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Abstract

Non-Blocking Multithreaded execution models have been proposed as an effective

means to overlap computation and communication in distributed memory systems

without any hardware support. Split-phase operations are used to enable the tol

erance of request latencies by a decoupling between the initiators and the receivers

of communication/synchronization transactions. However, the data locality of the

shared distributed global data is not exploited by conventional caches; moreover.

each request also incurs the cost of communication interface overhead.

In this dissertation, we design our ISSC (I-Structure Software Cache) system to

further reduce communication overhead for non-blocking multithreaded execution

and develop a simulator to validates our design. The single assignment property of

I-Structure eliminates the needs for cache coherence protocol and greatly reduces

the overhead of this software cache. It is this property that, make the concept

of software cache feasible. This software cache combines the benefits of latency

reduction and latency tolerance in non-blocking multithreaded system without any

hardware support.

We then implement our ISSC on top of EARTH systems, which is a fine-grain

multithreading system that could be implemented from off-the-shelf microprocessors,

and we studied the performance of ISSC on EARTH-MANNA machine with a set of

benchmarks. Our studies indicate that ISSC improves the system performance and

makes the system more robust. We further develop analytical models for the perfor

mance of a multithreading system with and without ISSC. We compare our model's
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prediction with our experimental results on EARTH-MANNA machines. These ana

lytical models allow us to predict at what ratio of communication latency/processing

speed the implementation of ISSC becomes profitable for applications with different

characteristics. As a consequence the. system can be ported to a wider range of

machine platforms and deliver speedup for both regular and irregular application.
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Chapter 1

Introduction

Multithreaded architectures have been proposed as a means to overlap computation

and communication in distributed memory systems. By switching to the execu

tion of other ready threads, the communication latency can be hidden from useful

computations as long as there is enough parallelism in an application.

Non-blocking multithreaded execution models, like TAM [22], P-RISC [58], and

EARTH [37]. had been proposed to support multithreaded execution in a conven

tional RISC-based multiprocessor system without the needs of any specific hardware

support for fast context switching. In these models, remote memory requests are

structured as split-phased transactions so that the processor could continue exe

cuting other instructions which do not depend upon the request in progress. The

request carries a tag, continuation vector, indicating the return address of the re

quested data in the consumer thread. The arrival of the requested data will be sent

directly to the consumer thread identified by the continuation vector. The arrival

of the last requested data in that consuming thread will then activate the thread

and the thread will be ready to be executed. Therefore, in these models, thread

activations are data driven: A thread is activated only when all the data elements

it needs are available locally. Indeed, once a thread starts to execute, it executes to

the end. In such a non-blocking multithreaded execution model, once the execution

of a thread terminates, no thread contexts need to be saved before switching to the



execution of another active thread. Therefore, multithreaded execution is achieved

without the needs of any specific hardware support.

A good execution model must be based on a good memory system to achieve

high system performance [25]. An I-Slructure memory system [9] provides split-

phase memory accesses to tolerate communication latency. It also provides non-

strict data access, which allows each element of a data structure to be accessed

once the data element is available without waiting for the whole data structure to

be produced. Each element of an I-Structure has a presence bit associated with

it to indicate the state of an element, such as Empty and Present. Data can only

be written into empty elements, and the slots are set to the present state after

the data has been written into them. Read from an empty element is deferred

until the data is produced. The split-phase accesses to the I-Structure elements

provide fully asynchronous operations on the I-Sfructure. The non-strict data access

on the I-Structure provides the system with a better chance to exploit fine-grain

parallelism. The fully asynchronous operations on the I-Structures make it easier

to write a parallel program without worrying about data synchronizations since the

data are still synchronized in the I-Structure itself. The single assignment rule of

the I-Structure provides a side-effect free memory environment and maintains the

determinacy of the programs. All of these features make I-Structures. along with

non-blocking multithreading, an ideal model for parallel computing.

While the combination of non-blocking multithreaded execution and I-Structure

memory system appears to be a very attractive architecture for high performance

computing, the major drawback of this system is that locality of remote data is

not utilized. Since all remote requests are translated into split-phased transactions

which are different from local memory read/write operations, the accesses of remote

data do not pass through the local cache system and every remote data access is

actually sent to the remote host. On the other hand, in some other multithreaded

architectures, like ALEWIFE [2], FLASH [50]. and T-N.G. [8], every memory access



is issued as a local memory operation. Thread switching occurs when the processor

stalls on cache misses or synchronization failures at run-time. This kind of models

is what we call "Blocking multithreaded ." Thread switching involves context saving

of the suspended thread, context loading of the next thread, and pipeline flushing.

