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In this paper we present a framework that enables the computation of ranges of arrival,
transition, and required times - each transition (rising or falling) at each circuit line, for a
given sequence of two partially specified vectors. At one extreme where the vectors are
completely unspecified, this framework becomes identical to static timing analysis (STA).
At the other extreme, when the vectors are completely specified, this framework performs
timing simulation (TS). Our key motivation for developing this framework was to reduce
the amount of search required by any test generator that uses timing information. During
test generation for a target, values are specified incrementally and this framework enables
refinement of timing. We have demonstrated elsewhere [1] that this significantly acceler-
ates test generation. In this mode, the proposed framework is said to be performing incre-

mental timing refinement (ITR).

1. Introduction

Static timing analysis (STA) [2] as well as timing simulation (TS) are both integral
parts of validation of timing of a circuit. In the former case, minimum and maximum val-
ues of transition, arrival, and required times are computed at each circuit line, for the uni-
verse of all possible sequences of two vectors. In the later case, computation is performed
for a given sequence of two completely specified vectors and, if hazards are ignored, then

each range becomes a point.



An intermediate timing analysis situation arises during timing-oriented test generation
[3][4][5]. In these test generations, timing of events must satisfy certain conditions for a
sequence of two/three vectors to be a test for the target. Due to this reason, timing of tran-

sitions are considered as an integral part of test generation.

Test generation for a target fault begins with a sequence of completely unspecified
vectors. At this stage STA can be performed to determine the timing ranges of transitions.
As test generation proceeds, specific logic values are successively assigned at circuit
inputs. Since the application of specific logic values reduced the set of sequences that can
be applied, a timing analysis method that can take advantage of this constraints improved
by these logic value assignments can help narrow the timing ranges. We call such a gener-
alized timing analysis approach incremental timing refinement (ITR). We have demon-
strated elsewhere that incremental timing refinement helps significantly reduce the search

required during timing-oriented test generation.

In the following, we present a new framework that encompasses STA, ITR, and TS.
The development of such a framework requires delay models for gates that are more accu-
rate than the pin-to-pin delay models used for STA (and expressed in the standard delay
format - SDF [6]). In addition, the delay model should have certain characteristics that
enable identification of the combinations of transition and arrival times at a gate’s inputs
that lead to a particular extreme for a timing range at its output. In the following we
present an enhanced delay model that has these characteristics. This is followed by the

development of a STA and an ITR approach that uses the new delay model.

The proposed delay model is compared with many existing models and is shown to
accurately capture the effect of many delay phenomena over a wide range of device sizes,
loads, transition times and skews (differences between arrival times) of transitions at gate

inputs. This effectiveness of ITR is then demonstrated.

In Section 2, previous researches on delay models and static timing analysis are
reviewed. In Section 3, the approach to develop our delay model is introduced with the
assumptions validated. In Section 4, operations for static timing analysis is developed on
our delay model. In Section 5, the developed operations are extended to incremental tim-

ing analysis. Experiment results are shown in Section 6.



2. Previous Researches

2.1 Delay Models

Simulators of digital circuits have been developed for different accuracy/computation
cost trade-off. Timing simulators [7](8] generate voltage waveforms more efficiently (less
time) than SPICE-like circuit simulators [9], but are less accurate. Delay calculators are

very efficient in determining circuit delay.

Several approaches for delay calculation have been developed. Resistance-capaci-
tance (RC) based systems [10] model a transistor as a resistance charging/discharging a
capacitance. Equation solving systems [11] solve simplified circuit equations while simu-
lating a circuit. Analytical delay function systems [12] substitute input parameters into pre-
solved simplified delay equations. Due to the simplicity of these equations, analytical
delay function systems developed to date do not provide a sufficient degree of accuracy.
Empirical delay based systems pre-characterize primitive circuit elements and store the

information in lookup tables [13][14][15][16] or using empirical delay functions [17].

To accurately model the effects of simultaneous input transitions [16][17]1{18][19],
both input transition time and input skew must be considered. The transfer function for
modeling transition delay through an inverter is relatively straightforward. To model the
effects of multiple input transitions at a gate is quite complex. Often this problem is
mapped into an “equivalent” inverter problem where the multi-input gate is modeled as an
“equivalent” inverter, and the multiple input transitions are mapped into a single transition
at the inverter’s input. In some approaches researchers have obtained an equivalent
inverter for a gate by replacing (collapsing) parallel transistors by a single transistor
whose width is the sum of the widths of the transistors in parallel. In [17] and [18], the
authors provided better models for finding an equivalent inverter, but their models can
result in significant errors because input transition time and input skew are ignored in

some situations.

A table lookup method considering simultaneous switches is proposed in [16]. In addi-
tion to the large amount of simulation effort required for building the tables, the input vari-

ables to the table are not independent of others.



2.2 Static Timing Analysis

In this paper we propose a new method for delay calculation to handle simultaneous
to-controlling transitions. Considering the same input variables as in [16], our method
finds more accurate empirical formulas than that in [17] and [18], and have no significant
errors in any special cases. The model has been validated using arbitrary skews over a typ-

ical range of input transition times.

Calculating the timing requirements forward and backward, static timing analysis
(STA) [2] provides vector-independent min-max timing range for rising and falling transi-
tions on each line in a circuit. The accuracy of STA depends on the timing model used.
Although traditional timing/circuit [7][8][9] simulators and delay calculators [10]~[19]
provide various timing models, they can only handle fully specified input vectors. Unable
to apply all possible fully specified vectors to these timing models, STA can not use them

to provide more accurate timing information.

By identifying the worst case corner for each quantity computed, we developed STA’s
forward and backward calculation methods on our timing model, and so provide a more

accurate STA system.

Since STA considers the input vectors as fully unspecified, realistic timing ranges
should be more specific when the input vectors are partially/fully specified. Incremental
timing refinement (ITR) [S] starts with the timing information provided by STA, and
refines these data as input values become more specified. For each quantity to be com-
puted, we classified all possible timing assumptions, and refined the timing calculation
methods on STA. Our ITR provides refined min-max timing information for partially

specified vectors.

