Benchmarking of HPC Systems

Dongsoo Kang, Henry W. Park, Jinwoo Suh,
Viktor K. Prasanna and Sharad N. Gavali

CENG 99-07

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213-740-4481)
September 1999

Benchmarking of HPC Systems *

Dongsoo Kang, Henry W. Park, Jinwoo Suh, Viktor K. Prasanna
Department of Electrical Engineering—Systems
University of Southern California
Los Angeles, CA 90089-2562
URL: http://ceng.usc.edu/ prasanna.html

and

Sharad N. Gavali
High Performance Processing, NAS System Division
NASA Ames Research Center, M/S 258-5
Moffett Field, CA 94035-1000

September 21, 1999

Abstract

High Performance Computing (HPC) platforms have gained widespread acceptance for meeting
the computational requirements of large-scale applications. To evaluate the performance of these
platforms, reasearchers have proposed various benchmarks. Some benchmarks attempt to measure
the peak performance of these platforms. They employ various optimizations and performance tun-
ing to deliver close-to-peak performance. These benchmarks showcase the full capability of the

*Work funded wholly by the DoD High Performance Computing Modernization Program CEWES Major Shared Re-
source Center through Programming Environment and Training (PET) supported by Contract Number DAHC 94-96-
C0002, and Subcontract Number NRC-CR-98-0002.

Disclaimer: Views, opinions, and/or findings contained in this report are those of the authors and should not be construed
as an official Department of Defense position, policy. or decision unless so designated by other official documentation.

products. However, for most users, these performance measures seem to be meaningless. For end-
users, the actual performance depends on a number of factors including the architecture and the com-
piler used. Other benchmarks attempt to measure the performance of these platforms with a set of
representative algorithms for a particular scientific domain. Although useful, these benchmarks do
not give the end-users a simple method for evaluating their algorithms and implementations.

We take a different view of benchmarking. Our benchmarks address the actual performance
available to end-users. The benchmarks allow the end-users to understand the machine character-
istics, the communication environment, and the compiler features of the underlying HPC platform
at a user level. Using the results of our benchmarks, we attain our goal to provide end-users with
a simple and accurate model of HPC platforms, including that of the software environment. Using
such a model, end-users will be able to analyze and predict the performance of a given algorithm.
This will allow algorithm designers to understand tradeoffs and make critical decisions to optimize
their code on a given HPC platform.

Our benchmarks provide the data and parameters necessary for the formulation of a model of
HPC platforms. In predicting the performance of algorithms on HPC platforms, we assert that the
key factor is accurate cost analysis of data access. Data may be communicated between memory
and processor, between processors, or between secondary storage and processor. The possible lo-
cations of the data can be thought of as a data hierarchy. From our benchmarks, we formulated the
Integrated Memory Hierarchy (IMH) model. The IMH model is a simple and accurate model that is
able to predict the performance of data communication along the storage hierarchy. To demonstrate
the accuracy and usefulness of the IMH model, we have used it to predict the performance of the
end-to-end program supplied to us by CEWES. We identified the major bottlenecks of the imple-
mentation and, using the IMH model, modified the parallelization of the code to improve scalability.
Our implementation has been ported to the IBM SP, SGI/Cray T3E, and Origin 2000.

(§]

Contents
1 Introduction

2 HPC Platforms

2.1 Architectural Classification« v v v v bbb e e e e e e
2.2 Example PIAOMNIS o o ws vv s @wm i miwmm wwmms o0 g0 s 588 802
221 IBMSP . . o ot e e e e e e e e e e e e e e
222 SGHCHAYTIE i v o i isaswmmmanns voms e o sss
223 SGI/CrayOrigin2000 oo v v v mor e s

3 Overview of Our Approach

4 Low-Level Benchmarks

4.1 Previous Approaches v v v v oo e e e
4.1.1 Low-Level Benchmarkso oo o oo oo
4.1.2 High-Level Benchmarkso oo oo oo e
42 OurBenchmarks« ¢ o v v v i e e e e e e
42.1 Processor-MEMOrY ¢ - v v v v v v v v o e e
422 Processor-ProCesSOr . . . v v v v v v v o o v o m o b e e e
423 Memory-Disk v i i i i i e e e e e
4.3 Implementation Results on HPC Platforms« oo v oo e e e
43.1 Processor-MEMOLY . . . o« ¢ v v v v v v v v v mm e e e
4372 ProceSsor-PrOCESSOT . . « v« « v o v v v o v o oo e o a e
433 Memory-Disko e e

5 Our Preliminary Model of HPC Platforms

5.1 PreviousModels o v bt o e e e e e e e e
5.1.1 Parallel Memory Hierarchy (PMH) Modelo o0
5.1.2 Two-Level Memory Modelo oo oo

5.2 Integrated Memory Hierarchy Modelo oo oo e e
52.1 Processor-MEmOTY . . .« v v v v v v v o v v o oo e
522 Processor-PrOCESSOT . . o v v v v v v v o v oo e e e e e e
523 Memory-Disko e i i
5.2.4 Integrated Memory Hierarchy Modelcove e o

5.3 Significance and Use of OurModel oo v oo e e

6 An lllustrative Example: Matrix Multiplication

1

15
15
15
15
16
17
18
21
24

26
28

31
31
31
32
33
33
36
39
40
42

6.1 Previous Algorithm
6.2 OQurAlgorithm

.........................

Parallelizing a Benchmark Application

7.1 Overviewofthe Code

7.2 Previous Implementation

7.2.1 Workload Distribution for Computation oo

7.2.2 Interprocessor Communication e e e e e e

7.3 Our Implementation
7.3.1 Load Balancing

.........................

7.3.2 Parallel Interprocessor Communication« ool

7.4 Communication Performance Prediction Using Our Model

Acknowlegement

Appendix I: Benchmark Codes

A.l1 Out-of-Cache Memory CommunicationCode« v oo v v v o v e

A.2 Permutation Communication Code

A.3 Pingpong Communication Code .

A4 Scatter Communication Code e i e e e e e e e e e e e

A.5 Broadcast Communication Code .

A6 DiskOperationCode cv v v i v et

Appendix Il: Detailed Results

Appendix lll: Modified Subroutines

C.1 OWNPL SUBIOULITIE . .« o o v v e e v e e e e e e et e e e e e e e s
C.2 UPDADD SUBIOULtINE v v v e e i v e e e e e e e e e e e e

C.3 UPDATE Subroutine

3]

47
47
49
49
51
51
52
52
57

58

62
62
67
70
73
76
79

81

1 Introduction

High Performance Computing (HPC) platforms composed of Commercial-Off-The-Shelf (COTS)
components have gained wide-spread acceptance for meeting the computational requirements of large-
scale applications. Many HPC platforms, such as the IBM SP, SGI/Cray T3E, and Origin 2000, are
available to the user community. Although many applications are being written and ported onto these
HPC platforms, there has been a lack of simple and useful benchmarks and models to aid in the de-
sign of algorithms from an end-user’s perspective. A useful model of HPC platforms should allow
users to predict the performance of a particular algorithm. This would allow algorithm designers to
understand tradeoffs and make critical decisions concerning them. The model should also be useful
to algorithm designers in tuning algorithm performance.

Various benchmarks have been proposed previously [2, 3]. However, they tend to fall into one of
two categories. In one, the benchmarks are too low level to be useful to the end-user. They attempt
to measure the peak performance of a given HPC platform. Often, the manufacturer's benchmarks
fall into this category. Through extensive optimizations and performance tuning, they present per-
formance measures that are close to peak performance. These benchmark results are impressive in
showcasing the full capability of their products. However, for most users, these performance mea-
sures are often meaningless. They do not give a realistic expected performance measurement for the
end-user. The actual performance depends on a number of factors, including the architecture and
the compiler used. In the second category, the benchmarks are very high level. The NAS Parallel
Benchmarks [3] fall into this category. The NAS Parallel Benchmarks are a set of representative
algorithms for a particular scientific domain. These benchmarks measure and compare the perfor-
mance of various HPC platforms. These benchmarks are useful in comparing the performance of a
particular algorithm on various platforms. However, the results are very difficult for the end-user to
apply directly to their own algorithms and codes. What the end-users need are benchmarks that fall
between these two extremes.

We take a different view of benchmarking. Our benchmarks address the actual performance
available to end-users. At a user level, the benchmarks allow the end-users to understand the ma-
chine characteristics, the communication environment, and the compiler features of the underlying
HPC platform. Using the results of our benchmarks, we attain our goal to provide end-users with a
simple and accurate model of HPC platforms, including that of the software environment. The model
seamlessly incorporates the various hardware features and compiler optimizations. Using the model,
end-users can analyze and predict the performance of a given algorithm. This allows the algorithm
designer to understand the tradeoffs, make critical decisions to optimize their code on a given HPC
platform, and keep the cost of parallelization low. Using the model, the designer can identify the
bottlenecks in the code. This allows the designer to tune the performance of the code after an ini-

tial algorithm design decision has been made. By iterating this procedure, the designer can create
efficient and scalable algorithms.

Our benchmarks provide the necessary data to design such a model of HPC platforms. In predict-
ing the performance of a particular algorithm design on a given HPC platform, we assert that the key
factor is accurate cost analysis of data access. The cost for communication of data is heavily affected
by the data location. The data may be physically located in the local memory, in a remote processor,
or on secondary storage such as a disk. The various possible data locations can be thought of as a
data hierarchy. Thus, data may be communicated between processor and memory, between proces-
sors or between secondary storage and the processor. The cost to access data increases dramatically
as the data moves down along the hierarchy. Our benchmarks measure the cost of accessing the data
along the hierarchy.

Accessing data in the memory has always been an important consideration in designing computer
architectures. The use of very fast cache memory is a well known technique that takes advantage of
both spatial and temporal data locality. Since the 1980s, the speed of processors has been increasing
dramatically. The speed improvement has been estimated between 50 percent to 100 percent per year.
However, the speed of memory devices has not enjoyed such phenomenal growth rates, estimated
at approximately 7 percent each year [14]. The large disparity in the growth rates of these two key
components in computing platforms has led to a widening gap between the performance of the com-
puting elements and the performance of the memory. This widening gap magnifies the importance of
data placement during computation. If the algorithm is not designed to supply the processing units
with data in a timely fashion, the large GFLOPs touted by the manufacturers become meaningless.
Our benchmarks and model of HPC platforms aid the application and algorithm designer in placing
the data in the processors to reduce the total aggregate cost of accessing the data from the memory
during an application’s execution.

In parallelizing large applications on HPC platforms using multiple processors, the cost of data
communication between processors is a critical factor that must be accurately predicted. Coarse
grain parallelization techniques that map the given data set onto multiple processors on HPC plat-
forms are often deployed to obtain scalable performance for large-scale applications. During the
execution of such applications, processors must exchange partial results in order to continue com-
putation. This makes the interconnection network for communication among the processors a criti-
cal component. Fortunately, vast improvements in the performance of the interconnection networks
have occured in the last few architecture generations. Many improvements come through improved
hardware that offer increased speeds. The main bottleneck in interprocessor communication today is
the operating system overhead. The actual hardware to move the data among the processors is quite
fast. Improvements in processor technology have resulted in significantly reducing the operating sys-
tem overhead. It is expected that the speed improvement in interconnection networks will out pace

4

that of memory subsystems. For example, the interconnection network bandwidth on the IBM SP2
improved from 28 Mbytes/sec to 100 Mbytes/sec in the IBM SPSC system. The 23 Mbytes/sec band-
width on the SGI/Cray T3D improved to 167 Mbytes/sec on the new SG/Cray T3E system. These
speeds closely rival those of memory subsystems. Given that most applications spend a majority of
their execution time in intra-processor computation and communication, this is very significant. Itis
conceivable that one can design an algorithm such that by increasing the amount of inter-processor
communication, one can significantly reduce the communication between the memory and processor.
Our benchmarks’ results and our model of HPC platforms allow the algorithm designer to accurately
predict the tradeoffs in increasing processor-processor communication in order to reduce the amount
of memory-processor communication.

There are many applications that address very large data sets. These applications occur in di-
verse areas such as large-scale scientific computations, database applications, multimedia systems,
information retrieval and data mining, visualization, among others. Although most HPC platforms
have large memories, they are often not large enough to hold the large data sets in memory. Such pro-
grams are called Out-of-Core programs. Although HPC platforms such as T3E and SP are already
able to provide GFLOPs of computational power, there have been significantly fewer improvements
in disk I/O performance. For large scale Out-of-Core applications, the bottleneck is disk access.
Our benchmarks and model allow algorithm designers to predict the performance of various access
schemes for disk I/O. In conjunction with the predicted cost of inter-processor communication and
memory access cost, algorithms that allow pre-fetching of data along the hierarchy can be designed.
By tuning the algorithm, one may hide much of the actual cost of moving the data up the hierarchy
by overlapping of computation and communication.

Using the results of our benchmarks, we formulated the Integrated Memory Hierarchy Model
(IMH Model). The IMH Model is a simple and accurate model that is able to predict the perfor-
mance of processor-memory, processor-processor, and secondary storage-processor communication.
To demonstrate its accuracy and usefulness, we used the IMH model to predict the performance of
a kernel operation, matrix multiplication, and an end-to-end benchmark program supplied to us by
CEWES. Starting with a simple algorithms, we predicted the performance of these generic algo-
rithms. Using the IMH Model to identify the bottlenecks, we then designed an efficient matrix mul-
tiplication algorithm. We accomplished this through several algorithmic techniques. The data access
pattern was modified through data reorganization and data placement techniques. This reduced the
cost of accessing data along the data hierarchy. Efficient schedules and data prefetching allowed
overlapping of computation and communication. Efficient mapping and load balancing of process-
ing elements yielded high utilization of all available processing node. The IMH Model allowed us to
predict the performance of various improvements before actual coding. This greatly augmented the

process of designing efficient and scalable algorithms. For the end-to-end program supplied to us

5

by CEWES, we identified the implementation bottleneck sections. Using the IMH model, we mod-
ified the code to improve scalability through load balancing and improved parallel interprocessor
communication.

The rest of the report is organized as follows. Section 2 introduces the architectural characteris-
tics of HPC platforms in general and the IBM SP, the SGI/Cray T3E, and the Origin 2000 in partic-
ular. Section 3 gives an overview of our approach to benchmarking HPC systems. Section 4 intro-
duces our benchmarks. We describe previous benchmarks for comparison. Section 5 defines the In-
tegrated Memory Hierarchy (IMH) Model. Section 6 presents the results of implementing our matrix
multiplication algorithm using the IMH Model. Section 7 describes the improvements made to FT.f
(an end-to-end application code supplied to us by CEWES) using our IMH Model and methodology.
Section 8 concludes the report. We have included the codes used to measure the various benchmarks
in Appendix I and the detailed results of our benchmarks in Appendix II. Appendix III includes the
modified portions of the FT.f code.

2 HPC Platforms

HPC platforms are typically composed of Commercial-Off-The-Shelf (COTS) components. COTS
allows flexibility in the design of the architecture and allows architecture designers to rapidly in-
corporate the latest trends and novel design techniques. To obtain high overall performance, many
manufactures have targeted the interconnection network, which is a bottleneck. In the past few years,
many HPC platforms have vastly improved the performance of interconnection networks.

There has been a large disparity in the growth of computational components as compared with
memory components. We feel that the memory structure is the next major bottleneck to obtaining
high performance on these HPC platforms. Indeed, most HPC platform architecture designers have
emphasized improving main memory peformance. Both hardware and software support have been
considered. Some efforts take advantage of the large improvements in semiconductor design and
integration, integrating the memory into the chip [10, 18, 22, 25]. Cache control support circuitry
and optimized compilers allow the user to control the use of cache memory explicitly [17]. These
efforts to improve the performance of communication between processor and memory acknowledge

that most current computational time is spent in processor-memory communication.

2.1 Architectural Classification

From an architectural and end-user’s view, the HPC platforms can be broadly classified into shared
memory and message passing machines. See Figure 1 for a comparison.

Currently, the dominant programming style for scientific computing and signal processing is
message passing. In this approach, the address space is local to each node, and accesses to remote
memory locations are through explicit message passing. The message passing style offers three key
advantages:

1. Explicit user level control of communication

0]

. Predictable performance due to controlled interprocessor communication

[8%]

. Systems that are relatively easy to build and that are compact

On the other hand, the market for message passing systems is relatively small. Various vendors of
large commercial market systems offer high performance shared memory systems as an alternative.
Such systems include database servers and various other forms of servers, transaction processing
systems, data warehouses, web-based applications, etc. These offer the end user, a single system
view of the available multiple nodes. Such systems offer three key advantages:

I. Reduced overall cost due to proliferation of such systems in the commercial market

2. A single system view that facilitates porting of legacy code

A/< HPC Platforms)
Vector Machines X

Shared Memory Machines

Message Passing Machines

Shared address space
Ease of programming -
compiler
Performance?

Scalability - limited to small
number of processors

High hardware cost

Remote access latency - low

Regular, cache friendly,
compiler friendly

Address space local to each
processor

Programming effort is needed

Performance tuning

Scalable over wide range

Low hardware cost
Remote access latency - high

Potential for broad class
of applications

IBM SP-2, Intel Paragon

"CRAY T3D/T3E

Workstation Clusters
ex. MYRINET

Figure 1: Comparison of shared memory and message passing machines.

3. Reduced remote memory access latencies leading to improved efficiency

The memory modules of shared memory systems can be either physically centralized (providing
uniform access latencies to all the processors) or distributed over a number of processor nodes. In
distributed shared memory systems, the access latency of remote memory modules is greater than
that of the local memory modules. The key hardware component of a distributed shared memory
system is an integrated memory system that provides access to local and remote memory. Such a
memory system results in faster access to remote memory compared with message passing systems.

We now describe three example platforms: IBM SP, SGI/Cray T3E, and SGI Origin 2000.

