I-Structure Software Caches:
Exploiting Global Data
Locality in Non-Blocking
Multithreaded Architectures

Wen-Yen Lin

CENG 00-02

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213-740-4484)
May 2000

[-STRUCTURE SOFTWARE CACHES:
EXPLOITING GLOBAL DATA LOCALITY
IN NON-BLOCKING MULTITHREADED ARCHITECTURES

by

Wen-Yen Lin

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfilliment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER ENGINEERING)

MAY 2000

Copyright 2000 Wen-Yen Lin

I-Structure Software Caches:
Exploiting Global Data
Locality in Non-Blocking
Multithreaded Architectures

Wen-Yen Lin

CENG 00-02

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213-740-4484)
May 2000

[-STRUCTURE SOFTWARE CACHES:
EXPLOITING GLOBAL DATA LOCALITY
IN NON-BLOCKING MULTITHREADED ARCHITECTURES

by

Wen-Yen Lin

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER ENGINEERING)

MAY 2000

Copyright 2000 Wen-Yen Lin

Dedication

To my daughter Erin and my lovely wife Shu-Chiao.

Acknowledgements

My advisor, Professor Jean-Luc Gaudiot, was the inspiration for this thesis. [
would like to thank for his inspiration, guidance, and support. It was a privilege to
have been one of his students. [would also like to express my gratitude to Professor
Massoud Pedram and Ming-Deh Huang for serving on my dissertation committee.
Their inquisitive questions have stimulated my research. 1 also thank Professor
Timothy Pinkston, Viktor K. Prasanna, and Rafael H. Saavedra for being on my
Ph.D guidance committee.

The CAPSL (Computer Architecture and Parallel Systems Laboratory) at the
University of Delaware led by Prof. Guang R. Gao generously provided me with the
access to EARTH platforms. Their continuous efforts on developing, implementing,
and maintaining the EARTH machines provided me a reliable experimental envi-
ronment which leads to significant results presented in this dissertation. 1 thank Dr.
José Nelson Amaral for valued discussion and reviewing portions of my analysis.

[would like to thank my colleague and very good friend of mine, Chung-Ta
Cheng, for many insightful conversations and the friendship. I also would like to
thank my former group members Dr. Yung-Syau Chen, Dr. Hung-Yu Tseng, Dr.
Dae-Kyun Yoon, Dr. Halima Elnaga and Dr. Hiecheol Kim for their advisement
and encouragement. | thank Dr. NamHoon Yoo for his well-developed simulator.
Without his solid work, | would had spent more time on developing my own sim-
ulator. | also acknowledge PDPC group members Chulho Shin, James Burns, and
Steve Jenks. Special thanks goes to Mary Zittercob and Joanna Wingert for their

assistance.

i

My sincere gratitude goes to my parents, my brother and my sister for their love
and long time support. | must thank my wife Shu-Chiao Huang for her understand-
ing and love, which I can never thank enough. Without her continuous support, I
would never have been able to finish the program. Finally, I would like to thank my
daughter Erin, who brought me joyful moment and strength during my last stage of

study.

v

Contents

Dedication

Acknowledgements

List Of Figures

List Of Tables

Abstract

1

Introduction
1.1l SHVNODEIE . - o o o o o 6 oo n s o mie o n s hom e d w4 E RF R o EE

Background Research

2.1 Multithreaded architectures
2.1.1 Blocking Multithreaded Architectures
2.1.2 Non-blocking Multithreaded Architectures

2.2 -Structure memory systemo

2.3 Motivation L e e e e

24 Related Work
2.4.1 On Memory Models and Cache Management for Shared Mem-

ory Multiprocessors
2.4.2 IS-Cache Design on the ETS System
2.4.3 Scalable [-Structure Cache design
2.4.4 A Cache Design for Input Token Synchronizations
2.4.5 Empirical Study of a Dataflow Language on the CM-5

I-Structure Software Caches (ISSC)

3.1 I-Structure Cache Design . . . - . .« ¢ v v i v v s v i e v v o v v van
3.1.1 Deferred Requests Handling
3.1.2 Deferred Queue Storage oo oo e
3.1.3 Deferred Read Sharing Problem
3.1.4 Legality of Write Operations v 0.

11
111
vil

1X

16

3.2 The I-Structure Software Cache (ISSC)

Runtime System
3.2.1 Write-direct Policy
3.2.2 Set-Associative Cache Allocation,
3.2.3 Cache Advance,
3.2.4 Deferred Read Sharing
3.2.5 “Centralized” Deferred Requests and Distributed

Deferred Reads

3.2.6 Virtual Addressing 000
3.2.7 Cache Replacement Policy
3.2.8 ISSC System Overview

3.3 Simulation Results
3.3.1 The Simulator
332 Simulatiemresult ¢ v i e v s e v s e e s oa s
3.3:218 Thedataloeality - . « v o o v v v s s 26 v w v s ua

3.3.2.2 The network traffic

3.3.2.3 The system performance

3.3.3 The effect of cache advance
3.3.4 Cache Replacement 0.

B4 DUMMATY - = o « % oo o 5 2 2w 55 8 a5 F R m s F o v 3 R w s E

ISSC implementation on EARTH systems

4.1 BARTH Acchitectiior o « « o o o ¢ 55 5 % 6 6 5 & o 5 5 ¢ 5 6 @ 5 ¥ 3
4.1.1 Fine Grain Multi-Threading
4.1.2 Split Phase Communication and Synchronization

4.2 Single Assignment Storage Structures

4.3 ISSC Implementationon EARTH
4.3.1 ISSC implementation using Threaded-C language
4.3.2 Usage of ISSC in Threaded-C language

Experiment results on EARTH systems

5.1 Highlights of Experimental Results

5.2 The Cost of ISSC Operations

5.3 Description of Benchmarks

5.4 Robustness to Latency Variation

58 Summary . . . s « o« v wnow e nm o nnm s b ke s e ow s s

Performance Modeling

6.1 Performance Analysis . . . o« o o 0 v o v v v s i v w v w s a e s e
6.2 The Analytical Models: . . .« . .« o o v v v v v o v v w0 v a e
6.2.1 VerifyingtheModel« v v v o v v v v v v v v v
6.2.2 Performance Predictions
B3 Summar? « « s o wow oa 5w 0w s s mm w3 w3 e E e s e ek

63
63
64
67
69
74

75
76
78
80
82
85

Vi

7 Conclusions and future research 86

7.1 Conclusions o v 0 o e 36
7.2 TPuture research e e e e e e e 88
Reference List 92

Appendix A
ISSC’s Implementation on EARTH using Threaded-C Language 103

Ad ISECStrueture . « « v v v 5 2w v v 5 5w v v 5 owiie v 6w e 6w ow s w 104
A2 IS8BC Operations . .« o v v aw v vv v m o v am o on wmo on s e s 108

Appendix B
Using ISSC with Hopfield Benchmark 0. .. 112

B.l Hepfield Benchmark00 v in vt v i o vn s 113
B2 Malehle - . o c 24 s 585 3w e s ww.c ooz s za s E @ s % 127

Vil

List Of Figures

2.1 Distributed Deferred Queue Storage 18
3.1 Centralized Deferred Queue Storage 23
3.2 Data Block Integration 25
3.3 Structure of [-Structure Software Caches 28
3.4 Cache Advance Allocation L. 30
3.5 Deferred Read Sharing oL 31
3.6 The overview of [-Structure Software Cache runtime system 34
3.7 The Hit Ratio of Remote Requests: (a) Matrix Multiplication, (b)
Conjugate Gradient, (¢) 1-D FFT and (d) LU-Decomposition 39
3.8 The Number of Network Packets: (a) Matrix Multiplication, (b) Con-
jugate Gradient, (¢) 1-D FFT and (d) LU-Decomposition 41
3.9 Speed up measurements: (a) Matrix Multiplication, (b) Conjugate
Gradient, (c¢) 1-D FFT and (d) LU-Decomposition 43
3.10 The Effect of Cache Advance: (a) Matrix Multiplication and (b) Con-
jugate Gradient . w0 v or W g b 8 s e e B 4w 8 s EH 5 g 8 G 14
3.11 Cache Replacement and Hit Ratio in MM Benchmark with Varying
Cele BIB8. 5 v o 5 4 @5 s 8 6 $E B N5 N A U M 8B A @ HEE G E R E 46
3.12 Cache Replacement and Hit Ratio in CG Benchmark with Varying
CacHE S18B:s 5 v 5 55 w6 # 5 » s v 5 8 6 @ b s 6w b o i osduwnss 46
4.1 The EARTH Model 52

4.2 (a) (1) An active fiber in the EU of P; requests an EARTH split-
phase block-move-sync operation; (2) The SU of P; decodes the source
address to the memory of P; and sends a request for the block: (3)
The SU of P; receives the request and reads the block from the local
memory. (b) (4) The SU of P; sends the block over the network to
the SU of P;; (5) The SU of P; writes the block in the local memory:;
(6) The SU of P; decrements a synchronization slot counter, that
becomes zero and causes the spawning of a fiber that will use the

bloclk tramsterredl, + « s v s s s s v s m s e85 T8 8 3w 84 WA s ¥ e G 53
4.3 State Transition Diagram for the [-Structure Implementation 35
4.4 State Transition Diagram for the [-Structure Software Cache 58
4.5 Threaded-C with [SSC program example 61

viii

o Qv Ot
g =

(V]

6.1

6.2
6.3
6.4

Speedup in the MANNA machine. . R e
Absolute speedup with 10 gs communication mimfare 0\&1]1&1(1
Execution time with synthetically variable communication interface
overhead . . . « v . « v 2w .o

Execution time with add-on synthetically variable communication in-
terface overhead. (a)Dense Matrix Multiplication (b)Conjugate Gra-
dient (c)Hopfield (d)Sparse Matrix Multiplication

Performance prediction for different benchmarks
Performance prediction for communication optimization .
Performance prediction for technology improvement

70
71

List

Of Tables

Comparison of Blocking and Non-blocking Multithreaded Executions

Latency of EARTH and ISSC operations on EARTH-MANNA-SPN.
measured in number of cycles (1 ecycle=20ns).
I-Structure Software Cache Hit Ratios (%)

Timing equations and the cross-points (ps)
Benchmark-related Parameters.
Platform-related Parameters Measured from MANNA machine

Abstract

Non-Blocking Multithreaded execution models have been proposed as an effective
means to overlap computation and communication in distributed memory systems
without any hardware support. Split-phase operations are used to enable the tol-
erance of request latencies by a decoupling between the initiators and the receivers
of communication/synchronization transactions. However, the data locality of the
shared distributed global data is not exploited by conventional caches; moreover,
each request also incurs the cost of communication interface overhead.