3. Proposed Delay Model

A NAND gate with output Z and two inputs X and Y is used as the example for illus-

trating the definitions. Here Z represents the gate output and also the gate. The controlling

value of a multi-input gate Z, CVZ, is the value when applied to any of the gate's inputs,



completely determines the value at its output. In the two-value logic system, the non-con-
trolling value of a gate Z, -E‘_/.Z, is the complement of its controlling value. The to-con-

trolling transition at an input of Z is denoted as a sequence of values <CVZ, CV%>. If the
to-controlling transitions occurs at one or more inputs of a gate, and the gate’s non-con-
trolling value is applied to its remaining inputs, then the transition at the gate output is

called a to-controlling response. To-non-controlling transition and response are
defined similarly. Transition time (TX,,) of a transition tr, where tr € {R, F}, on line X is
the time required for a rising transition (R) to go from 0.1Vdd to 0.9Vdd and from 0.9Vdd

to 0.1Vdd for a falling transition (F). Arrival time (Ax,,) of a transition zr on line X is the
time when the voltage at the output reaches 0.5 V4. The skew (6%Y) between two transi-
tions on line X and Y is AY,, - AX,, . The to-controlling gate delay function dZ,, ,

defined as AZ,, - min(Ax,—, , AY7), is the gate delay of Z, where the output transition tr €

{R, F} is a to-controlling response and R = F, and F = R. Pin-to-pin delay from X to Z is

the gate delay of Z when Y is steady at non-controlling value and a transition is applied on

X.d% X,, is the pin-to-pin delay function from X, an input of gate Z, to Z, where the output
transition is ¢r. The to-non-controlling gate delay is defined as AZ,, - max(Ax; , AY,-, ,
where AZ,,, the latest output arrival time computed through pin-to-pin delay, is max(AX,-,
+ dZ'X,, LAY+ dZ'Y,,). To-controlling transition time function tZ,, and to-non-control-

ling transition time function t5 X _are defined similarly.

3.1 Delay Phenomena
3.1.1 Simultaneous switching

SDL [6] provides pin-to-pin delays, i.e., delay from one input pin to the output pin,
assuming all side-inputs are steady and thus is not accurate for simultaneous transitions
with small skew values. For a two-input NAND gate, the delay when a single input has a
falling transition is larger than that when both inputs have simultaneous falling transitions,
since in the latter case the output is charged via multiple PMOS transistors (Figure 1). A

delay model is developed to capture this phenomenon. Given the input skews and transi-
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tion times of a gate, our model computes gate delay and output transition time by formu-

lating timing functions using empirical results.
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FIGURE 1. Single vs. multiple to-controlling-value transitions at gate
inputs.

To explain the speed-up caused by simultaneous falling transitions in Figure 1, we plot

the to-controlling gate delay as a function of &%Y for some fixed TXF and TYF, where
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FIGURE 2. Rising delay of two-input NAND gate as a function of §%:Y
and its linear approximation.

§%Y = AYF - AXF (Figure 2). The speed-up caused by the simultaneous switches is signif-
icant only when 18%Y| is small. When |6%Y| is very large, the delay is the same as pin-to-
pin delay. A linear approximation is shown in Figure 2. Two transitions to the same value

on X and Y are called 8-simultaneous if SYR < §%Y < SXR. Output response is speeded

up by multiple input transitions only if input transitions are §-simultaneous.



3.1.2 Input positions

Let n be the number of inputs in the NAND gate and pX the position of input X in the
serial chain (Figure 3). The position of the input closest to the output is defined as 0.
According to SPICE simulations, the pin-to-pin rise delay of 5-input NAND gate when a
falling transition is applied to the input position 4 to the output may be 50% larger than
that at input position 0. The reason is that the pull-up transistor also needs to charge the

source/drain capacitances of the serial transistors in the pulldown, that are conducting to

the output.
n=3
Output
p =0 X
p=1 vy
pV=2 W

FIGURE 3. Number of inputs and input positions.

3.2 Timing functions (for a two-input NAND gate)

During test generation, all circuit parameters (e.g., device sizes and loads) remain
fixed. In contrast, timing parameters (e.g., arrival times, transition times) may change. So
the delay and transition times for a two-input NAND gate can be represented by functions
of timing variables. As &-simultaneous to-controlling transitions have a much greater
impact on delay than §-simultaneous to-non-controlling transitions, we hence enhanced
the classical delay models for simultaneous to-controlling transitions and use pin-to-pin

delay model for to-non-controlling transitions.

We hence characterized a gate’s timing behavior via signal arrival times and transition
times. Given the arrival times and transition times of transitions at a gate’s inputs, we
compute the gate delay and output transition time. The output arrival time of a gate is

computed using the input arrival times and gate delay.

We only consider the cases where all inputs of a gate have either non-controlling val-

ues or transitions to the same value. The reason is that the non-trivial output response



caused by input transitions to opposite values at gate inputs are either (a) two separate
transitions in opposite directions that can be processed by separately considering the
response of to-controlling transitions and to-non-controlling transitions on the inputs of a
gate, or (b) glitches where gate delay and output transition time are usually not the param-
eters of concern [4]. The gate delay and output transition time of a two-input NAND gate

is represented by timing functions defined below:
Fall delay function (from input pin X): a2 xF(TXR)
Fall time function (from input pin X): t2 XF(TXR)
Rise delay function for two simultaneous input switches: dZR(TX , TYF , 8%Y)

Rise time function for two simultaneous input switches: tZR(TXF , TYF , 8%Y)

AIXR dZ X (TX) AIZF AX A%y

S1 AYF' JdY
TTX —>: L—
R L}
@ §%Y (b)

FIGURE 4. (a) Fall delay function and (b) rise delay function.

3.3 Trends with Respect to Single Variables

The relations between output variables and each input variable for a two-input NAND

gate (Figure 1) is first explored in Figure 5.

For fixed §%Y and TY,,, the gate delay as a function of TX,, may be either (1) mono-

tonically increasing or (2) bi-tonic (monotonically increasing and then monotonically

decreasing in this case). In case (2), the pin-to-pin delay may become negative for large
TX,, .This bi-tonicity is due to the fact that the input transition starts to pull up (down) out-
put voltage before the input transition arrives, i.e., reaches 0.5Vdd. Effective fn/Bp ratio

X_ dZ,X

determines which shapes the T - . curves take. Below we treat this relation as (2),

because (1) is a special case of (2) with the curve’s peak at infinity. Output transition time
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FIGURE 5. Timing functions v.s. input variables.

will always increase as TXtr increases. Delay and output transition times have similar

shapes with respect to skew. The minimal delay point is always at 8%Y = 0, but the mini-

mal transition time point is not.