2.2 Example Platforms
221 IBMSP

The most recent IBM SP platform uses a Power 2 Super Chip (P2SC) microprocessor. The chip
consists of an Instruction Cache Unit (ICU), a Data Cache Unit (DCU), a Dual Floating Point Units
(FPUs), a Dual Fixed Point Units (FXUs), and a Storage Control Unit. Since there are six processing
units, the P2SC can issue up to six instructions in each clock cycle.

There are 54 physical registers. The number of registers defined by the architecture is only 32.
The extra registers (54-32=22 registers) are used for register renaming which reduces the communi-
cation between the processor-cache.

Each FPU has a floating-point execution unit. The FPU can perform multiply-add instructions.
Thus, each FPU can initiate two operations (multiply and add) each cycle. Since the clock speed of
the SP installed at CEWES is 135 MHz, the peak MFLOPs of the SP at CEWES is 135 MHz x 2
(operations) x2 (units) = 540 MFLOPS.

There are two types of FXUs. Both FXUs can issue add and logic instructions concurrently.
However, only one of the FXUs contain a multiply/division logic. Therefore, only one of the two
FXU units is able to issue multiply or division instructions.

The size of the ICU is 32KB and the DCU is 64 to 256 KB. The DCU uses four-way set asso-
ciative dual ported caches. It can be configured either as a 256KB with na 8-word memory bus or
128KB with a 4-word memory bus. There is no secondary cache.

The peak memory bandwidthis 2.1 GB/sec. However, the manu facturer-supplied sustained mem-
ory bandwidth is 910 MB/sec. The data access times for different hierarchies are as follows:

e Register: 0 clocks

e Cache: 1 clock

e Cache miss: 18 clocks
e TLB miss: 36-56 clocks

e Page Fault: > 100,000 clocks

The nodes of SP are interconnected by a bidirectional Multistage Interconnection Network (MIN).
Since the communication between any pair of processors needs the same number of hops, the dis-
tances between any pair of processors is the same. Further, the network allows any-to-any inter-
connection. The network is a packet-switched network. A peak bi-directional bandwidth of up to
150MB/sec is supported on the newer machines. The message latency without software overhead is
500 nsec to 875 nsec. However, the latency that is observed at the user level is much higher (tens of
[LSEC).

DEC ALPHA {1

y Memory
21164

Banks

Figure 2: Block diagram of SGI/Cray T3E node

222 SGI/Cray T3E

The SGI/Cray T3E series is the second generation of scalable parallel processing systems from Cray
Research builtaround COTS processors. The SGI/Cray T3E series is based on the DEC Alpha21164
microprocessors with clock speeds ranging from 300 MHz to 600 MHz. The system logic runs at
75 MHz. The interconnection network is a 3-D torus that provides scalability of the system. Up to
2048 nodes can be configured in a single system. Each node of a SGI/Cray T3E system contains a
processor, support circuitry, local memory, and a network router. A block diagram of a SGI/Cray
T3E node is shown is Figure 2.

The DEC Alpha 21164 microprocessor can issue up to four instructions per clock period. The
four concurrent instruction pipelines consist of:

e FA: floating-point add pipeline

e FM: floating-point multiply pipeline

e EO: first integer pipeline, also executes loads and stores
¢ E1: second integer pipeline, also executes loads

The two floating point pipelines allow a peak performance of 600 MFlops/sec to 1200 MFlops/sec,
depending on the speed of the microprocessor.

Each processor contains an 8 KB direct-mapped instruction cache (Icache), an 8 KB direct-mapped
data cache (Dcache), and a 96 KB, 3 way set associative, write-back. write-allocate secondary cache

10

(Scache). The Dcache cache line is 32 bytes while the Scache cache line is 64 bytes. The local mem-
ory is controlled by a set of four memory controller chips, directly controlling eight physical banks
of DRAM. Each bank is organized into 64-bit words. The 64 bytes of Scache cacheline is spread
across the eight banks with each bank containing 8 bytes. There is a 32-bit path on each of the chan-
nels between the memory controller and memory banks. This allows a theoretical maximum of 4
channels x 32 bits per channel x 75 MHz = 1.2 GBytes/sec possible bandwidth. The sustainable
maximum is 80% of peak or 960 MBytes/sec. The memory bandwidth is enhanced by six stream
buffers. Each stream buffer can store up to two 64-byte Scache lines. These buffers automatically
detect consecutive references to memory locations and prefetch data.

The SGI/Cray T3E processing elements (PE) are connected by a high-speed, low-latency 3-D
torus interconnection network. It is capable of peak interprocessor transfer rates of 500 MBytes/sec
in each direction and up to to 122 GBytes/sec of payload bisection bandwidth. The network oper-
ates asynchronously and independently of the PEs. Each node contains a network router. which is
a crossbar switch connecting a PE port, an /O port, and six network channels (one for each dimen-
sion and direction). Thus, the network router can operate bidirectionally in each dimension and can
handle data transfers of up to 3.6 GBytes/sec. Routing can be both deterministic ordered routing or
adaptive routing to avoid hot-spots and network contentions.

The IO subsystem consists of a number of input/output nodes connnected by the high-speed Gi-
gaRing I/0 channel. The GigaRing channel is a dual-ring design with data in the two rings traveling
in opposite directions. This delivers high I/O data bandwidth, enhances reliability, and allows com-
munication to occur along the shortest path. The /O channels are integrated into the 3-D torus net-
work, giving a single system image of /O services. The I/O subsystem is able to scale with demand.
A maximum of 16 GigaRing channels are available on air-cooled systems while up to 128 GigaRing
channels are available for liquid-cooled systems. Each channel has a full duplex data bandwidth of
up to 500 MBytes/sec to each T3E system interface.

2.2.3 SGI/Cray Origin 2000

The SGI/Cray Origin 2000 is based on the R10000 microprocessor from MIPS Technologies. Cur-
rently, 180 MHz and 195 MHz systems are available. The R10000 processor is a 4-way superscalar
architecture. The microprocessor contains two primary floating point units (adder and multiplier).
Both addition and muliplication require two clock cycles but can be pipelined for a 1-cycle repeat
rate. In addition, there are two secondary floating point units for divide and square root. These sec-
ondary units are not pipelined. Therefore, the peak MFLOPs is twice that of the clock speed.

The Origin 2000 is a follow-up to the previous Challenge-class systems, that attempt to address
the scalability isssue. Instead of a bus architecture as in the Challenge series, the Origin 2000 uses

11

crossbar switches to connect the nodes. This allows multiple data paths and increases the system’s
scalability.

R10000 R10000

Figure 3: Block diagram of SGI/Cray Origin 2000 node

Each node in a Origin 2000 system consists of one or two processors, local memory, and a hub.
Figure 3 shows a block diagram of a single Origin 2000 node. The system is scaled by combining
these nodes into a multiple node system using routers to connect the nodes. Anexample Origin 2000
system with 16 nodes is shown in Figure 4. The routers are connected in a binary n-cube, or a hy-
percube network. Each router has six ports for interconnection networking. This allows up to 128
nodes to be configured in a single system using the hypercube network. Memory is organized using
the SGI/Cray cache coherent non-uniform memory access (ccNUMA) architecture. All the memory
in the Origin 2000 is organized into a single global address space. Thus, memory is shared among all
processing elements. Data is accessed through the hub and the routers. The access time to memory
is not uniform. It varies, depending on how far away the data is from the node accessing the data.

12

Figure 4: Block diagram of SGI/Cray Origin 2000 System

3 Overview of Our Approach

Current state-of-the-art HPC platforms are largely dominated by Message Passing Systems such as
the IBM SP and Shared Memory Systems such as the SGI/Cray Origin 2000. Some hybrid systems
such as the SGI/Cray T3E attempt to provide features of both types of architectures by including mes-
sage passing capabilities and a globally shared address space. In using these HPC platforms, there
are layers of interface to the actual hardware. These include the operating system, compilers, library
codes for computation and communication such as ScaLAPACK [30], PBLAS [29], MPI [27], etc.,
and other support utilities. It is not possible for the end-user to modify the structure of the under-
lying hardware and software architecture such as the cache policy or the routing algorithm of the
interconnection network. Our objective is to benchmark and model the above HPC platforms from
a end-user’s perspective. Our efforts will help users understand machine characteristics, the com-
munication environment. and the compiler features.

13

End-to-End
Benchmark Program

M!.:ésage.l‘assin‘g.;
System .
+

Shared Memory
System

Figure 5: Overview of our approach

Figure 5 shows a high level view of our approach. We first define a set of benchmarks to mea-
sure the key parameters of HPC platforms. The architectural features, communication environment,
and compiler features are encompassed into these parameters. The parameters should be simple yet
accurate in defining and modeling the given HPC platform. We then implement the benchmarks on
several state-of-the-art HPC platforms that include both message passing and shared memory archi-
tectures. Using the results of the benchmarks, and the key parameters obtained, we define a model
of HPC platforms. The model will aid end-users in predicting and analyzing the performance of
their algorithms. The algorithm designer will be able to analyze tradeoffs and make decisions for
optimizing the algorithm on a given HPC platform, while minimizing parallelization costs. To ver-
ify the correctness and usefulness of our model, we analyse and predict the performance of several
parallel algorithms, including an end-to-end program supplied from CEWES. Using our model, we
enhance the performance of the given algorithm by predicting, identifying, and improving the bot-
tleneck sections of the given code. Finally, we implement our improved algorithm using C and MPL
By measuring the actual performance of the implemented code, we verify the success of our model
and methodology.

14

4 Low-Level Benchmarks

In this section, we first introduce previous benchmarks. Then, we present our benchmarks and their
implementation results. We performed experiments on the IBM SP, SGI/Cray T3E, and SGI Origin
2000 systems.

4.1 Previous Approaches

Previous approaches to benchmarking can be classified as low-level and high-level benchmarks.
They are briefly described.

4.1.1 Low-Level Benchmarks

Low level benchmark results are usually supplied by hardware manufacturers. Since they fully un-
derstand the architecture of the platform and behavior of the compiler, it is possible for them to obtain
maximum optimization and fine performance tuning. Also, it is possible to execute programs under
controlled environments. In these environments, one can avoid any potential actions that can aggra-
vate the performance. Thus, the performance metrics obtained in these environments are close to the
peak performance.

Supplied by the manufacturers, these metrics are not that useful to end-users. For most users, it
is unlikely that their applications will run in the ideal environment in which low-level benchmark re-
sults were obtained. Also, usually the users do not have an in-depth understanding of all the details
of the platforms and compilers that can be used to optimize application code. Moreover, in many
real-life applications, the instruction mix makes it impossible to obtain high utilization of the avail-
able hardware resources. Therefore, the sustained performance of a platform is much lower than the
performance metrics manufacturers provide. Thus, a machine with better performance with respect
to these low-level metrics does not necessarily show better performance in real-life applications.

4.1.2 High-Level Benchmarks

4.1.2.1 Synthetic Benchmarks Another approach to the measurement of the computing perfor-
mance is synthetic benchmarks. These include Whetstone and Dhrystone benchmarks [7, 35]. In
these benchmarks, many computation modules are included based on the frequency of each module
in sampled applications to represent real applications. However, since these benchmarks are syn-
thetic, in many aspects, there are differences between them and the real applications, such as in-
struction mix, instruction sequence, and data access patterns. Thus, the performance obtained using
these benchmarks does not always represent performance in real applications.

Another drawback of this approach is that compilers can easily optimize these benchmarks. For

15

example, some compilers remove unnecessary program portions if the calculated result of the por-
tion is not used as input for another operation. Since outputs from many portions of the synthetic
benchmarks are not used, these portions are not compiled and, thus, these portions do not contribute
to the overall execution time. Therefore, these benchmarks can obtain much higher performance
results than the actual performance.

4.1.2.2 Kernel Benchmarks and Compact Application Benchmarks To avoid the problems of
synthetic benchmarks, some kernel benchmarks have been proposed. Many benchmarks fall in this
category. Some examples are the Linpack benchmark [9], the Livermore benchmark [21], and part
of the MITRE benchmark [13]. However, these kernel benchmarks often overstate the performance
of the real applications [26].

To obtain results even closer to real applications, compact application benchmarks have also been
proposed. In these, small real applications are used. These include SPEC [32] and NAS benchmarks
[3]. These benchmarks may provide some useful information to assess platforms for similar appli-
cation areas.

However, from the a user’s perspective, these benchmark results can only be used to determine
the relative speed of machines. Unless the same program is used, it is very difficult to use these results
to predict user’s code execution time. For design and analysis of algorithms, users need metrics that
can be used for performance prediction.

4.2 Our Benchmarks

To address the lack of useful metrics to predict and analyze performance of algorithms, we define
low-level benchmarks that can be used to predict performance and execution times of an algorithm
and the program code.

In achieving high efficiency and scalable performance on HPC platforms, there are two key chal-
lenges. Most applications consist of interleaved sections of computation and data I/O or data commu-
nication. The performance of the computation section largely depends on the underlying hardware
platform and the algorithm design. Efficient algorithms reduce the complexity of the computation.
This reduces the total amount of execution time needed to complete the desired operation. The per-
formance of data communication depends on the speed and architecture of the memory subsystem
and the data access pattern. Efficient placement of data in the memory hierarchy can significantly
reduce data access time. Given these characteristics, a logical set of benchmarks for measuring the
performance of HPC platforms includes the computation performance of the functional units and the
communication performance of the memory hierarchy.

We first identify three main costs in HPC computing environments: processor-memory, processor-
processor, and processor-disk data movement costs. The processor-processor and processor-disk

16

costs involve only communication cost. However, the processor-memory cost consists of computa-
tion cost and communication cost between processor and memory. Our benchmark measures these
three main costs.

4.2.1 Processor-Memory

In measuring the performance of the processor-memory hierarchy, we note two distinct performance
categories. These are out-of-cache performance and in-cache performance. For out-of-cache oper-
ations, the dominating cost is moving data from memory to cache. The cost of the actual operation
performed, after the data is placed in cache memory, is relatively small and negligible compared with
the data transfer cost. For in-cache operations, data access time is very small. In this situation, the
cost of the actual operation performed can be significant. For correct measurement in both situations,
we defined and measured two distinct benchmark categories.

To measure the performance of out-of-cache operations, we first identified two key parameters
that affect performance of the memory to the cache bandwidth. In the simplest scenario, data is
brought into cache in stride 1. In this case, the number of cache lines brought into the cache is pro-
portional only to the data size. However, often data is accessed in a stride other than 1. When the
same number of elements are accessed in a stride other than 1, the total number of cache lines brought
into the cache increases in proportion to the stride. Therefore, the size of the data and the stride in
which the data is accessed are the two key parameters that affect the performance of the memory to
the cache data transfer bandwidth.

Figure 6 shows the pseudo-code of our benchmark program. For each data set with N elements,
the performance is measured for accessing the data from stride = 1 to stride = S. During the
measurement of each stride, an N x S sized array is allocated. An N x S sized array is necessary to
access N elements in stride S. First, the cache is flushed with dummy data. This assures that when
the actual data is accessed, each new cache line brought into the cache creates a cache miss. Data is
then accessed using various strides. In between the measurement for each stride, the cache is once
again flushed to assure accurate measurement. This procedure repeats for various data sizes.

The type of operation issued affects the performance of in-cache operations. The cache memory-
to-processor bandwidth is very high and therefore does not dominate the cost of the actual operation
performed. Stride is also irrelevant for in-cache operations, since all the data is already in cache.
Other important factors are the size of the data and the operation performed.

Figure 7 shows the pseudo-code for our benchmark program to measure the performance of in-
cache operations. Data is first brought into the cache from memory. Then, for 1 iterations, the V
elements are accessed and the candidate operation is performed. By repeating the loop for i itera-
tions. the overhead cost to measure the time is amortized over the 2 iterations. By setting ¢ to be very

17

for each data set of N elements
for each stride S
Allocate N*S memory space for data;
Initialize data for given stride S;
Flush cache with dummy data;
Start timer;
for each N elements
Perform operation to be measured;
End timer
Print out the measured time for operation;

Figure 6: Pseudo-code for out-of-cache processor-memory communication

large, the overhead cost is made insignificant.

4.2.2 Processor-Processor

Most previous benchmarks for processor-processor communication measured the pingpong commu-
nication between two processors. However, in large-scale algorithms, many other types of commu-
nication pattern occur frequently. Thus, the performance of the pingpong operation may not be suf-
ficient for one’s understanding the overall performance of communication operations. Therefore, it
is necessary to measure the communication performance of other basic communication primitives.
MPBench [23] includes a set of communication primitives. Our processor-processor communication
benchmark suites are based on the MPBench. However, we modified the benchmark as follows.

In our benchmark, we added permutation communication. Permutation communication is fre-
quently used to achieve maximum utilization of the available bandwidth. We found that the com-
munication parameters such as startup cost and bandwidth can be estimated more accurately from
the permutation communication results, compared with the pingpong communication results.

Also, we extended the MPBench to include more processors. We perform pingpong communi-
cation on 8 and 16 processors because, in many cases, the pingpong operation is performed on pairs
of processors in HPC platforms. A detailed explanation is given in each benchmark section.

Thus, our benchmarks measure communication performance in user aspects. The benchmarks
also include every possible software overhead that occurs in user application. Therefore, our bench-
mark results are useful to the end-users.

Our benchmark suite consists of four communication operations:

e Permutation

for each data set of N elements

Allocate memory
Initialize data
Flush cache with data
Start timer
for i number of iterations

for each N elements

Perform operation to be measured

End timer
Print out the measured time for operation

Figure 7: Pseudo-code for in-cache processor-memory communication

e Pingpong
e Scatter

e Broadcast

4221 Permutation Communication Inthe permutation communication operation, a set of pro-
cessors is involved in communication. Each processor in the set sends datatoa destination processor
and receives data from a source processor. The permutation communication occurs in many paral-
lel communications. For example, an all-to-all communication algorithm consists of a number of
steps of permutation communication. Also, it can be considered as a general communication pat-
tern on HPC communications because many other communications can be implemented using the
permutation communication. Thus, the permutation communication is one of the most important
communication patterns on HPC platforms. Therefore, the permutation communication is included
in our benchmark suites.