In this dissertation, we design our ISSC (I-Structure Software Cache) system to
further reduce communication overhead for non-blocking multithreaded execution
and develop a simulator to validates our design. The single assignment property of
[-Structure eliminates the needs for cache coherence protocol and greatly reduces
the overhead of this software cache. It is this property that make the concept
of software cache feasible. This software cache combines the benefits of latency
reduction and latency tolerance in non-blocking multithreaded system without any
hardware support.

We then implement our ISSC on top of EARTH systems, which is a fine-grain
multithreading system that could be implemented from off-the-shelf microprocessors.
and we studied the performance of ISSC on EARTH-MANNA machine with a set of
benchmarks. Our studies indicate that ISSC improves the system performance and
makes the system more robust. We further develop analytical models for the perfor-

mance of a multithreading system with and without ISSC. We compare our model’s

Xi

prediction with our experimental results on EARTH-MANNA machines. These ana-
lytical models allow us to predict at what ratio of communication latency /processing
speed the implementation of ISSC becomes profitable for applications with different
characteristics. As a consequence the system can be ported to a wider range of

machine platforms and deliver speedup for both regular and irregular application.

xii

Chapter 1

Introduction

Multithreaded architectures have been proposed as a means to overlap computation
and communication in distributed memory systems. By switching to the execu-
tion of other ready threads. the communication latency can be hidden from useful
computations as long as there is enough parallelism in an application.
Non-blocking multithreaded execution models, like TAM [22], P-RISC [58], and
EARTH [37], had been proposed to support multithreaded execution in a conven-
tional RISC-based multiprocessor system without the needs of any specific hardware
support for fast context switching. In these models, remote memory requests are
structured as split-phased transactions so that the processor could continue exe-
cuting other instructions which do not depend upon the request in progress. The
request carries a tag, continuation vector, indicating the return address of the re-
quested data in the consumer thread. The arrival of the requested data will be sent
directly to the consumer thread identified by the continuation vector. The arrival
of the last requested data in that consuming thread will then activate the thread
and the thread will be ready to be executed. Therefore, in these models, thread
activations are data driven: A thread is activated only when all the data elements
it needs are available locally. Indeed, once a thread starts to execute, it executes to
the end. In such a non-blocking multithreaded execution model, once the executfion

of a thread terminates, no thread contexts need to be saved before switching to the

execution of another active thread. Therefore, multithreaded execution is achieved
without the needs of any specific hardware support.

A good execution model must be based on a good memory system to achieve
high system performance [25]. An [-Structure memory system [9] provides split-
phase memory accesses to tolerate communication latency. It also provides non-
strict data access, which allows each element of a data structure to be accessed
once the data element is available without waiting for the whole data structure to
be produced. Each element of an [-Structure has a presence bit associated with
it to indicate the state of an element, such as Empty and Present. Data can only
be written into empty elements, and the slots are set to the present state after
the data has been written into them. Read from an empty element is deferred
until the data is produced. The split-phase accesses to the I-Structure elements
provide fully asynchronous operations on the I-Structure. The non-strict data access
on the I-Structure provides the system with a better chance to exploit fine-grain
parallelism. The fully asynchronous operations on the I-Structures make it easier
to write a parallel program without worrying about data synchronizations since the
data are still synchronized in the I-Structure itself. The single assignment rule of
the I-Structure provides a side-effect {ree memory environment and maintains the
determinacy of the programs. All of these features make [-Structures, along with
non-blocking multithreading, an ideal model for parallel computing.

While the combination of non-blocking multithreaded execution and I-Structure
memory system appears to be a very attractive architecture for high performance
computing, the major drawback of this system is that locality of remote data is
not utilized. Since all remote requests are translated into split-phased transactions
which are different from local memory read/write operations, the accesses of remote
data do not pass through the local cache system and every remote data access is
actually sent to the remote host. On the other hand, in some other multithreaded

architectures, like ALEWIFE [2], FLASH [50], and *T-N.G. [8], every memory access

is issued as a local memory operation. Thread switching occurs when the processor
stalls on cache misses or synchronization failures at run-time. This kind of models
is what we call “Blocking mullithreaded .” Thread switching involves context saving
of the suspended thread, context loading of the next thread, and pipeline flushing.
The overhead is much larger than the non-blocking multithreaded execution and it
usually needs specific hardware support for fast context switching. Fortunately, the
use of a local cache system exploits the global data locality and hence reduces the
number of remote requests as well as the number of context switches.

With the very small overhead of context switching in the non-blocking multi-
threaded models, the highest overhead of these models is in the communication
interface. The sending and receiving of network packets may take from dozens to
thousands of cycles depending on the design of the network interface [21]. Since all
requests are actually sent to the remote hosts through the network, all the sending
and receiving requests incur the network interface overhead. Moreover, the requests
for I-Structure memory accesses on the network also congest network traffic which
may ultimately degrade system performance.

The goal of this research proposal is to develop an efficient cache scheme for the
[-Structure memory system in the non-blocking multithreaded multiprocessor sys-
tems so that it could exploit the global data locality, reduce the number of network
packets, and hence improve the overall system performance. The target environment
we have in mind is a message-passing distributed memory multiprocessor system.
The non-blocking multithreaded execution model is a compiler controlled multi-
threaded execution, and it could be implemented on any conventional RISC-based
multiprocessor system without any add-on hardware support for multithreaded ex-
ecution. We would intend to include our cache system to this model without any
specific hardware support for further improvement of system performance. There-
fore, a software implementation of this cache scheme, the [-Structure Software Cache

(ISSC), is proposed here to exploit global data locality without adding any specific

hardware support in the non-blocking multithreaded execution model. However, we
do not limit this cache scheme to a software implementation only. This proposed

research also provides a fundamental study for the hardware implementation.

1.1 Synopsis

This dissertation is orgnized as follows:

Before we start to discuss the design of I-Structure caches, we did a broad back-
ground research and report some replated work in Chapter 2. From these background
research, we disscuss some design issues of [-Structure cache design in Chapter 3.
We also describe the approaches adopted in our design, and provide details of our I-
Structure Software Cache implementation. We then perform simulation of our [S5C
design with selected benchmarks to validate our design.

We are not just satisfied with our simulation results, we also look for a real system
that we could implement our ISSC on it. In Chapter 4, we have a brief introduction
to our target system, EARTH, and described the implementation of our [SSC on the
system using Threaded-C language. We measure the costs of some [SSC operations
in Chapter 5 on EARTH-MANNA machine to have a better understanding of the
overhead of software cache. In this chapter, we also test our [SSC with a set of real
benchmarks and measure its performance. We show our ISSC make the system more
robust to the latency variation.

In Chapter 6, we develop analytical models for a multithreading system with and
without ISSC. We verify these models with the experimental results we measured in
chapter 5 and make performance predictions for different benchmark characteristics
and a wider range of machine platforms. Then we conclude this dissertation with the

contributions of this research work and provide some directions for future research.

the communication latency behind the computation and reduce the idle time of
processors.

Multithreaded processors should be attractive as nodes for a massively paral-
lel machine programmed using the SPMD model. The single-program multiple-
data (SPMD) model [24] is currently gaining wide acceptance for massively par-
allel scientific computation. The model is implemented by mapping it onto and
MIMD multiprocessor, either manually or by using a dta parallel compilation strat-
egy [36, 75, 45, 48, 26]. The SPMD model provides a good target language for the
array computation features of such languages as Fortran 90 [73], High Performance
Fortran [35], and certain functional programming languages (Sisal [56, 17, 18, 19]
and Id [59], for example).

In some multithreaded models, like TAM [22], P-RISC [58], and EARTH [37],
all remote memory accesses are translated into split-phased transactions at compila-
tion time and a thread will be activated only when all the data inputs are available
locally. Therefore, once a thread starts to execute, it executes to the end. This
kind of execution model is called “Non-Blocking Multithreaded”. [-Structure mem-
ory system is a split-phased accessing memory system. It provides non-strict data
accesses, fully asynchronous memory operations, and fine-grain parallelism. This
makes [-Structure memory, along with non-blocking multithreading, an ideal model
for parallel computing. On the other hand, in some other multithreaded architec-
tures, like ALEWIFE [2], FLASH [50], and *T-N.G. [8], every memory access is
issued as a local memory operation. Thread switching occurs when the processor
stalls on cache misses or synchronization failures at run-time. This kind of mod-
els is what we call “Blocking multithreaded .” With dedicated hardware support
in this model, context switch overhead could be minimized to tens of machine cy-
cles. Therefore, the communication latency could be overlapped by the interleaved

executions of several threads.

2.1.1 Blocking Multithreaded Architectures

By “Blocking”, we mean “Blocking Multithreaded Architectures” where the execu-
tions of threads are suspendable and also resumable. The idea is that during the
execution of a thread, if the processor stalls on waiting for remote requests, synchro-
nization failures, or even the local data to be brought from local memory to cache
on cache misses, the processor would rather suspend the execution of the current
thread and switch to the execution of other threads than just sit idle and wait for
the action to complete.

However, to resume the execution of the suspended thread. the thread context
needs to be saved while it was suspending. Since when the thread will be suspended
cannot easily be predicted at compilation time, all the registers, status words, and
some memory space have to be saved when a thread suspension occurs. Moreover,
the thread context which is chosen for execution next has to be loaded into processor
after the context of the suspended thread was saved. All of the jobs during thread
switching (context saving and loading) should be done very efficiently, otherwise the
processor may want to stick on the same thread and just be idle while waiting for
the remote requests, synchronization failures, or cache misses to be finished.

