has a distinct area—accuracy characteristic. Since we also know the optimum W,
we can easily identify the subset of operations that can be implemented by any module.
Now, the problem of determining the optimum »* for each ¢ is equivalent to the general-
ized module selection problem. The generalized module selection problem was defined
by Jain [21]. Notice, that operations requiring small word lengths can choose between
resources of many different word lengths. On the other hand, operations requiring large
word lengths have a relatively small choice. Unlike the module—set selection technique,
also proposed by Jain et al. [22], different resources of the same type may have different
word lengths. Therefore, the problem of selecting the optimal number of resources of each
word length in €2 is a generalized module selection problem. This problem is believed to
be combinatorial [8,21]. It was modeled as a concurrent resource allocation and binding
problem and the ILP formulation was given [11]. This approach to determine the optimum

v* may be very slow or even impractical for large problems.

3.4.2 Word length selection in scheduled data flow graphs

Another way to constrain the word length selection problem is to assume that the data flow
graph is scheduled and the optimal operation word lengths are known. In the extreme situ-
ation, each operation may be implemented by a dedicated resource of word length the same
as that of the operation. Then, & C W. From the scheduled sequence of operations we

have a compatibility graph [54]. We can use the set inclusion model proposed by Springer

and Thomas [55] to represent the additional hardware required to implement an operation
of large word length using a resource of small word length. For example, the cost of an 8-
bit addition implemented by a ripple—carry adder is the cost of the set comprising an 8-bit
ripple—carry adder. The cost of two 8-bitand one 10-bit additions sharing a resource is the
cost of the earlier set plus the cost of another set comprising a 2-bit adder, multiplexers,
registers and wiring. It is difficult to determine the exact cost of multiplexers, registers
and wiring. However, assuming that the determination of this cost is feasible, the mini-
mum area solution to word length selection can be obtained by solving the weighted clique
partitioning problem [55]. The selected sets represent the optimal resource word lengths.
While this approach can yield the exact solution for scheduled graphs, the weighted clique
partitioning problem was shown to be NP-hard [11,55]. This does not prove that the de-
sign problem discussed by Springer and Thomas is NP-hard. However, it is believed to
be NP—hard in the general case. Morcover, this technique applies only when the optimal
operation word lengths are known. Recall from Equation (3.40) that W is one of the un-
knowns to be optimized in our problem.

We have shown that the constrained versions of the word length selection problem are
difficult to solve. While we cannot claim that the unconstrained word—length selection
problem is NP—hard or NP-complete, it is very likely that it is intractable. An overview

of our approach to obtain the optimized solution is given next.

3.5 Overview of the approach

Figure 3.3 shows the overall procedure of word—length selection for algorithm optimiza-
tion. We first analyze the CDFG of the given algorithm and obtain an error constraint in the
form of Equation (3.13). We assume that the operating numerical range of each primary
input and the corresponding maximum error is specified. In addition, constraints on the
word lengths of primary inputs are also taken into consideration. Then, we determine the
tight upper—bound word length of each operation in the graph to achieve the maximum ac-
curacy. The error analysis also determines the maximum > for each function type. Then,
for each possible ¢/ formed by a unique combination of ¢* for each function type ¢, an opti-
mized cost function in terms of tight upper—bound word lengths is generated from cluster-

ing. In this function the use of resources of multiple word lengths is optimized. A genetic

33

Numerical range of

Control data flow
inputs, and error

graph

Computation
Error ; Range of ¥
analysis tight upper-bound
S — word lengths

Performance
constraint

Error
constraint
equation

’

' In terms of .
* No. of resources of |

/ | various types :
| = Max. resource

word lengths

Set of optimized *

cost functions
* Optimized under the

max. accuracy requirement
which is met using the tight
upper-bound word lengths

Genetic
algorithm |

Figure 3.3: Word-length selection for algorithm optimization

34

algorithm is used to further minimize the set of cost functions while satisfying the accu-
racy requirements imposed through the error constraint equation. The solution that yields
the minimum cost gives the best ¢ for each type, the corresponding v, and also the word

lengths of all variables and resources. This procedure may be repeated for various perfor-

mance constraints.

Chapter 4

Computation error analysis

A systematic approach to model the worst—case error in computations is explained in this
chapter. The error is introduced due to truncation of the initial and intermediate operands,
and error propagation. We restrict the analysis to simple data—flow graphs with no un-
bounded data—dependent loops. Section 4.1 describes the error analysis for addition and
subtraction. A similar analysis for multiplication is described in Section 4.2. In Section 4.3
we show how closed—form expressions of error in the final results of a simple data—flow
graph are obtained using the analysis in the previous sections. The computation of the min-
imum worst—case error in an algorithm, given its environment (i.e., the primary input word
lengths and error) is described in Section 4.4. The knowledge of operation word lengths
that yield the maximum accuracy is important because increasing the word lengths beyond
these upper bounds does not improve the accuracy of the algorithm. An automatic tool was

developed for error analysis. Its functions are described in Section 4.5.

4.1 Analysis of error in addition and subtraction

4.1.1 Basic analysis of error in addition

Recall from Definition 3.1.1 on page 17 that ¢ is the actual or intended value of a variable
V7. The represented value is v. When two variables X and Y are added, the intended result

is (Z + g). However, the adder produces the sum (z +).

Definition 4.1.1 The error developed in an arithmetic operation resulting from the errors

in the input operands is defined as calculation error.

36

From Equation (3.1) on page 17, & and j are written as

I

x+0, whered, € [0, , 0F

. R (4.1)
j = y+0, whered,€ld,,df
The corresponding calculation error in addition is given by
(0 +6;)
- (67 +9;)
€add = (E+G)—(@+y)=¢ ° % (4.2)
(05 +9y)
(6 +4;)
The worst—case under and over approximation calculation errors are given by
Catt = (0 +07) (4.3)
Cu_dd = (6: + (sy_) (44)

If some of the less—significant bits of the sum are truncated, truncation error is introduced.
The upper—bound error corresponding to truncation of [= k& — m least significant bits
denoted €""“(m) is obtained from Lemma 3.1.2 on page 18. Here k& and m are the number

of fractional bits in the sum, before and after truncation respectively.

_ 2~k if m<k
.!nm(‘(,”l) — (45)

0 otherwise

€

If the word length assigned to the sum is greater than the number of bits needed, two possi-

bilities shown in Figure 4.1 exist. If sign extension is implemented the number of fractional

W-k k The original sum
SSS| W-k k Sign extension
W-k k 0000 | Zero fill

Figure 4.1: Sign extension and zero fill applied to the sum.

37

bits in the new sum remains to be k. The truncation error in this case is zero. Alternatively,
extra fractional bits are added to the sum and are zero filled. In this case also, the trunca-
tion error is zero. According to Lemma 3.1.1 on page 17, €""“(m) is always positive. The

total worst—case under— and over—approximation errors in addition are

Outd = C€apa + € (m) (4.6)

‘ € ; _|_ Clrum'(ﬂl) lf (G_ - ilrunr(,,n)) < U

(5;,{, _ ade add (4.7)
0 otherwise

Notice that the final error is expressed as a function of the input and output word lengths'.

4.1.2 Manipulations to avoid unnecessary errors in addition

In fixed point addition (or subtraction) it is required that the locations of the binary points
in both the inputs are aligned. It is possible that the fractional and/or total number of bits in
the two operands are different. In that situation, circuit designers apply zero fill or sign ex-
tension. The choice depends on which method reduces the final error. In our error analysis,
we first determine the correct binary—point adjustment method and derive the worst—case
error equation accordingly. Thus, the bounds are guaranteed to be tight bounds. Next, we
explain the selection procedure using examples.

Let us consider addition of two variables X and Y. Let their respective to-
tal word lengths, integer word lengths and fractional word lengths be denoted
Wg, Wy, i1, kg,and k,. Naturally w, = i, + k, and w, = i, + k,. For sim-
plicity let us further assume that w, < w,. Analysis for the case where w, > w, is
symmetric. Finally we assume that the number of bits in the adder denoted w > w,,.

Hence, sign extension or zero fill is applied to .\

Casel: k, =k,
Equations (4.6) and (4.7) apply with no change.

Case 2: k, <k,
Let! = k, — k.. We first attempt to left shift X with a zero fill. The complete

'In most applications it is common to truncate the fractional bits only. However, the equations apply to
integer bit truncations as well.

38

shift of / bits is feasible if | < (w — w,). Equations (4.6) and (4.7) still apply
without any change in that case. Otherwise, left shift X by m = (w — w,) bits
and truncate (! —m) least significant bits of Y. Examples of both the possibilities

are shown in Figure 4.2.

X 10 6 10 6 X
=4
Y 6 10 6 10 Y
20-bit‘adder m=4 m=2 18-bit adder
A
X 10 6 0000 10 6 00 X
A represents the fixed binary point 6 8 "@l Y
a) Zero fill when adder b) Zero fill and truncation when
is of sufficient size adder is too small for operands

Figure 4.2: Binary point alignment when £, < k,

When Y must be truncated, 6,7 and 6, change as

(5;_”9“' _ (S:.(JM 4 (Q_ky.f[ﬁ-m . 2,;;") (48)

{)_y_m,“. _ 11111‘1 (U, ().;”Id + (Q—A?y-%-l—rn _ Z—ky)) (49)

Equations (4.6) and (4.7) change accordingly.

Case 3: £, >k,
Letl = k, — k, and m = w —w,. If m > [, left shift }" by { bits. Equations (4.6)
and (4.7) apply with no change. Otherwise, if m > 0, left shift ¥ by m bits and
truncate the (/ —m) least significant bits of X'. These two possibilities are shown

in Figure 4.3.

X 2 10 2 10 X
[=4
g 10 6 10 6 Y
20-bit ‘adder m=4 m=2 18-bit‘adder
y 10 6 |0000 2 8 M x
A represents the fixed binary point 10 6 00 Y
a) Zero fill when adder b) Zero fill and truncation when
is of sufficient size adder is too small for operands

Figure 4.3: Binary point alignment when &, > £,
Then, §; and 6, change as

67 = §F (@Rt o gk (4.10)
6 = min [0, & 4 (2 kT _ g=key) 4.11)

and, Equations (4.6) and (4.7) change accordingly.

THEOREM 4.1.1 The specific choice of shifting bits of inputs X and Y guarantees that
their binary points are aligned, and that the additional truncation error introduced is min-

LI,

Proof Consider the two possibilities in Case 2, where &, = £, + [. If X is shifted left
by [bits, the new X has k, + [= £, fractional bits and binary points are aligned. If X
is shifted left by m bits, then Y is shifted right by (I — m) bits. The new X and Y have
(k; +m) and (k, — [+m) = (k. + m) bits and their binary points are aligned. Analysis
for Case 3 is symmetric where both X and Y either have (k, + 1) or (k, + m) fractional
bits.

Zero fill increases the number of fractional bits however, the corresponding truncation
error does not decrease because the value of the variable is unchanged. Consider Case 2

where (I — m) least significant bits of ¥ are truncated. Instead, if only (I — m — k) bits

40

are truncated then for the binary points to align, X' must be left shifted by m + k places.

Consequently, the total number of bits in X denoted w’ is given by

W, = Ltk +m+k
= w+k

> W V>0

The new X' cannot be an operand of the given adder of w bits. Therefore, the minimum
number of bits that must be truncated in Y is (I — m) and the corresponding error is min-

imum. Analysis for Case 3 is symmetric. a

4.1.3 Basic analysis of error in subtraction

It is common to characterize subtraction as addition when both operands are allowed to be
positive and negative. Unlike addition however, subtraction is not commutative. X — Y
Y — X. Hence, we modify Equations (4.2), (4.3), and (4.4) for calculation error in the

subtraction X' — Y as

(67 —6;)
. (0 —d;)
Esub = (-7: - ‘U) - (JE - LU) = o ’ (4.12)
([):c - 5;)
(07 —d5)
The worst—case under and over approximation calculation errors are given by
ehy = (07 —0;) (4.13)
€ = (07 —) (4.14)

Equations for the subtraction (Y — X) are symmetric. The error corresponding to trun-

cation of the result is independent of the arithmetic operation therefore, Equation (4.5) is

41

applicable without any change. The total worst—case under— and over— approximation er-

rors in subtraction are

Oup = €+ €™ (m) (4.15)
Ogpy = min (0, (&g + " (m))) (4.16)

Finally, the discussion in Section 4.1.2 on operand shifts necessary before addition/ sub-
traction is directly applicable to subtraction as well. In the error analysis we assume the
optimum shifts for the given operand and resource word lengths, and model the minimum

error accordingly. This allows the best use of available word lengths.

4.2 Analysis of error in multiplication

The error expressions for the results of addition and subtraction are independent of the
numerical ranges of the input operands. In case of multiplication however, the worst—case
calculation error depends significantly on these ranges. Calculation error in multiplication

1s given by

13

(@0 +y- 05 + 07 -6)) €1
o (x-6F+y-0;, +6;-0F) £ e

€mar = (T %) — (z % y) = max ' i R
(z -0, +4-d; + 05 -6,) 2 g

In order to obtain a closed form expression for the worst case €,,,, we need to determine

the maximum and the minimum values of €, €, €5, and €.

T -0F +7-67
T-0F +y-dF
£‘c5;+!_j-(5:
z-0F +y- 67

max (€;) = max + 485 -of (4.18)

where = € [z, 7|, and y € [y, 7.
min (e;) is obtained by replacing ‘max {-}" in Equation (4.18) with ‘min {-}’. Ex-

pressions for maximum and minimum €, €3, and ¢4 are obtained by substituting for o,

42

and ¢, according to Equation (4.17). Then, the worst case under and over approximation

calculation errors in multiplication are

€ = Max (0, max {max (¢;), max (€2), max (e3), max (¢4) }) (4.19)
€y = Min (0, min {min (e,), min (ey), min (e3), min (e4)}) (4.20)

We have shown the analysis of truncation error for addition in the previous section. While
the analysis for multiplication is identical, truncation is significant in this case. As men-
tioned before, the product of A/—and N-bit 2’s complement numbers consists of (M + V)
bits. Potentially, the number of bits in the product is twice the number of bits in an input.
If the permissible output word length is comparable to that of the inputs, it is likely that al-
most the entire least-significant half of the bits are truncated. The positions of the binary
points of the inputs need not be aligned for multiplication. Let the number of fractional bits
ininputs X and Y be k, and k,, respectively. Then, the truncation error corresponding to

l = kg + ky — m least significant bits denoted €"™"“(m) is given by

_— 2-m _ 9=(hetky) if m < k. + k,
€7 (m) = 4.21)
0 otherwise

The total worst—case under— and over— approximation errors in multiplication are

(S+ — f+ A En'mnf(,,n) (422)

it nmile

=) et e e(m) if (€, +€™(m)) <0 423)
mult (4.

0 otherwise

Note that the final error is expressed as a function of the input and output word lengths and

also the limits of the numerical ranges of the inputs.

4.3 Error analysis in simple data flow graphs

4.3.1 Analysis of error in the computation of other functions

In complex numerical computations, other functions such as division, reciprocal, loga-
rithm, square-root and sine are also used. Therefore, it is important to be able to model
the computation error in these functions. One way to determine the worst—case error is to
perform analysis similar to that carried out for addition or multiplication. For example, the

worst—case calculation error produced by the sine function is

€sin = SIn(T) — sin(z)
= sin(z + d;) — sin(x)
= (sin(z) - cos(d,) + cos(z) - sin(d,)) — sin(z)
~ (sin(z) - /1 — 02 + cos(z) - ;) — sin(x)
~ sin(z) (/1 — 62 — 1) + 4, - cos() (4.24)

In this equation 9, is assumed to be a small fraction of x. The worst—case value of e, is
0, and occurs when z approaches zero. On the other hand, hardware and software imple-
mentations of nonlinear, elementary functions typically comprise additions, subtractions
and multiplications ? [13,23,27,50,51,63]. These more complex operations are expressed
using data—flow graphs involving only additions, subtractions and multiplications. Our
method described below to analyze the computation error in the final outputs of a simple
DFG can be used directly to analyze errors in the above mentioned and other similar op-

erations. This approach has the following two advantages:

1. When deriving equations similar to Equation (4.24) we assume that the pure com-
putation of the function does not introduce any error. In other words, the error in the
computation is zero if the input error is zero and all the output bits are preserved.
This assumption is true in the case of addition and multiplication but not valid in the
case of elementary functions. Error introduced by the computation depends on the
algorithm used. For example, a Taylor series expansion using 6 significant terms or

100 significant terms would yield a different computation error. Since equations like

2Typically one or more table look-up operations are required and the associated error due to finite word
length of the memory is modeled as truncation (or round off) error.

S

Equation (4.24) have no knowledge of the implementation algorithm, the actual er-

ror in computation is likely to be greater than the worst case bounds determined by

the equations.

[§e)

. Many different algorithms exist for the computation of a nonlinear function. A dif-

ferent DFG is associated with each algorithm and accordingly, the error analysis

varies although the function and its inputs are identical. Error analysis using sim-

ple DFGs allows the designer to

(a) model the error corresponding to the implementation or,

(b) to choose an implementation with the desired cost/error characteristic.

4.3.2 Analysis of error in the final outputs of a simple DFG

In this section we consider two simple examples and demonstrate how closed—form expres-

sions for the error in the final results are obtained. The method is applicable to all DFGs

with no unbounded data—dependent loops.

4.3.2.1 Example: Two additions

The first example is Two additions. Consider the DFG shown in Figure 4.4. All the values

I

A

Y

A

A

Figure 4.4: Two additions DFG

in the graph are represented as fixed—point 2’s complement binary numbers. The word

lengths associated with each variable I; are represented as
-
W I = “'j . I‘J‘

where w; is the total word length associated with [;, and k; is the number of fractional
bits. Iy, I5, and I3 are the primary inputs. f,, I, and f, are the intermediate results, and /5
is the final output of the DFG. f:, is a result obtained by preserving all the output bits from
the preceeding operation. The corresponding /; is the result after truncation. /5 is the final
output of the DFG.

While the overall objective is to determine the optimal values of w;, the designer may
impose certain constraints for arbitrary reasons®. If any such constraints are known a pri-
ori, they are taken into consideration in the analysis. For example, in the present DFG we
assume £y = ko, and k3 = Fky. Otherwise, arithmetic shifts must be performed on the
inputs /, and/or I, as described in Section 4.1.2.

Word-lengths of f; and [, are

Wr, 2 max(wy, w) +1: ky (4.25)
Wy, 2wy (k — (max(wy, wa) +1— wy)) (4.26)
A
= Wy ik

where the total word length of [, denoted wy, is unknown. In order to write expressions

for the word lengths of J/’; and /5 we assume that k3 = ky. Thus,

Wi 2 max(ws, wy) +1: ky 4.27)
= Wi ks

where the total word length of /5 denoted wj is also an unknown.

*For example, the word lengths may be required 1o be even numbers, or word lengths greater than a certain
value may not be allowed.

46

Either truncation, calculation or both types of errors are associated with all the values

in the flow graph. The corresponding under—approximation error expressions are

e (L) = 0+[6]] (4.29)
(L) = 0+[6]] (4.30)
et(ly) = [6F +6)+0 (4.31)
¢t (L) = [6F +0F] + [max(0, (27 — 27F1))]
substituting for &, from Equation (4.26),

= [8 + 6F) + [max(0, (2% (2lmax(wiwa)+l=wa} _ 1}))] (4.32)
() = 0+[6] (4.33)
et(l5) = [0f +6F +max(0, (2% —27%)) + 64 + 0 (4.34)
e (Is) = [6F + 6 465 + max(0, (27" — 27F))] +

[max (0, (2% — g—ka))]
substituting for k5, and k4 from Equations (4.26) and (4.28) respectively,
= [&F + 8 4 6§ + max(0, (27 kr(g(maxwrwa)tl=wa) _ 1}))] 4
[max(0, (20 =(max(wiwa)+1-wa))

(2(!’!15\)\'(\‘-’3.W.|)+1-—-W’:’\} _ 1)))] (4.35)

The worst case under and over approximation errors in the primary inputs are denoted
8, and 0, respectively. Their values are known a priori. In all the expressions, the term in
the first square brackets corresponds to the calculation error and that in the second brackets

to the truncation error.

4.3.2.2 Example: Three multiplications

Figure 4.5 shows the flow graph for the example Three multiplications. The notation used
here is the same as that used in the previous example. Iy, I, I3, and I are the primary

inputs, s, I5, I, Is, and I; are the intermediate results and I7 is the final result. We also

47

Figure 4.5: Three multiplications DFG

assume the following constraints that w; < w; + wo, Wg < W3 + wy, and w7 < w5 + w.