In Figure 8, the code for performing a permutation is shown. Each processor first issues a non-
blocking receive command which lets processors proceed without waiting for an incoming message.
Then, each processor issues a send command (see Figure 8) which lets each processor start send-
ing data. When the data arrives at a destination processor, the processor can receive data due to the
non-blocking receive command issued before. Thus, the processors communicate altogether. In our
experiments, we measured the total communication time as a function of the message size and the
difference in the processors’ ID.

for (dist = 1; dist < Number_of_processors/2; dist *= 2)
for (msg_size=1l; msg_size <16 Mbytes; msg_size *=2)
Start timer;
Post Non-blocking receive from processor
((my_id + dist) MOD Number_of_processor) ;
Blocking send to processor
((my_id - dist) MOD Number of_ processor) ;
End timer;

Figure 8: Pseudo-code for permutation communication

for (src = 0; src < Number_of_processors; SIrc++)

for (dst = src+l; dst < Number_of_processors; dst++)

for (msg_size=1; msg_size <16 Mbytes; msg_size *=2)
Start timer;
Processor (src) sends data to Processor (dst);
Processor (dst) receives data from Processor (src);
Processor (dst) sends the received data to Processor (src);
Processor (src) receives data from the Processor (dst);
End timer;

Figure 9: Pseudo-code for pingpong communication

4.2.2.2 Pingpong Communication In pingpong operation, the total time for a message to travel
to another processor and return to the original processor is measured. Since this time has been used to
assess many other platforms, this measurement gives a good metric to compare the targeted platforms
with previous HPC platforms.

In Figure 9, the code for measuring pingpong communication time is shown. In each iteration,
a couple of processors are paired and pingpong communication is performed. The first processor
(source) sends data to the second processor (destination). The destination processor waits for the
message. When it arrives, the destination processor returns the message to the source processor. To
avoid confusion, we report the total pingpong time rather than the half pingpong time. In our exper-
iments, we measured the pingpong communication time as a function of the message size commu-

nicated between each pair.

20

for (src = 0; src < Number_ of_ processors; src++)
for (msg_size=1l; msg_size <16 Mbytes; msg_size *=2)
Start timer;
if (my_id == src)
send message to other processors;
else

receive message from the source processor;
End timer;

Figure 10: Pseudo-code for scatter communication

4223 Scatter Communication In scatter operation, there are one source processor and /V des-
tination processors. The source processor has /N data blocks, Do, D1, ... Dn—-1. A data block, D;
is sent to ¢-th destination processor during the scatter communication. This is also a frequently used
communication primitive. For example, when a root processor has data and needs to distribute the
data to other processors to improve parallelism, this operation is used. Also, it is the reverse of the
gather communication in which N processors send data to a root processor.

In Figure 10, the code for scattering communication is shown. In our experiments, we measured
the total communication time as a function of the message size. Also, we measured the communi-
cation time for each source processor.

42.2.4 Broadcast Communication In broadcast operation, there are one source processor and
N destination processors as in scatter operation. However, unlike the scatter operation, the same
message is sent to all destination processors. This operation is used when the same data is necessary
in all processors.

In Figure 11, the code for broadcast is shown. In our experiments, we measured the total com-
munication time as a function of the message size. Also, we measured the communication time for
each source processor: the broadcast communication is performed N times, and in the i-th broadcast

communication, P; (0 < i € N — 1), is chosen as the root processor.

4.2.3 Memory-Disk

Memory-disk operation is critical for out-of-core algorithms in which the data is larger than the avail-
able memory. The extra data that cannot be stored in the memory must be stored in a disk. Thus, data
swapping is required which incurs memory-disk communication.

21

for (src = 0; src < Number_of_processors; Src++)
for (msg_size=1l; msg_size <16 Mbytes; msg_size *=2)
Start timer;
if (my_did == stc)
Send message to other processors;
else
Receive message from the source processor;
End timer;

Figure 11: Pseudo-code for broadcast communication

There are two types of memory-disk communications: write-to-disk and read-from-disk com-
munications. Write-to-disk operation involves three steps:

1. Check whether the pages that include the data are in the main memory.
2. If the page is not in the main memory, move the page from the disk to the memory.

3. Move data to the disk. The data is moved from user space to a library buffer, next to a disk
buffer, and then to a physical hard disk.

If the data size is small, the user program can continue its operation without waiting for the comple-
tion of all three steps because the data is stored in a buffer. However, if the data size is larger than the
minimum of these buffer sizes, then the user program must wait until all operations are completed.
In our benchmarks, to measure the performance over a wide range of data sizes, the message size is
increased to the maximum size allowed by the run-time environment.

In read operation, step 3 in the above write sequence is not necessary. Since the read operation
takes a fewer number of steps, it takes less time than the write operation.

Since there is a large difference in the cost between read and write operations, we measured the
two operation costs separately. To measure the memory-disk cost, we measured the communication
time between the memory and the disk as a function of data size. The codes are shown in Figure 12
and Figure 13.

In the read operation, the buffer is cleaned before every read operation to force the read operation.
Otherwise, the compiler may optimize the code so that the next iteration starts reading from the next
portion of data since the first portion is already in the main memory. Also, in the write operation,
for the same reason, the buffer is filled with dummy data. Then,, the compiler cannot avoid writing

data that was written in the previous iteration. Finally, a file is opened and the time for read or write

22

for (msg_size = step_size; msg_size < 16 MB;
msg_size +=step_size)

Clean buffer;

Open a file;

Start timer;

Read data from a file to the buffer;
Stop timer;

Figure 12: Pseudo-code for disk read

for (msg_size = step_size; msg_size < 16 MB;
msg_size +=step_size)

Save random data into buffer;

Open a file;

Start timer;

Write data in the buffer to a file;
Stop timer;

Figure 13: Pseudo-code for disk write

operation is measured.

Cache

Processor

Cache

Interconnection
Network
Network

Interface ® e @ o

Network
[nterface

Memory Memory

Figure 14: A typical HPC platform

4.3 Implementation Results on HPC Platforms

The benchmarks described in the previous section were implemented on several HPC platforms. A
typical HPC platform is shown in Figure 14. Each processing node contains a processor, cache,
memory, and a network interface.

The platforms on which the benchmarks were implemented were the IBM SP, the SGL/Cray T3E,
and the SGI Origin 2000 installed at the Department of Defense (DoD) High Performance Comput-
ing Major Shared Resource Center, U.S. Army Corps of Engineers Waterways Experiment Station
(CEWES MSRC). At the time of execution our benchmarks, the environments of these platforms
were as follows:

e IBM SP

- OS:IBM AIX v.4.1.5.x
— Compiler: IBM C compiler v.3.1.4.0
— MPI: IBM Parallel Operating Environment for AIX software v.2.1.0.24

e SGI/Cray T3E

— 0OS: SGI/Cray UNICOS/mk v.2.0.3.14
— Compiler: SGI/Cray C Compiler v.6.0.2.0
— MPI: SGI/Cray MPI (Message Passing Toolkit - MPI) v.1.2.0.1

e SGI Origin 2000

— OS: IRIX v.6.4
— Compiler: SGI C Compiler v.7.2
— MPI: SGI MPI (Message Passing Toolkit - MPI) v.3.0

24

4.3.1 Processor-Memory

The experimental results for processor-memory communication on the IBM SP are shown in Fig-
ures 45 - 56 in Appendix B. Figures 45 through 47 show the performance of the READ operation.
Figures 48 through 50 show the performance of the WRITE operation. Figures 51 through 53 show
the performance of the MULTIPLY operation. Figures 54 through 56 show the performance of the
DIVIDE operation. Within each operation type, a seperate experiment was conducted for various
data types (Integer, Single, Double). For example, Figure 45 shows Integer Read Operation, Figure
46 shows Single Read Operation, Figure 47 shows Double Read Operation, and so forth. Within
each figure, part (a) shows the execution time while part (b) compares the execution time as the size
of the total number of elements is increased by 512 in each iteration.

The results for the out-of-cache operations show the importance of two key parameters: the num-
ber of elements (V) and stride (S). The actual computational operation performed is not significant
for most operations. The results for the in-cache operations show the significance of the type of op-
eration performed.

For out-of-cache operations, two key factors determine the cost of memory-to-cache communi-
cation performance. The results in Figures 45 to Figures 56, part (), show that for the basis stride
of 1, the cost of communication increases linearly as /N, the number of elements, increases. The fig-
ures show the costs of accessing [V elements of various data types and performing READ, WRITE,
MULTIPLY and DIVIDE operations on them. As it can be seen, the cost of the actual operation
performed is not the dominating factor.

These figures also show the results of changing the stride in which the data is accessed. As stride
S increases, the total data accessed increases linearly. As was explained previously in Section 4.2.1,
in order to access NV elements with stride S, the dataset must have N x S elements. Since data is
brought into the cache in cache line blocks, the total size of the data brought into the cache affects the
total cost of memory to cache communication performance. However, once the stride, S, is larger
than the size of the cache line, the actual amount of data brought into the cache does not change
because access to each element causes a cache miss to occur.

The difference in the cost of accessing N elements with N x ¢ (1 < ¢ < 10) elements with various
strides is shown in Figure 45(b) to Figure 56(b). There is little variation to access an additional 512
elements. even when the total number of elements accessed is very large. The graph, in effect, shows
the cost of accessing additional cache lines as stride S is increased. The slope tapers off after stride S
becomes greater than the cache line size. This is expected since there is no difference in the number

of cache lines brought into cache for S > cache line size.

25

4.3.2 Processor-Processor

The processor-processor communication has been measured using the four communication primi-
tives as described in Section 4.2.2 : permutation, pingpong, scatter, and broadcast. The implemen-
tation was performed using C and MPL The experimental results are presented here.

4.32.1 Permutation Operation The experimental results on the SP, the T3E, and the O2K are
shown in Figure 57 to 62 (See Appendix B). The results on the T3E and the O2K show that the com-
munication time depends on the distance between processors. However, the SP results show that
communication time is independent of the distance between processors. The reason is that the SP
uses a Multi-Stage Interconnection Network (MIN) which provides the same low-level communica-
tion distance between any pair of processors. The T3E uses 3-D torus, and the O2K uses hierarchical
hypercube; hence, the low-level distances between processors are not the same.

The more important reason for the difference in execution time is a link contention arbitration. As
the pingpong operation results show (in Section 4.3.2.2), the low-level distance does not cause much
difference in the communication time. Thus, we conclude that the ability of the operating system to
arbitrate the link contention plays an important role in the observed difference in the execution times.

The communication time as a function of the message size shows that time is almost a linear
function when the data size is large. As the message size doubles, the communication time also dou-
bles. However, when the message size is small, the communication time increases by only a small
amount.

From these results, the startup time and bandwidth/processor are obtained. The parameters are
summarized in Table 1.

Table 1: Startup Time and Bandwidth

Platform | Startup Time (pusec) | Bandwidth (MB/sec/processor)
SP 54 50
T3E 29 100
02K 85 15

The experimental results indicate that communication time on the T3E shows the best perfor-
mance. This is due to the high performance network implemented on the T3E.

4.3.2.2 Pingpong Operation Theexperimental results on the SP, the T3E, and the O2K are shown
in Figures 63 to 68 (See Appendix B). The results of the pingpong communication are different from

26

100.0

80.0
G
[+1]
5 600+
€ %
'_.
(=1
2 400
=}
w

20.0 +

0.0

SP2 T3E 02K
Platforms

Figure 15: Startup Time

those of the permutation communication; Both the SP and the T3E results do not depend on the
processor-1Ds, while the results on the O2K shows a little variation.

The reason for the same communication time on the SP and T3E is the same as explained for the
permutation results: the interconnection network is a MIN in which the distance between any pair
of processors is the same.

On the T3E, the interconnection network is a 3-D torus. Thus, the distances between pairs of
processors are not the same. However, our results show that actual communication time does not
depend on physical distance. This shows that the cost difference caused by different physical dis-
tance is insignificant compared with the overhead incurred by other factors such as the software.

On the O2K. the interconnection network is a hierarchical hypercube. Thus, the distance be-
tween various processors is not the same. Also, the communication time between a pair of proces-
sors that are connected via one hub (does not need the interconnection fabric) takes less time than
the communication time between a pair of processors that are connected via more than one hub and
the interconnection fabric.

Also, we found that the pingpong operation shows “pipelined communication.” When a source
processor starts communication, the destination processor starts receiving a message. Then, the des-
tination processor starts sending the data back to the source processor even before it finishes receiv-
ing the entire message from the source.

In pingpong experiments, the T3E shows the best performance because of better interconnection
network hardware as described in Section 4.3.2.1.

27

150.0 T T T 1

100.0 + 1

50.0 J

Bandwidth (MBytes/sec/processor)

0.0 - &\\

SP2 T3E 02K
Platforms

Figure 16: Bandwidth

4323 Scatter Communication The experimental results on the SP, T3E, and the O2K are shown
in Figure 69 to 74 (See Appendix B). The scatter communication results are similar to the pingpong
communication results: The communication time does not depend on the distance between proces-
SOTS.

The results show that the T3E shows the best performance because of superior hardware inter-

connection network.

432.4 Broadcast Communication The experimental results on the SP, T3E, and the O2K are
shown in Figure 75 to 80 (See Appendix B). The broadcast communication results are similar to per-
mutation communication results: the communication time on the T3E depends on the root processor
when the number of processors is 16. Similar results were obtained when the number of processors
was larger than 16. We conclude that the difference is from the link contention among the processors
as in permutation operation.

The results indicate that the T3E shows the best performance because of a superior hardware

interconnection network.

4.3.3 Memory-Disk

The experimental results on the SP, the T3E, and the O2K are shown in Figure 81 and 83 (See Ap-
pendix B). The results show that the startup cost is very high compared with processor-processor or

processor-memory communications. The startup cost for memory-disk is in the msec range while

28

startup cost for processor-processor and processor-memory is in the tens of psec range.

When the data size is large, the communication time is proportional to the message size. Since
the algorithms on HPC platforms manage large data sizes, the size of data that is transferred between
the memory and disk is usually large. Thus, the initial startup cost can be easily hidden by the data
transfer time.

The write operation takes more time than the read operation for the same data size. It is because
the write operation needs to read pages from disk to memory before the writing operation if the pages
are not in memory. That is, the write time is the sum of read time and “pure” write time.

The results are summarized in Table 2. The results show that the SP and the T3E have similar
performance; but the O2K has the worst performance.

Table 2: Memory-Disk Communication Time

| Operation | Platform | Startup Time (msec) | Bandwidth (MB/sec) |
Write SP 1.0 155
T3E 3.5 149
02K 2.0 70
Read SP 1.0 255
T3E 1.0 266
02K 1.5 90

Sladup Time (msec)

Bandwidth (MB/sec)

20

e — =

M

Write Read Write Read Write

ar

/////////%

:U
(=%

ea

Figure 17: Startup Time

N

Write Read Write Read
sP2 TIE
Figure 18: Bandwidth

30

5 Our Preliminary Model of HPC Platforms
In this section, we first describe previous models. Then, we present our model.

5.1 Previous Models

The PMH model [6] and the Two-Level Memory Model [33] have been proposed for HPC platforms.
These are briefly described here.

5.1.1 Parallel Memory Hierarchy (PMH) Model

Disks and
Global Communication Space

Main Main Main
Memory Memory| ocoo | Memory

I |
| Cache I l Cache |

R [Red Reg
E[0 [E] [0

Figure 19: PMH model of the IBM SP1. Boxes labeled E (for EVEN) and O (ODD) are functional
units that model the two-stage floating-point pipeline.

In this model [6], the interprocessor communication cost and the memory hierarchy are considered.
A parallel computer is modeled as a tree of modules. Each non-leaf node represents a memory mod-
ule such as disk, main memory, cache, and register. A leaf node represents a computing element
such as a functional unit in a CPU. The PMH model of IBM SP1 is shown in Figure 19. Each child
connects to its parent by a unique channel. Modules hold data. Data in a module are partitioned into
blocks. A block is the unit of transfer on the channel connecting a module to its parent. The model
has four parameters for each module m: s, is the number of bytes per block of m, n,, is the number
of blocks in m, ¢,, is the number of children of m, and ¢, is the number of cycles to transfer a block
between m and its parent.

This model considers the interprocessor communication and the secondary memory access. How-
ever, the model can not represent the hard disk system if the hard disk is distributed among proces-

sor nodes. Examples of the architectures using this model are shown in Figure 20. In Figure 20, (a)

31

shows a shared disk system. The processors are interconnected by a high-bandwidthnetwork. InFig-
ure 20, (b) shows the distributed disk system where the disks are interconnected by a low-bandwidth
network. Thus, it inherently assumes that the interprocessor communication is performed through
the disk. Hence, the model can not represent a distributed disk system in which the processors are
interconnected by a high-bandwidth network.

Shared Network
Disk l 1
System i |
I I
Disks

mwnrk —

I " [
| [

L [
Main Main
Memories Memories
Al I
[I
Caches r[C—m:m"u
C C
C J C ——|
 SE———| | — re—|
— | ———
ALU/Registers ALU/Registers
(b) High-Bandwidth Network (a) Low-Bandwidth Network

Figure 20: PMH model of parallel systems

Another drawback of this model is high complexity. Since every memory module including
cache and registers is modeled using four parameters, the resulting model is too complicated. The

more parameters a model has, the more difficult it is to design and optimize algorithms.

5.1.2 Two-Level Memory Model

This model [33] has been proposed for the development of parallel input/output algorithms. The
underlying architecture is shown in Figure 21. In this model, the number of input/output operations
is used to estimate the communication cost.