The overhead is much larger than the non-blocking multithreaded execution and it

usually needs specific hardware support for fast context switching. Fortunately, the

use of a local cache system exploits the global data locality and hence reduces the

number of remote requests as well as the number of context switches.

With the very small overhead of context switching in the non-blocking multi

threaded models, the highest overhead of these models is in the communication

interface. The sending and receiving of network packets may take from dozens to

thousands of cycles depending on the design of the network interface [21]. Since all

requests are actually sent to the remote hosts through the network, all the sending

and receiving requests incur the network interface overhead. Moreover, the requests

for I-Structure memory accesses on the network also congest network traffic which

may ultimately degrade system performance.

The goal of this research proposal is to develop an efficient cache scheme for the

I-Structure memory system in the non-blocking multithreaded multiprocessor sys

tems so that it could exploit the global data locality, reduce the number of network

packets, and hence improve the overall system performance. The target environment

we have in mind is a message-passing distributed memory multiprocessor system.

The non-blocking multithreaded execution model is a compiler controlled multi

threaded execution, and it could be implemented on any conventional RISC-based

multiprocessor system without any add-on hardware support for multithreaded ex

ecution. We would intend to include our cache system to this model without any

specific hardware support for further improvement of system performance. There

fore, a software implementation of this cache scheme, the I-Structure Software Cache

(ISSC), is proposed here to exploit global data locality without adding any specific
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hardware support in the non-blocking multithreaded execution model. However, we

do not limit this cache scheme to a software implementation only. This proposed

research also provides a fundamental study for the hardware implementation.

1.1 Synopsis

This dissertation is orgnized as follows:

Before we start to discuss the design of I-Structure caches, we did a broad back

ground research and report some replated work in Chapter 2. From these background

research, we disscuss some design issues of I-Structure cache design in Chapter 3.

We also describe the approaches adopted in our design, and provide details of our I-

Structure Software Cache implementation. We then perform simulation of our ISSC

design with selected benchmarks to validate our design.

We are not just satisfied with our simulation results, we also look for a real system

that we could implement our ISSC on it. In Chapter 4, we have a brief introduction

to our target system, EARTH, and described the implementation of our ISSC on the

system using Threaded-C language. We measure the costs of some ISSC operations

in Chapter 5 on EARTH-MANNA machine to have a better understanding of the

overhead of software cache. In this chapter, we also test our ISSC with a set of real

benchmarks and measure its performance. We show our ISSC make the system more

robust to the latency variation.

In Chapter 6, we develop analytical models for a multithreading system with and

without ISSC. We verify these models with the experimental results we measured in

chapter 5 and make performance predictions for different benchmark characteristics

and a wider range of machine platforms. Then we conclude this dissertation with the

contributions of this research work and provide some directions for future research.



the communication latency behind the computation and reduce the idle time of

processors.

Multithreaded processors should be attractive as nodes for a massively paral

lel machine programmed using the SPMD model. The single-program, mulliph-

data (SPMD) model [24] is currently gaining wide acceptance for massively par

allel scientific computation. The model is implemented by mapping it onto and

MIMD multiprocessor, either manually or by using a dta parallel compilation strat

egy [36, 75, 45, 48, 26]. The SPMD model provides a good target language for the

array computation features of such languages as Fortran 90 [73], High Performance

Fortran [35], and certain functional programming languages (Sisal [56, 17. 18, 19]

and Id [59], for example).

In some multithreaded models, like TAM [22], P-RISC [58]. and EARTH [37].

all remote memory accesses are translated into split-phased transactions at compila

tion time and a thread will be activated only when all the data inputs are available

locally. Therefore, once a thread starts to execute, it executes to the end. This

kind of execution model is called "Non-Blocking Multithreaded". I-Structure mem

ory system is a split-phased accessing memory system. It provides non-strict data

accesses, fully asynchronous memory operations, and fine-grain parallelism. This

makes I-Structure memory, along with non-blocking multithreading, an ideal model

for parallel computing. On the other hand, in some other multithreaded architec

tures, like ALEWIFE [2], FLASH [50], and *T-N.G. [8], every memory access is

issued as a local memory operation. Thread switching occurs when the processor

stalls on cache misses or synchronization failures at run-time. This kind ol mod

els is what we call "Blocking multithreaded ." With dedicated hardware support

in this model, context switch overhead could be minimized to tens of machine cy

cles. Therefore, the communication latency could be overlapped by the interleaved

executions of several threads.