The word lengths of all the results in the flow graph are

W
Wi,

Wr

Wi,

Wi
Wi,

1= 1 |- [

>

(e

(e

W)
Ws
W5
W3
W

Wg

=
1

£

Wy

+ wo 1 ky + ko

cky + ky — Wy — wa + W5
: ks

+wy kg + ky

thy + ky — wg — wy + wg
s kg

s+ wg o ks + kg

tks + kg — ws — Wi + Wy

(4.36)
(4.37)

(4.38)
(4.39)

(4.40)
(4.41)

The under—approximation error expressions for all the values are obtained by applying

Equations (4.17), (4.18), (4.19), and (4.21). These expressions are complicated because of

the “max” and “min” operators in the basic equations. While all the cases considered in the

basic equations must be evaluated in practice, here we make simplifying assumptions to

obtain expressions that are more readable. First we assume that the over—approximation

48

errors 0~ in all the primary inputs are zero. Therefore, we evaluate ¢, only from Equa-
tion (4.17). Next, we assume that the primary inputs are always positive. Consequently,
Equations (4.18) and (4.19) reduce to

€L =T-0F +7-0F +8F-6F £ eppun (4.42)

where X and Y are the two input operands of the multiplication, and 7 and ¥ are their
maximum values respectively. Finally, the previously stated assumptions ws < w; + wo,
we < W3+ Wy, and wy < w5+ wg imply that the truncation error given by Equation (4.21)
is strictly positive. Now, the under approximation error expressions for all the values in
Three multiplications are

et(h) = 0+[6f] (4.43)
€ (L) = 0+[d;] (4.44)
et(ls) = [0 +72- 0 +6f 051 +0 (4.45)
eH(I;) = [F1 05 +T-0f + 07 - 0F] +[27F — 2R Ry

substituting for &5 from Equation (4.37),

= [@7- 6 +T3-6F + 0F - 6] + [27RR2 L (Quitwemvs 1)) (4.46)

& g

et(I) = 0+ [6F] (4.47)
e(l) = 048] (4.48)
et(ly) = [T3 0F +T1-6F +8 -85+ 0 (4.49)
et (ls) = [T3-6f +Tq-67 +065 6]+ [27% —27Fs=M]

substituting for kg from Equation (4.39),
= [T3-0F +Tq- 05 + 05 0]+ 278 (2wtwave 1)) (4.50)

A 5k
() = [-60 +T6- 07 +6F-6{1+0

= [(@-7) 08 + (@ -T) 65 + 65 - 05 +0 (4.51)
eH(I;) = [(@-72) 0f + (T3 -T1) - 65 + 05 - 0f | +

49

substituting for k5, kg, and k7 from Equations (4.37), (4.39), and (4.41)

respectively,

= [(@1-72) -6 + (T3 -73) - 65 + 65 - 67 +
[?.(\\'1+“’2+W3+W4)*(A'1+k2+"~‘3+"f-l)—‘\'-’a“""‘ . (2“'5_"“.“_“'7 = 1)] (4.52)

4.3.2.3 Generalized form of the error equation of the final result of a DFG

Observe from Equations (4.35) and (4.52) that the total worst—case error is expressed in

terms of

1. the range limits of the primary inputs (constants since the values of the range limits

are known a priori),

2. the worst case under and over approximation errors in the primary inputs (constants,

also known a priori), and

3. the word length and the number of fractional bits in all the values in the DFG (the

unknowns to be optimized).

Now we write the generalized form of the total worst—case error expression of the final

output of a simple DFG as
bprc =Y 0; 2%V 4) Fiodkipy i=1,2,-:V (4.53)

where V7 is the total number of values in the DFG and oy, a;, 3, b;, and -y are known con-
stants. Notice that neither calculation nor truncation error equations are exponential func-
tions of input error. Therefore, all exponents in Equation (4.53) are linear combinations of
the total and fractional word lengths. Product terms such as (w; - w;), (k; - %;), and (w; - k;)

do not appear. The error expression, however, is nonlinear.

4.3.2.4 Control structures in flow graphs

When an ‘if-then—else’ structure is used. alternate sequences of computations or paths ex-

ist in the CDFG. The worst—case error corresponding to each path is modeled separately.

0

wn

Typically, the path that generates the maximum error is used in further modeling. How-
ever, if different kinds of operations are performed along alternate paths, word lengths of
different kinds of functional operators need to be optimized. In some algorithms the result
of a computation is shared by two or more successor operations. An intermediate ‘dis-

tribute’ node is then used as shown in Figure 4.6. There is no calculation error involved

Figure 4.6: ‘Distribute’ node in flow graphs and associated error

with this node, however, additional truncation error may be introduced. This possibility
exists when an input with word length smaller than that of the result is sufficient for one
of the operations sharing the result. In Figure 4.6 for example, wy, < wy, and wy, = wx.

The total worst case error in Y] is then given by

by, = 6F +€""(l) (4.54)
dy, = min (0, oy + "™"(l)) (4.55)

where 81 and d; are the worst—case under— and over-approximation errors in X, respec-

tively. The number of bits preserved in Y is [, and €"*“([) is the error introduced due to

truncation of the remaining least—significant bits of Y.

51

4.4 Tight upper bound on word lengths for minimum

worst—case error

In the previous sections we have shown how closed form expressions of error in the final
result can be derived in terms of word lengths of variables in the algorithm. Given a set
of word lengths, from Equation 4.53 we can determine the worst—case error in the final
result of the algorithm. If all the bits in each operand are preserved (i.e. no truncations are
allowed) the corresponding worst—case error in the final result is the minimum worst—case
error. In spite of preserving all bits, the computation error is not necessarily zero. This
is because the primary inputs of the computation may carry error from the external envi-
ronment. For example, digital filter inputs may have quantization error from A/D convert-
ers. This error propagates through the computations and the corresponding error in each
operand assuming adequate word lengths is its minimum worst—case error. If the error in
all primary inputs is zero the minimum worst—case error is also zero. Preserving all bits
yields the maximum achievable accuracy of an algorithm for the specified environment.
For each operand the corresponding word length is an upper bound because assigning a
larger word length to any operand does not affect the computational accuracy of the algo-
rithm. Hence it is essential in error analysis to determine the minimum worst—case error
and the word lengths of all operands in the algorithm that guarantee it. The upper-bound
word lengths can be naively computed using rules of elementary binary arithmetic. For
example, the sum of two N-bit numbers contains (N + 1) bits. The product of an M —bit
and an N-bit numbers contains (A + N) bits. However, bounds thus obtained do not take

into account the numerical range of the partial and final results of a computation. This is
illustrated in the following example.

Consider the summation S = 70 A;, where A; are 8-bit numbers in the range [0, 1].
In a sequential algorithm, based on a naive analysis, the first sum has 9 bits, and the last
one i.e. S requires 263 bits. However, from the range analysis we determine that each A;
has 1 integer and 7 fractional bits in unsigned representation. The maximum value of S
is 256 requiring only 9 integer bits. Thus, the tight upper bound on the word length of S
1s 16 as opposed to 263. In error analysis we first perform the numerical range analysis to
determine the numerical range of all intermediate operands and final results by analyzing

the sequence of arithmetic functions represented by the CDFG. Then for each operand,

|
(§S]

we determine the minimum number of integer bits needed to represent its range. Finally,
the tight upper—bound word length is determined by considering the fractional bits and no
truncations. Consider a computation involving two primary inputs a and b, letx = a + b
and the final result z = 2. Table 4.1 shows the numerical ranges and the tight upper—

bound word lengths of a, b, z, and z.

Table 4.1: Numerical range of variables and the tight upper—bound word lengths

Variable Range no. of no. of total
integer bits fractional bits word length

a [0, 1] 1 13 14

b [0, 1000] 10 13 23

r=a-+b [0, 1001] 10 13 23

gi= 2" [0, 1002001] 19 26 45

When the tight upper—bound word lengths for all operations in the algorithm are de-
termined, there may be dozens of word lengths required for each operation type. Since all
bits are always preserved, word lengths of some operands could also be very large. For ex-
ample, a 1-D DCT algorithm requires 25 distinct word lengths for multiplication ranging
from 8 bits through 244 bits. Cost considerations may force the designer to limit the word

lengths as well as the number of distinct word lengths with acceptable computation error.

4.5 Automatic tool for error analysis

An automatic tool was developed to perform error analysis. Its functions are listed below.
. First the tight upper-bound word lengths are determined by performing range analysis.

il. By counting the number of distinct tight upper—bound word lengths of all the oper-
ations of a type ¢, the maximum number of distinct resource word lengths denoted
(max .') is determined. At least one word length must always be used by resources

of any type. Therefore, the range of ¢/ is [1, (max .¢")].

iii. For the given values of operand word lengths, the error analysis tool internally gen-
erates an error expression in the form of Equation (4.53) and computes the numerical

values of the worst case under and over approximation errors.

53

iv. If the maximum permissible error in the final result is specified, the tool determines
whether or not the specified word length set can be used in the implementation by
comparing the two error values. The maximum permissible error may be specified as

a constant or a fraction of the maximum numerical value of the final result.

The error analysis tool implements the analytical model of computation error described
in this chapter and can replace exhaustive-simulation-based estimates of the worst—case

error suggested in previous work.

Chapter 5

Clustering

It was shown in Section 3.4 that simultaneous identification of the optimum word lengths of
variables and resources, along with the optimum number of resources is likely to be an ex-
tremely difficult problem. In order to obtain a good solution that minimizes the implemen-
tation cost, we introduced a two-step optimization process. In this chapter, we describe
the first optimization step, clustering, that yields a set of optimized cost functions corre-
sponding to the tight upper—bound word lengths. As previously described in Section 3.3,
the final word length selection is performed during the second optimization step, which is
implemented using a genetic algorithm.

The organization of this chapter is as follows. In Section 5.1 we describe the word—
length optimization problem and explain the scope of clustering. Motivation for cluster-
ing is given in Section 5.2. In Section 5.3 we introduce the clustering problem and present
methods to solve it. In that section we present a dynamic programming solution to place
operations in the algorithm into a specified number of clusters according to their word
length compatibility. The next step in determining the optimized cost function involves
prediction of the number of resources of different word lengths. Previous resource predic-
tion methods are reviewed in Section 5.4. A new behavioral resource prediction method
for multiple word length use is described in Section 5.5. Both nonpipelined and pipelined

implementation styles are considered in the clustering process.

5.1 Background

In Section 3.3 we derived the comprehensive cost function given by Equation (3.38). The

cost function can also be expressed in the form of Equation (3.21), reproduced here for

convenience.
z W
design area = Z Z vt x ft(w}) (5.1)
=1 k=1
where
z = no. of operation types
' = no. of distinct word lengths of resources of type ¢
wj. = value of the k—th word length of type ¢
vl = no. of resources of word length w}
ff(w) = function that gives the area of a resource of type ¢ and word length w.
A vector ¢ is defined as
R (AT L (5.2)

There are [[;_, (max.¢") unique combinations of ¢ where (max.t!) is the maximum
number of distinct word lengths of resources of type ¢ that can be used in the implemen-
tation. Its value is determined by error analysis, as shown in Section 4.4, or it may be
specified by the designer. Corresponding to each 4, a cost function exists in the form of
Equation (5.1), thus forming a set of cost functions of cardinality [];_, (max .¢*). Each of
these cost functions can be optimized by appropriately selecting the number of resources
v}, and the values of resource word lengths wf, for all k € [1, '], for each operation type t.
The number of resources of each selected word length of each type depends on (a) 1/, (b)
w}, (c) the number of operations of type ¢, n', (d) the optimal word lengths of operations,
and (e) the performance requirement. Note that the optimal word lengths of operations
must also be obtained in order to optimize the cost functions.

In clustering we assume the requirement of maximum achievable accuracy introduced

in Section 4.4. Then the necessary operation word lengths are the tight upper—bound word

56

lengths. We also consider all possible combinations of b corresponding to the types of
functional/arithmetic operations. In a typical algorithm only a few arithmetic functions
are used such as addition, square root, and multiplication. Therefore the size of the cost
function set is not too large. Then, for a given ' we must select wj, and v such that the
corresponding cost function is minimized. Since all ¥ are considered, we obtain a set of
optimized cost functions. In Theorem 5.2.1 we show that the choice of wi in clustering is

limited only to the tight upper—bound word lengths.

5.2 Motivation

5.2.1 Clusters of operations

Since all combinations of 'J,: are considered, we analyze the effect of all ¢ on the corre-
sponding cost functions. Let the number of operations of type ¢ be n‘. Since v distinct
resource word lengths are used there are at least ¥»* resources. In general, more than one re-
source of a particular word length may be used; therefore, the number of resources v* > ",
Each resource must execute at least one operation. Therefore, n' operations are partitioned
into ¢' non—empty sets or clusters. At least one or more resources are assigned to each
cluster such that the word lengths of resources assigned to the same cluster are identical,
and the word lengths of resources assigned to different clusters are distinct. Thus there are
exactly ¢* word lengths of type ¢. Let the number of operations in the k—th cluster be n.,
and the number of resources assigned to the k—th cluster be 1§ where k € [1,¢']. All nj,
operations in the cluster are implemented by v/}, resources assigned to the cluster.

The following theorem shows that members of resource word length set £2 may be se-

lected from the set of operation word lengths W = {wy, wq, - W, }.

THEOREM 5.2.1 The set of resource word lengths S is contained in the set of operation
word lengths WW.

Proof Consider an elementw; € £2 such t hatw; 3 W. Let w,, be the largest element of
W smaller than w;, such that the corresponding operation o, is implemented by a resource
of word length w;. Therefore, all operations implemented by resources of word length w;,

require word lengths less than or equal to w,. Furthermore, no operation requiring word

57

length greater than w, is implemented by any resource of word length w;. Since operation
0, requires w, bits, the word length w, is necessary. Also, (w;—w,) bits of all resources of
word length w; are always unused because operations requiring word lengths greater than
w,, are not implemented by these resources. Thus, the word length w, is sufficient. This
observation is valid for any i in the range [1, ¢/*], and for any type . Therefore w; can be
replaced with w,, and 2 C W. O

From this theorem we observe that the word lengths of resources assigned to a cluster
must be equal to the word length of at least one operation in the cluster. Since an operation
of a larger word length cannot be directly executed by a resource of smaller word length,

we define cluster word length as follows:

Definition 5.2.1 The cluster word length is the word length of resource(s) assigned to the

cluster, which is equal to the maximum of the word lengths of operations in the cluster.

Let the cluster word length of the k—th cluster be wj.. An example of 3—clustering is shown
in Figure 5.1. The dashed lines indicate the scope of each resource. For example, resource

of word length w3 can implement all operations.

W, operations W,
O O \\Y
Tt m o 1 I
~ = =SS S S S s m e o I

~1 - - e

4 W, @ g

resources

Figure 5.1: Unconstrained formation of clusters

5.2.2 Complexity of cost function minimization

The cost function corresponding to a given ¢ is minimized by solving the problem

Select wi,wh, - -wly Vt=1,...z such that
: wt
SNyl x fi(wh) is minimum (5.3)
=1 k=1

where 1;,“_ is the optimum number of resources assigned to the k—th cluster, and f*(w) is the
area of a resource of type £ and word length w.

Given n' and 1%, there are exponentially many ways to partition n operations into ¢*
non-empty clusters. Each way must be explored, and clustering that results in the mini-
mum cost is the optimal clustering. For every partitioning 1;;‘6 must be determined repeat-
edly as it depends on the operations in the k-th cluster. Since resources assigned to the £~
th cluster exclusively implement operations in the k-th cluster, we can assume that there
are Y _;_, 1" different types of operations. Then each 171; can be determined by solving the
problem of minimum resource allocation under performance constraints. This problem
is believed to be intractable [11]. Moreover, there are Y _,_, ¢ distinct word lengths for
each instance of partitioning that can be varied to minimize the cost function. Finally, this
procedure must be iterated over all o' in order to determine the minimum cost function.
The corresponding 0 represents the optimal 2! for each type ¢, and the optimal clustering.
The word lengths associated with the minimum cost function are the best operation and
resource word lengths. Determining the minimum cost function is believed to be compu-
tationally highly intensive. The objective of clustering is to quickly estimate clusters and
their resource requirements that are most likely to minimize the design area. In the follow-

ing sections we describe clustering and resource prediction.

5.3 Word-length compatible clustering

In high—level synthesis, the design area is minimized by maximizing the resource utiliza-
tion. This is achieved by assigning sequential operations of the same type to a common re-
source. Such sequential operations are detected by analyzing the scheduling compatibility
of operations [11]. Likewise, to make the best use of resources of multiple word lengths,

we introduce word-length compatibility.

Definition 5.3.1 Word—length compatibility between two operations is defined as the in-

verse of the Hamming distance between the word length vectors of the two operations.

In other words, if the Hamming distance between the word length vectors of two operations
is small, they posses strong word length compatibility. We cluster operations by exploring
their word—length compatibility only. Given a CDFG or sequencing graph we only know

scheduling compatibility of operations. From this, a conflict graph can be constructed

39

which indicates potentially but not necessarily concurrent operations. By taking advantage
of the scheduling compatibility at a later stage we minimize the resource requirement. Re-
call from Section 5.1 that in clustering we assume the requirement of maximum achievable
accuracy in the algorithm. Therefore the operation word lengths considered in determining
word—length compatibility are the tight upper—bound word lengths. Operations of a func-
tion type are ordered according to their tight upper—bound word lengths and then clustered

in that order. Each cluster is then defined by its characteristic word length.

Definition 5.3.2 The characteristic word length of a cluster is the maximum of the tight

upper—bound word lengths of operations in the cluster.

From Definition 5.2.1 the initial word length of one or more resources assigned to a clus-
ter is the same as the characteristic word length of the cluster. Without knowledge of the
scheduling compatibility, all operations in a cluster are implemented by resources assigned
to the cluster. This ensures that an operation in the £—th cluster of word length w; is most
likely implemented by a resource of word length wy. Since clusters are ordered, the word
length w; is most upward compatible to word length w;.. Only upward compatible resource
word lengths are considered because resources of a smaller word length cannot directly im-
plement an operation of larger word length. We now conclude that only the operations that
require large word lengths are initially assigned to resources of large word lengths. Thus,
in the implementation we have large word length resources that are essential. This leads
to minimization of the design area, especially when the area-word length relation f*(w) is
superlinear.

The likelihood of this clustering solution being as close as possible to the optimal clus-
tering solution described in Section 5.2.2 is increased by following a two-step process.
First, we must select characteristic word lengths in such a way that the overall cost is min-
imized. Second, if one or more resources assigned to a cluster of larger characteristic word
length are idle during the execution of the algorithm, they must be used to implement op-
erations from other smaller characteristic word length clusters, in order to decrease the
resource requirements in those clusters. This directive is seemingly contradictory to the
strongest word—length compatible resource assignment stated above. However, in such an
assignment the number of large word length resources is not increased. Instead their uti-

lization is increased and in turn the number of resources of some smaller word length is

60

reduced. This inter—cluster resource sharing exploits the scheduling compatibility of op-
erations that was previously ignored, and is described in Section 5.5.3. Behavioral predic-
tion of resources assigned to a cluster ignoring inter—cluster resource sharing, described in
Section 5.5, explores the scheduling compatibility of operations within a cluster. We now

describe the selection of characteristic word lengths from an ordered set.

5.3.1 Selection of characteristic word lengths

The task of partitioning an ordered set of n' elements into ¢»' non—empty subsets is equiv-
alent to selecting (i)' — 1) places of cutting the set. There are (n* — 1) ways to select the
first cut position, (n* —2) ways to select the second and finally, (n' — '+ 1) ways to select
the (¢»' — 1)~th cut position. However, the clusters formed are identical for a given choice
of (' — 1) cut places, regardless of the order of their selection. Thus, the total number of

ways of forming ordered clusters for a given operation type is given by

(nt —1)!

X =
(gt = 1) - (nt —)

(5.4)

There are [[;_, X' total ways of selecting the characteristic word lengths of all function
type for a given . This is a large number. Corresponding to each way, we form a cost
function in the form of Equation (5.3). Since the strongest word length compatibility re-
quirement is enforced in operation to resource assignment, nj, operations in the k-th clus-
ter do not share resources from any other cluster. Then minimizing the cost function is
equivalent to determining minimum resource allocation under performance constraints. In
this problem the number of operation types is > ;_, ¢*. This problem is believed to be in-
tractable, but an ILP formulation is available [11]. Note that all [[;_, X'* cost functions
must be minimized. From these, the one that yields the minimum cost corresponds to the

best way of selecting the characteristic word lengths or clusters.