The data transfer time to or from the disk is ignored because that the seek time in a disk access op-
eration is much larger than the data transfer time for small data sizes. However, the data transfer time
is an important factor when the data size is large. The disadvantage of this model is that the com-

munication time between processors is completely ignored because communication time between

32

Interconnection Network

Processor

Main coo Main

Memory Rddgigory

Processor Processor

Memory

Secondary Secondary
Memo Secondary
emory Memory Memory

Figure 21: HPC architecture used in two-level memory model

processors is insignificant compared with the disk access time. However, it is an important factor if
the number of communication operations or the amount of data transferred is large.

5.2 Integrated Memory Hierarchy Model

Our HPC platform model considers three main costs: processor-processor, processor-memory, and
memory-disk costs. The processor-memory and memory-disk cost involves only communication
cost. However, the processor-processor cost consists of computation and communication costs be-
tween processor and memory.

5.2.1 Processor-Memory

The experimental results of the processor-memory communication on the IBM SP are shown in Fig-
ures 45 - 56.

The results of the Integer READ operation experiment (Figure 45) is repeated here in Figure
23 and Figure 24 to illustrate our approach to modeling the processor-memory communication cost.
The results of this out-of-cache operation shows the importance of two key parameters: the number
of elements (N) and the stride (S). In Figure 22, the execution time of reading arrays with various
number of elements is shown. As can be seen in the figure, the total execution time increases linearly
as the number of elements is increased linearly.

In Figure 23 and 24, the stride is varied for each of the arrays (with various number of elements)
shown in Figure 22. As the stride is increased, the total execution time increases linearly for each
array, and peaks out towards the end. The peak point occurs when the stride is large enough that
each access incurs a cache miss. This phenomenon can be clearly seen in Figure 24. In this graph,

33

B
3

Execution Time (usec)
[44)
8

8

1024 1536 2048 2560 3072 3584 4096 4608 5120 5632 6144 €656 7168 7680 8192
Number of Elements

Figure 22: Read Integer using various number of elements

the difference in execution time for each consecutive array size from Figure 23 is shown. This graph,
in essence, shows the cost of executing 512 additional elements starting from some base size.
The cost of communication increases linearly as the number of elements [V increases for the basis

stride = 1. This cost, 7', can be modeled using the following linear equation

T'=Tyx% Np (¢9)

where T, is the time for transfering a byte of data between the processor and memory.
As stride S increases, the total size of the data increases linearly until S is equal to the cache line
size. This phenomenon is explained in the implementation results section (Section 4.3.1). Also, this

can be modeled using a linear equation

T=T; %X N,)

where T. is the time to bring a cache line to the cache, and N. is the number of cache lines transferred
to cache.
Finally, we identified a change in the slope of the stride-time graph. For example, in Figure 45(a),

34

Execution Time (usec)

N IR R N B I A

Stride

6144 6656 - w— 7168 —a—7680 —» 8162

—+— 1024 —a— 1536 2048 —o— 2560 —m— 3072 —am 3584 —— 2008 —— 4608 —— 5120 5512'

Figure 23: Processor-Memory communication: Read Integer

there is a change in slopeat S = 12. Theslope for S > 12 is steeper than that for S < 12. We cannot
explain this phenomenon because we have no in-depth understanding of platform implementation.
However, this causes inaccuracy in the calculations in the processor-memory time, and we add an-

other linear equation to compensate the difference. The additional equation is

T=T,%8 (3

where T. is a constant to compensate for the difference in the slopes.
Therefore, the overall processor-memory cost is:

T=T.x N+ Tex N.+T. xS 4)

where T is the time for transfer between the processor and memory per byte, T’ the time to bring a
cache line to the cache, V. the number of cache lines transferred to the cache, and 7. a constant to

compensate for the difference in the slopes.

35

Execution Time (usec)

) R T

12345678 0101120 KIBBYEIRNINRANBNTBIVNRAUIBBTIBNG
Stride

—ae 1536 —a— 2048 2560 - w 072 —w—3584 —a— 4096 —— 408 ——B120 —5EX2 G144 Gﬁﬁj

TIEE -~ TEH) —w-B192 ——5kow

Figure 24: 512 Difference Graph: Read Integer

Table 3: Parameter Values for Processor-Memory Cost

Platform s 7. Te
SP 120 nsec | 135 nsec | 100 nsec

5.2.2 Processor-Processor

Our model of processor-processor communication uses results of permutation communication, since
it can be considered as a general communication pattern. For example, an all-to-all communication
can be implemented using many steps of permutation communication.

Figure 25 shows the permutation communication time as a function of message size. In Figure
26, the lower-left corner is enlarged.

Figure 25 shows that the communication cost is proportional to message size. However, when
the message size is small (See Figure 26), there is a relatively large communication startup cost.
Based on these observations, the communication time between two processors can be modeled using
a linear function of the message size as follows:

Communication time between a pair of processors = T's + mTa (3)

36

Permutation Time (msec)

400.0 ¢

300.0

200.0 +

10.0 15.0 20.0

Message Size (MBytes)

Figure 25: Permutation communication results on the SP

where T, = startup time, and 7; = 1/bandwidth = data transfer time per byte per processor.

The T and 7,4 are obtained using our permutation communication benchmark experimental re-
sults. The parameters for the SP and the T3E are shown in Table 4.

Table 4: Startup Time and Bandwidth

Platform

Startup Time (psec)

Bandwidth (MB/sec/processor)

SP
T3E
02K

54
29
85

50
100
15

Using equation (5), the time to perform more complex communication patterns can also be mod-

eled. In these cases, we found that the startup time does not a show large variation for different com-

munication patterns. However, the communication time depends on the total data size and the num-

ber of processors. Thus, when a communication pattern consists of j steps, the total message size is
Z’ | M, and the total data transfer time is Z;— . m; x 74. Therefore, the total communication time

for a communication pattern is

Teomm = Startup time + Total data transfer time

J
= To+) mita

=1

37

90.0

80.0 4

700 2

60.0 + 4

50.0 i

40.0 4

30.0 + 4

Permutation Time (usec)

20,0 | 1

10.0 L -
i

0.0 A .
0.0 0.5 1.0 1.5

Message Size (KBytes)

Figure 26: Permutation communication results on the SP

where T, = startup time, 7, = data transfer time per byte, and § = the number of communication steps
in the communication pattern.
With this equation, the communication time for various communication patterns can be estimated

as follows:

e Permutation time =T + m7y

e Pingpongtime = T + m7y

e Scattertime = T + (P — L)mTq/2
e Broadcast time = T + (lg P)mr,/2

where m is the size of the message that is transferred to each destination processor. and P is the total
number of processors involved in the communication.

To validate our model, we compared the estimated communication time and the actual commu-
nication time for each of our benchmarks. The following data block sizes were used: each commu-

nication is:
e For permutation and pingpong: 16 MB,

e For scatter among 8 processors: 16 MB on the root processor. 2 MB sent to each destination

processor,

38

e For scatter among 16 processors: 16 MB on the root processor and 1 MB for the destination
Processors,

e For broadcast among 8 processors: 2 MB, and
e For broadcast among 16 processors: | MB.

In estimating the pingpong communication time, we used the fact that the architectures support “pipelined
communication” as explained Section 4.3.2.
The results show that the model can accurately predict the communication time on the SP. On

the T3E, the maximum error was about 30%. The error range can be further reduced by adjusting
the parameters.

Table 5: Predicted Time and Actual Time (msec)

Communication operation | Actual | Predicted | Error
Permutation 320 320 0%

Pingpong 350 320 9.4%

Scatter on 8 proc. 160 140 14%
Scatter on 16 proc. 170 150 13%
Broadcast on 8 proc. 63 60 5%
Broadcast on 16 proc. 38 40 5%

5.2.3 Memory-Disk

The read and write operation times are shown in Figure 27, Figure 28, and Figure 29 for the SP, the
T3E, and O2K, respectively. The overall graph shows that the read and write times are proportional
to the message size.

The spikes at message size = 1.5 and 3.5 are due to random operating system behavior. We per-
formed our experiments over many iterations and found that the spikes are random, i.e., there was
no regular pattern nor consistency in the appearance of these spikes. From this, we conclude that the
spikes are not related to any parameter nor characteristic of the underlying hardware platform. We
reason that this is probably due to the operating system behavior and interactions with other jobs on
the system.

The disk operations can be modeled using a linear equation as a function of the data size. How-
ever, the write operation takes more time than the read operation because the write operation needs
to perform a read before the data is written to the disk, if the page containing the data is not in the
memory. Thus, the read and the write operations are modeled using different parameters.

39

200.0 T G—=o Wrile Tirnel
¢ + - -+ Read Time
;
¢

150.0

100.0 +

Operation Time (msec)

50.0

01 2 3 4 5 6 7 8 9 10 11 1213 14 15 16
Data Size (MByles)

Figure 27: Disk operation results on the SP

Also, there is a large startup cost in the msec ranges. Even though recent technological advances
have significantly improved the performance of disk, the startup cost is still large compared with data
transfer time per byte. Hence, our model incorporates the startup cost.

Therefore, the disk operation time can be modeled using a linear equation for the read and write
operations. However, since the parameters for read and write operations are different, we use a sep-

arate linear equation for each operation.

Disk operation time = disk read time + disk write time

= (T, +m.7) + (T + MapTw)

where T’ is startup time for the read operation, m,. is the read message size, 7, is inverse of the read
bandwidth, 7}, is startup time for the write operation, 7., is the write message size, and T, i$ the
inverse of the write bandwidth.

The parameters obtained using our benchmark suites are summarized in Table 6.

5.2.4 Integrated Memory Hierarchy Model

The complete model is obtained by integrating the models for each communication. An overview of

our model is shown in Figure 30. The complete model can be written as follows:

Execution time = processor-memory execution time

40

Operation Time (msec)

250.0

200.0 |

150.0

100.0

50.0 |

G—=o Write ﬂme!
+ - - +Read Time!

0.0 &2
0 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Data Size (MBytes)

Figure 28: Disk operation results on the T3E

Table 6: Memory-Disk Communication Time

| Operation | Platform | Startup Time (msec) | Bandwidth (MB/sec) |

Write SP 1.0 155
T3E 3.5 149
02K 2.0 70
Read SP 1.0 255
T3E 1.0 266
02K 1.5 20

where T, = the data transfer time between the processor and memory per byte,

N, = the number of data elements that are transferred to cache,

+ processor-processor communication time

+ memory-disk communication time

Tann+TC><NC+TexS

+Ts + m7y

+T + me7 + Ty + myTy

T. = the time to bring a cache line to the cache,

N, = the number of cache lines that are transferred to the cache,
T, = a constant to compensate for the difference in the slopes,

41

JO JoquInu 23Ie| ©

[4y

‘Kovinooe Y1y A1ea yua suuopeld DJH [2pow O, -s1orputered jo Jaquinu

o81e € SurAry yora ‘$1uLU0dUIod JO IQUINU € JO SISISUOD uuone[d DY ue ‘jepow S[dwis v sy e

paIopIsuOD ale Sjuauodiod DJH SNOLILA FUOWE UONEIIUNUIOD

pue uoneindwiod 103 $1S09 Ay} ‘[SpOUL INO UL 'SAY], 1502 A1owaw-108$2001d 21 Ul papnjoul

s1 1502 uoneIndwod ayJ, Ysip-Arowaul pue “J0ssa001d-10582001d ‘Arowoui-108$9001d :SULIO]

-je1d DdH uo uoneindwod Juruwojad Ul $1S09 UTRL 2214 JO SISISUOD 11 ‘[opoul paeIdau ue sy e

:st suuope|d DAH jo [apow Areurutjaid 1nQ

[PPOJA ANQ JO 3s() pPUE DUBIYIUSIS €S

‘YIPIMPpUERQ LM AU JO sIoAUT AY) = TL

pue *azis afessauwl AUm a1 = "w

‘uoneiado a1um a3 10j awn dnyeis =

‘qIpIMpUEq PEaI 31 JO 9SIDAUL = L

*az1s 98essow peal ay) = “w

‘uonesado peal ay) Joj awin dmurels = 4,

‘yipimpueq/1 = Fi

‘s10552001d U2IMIDQ paLiajsuLy) AFessall ay) JO 9ZIS = W
‘s10$59001d u2amiaq awn dnuels = 5,

‘passande ST BIEP YOIYMm Ul 9pLIS = §

3[ZO 2y uo synsa1 uonerado ¥siq 67 N8

(seihgn) @z1s BlEQ
91 GL ¥L EL 2L LLOL 6 8 L 9 S ¥ € 2 L O

g T 00
4 0°08
o
S
o
{ 000k 2
=]
3
=l
3
. @
4 0054 3
@
e
1 0002
L i s

- 0052

Integrated Memory
Hierarchy Model

Processor-Memory Processor-Processor Memory-Disk
TnxNn 7 - Tr + mrTr
+ Te x Nc s+ mTd
+Te.x S +TW+mWT“
= ——————— = ————— L

Figure 30: An overview of the preliminary model of HPC platforms

parameters need to be included in the model. Such a model becomes too complex to be of
value to end-users. Therefore, we first identified the three main costs. These costs are modeled
using simple equations providing users a simple view of HPC platforms. Also, we avoided
discontinuous functions to avoid complex calculations. These efforts simplified the model for
users.

There is a trade-off between accuracy and simplicity. In our model, we sacrificed some amount
of accuracy for simplicity. However, we obtained a model accurate enough for the design and

analysis of algorithms on HPC systems. An example is shown in the next section.

Ourmodel is useful for design and analysis of algorithms on HPC platforms. Design and anal-
ysis of algorithms require understanding of HPC platforms on which the algorithm is used.
Our model provides a simple and fairly accurate view of the HPC platforms. With the model,
users can predict performance of their code. The users can optimize the code before the actual
run. Also, after a test run, users can easily analyze the execution time using our model. Thus,

the users can save time and effort in designing and analyzing algorithms on HPC platforms.

43

6 An lllustrative Example: Matrix Multiplication

In this section, we show the validity of the proposed HPC model using an example application. We
use the matrix multiplication application. We estimate the execution time and compare it with the
actual execution time.

6.1 Previous Algorithm

Cannon’s algorithm [4] is one of the most widely used algorithms for matrix multiplication on mul-
tiprocessor platforms.

In this section, Cannon’s algorithm [4] for computing A = B x C'is explained with an example.
We assume the number of processors is 3 X 3 =9.

Initially, matrices A, B, and C are partitioned into P x P blocks (See Figure 31 (a)), where P?
is the number of processors. These data blocks are distributed to each of the processors in a skewed
fashion as in Figure 31 (b). Note that the distributions of B and (' are different.

In each processor, the computation is performed using the data available in each processor.

Then, the data blocks of B are shifted left and the blocks of C' are shifted upward as shown in
Figure 31 (c). The next portion of the computation is performed. These shift-and-computations are
repeated P — 1 times to complete the matrix multiplication. The last step is shown in Figure 31 (d)
for P=3.

6.2 Our Algorithm

Even though the Cannon’s algorithm minimizes the communication overhead among processors, it
does not consider cost between processor and memory. In our algorithm, we analyzed the cost of
communication between the processor and memory as well as the cost among processors using our
model. Our model is very useful because it represents all processor-memory and processor-processor
costs.

Using our model, we analyzed the algorithm and estimated the total execution time. Our analysis
showed that when the the number of processors is small, the main cost of matrix transpose is the cost
of data transfer between processor and memory, especially the transfer cost for matrix C'.

To simplify the analysis, we assume all matrices are size N X N. In performing matrix multi-
plication A = B x C, a significant portion of the time is spent in accessing array (' because matrix
elements are usually stored in row major order, as in the C language compilers. Because array Cis
accessed in column major order, but stored in row major order, almost every access to an element
causes a cache miss to occur. The number of cache misses is O(N3).

Intuitively, if the data in array C' can be rearranged such that the number of cache misses is re-
duced, a large improvement could be obtained. In this case, transposing array C' would allow con-

44

Matrix A Matrix B Matrix C

Ao Aol Am Boo Boi Boz2 Coo Cotl Co
Al0 All Al Bio Bu Bz Cio Cu Ciz
A20 Azl A2z Bao Bzl B2z Ca Ca Cn2

(a) Initial partitioning of matrices

Po Pi P2 Po P1 P2 Po P1 P2
Aoo Boo | Aot Bor | Aoz Baz Ao Bor | Aol Boz | Ao2 Boo A00 Boz | At Boo | Ao2 Boi
Coo Cu Cn Cio Ca Coz2 Ca Cul Ciz

P3 P4 Ps P3 P4 Ps P3 P4 Ps
A10 B1l [Atr Biz | A1z Bio Ao Biz | Al Bio | A1z Bl Al B | All B | Al2 B2
Cio Cai Cu2 Cao Cot Ciz Coo Cu Cn

P6 P7 Ps Pa P7 Ps Ps P7 Ps
A20 B2 | A21 Bao | A2 Bu A0 Bao | A2l Bz | A22 B2 A20 Ba1 | A2l B2 | A22 B
Cao Coi Ci2 Coo Cil Caz Cuo Ca1 Coz2
(b) Initial distribution of the matrices (c) After the first step (d) After the second step

Figure 31: Illustration of Cannon’s matrix multiplication algorithm (P=3)

secutive access of the data with optimal data access patterns. However, the cost to transpose array C
could be significant. In order to evaluate this approach, we first analysed the performance of trans-
posing an array. Even a naive transpose algorithm in which the array is accessed in column major
order and stored in row major order incurs only O(N?) cache misses. Using our model, we esti-
mated the cost of transposing array C'. Without actual coding, we determined using the IMH model
that for most matrix sizes of interest, the cost of transposing the array is insignificant compared to
the O(NN?) potential cache misses that would occur otherwise. After the transpose operation, both
arrays are accessed in row major order.