3.4 Finding Empirical Formulas

d% XF ,d% XR L X and t& XR are derived as they are in SDL. For small skew, dZg

and tZg are constructed via simulation and curve fitting. dZy, is constructed as a function

of input skew by fixing other variables. This function is represented by a V-shape and the

expressions for the three vertices of the triangle are determined in term of input transition

times (see Figure 2). So dZ,, finally becomes a function of input transition times and input
g R y P P

skew. The general forms for the formulas of timing functions are found by curve fitting on

empirical results.

The V-shape function has three important points (SOR, DOR), (SXR, DXR), and (SYR,
DYR) shown in Figure 2. Here SOR = 0, DOR is the minimal delay caused by simulta-

neous transition TXF and TYg SXR is the minimum skew 8%Y such that transition on Y
does not affect the gate delay for fixed TXF and TYF. DXR is the delay caused by a single

transition on X with transition time TXF . SYR and DYR are defined similarly. Here DOR
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and SXR are functions of TXF and TY . DXR is a function of TXF. We determined the

general forms of DOR, SXR, and DXR from the experimental data, performed curve fit-

ting, and validated the following expressions via simulation.

DXR(TXp) = K;o*(T¥p)? + K *T¥ + K5

DOR(TXg, TYp) = Ko (TX) 34K ¥ (Ko *(T Y ) 24K p3)+K o4, and

SXR(TXg, TYE) = Kag*(T¥p)?+K 3 H(T Y p) 4K TX TV K 35 T p+ Ky * TV R +K s

Here the gate delay is defined with respect to the arrival time of the earliest transition
at the gate input. tZR is constructed similarly with dZR except that SOR for tZR may be

non-zEro.

3.5 Validation of the Approximation

In previous sections, we stated that SOR = 0 and used the V-shape approximation for

dZR—SX*Y curves. Now we validate these two assumptions.

Theorem 1: The minimal delay point in function d%x(TXg , TYg, §%Y) for NAND gate Z
is always at 8%Y = 0 for all fixed TXg , T'E.

Proof: The Proof of this and the subsequent results can be found in [20].

(a) AXp < AV

Compare two cases of simultaneous switches. In case 1, the transition time and arrival
time of the transition on X (TranX) and Y (TranY) are AXF and TXF and AYF and TYF ,
respectively. In case 2, the same transition, TranX, is applied to X. The transition on Y

(TranY’) has a smaller arrival time AYF’ and same transition time TYF such that AXF <

Ay < AYL

AXF < AYF’ < AYF =0< SX’Y < SX’Y, where SX'Y = AYF - AXF .



Since TranX is the earlier transition, delay is computed as AZR - AXF for both cases.

Because AYF < AYF , the transition TranY’ causes the PMOS transistor with input Y to

help pull the output high earlier than TranY (both have the same transition time). If output
rising transition has not crossed 0.5Vdd when TranY’ starts to pull up the output voltage,
then delay of case 2 will be smaller than that in case 1. Otherwise, both TranY and TranY’

do not affect gate delay and the delay for case 1 and case 2 will be identical.
So d%(TXg, TYg, 5Y) < d%(T¥p , TV, 8%Y) for 0 < 85 < 8% | v %Y
Since the statement above is true for arbitrary large 8% , d%g(TX , Vg, §%:Y)
monotonically increases for V §%Y > 0.
() AXg > AYE: Similarly, dZ(TXg, TYE , 0) < dZ_(T%g, TYg, 8%Y) for v 8% ¥ <0.
() AXp = A¥g: 8% = 0; a4 (TXg, TYg, %Y) = d_(T* , T'E , 0).
By (a), (b), and (c), it is proven that the minimal delay points in SX'Y-dZR curve is

always at §%Y = 0.

Theorem 2: The V-shape approximation in Figure 2 can capture the general shape of

dZo(TXg , TYE, 8%°Y) for all fixed values of TXg and T¥g .
Proof:

For an arbitrary fixed TYg, we can always find TX1, a value of TXg, such that
DXR(TX!'p) = (-0.5 - Vy/Vgg) T (see Figure 6).

(TXIF is defined such that for 8%Y = 0, when transition on Y reaches its threshold V44

- Vinp Output has already risen to 0.5V 44, so the gate delay is not affected by the transition

on Y. TX!g is usually quite large and DXR(TX!g) <0.)
Three possible cases are shown in Figure 7.

(a) For the case TXg> X
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SYR 0 5%, Y 0SxR §%Y SYR OSXR 8% Y
(@) TXp > TXI; (b) T*s SDYR(TYE) * Vo (-0.5-Vy)  (©)else
FIGURE 7. §%Y - dZ; curves for three possible cases with fixed T* and T
When %Y > 0, d%p(T%g, TYg, 8%Y) = DXR(TXR) because before the transition on Y
crossed its threshold and start to pull up output Z, Z has already reached 0.5V, , so the

transition on Y does not help speed up the output transition at all.

When §%Y <0, dZg(T%g , TV, 8%Y) = AZ; - AYE. (transition on Y crosses 0.5Vy
earlier than that on X does).
If %Y «< 0, Z has reached 0.5V4y before transition on X crosses its threshold,

d2x(T%g, TYg, 8%Y) = DYR(TY) is a constant.
there exists SYR < 0 such that d%(TXg, TYg, SYR) = DYR(TYp) and d%R(T%g, TY
, SYR*) < d%x(T%g, TYE, SYR) (See Figure 7 (a))

for V SYR’ that satisfies SYR < SYR’ < 0, dZR(TXF , TYF, SYR’) monotonically
decreases as SYR’ increase because the earlier the transition on X arrives, the more it will

help on pulling up the output Z, that decreases the delay defined as AZ R- AYF.



So the delay function dZR(TX , TYF , 8%Y) can be approximated by two horizontal

lines connected by a ramp.
(b) For the case TX; < DXR(TYE) * Vgl (-0.5 - Vinp)
The curve is similar to (a) as shown in (Figure 7 (b))
(c) For the case DXR(TYE) * Vygf (-0.5 - Vi) < TXp < TX !¢ (Figure 7 (c))
We divide it into two cases:
<1> the flat segment for %Y < SYR and §%Y > SXR, and
<2> the monotosity of dZg(T*g , TYg , 8%Y) for SYR < 6%Y <0 and 0 < §%Y < SXR

Both cases can be obtained by methods similar to Theorem 1 and Theorem 2(a).