Therefore, most of the architectures supporting blocking multithreaded execu-
tion, like Horizon [49], Tera [4]. MASA [33], J-Machine [61], ALEWIFE [2], FLASH
[50], and *T-N.G. [8], have dedicated hardware which supports fast context switch.
For example, in ALEWIFE, a modified SPARC processor, Sparcle [3] processor is
used for supporting blocking multithreaded execution. In Sparcle, the register set is
divided into several frames that are conventionally used as register windows [42].[65]
for speeding up procedure calls in SPARC. In their design, they partition the reg-
ister file into four hardware contexts. A context switch to a precess whose state is
currently stored in one of the register frames on the processor is effected in a small
number of cycles. Each Sparcle processor will support up to four hardware threads

and unlimited virtual processes. The mapping of process contexts to register frames

is managed by software. By this dedicated hardware design, the context switching
could be achieved within 14 cycles. However, this kind of hardware support would
increase the complexity and the cost of processor design.

However, there are still some side effects of the blocking multithreading which are
hard to minimize by dedicated hardwares. One of the side effects is pipeline flushing.
In pipelined processors, all the instructions entering pipeline become invalid right
after the thread was suspended and the first instruction of next thread has to be
fetched into the first stage of pipeline. This will result in bubbles in the pipeline.
The deeper the pipeline, the higher the overhead suffered by the system. The other
side effect is cache contention [1]. In the blocking multithreaded execution, all the
existing threads (including the active thread, ready threads, and suspended threads)
of the processor compete for the limited cache space with each other. This gives rise
to a higher cache miss rate.

Fortunately, the exploitation of the global data locality reduces the number of
remote requests and the number of context switches. In the blocking multithreaded
execution, all the remote memory accesses are treated as local accesses. In machines
with caches, the actual remote requests are sent to the remote hosts only when they
are missed from the local cache. The block of data located in remote hosts will be
brought back to the local cache with the requested data and the following remote
memory accesses may hit the local cache. Therefore the thread execution could
be continued without suspension. The reduction of the actual remote requests also
gives a lower network traffic rate. However, the use of caches in the multiprocessor
systems raises another important issue in multiprocessor system design, namely the
cache coherence problem [28, 20].

In conclusion, by maintaining multiple process contexts in processors supporting
blocking multithreaded execution with fast context switch, the thread execution will
be suspended when it stalls on the remote requests, cache misses, or synchronization

failure, and the processor switches to the execution of other threads. Such that the

co

communication latency could be overlapped with useful computation and processor
utilization increases. Since there are dedicated hardwares to support the context
switching at the run-time, all of the memory accesses could be treated as local
memory accesses and the actual remote requests are made only when they are missed
from the local cache. Therefore, the global data locality could be easily exploited
by the local cache and hence reduces the chance of thread switching and network
traffic. However, provided sufficient parallelism exists, the number of threads in the
processor is still limited by the complexity of the processor and the increased cache
miss rate [1]. Indeed, with the requirement of dedicated hardware support for fast
context switching and maintained cache coherence, it would take a long time and

would be very costly to build this kind of systems.

2.1.2 Non-blocking Multithreaded Architectures

Split-phased transaction [34, 72] is an asynchronous memory access scheme in mes-
sage passing multiprocessor systems. In the systems, remote memory requests are
structured as split-phased transactions so that multiple requests may be in progress
at one time. An instruction issues a request to the processor or memory module
containing the desired data, and then other instructions which do not depend upon
the result of the request in progress are executed. The request carries a tag, contin-
wation vector, indicating the return address in the consuming thread at which the
computation should be continued when the response arrives. By splitting the remote
memory request into two phases, requesting and consuming, the processor could con-
tinue executing other useful computations without wait for the data to arrive while
the request is in progress. The arrival of the requested data will be sent directly to
the consuming thread identified by the continuation vector. This feature of the split-
phased transaction provides the ability for overlapping the communication latency

with useful computations.

9

Basically, the non-blocking multithreaded execution model was evolved from the
concept of data-flow execution model. Data-flow execution can be thought of as a
very fine-grain multithreaded execution model. Indeed, in data-flow models, each
thread contains only one instruction. The instruction will be activated only when the
operands 1t needs are generated. After the execution of the instructions finished,
the output data token is passed to other instructions and activates them. This
would result in a sequence of activation. To improve the performance of the data-
flow architecture, most processors designed for data-flow execution are pipelined,
like MONSOON [63, 64, 34] and RAPID [60]. The stages of the pipelined pro-
cessor are interleaved with different sequences of activations. Therefore, the high
through put could be achieved. However, due to the high cost of the matching
unit for the operands matching of instructions and the poor performance of the
single sequence of activation execution, researchers from this area proposed the non-
blocking multithreaded execution model. Examples of multithreaded architectures
based on dataflow models are: lannucci’'s work [39, 40] in combining dataflow ideas
with sequential thread execution to define a hybrid computation model, the [XM-4
project [47, 46, 68] at the Electrotechnical Laboratory (ETL) in Japan, the successor
of MONSOON project, *T [14], TAM [22], P-RISC [58], and EARTH [37].

The main idea of non-blocking multithreaded execution is to group the sequence
of activation without any remote memory accesses, branches, and synchronization
into one thread at compilation time. So that, once a thread starts to execute,
it executes to the end. A thread is like an atomic execution unit, which is like
an instruction in the data-flow execution model. Since the thread execution will
not be suspended, no context needs to be saved for the thread at the run-time.
As for the beginning of a thread execution, since the execution is not resumed
from previous execution, no process context needs to be loaded. Therefore, there
is almost no overhead during the thread switching. This is the reason why it is

easier to implement this kind of model from off-the-shelf processors [55]. Moreover,

10

since the thread boundary has been determined at compilation time, in the pipelined
processors, the first instruction of the thread which will be executed right after the
current thread could be pre-fetched into to the pipeline while the last instruction
of the current thread is in the execution stage. So that, the pipeline is also highly
utilized while thread switching without any bubble stages.

For the remote memory accesses, the requesting and consuming of the remote
data are broken into different threads by using the split-phased transaction. In a
split-phased transaction memory access, along with the requested data address, the
continuation vector (the return address of the requested data) was sent to the remote
host by the requesting thread. According to the continuation vector, the requested
data are sent back directly to the consumer thread by the remote host. And, the
consumer thread may become active if all the data it needs are available locally.
Since the requesting threads are only responsible for sending out the requests, it is
not necessary for them to wait for the requests to complete after sending out the
requests. The processor could continue the execution of current thread or other
active threads while those split-phased transactions are in process. Therefore, the
communication latency could be hidden from the execution of other threads.

However, the major drawback of this non-blocking multithreaded execution model
is that the global data locality is not exploited. Since every remote memory access
has been compiled into split-phased transaction explicitly, each remote access actu-
ally send out the request to the remote host and the remote host sends back the
reply message along with the requested data. These requests are different from the
local memory read/write operations, and, therefore, these remote memory accesses
do not pass through the local cache systems and the local cache system takes no
advantages of the remote data locality. On the other hand, in the blocking mul-
tithreaded model, every memory access is issued as local memory operation. The

request is sent to the remote host only when the data is not in the local cache. The

11

local cache system exploits not only the data locality from local memory but also

the global data locality.

| Characteristics || Blocking Multithreading | Nou-Blocking Multithreading
Thread execution Interleaved (suspendable) Atomic entity
Thread switching Run-time controlled Compilation time controlled
Hardware support context switch Needed Unnecessary
Remote memory accesses Local accesses Split-phased transactions
Pipeline flushing Yes No
Granularity Coarse Fine
Global data locality exploitation FEasy Difficult
Network traffic Medium High

Table 2.1: Comparison of Blocking and Non-blocking Multithreaded Executions

Finally, 1 would like to sum up the comparison between the blocking multi-

threaded model and the non-blocking multithreaded model in table 2.1.

2.2 I-Structure memory system

An [-Structure memory system [11, 9, 34] is a conventional data structure with some
constrains on its construction and destruction. It is designed for the data storage
of scientific applications in parallel computing to achieve efficient accesses, provide
fine-grain parallelism, and preserve the determinacy of computing. I-Structure mem-
ory system explicitly use split-phased transaction for the memory access, and this
provides the system with the ability for hiding the latency of accessing I-Structure
memory from useful computation.

Each element of the [-Structure has a presence bit associated with it to indicate
the state of the element, such as Empty and Present. There are three primitives for

the operations in [-Structure memory system.

o [-allocation allocates consecutive data elements for an array structure and these
data elements are initialized as in Emply state.

o [-store stores a produced data item into the empty data element. After the
data item is written into the data element, its state is set to Present state.

12

If an [-store attempts to write data into a data element which is already in
the Present state, it causes an error. This constrain makes the [-Structure
mermory as a single assignment memory system. Each data element could be
accessed after the data is stored into it without waiting for the data of the

whole structure to be produced.

o [-fetch reads the data from the data element in [-Structure memory. If the
I-fetch is issued to an Empty data element, the request is deferred until that
element has been written. A deferred request can be memorized simply by
saving its conlinuation vector in the data element. Once the value is present,
it can be sent to the requester using the saved continuation vector. This would

allow a request being issued before the data is produced.

The non-strict data access on the I-Structure provides the system with a better
chance to exploit fine-grain parallelism. The fully asynchronous operations on the
[-Structure make it easier to write a parallel program without worrying about data
synchronization since the data are still synchronized in the I-Structure itsell. The
single assignment rule of the I-Structure provides a side-eflect {ree memory environ-
ment and maintains the determinacy of the programs. Giving enough parallelism in
the program, the split-phased nature of memory requests allows us to hide the extra
latency of remote memory accesses in the distributed multiprocessor environment.
All of these features make I-Structures highly suited to distributed memory sys-
tems designed to exploit fine-grain parallelism, like the non-blocking multithreaded

execution.

2.3 Motivation

[t appears that using [-Structure memory system along with non-blocking multi-
threaded execution becomes a promising architecture for high performance parallel

computing. This architecture exploits fine-grain parallelism, hides the extra latency

13

of remote requests from useful computation, increases programmability while main-
taining the determinacy of the parallel applications, and of course, is low cost to
build.