We performed the experiments with 512 x 512 size arrays on each node of a SGVCRAY T3E.
The straightforward implementation of Cannon’s matrix multiplication took 54.6 secs. Our IMH
model had predicted 68.5 secs. Most of the time was spent in data access. Our memory hierarchy

45

optimized matrix multiplication took 8.6 secs, including the overhead for first transposing array C.
The transpose operation overhead was 109 msecs. This is a significant improvement in performance.

46

7 Parallelizing a Benchmark Application

In this section, we illustrate the design and performance tuning of a parallel algorithm for a bench-
mark application in fluid dynamics. CEWES provided this code. We first describe the structure of
this benchmark in terms of the data cube size, the basic operations, and the usage of allocated proces-
sors. Then we describe a previous approach to parallelize this benchmark. The previous algorithm
is not scalable but suitable only for a fixed number of processors. When the number of processors
is increased beyond six, the previous algorithm does not balance the workload. In addition, the al-
gorithm uses a straightforward approach to exchange the boundary data among the processors. This
simple approach results in significant overhead in communication cost.

In our approach, we designed a scalable and parallel algorithm to perform this benchmark appli-
cation. We perform load balancing to distribute the workload onto the total processors assigned to the
application program. In addition, we designed and implemented a communication algorithm which
allows parallel communication without node contention. Using the communication algorithm, the
remote data is delivered in parallel.

7.1 Overview of the Code

The data and the computations can be represented as a 3-dimensional grid of size 121 (Width) x 4
(Depth) x 81 (Height). Each data element can be viewed as a point in this grid. The value of each
grid point is computed and updated using its current value and the values of its seven neighbors as
shown in Figure 32. A flowchart of the code is shown in Figure 33. The top-level subroutines shown
in the flowchart are described here.

e OWN_PL: This subroutine determines which processor computes and updates the value of a

grid point. The 3-dimensional index of a grid point is mapped onto a 1-dimensional index.

Figure 32: A grid point and its seven neighbors

47

OWN_PL

GET_GR

UPD_ND

Preparation

HEADS

Computation

PR_H

I10

END

Figure 33: Flowchart of FT.F

48

This linear sequence of grid points is divided and assigned to all processors. Each processor
determines the ownership of a grid point in the range of the sequence assigned to it. The owner-
ship ranges from O to 5 that is a processor s identification. Therefore, only 6 processors will be
involved in computing and updating the values of the grid points in the subroutine UPD_ND.
At the end, processors determine and store the local index of a grid point to its owner through
broadcasting ownership information.

e GET.GR: In this subroutine, all processors determine the real coordinates of grid points and
generate their initial values. Then they broadcast the coordinates to others.

e UPD_ND: This subroutine updates the initial values of boundary points.

o HEADS: In this subroutine, the value of a grid point is computed and updated by its owner
processor. This operation is performed in several loops. After each iteration, interprocessor
communication occurs to update the boundary data. This subroutine consumes most of the ex-
ecution time. Consequently, we focused our effort on efficiently parallelizing this subroutine
and the low-level subroutines that it calls.

e PR_H: This subroutine prints the final results.

7.2 Previous Implementation

The previous parallel implementation does not scale as the number of processors increases. The im-
plementation does not use all the available processors to compute the output data in the subroutine
HEADS as mentioned in Section 7.1. In addition, its communication algorithm to exchange bound-
ary data incurs a large overhead. As the number of processors increases, the communication cost
begins to dominate. We address these problems below.

7.2.1 Workload Distribution for Computation

In the preparation step of the previous implementation, all processors are used to perform the required
operations in parallel. However, in the computation step, only 6 processors are used to compute and
update the values of grid points. As described in Section 7.1, the subroutine OWN_PL determines the
ownership of a grid point. The Fortran code written for this operation is shown in Figure 34. Figure
35 demonstrates the scheme subroutine OWN _PL generated. The scheme is used in the subroutine
HEADS to distribute the workload onto the processors. This scheme causes an unbalanced workload
distribution. The measured execution time of the previous implementation on the IBM SP-2 and the
SGI/Cray T3E is shown in Figure 36.

49

ndomi

= 41
ndomj = 4
ndomk = 41
kplane = imax*jmax
nl = myid*nocdes + 1
n2 = min0(nl + nodes - 1,, numpg)

do n = nl, n2
k = (n - 1)/kplane
kk = k/ndomk
3 = {n - 1 - k*kplane)/imax
jj = j/ndomj
i = mod(n - 1, imax)

ii = i/ndomi
ndproc(n - nl + 1) = kk*3 + ji*6 + ii
end do

Figure 34: Fortran program used to determine the ownership of a grid point

Figure 35: Workload distribution in the previous implementation

50

|BM SP2 sl CEWES Cry T3E at CEWES
20000 200.0

1500.0 2500

___,__e’——//i] T)

7

=

E 1000.0 £ 2000

§ g
e

i

w

500.0 1500 |
00 !
[12 18 24 30 e 6 12 18 24 ED]
Number ol Processors Number of Processors

Figure 36: Execution time of the previous implementation

7.2.2 Interprocessor Communication

In each iteration of the subroutine HEADS, the value of each grid point is computed and updated
based on its current value and values of its seven neighbors as shown in Figure 32. In addition, the
workload is distributed onto the processors using the workload distribution scheme shown in Figure
35. Therefore, each processor needs to communicate with its three neighbors to obtain the updated
values for its boundary grid points. Figure 37 illustrates the induced interprocessor communication
pattern.

In the previous implementation, the interprocessor communication is performed in a serial man-
ner (i.e., only a pair of processors exchange their data at a time, while all other processors remain
idle). This approach is very inefficient. It causes significant communication overhead which de-
grades the overall performance of the parallel algorithm. As the number of processors increases,
the time for performing the above serial interprocessor communication begins to dominate the total
execution time.

7.3 Our Implementation

We have developed algorithmic techniques to improve the benchmark’s performance. Based on these

techniques, we developed a parallel algorithm.

51

0B 00
/1T
026

@ Processori

Figure 37: Communication pattern between processors

P/2 |P/2+1|P/2+2| .. | P-1

0 1 2 e |PR2-1

P: total number of processors

Figure 38: Workload distribution in our implementation

7.3.1 Load Balancing

In our algorithm, workload is distributed to all available processors by using the distribution scheme
shown in Figure 38. The Fortran code rewritten for this operation is shown in Figure 39. To illustrate
the effectiveness of our load balancing, we compare the execution time of our implementation using

a balanced workload distribution scheme with the previous approach in Figure 40.

7.3.2 Parallel Interprocessor Communication

Using the workload distribution as shown in Figure 38, each processor needs to communicate with
at most three neighbor processors to obtain the updated boundary data. In the previous implemen-
tation, interprocessor communication is performed in serial fashion. This approach allows only one

52

Time [sec]

kplane = imax*jmax
nl = myid*nodes + 1
n2 =
noproc_half =

do n =
k =
kk =
i =

nl, n2

k/ ((kmax + 1)
modin - 1,

if (mod(imax,
1. =
else
ii =
end if
ndproci{n - nl + 1)
end do

min0(nl + nodes - 1,,
noproc/2

(n - 1)/kplane

imax)

noproc_half)
i/ (imax/noproc_half)

i/ (imax/noproc_half + 1)

numpg)

/2)

.eg. 0) then

= noproc_half*kk + ii

Figure 39: Rewritten Fortran program to determine the ownership of a grid point

2000.0

00

IBM SP2 a1 CEWES

Q@—=© Our imp. with LB
B—=4 Previous imp.

12 18 24 30
Number ol Processors

Cray T3E al CEWES

O—0 Our Imp. with LB
G—=§ Pravious Imp.
3500
_ 2500
T
= = - 5
E
1500
=08 6 12 18 24 30
Number of Procassors

Figure 40: Execution time of our implementation with load balancing

53

IBM SP2 at CEWES Cray T3E at CEWES

1500.0 3000
A—2A Comm, Tima] A—aA Comm. Time:
o—0 Comp. Timo | -0—= Comp, Tine |
G— Exec. Time | G—=8& Exoc. Time |
g q
‘
1000.0 2000
i i i
¢ £
= -
5000 3 100.0
1]
b
4 5 L= =
0.0 0o
6 12 18 24 a0 8 2 18 24 30
Number of Processors Number of Processors

Figure 41: Computation time and communication time of our implementation with load balancing

pair of processors exchanging their data at a time. In this approach, the total communication time
increases proportional to the number of processors. To show the communication overhead of a serial
algorithm, we measured the communication cost after load balancing. As shown in Figure 41, the
interprocessor communication cost increases as the number of processors increases.

In ourimplementation, interprocessor communication is performed in parallel as shown in Figure
42. Our parallel communication consists of three steps:

1. Each processor sends data to its left neighbor and receives data from its right neighbor.

2

A processor belongs to one top group or bottom group. Each processor in the top group sends
data to its counterpart in the bottom group.

3. A processor belongs to one top group or bottom group. Each processor in the top group sends
data to its diagonal counterpart in the bottom group.

We compare the communication times in Figure 43. The execution times are compared in Figure
44,

54

7Ty
oNONO

ONONO
awd

ORONO

Step llI

Figure 42: Parallel communication pattern in our implementation

55

Tima [sec]

Time [sec]

700.0

600.0

4000

2000

1000

I1BM SP2 at CEWES

|G—=a8 Our Imp. wih LB + 5C |
O—0Our Imp_with LB « PC |

oo

2000.0

0.0

18 24
Number ol Processars

o]

Cray T3E at CEWES

200
3—0 Our Imp, with LB + PC
G—8 Our Imp. with LB + SC |
]
< 100
E
=

0.0
[12

18 24 0
Number ol Processors

Figure 43: Comparison of communication time

IBM SP2 al CEWES

[Ho.u Tmg. with LB + PC
10— Our lmp, with LB

[B—aPreviousimo. |

12

18 24
HNumber ol Processors

30

Time |sec]

56

Cray T3E at CEWES

350.0
A—A Our Imp, wah LB + PC
|g—0 Qur Imp. with LB + SC !
iB—EPtmoul ime. 4
2500
1500
00 [12 18 24 io

Number ol Processors.

Figure 44: Execution time of our implementation with load balancing and parallel communication

7.4 Communication Performance Prediction Using Our Model

We compared the estimated communication time and the measured communication time for the par-
allel interprocessor communication. The start-up time (T,) and the transfer rate (7;) obtained using
our benchmark experimental results are used to estimate the communication time. Based on the ex-

perimental results, the communication time between two processors can be modeled as a function of
the message size, m, as follows:

CTyp =T+ mmy (6)

where C'T,, = point-to-point communication time, T = start-up time, and 7 = transfer rate for a
byte.

As described in the previous section, we implemented interprocessor communication in parallel
using three steps as shown in Figure 42. Thus, the total communication time for the communication
pattern is

3
CT =CTy+CTy +CT3=3x Ts+ »_ miT4 (N
i=1
where CT; = the communication of step ¢, m; = the message size of step .
The data block size of each step is as follows:

e Step 1: 468 x 2 Elements
e Step 2: 456 x 2 Elements

e Step 3: 6 x 2 Elements

The data type of the element is real. Its size is 4 bytes on the IBM SP and 8 bytes on the Cray
T3E. The above data blocks are tranferred to a destination processor within a pair of processors and

six processors were used to perform the communication pattern. The comparison is shown in Table
7

Table 7: Estimated and measured communication times (usec)

IBM SP Cray T3E
Estimated | Measured | Error | Estimated Measured | Error
364.80 | 323.54 13% 235.80 323.03 | 27%

8 Acknowlegement

This work was supported in part by the grant of HPC time from the DoD HPC Center, (SP, T3E, and
Origin 2000 systems at MSRC CEWES).

58

References

[1] Analog Devices, Inc. ADSP-2106x SHARC User's Manual, First Edition, March 1995.

[2] Ed Anderson, Jeff Brooks and Tom Hewitt, Benchmarking Group, Cray Research, “The
Benchmarker’s Guide to Single-processor Optimization for CRAY T3E Systems,” URL:
http://www.cray.com/products/systems/crayt3e/benchmark.ps

(3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga,
“The NAS Parallel Benchmarks,” RNS Technical Report RNS-94-007, March 1994

[4] L. E. Cannon, “A cellular computer to implement the Kalman filter algorithm,” Ph. D. Disser-
tation, Montana State University, Bozeman, MT, 1969.

[5] L Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo,
R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama, “Impulse: An Adaptable Memory
System”, Submitted to the Eighth Symposium on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-8), October 1998.

[6] L. Carter, J. Ferrante and S. E. Hummel, “Hierarchical Tiling for Improved Superscalar Perfor-
mance,” Proceedings of IPPS "95, 1995.

[7] H.J. Curnow and B. A. Wichman, “A synthetic benchmarks,” The Computer J ournal, Vol. 19,
No. 1, p. 80, 1976.

(8] “Cray T3E Series”, URL: http://www.cray.com/products/systems/crayt3e/

[9] Jack J. Dongarra, “‘Performance of Various Computers Using Standard Linear Equations Soft-
ware, (Linpack Benchmark Report),” University of Tennessee Computer Science Technical
Report, CS-89-85, 1998

[10] D. Elliot, M. Stumm, and M. Snelgrove, “Computational RAM: The Case for SIMD Comput-
ing in Memory”, Workshop on Mixing Logic and DRAM: Chips that Compute and Remember,
24th International Symposium on Computer Architecture, June 1997.

(11] “Embedded HPSCS,”
URL: http://www.sanders.com/hpc/HPSCS/HPSCS .html.

[12] “Embeddable Systems Homepage,”
URL: http://www.ito.darpa.mil/ResearchAreas/Embeddable.html.

59

(13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(22]

(23]

[24]

R. A. Games, “Benchmarking Methodology for Real-Time Embedded Scalable High Perfor-
mance Computing,” MITRE Technical Report MTR 96B0000010, March 1 996.

J.L. Hennessy and D.A. Patterson, “Computer Architecture: A Quantitative Approach”, Mor-
gan Kaufman, Second Edition, 1996.

IBM Corporation World-Wide Web Page, “RS/6000 Scalable POWERparallel Systems(SP),”
http://www.rs6000.ibm.com/hardware/largescale/index.html.

S. Kaxiras, R. Sugumar, and J. Schwarzmeier, “Distributed Vector Architecture: Beyond a Sin-
gle Vector-IRAM”, Workshop on Mixing Logic and DRAM: Chips that Compute and Remem-
ber, 24th International Symposium on Computer Architecture, June 1997.

K. Keeton, R. Arpaci-Dusseau, and D.A. Patterson, “IRAM and SmartSIMM: Overcoming the
1/O Bus Bottleneck™, Workshop on Mixing Logic and DRAM: Chips that Compute and Re-
member, 24th International Symposium on Computer Architecture, June 1997.

PM. Kogge, J.B. Brockman, T. Sterling, and G. Gao, “Processing In Memory: Chips to
Petaflops”, Workshop on Mixing Logic and DRAM: Chips that Compute and Remember, 24th
International Symposium on Computer Architecture, June 1997.

S.A. McKee and W.A. Wulf, “Access Ordering and Memory-Conscious Cache Utilization”,
First Symposium on High Performance Computer Architecture, January 1995.

L. McLeod and C. McKenney, “Heterogeneous Multicomputing for Cost-Effective Embedded
Systems,”
URL: http://www.mc.com/back/backgrl.html

F. M. McMahon, “The Livermore FORTRAN kernels: A computer test of numerical perfor-
mance range,” Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, University
of California, Livermore, CA., 1986.

H. Miyajima, K. Inoue, K. Kai, and K. Murakami, “On-chip Memorypath Architectures for Par-
allel Processing RAM (PPRAM)”, Workshop on Mixing Logic and DRAM: Chips that Com-
pute and Remember, 24th International Symposium on Computer Architecture, June 1997.

P. J. Mucci and K. London, “The MPBench Report,”
http://www.cs.utk.edu/ mucci/DOD/mpbench.ps, 1998.

M. Oskin, ET. Chong, and T. Sherwood, “Active Pages: A Computation Model for Intelligent
Memory”, 25th International Symposium on Computer Architecture, June 1998.

60

[25] D.Patternson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and
K. Yelick, “A Case for Intelligent RAM: IRAM”, IEEE Micro, April 1997.

[26] D.Patternson and J. L. Hennessy, “Computer Organization & Design: The Hardware/Software
Interface,” Morgan kaufmann, 1994.

[27] “The Message Passing Interface Standard,” URL:http://www.mcs.anl.gov/mpi/

[28] C.L. Seitz, “The Two-Level-Multicomputer Project,” The first Myricom Muticomputer User’s
Group Meeting, 1996.

(29] “Parallel Basic Linear Algebra Subprograms,”
URL:http://www.netlib.org/scalapack/html/pblas_gref.html

[30] “The SCALAPACK Project,” URL:http://www.netlib.org/scalapack/index.html

[31] “SGI Origin2000: The Perfect System for Evolving Compute, Memory, and [/O Require-
ments”, URL: http://www.sgi.com/origin/2000/

[32] SPEC, URL:http://www.specbench.org/

[33] J.S. Vitter and E. A. M. Shriver, “Algorithms for Paralle]l Memory, [: Two-Level Memories,”
Algorithmica, Vol. 12, pp. 110-147, 1994.

[34] C.-L. Wang, P. B. Bhat, and V. K. Prasanna, “High-Performance Computing for Vision,” Pro-
ceedings of the IEEE, Vol. 84, No.7, July, pp. 931-946, 1996.

[35] R.P. Weicker, “Dhrystone: A synthetic systems programming benchmark,” Comm. ACM, Vol.
27, No. 10, p.1013-1030, 1984.

[36] P. Zhong and M. Martonosi, “Using Reconfigurable Hardware to Customize Memory Hierar-
chies”, SPIE Conference on Reconfigurable Technology for Rapid Product Development and
Computing, November 1996.

61

A Appendix I: Benchmark Codes

In this appendix, our benchmark code are shown.