5.3.1.1 Ordered clustering using normalized estimated resource cost

The ordered clustering problem described above is difficult because 17,{ must be determined.

This problem is further simplified by replacing J;L with lower bounds of »}. The number

61

of operations in the k—th cluster of type ¢ is denoted n}.. For single-cycle architectures, the

lower bound of v, for non—pipelined as well as pipelined designs is obtained [26,45]:

t
B

] (5.5)

{ lower bound - l/f;.) =[pn

where 7 is a performance requirement expressed in terms of the number of major cycles.
For nonpipelined implementations 7 represents the execution delay, and for pipeline im-
plementations it represents the initiation interval (latency). The objective function in Equa-

tion (5.3) is re—written as

0t

z 0 !
minimize Z Z [n_” x ft(wh) (5.6)
T
t=1 k=1

Since 7 is a constant for a given target design, the objective function stated above is equiv-

alent to the objective function

t=1

Z (minimizc Z nk x f"’(w,’;.)) (5.7)
k=1

The term nf, x f*(w}) represents the normalized estimated cost of resources allocated to
the k—th cluster of function type ¢. Clustering is independent of performance constraints
and function types for the given ». However, the best um:‘ 1.e. the best set of numbers of dis-
tinct word lengths to be used by each function type, depends on the required performance.
Therefore, all possibilities of ¢ are evaluated while predicting the optimized design. In
the ordered clustering problem, n{, are determined by cluster boundaries only, which are
determined by the selected characteristic word lengths. The clustering problem is now re-
duced to the problem of selecting characteristic word lengths that minimize the normalized
estimated functional-resource area. There are still exponentially many ways to form or-
dered clusters but a dynamic programming solution to identify the clustering that satisfies

Equation (5.7) exists, and is described next.

5.3.1.2 Cluster formation using dynamic programming

In the following discussion, we avoid the use of superscript ¢ representing the function
type, for simplicity of notation. We first show that the number of candidate clusters that
can be used in ordered cluster formation is O(n?).

The normalized estimated cost of a cluster comprising ordered operations o, through

0, is denoted ', ,, and is given by

Cp..q =Np.q" f(“rq) (58)

where n,, , is the number of operations in the cluster and the characteristic word length of
the cluster w = w, by Theorem 5.2.1. The first and the last clusters are anchored because
the first cluster must always start with the operation requiring the smallest word length, i.e.
0y. Similarly, o,, the operation requiring the largest word length must be the last operation
in ¢—th cluster. In other words, one boundary of these two clusters is always fixed while
the other is flexible. Both boundaries of the other (¢ — 2) clusters are flexible. For the
first cluster, the second boundary may lie between operations o; and 04, or 05 and o3, and
so on but, may not exceed 0,_,.;. This is because, (1> — 1) non—empty clusters must
be formed after the first cluster, which requires at least (1» — 1) elements. Extending this
analysis to the second cluster, its first boundary coincides with the second boundary of the
first cluster. Then, the second boundary may lie between operations 0, and 03, and so on
but, may not exceed 0,,_,.». This is because (¢ — 2) non-empty clusters must be formed

after the second cluster. Figure 5.2 shows different formations of clusters 1, 2, and 1.

2 It > {# ops.inthe
— | o ": second cluster
: y+1)-- ey _
» (n-y+ "
& > ; G - —
| 911 %2 | 03|____m¢4 _______ | 19|
On-qf+1

Figure 5.2: Boundaries of clusters

Generalizing this observation for the A—th unanchored cluster, we state that its first

boundary may lie at least between oy, and oy, and its second boundary may not exceed

63

Op—yptk. Starting from oy, there are (n — ¢ + 1) distinct k—th clusters. These are listed as
(0k--01), (Ok..0r+1), and so on up to (0y..0p+n—y). Starting from oy, there are (n — ¥’)

distinct £—th clusters and finally, starting from o,, .. there is only one k—th cluster. Thus,

we have
& v+ -y +2)
Total # distinct k—th clusters =) j = —— = (5.9)
- 2
Ji

Notice, that (> — 1) non-empty clusters must be formed before the last cluster, which re-
quire at least (1> — 1) elements. Therefore, the first boundary of 1/—th cluster cannot lie
before 0,_y. Thus, there are (n — ¢ + 1) different first and last clusters. Now, the total
number of candidate clusters that must be evaluated to select ¢/ clusters is given by
Number of candidates for 5 (n—v+1)(n—1v+2)

=2-(n—¢+1)+ (¢ —2) -
1 non—empty clusters 2

(5.10)

This number is O(n?).

Optimal substructure property

Optimal substructure and overlapping subproblems are two important properties of prob-
lems that must be examined in order to apply a dynamic programming solution. A problem
exhibits optimal substructure if an optimal solution to the problem contains within it opti-
mal solutions to subproblems [10]. The optimal substructure of the lower bound ordered
clustering problem is as follows. Assume that the optimal solution includes a cut position
after o;. Then, elements o, through o, may be partitioned into 1,2, orup to (1 —1) clusters.
Correspondingly, elements o, through o, may be partitioned into (¢ — 1), (> — 2), or
down to 1 clusters. Let r be the optimum number of clusters formed in o, through o, and s
be the optimum number of clusters formed in oy, | through o,,, such that (r + s) = ¢>. The
original problem of partitioning n elements into ¢» subsets is now divided as partitioning k&
elements into r subsets and (n — k) elements into (1) — r) subsets. Greedy algorithms also

take advantage of the optimal substructure property. However, in this problem the greedy

64

choice fails because the optimal o;, cannot be determined before optimal solutions to sub-
problems are obtained. In other words, the solution to the problem of forming ¢’ clusters

is not necessarily a part of the solution to 1)—clustering problem for an arbitrary 7' < .

Overlapping subproblems

Dynamic—programming solutions typically take advantage of overlapping subproblems
by solving each subproblem once and then storing the solution in a table where it can be
looked up when needed. When a recursive algorithm revisits the same problem over and
over again, the optimization problem is said to have overlapping subproblems [10]. For
a given optimal cut position after o, r ranges from 1 through (1> — 1) in the worst case.
The optimal value of 7 is not known before all possibilities are examined. However, ob-
serve from Equation (5.8) that the normalized estimated cost of a cluster depends only on
its boundaries and is independent of other clusters. Therefore, the cost of a cluster is com-
puted only once although it may be used in multiple formations. For example, two ways

of clustering 20 nodes are shown below:

(01--0=1), (0,—,..07), (03--011)- (012--015), (016-~020) and,

((Jl..Og), (O.-|..O',')._ (Og..O]_]_), (O]g..()]}'), (013..020)

One way could be better than the other in terms of the normalized estimated cost but, C_1;
is the same in either solution. From Equation (5.10) we know that the number of candi-
date clusters from which 1/ clusters may be chosen is O(n?). Evaluation of Equation (5.8)
requires a subtraction and computation of f(w), which takes O(1) time. Hence, costs of

all candidate clusters can be evaluated in polynomial time, O(n?).

Dynamic programming solution to select clusters

We define a Cluster Graph (CG) of depth ¢ as follows: At depth 0, there is a source
node. At each successive depth k, the nodes represent k—th cluster candidates. For ex-
ample, at depth 3 the nodes represent candidate clusters (03..03), (03..04), and so on up to
(03..03:n—y). Thus, the total number of nodes in CG equals the number of candidate clus-
ters given by Equation (5.10) plus 1. Since clusters are ordered, and exactly v clusters
are to be selected, forward edges are drawn between nodes at adjacent depths. Specifi-

cally, forward edges originate only from nodes at depth (k£ — 1) and terminate at nodes at

65

depth £, for all k in the range [1,]. There are no backward edges, edges between nodes
at the same depth, or edges between nodes at non—adjacent depths. Additionally, any edge
originating at a node that represents a cluster (0,..0,) must terminate on nodes represent-
ing clusters starting from operation o,.,.;. This property of CG ensures that boundaries of
adjacent clusters coincide. The weight of an edge is the normalized estimated cost of its
destination cluster. Here we take advantage of the overlapping subproblems property be-
cause a candidate cluster node may have one or more incident edges, each representing a

different clustering however, the weight assigned to each incident edge is identical.

THEOREM 5.3.1 The shortest path in the clustering graph represents the ordered clus-

tering that minimizes the normalized estimated implementation cost’.

Proof Any path from the source node to any node at ¢—th depth has exactly v edges:;
therefore, each path in the CG represents the formation of exactly 1 clusters. Nodes along
any of these paths represent the corresponding cluster boundaries expressed as the first
and last operations in the cluster. The weight of the A—th edge in a path is the normalized
estimated cost of the k—th cluster. Thus, the weight of a path equals the normalized es-
timated implementation cost corresponding to clustering represented by the path. Recall
from Equation (5.7) that for a function type, the normalized estimated cost of implemen-
tation is the sum of normalized estimated costs of all clusters. Finally, the shortest path
weight equals the minimum normalized estimated implementation cost, and the path yields
the optimized ordered clustering solution. U

CG is acyclic, as there are no backward edges. Hence the DAG shortest paths algorithm
can be used to determine the optimal clustering [10]. Examples of 4—way and 3—way clus-
ter formation are shown in Figure 5.3. Although the DAG shortest paths algorithm em-
ployees greedy choice, the final clustering solution is obtained only after computing the
shortest paths to all candidate clusters at the ¢'~th depth. There are (n —«» + 1) such paths
and the one with least weight is selected. For this reason, the solution to the clustering

problem is not greedy.

! As stated earlier, for simplicity, our cost model for this step includes functional resource area only. Sim-
ple modification to the cost model could be made by including estimates of storage, switching and wiring,
without any changes to the technique we describe here.

66

Word-lengths:
6 8 11 15 30
v=4,Cost=72 (6,8} {11} {15} {30}

y =3 Cost=76 6,8} {11, 15} {30}

Figure 5.3: 3—way and 4—way cluster formation

5.3.1.3 Complexity analysis of clustering

In the previous section we have shown that the number of nodes in the clustering graph is
O(n?). We now show that the number of edges in the CG is O(n*1)). Since edges exist
only between nodes at adjacent depths, we first determine the number of edges originating
at depth k. We assume that candidate clusters at depths & and (& + 1) are unanchored. A
generalized example 1s shown in Figure 5.4. Let the absolute cluster boundaries at depth
k be o, and o,. Although the k-th cluster has flexible boundaries, absolute boundaries
represent operations beyond which A—th cluster formation is not feasible, as described in
the previous section. The absolute cluster boundaries at depth (k£ 4 1) are 0,41 and 0441.
There are (n — ¢ + 1) nodes representing clusters starting from o, ,. Therefore, there are
(n — ¥ + 1) edges originating from the node at depth & representing the cluster (0,..0,).
This is because, under the assumption of ordered clustering, if the k—th cluster ends with
operation o, the (& + 1)—th cluster must start from operation 0,.,. Similarly, there are
(n — 1) nodes representing clusters starting from o,,.5. Therefore, there are (n — 1) edges

originating from each node at depth £ representing clusters ending with 0,,. Since there

67

(Gray nodes represent the first and
the last cluster candidates) : D e 8

el

k-th cluster candidates I (k+1)-th cluster candidates

Figure 5.4: Edges in clustering graph
are 2 such nodes namely, (0,..0,41) and (0,.1..0,41) at depth £, the corresponding number

of edges is 2 - (n —). Generalizing this observation we can write the number of edges

originating at the k—th depth as

eg. = l:n—v+1)+2-n—9Y)+---+n—-v+1)-1
n—y+1
= > (-v+2-j)j (5.11)
j=1

Observe from Equation (5.11) that the number of edges originating at depth k is O(n?).
There are exactly (n — ¢ + 1) edges originating from the dummy source node, and
% (n—1+1)(—1+2) edges originating from anchored nodes at depths 1 and (»—1). Since
there are 1 depths in CG, the asymptotic number of edges is O(n*1). It was shown else-
where [10] that the run time complexity of the DAG shortest paths algorithm is O(V + E),
where V7 is the number of nodes in the DAG, and £ is the number of edges. Thus, the time
required to find the shortest paths from the source node to each node at ¢’—th depth in CG
is O(n?1). There are (n — 1 + 1) such paths and the clustering solution is obtained by se-
lecting the path of minimum weight. Therefore, the required run time of ordered clustering

that minimizes the normalized estimated functional-resource cost is O(n’*¢).

68

The next step in clustering to optimize the cost function is to explore the scheduling
compatibility that was ignored previously. For this, we predict the number of resources
assigned to each cluster that minimize the cost function. In the next section we discuss
some previous work in behavioral resource prediction. In Section 5.5 a novel method to

predict resources of multiple word lengths is given.

5.4 Review of related prediction methods

Estimating the number of functional resources is critical in area/delay predictions. Math-
ematical models to estimate that number, and methods to determine its bounds were re-
ported [6, 19, 22,26, 44]. These techniques consider different types of resources, how-
ever, their word lengths are assumed fixed to the word length of the operation. One may
use the existing techniques by listing multiple subtypes of resources of the same function
type, each subtype corresponding to a different word length. For example, mult8, and
mult12 for 8 and 12-bit multiplications respectively. Techniques described in these pub-
lications [6, 19,22, 26, 44] assume that functions of a type are implemented only by the
resources of that type. Under this assumption, the predictor will ignore the fact that an 8—
bit multiplication may be implemented by any of 8, 12, 16, and 32-bit multipliers. There-
fore, the lower bound on the number of resources given by these methods is not a tight
bound. Our procedure determines the word-length compatibility of operations and also
estimates timing conflicts. It is then able to share large resources between large and small
operations. Another important feature of our procedure is that, unlike other methods, we
bias small operations given the superlinear or quadratic nature of the cost function. In the
implementation, using many small resources and only a few large ones of a function type
may lead to significant reduction in area. Our resource estimation procedure can be biased
to predict such designs. The third distinction is that other techniques predict a value or
bounds of the number of resources. The corresponding estimates of area are also values
or a distribution. This is feasible in their case because the area—delay characteristic of the
library modules is fixed. In our predictions, these characteristics are functions of resource
word lengths that are the unknowns to be optimized. Therefore, our procedure generates

cost functions in terms of word lengths as opposed to values or a distribution of values.

69

5.5 Prediction of the number of resources required in a

cluster

After the operations of a type are clustered, the next step is to predict the number of re-
sources required in each cluster, so that a cost function can be computed. We consider
both nonpipelined and pipelined implementations and present a two—step method to de-
termine the lower bound on the number of resources required for a given execution delay
or latency. In the first step described here, the minimum number of resources required in

each cluster is determined by ignoring inter—cluster resource sharing.

Assumptions

We only consider algorithms that can be expressed as DAGs. For implementation, we as-
sume a single—cycle architecture [26], although our techniques can be extended for other

styles.

Definition 5.5.1 The single—cycle architecture model is a scheduling model in which all
operations are assumed to be combinational and to take one time step to execute. The clock
cycle time has to be longer than any operation delay to ensure the correct execution of the

specification.

We also assume that the execution delay and latency constraints are specified in terms of
the number of steps. The minimum number of steps required to execute the algorithm is
obtained from ASAP scheduling [11]. All subsequent analysis in this chapter 1s assumed
to be for a given function type ¢. Hence, for simplicity of notation, we omit the superscript
t. Note that resource prediction must be performed for each type of operation in a given

algorithm.

5.5.1 Nonpipelined implementation

Let the number of operations in the k—th cluster be n;. Let the total number of steps per-
mitted for the execution of G be T'. If T%%* is the number of steps required by the ASAP

schedule, then T > T Let T} be the number of steps over which operations in the

70

k—th cluster are distributed. Note that operations in different clusters may be concurrent.
Therefore,

Z -TA‘ 2 T.-'ASAI’ (512)
k=1

Definition 5.5.2 The utilization of resources assigned to cluster £ in non-pipelined design
1s defined as
U

where v} is the number of resources assigned to the A—th cluster.

Since utilization of any resource can not exceed 100%, the lower bound on vy, is written as

v > [T;k'] (5.14)

The task of predicting the minimum number of resources required in the k—th cluster is
now transformed into determining 7}, the number of steps over which operations in the
cluster are distributed. From the ASAP schedule of G, one can determine the earliest time
step in which at least one operation in a given cluster can begin. Similarly, from the ALAP
schedule, one can determine the latest time step in which at least one operation in the clus-
ter can execute. The difference between these latest and earliest times steps for the A—th
cluster is the absolute maximum value of Tj.. An example is shown in Figure 5.5 for the
3x3 matrix inverse algorithm. T}, represents the collective slack of operations in cluster
k. From Equation (5.14) it is clear that for large T}, the resource requirement is small. Let
[t?, t¢] denote the interval during which operations in the k—th cluster are executed. Then

Tj. is given by
T =1 —t8 +1 (5.15)

If T}. is maximized, some successor operations in cluster &' may be delayed. According
to the ALAP schedule, the maximum ¢{ will be limited so that the maximum ¢}, does not
change. However, the value of ¢}, may increase and the corresponding value of T} will be

reduced. Consequently, the resource requirement in cluster &’ will increase. Consider the

71

ali
al2 Al
: al3
a21 /
L3 L] £
a22 a3p a23 a3

34

T
®
NN
% e)N (x
R3
* *]
b33 b13 b23 b21b11 b31 b22 bil2 b32

ASAP

ALAP

1

3

2 2

4.5

3 afaliazls
576879
444433
6879 810
5

7

6 6

8 9
777766
9 1110121210
888877
101211 13 13 11
9

11

1010

12 12

1010 11 11 11 11
131313131313

111112121212
1414 14 14 14 14

Cs

C-B

max T,=(13-10+1) =4
2

Ty=(13-1241) =

Figure 5.5: Changes in cluster execution intervals

3x3 matrix inverse example in Figure 5.5. If R3 is delayed until step 11, 77 is reduced
from its absolute maximum value 4, to 2. Then, 4 multipliers are required as opposed to 2
for that cluster. Thus, the interval of execution for a cluster in the graph must be determined
by considering the timing requirements of all other operations in the graph.

The average slack of a cluster is the average of individual slacks of all nodes in the
cluster. Let tf!_ and f’f. be the time steps of the i—th operation in the cluster, corresponding

to ASAP and ALAP schedules. Then the average slack of cluster & is given by

g

. — 1 L 5 <
(avg-T}) = EX_; (t,\,f—t,\,v—kl) (5.16)
1 ng 1 ng
= — e = = 4+ 1 5.17

For a single—cycle architecture, t".‘l,, corresponding to the i—th operation in the k—th clus-

ter, o, 1s given by
tf;‘, = T — max. no. of successor nodes of o (5.18)

This is because each successor node requires one step. Taking the average over all nodes

in the cluster, on both sides of Equation (5.18) we have

T . ny
1 1 .
— ty = T—— E max. no. of successor nodes of oy,
1

ne < Ty

i=1 i=1

- T_TC, (5.19)
Substituting Equation (5.19) in (5.17) we get

(avg-Tk):T—TC.—iZQZ 4 1 (5.20)
A large estimate of T}, is obtained by replacing the average earliest step in the cluster, given

by the summation term in Equation (5.20), with the earliest step in which any operation in

cluster k can start. The latter is given by

o
38}
—
p—

ty = min {t; } vi=l...m (
]

73

Similarly, a small estimate of T}, is obtained by replacing the average earliest step with the

latest step in which at least one operation in cluster & must start, which is given by
tr=min{tt} Vi=1...m (5.22)
L
Now, we write large and small estimates of 7}, as

(large - Ty.) = T—-TCy -1t} +1 (5.23)
(small-T,) = T —TCy—tF +1 (5.24)

The resource area is directly proportional to the number of resources and superlinearly pro-
portional to resource word length, i.e. the characteristic word length of the cluster. Since
we know the relative ordering of characteristic word lengths of clusters, we perform a
biased allocation of resources to minimize area. Short execution intervals and more re-
sources are expected to be used by clusters with small characteristic word lengths. Con-
versely, longer execution intervals and fewer resources are desirable for clusters with large
characteristic word lengths. In Equations (5.23) and (5.24), we change the starting step of
the interval in order to change its length. A biasing parameter 3, € [0, 1] is used to vary
the starting step according to the characteristic word length of the cluster. Clusters with
small characteristic word lengths have small ;.. Clusters with large characteristic word
lengths have large 3. Finally, the execution interval of a cluster can be written by using

O to combine Equations (5.23) and (5.24) as
Ti=T—TCy— [Br-ti + (1= B) - tg] +1 (5.25)

and a lower bound on the number of resources for the k—th cluster is given by

as
- ! ‘ 5.26

5.5.2 Pipelined implementation

The prediction of lower bound on the number of resources needed in each cluster for pipe-

lined designs is relatively straight forward. Unlike the nonpipelined case, the execution

74

interval of all clusters is the same as the initiation rate. Let L be the latency (i.e. initiation

rate). From the definition of resource utilization in pipelined designs [26] we have

Definition 5.5.3 The utilization of resources assigned to cluster k in pipelined designs is
defined as
Ty

wp= o (5.27)

where vy, is the number of resources assigned to the k—th cluster.