In all the three cases (a), (b), and (c), dZR(TXF, TYF, SX'Y) can be captured by V-shape

linear approximation.

3.6 Extended Model
3.6.1 Considering Input Positions

In the previous section, a model for a two-input NAND gate is presented. Here this

model is expanded to deal with NAND gates with more than two-inputs.

To consider number of inputs and input positions in our model, DXR is redefined as a
function of TXF, n, and px. Experimental results show the following form.

DXR(T*g, n, p¥) = Kyg*(TXp)? + Ky *T¥ + Kag*n + Kgg*p™ + Ky,

A function Teqv is defined to convert the transition time at position pX of an n-input

NAND gate to its equivalent transition time that causes the same delay at position 0 of 2-

input NAND gate (assume all transistors are of the minimum size.), i.e., DXR(TXF , N,

pX) = DXR(Teqv(TXg, n , p%), 2, 0) . We find

13



Teqv(TXg, n, p¥) = K5 - [(TXp)? + K5 *TXp + Ksp*n + Ks*p™ +Ks0)]' .

We use Teqv(T*g, n, p¥) and Teqv(TYF ,n,pY) to substitute T and TYg in formu-
las DOR and SXR. Then we perform curve fitting again to obtain the new coefficients. So

number of inputs and input positions are incorporated into our model.

3.6.2 Considering More Simultaneous Transitions

Here the delay on simultaneous to-controlling transitions is interpreted as other simul-

taneous input transitions help reduce the delay caused by the earliest input transition. We
calculate this speedup caused by each later transition using dZR(TXF, TYF, &%Y), in the

sequence according to their arrival time. In cases where multiple later input transitions
participate the speedup, the actual speedup due to each transition is a fraction of speedup
calculated above. This fraction is a function of (a) the pin-to-pin delay of the earliest input,

and (b) the total speedup caused by the later input transitions considered previously.

4. Static Timing Analysis on Our Delay Model

Static timing analysis provides min-max timing ranges for each line in a circuit for
both rising and falling transitions. The ranges are derived independent of input vectors,
and represent bounds on minimum and maximum delay values over all pairs of vectors. In
timing analysis (Figure 8) arrival times (A) and transition times (T) at a gate’s output are
calculated based on these values at gate inputs. These values are computed via a forward
traversal starting at the primary inputs. The required time (Q) at each input of a gate is cal-
culated based on that at the gate’s output. The required times are hence computed via a
backward traversal starting at primary outputs. If the arrival time range does not overlap
with the required time range for the rising/falling transitions at a line, then the given tim-
ing requirements cannot be satisfied and a delay error is found. Delay transfer functions
for forward and backward calculations in timing analysis are defined in the proposed
model. The min-max ranges in the proposed timing analysis are due to the unspecified
input values, pulses, as well as approximations that ignore data dependencies caused by

fanouts and reconverges. In our current delay model that handles only transitions in the

14



same direction at the inputs of each gate, pulses are ignored. Hence, if all input values are

specified, timing ranges become points.

—] Calculate arrival and
transition times |
Given arrival and — Given
trapsmon times — ] >0- required times
at inputs —
—] / at outputs
] Calculate
required times

Combinational Block

FIGURE 8. Overall structure of timing analysis.

4.1 The Worst Case Corners for Min-max Ranges

We developed STA’s delay transfer functions on a two-input NAND gate based on our
delay model. In our min-max range representation, the timing windows in [5] are used and
shown in Figure 9. The earliest/latest arrival times and the shortest/longest transition times
of rise/fall transitions are recorded for calculating the timing information for next stage.

The smallest (largest) arrival time of falling (rising) transition on line X is represented as

AXF, S (AXR .1)- Transition and required times are represented similarly.

o Arrival time (A) and transition time (T) -- Rise/Fall Smallest/Largest

1 11 | | |

TN N TN
o — :
A¥ps  TXgs e A%pL Line X

o Required time (Q) for timing analysis-- Rise/Fall Smallest/Largest
I ]

AN 2\

1
QXE S QXF.L
FIGURE 9. Timing information used in our method.

The key issue of min-max timing calculation is to identify the worst case corners for

AZ,, ,TZ, ,and Q%;, where tr € {R, F}, based on the characteristics of the delay model,
‘given the min-max timing ranges of X, Y, and Z. The relations between output variables

and input variables in Section 3.3 help identify the worst case corners. How to use this
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information to identify the worst case corners is shown in the rest of Section4 and

Section 5.

4.2 Calculation of Arrival and Transition Times

4.2.1 for Output Falling Transition

JRERE L

FIGURE 10. Possible input combinations for output falling transition.

Given the arrival and transition times at a gate’s inputs, we calculate the corresponding
quantities for the gate’s outputs. The arrival time for output falling transition is associated
with input rising transitions. Recall that pin-to-pin delay is used for to-non-controlling

responses. The arrival times and the transition times for output falling transitions are:
A%gs = min [A¥g s + min [@d2*g(Tg 9), 4% Xp(T¥R ],
A'g s+ min [d5YR(TVg g), Y R(TYR DII.
A%gy =max [A%py + dZXp(TX ), A'py + dZYR(TY R
where TX,R = TXR, max:  if TXR, max € (TXR,S, TXR,L);
=Ty, else if 4% Xp(TXg ¢) > 4% Xp(T¥R 1)
= TXR,L , otherwise.

Here, TXR mmay is the value of TXy that maximizes d% Xg(TXR). TYR pax is defined

similarly.
TZgg = min [tZ Xg(T%R o), t2 YR(T R 9)).

T2y = max [t2 Xp(TX ), t& V(TR D).
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FIGURE 11. Possible transition time min-max range in TiR-dZ’ iF curve.

The gate delay from X to Z is minimized when TXR is either minimal or maximal
(because dg is bi-tonic with respect to TXR, as shown in Figure 5(a)). AZF is smaller if

AXR is smaller.

AZF is maximum when both the input arrival times and the gate delay are maximal.

The maximal gate delay may occur when the input transition times are (a) maximal, (b)
minimal, or (c) at some values in between. These three scenarios correspond respectively
to the three cases shown in Figure 11, where the min-max range is on the left of the peak,

right of the peak, respectively.

The smallest output transition time, TZF‘S , is always caused by smallest input transition

time, from either input. TZF,L is similar.