2.1.1 Blocking Multithreaded Architectures

By "Blocking", we mean "Blocking Multithreaded Architectures" where the execu

tions of threads are suspendable and also resumable. The idea is that during the

execution of a thread, if the processor stalls on waiting for remote requests, synchro

nization failures, or even the local data to be brought from local memory to cache

on cache misses, the processor would rather suspend the execution of the current

thread and switch to the execution of other threads than just sit idle and wait for

the action to complete.

However, to resume the execution of the suspended thread, the thread context

needs to be saved while it was suspending. Since when the thread will be suspended

cannot easily be predicted at compilation time, all the registers, status words, and

some memory space have to be saved when a thread suspension occurs. Moreover,

the thread context which is chosen for execution next has to be loaded into processor

after the context of the. suspended thread was saved. All of the jobs during thread

switching (context saving and loading) should be done very efficiently, otherwise the

processor may want to stick on the same thread and just be idle while waiting for

the remote requests, synchronization failures, or cache misses to be finished.

Therefore, most of the architectures supporting blocking multithreaded execu

tion, like Horizon [49], Tera [4]. MASA [33], J-Machine [61], ALEWIFE [2], FLASH

[50], and *T-N.G. [8], have dedicated hardware which supports fast context switch.

For example, in ALEWIFE, a modified SPARC processor, Sparcle [3] processor is

used for supporting blocking multithreaded execution. In Sparcle, the register set is

divided into several frames that are conventionally used as register windows [42],[65]

for speeding up procedure calls in SPARC. In their design, they partition the reg

ister file into four hardware contexts. A context switch to a precess whose state is

currently stored in one of the register frames on the processor is effected in a small

number of cycles. Each Sparcle processor will support up to four hardware threads

and unlimited virtual processes. The mapping of process contexts to register frames



is managed by software. By this dedicated hardware design, the context switching

could be achieved within 14 cycles. However, this kind of hardware support would

increase the complexity and the cost of processor design.

However, there are still some side effects of the blocking multithreading which are

hard to minimize by dedicated hardwares. One of the side effects is pipeline flushing.

In pipelined processors, all the instructions entering pipeline become invalid right

after the thread was suspended and the first instruction of next thread has to be

fetched into the first stage of pipeline. This will result in bubbles in the pipeline.

The deeper the pipeline, the higher the overhead suffered by the system. The other

side effect is cache contention [I]. In the blocking multithreaded execution, all the

existing threads (including the active thread, ready threads, and suspended threads)

of the processor compete for the limited cache space with each other. This gives rise

to a higher cache miss rate.

Fortunately, the exploitation of the global data locality reduces the number of

remote requests and the number of context switches. In the blocking multithreaded

execution, all the remote memory accesses are treated as local accesses. In machines

with caches, the actual remote requests are sent to the remote hosts only when they

are missed from the local cache. The block of data located in remote hosts will be

brought back to the local cache with the requested data and the. following remote

memory accesses may hit the local cache. Therefore the thread execution could

be continued without suspension. The reduction of the actual remote requests also

gives a. lower network traffic rate. However, the use of caches in the multiprocessor

systems raises another important issue in multiprocessor system design, namely the

cache coherence problem [28, 20].

In conclusion, by maintaining multiple process contexts in processors supporting

blocking multithreaded execution with fast context switch, the thread execution will

be suspended when it stalls on the remote requests, cache misses, or synchronization

failure, and the processor switches to the execution of other threads. Such that the

N



communication latency could be overlapped with useful computation and processor

utilization increases. Since there are dedicated hardwares to support the context

switching at the run-time, all of the memory accesses could be treated as local

memory accesses and the actual remote requests are made only when they are missed

from the local cache. Therefore, the global data locality could be easily exploited

by the local cache and hence reduces the chance of thread switching and network

traffic. However, provided sufficient parallelism exists, the number of threads in the

processor is still limited by the complexity of the processor and the increased cache

miss rate [1]. Indeed, with the requirement of dedicated hardware support for fast

context switching and maintained cache coherence, it would take a long time and

would be very costly to build this kind of systems.