The lower bound of the the number of resources required in a pipelined design was given
by Jain et al. [22]. Using their result we write the lower bound on v as

v = y’%’*‘] (5.28)

5.5.3 Sharing resources between clusters

Resources assigned to a cluster of large characteristic word length may be used to imple-
ment operations in a cluster of smaller characteristic word length, if execution intervals
of the operations sharing the resources do not overlap. Then for any cluster &' sharing re-
sources from another cluster &, the number of resources required is reduced further and a

tight lower bound is obtained as
v = max {0, (v — vy} (5.29)

This expression prohibits a negative number of resources. If new v equals 0, no resources
of the corresponding word length are needed. In effect, the number of distinct word lengths
to be used . is reduced by 1. The resource sharing possibilities are explored pairwise
among all clusters. If the exact number of resources were known, an ILP solution for op-
timal concurrent binding and scheduling could be used that satisfies the timing constraints
and maximizes inter—cluster resource sharing. However, this is a difficult problem to solve
and only estimates of the number of resources are available. Hence, the execution interval
of each cluster is estimated using a heuristic similar to force—directed scheduling proposed
by Paulin and Knight [46]. Using the predicted number of resources in each cluster as re-

source constraints, an ASAP schedule for the graph is obtained. Operations with the least

75

mobility and a large number of successor nodes are given scheduling priority. The first
step during which an operation may be scheduled is determined by resource availability
and operation sequencing in the graph. This constraint is loosely similar to the notion of
self~force in force directed scheduling. Priority enforced by mobility and the number of
successor nodes is analogous to the notion of predecessor/successor force. Once schedul-

ing is performed, the cluster interval is obtained as

Cluster interval i, = [t™]
Pb . 48 . _
where "7 = nz_m {tjp} Viji=1---my (5.30)
JPL . Sp . _
£ = max {t"} vi=1-m
if” = Predicted ASAP schedule step of 0; € Oy

A procedure PREDRESNUM to predict lower bounds on the number of resources re-
quired in each cluster for nonpipelined designs is given in Figure 5.6. Figure 5.7 describes
aprocedure SHARERES to share resources between clusters and procedure PREDEXECINT

shown in Figure 5.8 determines the execution interval of a cluster.

5.5.4 Analysis of resource prediction procedures

The run time complexity of ASAP and ALAP procedures is O(ne), where e is the number
of edges in G. The main loop in PREDRESNUM is iterated ¢ times, and time taken by each
step in the loop is O(ny.). In the worst case, ;. = n. Therefore, total run time complexity
of PREDRESNUM is O(ne). The run time complexity of PREDEXECINT is also O(ne). Fi-
nally in SHARERES, procedure PREDEXECINT is called ¢ times. Pairwise identification
of non—overlapping intervals takes O(¢?) time. Assuming that the clusters are arranged in
increasing order of their characteristic word length, the cascaded reverse loops in SHAR-
ERES prioritize the possibility of sharing resources between clusters of higher ranks. This
enables reduction in the number of large word length resources before small ones. The

overall run time complexity of SHARERES is O(1 ne).

76

PREDRESNUM (O, ¢, T)
ASAP(O)
ALAP(O,T)
/* ASAP and ALAP scheduling to determine slack */
dok:=1to
/* Estimate the average no. of steps needed after
the operations in the k—th cluster have been performed */
TCy « avg (f;{.’l,, ‘Ilk)
/* The earliest step in which any operation in cluster £ can start */
ty « min (£7 , n)
/* The latest step in which at least one operation in cluster £ must start */
ty < min (tf,ny)
/* The estimate of the no. of steps used by the operations in cluster & */
T T —TC, — B -5 + (1 — Be) - tF] + 1
e
Vg [ﬁ]
end
SHARERES (O,)

Figure 5.6: A procedure to predict lower bounds on the number of required resources

77

SHARERES (O, 1)
dok:=1toy
I, < PREDEXECINT (k)
/* Determine the execution interval of the operations in cluster & */
end
Y1)
/* Itis assumed that the clusters are sorted by their characteristic word lengths
so that resources of large word lengths are shared by
operations requiring smaller word lengths */
do k := v downto 1
do !/ := 1 — 1 downto 1
/* Consider a pair of candidate clusters. The most downward word-length
compatible cluster is given priority in resource sharing */
it =0
/* Share and update the number of resources between the two clusters */
then v, «+ max (0, (1 —))
/* Reduce the number of resources required in the cluster of
smaller word length */
IA. = [k U I,r
L1
/* The operations in the two clusters share resources.
Update the execution intervals of both clusters so as to
avoid a conflict if any of these two clusters shares
its resources with a different cluster */
ifi, =0
then v/ + ¢/ — 1
/* No resources of a word length assigned to this cluster
are required. Hence, decrease the number of distinct
resource word lengths used */

endif
endif
end
end
W /* Update) if necessary */

Figure 5.7: A procedure to share resources between clusters

78

PREDEXECINT (k)
while O # () do

Select a set of vertices Oy whose predecessors are all scheduled
Sort Oy by mobility
Sort Oy by no. of successor nodes
0; + EXTRACTTOP O,
/* Of the operations having all predecessor operations scheduled o; has the

least mobility and the maximum number of successor operations */
tj" — max t5+1 /* Schedule o; */

Edge from o; to 0; in G
Ok — Ok — 0

end
t7® < FINDMIN((?)

/* The estimated earliest step in which any operation in cluster k is scheduled */
t¢ « FINDMAX({3)

/* The estimated latest step in which any operation in cluster k is scheduled */
Ik — [t!-’h:.tPe}
return (/)

Figure 5.8: A procedure to determine the execution interval of a cluster

9

Chapter 6

Word-length selection using genetic algorithms

In Chapter 4, we discussed a systematic approach to determine the tight upper—bound word
lengths of all the variables in an algorithm, given the error, and numerical range of each
of its primary inputs. Recall from Section 4.4 that the use of these word lengths yields
the maximum accuracy in the given environment. In the previous chapter we developed a
method to generate a set of optimized cost functions, where each function in the set corre-
sponds to a unique), the vector comprising the number of distinct resource word lengths of
each operation type in the algorithm. These cost functions use the tight upper-bound word
lengths, and thus guarantee the maximum accuracy. The optimization in clustering reduces
the functional-resource area by taking advantage of the word-length compatibility of op-
erations as well as the scheduling compatibility. We now minimize all the cost functions
in the set further, by selecting smaller word lengths that satisfy the accuracy requirement,
using a genetic algorithm. The function resulting in the minimal cost after word-length re-
duction determines the optimized number of distinct resource word lengths for each type,
and the optimized word-length set. The chapter is organized as follows: The use of clas-
sical optimization techniques in word-length selection is discussed in Section 6.1. In this
section, we also motivate the use of a genetic algorithm in our problem. An overview of
genetic algorithms is given in Section 6.2. In Section 6.3, we develop a genetic algorithm
for word—length selection. Finally, the overall word—length selection procedure using tech-

niques described in this and the previous chapters is given in Section 6.4.

80

6.1 Word-length selection using classical optimization

techniques

In Sections 3.1.3, and 3.3 we showed that the computational error constraint equation, and
the cost function in terms of word lengths are both nonlinear. Therefore we consider classi-
cal nonlinear optimization techniques such as basic descent, gradient projection [37] and
modified Newton’s method [42]. These techniques have two drawbacks. First, they as-
sume that the cost and constraint functions are continuous differentiable. It is however
obvious that word lengths must be natural numbers. Hence, both cost and error—constraint
equations are discrete. This problem can be solved by assuming word lengths to be real
numbers. When the optimal solution is obtained after convergence, the real numbers can
be rounded off to the next integer. The error constraint equation violates this assumption
in yet another way, because truncation error does not always change with the word length.
For example, when the word length allocated to the result of a computation is greater than
the maximum number of bits generated by that computation, the truncation error is always
0. The error constraint equation can be made continuous differentiable by using slack
variables described by Mullins et al. [42]. The second problem is direction control. In
the gradient projection method this problem is solved by introducing a rolerance factor,
and throughout the procedure the constraints are satisfied only to within the tolerance fac-
tor [37]. Solutions generated by this method may sometimes be unacceptable. For exam-
ple, if the designer—specified constraint requires all word lengths to be less than or equal to
120 bits, then a solution involving a 121-bit adder is not acceptable. Modified Newton’s
method also has the potential danger of losing the direction of descent, especially when
the initial solution is far from the optimal solution [37,58]. Randomized search techniques
have also been used in nonlinear optimizations [48]. However, we know that computation
error monotonically decreases, while implementation cost monotonically increases with
word lengths. Therefore, we use genetic algorithms for word-length selection, where ran-
domized search is efficiently enhanced by taking advantage of the monotonic properties of

the computation—error and implementation—cost equations.

81

6.2 Overview of genetic algorithms

Genetic algorithms (GA) are characterized by the natural process of evolution [135, 40].
They start with the initial population of solutions represented as chromosomes. A chromo-
some comprises genes where each gene represents a specific attribute of the solution. The
fitness of a chromosome is a measure of the quality of the solution it represents, in terms
of various optimization parameters of the solution. A more fit chromosome suggests a bet-
ter solution. In GA, the population is evolved: the relatively fit solutions reproduce, while
the relatively inferior solutions die [40]. To select better solutions, a suitable fitness func-
tion 1s used to evaluate the fitness of each solution in the population. Then the solutions
are ranked by their fitness. The evolution process continues until a solution with desirable
fitness (quality) is found. This mechanism does not guarantee the optimal solution. How-
ever, carefully designed fitness functions can yield good, feasible solutions quickly. The
evolution process involves two operations namely, mutation and crossover. Mutation ar-
bitrarily alters one or more genes of a randomly selected chromosome [40]. The intuition
behind the mutation operation is to improve the fitness of existing solutions in the popula-
tion. While the goal of GA is to maximize the fitness of a solution, in real-life situations
it is often necessary for the solution to meet certain other requirements. In other words,
the maximization of fitness is constrained. A mutation may produce a chromosome rep-
resenting a solution that violates one or more requirements. In this event, that mutation
must be discarded. Crossover combines features of two chromosomes to form two sim-
ilar offsprings by swapping genes of the parent chromosomes. The intuition behind the
crossover operation is to exchange information between different potential solutions [40].
We now describe how the elements of the genetic optimization technique are applied to the

word—length selection problem.

6.3 Genetic algorithm for word-length selection

6.3.1 Chromosome representation

Corresponding to each type of operation (such as addition, subtraction, and multiplication)

in the given algorithm, the final solution of the word-length selection problem includes

1. the number of distinct word lengths (1)) used by resources of type ,

2. the resource word lengths,
3. the number of resources of each word length,

. It) . . -
4. the function f(w) that gives the area of a resource of type ¢ and word length w, and

5. the operation word lengths.

A chromosome (shown in Figure 6.1), represents the final solution. The chromosome con-

sists of one gene corresponding to each operation type in the algorithm. Each gene holds a

\iJ‘
[Cluster 1]. . . [Cluster 4!]

e

) Cluster1 [» =

resources tight upper-bound
characteristic word length waord length
luster word length Nactual word length

Figure 6.1: Chromosome representation for word-length selection

value, or a set of values corresponding to the solution attributes listed above. For the given
algorithm, the required performance 7, and a specific value of ¢/, the number of resources
of each word length is fixed. However, it directly affects the cost (area) of the implementa-
tion, hence is a part of the gene structure. The underlined members in the genes are changed

to decrease the cost of an implementation represented by a particular chromosome.

6.3.2 Fitness of a chromosome

GA attempts to maximize the fitness of the final solution. The objective of word-length

selection is to minimize the implementation area. Hence, we define fitness as

- Fay . .
fimess = —1 x implementation area (6.1)

= - Y b x fh) (6.2)

t=1 k=1

where

z = no. of operation types
' = no. of distinct word lengths of resources of type ¢
wp = k—th word length of type ¢
v = no. of resources of word length wk, and
ff(w) = function that gives the area of a resource of type t and word length w.

If the operation type ¢ in the above equation is limited only to functional or arithmetic op-
erations, the implementation area represents only the functional-resource area given by
Equation (3.21) on page 25. However, ¢ may incorporate other types of resources such as
registers, multiplexers, drivers, input/output pads, and even the interconnect, so as to rep-
resent the overall circuit area. We reported a system level energy/power prediction tech-
nique [62] where the energy /power consumption is characterized by the size of resources.
Since the size of a resource is proportional to its word length, the cost function given above
can be readily modeled to represent energy /power consumption using our formula [62],
as described in Appendix A. Thus a low power/low energy circuit can be obtained by
selecting the appropriate word lengths. The fitness function used in the GA is the nega-
tive cost function given by Equation (6.2). Thus the most fit chromosome represents the
minimized-area solution. For the scope of this thesis we limit z to represent the functional

resources only.

6.3.3 Initial population

The maximum number of distinct resource word lengths for each function type, previously
denoted {max .1'), is either specified by the designer, or obtained using our error analysis
tool described in Section 4.5. The vector r: comprising 1, the number of distinct resource
word lengths for each operation type ¢, was defined in Equation (5.2) on page 56. We re-

produce the definition for convenience:

N (R) (6.3)

84

where_‘: is the number of operation types. A feasible solution exists corresponding to
each v obtained by varying ¢' in the range [1, (max .1")], for all types. There are
[1;-, (max .4y combinations of 4, and the solution corresponding to each combination
is a member of the initial population. The optimal solution is obtained by selecting the
best number of distinct resource word lengths for each function type, and the correspond-

ing optimal v is contained in the initial population.

6.3.4 Mutation

In the mutation operation we select a chromosome at random, and select one of its genes
for mutation at random. In the selected gene there are 7/ clusters. We select one cluster at
random, and change the cluster word length!. The cluster word length is either increased
or decreased by a random choice governed by two probabilities namely, the probability of
increasing cluster word lengths denoted P*(g), and the probability of decreasing cluster
word lengths denoted P~ (g). The parameter g is the generation index. Initially, PH(g)is
very low and P~ (g) is high. As shortly explained, for later generations, P*(g) is increased
and P~(g) is reduced accordingly. For g = 0, i.e. the initial population P*(0) = 0, and
P~(0) = 1. Since the initial population comprises solutions using the tight upper—bound
word lengths, increasing the cluster word length cannot improve the accuracy of the final
result [61]. On the other hand, reducing the cluster word length implies reduction in the
area of resources associated with the selected cluster, and in turn reduction in the overall
circuit area. Hence, P~ (g) for small ¢ is high. For the selected cluster we change the

cluster word length by a small percentage, and consider the following two possibilities:

Case 1: cluster word length is reduced
By the definition of cluster word length, the word length of at least one operation
(say 0,) must be equal to the cluster word length, and all other operations in the
cluster must have word lengths smaller than or equal to the cluster word length.
After reducing the cluster word length, we reduce if necessary, the word lengths
of operations in the cluster to meet this requirement. The word length of o, will
always be reduced. As a result, the least significant bits of some operands may

be truncated. This may introduce truncation error in those operands. which will

! Definition 5.2.1 on page 58.

oo
wh

propagate through subsequent computations. Correspondin gly the worst—case er-

ror in the final result may increase.

Case 2: cluster word length is increased

(@) The new cluster word length is greater than its characteristic word length®:

(b)

From the definition of characteristic word length, the new cluster word length
is greater than the tight upper—bound word lengths of all operations in the
cluster. Therefore, implementing any operation in the cluster using the new
cluster word length does not improve the accuracy of the final result [61].
On the other hand, the area of resources in this cluster will increase, thereby

increasing the overall circuit cost. Hence, this mutation is discarded.

The new cluster word length is smaller than or equal to its characteristic
word length:

The word lengths of some operations in the cluster that were reduced in the
previous generations may be increased. This may reduce the worst—case er-
ror in the final result. In this step, the word—length of any operation is not in-
creased beyond its tight upper—bound word length, as it does not improve the
accuracy of the final result. By the definition of characteristic word length,
the tight—upper bound word length of at least one operation in the cluster (say
0,) is greater than or equal to the new cluster word length. This is because
the new cluster word length is smaller than or equal to the characteristic word

length. Therefore, the word length of o, is always increased.

Now the mutation of the gene is complete and a mutated chromosome representing a new

solution is created in the population. The word length of at least one operation o, Ot 0y, 1s 18

different from its previous value. Hence, the worst—case error of the final result may have

changed. We obtain its value from Equation (3.13) on page 21. If it is less than or equal to

the maximum permissible computation error specified by the designer, the error constraint

equation (3.14) is satisfied, and the mutation represents a valid solution. Otherwise, the

error is too large and the solution is invalid. However, an offspring of this chromosome

from a later generation may represent a valid solution that satisfies Equation (3.14). This

possibility exists when

2Definition 5.3.2 on page 60.

86

(a) The selected cluster in this gene in this chromosome is selected again. This time the

cluster word length is increased, thereby reducing the error in the final result

(b) A different cluster in this gene in the same chromosome is selected, and its word length
is increased. Thus the word lengths of one or more operations of the same type, other
than those in this cluster are increased. This causes the worst—case error in the final

result to reduce, or

(c) A cluster in a different gene in this chromosome is selected, and its word length is
increased. Thus the word lengths of one or more operations of a different type are

increased. This causes the worst—case error in the final result to reduce.

Situations (b) and (c) exploit the trade off between the relative precision of operations of
the same or different types in a sequence of computation. This also explains why chro-
mosomes representing invalid solutions are not discarded immediately. Furthermore, the
situations described above explain the advantage of increasing the probability of increas-

ing cluster word lengths P*(g) in later generations.

6.3.5 Crossover

In crossover, two similar chromosomes are formed by swapping sets of genes of two parent
chromosomes, hoping that at least one child will have genes that improve its fitness. In
the word—length selection problem, crossover diversifies the population by swapping v of
several operation types from a pair of parent chromosomes as shown in Figure 6.2. The
number next to the function type is the number of distinct resource word lengths of that
type. Consider two partitions of 0 given by Equation (6.3), namely, -z,.?_.l and 5. Without
the loss of generality assume that *JL:-\ and -11;,3 are given by

ha = [, %Pm] (6.4)

-

g = [Umaire--¥:) for some constant m € [2, (z — 1)] (6.5)

Recall that each chromosome consists of a gene of each operation type 1 through z, and
in a gene of type ¢ the number of distinct resource word lengths is given by ¢*. Consider
two chromosomes = and y where 1/, in the first chromosome is denoted (z.174), and in

the second (y.44). Similarly, ¢’ in the two chromosomes are denoted (x.¢»g) and (y.17)

87

mult 4

Figure 6.2: An example of crossover operation

respectively. Assume that (z.¢/4) and (y.174) are distinct, and similarly (z.¢5) and (y.¢3)
are distinct. When the two sets of genes corresponding to operation types 1 through m and
(m + 1) through z are swapped two new chromosomes denoted u and v are formed. The

vectors v corresponding to these chromosomes are given by

(uy) = [(;zr.z;.:;}._(y.?,-i'"};)] (6.6)

(lfﬂ> [(y. r.f‘:;), (. r__:-};)] (6.7)

Thus each new solution gets the number of distinct resource word lengths for some op-
eration types from the first chromosome. The number of distinct resource word lengths
for the remaining operation types is swapped from the other parent solution. Assume that
solution x contains the optimal value of ¥/ for some p € [1,m], and solution y contains
the optimal value of 7 for some ¢ € [(m + 1), z]. Then, solution u contains the optimal
values of the number of distinct resource word lengths for both operation types p and g as

a result of crossover.