4.2.2 for Output Rising Transition

1T —1
— 4 2T

FIGURE 12. Possible input combinations for output rising transition.

min
[ Z

AZg g =min [AXgg, AVgg] + 6.ye (5L} d R(TXF,ﬁ’ T y AYVgg - A%E9)].

AZg 1 =max [AXgy + [d%Xp(T¥ P, AVgL + [d% Yo(TY p)ll
where TX,F = TXF' max » if TXF’ max € (TXF'S, TXF’L);
=T%gg . else if 4% Xg(TXgg) > 4% ¥R(T*gD);
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= TXF’L , otherwise.
Here, TXF, max i8 the value of TXF that maximizes d% xR(TXF). TY r is defined similarly.

T2 s = tZp(T*gs, TYgs, SK(R min)
if (A%gg + SK{ R mins AXgy + SKR min) O (AVgs, AYgL) # @;

. X
= min[tZg(T¥gg, T¥Es, A¥gs - AXgD), t2R(TXgs, TVgs, AVpL - A%g)]
otherwise.

Hence, SK, g min is the value of skew %Y that minimizes tZg(T*g, TYE, §Y) for given
TXg, TVg . Similarly, T | = max[t® ¥g(TXg), t2 Xp(TYg 1.

For output rising transition to arrive as early as possible, we expect all inputs to arrive
as early as possible because an earlier arrival transition helps pull up the output earlier
compared with a later one, assuming both have the same transition times. Since the short-
est delay may be caused by the shortest or longest transition time according to Figure 11

(but not at any other time in between), AZR is minimum when both inputs have either the
smallest or the longest transition times.

Since simultaneous to-controlling transitions may speed up the output transition, the
arrival time of Z is maximized when only one transition occurs. In this situation, the tran-
sition time of lagging input does not affect AZR at all. Considered as a function of input
transition time, maximal delay may occur in one of the three cases similar to the ones

shown in Figure 11.

Although minimal gate delay always occurs when §%Y

= 0, minimal output rising

transition time ma hen 8%Y = XY in 1
y occur when = SK{R min # 0. 8" may be equal to SK;g mn if

(AXF,S + SK¢ R mins AXF,L + SK( R min) N (AYF,S, AYF,L) # . Otherwise, either minimal or

maximal §%Y

closest to SK; g mip Will cause minimal output transition time. Minimal out-
put transition time occurs when both input transition times are minimal since it monotoni-

cally increases respect to TXF and TYF .
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The method for calculating the required times for STA can be found in [20].

4.3 Calculation of Required Times

P R L)

FIGURE 13. Possible input combinations for output falling/rising
transition.

Given the required arrival time (Q) at a gate’s output, and the minimal/maximal arrival
and transition times at its inputs, we calculate Q for each input. There is no required tran-
sition time in our analysis. If input arrival time plus the maximal gate delay for this transi-
tion is smaller than the minimal output required time, then this timing requirement is not

satisfied.
Q*rs=Q%s- d%Xg(TX p),

where TX g = TXR 1ax» i T¥R max € (TR T'RL):

TR s else if 4% Xg(TXg ) > d% Xp(TXR 1);
X otherwi
RL> Erwise.
TXR, max - TX that maximizes a% XF(TXR).

Q¥rL = Q%L - min [d% Xg(TXg o), d%Xp(T*x DI
Q¥ps= Q%5 - 4% XR(T XB),
where TX’F = TXF, max»  if TXF, max € (T¥gs, TXFL);
T*es., else if d% Xg(TXgg) > 4% Xp(T¥k 1)
TXF,L , otherwise.

TXF, max - TXF that maximizes d% xR(TXF).
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min

B,ye {S, L} [%R(T%g g, TVFy » SKg R min)]

Q¥pL=Q% -
if (A®g g + SKg R min » AXp + SKy R min) N (A'Es AYp) # @;

min

pye (2@ RO FS TRy Alps ATk

QZR,L -
dZR(T*gp , T gy, AYrL - A¥gg)]  otherwise.

SKg R min: ' that minimizes d%g(T¥g g , Ty, 8Y); V B, v € {S, L}.

5. Incremental Timing Refinement on Our Delay Model

STA provides vector-independent min-max timing ranges for rising and falling transi-
tions on each line. It can be used as initial timing information for test generation since a
test generator starts with all unknown values. But as more specific values are assigned
during test generation process, the min-max ranges will become narrower due to (1) the
increased specificity of the input vector pair, and (2) the logic and timing dependencies
between lines ignored in STA appear as more input values are specified. The worst case
corners obtained from STA may be invalid after some input values are specified. We have
developed a timing mechanism called incremental timing refinement (ITR) for identify-

ing new worst case corners and computing new A, T, and Q in these corners.

Incremental timing refinement uses the min-max timing ranges computed from static
timing analysis as the initial timing information. At each test generation step, a more spe-
cific value is assigned to one or more circuit lines. The min-max ranges for timing param-
eters shrink due to re-calculation of arrival, transition, and required times. The shrinking

of timing ranges helps timing oriented test generator eliminate choices.

5.1 Logic Value System

For timing simulations and test generations, two-pattern tests are needed to create tran-

sitions carrying timing information. In addition to the timing information, a two-frame
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value (vj, v;) is used to record the logic information for each line, The values in each

frame could be 0, 1, or x, where X represents the unspecified value for a primary input, and
the unknown value for any other line. As the value at a line is further specified, the for-
ward and backward logic implications may refine the values at other lines. The required
implication procedure can be obtained by extending a basic implication method ([21]) to

two timeframes.

Among the nine logic values, {00, 01, 0x, 10, 11, 1x, x0, x1, xx}, for two-frame logic,
01 certainly carries a rising transition. 0x, x1, and xx potentially carry a rising transition.

Other logic values certainly do not carry a rising transition.