2.1.2 Non-blocking Multithreaded Architectures

Split-phased transaction [34, 72] is an asynchronous memory access scheme in mes

sage passing multiprocessor systems. In the systems, remote memory requests are

structured as split-phased transactions so that multiple requests may be in progress

at one time. An instruction issues a request to the processor or memory module

containing the desired data, and then other instructions which do not depend upon

the result of the request in progress are executed. The request carries a tag, contin

uation vector, indicating the return address in the consuming thread at which the

computation should be continued when the response arrives. By splitting the remote

memory request into two phases, requesting and consuming, the processor could con

tinue executing other useful computations without wait for the data to arrive while

the request is in progress. The arrival of the requested data will be sent directly to

the consuming thread identified by the continuation vector. This feature of the split-

phased transaction provides the ability for overlapping the communication latency

with useful computations.



Basically, the non-blocking multithreaded execution model was evolved from the

concept of data-flow execution model. Data-flow execution can be thought of as a

very fine-grain multithreaded execution model. Indeed, in data-flow models, each

thread contains only one instruction. The instruction will be activated only when the

operands it needs ate generated. After the execution of the instructions finished,

the output data token is passed to other instructions and activates them. This

would result in a seejucnce of activation. To improve the performance of the data

flow architecture, most processors designed for data-flow execution are pipelined,

like MONSOON [63, 64, 34] and RAPID [60]. The stages of the pipelined pro

cessor are interleaved with different sequences of activations. Therefore, the high

through put could be achieved. However, due to the high cost of the matching

unit for the operands matching of instructions and the poor performance of the

single sequence of activation execution, researchers from this area proposed the non-

blocking multithreaded execution model. Examples of multithreaded architectures

based on dataflow models are: lannucci's work [39, 40] in combining dataflow ideas

with sequential thread execution to define a hybrid computation model, the KM-1

project [47, 46, 68] at the Electrotechnical Laboratory (ETL) in Japan, the successor

of MONSOON project, *T [14], TAM [22], P-R1SC [58], and EARTH [37],

The main idea of non-blocking multithreaded execution is to group the sequence

of activation without any remote memory accesses, branches, and synchronization

into one thread at compilation time. So that, once a thread starts to execute,

it executes to the end. A thread is like an atomic execution unit, which is like

an instruction in the data-flow execution model. Since the thread execution will

not be suspended, no context needs to be saved for the thread at the run-time.

As for the beginning of a thread execution, since the execution is not resumed

from previous execution, no process context needs to be loaded. Therefore, there

is almost no overhead during the thread switching. This is the reason why it is

easier to implement this kind of model from off-the-shelf processors [55]. Moreover.
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since the thread boundary has been determined at compilation time, in the pipelined

processors, the first instruction of the thread which will be executed right after the

current thread could be pre-fetched into to the pipeline while the last instruction

of the current thread is in the execution stage. So that, the pipeline is also highly

utilized while thread switching without any bubble stages.

For the remote memory accesses, the requesting and consuming of the remote

data are broken into different threads by using the split-phased transaction. In a

split-phased transaction memory access, along with the requested data address, the

continuation vector (the return address of the requested data) was sent to the remote

host by the requesting thread. According to the continuation vector, the requested

data are sent back directly to the consumer thread by the remote host. And, the

consumer thread may become active if all the data it needs are available locally.

Since the requesting threads are only responsible for sending out the requests, it is

not necessary for them to wait for the requests to complete after sending out the

requests. The processor could continue the execution of current thread or other

active threads while those split-phased transactions are in process. Therefore, the

communication latency could be hidden from the execution of other threads.

However, the major drawback of this non-blocking multithreaded execution model

is that the global data, locality is not exploited. Since every remote memory access

has been compiled into split-phased transaction explicitly, each remote access actu

ally send out the request to the remote host and the remote host sends back the

reply message along with the requested data. These requests are different from the

local memory read/write operations, and, therefore, these remote, memory accesses

do not pass through the local cache systems and the local cache system takes no

advantages of the remote data locality. On the other hand, in the blocking mul

tithreaded model, every memory access is issued as local memory operation. The

request is sent to the remote host only when the data is not in the local cache. The

11



local cache system exploits not only the data locality from local memory but also

the global data locality.

Characteristics Blocking Multithreading Non-Blocking Multithreading
Thread execut ion Interleaved (suspendable) Atomic entity
Thread switching Run-tiinc controlled Compilation time controlled
Hardware support, context switch Needed Unnecessary

Remote memory accesses Local accesses Split-phased transact ions
Pipeline flushing Yes No

Granularity Coarse Fine

Global data locality exploitation Easy Difficult

Network traffic Medium High

Table 2.1: Comparison of Blocking and Non-blocking Multithreaded Executions

Finally, I would like to sum up the comparison between the blocking multi

threaded model and the non-blocking multithreaded model in table 2.1.