However, the major drawback of this architecture is that the remote data locality
is not utilized. We need to exploit the global data locality in this architecture for
several reasons. Indeed, with the capability for latency tolerance brought by split-
phased transactions and the small overhead of thread switching in the non-blocking
multithreaded execution, it would appear that the length of the remote request is ir-
relevant. However, it turns out that communication latency tolerance is based on one
central assumption: it could be hidden from computation as long as there are enough
ready threads. When there is not enough parallelism, single thread performance is
closely related to the communication latency and it becomes critical. Exploiting
the global data locality will reduce the mean time between thread activation and
therefore the processor utilization increases in the critical section. Secondly, even
with enough threads to tolerate communication latencies and low thread switching
overhead, the highest overhead of this architecture is in the communication interface.
The sending and receiving of network packets may take from dozens to thousands
of cycles depending on the design of the network interface [21]. Since all requests
are actually sent to the remote hosts through the network, all the sending and re-
ceiving requests incur the network interface overhead. Finally, even though many
machines include dedicated hardware to handle the network communication so that
communication interface overhead is taken away from the computation processors,
the requests for all the remote data accesses on the network also congest network
traffic, which may ultimately degrade system performance.

Therefore, an I-Structure cache system which caches these split-phase transac-
tions in non-blocking multithreaded execution is required to further reduce commu-
nication latencies and release the network traffic. This cache system would provide

ability for communication latency reduction while maintaining the communication

14

latency tolerance ability in this architecture. Therefore, our goal is to develop a
novel I-Structure cache scheme to exploit global data locality in non-blocking mul-
tithreaded architectures. The target environment we have in mind is a message-
passing distributed memory multiprocessor system. The non-blocking multithreaded
execution model is a compiler controlled multithreaded execution, and it could be
implemented on any conventional RISC-based multiprocessor system without any
add-on hardware support for multithreaded execution. The single assignment prop-
erty of the I-Structure eliminates the cache coherence problem from the cache design.
This would make it possible to implement the cache system as a software run-time
system without being detrimental to the system performance, and we would intend
to include our cache system to this model without any specific hardware support for
further improvement of system performance.

Therefore, in this proposed research, we developed an [-Structure Software Cache
(ISSC) [51] in the non-blocking multithreaded execution model with I-Structure-like
memory environment without adding any hardware. We would like to see the im-
pact of the ISSC on the overall system performance by analyzing the data locality
utilization, network traffic, overhead distribution, and speed-up curves of some ap-

plications.

2.4 Related Work

There is some research about the I-Structure Cache design which has been pursued

elsewhere, but non of the designs are intended to implement as a run-time system.

15

2.4.1 On Memory Models and Cache Management for Shared

Memory Multiprocessors

Dennis and Gao [25] proposed a cache management scheme for their Abstract Shared-
Memory computer system, which is a dataflow program execution model and spec-
ified the [-Structure model as the memory system to support the synchronizing
memory operations. They proposed a high-level concept of the I-Structure Cache
management scheme but without detail implementation.

In their design, a cache line will be allocated first in the local cache when a read
miss occurs. The continuation vector of the original request will be stored in this
allocated cache line, and a new request will be forwarded to the remote host by
using the address of the allocated cache line as the continuation vector but not the
original one. The later requests for the same data item will be deferred in the cache
line while the first request is in progress. After the first request is replied from the
remote host, the data item is written into the pre-allocated cache line and is also
forwarded to all the continuation vectors which have been deferred in that cache
line. A write-through with write allocate policy is adopted in their design in a write
miss situation. In the [-Structures, the deferred requests from all other hosts for the
same data element are queued in the host or memory module which owns that data
element.

In their design, the size of a cache line is a single [-Structure element. Therefore,
only the temporal data locality is exploited and the spatial locality is not touched.
All other details of the cache design, like cache organization and cache replacement
algorithm, are not mentioned in their design. And also, no simulation or evaluation

are performed in their work.

LG

2.4.2 IS-Cache Design on the ETS System

Kavi et al. [43] proposed a design of cache memories for multithreaded dataflow
architectures. The design includes an I-Structure cache memory to exploit the data
locality of the shared data structures in multiprocessor environment. Basically, the
design of their [-Structure cache (1S-Cache) is a hardware supported cache system
using the Explicit Token Store (ETS) model of dataflow systems.

The 1S-Cache keeps not only the I-Structure elements requested (I-fetch opera-
tions) by the processor but also the I-Structure elements produced (I-store opera-
tions) by the processor. A write-back on demand policy is adopted for the I-store
operations. The data items produced by local host are kept at the local 1S-Cache
and are written back to the [-Structure only when there are requests for those data
items or they are replaced from the [S-Cache. As in conventional cache system de-
sign, a cache line is allocated only when the data are brought back from remote
host. Therefore, in a read miss situation, the request is forwarded to the I-Structure
directly without doing anything on the local IS-Cache. If the requested data item
has been produced and is available in the I-Structure, the data item is sent back
to the consumer thread and a copy of the data item is also kept at [5-Cache, If
the requested data item is not yet available (the data element is in Empty state)
in the I-Structure, the request is deferred in the [-Structure and a message is sent
to the producer of that data item to indicate that there is deferred request of that
data item in the I-Structure. If the data item is already in the producer’s IS-Cache,
that data item is written back to the I-Structure and the deferred request for that
data element are fulfilled. Otherwise, a missing table is maintained in the producer’s
[S-Cache to indicate the pending status of the I-Structure elements. After the data
item is produced and stored in the producer’s 1S-Cache, the missing table is checked
and the data item is written back to the I-Structure and the deferred request could

be fulfilled.

L7

To implement the write-back on demand in the 1S-Cache, extra space for the
missing table is needed. Also, in order to send the pending status of a data item to
its producer, an additional directory for the information of the producers of the I-
Structure elements is required. This would further make it difficult to implement the
dynamic allocation of data structures in the [-Structure. It would also be difficult to
implement a thread migration strategy which will change the producers of the data
items at run-time. Moreover, addition interrogation messages will be introduced to

the network when requests for empty I-Structure elements occur.

2.4.3 Scalable I-Structure Cache design

Papadopoulos [62] and Cheng [31] independently proposed scalable methods to deal
with the storage of the deferred requests in the I-Structure.

In the multiprocessor systems, multiple hosts may issue requests for the same
data item in the [-Structure. If that data item is not produced yet, all the requests
have to be deferred in the [-Structure. As the number of pending requests grows,
there may be not enough space to store all the pending requests in the [-Structure
which owns that data item. Moreover, when the data item is produced and written
to the I-Structure finally, all the deferred requests will be served. This may cause a

hot spot problem on the network.

Node |

SthuctureNoge. 2o¢ Node k

Figure 2.1: Distributed Deferred Queue Storage

Therefore, they proposed distributed mechanisms for the storage of the pending
requests: they are distributed among the requesting hosts. As shown in figure 2.1,
every requesting host provides one (or more) slot to store each one of its own pending
request(s). and all of these requests are linked in a queue. This scheme make the
growing of the deferred queue quite scalable, since for every requesting host, only
one slot is needed for the queue. It also avoids hot spots in the network if there are

too many requests pending in a single data location.

2.4.4 A Cache Design for Input Token Synchronizations

Roh and Najjar’s project [67] on the design of storage hierarchy in multithreaded
architectures was trying to exploit the locality of the frame storage on the Pebbles
multithreaded model. The Pebble multithreaded model is a non-blocking multi-
threaded model which is the same as the architecture that we have in mind. How-
ever, the locality exploited in their work is the frame storage which is used to store
the input tokens of the threads. This reduces the match time of each incoming to-
ken. They showed the execution time becomes linearly proportional to the match
time when the match time is greater than 3 cycles. In their simulation, the average
match time could be reduced to 1 cycle based on the design of a fully associative
cache. In this work, the locality of the global shared data is not touched. We believe
that the execution time is dominated by the match time when the match cycle is
large as shown in their work. We think that the execution time with a small match
cycle is dominated by the availability of the threads. The [-Structure cache exploits
the global data locality and hence reduces the average turn around time of the re-
mote requests. The smaller the remote request turn-around time, the less threads
are needed to overlap the communication latencies. Therefore, by incorporating the

[-Structure cache with their work, the system could be further improved.

19

2.4.5 Empirical Study of a Dataflow Language on the CM-5

Culler et al. [23] implemented the idea of I-Structure caching in software manner on
1d90 compiler for their Threaded Abstract Machine (TAM) implemented on the CM-
5. The idea of I-Structure caching is similar to our work but they also did the single
[-Structure data element caching which is the same as Dennis and Gao’s work as we
introduced in previous section. In their implementation, the unit of a cache block is
a single [-Structure data element. Therefore, only temporal data locality had been
exploited. With a cache block size of one [-Structure data element, no deferred read
sharing problem will occur. This made their design comparatively easier, like cache
replacement, deferred read handling, etc. However, from our simulation, it shows
that spatial data locality does play an important role in the performance improve-
ment. Moreover, temporal data locality could be easily utilized by the programmer
or the compiler without implementing the [-Structure caching, as we shown in our

T benchmark.

Chapter 3

I-Structure Software Caches (ISSC)

3.1 I-Structure Cache Design

In one aspect, [-Structure cache design is simpler than the cache design for conven-
tional memory systems. That is, no cache coherence problem is encountered in the
[-Structure cache design. This is because of the inherent cache coherence feature
of I-Structure Cache. Indeed, I-Structure is a single assignment memory system.
In single assignment memory systems, multiple updates of a data element are not
permitted. Once a data element is defined in a single assignment memory system, it
will never be updated again. The copies of the data elements in the local cache will
never be updated. Therefore, cache coherence is already embedded in [-Structure
memory systems. It makes the design of [-Structure cache much simpler without
having to take care of the cache coherence problem.

However, in other aspects, the design of the I-Structure Cache is not as straight-
forward as the cache design for conventional memory systems. This is because of
some characteristics of [-Structure, such as split-phased transaction, single assign-
ment property, deferred read, and the presence bits of data elements. Therefore

some design concerns and issues will arise in the I-Structure cache design.

3.1.1 Deferred Requests Handling

In an I-Structure, a request may be deferred in the [-Structure if the request arrives
while an data item has not yet been written into the I-Structure. The deferred
request will be satisfied after the data item is produced and written back to the
[-Structure. The services of deferred reads have to be guaranteed, otherwise some
threads may wait for the already produced data elements forever and this may result
in some deadlock situations.