After performing the logic simulation, we may find that a line may definitely not (or
definitely) carry a rising (falling) transition. This fact may invalidate the worst case corner
analysis in STA which assumes a rising transition is possible at this line. The essential
information from logic values for ITR is whether a line carries a transition or not. Accord-

ing to the analysis for transitions on the nine logic values, we define the status of a transi-

tion #r on line Z, $Z,, as below:

§Z, =1, if line Z certainly carries a transition tr;
=0, if line Z potentially carries a transition ¢r;

=-1, if line Z certainly does not carry a transition r

SZ,, can be computed according to the logic value on Z, where tr € {R, F}. When SZ,,

is -1, none of the timing values about the transition #r at line Z is meaningful; each timing
value may hence be left undefined. Verifying the status at a line before accessing this

line’s timing values will avoid these values from being used incorrectly. In the other two
cases (SZ,, =1 or 0), the timing fields are those in STA. STA is a special case of ITR
where S,, = 0 for every line. A method to calculate the timing values at each line is illus-

trated next.
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5.2 Calculation of Arrival and Transition Times

Again a NAND gate with output Z and two inputs X and Y is used for illustrating ITR.
An optimization target (OPTZ,,, extreme) 18 a0 OPT on line Z whose extreme value is
desired for transition tr, where OPT € {T, A}, tr € {R, F} and extreme € {S, L}. Since
SZ,, is only related to SX‘,-, and SY,—, where r is R(F) when tr is F(R), below this mapping is
always assumed if we do not specify the transition direction.

To find the extreme value for an optimization target on Z, we need to decide (1) this

extreme value will occur when more or fewer transitions on X and Y (at least one transi-

tion at an input is needed, for the output to have a transition), (2) given current logic val-
ues on X and Y (we lose some choices on X if SX = 1 or -1, similarly for Y), we prefer to

have transitions on X and Y or not, if SX =0 (SY = 0), and (3) for the inputs with transi-
tion, how do we pick their arrival times and transition times (minimal, maximal, or peak)

to excite the extreme value on the optimization target.

For the extreme value of an optimization target, the line with potential transitions (SX
= 0) will be treated as either the transition occurs (SX = 1) or it does not occur (SX =-1),
depending on the optimization target. That zero value SX should be set to 1 or -1 depends

on SY. The five rules on setting the zero value S¥ for minimal arrival time at Z are shown

below:
Case 1. SY =-1: set S to 1 for creating a transition at Z.

Case2. SY = 1 and to-controlling transition occurs at Y: set SX to 1 because additional

input transition may speed up the output transition.

Case 3. SY = 1 and to-non-controlling transition occurs at Y: set S¥ to -1 because addi-

tional input transition may slow down the output transition.

Case 4. SY =0 and possible to-controlling transition at Y: set (SX, SY) to (1, 1), because

simultaneous switches in this direction speed up the output transition.
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Case 5. SY = 0 and possible to-non-controlling transition at Y: try two possibilities that
(SX, SY) =(1,-1) and (-1, 1), because simultaneous switches are not desired but at

least one input transition is required to create a transition at the output.

The setting of zero value S%,, and SY,, for extreme values on the given optimization
target is shown in Table 1 according to the five rules above. Only the non-trivial cases
where at least one of SXR and S¥p, is 0 are shown. The extreme values for the optimization

targets are calculated below with all the zero-value S set as shown in Table 1.

Optimization target

original
Z
input states| AZgs AZg A%gs AZg L TZE s T gL T r.s T2g,L

0 1 -1 1 1 1 1 1 -1 1 1 1 -1 1 1 1 -1

TABLE 1. The implied values of S for obtaining the extreme cases for
optimization target.

5.2.1 for Output Falling Transition

For Smallest Output Arrival Time:

Case 1. SXg=0and SYg = 0: Use the formulas for STA.

Case 2. SXR =1 and SYR = 1: Both inputs have rising transitions.

Case 3. SYR =-1and SXR =0 or 1: Only rising transition from X may cause falling transi-

tion on Z.

Case 4. SXR =1 and SYR = 0; Extreme case occurs when only rising transition on X (same

formulas as that in case 3).

Case 5. S¥g=-1 and SYg =0 or 1: similar to case 3.
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Case 6. SYg=1and SXg = 0: same as case 5.

Because case 1 uses the formulas for STA, and cases 4, 5, 6 are same or similar to case
3, only case 2 and 3 are shown here. In the pin-to-pin delay model, to-non-controlling

response is determined by last input to-non-controlling transition.

AZp g=max (AXg g+min [d&Xp (TXg g), a2 ¥R (TR D],
AYg g+min [dBYE(TY g ), dZ YR (TYR D),

for SYg=1,0or ¥z = 1.

APps=AXg s +min [d>%p (TXg ), d> % (TX R D),

for S¥g =-1, or S¥; = 1 and SYz = 0.

For Largest Output Arrival Time:

Case 1. SXR #—1 and SYg # ~1: Use the formulas for STA.
Case 2. SYp =-1: only rising transition from X may cause falling transition on Z.

Case 3. SX = -1: similar to case 2.
AZ FEL= AX R,L + dZ’ XF ( TX ’R),fOI' SYR = -1,

where TX R is defined in AZ F, L computation for STA.

For Smallest and Largest Qutput Transition Time:

Both cases can be analyzed in the same manner as three cases for largest output arrival

time.
TZ FES= tz’ XF ( TX R, S)7 for SYR = -1, or SXR =] and SYR= 0.

T2 g =tL X, (TX g Difor SYg=-1,0r ¥z =1 and S¥z = 0.

5.2.2 for Output Rising Transition
For Smallest OQutput Arrival Time:
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Case 1. SXF #—1 and SY # —1: Use the formulas for STA.

Case 2. SYF =—1: only falling transition from X may cause rising transition on Z.
Case 3. S¥g = -1: similar to case 2.

A%p s=A%gg + min [ dBXp(TXgg), dB¥o(TX 1) ], for S¥p=-1.

For Largest Output Arrival Time:

Case 1. S¥g=0and SYg = 0: Use the formulas for STA.
Case 2. SXF =1 and SYF = 1: Both inputs have falling transitions.

Case 3. SYF =-1 and SXF = 0 or 1: Only the falling transition on X may cause a rising

transition on Z.

Case 4. SXF =1and SYF = 0: Same formulas as that in case 3.

Case 5. SXp=-1 and SYz =0 or L: similar to case 3.

Case 6. S¥p=1and SXg = 0: same as case 5.

AZg L =min (AXp , A¥pp ) + d%R(TX ‘. TV B AVg - A%,
for SYp=5%p=1.

AZg 1= A%g + dB¥g( ),

for S¥p=-1and S¥g=0o0r 1,or SXz=1and S¥g=0.

where TX’F is as defined in AZ R, L computation for STA.