88

6.3.6 Gene repair

In a mutation, the word length of a randomly selected cluster is changed. Accordingly,
the word lengths of one or more operations in the cluster may change. This could change
the tight upper—bound word lengths of some of the successor operations. For example,

consider the sequence of two multiplications and an addition shown in Figure 6.3. As the

Assigned word length
Word length changed

by mutation

Word length after

gene repair

w :k wis the total word length

k is the no. of fractional bits

Figure 6.3: An example of gene repair operation

multiplication input word lengths are changed from 12 bits to 10 bits, each product has
only 20 bits which are forwarded to the addition. Now, the adder input word length of 24
bits is unnecessary. Assume that in product z there are 18 fractional bits and in product
y there are 17 fractional bits. In order to align the binary point the second operand of the
adder can be shifted left using one of the available 24 bits. Now, the sum z has 18 bits
and the maximum number of bits in z, assuming 3 integer bits, is 21, as opposed to the
previous assignment of 24 bits. If this particular configuration represents a valid solution,
i.e. the error is acceptable, the 24-bit adder can be replaced with a 21-bit adder without
introducing any additional error.

In gene repair, such changes in the tight upper—bound word lengths of operations are
detected and cluster word lengths are updated if necessary. This change in the tight upper—
bound word length, however, is only specific to a chromosome that is being evaluated. The
original tight upper—bound word lengths of all the variables corresponding to the environ-
ment of the algorithm remain unchanged. It is not always necessary that the tight upper—
bound word lengths temporarily decrease. They may increase as well, as long as they do

not exceed their original value. If the word lengths decrease however, potentially one or

89

more cluster word lengths may decrease, resulting in a fitness improvement of the chro-

mosome being evaluated.

6.3.7 Selection

There are two important issues in the evolution process of the genetic search: population
diversity and selective pressure. Strong selective pressure may force early convergence
to a local optimum solution. In contrast, the search is ineffective if the population is too
diverse in terms of the desired qualities, and the selective pressure is weak [40, page 56].
Several modifications of the cumulative—probability based basic selection [40, page 32]
have been reported [4,25]. In the word—length optimization problem, the final selection of
the optimal chromosome is constrained such that the word lengths in the optimal chromo-
some must satisfy the computation accuracy requirement. In order to meet this require-
ment we employ a simple selection method by applying the monotonic property of the
computation—error and implementation—cost equations. By the monotonic property we im-
ply that increasing the word length of an operand does not increase the worst—case com-
putation error in the final result. Similarly, the use of a resource of a larger word length,
without changing the allocation and binding, does not reduce the implementation area. We
now describe the selection process in detail.

The selection of chromosomes that are more fit to reproduce occurs only when the num-
ber of chromosomes in the population is exactly equal to max_population_size, a parameter
of the GA. Otherwise, more chromosomes are generated through crossover and mutation.
First we rank all the chromosomes by their fitness. Then we determine the maximum of
the worst—case errors corresponding to each solution in the first half. After comparing its

value with the tolerable error (¢), two possibilities exist:

Case 1: The maximum of the worst—case errors in the first half is smaller than or equal to
the tolerable error:
There are (max_population_size / 2) relatively better fitness (low cost) solutions
that all satisfy the accuracy constraint. Chromosomes reproduced from this half
are very likely to represent good solutions. Some solutions in the other half may
also satisfy the accuracy constraint however, these are relatively high cost solu-

tions, and are hence discarded.

90

Case 2: The maximum of the worst—case errors in the first half is larger than the tolerable
error
The chromosomes are now ranked in the increasing order of error. Then, we de-
termine the first chromosome that violates the accuracy requirement. Let the in-
dex of this chromosome according to error rank be p. Starting from the p—th chro-
mosome the remaining (max_population_size - p) chromosomes are sorted again
in the order of their fitness. Naturally, all these chromosomes represent solutions
that violate the accuracy constraint. Therefore, in the new sorted (by fitness) or-
der, the latter half represents solutions that do not meet the accuracy requirement,

and are high in cost. Hence, these solutions are discarded.

The next evolutions begins with (max_population_size / 2) chromosomes when Case | ap-
plies, and (p+ ((max_population_size - p) / 2)) chromosomes when Case 2 applies. This
selection mechanism falls into the category of deterministic, generational, rank—based,
and elitist selection. It is deterministic because the chromosomes to be discarded are not
selected randomly; generational because children may replace parent chromosomes only
during selection and not on the fly. In this approach we take into consideration the rela-
tive position of a chromosome according to its fitness, and not the actual value of the fit-
ness; hence, itis arank—based approach. Finally, there is no distinction between parent and
children chromosomes during selection, which is the defining characteristic of the elitist
model [25]. The rationale for this selection is described next.

In Case |, consider a chromosome in the discarded half that has unacceptable error.
In this chromosome, the word length of at least one operand must be increased in order
to reduce the error. According to the monotonic property of the cost equation, this cannot
improve the fitness of that chromosome. Now consider a chromosome that has accept-
able error. The fitness of this chromosome may be improved by reducing some of its word
lengths, such that the corresponding error is acceptable. However, it is very likely, that
a similar solution may also be generated from the selected chromosomes, perhaps with a
smaller reduction in word lengths. In Case 2, from the monotonic property of the error
equation it is observed that the word length of at least one operand must be increased, in
order to meet the accuracy requirement. Then, the new fitness of that chromosome is lesser
than or the same as the previous fitness. It is possible that the fitness of this chromosome

can be significantly improved by reducing some the word lengths of some operations that

91

do not require high precision, such that the accuracy requirement is satisfied. However,
the selected chromosomes can also produce a similar solution through subsequent genetic
operations.

The deterministic nature of this selection causes the selective pressure to be high. How-
ever, by adjusting the rates and probabilities of word length change, the possibility of
convergence to a local minimum is reduced. This is illustrated in SELECTION proce-

dure shown in Figure 6.4. The two cases described above are considered in procedure

SELECTION (Pop, g, €)
I* Pop is the current population of chromosomes */
/* g is the generation index */
/* € is the maximum tolerable error */
g —g+1
fitness_rank < SORT(Pop, fitness)
/* Elements of fitness_rank are the indices of chromosomes arranged in
decreasing fitness order */
do p := 0 to ((max_pop_size/2) — 1)
/* Consider that half of the total population in which all chromosomes
have a better fithess than any chromosome in the other half */
k < fitness_rank [p]
/* k is the index of a chromosome in Pop that has the p—th best fithess */
Chromosome < Pop|k]|
if Chromosome - error > ¢
then SELECTION-CASE-2(Pop, g, €)
/* At least one chromosome in the selected half of the population
violates the error constraint. Case 2 described above applies */
return
endif
end
/* All chromosomes in the first half of the population sorted by fitness
satisfy the accuracy constraint */
SELECTION-CASE-1(Pop, g)
return

Figure 6.4: A procedure to select chromosomes

SELECTION—-CASE~1 shown in Figure 6.5 and procedure SELECTION-CASE-2 shown

in Figure 6.6, respectively.

SELECTION—CASE-1(Pop, g)
wordlen_dec_rate < wordlen_dec_rate = 1.5
flag_wordlen_dec_rate < true

/* Word lengths can be decreased at a faster rate as described in Case 1 */
Pt(g) <0

/* Word lengths need not be increased as all the selected chromosomes
satisfy the error constraint */
Pop < Pop|[0 : ((max_pop_size /2) — 1)]
pop_size < (max_pop_size [2)
/* Update population for the next evolution cycle */

return

Figure 6.5: A procedure to select chromosomes — Case 1

SELECTION—CASE-2(Pop, g, €)
error_rank < SORT(Pop, error)
/* Elements of error_rank are the indices of chromosomes arranged in
increasing error order */
do p := 0 to (max_pop_size — 1)
k « error_rank [p]
/* k is the index of a chromosome in Pop having the p—th least error */
Chromosome < Pop|k]
if Chromosome - error > ¢
then p « p
/* The (p + 1)-th chromosome in Pop has the least error that violates the
error constraint. Note that the index of the first chromosome is 0 */
break
endif
/* Error in at least one chromosome must be greater than e.
Otherwise Case 1 is true */

end
if p < (max_pop_size [2)
then /* At least 1/2 solutions have unacceptable error */

do k := 0 to (max_pop_size — p)
ErrPop|k] < Pop|error_rank[p + k]]
end

93

Pop < Pop () ErrPop
/* ErrPop contains all the chromosomes violating the accuracy
requirement and Pop contains all the chromosomes satisfying
the accuracy requirement */
ErrPop « SORT(ErrPop, fitness)
ErrPop « ErrPop|0 : ((max_pop_size — p)/2)]
/* Select the half of chromosomes in ErrPop with better fitness */
Pop « Pop |J ErrPop
pop_size + p + ((max_pop_size — p)/2)
/* The new population comprises all chromosomes that satisfy the error
constraint, and a half of the chromosomes that violate the error
constraint whose fitness is better than the other half */

if p < (max_pop_size/4)
then /* At least 3/4—th solutions have unacceptable error */
Pt(g) < 0.3
else
Pt(g) « 0.2
endif
if flag_wordlen_dec_rate = true
then wordlen_dec_rate < wordlen_dec_rate /2
flag_wordlen_dec_rate « false
/* Several chromosomes in the population violate the error
constraint. If word lengths were being decreased at an increased
rate in the previous evolution phase, decrease the rate of

word length reduction */
endif

return
endif

/* Less than 1/2 solutions have unacceptable error */

Pt(g) + 0.1

wordlen_dec_rate +— wordlen_dec_rate = 1.5

flag_wordlen_dec_rate « true

if p < (max_pop_size /10)

then /* Less than 10% solutions have unacceptable error */
PH(g) «+ 0

endif

Chromosome - best <— FINDBEST(Pop)
/* Find a solution having the maximum fitness amongst those
that satisfy the accuracy constraint */

Pop < SORT(Pop, fitness)

94

Pop + Pop|0 : ((max_pop_size /2) — 1)]
if Chromosome - best > Pop
then Pop[((max_pop_size/2) — 1)] + Chromosome - best
/* The best chromosome is always preserved in the elitist model */
pop_size + (max_pop_size /2)
return

Figure 6.6: A procedure to select chromosomes — Case 2

In case 1, all the chromosomes in the new population have acceptable error. Hence,
further reduction in area is possible by reducing the word lengths at a faster rate. Observe
from Figure 6.5 that this is achieved by increasing the parameter wordlen_dec_rate to twice
its value from the previous generation. A flag indicating that the word length reduction rate
has been increased is also set. In case 2, when at least 3/4—th of the population contains
invalid solutions that do not satisfy the accuracy requirement, chances of producing valid
solutions must be increased. This is achieved by setting the probability of increasing word
lengths P*(g), to a maximum value of 0.3, as shown in Figure 6.6. Also, if the rate of re-
ducing word lengths were increased in a previous generation, it is decreased. If only half
the population contains invalid solutions, chances of reproducing more valid solutions are
improved by setting P*(g) to 0.2. The approach taken when less than half of the popula-
tion contains invalid solutions is similar to case 1. Here the rate of reducing word lengths
is increased in order to improve fitness. However, chances of reducing the number of in-
valid solutions are increased by setting P*(g) to 0.1. During the evolution we expect that
the word lengths of operations having a significant impact on the accuracy of the final re-
sult may be increased, while those of some other operations requiring less precision will
be reduced in order to improve the fitness of valid solutions. Finally, if the number of in-
valid solutions is less than 10% of the population size, this special case is considered to be
similar to case 1 described in Figure 6.5.

Selecting the parameters of a GA has a significant impact on its performance. How-
ever, finding good parameter values is considered to be an art, and not as much of a sci-
ence (40, pp. 88-89]. We have intuitively selected the values of P*(g), rates of word
length change, and the probability of crossover which is explained in the next section. For

the initial population the rate of word length reduction, wordlen_dec_rate is 5%. The rate

95

of word length increase is a constant 2%. Since we start with the tight upper—-bound word
lengths, P*(0) = 0.

6.3.8 Genetic algorithm

Once the genetic operators mutation and crossover, and the selection scheme are de-
fined, the implementation of the genetic algorithm is straightforward. A procedure GA—

WORDLENSELECT is shown in Figure 6.7.

GA-WORDLENSELECT (¢)
/* € is the maximum permissible error */
g+0
max_pop-size < 500
wordlen_dec_rate < 5%
wordlen_inc_rate + 2%
Pr(g) <0
Pop «+ INITPOP
/* One chromosome corresponding to each combination of 4 */
pop_size « [];_, langle max .4)")
do
while pop_size < max_pop_size
if pop_size < (0.7 * max_pop_size)
then P < 0.3
else P «— 1 — (pop_size /max_pop_size)
endif
if RANDOM (0, 1) < P
then CROSSOVER (Pop)
/* Generate two chromosomes through crossover operation */
pop_size + pop_size + 2
else MUTATION(Pop)
/* Generate one chromosome through mutation operation */
pop.size +— pop_size + 1
endif
end
SELECTION (Pop, g, €)
while termination_condition = false

Figure 6.7: Genetic algorithm for word-length selection

96

In order to determine convergence we use a simple terminating condition where three
consecutive improvements of less than 1% in the best fitness are detected. We then assume
that the best solution reachable has been obtained. Observe from Figure 6.7 that the prob-
ability of crossover is at the most 0.3 and it approaches 0 as the number of chromosomes in
the population approaches max_pop_size. The rationale for this choice is as follows: It was
reported by Schaffer et al. [49] that mutation plays a much stronger role in the optimiza-
tion process compared to crossover. Recall from Sections 6.3.4 and 6.3.5 that a change in
word lengths can occur only in mutation. The purpose of crossover is to randomly com-
bine different values of v for various function types. As stated earlier if (x - ¢/?) from
chromosome X is a better choice for type p, and (y - ¢»?) from chromosome Y is a better
choice for type ¢, crossover between X and Y is likely to produce a chromosome with bet-
ter fitness. Also recall from Section 6.3.3 that the initial population contains chromosomes
corresponding to all combinations of . Hence, the rate of mutation is always high. When
the population size is small the generation of new solutions by swapping the values of it

between potentially good chromosomes is encouraged.

6.4 Word-length selection — overall procedure

A tool WORD-LENGTH OPTIMIZER shown in Figure 6.8 was implemented to automate

the techniques described in this thesis. The algorithm is specified as a control data—flow

WORD-LENGTH OPTIMIZER (G, T, €)
Read prim_range, prim_error
[Wriisht-eb (max 4))] <+~ MAXACCURACY (G, prim_range, prim_error)
Read (max 1)

/* If the values reported in max. error analysis are too large */
CLUSTERING (G, W"-*> (max 1))
GA-WORDLENSELECT

Figure 6.8: The overall word—length selection procedure

graph G. The number of maximum steps allowed in a nonpipelined implementation, or
the initiation interval in a pipelined implementation is 7. The permissible worst—case er-

ror in the final result is e. After reading the environment parameters i.e., the user-specified

97

numerical range of primary inputs, and error the tight upper—-bound word lengths of all
variables in the algorithm are determined from error analysis by preserving all bits. Dur-
ing this phase, the maximum number of distinct resource word lengths for each operation
type are also determined. Since there may be dozens of word lengths, the user may also
restrict this number for one or more types. Then, clustering is performed as described in
Chapter 5, and the set of optimized cost functions using tight upper—bound word lengths is
derived. Finally, these cost functions are further minimized to obtain the optimized set of
resource and operation word lengths using the genetic algorithm described in this chapter.
As described in Chapter 4, the error analysis always reports the worst—case error corre-
sponding to the specified environment, and resource word lengths. The genetic algorithm
enforces the error constraint and guarantees that the final solution is valid.

Using WORD-LENGTH OPTIMIZER we observed a significant reduction in the design
area through multiple word length use. The results of our experimental verification are

presented in the next chapter.

98

Chapter 7

Experimental results

In our experiments we considered three arithmetic—intensive algorithms namely, Discrete
Cosine Transform (DCT), Gauss—3 elimination for systems of 3 unknowns, and 5X5
matrix determinant. These algorithms are commonly used in communication, signal pro-
cessing, and control systems applications. Different accuracy and performance require-
ments for non—pipelined and pipelined implementations of these algorithms were consid-
ered, and word-length selection was performed using WORD—LENGTH OPTIMIZER in-
troduced in the previous chapter. In these experiments we assumed the area of a one-bit
adder/subtracter/multiplier to be the unit area. Area of a N-bit adder or subtracter was
derived using a linear area—word length relation, and that of a (M x N)-bit multiplier was
obtained using a quadratic relation. The purpose of these experiments was to observe the
relationship between functional resource area, numerical range of variables, desired accu-
racy and performance, the number of distinct resource word lengths used, and the word
lengths. We observed that up to 40% reduction in the area is possible using multiple word
lengths as opposed to using a single word length, for the given accuracy and performance
requirements. In the following sections results of our experiments are given for each al-

gorithm considered.

7.1 Discrete cosine transform

We considered a 1 dimensional 8—point Discrete Cosine Transform (DCT), imple-
mented using Chen’s algorithm [7]. This is a relatively small algorithm consisting of 26

additions, 8 subtractions, and 16 multiplications. Assuming the single—cycle architecture,

99

the fastest implementation of the DCT algorithm requires 8 steps. We considered two non-
pipelined implementations requiring 8 and 12 major cycles respectively, and one pipelined
implementation with an initiation interval of 2 major cycles. In this experiment, we will
show the effect of the user—specified numerical range of the primary inputs and primary—
input error on resource word lengths, for the same accuracy requirement in the final result.
Specifically, the permissible error in the final result was allowed to be at the most 0.005%
of the maximum value of the result.

7.1.1 Primary input range and error
Case 1: Small numerical range, small error

First we considered the case where the numerical range of the primary inputs as well as the
primary input errors are small. Specifically, the primary inputs were allowed to vary in the
range [—5000, 1000] and the maximum under— and over—approximation input errors were
0.0003 and -0.0003, respectively. WORD-LENGTH OPTIMIZER performed the maximum
accuracy analysis, where the tight upper—bound word lengths and the maximum number
of distinct resource word lengths for each type were determined. In this case, the tight
upper—bound word lengths for addition ranged from 10 bits through 31 bits. The maximum
number of distinct word lengths, (max .¢»**) was 7. The tight upper-bound word lengths
for subtraction ranged from 10 bits through 22 bits, and for multiplication from 10 bits

through 30 bits. The value of both (max .¢*"**) and (max .7} was 5.

Case 2: Small numerical range, large error

Next we considered a situation where the numerical range of the primary inputs is small
(same as the previous case) but the error is large. Specifically, we now allowed the maxi-
mum under and over approximation input errors to be as large as 0.001 and -0.001, respec-
tively. This is approximately an order of magnitude increase in the input error compared
to the previous case, yet the accuracy requirement of the computation was not changed. In
this case, WORD-LENGTH OPTIMIZER found (max .¢»*), (max .¢»**), and (max 0"
to be 7, 5, and 5, respectively. The word lengths for addition and subtraction ranged from

15 bits through 32 bits, and for multiplication from 16 bits through 40 bits. The increase in

100

the tight upper—bound word lengths is due to more fractional bits required in the algorithm

variables to satisfy the accuracy requirement.

Case 3: Large numerical range, large error

Finally we considered the case when both primary input range and errors are large. Here,
the primary inputs were allowed to vary in the range [—5.0e6, 1.0e7], and the maximum un-
der and over approximation input errors were 0.001 and -0.001, respectively (as in Case 2).
As the numerical range of the primary inputs is increased, additional integer bits become
necessary. Consequently, the tight upper-bound word lengths increase further. Their val-
ues for addition range from 13 bits through 53 bits, for subtraction from 13 bits through
40 bits, and for multiplication from 14 bits through 53 bits. The values of {max .i)*),

{max .1p"*), and (max./)™"} in this case were 7, 4, and 5, respectively.

7.1.2 Word-length optimization

Clustering of operations of all three types, for each ' € [1, (max .¢")], was performed as
the first optimization step by WORD-LENGTH OPTIMIZER, for the three different cases
described above. Then, the resource requirement of each cluster was determined, and op-
timized cost function sets were generated for the three different performance requirements
stated above namely: execution delay (7) of 5 and 8 major cycles in nonpipelined imple-
mentations, and initiation interval (A) of 2 major cycles in the pipelined implementation.
These cost functions were further minimized by selecting resource word lengths by the
genetic algorithm in WORD-LENGTH OPTIMIZER. First, we considered unconstrained
word—length selection where no restrictions were imposed on the size of the word length
set. Second, only one resource word length was allowed for each function type. In Fig-
ure 7.1 we show a comparison between the area of nonpipelined DCT implementations
with the execution delay of 8 major cycles, using a single optimized word length and multi-
ple optimized word lengths. Table 7.1 shows the selected word lengths and the correspond-
ing functional resource area for the three different primary input environments described
above.