In the I-Structure memory system without [-Structure cache, there will be not
problem at all for this guaranty since the I-store operations will write the produced
data back to the I-Structure directly and all the pending requests in the I-Structure
will be fulfilled as soon as the data are written into the [-Structure. However, adding
the [-Structure cache to the system may keep the data of I-store operations in local
cache without writing them back to the I-Structure immediately. In the case that no
cache replacement occurs, the produced data might be kept at local cache and would
not be written back to the [-Structure forever. If it happens to have some pending
requests for those data in the I-Structure, then these pending requests will never
be satisfied. Therefore, the design of I-Structure cache has to avoid this situation
carefully.

One of the solutions is the write-back on demand policy as used in Kevi's IS-
Cache design [43]. The produced data which are kept in the cache by local host will
be written back to the I-Structure not only when they are replaced from the cache,
but also when there are requests for these data from other hosts. After the data are
written back to the [-Structure, the deferred reads could be satisfied. This scheme
will prevent the unnecessary data being written back to the I-Structure if there will
be no requests from other hosts. However, a write-through cache design provides
a simple solution to guarantee the service, because the produced data element will

be written to the I-Structure as soon as it is produced. Once the data element is

[
Do

written to the [-Structure, the deferred reads queued on the data element slot can
be satisfied.

These two solutions provide the guaranty of the deferred request services. The
write-back on demand cache design will reduce some unnecessary network traffic,
but it is more complex and expensive to implement than the write-through cache
design is. In section 4, we will have more discussion on this issue and explain the

reasons of why we chose write-through policy in our design.

3.1.2 Deferred Queue Storage

d 1\, Fotle |

\ =

Deferred Réquests

I-Structure node
Figure 3.1: Centralized Deferred Queue Storage

In a multiprocessor system, there may be several requests pending on a data
element before the data is generated. How the system maintains the queue of these
deferred requests is also an issue. The conventional method is called the “Central-
ized” storage method: all of the deferred requests are stored in the owner’s place, as
shown in figure 3.1. This method is very simple, and since all the deferred requests
are kept at the owner’s place of the data element, all of the pending requests can
be satisfied as soon as the data is written into its location. However, the number
of pending requests depends solely on the application. Further, as the number of
pending requests grows, there may be not enough space to store all these requests.

Therefore, this scheme may not be scalable: even though there is enough space to

23

store all the pending requests, whenever the data is generated, all of the pending
requests on this data have to be serviced simultaneously. This may cause a hot spot
problem on the network.

The “Distributed” storage method independently proposed by Papadopoulos [62]
and Cheng [31] provides a scalable solution for the unlimited growing of pending
requests and also avoids the hot spot problem on the network caused by the services
of those pending requests. Moreover, since the deferred queue is distributed among
the requesting processors, the [-Structure needs only serve the first pending request
which is stored in the [-Structure data element. After the reply of the first pending
request arrives the requesting host, the pending request, which is from other host
and stored in that host, could be satisfied. This makes the services of the pending re-
quests on different data elements as in pipeline fashion, and therefore, it increases the
throughput of the [-Structure memory operations. However, as in Cheng’s design,
the storage slots of this distributed deferred queue are provided by the [-Structure
cache of each requesting host. The cache lines allocated for the distributed deferred
queue may be replaced, and the queue will be broken. So that, additional effort
must be expended to recover the queue once it is broken. Moreover, those requests
which are pending at the end of the queue may wait for a long time for the requests
to be served.

However, the chance of the pending requests to explode the space in the “Cen-
tralized” storage method will play an important role in the decision of using the

“Distributed” storage method or not.

3.1.3 Deferred Read Sharing Problem

[n [-Structure memory systems, every data element has a presence bit associated
with it to indicate its state (Present, Empty, or Deferred). Indeed, to exploit the
spatial data locality, a whole block of data elements should be requested by the cache

instead of the requested data item only. As shown in figure 3.2, the data elements in

24

ata block
ought back

]

Cache Line

d Q

|-Structure
Data Block (Main Memory)

Figure 3.2: Data Block Integration

the same block may be in a different state; some of them may be in the present state
and some of them may be in the emply state. How the data elements in the different
states will be integrated into a whole data block needs to be careful handled in the
[-Structure cache design.

Deferred read sharing is one of the issue happens in the integration of data
elements in different states into one data block. Without doubt, the present data
should be brought back into the cache and a deferred request is stored in the slot of
the requested data element if it is in the empty state. The issue comes when there
are other empty data elements within the same data block. Is the deferred read
going to be put on every empty data element, or just put on the requested data
elements and the other empty elements left still empty? This would be up to the

choice of the designer and would have different impact on the cache performance.

3.1.4 Legality of Write Operations

As we discussed before, an I-Structure memory system is a single-assignment memory
environment in and of itsell. For instance, it must be ensured that write operations
are only made to empty locations. If this can be gnaranteed by the compiler or
the language, then the write operations could be delayed in the local cache until
the data is needed by other hosts or the cache block is replaced. However, if the
legality of write operations is not ensured by the compiler/language, a write-back

cache design may result in some non-deterministic behavior. In this case, a write to

25

an already defined element may occur, but the doubly-written data may be kept in
the local cache forever while the rest of the system is not aware of this situation. A
write-through cache will be much safer in an I-Structure cache system if the legality

of write operations was not enforced by the compiler or the language.

3.2 The I-Structure Software Cache (ISSC)

Runtime System

The I-Structure Software Cache runtime system proposed here will take advantage
of the spatial and temporal localities of the global data in the I-Structure memory
systems, without any hardware support. The runtime system works as an interface
between the user applications and the network interface. A block of memory space is
reserved by this run-time system as the software cache space. It filters every remote
request and reserves a memory space in local memory as a cache of remote data.
A remote memory request is sent out to the remote host only if the requested data
is not available on the software cache of the local host. Instead of asking for the
requested data item only, the whole data block surrounding the requested data item
is brought back to the local host and stored in the software cache. Therefore, spatial
data locality can also be exploited.

There are several features of our ISSC system that 1 want to discuss first before

[give an example to explain the overview of whole ISSC system.

3.2.1 Write-direct Policy

As described in section 3 regarding the deferred request handling and the legality of
write operation issues in the I-Structure cache design, different write policies would
have different impacts on the I-Structure cache design. In our I-Structure Software

Cache design, we didn’t adopt the write-back policy for the following reasons:

e [-Structures are a producer-consumer type of memory system. There may be
some requests pending on an element before the data item is produced. We
want to satisfy those pending requests as soon as the data becomes available.
If a write-back policy was adopted in our software cache, some of the threads
may still be waiting for the data even though they have been produced. This
may result in a shortage of ready threads in some processors, thereby rendering
them idle. Even though a write-back on demand may solve this problem. in
order to write the data back to the [-Structure as soon as there are requests
from other hosts, the producers of data elements have to be known before
the data are actually produced and extra tables needs to be checked in write
operations and read miss situations. This would increase the overhead of the
cache system, and of course, this is not what we want for a software cache run-
time system. Knowing the producers of every data element in advance also
makes it difficult to dynamically allocate space for the data structures and also
makes it difficult to migrate threads in the run-time, which may change the

producers of data during run-time.

e The main reason for using a write-back cache is to prevent the unnecessary
memory updates which happen when the data in the local cache are updated
again before they are read by other processors. However, in the single assign-
ment memory system, the data in the cache will never be updated. Therefore,
the write-back cache design does not have an advantage over a write-through

cache design in the single assignment memory system.

o We want to ensure that write operations are made only into empty locations as
soon as the write operation has been issued. If the write operation is cached
in the local software cache and written back to the remote host only when
the cache block is replaced or there are requests from other hosts, the write

operation might attempt to modify an element which is already in the present

8]
-3

state due to some error. This may result in using this illegal data from the

local cache by the local host.

For these reasons, a write-direct or write-through policy could be adopted in our I-
Structure Software Cache system. Therefore, data will be written to the I-Structures
as soon as the write operations are issued. This simply guarantees the services of
deferred reads after the requested data elements are produced. However, we simply
use write-direct policy instead of write-through to prevent the node that issued the
write [rom replying to a read request before the legality of te write is verified. In
other words, there is no caching for write operations. This simple write-direct policy
ensures writing to empty location only, satisfies deferred reads as soon as possible,

and avoids deadlock situations.

3.2.2 Set-Associative Cache Allocation

Reference
Victim Tag b'l[)dmcd Cache element
Pointer hit ‘/‘///{sl:\lc lﬁn (data)

L]~ T
[X 4 Y L
Set #0
I]
]]

Ser #1

::_,__\-—_—_.———/
1
LA
Set #N-1
] K
1 I I

Figure 3.3: Structure of I-Structure Software Caches

Cache search schemes play a very important role in the cache performance. In
hardware design, a fully associative cache has the highest performance because of its

parallel search and the full utilization of the cache space, but it is very expensive to

28

implement. In a software implementation, a parallel search is obviously impossible
inside a single processor. The direct-mapping scheme has the fastest search time
in software implementation, however, it has the worst cache utilization. In order
to have a higher search performance and better cache utilization, a set-associative
search mechanism is adopted in 15SC.

A requested data address is mapped to a set of cache blocks by a hash function.
If the address matches with the tag of one of the cache blocks in the set, then we
have a cache hit. Otherwise, it is a cache miss, and a cache line is allocated for this
request as described in the cache advance feature. Figure 3.3 shows the structure of
the ISSC. Each cache line has a deferred-bit, a reference-bit and a tag field which
indicates the address of the first element in the block, and it contains block of cache
elements. Cache lines are allocated in pre-reserved consecutive memory blocks to
store the data of cache blocks so that they could be directly accessed by index

addressing. Each set has a victim pointer which is used in cache replacement.

3.2.3 Cache Advance

In conventional cache designs, the cache space is allocated when the data block is
brought back to the local host. However, the cache space is allocated in advance in
the ISSC when a read miss is detected. This is what we call the “Cache Advance.”
Indeed, due to the long latency and unpredictable characteristics of the network in a
distributed memory system, a second remote access to the data elements in the same
data block may be issued while the first request is still traveling through the network.
In conventional cache allocation methods, multiple outstanding memory requests for
the same data block from the same host are possible. By using our approach, the
second and later requests are deferred in the pre-allocated cache space while waiting
for the data block to come back.