2.2 I-Structure memory system

An I-Structure memory system [11, 9, 34] is a conventional data structure with some

constrains on its construction and destruction. It is designed for the data storage

of scientific applications in parallel computing to achieve efficient accesses, provide

fine-grain parallelism, and preserve the determinacy of computing. I-Structure mem

ory system explicitly use split-phased transaction for the memory access, and this

provides the system with the ability for hiding the latency of accessing I-Structure

memory from useful computation.

Each element of the I-Structure has a presence bit associated with it to indicate

the state of the element, such as Empty and Present. There are three primitives for

the operations in I-Structure memory system.

• I-alloceition allocates consecutive data elements for an array structure and these

data elements are initialized as in Empty state.

• l-store stores a produced data item into the empty data element. After the

data item is written into the data element, its state is set to Present state.
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If an /-store attempts to write data into a data element which is already in

the Present state, it causes an error. This constrain makes the I-Structure

memory as a single assignment memory system. Each data element could be

accessed after the data is stored into it without waiting for the data of the

whole structure to be produced.

• I-fetch reads the data from the data element in I-Structure memory. If the

I-fetch is issued to an Empty data element, the request is deferred until that

element has been written. A deferred request can be memorized simply by

saving its continuation vector in the data element. Once the value is present,

it can be sent to the requester using the saved continuation vector. This would

allow a request being issued before the data is produced.

The non-strict data access on the I-Structure provides the system with a better

chance to exploit fine-grain parallelism. The fully asynchronous operations on the

I-Structure make it easier to write a parallel program without worrying about data

synchronization since the data are still synchronized in the I-Structure itself. The

single assignment rule of the I-Structure provides a side-effect free memory environ

ment and maintains the determinacy of the programs. Giving enough parallelism in

the program, the split-phased nature of memory requests allows us to hide the extra

latency of remote memory accesses in the distributed multiprocessor environment.

All of these features make I-Structures highly suited to distributed memory sys

tems designed to exploit fine-grain parallelism, like the non-blocking multithreaded

execution.

2.3 Motivation

It appears that using I-Structure memory system along with non-blocking multi

threaded execution becomes a promising architecture for high performance parallel

computing. This architecture exploits fine-grain parallelism, hides the extra latency



of remote requests from useful computation, increases programmability while main

taining the determinacy of the parallel applications, and of course, is low cost to

build.

However, the major drawback of this architecture is that the remote data locality

is not utilized. We need to exploit, the global data locality in this architecture for

several reasons. Indeed, with the capability for latency tolerance brought by split-

phased transactions and the small overhead of thread switching in the non-blocking

multithreaded execution, it would appear that the length of the remote request is ir

relevant. However, it turns out that communication latency tolerance is based on one

central assumption: it could be hidden from computation as long as there are enough

ready threads. When there is not enough parallelism, single thread performance is

closely related to the communication latency and it becomes critical. Exploiting

the global data locality will reduce the mean time between thread activation and

therefore the processor utilization increases in the critical section. Secondly, even

with enough threads to tolerate communication latencies and low thread switching

overhead, the highest overhead of this architecture is in the communication interface.

The sending and receiving of network packets may take from dozens to thousands

of cycles depending on the design of the network interface [21]. Since all requests

are actually sent to the remote hosts through the network, all the sending and re

ceiving requests incur the network interface overhead. Finally, even though many

machines include dedicated hardware to handle the network communication so that

communication interface overhead is taken away from the computation processors,

the requests for all the remote data accesses on the network also congest network

traffic, which may ultimately degrade system performance.

Therefore, an I-Structure cache system which caches these split-phase transac

tions in non-blocking multithreaded execution is required to further reduce commu

nication latencies and release the network traffic. This cache system would provide

ability for communication latency reduction while maintaining the communication
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latency tolerance ability in this architecture. Therefore, our goal is to develop a

novel I-Structure cache scheme to exploit global data locality in non-blocking mul

tithreaded architectures. The target environment we have in mind is a message-

passing distributed memory multiprocessor system. The non-blocking multithreaded

execution model is a compiler controlled multithreaded execution, and it could be

implemented on any conventional RISC-based multiprocessor system without any

add-on hardware support for multithreaded execution. The single assignment prop

erty of the I-Structure eliminates the cache coherence problem from the cache design.

This would make it possible to implement the cache system as a software run-time

system without being detrimental to the system performance, and we would intend

to include our cache system to this model without any specific hardware support for

further improvement of system performance.