In Figure 7.2 and Table 7.2 we show similar results for nonpipelined DCT implemen-
tations with 7 = 12 major cycles, and the results for the pipelined implementations with

A = 2 are shown in Figure 7.3 and Table 7.3.

101

Normalized estimated
functional-resource area Nonpipelined design

i 1= 8 major cycles
1800 A -‘;::;g
1600 e
el
1400 - B
s =
12009 = e Esingle word
g”*méﬁ S length
Ho lgast -
1000 1 [;?% B multiple word
i \%A ?’_‘:%' : lengths
ey iz
600 - fra?g &5‘3
. 2 s
400 A i 3‘33 [
| [
200 ?‘,&xi
0 — ; ; .
small range, small range, large range,
small error large error large error

Figure 7.1: Comparison of DCT area using single and multiple word lengths (7 = 8)

From Figures 7.1, 7.2 and 7.3, we observe that the estimated design area using mul-
tiple word lengths is smaller compared to a single word length use, in high speed as well
as slow speed implementations. Note that the single word lengths considered above are
also optimized using WORD—LENGTH OPTIMIZER. The average difference in the area is
17%. Consider the case of small input error and small input range, and a nonpipelined de-
sign requiring 8 major cycles. If a common pre—determined word length of 32 bits were
used (which is the worst—case scenario that meets the desired accuracy requirement), the
required estimated functional resource area would be 4320 sq. units. In comparison the
design using multiple word lengths in the same error environment, and with the same per-
formance constraint would require an estimated area of only 764 sq. units as seen from
Table 7.1. The corresponding reduction in the estimated area is 82%.

It can also be computed from the data in Tables 7.1, 7.2, and 7.3 that for identical nu-
merical range of the primary inputs, when the primary input error is low, the average dif-
ference between the functional resource area using single and multiple word lengths is as
large as 27%. In the case of large input error, this difference reduces to 15%. Recall that
in either case, the desired accuracy is 0.005% of the maximum value of the final result. In
the case of small primary input error, only a few operations must be performed in high pre-
cision using resources with large word lengths, so as to meet the desired accuracy. In the
case of large primary input error however, many operations must be performed in high pre-

cision. Resources with the largest required word length must be used in either case, when

102

Table 7.1: 1-D DCT optimized word lengths (7 = 8)

Inputs add subtract multiply total area
#res wordlen | #res wordlen | #res word len
" 2 2 3
small range 3 12,12, 13 1 12,12, 13 2 11, 10, 19 764
and 3 30,2931 2 19,22,22 1 13, 10, 21
small error 1 13,19, 30
" 1 1 1
5 30,2931 2 19,22,22| 4 13, 19, 30 1187
0 3 2 3
small range 3 16,17, 17 2 15,15, 16 2 15, 14, 27 1286
and 3 29,30,30 1 23, 26, 26 1 17, 15, 30
large error 1 37, 36, 38 1 17, 22, 36
" I 1 1
5 28,27, 29 2 17,19, 19 4 16, 22, 36 1591
1/; 2 3
large range 3 20, 20, 21 1 12,12, 13 | 11, 16, 26 1548
and 3 48,51,48 1 18,19,19 | 2 17,16, 32
large error 1 21,29, 29 1 19, 29, 47
b 1 I 1
5 37, 36, 37 2 17,24, 24 4 16, 25, 38 1833

the use of a single word length is allowed. Using distinct word lengths however, some
operations are executed by resources with smaller word lengths. Note that the number of
operations that can be performed in relatively low precision is high when the primary input
error is low. Therefore, the difference in the functional resource area in this case is large
compared to the case when the primary input error is large. This demonstrates that the de-
sign area is sensitive not only to the numerical range of variables in the algorithm, but also

to the desired accuracy in a given error environment.

103

1400

1200 +

1000

800 -

600 -

400 +

200 -

Normalized estimated

functional-resource area

Nonpipelined design
T =12 major cycles

single word
length

O multiple word
lengths

small range,

small error

small range,
large error

large range,
large error

Figure 7.2: Comparison of DCT area using single and multiple word lengths (7 = 12)

Table 7.2: 1-D DCT optimized word lengths (7 = 12)

Inputs add subtract multiply total area
#res wordlen | #res wordlen | #res word len
n 2 2 2
small range 2 12,12, 13 1 10, 10, 11 2 13, 10, 21 622
and small error 2 29, 28, 29 1 17, 20, 20 1 13,19, 30
0 1 1 1
4 21, 20, 21 2 14,17, 17 3 13, 17, 28 781
W 2 2 2
small range 2 16, 16, 17] 15,15, 16 2 17, 15, 30 976
and large error 2 32,32,33 | 24, 27,27 17,19, 31
P | 1 |
4 25,24, 26 2 22125, 25 3 16, 22, 36 1210
W 2 2 3
large range 2 18, 19, 19] 13,13, 14 1 14, 16, 29 1118
and large error 2 43,49, 43 | 22, 30, 30 1 17,17, 18
1 22, 30, 30
b I 1 1
4 37,36,37 2 17, 24, 24 3 16, 25, 40 1396

104

Normalized estimated
functional-resource area Pipelined design

i L =2 major cycles
3500
3000 -
2500 single word
length
2109/ O multiple word
1500 4 lengths
1000
500 '
0 - T |
small range, small range, large range,
small error large error large error

Figure 7.3: Comparison of DCT area using single and multiple word lengths (A = 2)

105

Table 7.3: 1-D DCT optimized word lengths (A = 2)

Inputs add subtract multiply total area
#res wordlen | #res wordlen | #res word len
W 4 4 3
small range | 5 11, 1212 1 10,10, 10 | 4 11, 10, 19 1750
and 2 12,12, 13 1 10, 10, 11 2 13, 10, 21
small error 6 20,21, 21 2 12,12, 13 3 13, 19, 30
1 29, 28, 29 1 18,21, 21
D 1 | 1
13 20, 20,21 4 14,17, 17 8 13,19, 30 2317
n 3 4 3
small range 7 17,17, 18 1 15,15, 15 4 15, 14, 28 2927
and 6 28,29, 29 1 15,15, 16 2 16, 15, 28
large error 1 37, 36, 38 2 16, 16, 17 3 17, 23, 38
1 29, 31, 31
W 1 1 1
13 27,27,28 4 23,26,26 8 16, 22, 36 3284
" 2 3 3
large range 7 18,19, 19 1 11,11, 12 2 11,17, 27 3439
and 7 43,42, 43 3 16, 16, 17 4 17,17, 33
large error 1 27,385, 35 2 17,27, 43
" 1 1 1
13 37,36,37 | 4 17,24, 24 8 16, 25, 39 3777

106

7.2 Gauss-3 elimination algorithm

The Gauss—3 elimination algorithm consists of 18 multiplications, 12 subtractions, and
3 reciprocal computations. In this experiment we assumed that the reciprocal was gener-
ated externally, and its word lengths were not optimized. We also assumed primary inputs
in the range [-50, 50], and the worst—case primary input error is +0.0001. The Gauss—3
elimination algorithm has several sequential computations and as a result, the range of in-
termediate variables and the tight upper—bound word lengths grow rapidly. We observed
that even for a small primary input range used in this experiment, the tight upper-bound
word lengths ranged from 9 bits through 230 bits. We considered two different accuracy
requirements for the specified environment. In case (a), the maximum tolerable error was
0.1%, and in case (b) it was 0.15% of the maximum value of the final result. In each case,
we considered five pipelined implementations of this algorithm, corresponding to initia-
tion intervals 1, 3, 5, 7, and 9. Once again clustering was followed by word-length se-
lection using the genetic algorithm. We considered unconstrained optimizations allow-
ing resources of multiple word lengths, and constrained optimizations where a common
word length was selected for resources of a particular type. The final solutions derived
by WORD-LENGTH OPTIMIZER contain resources of distinct word lengths. These results
are given in Table 7.4. A comparison of the cost of various implementations is shown in
Figure 7.4.

Table 7.4: Gauss—3 elimination pipelined implementations

Initiation €< 0.1% € <0.15% P =[1,1], € < 0.15%
interval ¢ Normalized @ Normalized Normalized
major cycles [, —] estimated cost [¥,—] estimated cost estimated cost
1 (5, 4] 8331 (6, 2] 7154 14952
3 3, 3] 3577 3, 2] 2659 4984
5 (3, 3] 2850 2, 4] 1888 3339
7 (3.2] 2067 (3, 4] 1915 2492
9 (1, 2] 1687 [1, 2] 1687 1694

107

Normalized estimated
functional-resource area

16000 7
14000
O max. error = 0.15%
12000 (single word length)
Omax. error= 0.1%
10000 - (multiple word lengths)
B max. error= 0.15%
L {multiple word lengths)
6000 -
4000 A
2000 - m
0 : ; . l

1 3 5 7 9

Initiation interval (major cycles)

Figure 7.4: Gauss—3 elimination area requirements for different accuracy constraints

From these results it is observed that in general, designs using multiple word lengths
are smaller than those using a common word length. The difference in the area is signifi-
cant when the required performance is high. Particularly in the design with initiation inter-
val of 1 major cycle, the resource requirement is extremely high. Since all resources of a
type must be assigned the largest required word length when a single word length is used,
the difference in the estimated area compared to a design (with the same performance and
computation accuracy) using resources of multiple word lengths is as much as 52%. The
average difference in the area of these designs using single and multiple word lengths is
32%. Note that in this comparison, the optimized word lengths for designs using a sin-
gle word length were selected by WORD-LENGTH OPTIMIZER. In the worst case, where
these word lengths are pre—determined, the difference in the estimated area could be much
larger.

From the results in Table 7.4 and Figure 7.4, we also observe that for a given primary
input range and error, the estimated design area changes monotonically with the desired
accuracy of the computation. The improvement and saturation of the fitness of the best

solution and the corresponding changes in the worst case computation error for the first

108

case of the implementation with initiation interval 5, are shown in Figure 7.5 and Figure 7.6

respectively.

vt Fitness of solutions
-0.2 T T T T T T

-04r ..

Fitness
1

-1.2H

1 1 1 1 i 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Total no. of chromosomes

Figure 7.5: Gauss—3 elimination fitness improvement: pipelined implementation, la-
tency = 5 major cycles, ¢ = 0.1%

7.3 Determinant of a 5x5 matrix

Computing the matrix determinant is a well known computationally intensive problem. In
fact, methods such as LU-decomposition, or QR—factorization are often used to avoid the
computation of matrix determinant. Using resources of multiple word lengths it may be
possible to obtain a cost effective hardware implementation of matrix determinant. The
5x5 matrix determinant computation consists of 105 multiplications, 29 additions, and 40
subtractions, yet the fastest implementation requires only 14 steps. In our experiment we
assume that the matrix elements (i.e. the primary inputs) are in the range [1, 150], and the
error in these inputs is moderate. Then, the tight upper—bound word lengths range from
10 bits through 60 bits. We allowed the maximum number of distinct multiplier and sub-
tracter word lengths to be 10, although the actual numbers determined during the maxi-
mum accuracy analysis were higher. The maximum number of distinct adder word lengths

was 8. We considered 5 nonpipelined implementations of this algorithm starting from the

109

. Computation error
1 T T T T T

0.098+ J — 4

o
=]
(73]
o
!

0.084 4 4

0.092 H 4

o
=)
@
L

Error (% max. final result value)

0.088 e

0.086 H 4

0.084 .

0.082 1 1 1 1 1 1 ' 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Total no. of chromosomes

Figure 7.6: Gauss—3 elimination variation in the computation error corresponding to the
best solution in the population

fastest one i.e. the execution delay of 14 major cycles through the one allowing 20 major
cycles for execution. Once again we considered two different accuracy constraints: one
where the maximum permissible error was 1% of the maximum value of the final result,
and the other where the permissible error was at the most 1.5% of the maximum value of
the final result. The ' selected by WORD-LENGTH OPTIMIZER, and the corresponding
estimated resource area in the case of unconstrained optimizations for different accuracy
requirements are shown in Table 7.5. The estimated resource area in each design using a
single word length selected by WORD-LENGTH OPTIMIZER from constrained optimiza-
tion is also given. A comparison of the estimated area using multiple word lengths and a
single word length is shown in Figure 7.7.

From Table 7.5 we observe that the estimated area using multiple word lengths does not
change monotonically with the required performance. This is due to a variation in inter—
cluster resource sharing. For a given number of clusters of distinct word lengths, and a
given number of total steps for the execution of the algorithm, it was shown in Section 5.5.3
that resources assigned to a cluster of large word length may implement operations in a
cluster of smaller word length, if and only if the execution intervals of the two clusters

do not overlap. If a resource is shared between two clusters, the resource requirement of

110

Table 7.5: 5x5 matrix multiplication

Required J; Normalized 1/7 Normalized Normalized
#steps [*,—,+] estimated cost [#,—,+] estimated cost estimated cost using
e=0.1% e=0.15% 1 word length
14 (3.2, 4] 3619 [3, 4, 6] 3508 6502
15 (2.4, 3] 4059 [4,2,3] 3960 5400
16 [3,5, 3] 3885 [3,:3, 3] 3788 5400
17 [4.5, 3] 3297 [4,5, 5] 3105 4995
18 [6, 3, 6] 3035 (4, 3, 5] 2624 4995

the smaller word length cluster is reduced further. The cluster execution interval jointly
depends on the number of clusters and the total number of time steps available. Hence, it
does not change monotonically with the performance requirement. This affects the sharing
of resources between clusters. Moreover, inter—cluster resource sharing is performed using
an estimate of the cluster execution interval and not an actual schedule, since our word-
length optimization is performed at the algorithmic level, before architecture synthesis.
Recall from Section 5.5.3 that an estimate of cluster execution interval is computed using
the predicted number of resources required in each cluster. In order to guarantee that the
performance requirement is met, the resource predictions are pessimistic. In Section 5.5
we showed that these predictions depend not only on the total number of time steps avail-
able for the entire algorithm, but also on the number of clusters. Therefore, the overall
predicted resource requirement embedded in our cost model may not change monotoni-
cally with the performance requirement. As a consequence, the estimated area of a design
requiring more execution steps may be greater compared to a design requiring fewer time
steps. This is seen in solutions requiring 15 and 16 steps, whose estimated area is more
than that of a design requiring only 14 steps. The objective of our technique is only to de-
termine the optimized word-length sets for operations and resources. During architecture
synthesis using these word lengths, the optimized number of resources must be determined
to ensure that a design with a relatively low performance requirement also requires rela-

tively less area.

111

Normalized estimated max. error = 1%

functional-resource single word length
7000 4 area Omax. error=1%
e multiple word lengths
6000 4 f W max. error = 1.5%
multiple word lengths
5000 A ‘“
o i
4000 4 |
e i
3000 4 |5 A
= o
513 s
2000 4 | Eaid
% i ek
1000 %_ i i
i £ Bid
2 B i
0 ?‘:;i . ‘S'ﬁl .) ’
14 15 16 17 18

Execution delay (major cycles)

Figure 7.7: 5x5 matrix determinant normalized estimated functional-resource area using
multiple and single word lengths

The monotonic area—performance relationship is observed in the case of designs using
a single optimized word length. We also observe, that the overall estimated area require-
ment is always less using multiple word lengths compared to designs implemented using
only one word length. In this example, the average reduction in area is 35%. A reduction
in the estimated area when the required computation accuracy is low is also observed from
Table 7.5 and Figure 7.7. In Figure 7.8 we show how the fitness improves and saturates as
better chromosomes are produced during the evolution process.

From these experiments we observe that a significant reduction in the design area is
possible by using resources of multiple word lengths. In the previous example, the aver-
age area reduction is 35%. In the Gauss—3 elimination example it is 32%, and in the
DCT example it is 18%. From these examples we observe that for a given performance
requirement, the area of implementation changes according to the accuracy requirement.
In other words, the circuit area is sensitive to the desired computation accuracy as well
as performance, and can be manipulated using resources of different word lengths. In a
given algorithm, it may not be necessary to perform all computations in high precision to

obtain the final result with the desired accuracy. If resources of smaller word lengths are

Fitness of solutions
-3500 - : T !

=4000 - R

—4500 |- u

-5000 8

=-5500(- s

Fitness

-6000 |- .

-6500 -

-700011 b

=75001 5

~8000 I L L i
500 1000 1500 2000 2500 3000

Total no. of chromosomes

Figure 7.8: 5x5 matrix determinant fitness improvement: nonpipelined implementation,
execution delay = 14 major cycles, ¢ = 1%

assigned to these operations, a significant reduction in circuit area is possible, as seen from

these results.

113

Chapter 8

Conclusion and future work

8.1 Conclusion

In this thesis we considered the problem of word-length selection at the algorithmic level
to minimize the hardware implementation cost while satisfying the performance and com-
putation accuracy requirements. In hardware implementation of arithmetic—intensive al-
gorithms, word lengths of operations and resources have a direct bearing on the cost, speed,
and the accuracy of the computation. Resources with small word lengths cannot directly
implement operations requiring large word lengths. Therefore, the choice of word lengths
affects resource sharing. Accuracy of the computation is proportional to the number of bits
used. Small word lengths imply smaller resources and possible reduction in area. Thus,
the optimal word length set to be used in the implementation depends on the specified ac-
curacy and performance requirements. We presented theory and techniques to automate
this important step usually performed manually.

The limitations of word—length selection after architecture synthesis were illustrated in
Chapter 1. In order to select word lengths at the algorithm level, we first analyze the effect
of a specific choice of word lengths on the worst—case computation error in the final result
of the algorithm. An analytical technique to describe the latter in terms of word lengths was
developed in Chapter 4. Our technique is independent of the implementation style and 1s
based on the numerical analysis of the algorithm and its environment i.e., the numerical
range of the primary inputs and error. Using this technique, the tight upper-bound word
lengths of all the algorithm variables can be determined for the specified environment. As-
signing a word length larger than the tight upper-bound word length does not improve the

accuracy of the final result.

114

In Chapter 3 we presented a novel cost function incorporating functional as well as
other resources of multiple word lengths. In this cost function, the individual resource cost,
that was assumed to be a constant in the traditional high-level synthesis, was modeled as
a function of its word length. The exact minimization of the nonlinear cost function yields
the optimal word length set for the algorithm, which is likely to be a very difficult problem.
A two-step optimization technique was developed.

In the first step, named clustering, described in Chapter 5, a set of optimized cost func-
tions was obtained. Each function in the set corresponds to a unique combination of num-
ber of distinct resource word lengths of all the operation types in the algorithm. These
functions are optimized under the assumption of maximum accuracy requirement, which is
achieved by using the tight upper—bound word lengths. By taking advantage of the word—
length compatibility of operations, clustering minimized the requirement of resources of
large word lengths. Then, the utilization of large word length resources was further im-
proved by taking advantage of the scheduling compatibility of operations, and the fact that
a resource of larger word length can directly implement an operation of a smaller word
length.

Finally, the genetic algorithm described in Chapter 6 searches through discontinu-
ous, nonlinear solution space efficiently, taking advantage of the monotonic properties of
implementation—cost and computation—error equations in terms of word lengths. The word
lengths of resources are altered and its effect on the worst—case computation error is ex-
amined using the analytical error model. We consider the complete set of optimized cost
functions generated by clustering. When no further reduction in the implementation cost
is possible while satisfying the accuracy requirement, the function resulting in the mini-
mum cost is selected. Thus the number of distinct word lengths of each operation type,
and the word lengths are selected simultaneously to form the optimized solution. The si-
multaneous selection of these two parameters of the final solution is essential because, the
two parameters are interdependent, and they jointly determine resource sharing, which has
a direct bearing on the implementation cost.

Our results show that on an average, a 30% reduction in functional-resource area is
possible by using multiple word lengths as opposed to the use of a single pre~determined
word length for the entire data path. This illustrates the importance of the word-length
optimization step performed during manual design or prior to data path synthesis. We also

illustrate that the design area is sensitive the the desired accuracy of computations. In a

115

computation that demands high accuracy in the final result, the precision of all operations

may not have a significant impact on the accuracy of the final result. These operations can

be implemented using resources of smaller word lengths, while the others may be imple-

mented by resources with large word lengths. By determining the appropriate resource and

operation word lengths at the algorithm level, a low—cost design can be generated using

multiple word lengths, that meets the accuracy and performance requirements.

8.2 Contributions

The key contributions of this research are listed below.

la.

1b.

2a.

2b.

4a.