In the example shown in figure 3.4, a cache block size of 4 data elements is

assumed. Asin I-Structure memory, each data element in the cache is also associated

29

R: [read A(5) CV]

4

Software Cache

\ : [read A4) CLI

JA@[e>Jd[R [eJ e

*®
*

To remote
node

Figure 3.4: Cache Advance Allocation

with a presence bit. So that each element could be distinguished in different states:
Present, Empty, and Deferred. This presence bit would provide a second-level data
synchronization point for the data, so that the feature of fully asynchronous memory
operation of the [-Structure memory could be maintained. To exploit the spacial
data locality, a cache block is allocated in a read miss instead of one data element
is allocated, and all data elements in this cache block are initialized in the Empty
state. In this example, a read request “R” asking for the data “A(5)” is made and
missed in the software cache. A cache block “CL” is allocated for this missing read
before the request is sent to the remote host. Instead of sending the original request
“R” to the remote host, a new request “N” asking for the data block beginning

" is sent to the remote host

with “A(4)” along with the new continuation vector “CL’
and the original request “R” is deferred in the second element of the pre-allocated
cache block “CL”. Therefore, the following requests asking for A(4). A(5), A(6),
and A(7) will hit the cache and will be deferred in CL while the request “N” is

in progress. This allows duplicate remote memory requests to be eliminated and

therefore ultimately improves overall network performance.

30

3.2.4 Deferred Read Sharing

As described earlier, there are two ways to deal with the deferred read sharing
problem. One way is to append the request to all the data locations which are
empty. The other one is to defer the request on the requested data location only

and leave other empty locations in the block still empty.

CV: [A(5)]
Software Cache 1 Iréad A(4) CL] >
e
AP R P p :
1 diQ->N

[-Structure
Figure 3.5: Deferred Read Sharing

In our ISSC, a deferred read is shared by all the empty data element located
in the same data block. In the example shown in figure 3.5, a request “N” asking
for the data block beginning with A(4) arrives in the [-Structure. Among the four
data elements in this block, two of them, A(4) and A(6), are in Present state, one,
A(5), is in Empty state, and the other one, A(7), is in Deferred state with a deferred
request “Q". This request “N” is not only deferred in A(5), which was originally
requested, but also A(7). And, the valid data of A(4) and A(6) are sent back to
“CL” in the software cache of the requesting node. In the requesting node, read
requests which hit the cache but find out that the data elements are in Empty or
Deferred state would just be deferred in the local software cache without sending

the requests to the [-Structure. Since the deferred read has been shared by all the

empty data elements of a data block in the I-Structure, once the data elements are

31

filled with valid data, they will be sent back to the local software cache and the
requests deferred in the local cache could be satisfied.

For applications with good spatial locality, placing a deferred read indication
on all empty elements within the data block would yield better performance than
would just putting the deferred read on the requested data element, since all the
data within a data block only need one request. By appending the request to all of
the empty locations, the data will be sent to caches after they are produced without
making another request. However, for applications with poor spatial data locality,
the deferred read of a whole block may introduce more network traffic because it
may send to caches data which may never be needed by the local host. This is due
to the fact that the data has not actually been requested but just happens to reside
in the same data block alongside other requested data.

We believe that for most numerical applications, there is plenty of structural par-
allelism with spatial locality. Therefore, the deferred read sharing is implemented in
our current ISSC runtime system. From our simulation results, we will demonstrate
that the spatial data locality dominates the data locality in the matrix multiplication

benchmark.

3.2.5 “Centralized” Deferred Requests and Distributed
Deferred Reads

A simple “centralized” method is used for the implementation of the queues of
deferred requests. Since ISSC is a software runtime system, the space to store the
pending requests could be dynamically allocated if needed. There would be no
scalability problem in our design. It should be noted that the implementation of
this runtime system should be as thin as possible in order to reduce its overhead.
However, to implement the distributed method, extra messages would be introduced
into the network to link the requests together. A link recovery scheme is also needed

for the distributed method when the link is broken. All of these would introduce

32

more overhead to the runtime system which is of course undesirable. Therefore,
the centralized deferred read method is used in the ISSC. Indeed. with the “cache
advance” and “deferred read sharing” features of ISSC, the length of the queue of
deferred requests for each element in the I-Structure is bounded by the number
of nodes in the system. This is because at most only one request is sent from each
node to the host node. Future deferred reads are kept locally in the node.! However,
the potential hot spot problem of the “centralized” deferred read method has to be

further considered in the future.

3.2.6 Virtual Addressing

Even though we recognize that the single assignment rule of I-Structures simplifies
the cache coherence problem, some of the cache coherence problems still occur when
the I-Structure memory space is de-allocated and re-utilized. To totally avoid the
cache coherence problem, a logical address, like the data structure ID, must be used.

It is the job of compiler to make sure that no two data structures have identical IDs.

3.2.7 Cache Replacement Policy

Because of the single assignment feature, the intermediate data structures, which are
storages neither for input data nor for final output data, will be sooner deallocated
during the computation than the data structures in multiple updatable memory
systems. These intermediate data structures will have a short life time in the cache.
Therefore, page faults in the I-Structure cache would occur more frequently than in
conventional memory caches. This means that cache replacement is very important
in the I-Structure cache design.

A simple Pseudo-LRU policy is adopted as the replacement policy in our imple-

mentation of ISSC. A cache block that has any element in the deferred read state

i the rare situation in which all the lines in the ISSC are irreplaceable, reads bypass the ISSC
and are sent directly to the host node.

33

is irreplaceable and the deferred bit is set. A single reference bit is attached to each
cache block as shown in Figure /refhash. The reference bit is set whenever there is
a read to the block. A victim pointer is used to select a block to be replaced. When
a cache replacement is needed, the block pointed by the victim pointer is tested
to verify if it is replaceable by checking the deferred bit and if its reference bit is
zero. If either condition is not satisfied, the reference bit of the block is reseted and
the victim pointer is advanced. When a replaceable block with a zero reference bit
is found, it is replaced and the victim pointer is advanced to the next block. The
victim pointer is pointed to the first block after cache initialization. However, if all
the blocks in the set are irreplaceable, reads bypass the ISS5C and are sent directly

to the host as if there is no I-Structure cache.

|
]
] 4
]
1 User
. : Application
u
. S: R:[R[A0 [oV] .
A ""* |
Net ""‘{ff Software Cache

JADPJ] R s>

*
*

Global Shared Data Structure

Remote (PE #N) Local

Figure 3.6: The overview of [-Structure Software Cache runtime system

34

3.2.8 ISSC System Overview

An overview of the operation of the ISSC is shown in figure 3.6. In this example
an application makes a request R for the element A(5) of the I-structure A located
in the remote host N. Since a split-phase transaction is used, the request i must
include the destination host N, the address of the requested data A(5), and the
continuation vector C'V" of the requested data. Without the ISSC, the request R
would be sent directly to the remote host N through the network. However, the
[SSC intercepts the request R before it is sent to the network. In this example, A(5)
was in the invalid state. Instead of sending the original request 12, a new request S
asking for a data block which includes the requested data A(5) is generated. Before
sending the new request, a cache line space C'L in the software cache is reserved for
the newly requested block. In our example, the location of the requested data A(5)
is in the second slot of the cache line which begins with A(4). The original request
R is stored in a dynamically allocated queue. A pointer to the head of the queue
is stored in the cache location of A(5), and the state of this location is marked as

»

deferred read “dr.” All other elements in this block are marked as deferred request
“dq.” Meanwhile, the new request S, which contains the destination host number
N, the beginning address of data block A(4), and the reserved cache line location
C'L for this request, travels to the remote host N through the network.

In our example, when the block request S is received by the remote host N. it
finds two valid data elements, A(4) and A(6), two empty data A(5) and A(7), and
one deferred read) pending for A(5) and A(7) in this data block. The ISSC in host
N then reads the valid data elements, A(4) and A(6), and defers the request S for
A(5) and A(7). The two valid data elements A(4) and A(6) are sent back to the
requesting host.

When the local host receives the elements A(4) and A(6), the ISSC fills the
corresponding slots. If there are any pending requests on those data elements, the

ISSC satisfies them by sending the requested data to the C'Vs as specified in the

35

pending requests. When the data element A(5) is produced and written to its

location in the remote host N, the deferred read S in the remote host N is serviced

and a data packet carrying A(5) is sent back to C'L in the original requester. Upon

receiving the data packet containing A(5), the ISSC of the original requester places
i~

the data element A(5) into its slot at C'L and satisfies the request R sending the

data to the C'V specified in R.

3.3 Simulation Results

We have performed some simulation experiments to validate our ISSC scheme.

3.3.1 The Simulator

Our simulator for the ISSC is built on top of the Generic MultiThreaded machine
(GMT) simulator [74] developed at the University of Southern California. The GMT
simulator provides a generic platform of non-blocking multithreaded machine param-
eterizing various architectural details. The global heap memory is an [-Structure-
like system for shared global data storage. There are two instructions for global
structure access, AREAD (array read) and AWRITE (array write). The AREAD
instructions to the remote hosts are cached by the ISSC runtime system. In order to
test the effects of different cache block sizes, the cache block size is configurable in
the simulator. However, the cache size remains the same with varying cache block
size configurations. This means that when the cache block size increases, the total

number of available cache lines decreases.

3.3.2 Simulation result

The goal of the simulation is to demonstrate the impact of our ISSC on the dis-
tributed memory multi-processor system environments which use split-phase mem-

ory transactions to tolerate the communication latencies. We want to demonstrate

36

the kind of data locality which can be exploited by ISSC, and what kind of im-
pact ISSC has on the network traffic. Further more, we want to verify the effect
of ISSC on the system performance. Therefore, four benchmark programs with dif-
ferent characteristics were tested in the simulation. One is a matrix multiplication
with a matrix size of 32x32 double precision floating-point numbers, and the other
one is the kernel function of the conjugate gradient method for solving 256 linear
equations with 256 unknown variables. The other two benchmarks were chosen from
SPLASH-2 kernels, 1-D FFT with 512 complex data points, and LU-Decomposition
for a 32x32 matrix. These four benchmarks have different categories of data refer-
ence locality. The matrix multiplication benchmark has excellent temporal locality
of data reference, while the other three benchmarks have spatial data locality domi-
nating the locality of data references. This is because that in matrix multiplication,
two input matrices are constantly referenced during the whole computation, how-
ever, in the other benchmarks, intermediate vectors or matrices are generated and
would not be referenced again after the computation pass by.