When SYg = SXg = 1, the extreme value occurs when both inputs transitions arrive as
late as possible. The proper TX and TY for maximizing the delay need to be explored.
Here TX ’F and TY ’F have three possible values as that for AZ R, L in STA. But there

TXp max maximizes dZp( TXg , TV , A¥pL - A¥gp) only for fixed TYg and 8%Y, We
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. . . . X
use numerical method to calculate TXF’ max & TYF, max_iteratively until the pair (T max

, TYg max) that maximizes the delay function is found for fixed §%Y,

For Smallest Qutput Transition Time:

Both can be analyzed using the same three cases for largest output arrival time.

Case 1. SXF # -1 and SYF # —1: Use the formulas for STA.

Case 2. SYF = -1: only falling transition from X may cause rising transition on Z.
Case 3. S*g = -1: similar to case 2.

TZ g g=t&Xp (TX g g), for SYp=-1.

For Largest OQutput Transition Time:

Case 1. SXF =0 and SYF = 0: Use the formulas for STA.
Case 2. SXF =1 and SYF = 1: Both inputs have falling transitions.

Case 3. SYF =-1 and SXF =0 or I: only falling transition from X may cause rising transi-

tion on Z.

Case 4. S¥z =1 and SYg = 0: same formulas as that in case 3.
Case 5. SXg=-1 and SYg =0 or 1: similar to case 3.
Case 6. SYp =1 and SXg = 0: same as case 5.

When S¥p =1 & SYF = 1, the output transition time is maximized when TX and TY

are maximized and the absolute value of 8%-Y is maximized.

T g,L = max %R TXpp , TVgy , AVgs - A¥pp), R(TXp , TYgL , AVRL - A% )],
for SXp=1& S¥p=1.

T2 L =tBXg (TX g ), for SYp=-1, or (SXp =1 & SYE = 0).
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5.3 Calculation of Required Time:

For STA, minimal required time at input X = minimal required time at output Z - max-

imal delay from X to Z. Maximal required time is defined similarly. The required time for

QXR,S and QXR 1 are the same as that in STA because the same pin-to-pin delay from X to

Z are used for computing these two Qs.

For the required time QXF,S and QXF 1, the cases where SXg = -1 are not of interested
since no required time is needed for X. Observe the other three cases for maximal rising

delay used for AZR 1, we can find
QXF,S = dZR( TX ’F N TY ,F s AYF,L - AXF’L),fOI' SYF = SXF = 1;
is the same as that in STA, else.
Here TX wand TY g are defined in AZy ; for STA. Q¥gy is found similarly.
F F RL FL

QXFL is the same as that in STA, for SYF #-1;

= Q¥ - min [ d% ¥R(T*gg) d%Xo(T%g) 1, for SYg=-1.

5.4 Considering gates with more than two inputs

For worst case delays and output transition times on a gate Z with inputs X , X , ...,
X, there are three possible cases on setting S¥tolor-1,forvVje {1,2,..n}and SXi=

0. The three cases are (1) set all such S¥to1, (2) set all of them to -1, and (3) set one of
them to 1 and all others to -1. The worst case corners can be found and A, T, and Q can be

calculated by directly extending the above techniques.

When the effect of input position is considered or transistors of different sizes are used

in the parallel transistor, to-controlling delay should be redefined respect to dominating

input. Here dominating input, DIZ,, , of gate Z with inputs X, , X, , ... X, , is the gate
input X; that the transition on X; minimizes (maximizes) (A%, + d%%,) forje {1,2, ..

n} when tr is a to-controlling (to-non-controlling) response. Here trl equals tr for non-
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invertering gates, and tr for invertering gates. And the output arrival time becomes the

sum of dominating input arrival time plus gate delay.

6. Experiments and Comparisons

6.1 Delay Model

The proposed delay model has been implemented and compared with HSPICE and
with two inverter-collapsing methods Jun [17] and Nabavi [18]. The improved input map-
ping method for simultaneous switches at more than two inputs proposed in [19] is also
integrated with Jun’s approach. Empirical data are obtained from HSPICE simulation
using SPICE LEVEL 3 model and 0.5 pm technology. NAND gates with minimum-size
transistors are used for comparison. Each gate drives a minimum-size inverter as the load.
To-controlling transitions are applied to some inputs of NAND gates. Non-controlling

value is applied to remaining inputs.

Figure 14 shows the pin-to-pin delay at position 4 of a five-input NAND gate. Since
current inverter-collapsing methods do not consider input position, the error rate may be
high even for a single input transition. The results of Jun and Nabavi overlap because the
same empirical inverter model is used. When the same transition is applied at the position

0 of a five-input NAND gate, all these approaches match HSPICE results.

—e— SPICE —&— Proposed method —a— Jun —¢— Nabawu

0- 1 5 T L) 1 T T
01 0.3 05 07 09
TX-where P*~4

FIGURE 14. Single transition on position 4 of NANDS.
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Figure 15 shows the result of simultaneous transitions at the NAND gate in Figure 1

when 8%Y = 0 and TX = 0.5ns. The proposed method and that due to Jun perform well

but that due Nabavi performs well only when the transition times of the two inputs are
close to each other. The reason is that this approach mainly considers the simultaneous
transitions with the same start time, but the formulas obtained in that case does not extend

to general cases.

—e— SPICE —a— Proposed method —a— Jun —x— Nabaw

FIGURE 15. Simultaneous switch on NAND2 with single input
transition time change.

For a two-input NAND gate with fixed TXg and TYF , Figure 16 shows the delay as

8%Y changes. Our approach matches with HSPICE. Jun’s approach fails to capture the

delay for large skew. Nabavi’s approach has significant error.

When identical transitions are applied to all inputs X, Y, and W of a three-input NAND
gate, all the approaches under comparison perform well. When the transition times on the
three inputs are different (Figure 17 where TXg = 0.3ns, TYg = 0.7ns, and §%Y = §XW =

0), Nabavi’s approach has significant error because of the reason stated earlier; the other

two approaches preform reasonably well. Our approach performs well for three simulta-

neous transitions when one of the skew value is changed (Figure 18 where TXF = 0.3ns,

TYF = 0.7ns, TWF = 0.2ns, and %Y = 0), while inaccuracies of the type discussed above

are observed for the other two approaches.
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—e— SPICE —— Proposed method —— Jun —x— Nabau

&'
05
04
03
02 g

R

FIGURE 16. Vary %Y on simultaneous switch at NAND2.