A.l Out-of-Cache Memory Communication Code

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

#ifdef SP2

tdefine CacheSZ (1024 * 6£4)
#define CachelLN 128

#endif

#ifdef T3E

#define CacheSZ (1024 ~* 986}
#define CachelLN 64

#endif

#define NITER 20
#define SITER 0
#define EITER 15

/* The Shell Sort */

void bsort (double *item)

{
register int i, 3j, gap, k., count;
int al5];
double x;

count = NITER:
af01=9; alll=5: a(2]=3; al3]=2: al4]l=1;

for (k=0; k<5; k++) {

gap = alkl;
for (i=gap; i<count; ++i) {
x = item{i];

for (j=i-gap; x<item[j] && j>=0; j=j-gap)
item(j+gap] = item{3jl;
item{j+gap] = x%;
)
]
} /* bsort() */

int main(int argc, char* argvi(])
(
#ifdef DINT

register int max;

62

int* pData;

char Mssg(20] = "Integer Op";
#define ATYPE int
#endif

#ifdef DSING
register float max;
float* pData;

char Mssg[20] = "Float Op";
#define ATYPE flcat
#endif

#ifdef DDBL
register double max;
double* pData;

char Mssg[20] = "Double Op*;
#define ATYPE double
#endif

#define ELEM_CACHE CacheSZ/sizeof (max)
#define ELEM_LINE CacheLN/sizeof (max)

long int STNUM;
long int ENDNUM;
long int INTNUM;
long int NUM;

int STSTRIDE;

int ENDSTRIDE;
int INTSTRIDE;
int STRIDE;

int i;

long int SIZE;

int rank, count;

int OPTYPE;

int RANDHALF;

int FLUSH[ELEM_CACHE];

double start, finish, wtimeO, wtimel;
double alltime[NITER];

double dTotal;

STNUM = atol (argvil]):
ENDNUM = atol(argv(2]);
INTNUM = atollargv(3]):
STSTRIDE = atoi(argv(4]):;
ENDSTRIDE = atoi(argv(S]);:
INTSTRIDE = atoi(argvi6]l);
QOPTYPE = atoil(argv(7]);

RANDHALF = (int) RAND_MAX / 2;

63

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

wtimel0 = MPI_Wtime():
wtimel = MPI_Wtime();
wtimel -= wtime(;

fprintf(stdout,"%s ", Mssg);
switch (OPTYPE) {

case 1l: /* read */
fprintf (stdout, "Read Test:\n");
break;

case 2: /* write */
fprintf (stdout, "Write Test:\n");
break;

case 3: /* multiply with register */
fprintf (stdout, "Multiply Test:\n");
break;

case 4: /* divide with register */
fprintf (stdout, “Divide Test:\n"});
break;

fprintf (stdout, "Cache Size is %d, Cache Line size is %d\n", CacheSZ, CacheLN);

fprintf (stdout, "Elements/Cache = %d, Elements/CacheLine = %d\n",ELEM_CACHE, ELEM_LINE);
fprintf (stdout, "NUM = sd, %d, %d\n', STNUM, ENDNUM, INTNUM) ;

fprintf (stdout, "Stride = %d, %4, 2d\n", STSTRIDE, ENDSTRIDE, INTSTRIDE);

fprintf (stdout, "MPI_Wtime=%f usec\n",wtimel*1000000) ;

for (NUM = STNUM; NUM <= ENDNUM; NUM += INTNUM) (
fprintf (stdout, "$\n");

for (STRIDE = STSTRIDE; STRIDE <= ENDSTRIDE; STRIDE += INTSTRIDE) (

SIZE = NUM*STRIDE;
pData = malloc(SIZE*sizeof(max));

/* Put random data in data array */
for (count = 0; count < NUM; count++)
* (pData + count*STRIDE) = (ATYPE) { rand() > RANDHALF ? 3 : 2);
for (i=0; i<NITER; i++)
/* Flush the Cache with dummy data */
for (count = 0; count < ELEM CACHE; count+=ELEM_LINE)
* (FLUSH + count) = rand();

max = 0;

switch (OPTYPE) {

64

case 1l: /* read */
start = MPI_Wtimel();
for(count = 0; count < NUM; count++)
max += *(pData + count*STRIDE);
finish = MPI_Wtimel();
break;
case 2: /* write */
start = MPI_Wtime();

for(count = 0; count < NUM; count++)
* (pData + count*STRIDE) = maxt+;

finish = MPI_Wtime();

break;

case 3: /* multiply with register */
start = MPI_Wtime();
for(count = 0; count < NUM; count++)
max *= *(pData + count*STRIDE);
finish = MPI_Wtimel();
break;
case 4: /* Divide with register */
max = (ATYPE) 100000;
start = MPI_Wtime();
for(count = 0; count < NUM; count++)
max /= *(pData + count*STRIDE);
finish = MPI_Wtime();
break;

} /* Operation Type Case */

alltime[i] = (finish - start -wtimel)*1000000

} /* Each iteration */

bsort(alltime);
dTotal = 0;

/* for (i=0; i< NITER; i++) */
/* printf("$f\n*, alltime(il]l); */

for (i=SITER; i< EITER; 1i++)
dTotal += alltime([i];

dTotal /= (EITER-SITER);

fprintcf (stdout, "$f usec, max = %f \n",
dTotal, (double) max);
fflush(stdout) ;
free(pData) ;
/* printf(ll****t*t****#l’ittt*x***i’t**\nll) ; * /
} /* Various strides */
} /* Number of elements */

MPI_Finalize();

65

A.2 Permutation Communication Code

/*tﬁi******ti**i*******ii*w*R**’r*t**t*tf*i***tqllitt*t**w*i*tﬁl‘*tt*t/

I* permutation.c: measure permutation communication time *!
/* By Jinwoo Suh xf
/*t***i*t*itt******t***************i******************‘r***********t*/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/time.h>

#include <mpi.h>

#define nloops 20

#define NumP 1024

#define INT sizeof (int)
#define MAX DATA_SIZE 16777216

double max_datal);
void print_min_data();

main(int argc, char *argvi(])

{
MPI_Group MPI_GROUP_WORLD;
MPI_Comm COoMM ;
MPI_Group Group;
MPI_Request req:;
MPI_Status status;
int TotalP, myrank, id, rc, ranks([NumP];
int tag, dist, dist2;
int run, loop, src;
int i, j., k., 1, m, n, cnt[10], dst;
int size, sz, idx;
void *in, *out;
double ST(128] [nloops], ET(128)[nloops], max, sum, min;
double TT[nloops], PT[nloops];
Tt */
i MPI Initialize */
/* ___ * /
rc = MPI_Init (&argc, &argv)i
rc |= MPI_Comm_size (MPI_COMM_WORLD, &TotalP);
re |= MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (rc !'= 0)

fprintf (stderr, “error init MPI and otaining task ID infol\n");
MPI_Comm_group (MPI_COMM_WORLD, &MPIHGROUP_WORLD];

for (i=0; i<TotalP; ++i) ranks[i]=i;

MPI_Group_incl (MPI_GROUP_WORLD, TotalP, ranks, &Group)
MPI_Comm_create (MPI_COMM_WORLD, Group , &COMM) ;
MPI_Comm_rank (COMM, &id);:

67

= (void *)malloc (MAX_DATA_SIZE);
= (void *)malloc (MAX_ DATA_SIZE) ;

(id == 0)
fprintf (stdout, " \n=====================Z=Z======== \n*);
fflush (stdout);

for(dist=1; dist<=TotalP/2; dist++){

if (id == 0) {
fprintf (stdout, “dist=%d\n", dist):;
fflush (stdout);

for(size=4; size<=MAX_DATA_SIZE; size *=2)({

MPI_Barrier (COMM);

src = (TotalP+id-dist)%TotalP;
dst = (id+dist)%TotalP;

for (loop=0; loop<nloops; ++loop) {
MPI_Barrier (COMM);

sT[0][loop] = MPI_Wtime ():
MPI_Isend (out, size, MPI_BYTE, dst, 100,
COMM, &req) ;

MPI_Recv (in, size, MPI_BYTE, src, 100,
COMM, &status) ;
ET[0] [loop] = MPI_Wtime ();
} /* loop */

/*-=—-— calculate time ----===--————=--————---———= £
MPI_Barrier (COMM);

if (id==0) f{
for(i=1; i<TotalP; i++){
MPI_Recv(&ET[ii[0].nloops,MPI_DOUBLE.i,
100,COMM, &status) ;
MPI_Recv(&ST[i][0],nloopS,MPI_DOUBLE,i,
100,COMM, &status);
}
for(j=0; j<nloops; j++) {
for(i=0; i<TotalP; i++)
TT{i]=(ET[(i+dist)%TotalP] [j]
-sT[i]1[4]1)*1000;
PT[j]= max_data(TT,TotalP):
}

print_min_data (PT,nloops);
else {

MPI_Send(ET.nloops,MPI_DDUBLE.0.100,CDMM):
MPI_Send(ST,nloops.MPI_DOUBLE.0.lUO.COMM]:

68

}

}

MPI_Group_free (&Group);
MPI_Comm_£free (&COMM);
MPI_Finalize ();

double max_data (double *TT,int cnt)

{

)

int L.9%
double max,min,sum, tl,t2;

tl = MPI_Wtime ();
t2 = MPI_Wtime ();
t2 -= E1;

max = TT[0];
for(i=1l; i<cnt; i++){
if(TT(i] » max) max = TT[i];
}
return(max-t2) ;

void print_min_data(double *TT, int cnt)

{

int. i,3;
double max,min,sum, tl,t2;

min = TT[0];
for(i=1; i<cnt; i++)/{

if(TT[(i] < min) min = TT(i];
)
fprintf (stdout, "%1f\n", min);
£flush(stdout) ;

69

A.3 Pingpong Communication Code

/#t*t******t********************t«i*it*t*t*ttt**t****wt*******r****t/
/* pingpong.c: measure pingpong communication time */
£ By Jinwoo Suh L
/******k*\l‘******‘!!**i**i!w!'*****t*ttttt*****t***********t**f*******/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/time.h>

#include <mpi.h>

#define nloops 20

#define NumP 1024
#define MAX DATA_SIZE 16777216
#define INT sizeof (int)

double print_min_data();

main(int argc, char *argv[])

{

MPI_Group MPI_GROUP_WORLD;

MPI_Comm COMM ;

MPI_Group Group;

MPI_Redquest redq;

MPI_Status status;

int TotalP, myrank, id, rc, ranks(NumP];

int tag, dist, dist2;

int run, loop, src, dst;

int i, F. k., L1, m, By

int size, sz, idx;

void *in, *out;

double ST(nloops], ET[nloops],max,sum,min;

double TT[nloops]:

L P S e e L
/= MPI Initialize */
e * f
rc = MPI_Init (&argc, &argv);

re |= MPI_Comm_size (MPI_COMM_WORLD, &TotalP);

rc |= MPI_Comm_rank (MPI_COMM _WORLD, emyrank) ;

if (re !'= 0)

fprintf (stderr, “"error init MPI and otaining task ID info\n"):
MPI_Comm_group (MPI_COMM_WORLD, &MPI_GROUP_WORLD) ;

for (i=0; i<TotalP; ++i) ranks(i]=i;

MPI_Group_incl (MPI_GROUP_WORLD, TotalP, ranks, &Group) ;
MPI_Comm_create (MPI_COMM_WORLD, Group, &COMM) ;
MPI_Comm_rank (COMM, &id);

in = (void *)malloc (MAX_DATA_SIZE);

70

out = (void *)malloc(MAX_DATA_SIZE);

for (src=0; src<TotalP-1; src++) (

for (dst=src+l; dst<TotalP; dst++) (
MPI_Barrier (COMM);

if (id == 0) {

fprintf (stdout, “src,dst=%d,%d\n", src,dst);
fflush (stdout);

}

for(size=4; size<=MAX_DATA SIZE; size *=2){
for (loop=0; loop<nloops; ++loop) {
MPI_Barrier (COMM);
if (id==src) (
ST[loop] = MPI_Wtime ();
MPI_Send (ocut, size, MPI_BYTE, dst, 100,
COMM) ;
MPI_Recv (in, size, MPI_BYTE, dst, 100,
COMM, &kstatus) ;
ET[loop] = MPI_Wtime ();
}
else if(id==dst) {
MPI_Recv (in, size, MPI_BYTE, src, 100,
COMM, &status) ;
MPI_Send (out, size, MPI_BYTE, src, 100,
COMM) ;
}
} /% loop */

/*-——— calculate time -----=————---—--—s—===—————= .4
if(id==srec) {
for(j=0; j<nloops; j++)
TT(j]=(ET(j]-ST[3j]) *1000;
print_min_data(TT,nloops) ;
}
}

MPI_Barrier (COMM);

MPI_Group_free (&Group) ;

MPI_Comm_free (&COMM) ;

MPI_Finalize ();

}

double print_min_data(double *TT,int cnt)
(

int: 1,35

double max,min,sum, tl,t2;

tl = MPI_Wtime ();
t2 = MPI_Wtime ();
t2 -= tl;

71

min = TT[(0];

for(i=1; i<cnt; i++)

if(TT[i] < min) min = TT[i];
fprintf(stdout, "%1f\n*, min-t2);
fflush(stdout) ;

}

72

A4 Scatter Communication Code

/*#**i*****!tt***w***x*tw!******t*x*****ttit*‘!*t***t***ﬁ‘tttw'l*k**f
i

¥l scatter.c: measure scatter communication time *r
/* By Jinwoo Suh *f
/W********************!*ﬁw*!*ti**t***t***********Rt**********f!*****/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/time.h>

#incliude <mpi.h>

#define nloops 20

#define NumP 1024
#define MAX_DATA SIZE 16777216
#define INT sizeof(int)

double print_min_datal();

main(int arge, char *argv(])

{
MPI_Group MPI_GROUP_WORLD;
MPI_Comm coMmM;
MPI_Group Group;
MPI_Request red;
MPI_Status status;
int TotalP, myrank, id, rc, ranks[NumP];
int tag, dist, dist2;
int run, loop, src, dst;
int i, Ju K 1i:m B3
int size, sz, idx;
void *in, *out;
double ST[nloops], ET[nloops],max,sum,min;
double TT[NumP] [nleops],TTT [nloops];
SR e *f
fix MPI Initialize i
it */
rc = MPI_Init (&argc, &argv);
rc |= MPI_Comm_size (MPI_COMM_WORLD, &TotalP);
rc |= MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
if (rc != 0)

fprintf (stderr, "error init MPI and otaining task ID info\n*);:
MPI_Comm_group (MPI_COMM_WORLD, &MPI_GROUP_WORLD) ;

for (i=0; i<TotalP; ++i) ranks([i]l=i;

MPI_Group_incl (MPI_GROUP_WORLD,TotalP,ranks,&Group);
MPI_Comm_create (MPI_CCMM_WORLD, Group, &COMM) ;
MPI_Comm_rank (COMM, &id);

in = (void *)malloc (MAX_DATA SIZE);

73

out = (void *)malloc (MAX DATA_SIZE);

for (src=0; src<TotalP; src++) (
MPI_Barrier (COMM);
iF (id == 0} {
fprintf (stdout, "src=%d\n", src):
fflush (stdout);

for(size=4; size<=MAX_DATA_SIZE/TotalP; size *=2)({
for (loop=0; loop<nloops; ++loop) {
MPI_Barrier (COMM);
ST[loop] = MPI_Wtime ();
MPI_Scatter (out, size, MPI_BYTE, in, size,
MPI_BYTE, src, COMM);
ET[loop] = MPI_Wtime ();
} /* loop */

/*---- calculate time ----——===————--—------=—=-- o
if(id==src) {
for(i=0; i<TotalP; i++)
if(i != src)
MPI_Recv (& (TT[1][0]),nloops*sizeof (float),
MPI_BYTE, i, 100,COMM, &status);
else
for(j=0; j<nloops; j++}
(i) (] = ET[3]:
for(i=0; i<nloops; i++)
for(j=0; j<TotalP; J++)
TT(4]1 (1] = TTIj)1(i] - ST(il;
for(i=0; i<nloops; i++) {
max = TT[0][i];
for(j=1; j<TotalP; J++)
if(TT(F] (1] >max)
max=TT[j] (1]
TTT[1i)=max*1000; /* msec */
}
print_min_data(TTT,nloops);
}
else (
MPI_Send (ET, nloops*sizeof (float), MPI_BYTE,

src, 100, COMM);

}

MPI_Barrier (COMM);
MPI_Group_free (&Group);
MPI_Comm_free (&COMM);
MPI_Finalize ();

}

double print_min_data(double *TT,int cnt)

{

74

ing 1,33
double max,min,sum, tl,t2;

tl = MPI_Wtime ();
£t2 = MPI_Wtime ();
£t2 -= tl;

min = TT(0];

for(i=1; i<cnt; i++)

if(TT[i] < min) min = TT(i];
fprintf(stdout, "$1f\n", min-t2);
fflush(stdout) ;

75

A.5 Broadcast Communication Code

/***************t**i*il'********t*****************************t***t**/

/* Dbroadcast.c: measure broadcast communication time */
fi* By Jinwoo Suh *y
/****i*****t*t*******!ti!*t*“*t'l"l'***‘it*i**ﬁ*********************ﬁ'ﬂ‘*“*/
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/time.h>

#include <mpi.h>

#define nloops 20

#define NumpP 1024
#define MAX DATA SIZE 16777216
#define INT sizeof (int)

double print_min_dataf();

main(int argc, char *argv(])

{

MPI_Group MPI_GROUP_WORLD;

MPI_Comm COMM;

MPI_Group Group;

MPI_Request req;

MPI_Status status;

int TotalP, myrank, id, rc, ranks[NumP];

int tag, dist, dist2;

int run, loop, src, dst;

int i, Jo k, L. . o

int size, sz, idx;

void *in, *oukt;

double ST(nloops], ET[nloops],max,sum,min;

double TT [NumP] [nloops],TTT[nlcops];