Therefore, in this proposed research, we developed an I-Structure Software Cache

(ISSC) [51] in the non-blocking multithreaded execution model with I-Structure-like

memory environment without adding any hardware. We would like to see the im

pact of the ISSC on the overall system performance, by analyzing the data locality

utilization, network traffic, overhead distribution, and speed-up curves of some ap

plications.

2.4 Related Work

There is some research about the I-Structure Cache design which has been pursued

elsewhere, but non of the designs are intended to implement as a run-time system.
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2.4.1 On Memory Models and Cache Management for Shared

Memory Multiprocessors

Dennis and Gao [25] proposed a cache management scheme for their Abstract Shared-

Memory computer system,-which is a dataflow program execution model and spec

ified the I-Structure model as the memory system to support the synchronizing

memory operations. They proposed a high-level concept of the I-Structure Cache

management scheme but without detail implementation.

In their design, a cache line will be allocated first in the local cache when a read

miss occurs. The continuation vector of the original request will be stored in this

allocated cache line, and a new request will be forwarded to the remote host by

using the address of the allocated cache line as the continuation vector but. not the

original one. The later requests for the same data item will be deferred in the cache

line while the first request is in progress. After the first request is replied from the

remote host, the data item is written into the pre-allocated cache line and is also

forwarded to all the continuation vectors which have been deferred in that cache

line. A write-through with write allocate policy is adopted in their design in a write

miss situation. In the I-Structures, the deferred requests from all other hosts for the

same data element are queued in the host or memory module which owns that data

element.

In their design, the size of a cache line is a. single I-Structure element. Therefore,

only the temporal data locality is exploited and the spatial locality is not touched.

All other details of the cache design, like cache organization and cache replacenu-ni

algorithm, are not mentioned in their design. And also, no simulation or evaluation

are performed in their work.
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2.4.2 IS-Cache Design on the ETS System

Kavi et al. [13] proposed a design of cache memories for multithreaded dataflow

architectures. The design includes an I-Structure cache memory to exploit the data

locality of the shared data structures in multiprocessor environment. Basically, the

design of their I-Structure cache (IS-Cache) is a hardware supported cache system

using the Explicit Token Store (ETS) model of dataflow systems.

The IS-Cache keeps not only the I-Structure elements requested (I-fetch opera

tions) by the processor but also the I-Structure elements produced (I-store opera

tions) by the processor. A write-back on demand policy is adopted for the I-store

operations. The data items produced by local host are kept at the local IS-Cache

and are written back to the I-Structure only when there are requests for those data

items or they are replaced from the IS-Cache. As in conventional cache system de

sign, a cache line is allocated only when the data are brought back from remote

host. Therefore, in a read miss situation, the request is forwarded to the I-Structure

directly without doing anything on the local IS-Cache. If the requested data item

has been produced and is available in the I-Structure, the data item is sent back

to the consumer thread and a cop)' of the data item is also kept at IS-Cache. If

the requested data item is not yet available (the data element is in Empty state)

in the I-Structure, the request is deferred in the I-Structure and a message is sent

to the producer of that data item to indicate that there is deferred request of that

data item in the I-Structure. If the data item is already in the producer's IS-Cache.

that data item is written back to the I-Structure and the deferred request for that

data element are fulfilled. Otherwise, a missing table is maintained in the producer's

IS-Cache to indicate the pending status of the I-Structure elements. After the data

item is produced and stored in the producer's IS-Cache, the missing table is checked

and the data item is written back to the I-Structure and the deferred request could

be fulfilled.
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To implement the write-back on demand in the IS-Cache, extra space for the

missing table is needed. Also, in order to send the pending status of a data item to

its producer, an additional directory for the information of the producers of the I-

Structure elements is required. This would further make it difficult to implement the

dynamic allocation of data structures in the I-Structure. It would also be difficult to

implement a thread migration strategy which will change, the producers of the data

items at run-time. Moreover, addition interrogation messages will be introduced to

the network when requests for empty I-Structure elements occur.

2.4.3 Scalable I-Struct lire Cache design

Papadopoulos [62] and Cheng [31] independently proposed scalable methods to deal

with the storage of the deferred requests in the 1-Structure.