Traditional high-level synthesis explores the trade off between the cost and perfor-
mance of an implementation. We have shown that the cost (area) of a design is sen-
sitive to the desired accuracy of the computation. Thus a third optimization parame-
ter, accuracy of computation, is introduced that allows a cost—performance—accuracy
trade off.

Our research shows one way to model and solve the above mentioned three—way trade

off or optimization problem.

An analytical technique was developed to model the worst-case computation error
in an algorithm. This technique is based on the numerical analysis of the algorithm,

and is independent of its implementation.

An automatic tool was developed to perform the error analysis of an algorithm rep-
resented as a control data flow graph with no unbounded data—dependent loops. This

tool is also used to verify the error constraint given a set of word lengths.

A novel cost function was developed that incorporates resources of multiple word

lengths, and models the individual resource area as a function of its word lengths.

Clustering is the first important step in the optimization of the cost function men-
tioned above. A dynamic programming solution to clustering problem (to minimize
the normalized lower—bound estimated functional-resource area) taking advantage

of word—length compatibility was developed.

116

4b. A novel behavioral technique to predict the resource requirement incorporating mul-
tiple word length use was developed. These predictions aim to optimize the cost func-

tion by minimizing the number of large word length resources, and by maximizing
their utilization.

4c. An automatic tool was developed to perform clustering and resource prediction, and
to generate the set of optimized cost functions under the assumption of the require-
ment of maximum achievable accuracy. In other words, the resources word lengths

are assumed to be the tight upper-bound word lengths.

5. A genetic algorithm and a tool, WORD-LENGTH OPTIMIZER were developed to se-

lect the optimized set of word lengths for the algorithm.

8.3 Future research

This research was based on numerical properties of algorithms and high-level synthesis
issues. By introducing the computation accuracy as an optimization parameter in synthesis
of circuits, several new research directions in this field, and some in algorithm analysis can

be suggested. We highlight some relevant research topics.

8.3.1 Synthesis

High-level synthesis Given resources of distinct, known word lengths, and operation
word lengths, traditional problems in high-level synthesis namely, allocation, scheduling,
and binding become more interesting. As stated in the introduction, the problem of synthe-
sis using multiple word length resources is loosely similar to the module selection problem.
In the module selection problem any operation of a given type can be implemented by any
style of module of that type. When multiple word lengths are used the problem is tricky
because a smaller word length resource cannot directly implement an operation requiring

larger word length.

Accuracy—specific module synthesis Accuracy specific synthesis is of special interest
in multipliers. Our word-length optimization may determine the optimized word lengths

of a multiplier to be say 10, 15, 16 where 10 and 15 are the input word lengths and 16 1s

117

the word length of the product. A straightforward approach is to use a 10x15 multiplier
(assuming it is available) and to ignore the 9 least significant bits. However, if a multiplier
could be designed that generates only the 16 most significant bits, it is likely to utilize fewer
gates. Hence it could be faster, smaller, and may consume less energy. Synthesis of such

data—path components is an interesting logic optimization problem.

Adaptive computing The trade off between the word lengths and precision is particu-
larly useful in a dynamically changing environment. If the input noise or error is high, the
computation is performed in high precision. Otherwise, in a low—noise environment some
least significant bits are not used. This may lead to a speed up in the computation as well

as reduction in power consumption.

8.3.2 Numerical analysis

In our research we modeled the worst—case error in computations. In a realistic environ-
ment the probability of a computation generating the worst—case error may be extremely
low. Then a statistical model of the computation error, expressed as mean, variance and
other moments if necessary can replace the worst—case model. This can be achieved by
treating the input/output operands of a computation as random variables. Then the prob-
ability density function of error in the output operand is a function of the error density

functions of the inputs.

8.3.3 Algorithm analysis

Algorithm transformation In our research we assumed that the sequence of computa-
tions in an algorithm remains unchanged. As long as the algorithm expresses the same
functionality the sequence of operations can be transformed in order to improve the nu-
merical robustness of the algorithm. Consider a simple example = = a * b # c. Assume
that @ and b are extremely small numbers and ¢ is a sufficiently large number. If a product
is carried out in the specified order, the partial result y = a = b may require a large word
length in order to preserve the accuracy. Alternately, if z = bxcis performed first z may be
represented with acceptable precision using fewer bits compared o y. A technique similar

to our error analysis technique can be developed to identify such transformations.

118

Hierarchical analysis In hardware implementations, complex operations such as divi-
sion, square~root, or trigonometric functions are implemented using a sequence of elemen-
tary operations such as multiplication, addition, and subtraction, and some times a table
look—up operation. Several different algorithms can be considered for the implementation
of acomplex operation, and the implementation of these algorithms can be simultaneously
optimized while optimizing the main algorithm. Especially, a saving of only a few bits in
the look—up table at the expense of using a larger multiplier or adder could result in a sig-

nificant reduction in the design cost.

119

Appendix A

Statistical estimation of system energy and power

In this thesis, we presented theory and techniques to select word lengths of algorithm vari-
ables and resources to minimize the hardware implementation cost while meeting the per-
formance and accuracy requirements. The cost of a circuit comprises several parameters
such as circuit size, die cost, cost of designing the circuit, fabrication and packaging cost,
and energy /power consumption. Many of these cost parameters are closely related to the
circuit area, hence, in the cost model introduced in Chapter 3, the overall circuit area ex-
pressed in terms of resource word lengths is assumed to represent the design cost. In this
appendix, we describe a technique to express the energy /power consumption of a circuit
in terms of word lengths of its resources. Using this technique word-length selection at
the algorithmic level can be used to obtain a low—energy or low—power design. In order to
model the energy /power consumption of a circuit or system in terms of word lengths of its
resources we present a novel technique FREEDOM to predict the former given the behav-
joral specification of a circuit/system and library components. The early prediction gives
circuit designers the freedom to make numerous high—level choices (such as die size, pack-
age type, and latency of the pipeline) with confidence that the final implementation will
meet power and energy as well as cost and performance constraints. Our unique statisti-
cal estimation technique associates low—level, technology dependent physical and electri-
cal parameters with expected circuit resources and interconnect. Further correlations with
switching activity yield accurate results consistent with implementations. All feasible de-
signs are investigated using this technique and the designer may trade off between small
size, high speed, low energy and low power. The results for designs of two popular signal
processing applications, predicted prior to synthesis, are within 10% accuracy of power

estimates performed on synthesized layouts.

A.1 Motivation

Performance, area, power, and energy consumption are some of the most important at-
tributes of complex digital signal processing systems such as secure mobile spread spec-
trum systems, and JPEG and MPEG image compression/restoration systems. Early predic-
tions of cost, performance, power, and energy using the behavioral specification of the sys-
tem are useful in guiding the search through the vast, discrete system—level design space.
Using prediction results, architecture choices such as the number of resources to be used,
and their allocation, binding and scheduling can be made to simultaneously satisfy area,
speed and power constraints. The earliest choices usually have the most influence on the
design. Compared to the behavioral-level the degrees of freedom in terms of choices avail-
able to the designer diminish significantly at the architecture level and are reduced again at
the subsequent gate and transistor levels. For example, in a known architecture the number
of multipliers used in a matched filter implementation is fixed. Their sharing and usage is
also fixed. At this level predictions apply to a single architecture. In order to explore the
vast design space even using RT-level estimators, the architecture synthesis steps must be
repeated several times, using the “generate and test” process of searching for a low—energy,

low—power design. The gray segments on the design space line in Figure A.1 are the low

Degree of freedom

=

Architecture-level 7

Behavior-level <

™~ Designs missed

Gate-level

Transistor-level Feasible dasigns

1

= A
A B C

Designs with low energy/power

Figure A.1: Limitations at various levels of prediction

power/energy designs. Once the architecture is fixed all the low power designs in segment
“A” and many in segment “C” are automatically excluded. If the selected architecture cor-
responds to implementation “x”, failure to meet power constraints will cause the design
to be excluded and exhaustive steps to obtain a new architecture will be repeated. If ar-

chitecture/design “y” is then selected, it is still likely that design “z” also will meet area

121

and speed constraints and have lower power/energy consumption compared to design “y”.
However, using prediction at the behavioral level a very large spectrum of predicted fea-
sible implementations that meet various area, speed, energy and power constraints can be
identified early. Behavioral-level predictions allow the designer to significantly decrease
the number of actual RTL designs he or she must examine. The designer is then able to
make system and RT-level design choices that will lead to implementations with the de-
sired characteristics.

FREEDOM is an accurate statistical technique to estimate power consumed by each task
in a application specific system by means of a statistical model relating (a) the predicted
lengths of nets in the implementation, and (b) the switching activities on the wires. By cor-
relating (a) and (b) we show how power and energy consumption in a system are estimated
directly from its behavioral description without taking any synthesis steps, by predicting
the impact of optimizations performed during the design process on area, performance,
energy consumption and power.

The appendix is organized as follows. Accuracy achievable at different levels of circuit
abstraction and the factors influencing it are described in Section A.2. An overview of our
approach is given in Section A.3. Section A.4 describes the theoretical basis and mathe-
matical model of our estimation algorithm. Experimental results for real signal processing

applications are presented in Section A.5, followed by conclusions in Section A.6.

A.2 Prediction accuracy at different levels of abstraction

The power consumed by CMOS circuits depends on the supply voltage, the switching ca-
pacitance and the switching activity. The well known transistorlevel predictors SPICE
and PowerMill [20] obtain accurate capacitances from the layout where the switching ac-
tivity is simulated. At the gate level, the focus of prediction methods remains on accurate
estimation of the switching activity. It was shown by Brand and Visweswariah that inaccu-
rate modeling of the capacitance could lead to severe inaccuracies in predictions at the gate
level [3]. Accurate methods at this level are reported in several publications [14,38.,43]. At
the architecture level the variation in capacitance is significant. This is mainly because the
cost of communication, interconnect and resource sharing is significant, even dominant.
Power consumption by the interconnect is significant [32,35]. It is imperative that the in-

terconnect capacitance distribution for the entire chip (or MCM) be predicted accurately.

122

A comprehensive technique for capacitance estimation based on layout estimation after
architectural synthesis was reported [28]. At the behavioral level, Potkonjak ar al. consid-
ered several DCT algorithms [47] such as Lee’s, Wong’s and Vetterli’s. The objective of
their research was to determine a low power algorithm for the given cost—performance re-
quirements. They synthesized each algorithm to obtain an architecture and compared the
results of predictions. Our research is significantly different than this technique because
we replace expensive behavioral synthesis steps by architecture estimation. Specifically,
we estimate the number of functional resources such as adders and multipliers, control re-
sources such as muxes and registers, and also the interconnect. We generate these esti-
mates for all predicted feasible designs, and predict power for each one. Thus, we explore
the complete behavior of an algorithm for the entire feasible design space, and not just
a given cost—performance requirement. Methods to estimate the architecture before pre-
dicting power were also investigated by Mehra and Rabaey [39] however, their functional
area estimates were off by as much as 96.1%, and interconnect capacitance estimates by
52.1%. Consequently, the power predictions were also significantly off. The architecture
estimation techniques we use [26] were shown be accurate [17]. In our approach we pre-
dict the impact of architectural optimization and technology mapping, hence avoiding the

estimation error suggested by Brand.

A.3 Behavioral system-level predictions

At the behavioral level, critical design choices have not been made and the architecture
is not fixed. Hence, detailed wiring information is not available. FREEDOM provides a
unique solution by producing accurate wire length and capacitance distribution estimation
throughout a chip or MCM. The wire—length distribution in chips was shown to be geo-
metric by Kurdahi [31]. This distribution is also used by others [3,35]. Additionally, lay-
out and technology—dependent parameters such as wire capacitance per unit length, and
average gate input, output and internal capacitances are used to derive the capacitance dis-
tribution.

We first estimate the area and performance characteristics of possible system designs
using the Behavioral ESTimator BEST [26]. Consider the Task Flow Graph (TFG) repre-

sentation of a homomorphic system for processing speech shown in Figure A.2. Each task

is associated with a Control Data Flow Graph (CDFG)'. The implementation style for each

x(n) - . | un
N = LOGAR A = —
{ ARTIHS "lsvsTEM l
S(n) -—| LFFT h.\'Pum-NTm.«—J

| thlp }%-Gi}lé{'{l“m]
‘ i “m%] " E

3 Chip 3 ._; —— Chipid| F
‘ | 5 Hf TIETT

Figure A.2: System Task—Flow Graph and implementation

task could be different, such as semi—custom ASIC, FPGA, or off-the—shelf component. A
system composed of these chips or dies is assembled on a PC board or an MCM or a combi-
nation of the two. For off-the—shelf components such as dynamic RAMS, cost, delay and
power consumption are known. Our predictor estimates these attributes for undesigned
tasks as described below.

Given the behavioral description of a task (CDFG) and a library of physical modules
to be used for synthesis, many designs are feasible depending upon the area and timing
constraints. Under tight area constraints, the resulting design tends to be serial as it has a
small number of functional units. On the other hand, under strict timing constraints, the
resulting designs are parallel or have a large number of functional operators. A formal
method to predict each of these design possibilities was introduced in BEST. BEST in-
vestigates all feasible execution times (expressed in number of steps of clock cycle) for a
given task, based on critical path analysis. Then, corresponding to each possible time, the
required number of functional operators of each type, multiplexers, registers and 2—point
nets are predicted. We use the predicted designs generated by BEST as a starting point in
our analysis. Figure A.3 shows the overall prediction method.

After BEST, functional operator energy estimation is performed. Functional operators
used in chips typically consist of a few hundred gates. In semi—custom ASIC design, these

are pre—synthesized as macro cells. Thus, we have an a priori knowledge of the internal

1 This can be derived from a behavioral VHDL description.

F.ihmty
flmcliunnl‘ physical

p:lmmclel.‘i: parameters

Design *X" 1!
Style: pipe/non-pipe !
! Clock

Delay
Predicted y Initiation rate
Design 1

Design 2

' Operator type [1:N] !
operations I
#instances i
I Registers n
I Muxes i
A== =smaai Ji

11 # 2-point nets N
1

Avg, wire-length

predictor

v

Statistical external net
distribution

Qperator type { 1:N] 1

Interconnect
Figure A.3: System-level power prediction

Operator info
and
number of nets

distribution

Avg. power

structure of these cells. Specifically, we know the number of standard cells or gate array
cells used, the number of internal nets and physical dimensions. For each macro cell, we
predict energy consumption by predicting the internal wire-length distribution using Kur-
dahi’s model [31] and the associated switching capacitance. Here internal implies the nets
connecting the constituent transistors, cells or gates of the macro cell. In this novel tech-
nique, we model a functional unit as a collection of nets with varying switching activity
and capacitances. Correlation of the latter two is illustrated in Section A.4.1.1. Accuracy
of the results is improved by considering how frequently operators of each type are used
in executing the algorithm.

Finally, energy consumed by the interconnect is estimated. As mentioned earlier, the
number of external 2—point nets for a design is estimated by BEST. Here, external implies
inter—functional-unit nets. In addition, from BEST we also know the number of operators
of each type and their physical dimensions. Using this information and Kurdahi’s model
for wire—length distribution, we predict energy consumed by the external nets. The addi-

tion of all these components yields the total energy consumed by the chip for the predicted

125

design being considered. We also know the execution delay for this design thus, we com-
pute the average power consumption.

Estimation of the average wire length inside a functional component as well as in the
target chip is critical in our method because that is the only parameter that characterizes the
geometric interconnect distribution. Given a predicted design, we determine the expected
number of operators of each type and predict their interconnectivity. We use interconnect

length analysis based on Rent’s rule.

A.4 Statistical power estimation

In our analysis, the only distinction we make is between nets and modules. Therefore, in
the mathematical model, functional units also include registers and multiplexers. A math-
ematical formulation for power consumption corresponding to a predicted design is given

below.

A.4.1 Estimating power consumption of a functional unit
A.4.1.1 Switching nets model

Switching capacitances. We model any functional unit as a collection of wires and stan-
dard cells (or gates in a gate array design). The numbers of wires and cells in a given
unit are fixed and known. Dimensions of the unit are also known. Assuming standard cell
placement, the average length of a wire in the unit is given by Feuer’s formula as imple-
mented by Kurdahi [31]. The average load on a wire depends on the average input/output
capacitance of the standard cells. Thus, the total switching capacitance associated with

each wire consists of

[e—

. average load capacitance,

E\J

average internal capacitance of the standard cells, and

3. capacitance of the wire.

Items 1 and 2 are obtained from the standard cell library while item 3 depends on the length

of the wire. In the case of small functional units, comprised of a few standard cells (gates

126

in a gate array design), the interconnects between the cells are short and the switching ca-
pacitance is dominated by the transistor gate and source/drain capacitances. However, in
large functional units, routing capacitance between cells is comparable to gate input/output

capacitances and hence, cannot be ignored.

Switching activity. Our estimator starts with a behavioral description of the task and
predicts power for all feasible designs. The procedure to estimate power for one func-
tional unit must be fast because several designs are to be explored and each may consist
of many functional units. In our approach, we make the following assumptions regarding

the switching activity:
I. A good placement and routing algorithm is expected to place cells that share ports

together. Thus, most short wires are likely to have high switching activity.

2. Many of the long wires carrying information such as clocks or multiplexer control

are also likely to have high switching activity.
3. Medium length wires are likely to have relatively low switching activity.

A typical wire-length switching activity relation is shown in Figure A 4.

T)
Wi Length imm

Figure A.4: Wire-length switching activity relation

Mathematical model. We have created an empirical model for switching activity, heav-
ily influenced by the work of Vaishnav and Pedram [60]. Su et al. [56] and Kojima ef
al. [29] at the RT (architecture) level. As described earlier, the switching activity — wire
length relation consists of three regions. Region A is characterized by 0 < [< [;. Switch-

ing activity in this region is given by
-4
w=Mha (A.1)

127

where 2 = switching activity on short wires
(in transitions/ clock period),
[= average wire length,
li =1l and

a is a constant > 0.

In region B, characterized by [; < | < [y, the switching activity is constant, denoted
Q.n; where I, = %[Region C is characterized by [, < | < lq.. In this region, the

switching activity is given by

where s = Switching activity on very long wires,
lmr::r = % [-_, and

3 1s a constant > 0.

From Eq. (A.1) and Eq. (A.2), a and 3 are computed as

R
| = 2In— :
n o n 0 (A.3)
In 3 n 2 A4
npg = In Q. (A.4)

At this point we do not know the impact of this coarse model of switching activity on
power prediction accuracy. However, a more elaborate model could be used and the overall
method for power prediction would still be valid. Exact methods to estimate switching
activity at the chip or system level are not available. However, the parameters 2, o,
and ©,,, can be determined according to the overall resource usage. Analytical methods to
determine different switching rates throughout the chip have been published [35]. Mehra

and Rabaey used the white noise model for switching activity [39].

A.4.1.2 Mathematical model to predict functional unit power

A task implemented by a chip consists of one or more types of functions such as addi-

tion and multiplication. Let functional unit F; used to implement function j consist of

§; standard cells and \V; nets. The average length of a wire in this unit, given by Feuer’s

formula [12] is

7'm_%
ARV L B
T+ 2rm) 2+ 2rm) (1+S77)

—
Q

(A.5)

I'm 18 the Rent’s exponent for macro cells or functional units. Kurdahi and Liu et al. re-
ported [31, 35] that ,, approximately equals 0.7. I, is the average standard cell length.
Consider an event where the length of a randomly selected wire/net in this unit equals [.
Kurdahi showed that the probability density function for this event is geometric and that
the parameter of the function is the reciprocal of the average length. Thus, the total number

of nets in F; of length [is given by

[—1
N = _l 1—_l x N (A.6)
I ¥ l; ’

The average switching capacitance associated with a net of length [in F; is given by

Ci=p-l + C, (A7)
where
i = Capacitance of the metal wires per unit
length (including contacts), and
C, = Average switching capacitance

associated with a standard cell.

As described earlier, switching activity on the nets is assumed to be a function of the
net length. Total energy per cycle consumed by a functional unit ; during one isolated
use E7, is obtained by combining Equations (A.1), (A.2), (A.6) and (A.7).

Vdd? [S
B, =~ [D CiNua’ b + Y ¢ Nj O
0

(A.8)

{ max

=g
+ Zc’f\ Q8 | xd,

where [y = [, o = 20 lmaz = 21}, and d; = Delay of F; (in ns.).
Abstractly, the model computes average power consumption in a functional unit as a

function of unit length, switching activity, number of wires, and delay of the functional

unit.