In our simulations, we wanted to test how the ISSC performed with varying cache
block sizes in different system sizes. We want to simulate it on the ideal case by elim-
inating the performance degradation caused by a small cache size. Therelore, in the
simulations, each PL is configured with 24K words of software cache which is large
enough for the problem size we are testing. The communication latency between
two PEs is set by the parameter “COM”, which is the mean time of communication
delay between two PEs. In this part, we chose a reasonable communication latency
by setting “COM” to 2.0. With hardware configurations of 2, 4, 8, 16, 32, and 64
PEs, and different cache block sizes, 0 (no cache), 1, 2, 4, 8, and 16 words, the

simulation results are shown in following figures.

37

3.3.2.1 The data locality

Figure 3.7(a) shows the cache hit ratio of the remote requests of matrix multiplica-
tion for various hardware configurations. When no cache is configured (Block Size:
CB=0), every remote request is sent to the remote host, so the hit ratios are ob-
viously always 0%. For a cache block size of 1 (CB=1), only the temporal locality
is exploited. For a small number of processors, like 2 PEs, the temporal locality
dominates the whole data locality (this can be seen by comparing with the cache
hit ratios of cache block size 1, 2, 4, 8, and 16 of figure 3.7(a)). However, in most
MPP systems, there are tens, hundreds or even thousands of processors in a system.
With the same problem size, the remote request hit ratio decreases linearly while the
number of processors increases. This means that the spatial data locality becomes
dominant. This is because the data are also distributed among the processors and.
therefore, the number of remote requests increases. This shows that it is not enough
to only rely on the exploitation of temporal data locality in MPP systems. Also,
from the figure, we could see that the degradation of hit ratios becomes faster in
smaller cache block size while the system is scaling up. With the help of our ISSC
runtime system, a remote request hit ratio of 90% could be achieved on a cache
block size 8 in a 64 PEs configuration and it also reduces the gap of the hit ratios
between different number of processors.

Figure 3.7(b) shows the cache hit ratio of the remote requests of the conjugate
gradient benchmark. In the conjugate gradient method, most of the computation
consists in updating array elements. With a good data partition scheme, the updates
of array elements could be done locally. Therefore, when the number of processors
increases, the number of remote requests does not increase much and the remote
request hit ratio just decreases much more slowly compared to matrix multiplication
in figure 3.7(a). The benchmark does not have so much temporal data locality of
references as the matrix multiplication does. Therefore, the hit ratios are less than

50% when only temporal data locality was exploited. However, the increase in cache

38

1m .Eu...n.uu.- 1m v:..v......v..v.....".....
anf: a0 ¢
85— B2 PEs a0« ¥ 02 PEs
& ;';5 : a4 PEs & ;ga a b BEs
8 o : 0B PES g il ol PEs
= o -.— 016 PEs =R —- o 16 PEs
r 3g .— 032 PEs = 3o = | O32FPEs
?g | 06t PEs ?;5 i 5 064 PES
I:IT H EHE PR PR, BH LY ﬂ§ R RHR B HO[HEE
CE-0 Ci=1 CB=2 CB=4 C8~E CH=16 CB-0 Ci=1 CH=2 CB=d¢ CE=3 Ci=15
(a) Matrix Multiplication (b) Conjugate Gradient
AL g A0 e
ELR E an+
B0 f = = | D2FEs Elik s 02 PEs
& ;g it HEE @ ;g‘ﬁ u{ PES
g sl - |} | oaees 8 2 o PEs
£ g i L | 16 pEs B o 16 PEs
= g ; ; HEELE: = 304 032 FEs
N E | S
fg | R Ml | nedpEs fg a6l REe
CH=D CH=i CB=2 Ci=4 CB=3 CH=15 CH-0 CB=1 CB=2 CB={ CH=5 CH=-16
(c) 1-D FFT (d) LU-Decomposition

Figure 3.7: The Hit Ratio of Remote Requests: (a) Matrix Multiplication, (b)
Conjugate Gradient, (¢) 1-D FFT and (d) LU-Decomposition

39

block size takes advantage of the increased spatial data locality and improves the
overall hit ratio. Indeed, with a cache block size of 16, the hit ratio increase from
47% (with CB=1) to 97% in 8 PEs configuration.

Figure 3.7(c) shows the cache hit ratio of the 1-D FFT benchmark. It shows
that the hit ratio is still 0% when cache block size equals to 1. This is because that
each data element is actually referenced twice during the entire computation and
in our implementation, the data element has been stored as a local variable for the
next reference after it was accessed from the remote host. This is a typical example
of the fact that the temporal data locality could be utilized by the programmer or
some compiler optimization techniques. It is interesting to note that the cache hit
ratio remained the same while the number of processors scaled up. This is unlike
other benchmarks when the cache hit ratio decreased as the number of processors
increased. This is due to the way we distributed data among processors and the
memory access patterns of 1-D FF'T algorithm.

Finally, figure 3.7(d) shows the cache hit ratio of the LU-Decomposition bench-
mark. It is similar to the Conjugate Gradient benchmark. However, the cache hit
ratios are almost the same for 32 and 64 PEs. This is because that the problem size
we tested, 32x32, is small relative to the system size.

In summary, we could see that exploitation of spatial data locality is really nec-
essary especially in larger system size. From our simulation results, over 90% hit
ratios are achieved in all benchmarks with the cache block size of 16 words in all

system configurations.

3.3.2.2 The network traffic

Agarwal [1] showed that the performance of multithreaded processors is traded off
against network contention. In the non-blocking multithreaded execution model,
the situation is even worse, because a finer granularity is being exploited and more

communication is necessary between processors.

40

Netuwork Packets

Newwom Packets
g
o

ci-0 CA=1 CB=2

(c) 1-D FFT

02 PEs

a{fEs
o8 PEs

o1& PES
032 PEs
D6 PES

02 PES
niPES
D8 FE:
DI1GPES
032 PEz
u6i PEL

Netuork Packet

Metork Packets

3wu‘m ;,-----------.....-...

3Imom
200
20 §
15000 §
1mom §
s {j

02 PEs
oiPES
03 PEs
016 PES
032 PEs
064 PES

Ci-0 C8-1 CA~2 CB={ C8~B CB~15

(b) Conjugate Gradient

Bmon —.ﬁ
mon i i | m2re

B4 PEs
0% PEs
o016 PEs
032 PES
B64PES

C=D CH-1 CB=2 CH=f CH-§ Ci-15

(d) LU-Decomposition

Figure 3.8: The Number of Network Packets: (a) Matrix Multiplication, (b) Conju-
gate Gradient, (c) 1-D FFT and (d) LU-Decomposition

In figure 3.8(a), we show the number of network packets with the same prob-
lem size as the matrix multiplication benchmark program and the same hardware
configurations as before. The number of network packets is counted at the network
interfaces of each host. It is the total number of packets issued to the network
by all the hosts. When no cache is configured, the total number of network pack-
ets increases while the number of processors increases. Increasing the number of
processors means that we are trying to distribute the data and tasks among more
processors in order to improve the system performance. This result matches the con-
clusion shown in Agarwal’s analysis. However, by exploiting both the temporal and
spatial global data locality, the number of network packets decreases dramatically.
Our simulation results also show that the number of network packets for the 64 PEs
system decreases from 130,032 without the ISSC runtime system to 9072 with the
ISSC runtime system and a cache block size of 16. More than 90% of the network
traffic is reduced by the ISSC runtime system.

Figure 3.8(b) shows the number of network packets in the conjugate gradient
benchmark. Becaunse of the fine grain parallelism of this benchmark, the ratio of
the number of thread activation packets to the total number of network packets is
larger than in the matrix multiplication benchmark. Therefore, the effect of network
packet reduction is not as significant as in matrix multiplication. However, 70% of
the network traffic is still reduced by the ISSC runtime system for the 64 PLs system
with a cache block size of 16.

Figure 3.8(c) and (d) show the number of network packets in the 1-D FI'T and
LU-Decomposition benchmarks respectively. One interesting observation is that the
number of network packets increases slightly in a 64 PEs system when the cache
block size increases from 8 to 16 in both benchmarks. Increasing the cache block
would only fetch into more data which will not be referenced. This will not harm

the hit ratio that the system could achieve. However, because of the deferred read

sharing, those un-referenced data are still sent back to the cache after they are

produced. This is what will increase the network traffic.

3.3.2.3 The system performance

30.0 y r 30.0

030 200 400 600 800 0-%% 200 400 60.0 800
Number of Processors Number of Processors

(a) Matrix Multiplication (b) Conjugate Gradient

£
190 50.0 40.0 80.0 80.0 085 20.0 40.0 60.0 80.0
Number of Processors Number of Processors
(c) 1-D FFT (d) LU-Decomposition

Figure 3.9: Speed up measurements: (a) Matrix Multiplication, (b) Conjugate Gra-
dient, (c¢) 1-D FFT and (d) LU-Decomposition

Figure 3.9 shows the speed up measurements of our benchmarks. The speed up is
measured by the execution time in different configurations related to the execution
time in a single processor system without ISSC enabled. From our simulations,
we could observed that our ISSC improved the system performance by a factor of

75% up to 95%. The utilization of data locality in the non-blocking multithreaded

43

execution shortens the mean time between two thread activations, and hence reduces
the system idle time. Therefore, the total execution time was reduced by our 1SSC.
In figure 3.9, we could see that our ISSC could achieve optimal performance at cache
block size of 8 words. Even though increasing the cache block size to 16 did yield
a better cache hit ratio than on cache block size of 8, as we could see in figure 3.7,
the improvement in system performance, however, is not that much. Indeed, in the
LU-Decomposition benchmark, with a cache block size of 16 the system performance
even degrades a little bit compared to a cache block size of 8, as shown in figure
3.9(d). This is because that, as shown in figure 3.8(d), the network traffic increases
when the cache block size increases from 8 to 16, and therefore the system incurs
more overhead by handling those extra data requests which may not be referenced

eventually.