In the multiprocessor systems, multiple hosts may issue requests for the same

data item in the I-Structure. If that data item is not produced yet, all the requests

have to be deferred in the I-Structure. As the number of pending requests grows,

there may be not enough space to store all the pending requests in the I-Structure

which owns that data item. Moreover, when the data item is produced and written

to the I-Structure finally, all the deferred requests will be served. This may cause a

hot spot problem on the network.

r \

v-

\

f ~~\

^^

r~ \

A
d f\ k

)
v. J\

\ J
Node j

V

Node k
l-Structure Node

Figure 2.1: Distributed Deferred Queue Storage
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Therefore, they proposed distributed mechanisms for the storage of the pending

requests: they are distributed among the requesting hosts. As shown in figure 2.1,

every requesting host provides one (or more) slot to store each one of its own pending

request(s). and all of these requests are linked in a. queue. This scheme make the

growing of the deferred queue quite scalable, since for every requesting host, only

one slot is needed for the queue. It also avoids hot spots in the network if there are

too many requests pending in a single data location.

2.4.4 A Cache Design for Input Token Synchronizations

Roh and Najjar's project [67] on the design of storage hierarchy in multithreaded

architectures was trying to exploit the locality of the frame storage on the Pebbles

multithreaded model. The Pebble multithreaded model is a non-blocking multi

threaded model which is the same as the architecture that we have in mind. How

ever, the locality exploited in their work is the frame storage which is used to store

the input tokens of the threads. This reduces the match time of each incoming to

ken. They showed the execution time becomes linearly proportional to the match

time when the match time is greater than 3 cycles. In their simulation, the average

match time could be reduced to 1 cycle based on the design of a fully associative

cache. In this work, the locality of the global shared data is not touched. We believe

that the execution time is dominated by the match time when the match cycle is

large as shown in their work. We think that the execution time with a small match

cycle is dominated by the availability of the threads. The I-Structure cache exploits

the global data locality and hence reduces the average turn around time of the re

mote requests. The smaller the remote request turn-around time, the less threads

are needed to overlap the communication latencies. Therefore, by incorporating the

I-Structure cache with their work, the system could be further improved.
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2.4.5 Empirical Study of a Dataflow Language on the CM-5

Culler et al. [23] implemented the idea of I-Structure caching in software manner on

IdOO compiler for their Threaded Abstract Machine (TAM) implemented on the CM-

5. The idea of I-Structure caching is similar to our work but they also did the single

I-Structure data element caching which is the same as Dennis and Gao's work as we

introduced in previous section. In their implementation, the unit of a cache block is

a single 1-Structure data element. Therefore, only temporal data locality had been

exploited. With a cache block size of one I-Structure data element, no deferred read

sharing problem will occur. This made their design comparatively easier, like cache

replacement, deferred read handling, etc. However, from our simulation, it shows

that spatial data locality does play an important role in the performance improve

ment. Moreover, temporal data locality could be easily utilized by the programmer

or the compiler without implementing the I-Structure caching, as we shown in our

FFT benchmark.
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Chapter 3

I-Structure Software Caches (ISSC)

3.1 I-Structure Cache Design

In one aspect, I-Structure cache design is simpler than the cache design for conven

tional memory systems. That is, no cache coherence problem is encountered in the

I-Structure cache design. This is because of the inherent cache coherence feature

of I-Structure Cache. Indeed, I-Structure is a single assignment memory system.

In single assignment memory systems, multiple updates of a data element are not

permitted. Once a data element is defined in a single assignment memory system, it

will never be updated again. The copies of the data, elements in the local cache will

never be updated. Therefore, cache coherence is already embedded in I-Structure

memory systems. It makes the design of I-Structure cache much simpler without

having to take care of the cache coherence problem.

However, in other aspects, the design of the I-Structure Cache is not as straight

forward as the cache design for conventional memory systems. This is because of

some characteristics of I-Structure, such as split-phased transaction, single assign

ment property, deferred read, and the presence bits of data elements. Therefore

some design concerns and issues will arise in the 1-Structure cache design.
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3.1.1 Deferred Requests Handling

In an I-Structure, a request may be deferred m the I-Structure if the request arrives

while an data item has not yet been written into the I-Structure. The deferred

request will be satisfied after the data item is produced and written back to the

I-Structure. The services of deferred reads have to be guaranteed, otherwise some

threads may wait for the already produced data elements forever and this may result

in some deadlock situations.

In the I-Structure memory system without I-Structure cache, there will be not

problem at all for this guaranty since the I-store operations will write the produced

data back to the I-Structure directly and all the pending requests in the I-Structure

will be fulfilled as soon as the data are written into the I-Structure. However, adding

the I-Structure cache to the system may keep the data of I-store operations in local

cache without writing them back to the 1-Structure immediately. In the case that no

cache replacement occurs, the produced data might be kept at local cache and would

not be written back to the I-Structure forever. If it happens to have some pending

requests for those data in the 1-Structure. then these pending requests will never

be satisfied. Therefore, the design of I-Structure cache has to avoid this situation

carefully.