A4.2 Estimating power consumption for a design

A.4.2.1 Functional units

For a function type j, the number of functional units (or operators) required by design 7,
denoted Oj; and the average utilization of these functional units in a large number of ex-
ecutions of the task, denoted UJ’?; is estimated by BEST [26]. From Equation (A.8) the ex-
pression for the average power consumed by all functional units in a design ¢ is written
as

. 206 x U x Eg
Pi =

(A.9)

(&

where ¢ is the clock period. Resource prediction allows nonpipelined and pipelined, and

single as well as multi—cycle implementations.

A.4.2.2 External nets

Let the total number of external nets (nets extending outside a functional unit) for design
given by BEST be A/, The average length of external wires in this design given by Feuer’s

formula is

_ 2ro(3 + 2r¢) O3]
" =2 - ' . X Az (A.10)
\/_(1 +2?‘c)(2+2‘1‘6) (1+Oz"r-'—l) &

where r, = Rent’s exponent for chips
(its value approximately equals 1.0).
O' = 3,0}, isthe number
of operators in design 7

- ¥, 0 (H+L .
[= Lﬁ%’—'l is the average length

130

of functional units in design i

H; = Height of operators F;, and
L; = Width of operators F;

Once again, using the geometric distribution, the total number of nets in design ¢ of

length | is
i 1 %5t :
N = (7) (1 - ?) x N (A.11)

and, the average switching capacitance associated with a net of length [in the chip is
HM=pl+ €, (A.12)

Net length — switching activity assumptions made in Section A.4.1.1 also hold at the
chip level. Functional units exchanging data frequently are more likely to be placed in
close proximity. In addition, very long wires carrying global control signals and clock have
higher switching probabilities. Thus, the average power consumed by the switching activ-

ity on the external nets Py is given by

zg a)
Bift= Vdd [Zcf NiQa T + ZC“ NY O,

(A.13)

where [, = 1, 1y = 21, and lpyee = 5 1.
Finally, the average chip power for design ¢ is the sum of the total average functional

power and average external net power given by Equations (A.9) and (A.1 3)
Pi

chip

= Pgl + Py (A.14)

A.4.3 The energy/power prediction algorithm

PREDICTPOWER

Use BEST to generate all prediction points

For each prediction point
/* Interconnect energy */
Compute average width/length of functional operators
/* Dimensions are obtained from PROMAN® %/
Use Feuer’s formula to compute
the average external wire—length.
Use geometric distribution and wire—length,
switching activity correlation to compute
the external net energy consumption.
For each functional unit
Use the number of constituent standard cells and
the number of nets obtained from PROMAN.
Compute the average wire—length using
the average standard cell width.
Use geometric distribution and wire-length,
switching activity correlation
to compute the internal net energy consumption.
Accumulate the internal net energy consumption.
Total energy «— external net energy +
accumulated internal net energy.
Average power total energy / delay of

the predicted design

A.5 Experimental verification

Energy and power consumption estimates were generated for the entire feasible design
space of two commonly used signal processing applications namely, AR-FILTER and 1-D
DCT. Three designs of AR-FILTER and two designs for DCT from this space, each with
different execution delays, were selected for comparison with architecture-level predic-
tions. Note that architectures of these three AR-FILTER implementations are completely
different in terms of resource and interconnect requirement. The same observation also

holds for the two DCT implementations. These designs were then synthesized to obtain

Layout analysis tool from Cascade Design Automation.

RT-level net lists using the USC suite of tools [17]. Physical designs were generated for
these net lists using Cascade Design Automation’s tool EPOCH. A few commonly used
macro cells such as Booth’s multiplier, look—ahead and ripple—carry adders, and registers
were pre-synthesized to be used in the synthesis of these data paths. Finally, power esti-
mates for the synthesized designs were obtained from PROMAN?. PROMAN employees a
probabilistic prediction algorithm at the layout level. Although our predictor is well suited
for many design styles, we chose standard cell design for the purpose of our experiments.
The layout process used was MOSIS 1.2 pm. double-metal single—poly. Library infor-
mation on standard cells and macro cells required by the power predictor is listed in Ta-
bles A.1 and A.2. The results of energy and power prediction using FREEDOM are shown
in Table A.3 and Table A.4, respectively. In Table A.4, we also present the results of power

prediction for these designs using PROMAN for the purpose of comparison.

Table A.1: Standard cell data

no. of gates 53

no. of inputs 206
Average width 42 pm
Average internal cap. 34 fF
Average gate input cap. 225 fF
Average output cap. 30 fF
Average total switching cap. 100 fF
Average transistor—gate pair (N/P) cap. | 58 fF
Metal and Via cap. 0.22 fF/pm

Table A.2: Macro cell data (16-bit components)

Name # std. | # nets HXL Delay
cells (pm x pm) | (ns)
adder 48 97 811x231 15
subtracter | 64 113 88x874 15
multiplier | 1320 | 1225 | 991x1181 | 85
register 80 83 676x82 2
multiplexer | 32 67 650x56 2

133

Table A.3: Experimental results (Estimates of energy consumption)

Predicted | Predicted | Predicted
Algorithm | Delay | function | external total
(major | energy | netenergy | energy
cycles) (1) (pd) (ped)
AR-FILTER | 7 21.00 30.90 51.90
AR-FILTER | 9 18.20 39.80 58.00
AR-FILTER | 18 17.70 75.90 93.60
DCT 8 37.00 110 147
DCT 20 44.70 279 323.70

Table A.4: Experimental results (Estimates of power consumption)

Delay | Predicted | PROMAN | % difference
Algorithm | (major | power power in power
cycles) | (mW) (mW)
AR-FILTER | 7 74.10 71,51 3.62
AR-FILTER | 9 64.40 59.46 8.31
AR-FILTER | 18 52.30 49.02 6.69
DCT 8 229 213 7.51
DCT 20 202 202 0

The 1-D DCT example is fairly large and has over 400 operations. Notice, that the
design that requires 20 major cycles consumes significantly more energy than the one re-
quiring 8 major cycles. Average power consumption in either case is comparable because
additional functional operators in the faster design are replaced by several multiplexers and
nets in the slower one. Figure A.5 shows how the estimates of function, interconnect, total
energy and average power vary with the execution delay over the entire design space of 72

feasible implementations of DCT.

x 107 X107

=z
-~

'
o

hy
o

Function energy (J)

5

n,/'\A 4

3
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Computation time (us) Computation time (us)

Interconnect energy (J)

(=]

=

x 10

o
o
w

£
ar
oy,
%)
&

Tolal energy (J)

[¥)
raj
o
n
L&)

(=]
= i

0.
1] 1000 2000 3000 4000 0 1000 2000 3000 4000
Computation time (us) Computation time (us)

Figure A.5: Estimated DCT energy/power

A.6 Conclusions

We have presented a comprehensive system-level energy/power predictor that explores
the vast design space prior to requiring the designer to make critical design choices. Re-
sults obtained are accurate yet the predictor is fast (In the 1-D DCT example, 72 distinct
feasible architectures were analyzed in 600 milliseconds). This is achieved mainly due to
statistical modeling of the target chip based only on the behavioral description of the task.
a simplified model of switching activity, information about total size and delay of func-
tional units, and predicted layout characteristics of the design. The FREEDOM predictor is
designed to provide rough guidance to a designer, so that the design space can be quickly
searched without producing unnecessary implementations which are far from the design
goals and constraints. Thus, during the synthesis steps, the designer is now able to control
the search space more efficiently such that circuits with desired cost, performance, bat-
tery life and thermal characteristics are synthesized. Results obtained from our predictor
could also be used to partition a single task over one or more chips. This method allows
us to associate transistor—level, technology and layout—dependent electrical characteristics
of the circuit directly with its behavior. Therefore, not only is our predictor accurate at the
behavioral-level, it can also be readily used with different technologies such as FPGA, by

simply changing the technology parameters embedded in BEST and in our power predictor.

135

A.7 Low power design and word-length selection

Observe from Equation (A.10) that the average length of external wires in the chip is pro-
portional to the height #, and width £ of functional resources. The energy consumption of
external nets is proportional to their average length as seen from Equations (A.11), (A.12),
and (A.13). Therefore, the power consumption of external nets is proportional to resource
word lengths because height and width of resources are proportional to their word lengths.
Moreover Equation (A.13) can directly model this relation if H, and £ are expressed as
functions of word lengths. Similarly, the number of constituent cells and the number of
internal nets are also proportional to word lengths of functional units. Then, from Equa-
tions (A.5), (A.6), (A.7), and (A.8) we state that energy /power consumption of resources
is proportional to their word lengths. The number of constituent cells and the number of
internal nets can be easily expressed in terms of in terms of word lengths. Now, Equa-
tion (A.8) can also be expressed as a function of word lengths. Finally, the expression for
po wer consumption of a chip can be written as a function of resource word lengths. Then,
word length selection can be used to minimize the energy/power function to obtain low

power, low energy designs.

Reference list

[1] D. Anguita and B.A. Gomes. Mixing floating— and fixed—point formats for neu-

ral network learning on neuroprocessors. Microprocessing and Microprogramming,
41:757-769, June 1996.

[2] G. Bohlender. What do we need beyond IEEE arithmetic? In C. Ullrich, editor,

Computer arithmetic and self-validating numerical methods, pages 1-32. Academic
Press, 1990.

[3] D. Brand and C. Visweswariah. Inaccuracies in power estimation during logic syn-

thesis. In Proc. European Design Automation Conference (EURO-DAC), pages 388—
394, November 1996.

[4] A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, University
of Alberta, Edmonton, 1981.

[5] K. Chang and W.G. Bliss. Finite word length effects of pipelined recursive digital
filters. IEEE Transactions on Signal Processing, 42:1983—-1995, August 1994.

[6] S. Chaudhuri and R.A. Walker. Computing lower bounds on functional units before
scheduling. In Proc. International Workshop on High—Level Synthesis, pages 3641,
1994.

[7] W.H. Chen, C.H. Smith, and S.C. Fralick. A fast computational algorithm for the
discrete cosine transform. [EEE Transactions on Communications, COM-25:1004—
1009, September 1977.

[8] C.M. Chu and J.M. Rabaey. Hardware selection and clustering in the HYPER syn-
thesis system. In Proc. European Conference on Design Automation (EDAC), pages
176180, 1992.

[9] B.Y. Chung, C. Chien, H. Samueli, and R. Jain. Performance analysis of an all-
digital BPSK direct sequence spread—spectrum IF receiver architecture. IEEE Jour-
nal on Selected Areas in Communications, 11:1096-1107, September 1993.

[10] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. McGraw
Hill Inc., 1991.

[11] G. De Micheli. Synthesis and optimization of digital circuits. McGraw Hill Inc.,
1994.

[12] M. Feuer. Connectivity of random logic. [EEE Transactions on Computers, C-
31(1):29-33, January 1982.

[13] M. Flynn. On division by functional iteration. IEEE Transactions on Computers,
19(8):702-706, August 1970.

[14] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of average switching

activity in combinational and sequential circuits. In Proc. ACM/IEEE Design Au-
tomation Conference, pages 253-259, 1992.

[15] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison—Wesley Pub. Co., 1989.

[16] A. Grzeszczak, M.K. Mandal, S. Panchanathan, and T. Yeap. VLSI implementation
of discrete wavelet transform. IEEE Transactions on VLSI Systems, 4(4):421-433,
December 1996.

[17] P. Gupta, C.T. Chen, J.C. DeSouza-Batista, and A.C. Parker. Experience with im-
age compression chip design using Unified System Construction tools. In Proc.
ACMV/IEEE Design Automation Conference, pages 250-256, June 1994.

[18] J.L.Holtand J-N. Hwang. Finite precision error analysis of neural network hardware
implementations. [EEE Transactions on Computers, 42(3):28 1-290, March 1993.

[19] Y. Hu, A. Ghouse, and B.S. Carlson. Lower bounds on the iteration time and the
number of resources for functional pipelined data flow graphs. In Proc. International
Conf. Computer Design (ICCD), pages 21-24, 1993.

[20] C. Huang, B. Zhang, A. Deng, and B. Swirski. The design and implementation of
PowerMill. In Proc. International Symposium on Low Power Design, pages 105—
110, 1995.

[21] R. Jain. MOSP: Module selection for pipelined designs with multi-cycle opera-
tions. In Proc. International Conf. Computer-Aided Design (ICCAD), pages 212~
215, 1990.

[22] R. Jain, A.C. Parker, and N. Park. Predicting system-level area and delay for
pipelined and nonpipelined designs. /[EEE Transactions on Computer-Aided Design,
11(8):955-965, August 1992.

[23] V.K.Jain, S.A. Wadekar, and L. Lin. Universal nonlinear component and its applica-
tion to WSI. IEEE Transactions on Components, Hybrids, and Manufacturing Tech-
nology, 16:656-664, November 1993.

138

[24] Y. Jang and S.P. Kim. Block digital filter structures and their finite precision re-
sponses. IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal
Processing, 43(7):495-506, July 1996.

[25] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, 1975.

[26] K. Kiiciikcakar. System-Level Synthesis Techniques with Emphasis on Partitioning
and Design Planning. PhD thesis, University of Southern California, Los Angeles,
CA, USA., 1991.

[27] V. Kantabutra. On hardware for computing exponential and trigonometric functions.
IEEE Transactions on Computers, 45(3):328-339, March 1996.

[28] D.W. Knapp. Fasolt: A program for feedback-driven data-path optimization. IEEE
Transactions on Computer-Aided Design, 11(6):677-695, June 1992.

[29] H. Kojima, D.J. Gorny, K. Nitta, and K. Sasaki. Power analysis of a programmable
DSP for architectural/program optimization. In Proc. IEEE Symposium on Low
Power Electronics, pages 26-27, 1995.

[30] K. Kota and J.R. Cavallaro. = Numerical accuracy and hardware tradeoffs for
CORDIC arithmetic for special-purpose processors. [EEE Transactions on Com-
puters, 42(7):769-779, July 1993,

[31] EJ. Kurdahi and A.C. Parker. Techniques for area estimation of VLSI layouts. /[EEE
Transactions on Computer-Aided Design, 8(1):81-92, January 1989.

[32] PE. Landman and J.M. Rabaey. Activity-sensitive architectural power analysis.
IEEE Transactions on Computer-Aided Design, 15(6):571-598, June 1996.

[33] C.H. Lee. M. Kawamata, and T. Higuchi. State—space approach to roundoff error
analysis of fractal image coding. IEICE Transactions on Fundamentals of Electron-
ics Communications and Computer Sciences, ESOA:159-165, January 1997.

[34] EL. Lewis. Optimal estimation with an introduction to stochastic control theory.
John Wiley & Sons, 1986.

[35] D.Liuand C. Svensson. Power consumption estimation in CMOS VLSI chips. IEEE
Journal of Solid-State Circuits, 29(6):663-670, June 1994.

[36] K. Liu, R.E. Skelton, and K. Grigoriadis. Optimal controllers for finite wordlength
implementation. [EEE Transactions on Automatic Control, 37(9):1294-1304,
September 1992.

[37] D. G. Luenberger. Introduction to linear and nonlinear programming. Addison—
Wesley Pub. Co., 1974.

139

[38] R. Marculescu, D. Marculescu, and M. Pedram. Switching activity analysis consid-

ering spatiotemporal correlations. In Proc. ACM/IEEE Design Automation Confer-
ence, pages 294-299, 1994,

[39] R.Mehraand J. Rabaey. Behavioral level power estimation and exploration. In Proc.
First International Workshop on Low Power Design, pages 197-202, April 1994,

[40] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer—Verlag, second, extended edition, 1994.

[41] D. Michelucci and J.-M. Moreau. Lazy arithmetic. IEEE Transactions on Comput-
ers, 46(9):961-975, September 1997.

[42] S.H. Mullins, W.W. Charlesworth, and D.C. Anderson. A new method for solving

mixed sets of equality and inequality constraints. Journal of Mechanical Design,
117:322-328, June 1995.

[43] ENN. Najm. Transition density, a stochastic measure of activity in digital circuits. In
Proc. ACM/IEEE Design Automation Conference, pages 644-649, 1991.

[44] S.Y. Ohm, FJ. Kurdahi, and N. Dutt. Comprehensive lower bound estimation from

behavioral descriptions. In Proc. International Conf. Computer-Aided Design (IC-
CAD), pages 182-186, 1994.

[45] N.Park and A.C. Parker. Sehwa: A software package for synthesis of pipelines from
behavioral specifications. IEEE Transactions on Computer-Aided Design, 7(3):356—
370, March 1988.

[46] P. Paulin and J. Knight. Force-directed scheduling for the behavioral synthesis of
ASIC’s. IEEE Transactions on Computer-Aided Design, CAD-8(6):661-679, July
1989.

[47] M. Potkonjak, K. Kim, and R. Karri. Methodology for behavioral synthesis-based
algorithm—-level design space exploration: Dct case study. In Proc. ACM/IEEE De-
sign Automation Conference, pages 252-257, June 1997.

[48] R. Salcedo, M.J. Gongalves, and S. Feyo De Azevedo. An improved random-
search algorithm for non-linear optimization. Computers and Chemical Engineer-
ing, 14:1111-1126, October 1990.

[49] J. Schaffer, R. Caruana, L. Eshelman, and R. Das. A study of control parameters af-
fecting online performance of genetic algorithms for function optimization. In Proc.
Third International Conf. on Genetic Algorithms, 1989.

[50] M.J. Schulte and E.E. Swartzlander, Jr. Hardware designs for exactly rounded ele-
mentary functions. IEEE Transactions on Computers, 43(8):964-973, August 1994.

140

[S1] M.J. Schulte and E.E. Swartzlander, Jr. A variable-precision, interval arithmetic pro-

cessor. Zeitschrift fur Angewandte Mathematik und Mechanik, 76, suppl. 1:527-528,
1996.

[52] A.B. Sesay and M. Patton. QR-decomposition decision feedback equalisation and
finite—precision results. IEEE Proceedings—F, 140(2):89-97, April 1993.

[53] N.R. Shanbhag and K.K Parhi. Finite—precision analysis of the pipelined ADPCM
coder. IEEE Transactions on Circuits and Systems — II: Analog and Digital Signal
Processing, 41(5):364-368, May 1994,

[54] D. Springer and D. Thomas. Exploiting the special structure of conflict and compat-
ibility graphs in high-level synthesis. In Proc. International Conf. Computer-Aided
Design (ICCAD), pages 254-259, 1990.

[55] D. Springer and D. Thomas. New methods for coloring and clique partitioning in
data path allocation. Integration-The VLSI Journal, 12:267-292, December 1991.

[56] C-L Su, C-Y Tsui, and A.M. Despain. Low power architecture design and compila-
tion techniques for high-performance processors. Technical Report 94-01, Computer
Engineering Division, EE-Systems, USC, Los Angeles, CA, 1994.

[57] W. Sung and Ki-II Kum. Simulation—-based word-length optimization method for
fixed—point digital signal processing systems. IEEE Transactions on Signal Process-
ing, 43(12):3087-3090, December 1995.

[58] A.G. Tsirukis and G.V. Reklaitis. Application of generalized Hopfield networks to

discrete nonlinear optimization problems. Computers and Chemical Engineering,
18:459-468, May 1994.

[59] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and
M. Yoshimoto. A 100-MHz 2-D discrete cosine transform core processor. [EEE
Journal of Solid-State Circuits, 27(4):492-499, April 1992.

[60] H. Vaishnav and M. Pedram. PCUBE: a performance driven placement algorithm for
low power design. In Proc. European Design Automation Conference (EURO-DAC),
pages 72-77, 1993.

[61] S. A. Wadekar and A. C. Parker. Accuracy sensitive word—length selection for algo-
rithm optimization. In Proc. International Conf. on Computer Design (ICCD), (1o
appear), October 1998.

[62] S. A. Wadekar, A.C. Parker, and C.P. Ravikumar. FREEDOM: Statistical behavioral
estimation of system energy and power. In Proc. Eleventh International Conference
on VLSI Design, pages 30-36, January 1998.

141

[63] W.E. Wong and E. Goto. Fast hardware-based algorithms for elementary func-

tion computations using rectangular multipliers. IEEE Transactions on Computers,
43(3):278-294, March 1994.

[64] II D. Yun and S. Uk. Lee. On the fixed—point error analysis of several fast IDCT
algorithms. [EEE Transactions on Circuits and Systems — II: Analog and Digital
Signal Processing, 42(11):685-693, November 1995.

[65] B.Zengand Y. Neuvo. Analysis of floating point roundoff errors using dummy mul-
tiplier coefficient sensitivities. IEEE Transactions on Circuits and Systems, 38:590—
601, June 1991.

142