J * e m oo m oo —S s s oS m T L
/* MPI Initialize */
V1 TSI SRS S St L
rc = MPI_Init (&argc, &argv);

re |= MPI_Comm_size (MPI_COMM_WORLD, &TotalP);

re |= MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

if (rc != 0)

fprintf (stderr, "error init MPI and otaining task ID info\n");
MPI_Comm_group (MPI_COMM_WORLD, &MPI_GROUP_WORLD) ;

for (i=0; i<TotalP; ++i) ranks[i]=i;

MPI_Group_incl (MPI_GROUP_WORLD, TotalP, ranks,&Group) ;
MPI_Comm_create (MPI_COMM_WORLD, Group, &COMM) ;
MPI_Comm_rank (COMM, &id);

in = (void *)malloc(MAX_DATA_SIZE);

76

out = (void *)malloc(MAX_DATA_SIZE);

for (src=0; src<TotalP; src++) (
MPI_Barrier (COMM);
if (id == 0} |
fprintf (stdout, “src=%d\n", src);
fflush (stdout);

for(size=4; size<=MAX_DATA_SIZE/TotalP; size *=2){
for (loop=0; loop<nloops; ++loop) {
MPI_Barrier (COMM) ;
ST[loop] = MPI_Wtime ();
MPI_Bcast (out, size, MPI_BYTE, src, COMM);
ET(loop] = MPI_Wtime ();
} /* loop */

/*-———- galculate time --=====—————————==—-——————= */
if(id==src) {
for(i=0; i<TotalP; i++)
if(i != src)
MPI_Recv (& (TT[i][0]),nloops*sizeof(float),
MPI_BYTE,i,100,COMM, &status);
else
for(j=0; j<nloops; J++)
TT[i][j] = ET[]]:
for(i=0; i<nloops; 1i++)
for(j=0; j<TotalP; j++)
TT(§]1 (1] = TT(31[i] - ST[i]:
for(i=0; i<nloops; i++) |
max = TT(0][i];
for(j=1; j<TotalP: j++)
iE(TT(]] [i]>max)
max=TT(3j] [i];
TTT[i]=max*1000; /* msec */
}
print_min_data (TTT,nloops) ;
}
else (
MPI_Send (ET, nloops*sizeof (float), MPI_BYTE,
src, 100, COMM);

}

MPI_Barrier (COMM);
MPI_Group_free (&Group);
MPI_Comm_<free (&COoMM) ;
MPI_Finalize (});

}

double print_min_data (double *TT,int cnt)

(

int i, 3

7

double max,min,sum, t1,t2;

tl = MPI_Wtime ();
£t2 = MPI_Wtime ();
£t2 -= tl;

min = TT[0];
for(i=1; i<cnt; i++)

if(TT[i] < min) min = TT([i];
fprintf (stdout, "%lf\n", min-t2);
fflush(stdout) ;

78

A.6 Disk Operation Code

/*********‘***'*****it******t*iwt************il********************if

1% disk.c: measure disk read and write time *y
{* By Jinwoo Suh 4
/****t*******i***tt*********if*f"*******t*******it*t**********tt***/
#include <stdio.h>

#include <fcntl.h>

#include <time.h>

#include <mpi.h>

#define N 8388608 /* Data size range*/
#define M 131072 /* Data size range*/
#define NumP 1024
char s[5].,d[N];

main(int argc, char *argvl(])

{
MPI_Group MPI_GROUP_WORLD;
MPI_Comm COMM ;
int TotalP, myrank, id, rc, ranks([NumP];
long data_size,i,j,sum = 0;
int fd, fe, rep:;

double ST[1000], MT[1000], NT[1000], ET[1000];

/t ___ */
§* MPI Initialize *.f
/t ___ */
rc = MPI_Init (&argc, &argv);

rc |= MPI_Comm_size (MPI_COMM WORLD, &TotalP);

rc |= MPI_Comm_rank (MPI_COMM_WORLD, &myrank):

if (re '= 0)
fprintf (stderr, "error init MPI and otaining task ID info\n");
MPI_Comm_group (MPI_COMM_WORLD, &MPI_GROUP_WORLD) ;

printf("size of char = %d\n", (int)sizeof (char)}; fflush(stdout) ;
for (rep=0,data_size=N; data_size>=M; rep++,data_size-=M) {

for(i=0; i<data_size; i++)

d[il=rand()/10000;

£fd = creat("tmp*,0777);

ST[rep] = MPI_Wtime ();

write(fd, d, data_size):

MT[rep] = MPI_Wtime ();

close(fd);

for(i=0; i<data_size; i++)
d[i]=rand()/10000;

79

fd = open(*tmp",0_RDWR,0777);

NT[rep] = MPI_Wtime ();
read(fd, d, data_size);
ET[rep] = MPI_Wtime ();
for(i=sum=0; i<data_size; i++)
sum += dfi];
if (sum<0)
printf(* *);
}

for(i=0; i<rep; i++) {
printf("%f msec\n", (£loat) (MT[i] - ST[i])*1000);
fflush{stdout) ;

}

printf (*READ\n"); £fflush(stdout);
for(i=0; i<rep; i++) {

printf("%f msec\n”, (float) (ET[i] - NT([i])*1000);
fflush(stdout) ;

80

B Appendix lI: Detailed Results

81

Execution Time (usec)

—o— 1024 —s— 1536 2048 —w— 2560 —s— 3072 —e— 3584 —— 4096 —— 4508 ——5120 5632
6144 (G656 -—— 7168 —» - 7680 -4+ 8162

(a) Read Operation

Execution Time (usec)

e

123145678 ﬂ|D||IanlSiﬁI1'llwmﬂﬂﬂﬂ252577212‘3333‘31:134153173!:510
Stride

[—1536 —a—2048 2560 v M2 —a— 3584 —e— 40 —e— 408 ——5120 —— 5632 8144 0658
l TIEE - 7680 -a- B102 ——Glooa

(b) Stride Comparison

Figure 45: Processor-Memory communication: Read Integer
82

Execution Time (usec)

I - B B S . 4
Stride

6144 6656 ~—— 7168 —— 7680 —=— 8162

—+— 1024 —»— 1536 2048 —v— 2560 —a— 3072 —s— 3584 —— 4086 —— 4608 —— 5120 563j

(a) Read Operation

Execution Time (usec)

1 23456789101 t!'.l'llﬁ(B|T|BIIN!I22232‘25?627'&29!!!313?313415“37333“0
Stride

—— 1534 —a— 7048 25600 -~ 302 —m—3584 —a— W8 —— 4008 — 5120 — 5602 a1 Ba58
7188 - TEB0 - 8192 ——Gkoe

(b) Stride Comparison

Figure 46: Processor-Memory communication: Read Single
83

.
— e .r.-\-","-“—-—-Hi-—""“,)ﬂ—'—"‘\l""'_‘
2000 4 - i) R AN, ot ".1 w T
I i T ‘7-4._"*"1‘ F Al i . A
H .//\ _H_’ﬂ‘_" P S e — Y
| -~
n N
1§ AL
| i .
B 1500 1 \ 77 %
2 o £
> o —, P i
E -~
e |
= l-
8 0004 i
= - 4 _,P_v._./\—o—l—‘
3 L
o . N\ >
@ £ e
Ir.l i e i i W97 e e e R
500
]
I
Q 4= — T
N T S SRR SOOI TR S S N N
Stride
—e— 1024 —8— 1536 2048 —w— 2560 —g—3072 —e— 3584 —— 4096 —— 3608 —— 5120 5632
6l44 6656 —— 7168 —— 7680 —— 8102
(a) Read Operation
150 — |
i [
I
b
Ty \
S w-
= | 7
Q | |
E ' s
= iy [
c ,', r‘l 1 | ‘5'-
o | ¥
= 3 i
= /?‘;7’ ' Il
o - |
3 B0 4 g I |
w . s
| ‘ |
! 0
° 1

12 3 456 7 8B 91011121304 lE|B|7|U193)212232!25'&2?2829!!313]33!351373!39‘0
Stride

| —— 1536 —=—2048 7560 - - 072 —8—I584 —e— 4008 —4— 408 ——5120 ——— 5612 6144 6658
1 7968 - 7680 — 8192 ——5Skpe

(b) Stride Comparison

Figure 47: Processor-Memory communication: Read Double
84

Execution Time (usec)

Stride

1024 —=— 1536 2048 —w— 2560 —w— 3072 —e— 3584 —— 4090 —— 4608 ——5120 5632
6144 6656+ 7168 —»- 7680 —=— 8102 |

(a) Write Operation

Executlon Time (usec)
8

i

12345678 nwnquu15|a‘1||10mz1a::12£25=sz?252930:nnaa:uasxs.r:mwan

Stride

o

—e— 1536 = 2048 260 e WTT —m—I5BE —a— AODE e 08— 5120 —— 5632 Blad 656 |
TIEE . 7000 -u- 8102 ——Slope |

(b) Stride Comparison

Figure 48: Processor-Memory communication: Write Integer
85

Execution Time (usec)

FORC S I R T S
Stride

s
I
L
A
rl

r

@

s

—+— 1024 —s— 1536 2048 —w— 2560 —s— 3072 —e— 3584 —— 4006 —— 4608 —— 5120 5632
6144 6656 v 7168 —+— 7680 —a— 8162

(a) Write Operation

Execution Time (msec)

o

123 46676 0mll\zI]Il‘fslﬂﬂ‘l!ID?D?]ZZ)!IZSE‘H?BHJU!I:ﬂm!‘lﬁ:ﬂﬂumw
Stride

lfo—tm —a—204 7550 v X072 —m 0508 —a—A090 —— 4608 —— 0120 —— 5602 6144 6658

7168 oo 7680 —n- B192 = Siope

(b) Stride Comparison

Figure 49: Processor-Memory communication: Write Single
86

Execution Time (usec)

S O IR A

Stride

6144 6656 — 7168 —»-- 7680 —=—B192

—— 1024 —=a— 1536 2048 —w— 2560 —p— 3072 —e— 3584 —p— 4006 —— 4608 —— 5120 5532

(a) Write Operation

100 4

Execution Time (usec)

]
1234567829 |0|||2IJN‘515‘1‘!|BH’21222326252’273!29313‘&313‘15*31839‘0

Stride

—+— 1536 —»— 2048 TS0 v 2072 —a— 3504 —a— 4098 —— 4508 —— 56120 —— 5632 A1 Be58
TIEB - 7680 —~- 0102 ——Ghpe

{b) Stride Comparison

Figure 50: Processor-Memory communication: Write Double
87

Execution Time (usec)
g

Execution Time (usec)

:

LINCTNE U TR A RO IR I -
Stride

Za
*»

—+— 1024 —a—1536 2048 —— 2560 —— T2 —o— 3584 —i— 4096 —— 4608 —— 5120 5632
6144 6656 - 7168 - 7600 —=- 8162

(a) Multiply Operation

12345678 umnuuu|s|s|71lwzuz|22azlzszu‘nzsann:|:n:naa:s:n:n'auu-w

Stride

—e— 1536 -e— 048 2960 v 072 —a-05684 —a— 4008 b 4O e 5120 —— 5522 6144 G656
7168 . TEB0 -~-8152 ——Sk0e

(b) Stride Comparison

Figure 51: Processor-Memory communication: Multiply Integer

88

Execution Time (usec)

O I T - JR TS AR W S S - S T ST - - S R S
Stride

—+— 1024 —a— 1536 2048 —r— 2560 —n— 3072 —e— 3584 —— 4096 —— 4508 —— 5120 5632
6144 G656 -+ 7168 —w— 7680 -+ 8192

(a) Multiply Operation

Execution Time (usec)

12345678 nwumuxusm|11a1nmz1zz'|zlﬁmﬂazﬂwsunnﬂnnwmuw

Stride

—e— 1536 -a—2048 790 w3012 —ae0534 —a— AR —— 4608 ——5120 —5632 6144 . GESO
7168 —. THB) —~— 8192 ——B5lops

(b) Stride Comparison

Figure 52: Processor-Memory communication: Multiply Single
89

£

Execution Time (usec)

A
®

\'50;'\q¢.:5\°;l.:\\%¢‘c{brq‘?¢"rﬁ®'§:"?
Stride

—— 1024 —s— 1536 2048 —— 2560 —m— 3072 —e— 3584 —— 4066 —— 4508 —— 5120 5632
6144 G656 — 7168 —«-- TBBO —+— 8102

{a) Multiply Operation

100 4

Execution Time (usec)

] +
12345678 iII‘.l|1|2|J1Gl!‘!'l?l!II?OZ\&HZ‘2520213“33‘3235“15!’7!!3‘0

Stride

——1538 —»— 2048 360 -+ 072 -w—3584 —s—403 e A 5120 —— 5632 G144 G658
TIB8 . TEAO - 8192 ——5lopa

(b) Stride Comparison

Figure 53: Processor-Memory communication: Multiply Double
920

Execution Time (usec)

I G T O - S S 4
Stride

&
%]

—e— 1024 —=— 1536
G144 EE56 -

2048 —o— 2560 —s— 3072 —e— 3584 —— 4096 —— 4608 —— 5120 3832)
7168 < 7680 —+— 8182

(a) Divide Operation

Execution Time (usec)

(1]

122345672 I10“lZllllISIBIT\Olﬂmﬂﬂzﬂﬁﬁﬂﬂﬂﬂllﬂﬂﬂlﬁﬂﬂﬂﬂlﬂ

Stride

—— 1538 —=—2048

2560 .. D012 —u—3584 —a—d090 —e— 408 ——5120 — 5502 G144 o658

7188 . 7630 -~ 8192 ———Gkoe

(b) Stride Comparison

Figure 54: Processor-Memory communication: Divide Integer

91

Execution Time (usec)

Execution Time (usec)

"‘"""\‘\"’»"4‘4’¢'rﬁ>"£’i“'r&e'9v§=-§\@
Stride

—s— 1024 —8— 1536 2048 —n— 2560 —m— 3072 —e— 3584 —— 4096 —— 2608 —5120 5632
6144 B656 . 7168 —x - 7080 —a—B182

(a) Divide Operation

150 4

Q ‘
12345678 !Iﬂl\|z|:\l15|0|1|l|!?021&2!2‘252527282'113!&!!1‘35&!1’5!3!'0

Stride

[T y— T ——cey gy gy —— T
| mes o om0 oawz —soos

(b) Stride Comparison

Figure 33: Processor-Memory communication: Divide Single

92

Execution Time (usec)

P

T S IR T T B A A
Stride

—— 1024 —=—1536 2048 -~ 2560 —w—3072 —e—3584 ——4096 ——4608 —— 5120 5832
6144 6658 -~ 7168 .- 7880 - ~-B182

(a) Divide Operation

Execution Time (usec)

1 2345678 vwuu::nA|5|e11mwznz;azsnzs:ﬁ!‘fum:nmnnu:snnumm
Stride

STy — - —ey —g—T e P IRt B
TER . TEBO . a- BI92 SN B

(b) Stride Comparison

Figure 56: Processor-Memory communication: Divide Double
93

1000.00 T ; T T T T T r

100.00 | i
T

W

v

E

£ 10.00 |]
E

c

o

=

3

T 1.00 t 4
3

E

E

Q

Q

0.10 ¢ ¥

0.01

4 16 B4 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 57: Permutation communication results using 8 processors on SP

1000.00 1 T
100.00 &
)
@
E
g 10.00 |
=
c
2
8
‘E 1.00 ¢
=2
E
=
Q
5}
0.10 ¢
0.01 J

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 58: Permutation communication results using 8 processors on T3E

94

1000.00 T T T T T - T T

—— dist=1
= 100.00 ¢ —— dist=2 E
] dist=3
E — dist=4
g 10.00 +
=
(=
]
8
= 1.00 ¢ .
2 <
£ 7
Q
15]

VRTJ SE———

0‘01 1 1 " L 1 L 1 1 b
4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 59: Permutation communication results using 8 processors on 02K

1000.00 T T T T T . T T T T
/
100.00 L — dist=1 / 1

s : — dist=2 ;
o i
2 dist =3
E —— dist=4
"E’ 10.00 dist=5
= dist=6 /
5 dist=7 'd
-E dist=8
‘E 1.00 4
=
E
E
3

0.10 — p

0.01

4 16 64 256 1K 4K 16K B4K 256K 1M 4M 16M
Data Size (Bytes)

Figure 60: Permutation communication results using 16 processors on SP

95

1000.00 T T v

— dist=1
—— dist=2
dist=3

—— dist=4
dist=5

- dist=6
dist=7

—— dist =8

100.00 &

10.00

Communication Time (msec)

0.01

4 16 B4 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 61: Permutation communication results using 16 processors on T3E

moouo.oo! — —
f ,_/
10090.00, ¢ — dist=1 \ /
= — dist=2 |
e 1000.00 | dist=3 |
E — dist=4 |
2 | dist=5 i
= 10000 F | —— dist=6 ! i
g dist=7 }
3 10.00 | - dist=8]
[=
=2
E
g 1.00 | 1
(6]
R e—
o0t
0.01

4 16 B4 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 62: Permutation communication results using 16 processors on O2K

96

1000.00 T T T r T

100.00

10.00

Communication Time (msec)

0.10

0.01

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 63: Pingpong communication results using 8 processors on SP

1000.00 T T T 1 T T T T T T

—TF0= ;
100.00 ¢ [L E

— PO-PT7
—— P3-P5
— P3-F7
10.00 ,
1.00 | / .
0.10 -_/__/ §

0.01

Communication Time (msec)

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 64: Pingpong communication results using 8 processors on T3E

97

1000.00

100.00
Ty
2
£
g2 10.00
E
c
o
8
= 1.00
2
E
E
Q
[&]
0.10 E
0.01 { " . L : : i
4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

Data Size (Bytes)

Figure 635: Pingpong communication results using 8 processors on 02K

1000.00 f T

i
[
100.00 }

10.00

Communication Time (msec)