One of the solutions is the write-back on demand policy as used in Kevi's IS-

Cache design [43]. The produced data which are kept in the cache by local host will

be written back to the I-Structure not only when they are replaced from the cache,

but also when there are requests for these data from other hosts. After the data are

written back to the I-Structure, the deferred reads could be satisfied. This scheme

will prevent the unnecessary data being written back to the I-Structure if there will

be no requests from other hosts. However, a write-through cache design provides

a simple solution to guarantee the service, because the produced data element will

be written to the I-Structure as soon as it is produced. Once the data element is
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written to the I-Structure. the deferred reads queued on the data element slot can

be satisfied.

These two solutions provide the guaranty of the deferred request services. The

write-back on demand cache design will reduce some unnecessary network traffic,

but it is more complex and expensive to implement than the write-through cache

design is. In section 4, we will have more discussion on this issue and explain the

reasons of why we chose write-through policy in our design.

3.1.2 Deferred Queue Storage

4

Deferred Requests

-Structure Cells

l-Structure node

Figure 3.1: Centralized Deferred Queue Storage

In a multiprocessor system, there may be several requests pending on a data

element before the data is generated. How the system maintains the queue of these

deferred requests is also an issue. The conventional method is called the "Central

ized' storage method: all of the deferred requests are stored in the owner's place, as

shown in figure 3.1. This method is very simple, and since all the deferred requests

are kept at the owner's place of the data element, all of the pending requests can

be satisfied as soon as the data is written into its location. However, the number

of pending requests depends solely on the application. Further, as the number ol

pending requests grows, there may be not enough space to store all these requests.

Therefore, this scheme may not be scalable: even though there is enough space to
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store all the pending requests, whenever the data is generated, all of the pending

requests on this data have to be serviced simultaneously. This may cause a hot spot

problem on the network.

The "Distributed?' storage method independently proposed by Papadopoulos [62]

and Cheng [31] provides a scalable solution for the unlimited growing of pending

requests and also avoids the hot spot problem on the net work caused by the services

of those pending requests. Moreover, since the deferred queue is distributed among

the requesting processors, the I-Structure needs only serve the first pending request

which is stored in the I-Structure data element. After the reply of the first pending

request arrives the requesting host, the pending request, which is from other host

and stored in that host, could be satisfied. This makes the services of the pending re

quests on different data elements as in pipeline fashion, and therefore, it increases the

throughput of the I-Structure memory operations. However, as in Cheng's design,

the storage slots of this distributed deferred queue are provided by the I-Structure

cache of each requesting host. The cache lines allocated for the distributed deferred

queue may be replaced, and the queue will be broken. So that, additional effort

must be expended to recover the queue once it is broken. Moreover, those requests

which are pending at the end of the queue may wait for a long time for the requests

to be served.

However, the chance of the pending requests to explode the space in the "Cen

tralized" storage method will play an important role in the decision of using the

'"Distributed" storage method or not.

3.1.3 Deferred Read Sharing Problem

In I-Structure memory systems, every data element has a presence bit associated

with it to indicate its state (Present, Empty, or Deferred). Indeed, to exploit the

spatial data locality, a whole block of data elements should be requested by the cache

instead of the requested data item only. As shown in figure 3.2. the data elements in
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Figure 3.2: Data Block Integration

the same block may be in a different state; some of them may be in the present state

and some of them may be in the empty state. How the data elements in the different

states will lie integrated into a whole data block needs to be careful handled in the

I-Structure cache design.

Deferred read sharing is one of the issue happens in the integration of data

elements in different states into one data block. Without doubt, the present data

should be brought back into the cache and a deferred request is stored in the slot of

the requested data element if it. is in the empty state. The issue comes when there

are other empty data elements within the same data block. Is the deferred read

going to be put on every empty data element, or just put on the requested data

elements and the other empty elements left still empty? This would be up to the

choice of the designer and would have different impact on the cache performance.

3.1.4 Legality of Write Operations

As we discussed before, an I-Structure memory system is a single-assignment memory

environment in and of itself. For instance, it must be ensured that write operations

are only made to empty locations. If this can be guaranteed by the compiler or

the language, then the write operations could be delayed in the local cache until

the data is needed by other hosts or the cache block is replaced. However, if the

legality of write operations is not ensured by the compiler/language, a write-back

cache design may result in some non-deterministic behavior. In this case, a write to
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