—e— SPICE —— Proposed method —a— Jun —+— Nabavi

&r
0.15

0.1

0.05 -

FIGURE 17. Vary TWF in three simultaneous switches.
6.2 Incremental Timing Refinement

As some timing variables are not captured in the models of Jun and Nabavi, these
methods work well only when some timing conditions are satisfied. In contrast, our
approach works for more general cases. In addition to the improved accuracy, our model is
also able to serve as the timing model for STA and ITR where the worst case corners need
to be identified. These corners are hard to identify not only for equation solving models
and table lookup models but also for some empirical models. For a model to adopt our

method to find the worst case corners, a sufficient condition is that all timing functions of
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—e— SPICE —m— Proposed method —a— Jun —¢— Nabavi

SX,W

-0.5 0

0.5

FIGURE 18. Three input switch, §XW varied, and §%Y constant.
this model are monotonic or bi-tonic respect to each input variable. Inheriting STA’s abil-

ity to deal with unspecified value and ITA’s ability to refine the timing, our model is able
to deal with unspecified or partially specified vectors not handled by current timing simu-

lators or delay calculators.

ITR is performed on benchmark C17 (Figure 19) and shown in Table 2. Here V means

3,_9

0 —

5
2 7
i
4 1

FIGURE 19. Benchmark circuit C17.

logic value. FS is the arrival time for earliest falling transition. FL is the arrival time for
latest falling transition. RS is the arrival time for earliest rising transition. RL is the arrival
time for latest rising transition. The time unit is 0.0lns. All inputs are initialized as
unspecified. The timing information is the same as that in static timing analysis at this
time. In each step, the value at one input becomes more specific and the timing parameters
are updated. Timing windows keep shrinking when inputs become more specified. Logic

value on a line may imply that no rising (falling) transition exists here. Then the timing
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1({2)|3(4(S5 6 7 8 9 10
V(V|V|V|V]V]V|FS[FLIRSRL V FSFLRSIRLV FS|FLIRS[RL] V [FS|FL{RSRL| V |FS|FL{RS[RL
xx [ xx [xx[xx]xx]xx{xx| 7 | 8 | 8 {15{xx]| 7 (23] 9 |26|xx| 7 |23| 9 |26]|xx|16|33{17|38]|xx|16|33|17141
00| xx|xx|xx|xx|11|{xx| 7| 8 | 8 |15|xx| 7 |23| 9 |26{xx| 7 23] 9 |26|xx[16(33]23|38}xx|16|33]17|41
00| 11 xx]xx|xx|11|xx| 7 | 7 [13]13]xx| 7 [20[ 9 [25]xx]| 7 |20[ 9 |25|xx|16|32(23)|36(xx[16]|33|17(38
00(11|10]xx|xx|11]01] - | - }13[13]1x|20]20] - | - |1x[20]20| - | - |Ox| - | - |36]36|0x| - | - |30{38
00|11(10|01|xx|11]|01{ - | - |13{13]|10]|20]|20| - [ - |1x|20]20| - | - |O1| - | - |36{36|01{ - | - |30|38
00|11]|10{01(x0|11}01] - | - |13{13]10{20]20| - | - |11 -] - |- |- |O1] - | - |36]36]01( - | - |38]38

TABLE 2. A ITR example on C17.
information for this transition becomes meaningless and represented as ‘-’ in this table.

After the values of the first three inputs are specified in the table, the arrival time of rising
transition on output 9 has shrunk from (17, 38) to (36, 36), a fixed value. It shows that par-
tially specified vector may specify the exact timing at certain lines if the simulators can
utilize the provided timing information. In fact, during each excitation, a test generator
usually focuses on exciting the fault at one site, so many input values in the generated vec-
tor are left unspecified. To validate the generated tests, this simulator needs to confirm if
the vevtor really satisfies the given timing requirements, without making any assumptions

on the unspecified values.

ITR was performed on ISCASSS circuits by randomly specifying values at inputs. In
our current approach where pulses are ignores, timing ranges become points when all
inputs are specified. How much the total timing ranges shrink as inputs specified is shown
in Figure 20. It shows that the timing ranges of large circuits may shrink as fast as those
for smaller circuits, in term of percentage of inputs specified. The total timing ranges of
C7552 shrinks much faster than those for others circuits, because, in this circuit, many

lines close to primary inputs have large fanouts.

Plan to show in Figure 21: Timing range approximation (ignoring logic/timing depen-
dences) v.s. the real timing ranges (all possible fully specified vectors). X axis: real timing
ranges/approximation timing range in % (for a gate). Y axis: populations of gates with the
same X values. n curves - each curve is the statistical data for all test targets with p inputs
unspecified, where p € {m, m+1, ..., m+n-1}, the values of m and n are to be determined,

where test target is defined below.
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-

2 timing
ranges
(in %)

% of inputs specified
c432; c1355; ¢1908; c2670; c3540; c5315; c7552

FIGURE 20. Total timing range shrink as more inputs are specified.
Possible test targets: (1) gates with cones of p inputs (reason: Do not need to assign

values on any other inputs.), (2) primary outputs (reason: Timing ranges are most signifi-
cant, so the difference may be more observable. Disadvantage: need to assign values to
other inputs in the same cone randomly) (3) gates with fanout reconverges: more signifi-

cant impacts on the difference of these two measured timing ranges.

Possible benchmark: (1) C432- smaller. (2) Circuits where timing ranges shrink fast
(C432 or C1908) v.s. Circuits where timing ranges shrink slow (C1355): the reasons that
timing ranges shrink fastrt is probably that the data dependence between inputs. If so, the
difference between timing range approximation and the real timing ranges will be more

significant.

7. Summary

We have developed a new delay model to capture the delay of simultaneous to-control-
ling transitions and input positions. By linearly approximating skew-delay relation on a
two-input NAND gate and curve fitting on the empirical results, general forms of delay

equations have been developed. The model has been extended for general cases.

The delay transfer functions for static timing analysis and incremental timing refine-

ment have been developed based on our model. ITR can deal with min-max timing ranges
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and partially specified vectors. All worst case corners are identified to guarantee the cor-
rect propagation of min-max timing ranges in this delay model. A sufficient condition for
adopting the ITR transfer functions into a delay model is found. The simulation results
show that this model provides superior accuracy over other timing models for the same
purpose. Ability of our model to refine the timing information as more values specified is

verified.
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