0.10

0.01 T : —
4 16 64 256 1K 4K 16K 64K 256K 1M 4aM 16M

Data Size (Bytes)

Figure 66: Pingpong communication results using 16 processors on SP

98

1000.00 v T T T T

10.00

Communication Time (msec)

0.10

0.01

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 67: Pingpong communication results using 16 processors on T3E

1000.00

100.00

10.00

Communication Time (msec)

0.10

_01 i i 1 i i & i i i i
2 4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 68: Pingpong communication results using 16 processors on 02K

99

1000.00 : ,

100.00 :? ’ |
Q 4 -
g P2
E — P3 4
g 10.00 | ! P5 v
£ P PG .
§ |—i 4
5 8
= 1.00 F r]
=2
g ;
£
s |
Q
0.10 F 4
i
i
0.01 —

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 69: Scatter communication results using 8 processors on SP

1000.00 ¢
—P0
100,00 + ‘
= — P
2 i P2 |
I : —— P3
g 10.00 | ! Ps K
= } P6
5 | — P7
? | - P8 2
Z 1.00 F]
2 H
E 1 /
£
(=] E
o S
0.10 F m// 5 J
‘—-——-_‘

0 14 16 64 256 1K 4K 16K B4K 256K 1M 4M 16M

Data Size (Bytes)

Figure 70: Scatter communication results using 8 processors on T3E

100

1000.00 T T T T T T

100.00 | PO / i
= —— P
2 P2
E — P3
2 10.00 | PS5
= P&
= — P7
E P8
= 1.00 F i
=
E s
E ;.”
o
[$]
0.10 F |
0.01

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 71: Scatter communication results using 8 processors on 02K

1000.00 T T T T T T T T T T i
100.00 ¢

10.00

1.00 ¢ |

Communicalion Time (msec)

0.01 S Y .
4 16 64 256 1K 4K 16K 64K 256K 1M aM 16M

Data Size (Bytes)

Figure 72: Scatter communication results using 16 processors on SP

101

1000.00

100.00

Communication Time (msec)

0.01

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 73: Scatter communication results using 16 processors on T3E

1000.00
100.00
10.00

1.00

Communication Time (msec)

0.01 - : - - - - - - -
4 16 64 256 1K 4K 16K B4K 256K 1M 4M 16M
Data Size (Bytes)

Figure 74: Scatter communication results using 16 processors on 02K

102

1000.00 T T T

—— PO
- 100.00 ¢ P1 i
2 s
a P2
E —— P3 A
2 1000 P5 /
= — P6
5 — P7
g PB A
£ 1.00 ¢ _
b=
E
£
o
(&]
0.10 | - |
0.01

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 75: Broadcast communication results using 8 processors on SP

1000.00 ————————————————
—— PO

- 100.00 + £

3 P2

E —— P3

2 1000 P5

E — P86

g —P7 o

= — P8 ;

= 1.00 b y |

g .

£

o

Q
0.10 ¢ |
0.01

4 16 B4 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 76: Broadcast communication results using 8 processors on T3E

103

1000.00 y T T r

100.00 4
)
w
w
E
g 10.00
=
c
g
é 1.00 b
=~
=
E
o
o
0.10 E
0.01 - - —_— 1
4 168 64 256 1K 4K 16K B4K 256K 1M 4M 16M
Data Size (Bytes)

Figure 77: Broadcast communication results using 8 processors on 02K

Iy
@ i
@) i
E .
£ /
= i
c :
8 ;
o H
© _
€
2
E
E
3
0.10 4
0.01

4 16 64 256 1K 4K 18K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 78: Broadcast communication results using 16 processors on SP

104

1000.00 i T
100.00 | i 4
g PS5
E —— P8)
g 10,00 P10 /
= — P12
§ — P14
E —— P16
= 1.00 - |
]
E
E
G
Q
0.10 ¥ 4
i .—-?.-.___-“"/
0.01 I J

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 79: Broadcast communication results using 16 processors on T3E

1000.00 —————————F———— T
100.00 + 4

T

3

E

g 10.00 |

E

c

8

8

E 1.00

2

E

£

Q

Q
0.10 & |
0.01

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M
Data Size (Bytes)

Figure 80: Broadcast communication results using 16 processors on O2K

105

Operation Time (msec)

Operation Time (msec)

250.0 T T T T T T

200.0 F G—) Write Time]
+ - - + Read Time
150.0 | B
100.0 + b
50.0]
0.0 T ? oniaca diaald
12 13 14 15 16
Data Size (MBytes)
Figure 81: Disk operation results on SP

250.0 |v'=‘-r‘--a-vi
i

200.0 + 3—=6) Write Time ’ 4
+ - -+ Read Time

150.0 ¢ i]

100.0

50.0 |

5 7 8 9 10 11 12 13 14 15 16
Data Size (MBytes)

01 2 3 435

Figure 82: Disk operation results on T3E

106

Operation Time (msec)

250.0 T T T
200.0 G—=) Write Time
+ - --+Read Time|
g
150.0 | g
100.0 | E
50.0]
0-0 (1 L 1

01 2 3 456 78 g 10 11 12 13 14 15
Dala Size (MBytes)

Figure 83: Disk operation results on O2K

107

16

C Appendix llI: Modified Subroutines

In this appendix, modified subroutines are shown.

C.1 OWN_PL Subroutine

subroutine own_pl

¢
c
c This subroutine defines ownership of nodes to processors and
c placement of that node in the processor.
(o)
c
include ‘ft.inc’
@
common / parall / noproc, myid, ndproc(ndlmx), ndlocl (ndlmx) ,
& ndglob(ndlmx), jbuf(ndlmx * 2)
common / grid / imax, jmax, kmax, numnpg, numnpo, numnpl,
& numell, x(ndlmx), v(ndlmx), z(ndlmx), fbc(ndlmx),
& be (ndlmx), hinit(ndlmx), hyd(ndlmx), ix(8, nelmx)
o
include ‘mpif.h’
c
dimension num(npmx)
é
c The global processor and local node arrays are distributed across
c DProCcessors.
(o
nedes = numnpg / nNoproc
if (mod (numnpg, noproc) .ne. 0) nodes = nodes + 1
[+
(o) Define mapping.
c
kplane = imax * jmax
nl = myid * nodes + 1
n2 = min0 (nl + nodes - 1, numnpg)
c
noproc_half = noproc/2
do n = nl, n2
k = (n - 1) / imax/jmax
kk = k/((kmax + 1)/2)
i =mod (n - 1, imax)
if (mod (imax, noproc_half) .eq. 0) then
ii = i / (imax/noproc_half)
else
ii = i/ (imax/noproc_half + 1)
end if
ndproci{n - nl + 1) = noproc_half*kk + ii
end do
cC
¢ Determine local node numbers.
c

108

9]

call MPI_BARRIER (MPI_COMM_WORLD, ierror)

do i = 1, noproc
num(i) = 0
end do
do i = 1, noproc
nl = (i - 1) * nodes + 1
n2 = min0 (i * nodes, numnpg)
numm = n2 - nl + 1

if (myid .eg. i - 1) then

do j = 1, numm
jbuf(j) = ndproc(j)
end do
end if
call MPI_BCAST (jbuf, numm, MPI__INTEGER, i - 1, MPI_COMM_WORLD,
ierror)

do n = nl, n2
ip = jbuf(n - nl + 1)
num(ip + 1) = num(ip + 1) + 1
nloc = num(ip + 1)
if (i .eqg. myid + 1) then
ndlocl(n - nl + 1) = nloc
end if
Define global node corresponding to nloc.
if (ip .eq. myid) then
ndglob(nloc) = n
end if
end do
end do

numnpo = num(myid + 1)

return
end

109

C.2 UPDADD Subroutine

subroutine updadd (var)

c
c
€ This subroutine updates and adds var for the ghost nodes.
c
c
include 'ft.inc’
c
common / parall / noproc, myid, ndproc(ndlmx), ndlocl(ndlmx),
& ndglob (ndlmx), jbuf(ndlmx * 2)
common / ghost / kbuf (nbufmx), ibuf(nbufmx, npmx)
common / buffer / prbuff(iprbuf), buff(ndlmx * 2 + 1)
c
include ‘mpif.h’
c
dimension istat (MPI_STATUS_SIZE)
dimension var(ndlmx), icount(npmx)
dimension sbuff(ndlmx*2 + 1), rbuff(ndlmx*2 + 1)
c
c Place all ghost data in every processor.
c
nphalf = noproc/2
c
c Step I - send to the RIGHT
c
nsend = 0
nrecv = 0
c
€ right-most processors, receive only
c
if (mod (myid, nphalf) .eq. nphalf - 1) then
ngh = ibuf(l, myid)
j =2
do while(j .le. ngh + 1)
ip = ibuf(j, myid)
if(ip .eq. myid) then
nrecv = nrecv + 2
end if
=3 + 1
end do
C
call MPI_RECV(rbuff, nrecv, MPI_REAL, myid - 1, 100,
& MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff(k*2 - 1)
var (nlocr) = var(nlocr) + rbuff(k*2)
end do
c
c left-most processors, send only
e

else if (mod(myid, nphalf) .eg. 0) then

110

(o]

ngh = ibuf(l, myid + 1)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eqg. myid + 1) then
nlocr = ibuf(j + ndghmx, myid + 1)
nlocs = ibuf(j + ndghmx*2, myid + 1)
nsend = nsend + 2

sbuff (nsend - 1) = nlocr
sbuff (nsend) = var(nlocs)
end if
j=3+1
end do

call MPI_SEND({sbuff, nsend, MPI_REAL, myid + 1, 100,
& MPI_COMM_WORLD, ierror)

middle processors, send & receive

else
ngh =
d=3
do while(j .le. ngh + 1)
ip = ibuf(j, myid)}
if(ip .eq. myid) then
nrecv = nrecv + 2
end if
j=j+l
end do

ibuf(l, myid)

ngh = ibuf(l, myid + 1)
j =2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eq. myid + 1) then
nlocr = ibuf(j + ndghmx, myid + 1)
nlocs = ibuf{j + ndghmx*2, myid + 1)
nsend = nsend + 2

sbuff (nsend - 1) = nlocr
sbuff (nsend) = var(nlocs)
end if
=3 #1
end do

call MPI_SENDRECV (sbuff, nsend, MPI_REAL, myid + 1, 100,
& rbuff, nrecv, MPI_REAL, myid - 1, 100,

& MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff({k*2 - 1)
var (nlocr) = var(nlocr} + rbuff(k*2)
end do
end if

111

n

(e}

n

(0]

&

Step II - send to the top

0
0

nsend
nrecv

1l

top processors, receive only

if{myid .ge. nphalf) then
ngh = ibuf(l, myid - nphalf + 1)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid - nphalf + 1)
if(ip .eg. myid) then
nrecv = nrecv + 2
end if
j=3+1
end do

call MPI_RECV(rbuff, nrecv, MPI_REAL, myid - nphalf,
MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff(k*2 - 1)
var (nlocr) = var(nlocr) + rbuff(k*2)
end do

bottom processors, send only

else
ngh =
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eqg. myid + nphalf) then
nlocr = ibuf(j + ndghmx, myid + 1)
nlocs = ibuf(j + ndghmx*2, myid + 1)
nsend = nsend + 2

ibuf (1, myid + 1)

shuff(nsend - 1) = nlocr
sbuff(nsend) = var(nlocs)
end if
j=3+1
end do

call MPI_SEND(sbuff, nsend, MPI_REAL, myid + nphalf,

MPI_COMM_WORLD, ierror)
end if

Step III - send to the upper diagenal

0
0

nsend
nrecv

upper diagonal, receive only

112

100,

100,

if (myid .gt. nphalf) then
ngh = ibuf(l, myid - nphalf)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid - nphalf)
if(ip .eg. myid) then
nrecv = nrecv + 2
end if
j=3+1
end do

call MPI_RECV(rbuff, nrecv, MPI_REAL, myid - nphalf - 1, 100,
& MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff(k*2 - 1)
var (nlocr) = var(nlocr) + rbuff(k*2)
end do

a

lower diagonal, send only

else if(myid .lt. nphalf - 1) then
ngh = ibuf(l, myid + 1)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eqg. myid + nphalf + 1) then
nlocr = ibuf(j + ndghmx, myid + 1)
nlocs = ibuf(j + ndghmx*2, myid + 1)
nsend = nsend + 2
sbuff(nsend - 1) = nlocr
sbuff (nsend) = var(nlocs)
end if
j=3+1
end do
call MPI_SEND(sbuff, nsend, MPI_REAL, myid + nphalf + 1, 100,
& MPI_COMM_WORLD, ierror)

end if

return
end

113

C.3 UPDATE Subroutine

subroutine update (var)

c
c
c This subroutine updates var for the ghost nodes.
c
c
include ‘ft.inc’
c
common / parall / noproc, myid, ndproc(ndlmx), ndlocl (ndlmx) ,
& ndglob(ndlmx), jbuf(ndlmx * 2)
common / ghost / kbuf (nbufmx), ibuf(nbufmx, npmx)
common / buffer / prbuff (iprbuf), buff(ndlmx * 2 + 1)
c
include ‘mpif.h’
c
dimension istat (MPI_STATUS_SIZE)
dimension var (ndlmx), icount(npmx)
dimension sbuff(ndlmx*2 + 1), rbuff(ndlmx*2 + 1)
c
nphalf = noproc/2
c
c Step I - send to the LEFT
c
nsend = 0
nrecv = 0
c
c left-most processors, receive only
c
if (mod (myid, nphalf) .eg. 0) then
ngh = ibuf(l, myid + 1)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eq. myid + 1) then
nrecv = nrecv + 2
end if
3 =3 +1
end do
od
call MPI_RECV(rbuff, nrecv, MPI_REAL, myid + 1, 100,
& MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff(k*2 - 1)
var (nlocr) = rbuff (k*2)
end do
c
c right-most processors, send only

else if(mod(myid, nphalf) .eg. nphalf - 1) then
ngh = ibuf(l, myid)
=2

114

0

(o]

do while(j .le. ngh + 1)
ip = ibuf(j, myid)
if(ip .eq. myid) then
nlocs ibuf (j + ndghmx, myid)
nlocr = ibuf(j + ndghmx*2, myid)
nsend = nsend + 2

sbuff (nsend - 1) = nlocr
sbuff (nsend) = var(nlocs)
end if
i=3 +1
end do

call MPI_SEND(sbuff, nsend, MPI_REAL, myid - 1, 100,
MPI_COMM_WORLD, ierror)

middle processors, send & receive

else
ngh = ibuf(l, myid + 1)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eq. myid + 1) then
nrecv = nrecv + 2
end if
j=13+1
end do

ngh = ibuf(l, myid)
i = 3
do while(j .le. ngh + 1)
ip = ibuf(j, myid)
if(ip .eq. myid) then
nlocs ibuf (j + ndghmx, myid)
nlocr = ibuf(j + ndghmx*2, myid)
nsend = nsend + 2

sbuff(nsend - 1) = nlocr
sbuff (nsend) = var(nlocs)
end if
j=j+l
end do

call MPI_SENDRECV(sbuff, nsend, MPI_REAL, myid - 1, 100,
& rbuff, nrecv, MPI_REAL, myid + 1, 100,
& MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff(k*2 - 1)
var (nlocr) = rbuff(k*2)
end do
end if

Step II - send to the bottom

115

(3]

0

0

a

nsend
nrecwv

imn n
[= I =]

bottom processors, receive only

if (myid .lt. nphalf) then
ngh = ibuf(l, myid + 1)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eg. myid + nphalf) then
nrecv = nrecv + 2
end if
323 % L
end do

call MPI_RECV(rbuff, nrecv, MPI_REAL, myid + nphalf,
MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff(k*2 - 1)
var (nlocr) = rbuff (k*2)
end do

top processors, send only

else
ngh =
j =2
do while(j .le. ngh + 1)
ip = ibuf(j, myid - nphalf + 1)
if(ip .eqg. myid) then
nlocs = ibuf(j + ndghmx, myid - nphalf + 1)
nlocr = ibuf(j + ndghmx*2, myid - nphalf + 1)
nsend = nsend + 2

ibuf (1, myid - nphalf + 1)

sbuff(nsend - 1) = nlocr
sbuff (nsend) = var(nlocs)
end if
j = 3 &1
end do

call MPI_SEND(sbuff, nsend, MPI_REAL, myid - nphalf,
MPI_COMM WORLD, ierror)
end if

Step III - send to the diagonal

0
0

nsend
nrecv

bottom diagonal, receive only

if (myid .lt. nphalf - 1) then
ngh = ibuf(l, myid + 1)

116

100,

100,

j o= 2
do while(j .le. ngh + 1)
ip = ibuf(j, myid + 1)
if(ip .eqg. myid + nphalf + 1) then
nrecv = nrecv + 2

end if
j=3+1
end do
c
call MPI_RECV(rbuff, nrecv, MPI_REAL, myid + nphalf + 1, 100,
& MPI_COMM_WORLD, istat, ierror)
do k = 1, nrecv/2
nlocr = rbuff(k*2 - 1)
var (nlocr) = rbuff(k*2)
end do
o
e top diagonal, send only
&
else if(myid .gt. nphalf) then
ngh = ibuf(l, myid - nphalf)
j=2
do while(j .le. ngh + 1)
ip = ibuf(j, myid - nphalf)
if(ip .eq. myid) then
nlocs = ibuf(j + ndghmx, myid - nphalf)
nlocr = ibuf(j + ndghmx*2, myid - nphalf)
nsend = nsend + 2
sbuff (nsend - 1) = nloecr
sbuff (nsend) = var(nlocs)
end if
jo=3 % 1
end do
(=
call MPI_SEND(sbuff, nsend, MPI_REAL, myid - nphalf - 1, 100,
& MPI_COMM_WORLD, ierror)
end if
c
return
end

117