3.3.3 The effect of cache advance

(&) Matnx Multiplication(64x64) , 16 PEs, Cache_Size=16384 ({b) Conjugate Gradient{258), 16 PEs. Cache_Size=16384

Hit Ration(®s}
Hit Ratio(%)

i 1 Cache Block Size
Communication Latency (COM) Guce RockiBlze Communication Latency (COM)

Figure 3.10: The Effect of Cache Advance: (a) Matrix Multiplication and (b) Con-
jugate Gradient

The cache advance feature in our design is a very unique feature in the I-Structure
cache design. By allocating a cache block for a read miss before sending out the

request to the remote host, the following requests for the data located in the same

44

block could be deferred in this pre-allocated cache block. To verify how this scheme
affect the cache performance, we varied the communication latency by setting the
“COM” parameter to different values (1.0, 2.0, 4.0, 8.0, 10.0, 12.0, and 16.0) in
our simulator with the cache advance respectively enabled and disabled. The same
benchmarks were simulated with variable cache block sizes in the system with 16
PEs and 16K words caches. The results are shown in figure 3.10. Again the hit
ratios are plotted in a 3-D format, so that we could easily see how the hit ratios
change with different configurations. The results with cache advance enabled and
disabled are plotted in the same figure, so that we could easily compare the effect
of cache advance. In figure 3.10 (a) and (b), the upper surfaces are the hit ratios
with cache advance enabled and the lower surfaces are the hit ratios without cache
advance. We can see that the cache hit ratios are not affected by the variation of
communication latencies for a fixed cache block size with the cache advance turned
on. However, without the cache advance, the cache hit ratio decreases while the

communication latency becomes higher and higher.

3.3.4 Cache Replacement

[n a real situation, the cache will not be sufficiently large to hold all the data
referenced by a local host. Therefore, the cache replacement scheme plays a very
important role in the cache design. In our design, a multiple-quene LRU algorithm
is used. Cache lines are linked in different queues according to how many elements
are in the empty state in the cache line. When a cache replacement occurs, the
least recently used(LRU) cache line in the queue which keeps the cache lines with
the most empty elements will be chosen as the victim. However, a cache line with a
deferred read pending on any one of its elements will never be replaced to prevent

deadlocks. Therefore, if all the cache lines have at least one deferred request inside,

400008 + EJ Replaszment ; « T 100

- P - Frranaanns Gpransnnas 3
B = i Hit Riatio Jpmrr e -
250000 + . 4 a0
D
g + 8
£ 30m0 + T
@ e;ww gyt 4 & (.
& .
[-+
L 26000 g |
@ # it
£ 00000 1 ; lag &
Q J &
m $ 2
(5] 3 5
T 150000 4 f tag F
il 3 "
a t =
2100000 1 (1%
3 +
80000 1 L
0 t f I_I i [1 o I S f 0
128 180 192 24 256 288 20 B2 384 416 448 512 1024 2043 40%
Cache Size

Figure 3.11: Cache Replacement and Hit Ratio in MM Benchmark with Varying
Cache size.

20000 7 o 3 Replzcament — 400
weenfperes Hit Ratio D S SR o5 -
g TH
o A00000 + 't & &
o R e e e e le
L 2
P ! L
S eomo 4 ;
3 | te F
3 / Z
£ E0000 j’ Tan =
@ -l
g {; {a0 F
g 40000 + L
£]
) - a1
= 20000 1 %
& H + 10
Ve
IR = o s P P 5 S P A 5 O S :H;I—I.m. .)

128 180 132 224 256 B8 320 352 334 ME 448 H12 1024 2045 4055 S1E2

Cache Size

Figure 3.12: Cache Replacement and Hit Ratio in CG Benchmark with Varying

Cache size.

the missed read will be directly forwarded to the remote host and no cache line is
replaced.

In this series of simulations, we have fixed the system size at 16 PEs , the cache
block size at 8§ and set the communication latency parameter COM to 2.0. We
varied the cache size {rom 128 words to 8192 words and recorded the number of
cache blocks being replaced and the cache hit ratio for each configuration. The
same benchmarks tested in the ideal case are simulated in this part with the same
problem sizes. Figures 3.11 and 3.12 show the simulation results. The bar charts
are the numbers of cache blocks being replaced and the lines are the cache hit ratios
in different cache sizes. The hit ratios are very small when there are only small
cache sizes available. With limited cache sizes, 70% and 80% of hit ratios achieved
in matrix multiplication and conjugate gradient respectively. In figure 3.11, the hit
ratio jumps from 27% to 72% when the cache size increases from 160 words to 192
words, and in figure 3.12, the hit ratio jumps {rom 19% to 81% when the cache
size increases from 224 words to 256 words. Increasing the cache size a little, the
data locality is fully exploited while there are still thousands of cache blocks being
replaced. This shows that our 1SSC still performs reasonably well with limited cache
space by using multiple-queue LRU replacement scheme.

The results in figure 3.7, 3.8, 3.11, and 3.12 show that the ISSC not only helps the
systemn by exploiting the data locality for split-phase type remote memory accesses in
different type of applications, but that it also reduces the number of network packets
in the network. In figure 3.10, we show the effect of the cache advance scheme on the
system in the aspect of remote request hit ratios. By applying the cache advance
scheme, we provides an adaptive cache system which will not be affected by the
varying of communication latency. This is really useful in the MPP systems whose
communication latency is usually long and unpredictable. How these advantages of
1SSC would effect the overall system performance should be further examined and

simulated.

3.4 Summary

[n this chapter, we proposed a split-phase transaction caching scheme for the I-
Structure-like memory systems. We discussed several issues of I-Structure cache
design and described our design approaches. We also described the details of our
ISSC implementation.

We validated our design by Generic MultiThreaded machine (GMT) simulator
with several benchmarks. From the simulations, we have demonstrated the impact
of our ISSC runtime system on the split-phased transaction memory accessing in
the non-blocking multithreaded execution model. With a cache block size of 16, a
hit ratio of 90% could be easily achieved in all benchmark programs. The number
of network packages also decreases a lot comparing to the original quantity without
[SSC. With all these effects, our ISSC increased the system utilization and improves
the overall system performance up to 95%. The cache advance scheme in our IS5C
also provides the adaptability to the unpredictable communication characteristics in
DSM systems. This makes our 1SSC achieve the same performance without being
affected by the variation of the communication latency.

Although some of the simulation results are preliminary and need to be conducted
with a wider array of benchmarks, we are encouraged by the dramatical reduction
in network traffic, by the evidence of global data locality exploited by our ISSC and
by the impact of our ISSC on the overall system performance.

We continues our studies by expanding the benchmarks to a variety of appli-
cations. In the meantime, the overhead of this software cache has to be further
evaluated. However, as the speed of the processors increases dramatically, the gap
between computation speed and the network overhead becomes larger and larger.
The idea of this software cache becomes more promising. We looks for an appro-
preate platform to implement our ISSC and find the EARTH [37] as our target for

the implementation. In the next chapter, we describe our implementation of ISSC

on the EARTH machines and in chapter 5 we show the performance measurement

of our ISSC on EARTH-MANNA machines.

Chapter 4

ISSC implementation on EARTH systems

4.1 EARTH Architecture

The EARTH, Efficient Architecture for Running 7T'Hreads, project [37, 69] lead by
Prof. Guang Gao originally from McGill University, Canada in the Fall of 1993
and now continued at the University of Delaware is a fine-grain non-blocking mul-
tithreaded execution model for the efficient implementation of multithreading on
off-the-shell microprocessors with minimal additional hardware support for multi-

threading.

4.1.1 Fine Grain Multi-Threading

Modern multi-threaded systems can be classified into two broad classes according to
the granularity of the threads that they can efficiently support while yielding good
performance: coarse grain multi-threading and fine grain multi-threading. Typi-
cally in a coarse grain multi-threading system (1) the thread switching mechanism
involves interactions with the operating system; and (2) there is a limited number of
light-weighted processes to which threads must be bound. In a coarse grain multi-
threading system, a thread can be viewed as a refinement ol an operating system
process. In contrast, in a fine grain multi-threading system: (1) the unit of compu-

tation is a collection of instructions grouped in a code block; (2) the system does

not impose limits on the number of threads that can be active at the same time;
(3) the system does not require binding to any sort of limited resources; ' and (4)
the thread switching mechanism is quite efficient and does not involve the operating
system, it typically requires that only a small amount of state information be saved
in each switching. In a fine grain multi-threading system a thread can be viewed as
the coarsening of an instruction.

The fine grain multi-threading system studied here, EARTH, is derived from the
data-flow model of computation. In the classical strict data-flow model an instruc-
tion is enabled for execution when all its operands are available [30, 38, 29, 69]. To
enforce this enabling condition, the instructions that produce operands must be able
to send a synchronization signal to all the instructions that will consume their results.
This model proved unwieldy for the implementation of machines based on current
standard off-the-shelf hardware and compiler technology. In EARTH, the unit of
computation is not an instruction, but a code-block formed by many instructions.
An instantiation of the code-block running on a processing node is called a fiber,
and multiple code-blocks are grouped into threaded functions. A successful program
written in Threaded-C [70], the programming language for EARTH, will produce
enough fibers to maintain the local processor busy while remote computations and
data fetching operations are performed.

Figure 4.1 shows the EARTH model and it assumes that each processing node
has an Execution Unit (EU) that executes the fibers and a Synchronization Unit
(SU) that is responsible for: (1) the emulation of a global address space; (2) the
communications through the network; (3) the inter-fiber synchronization; and (4)

the implementation of a load balancing mechanism. When the model is implemented

IThe only limitations on the number of active threads in a fine grain multi-threading system
are caused by the memory space available to store active thread descriptors. If the data structure
that holds these descriptors is stored in virtual memory, a very large number of active threads can
indeed be supported.

Local Memory Local Memory

| | | |
: | | |
| A J | | A A :
| I—i]]]—l ' | l—“I[D*‘ !
: " ‘ : [§F 01 1 "' "' :
| EU su |! | EU sU ||
- bgelt - teIt
| | | |
R D

Network

Figure 4.1: The EARTH Model

on processors with a single processor per processing unit, the functions of the SU

are emulated in software by a RunTime System (RTS).

4.1.2 Split Phase Communication and Synchronization

A cornerstone of the EARTH model is the mechanism that enables the superposition
of local computation and remote operations: the split-phase transaction. Whenever
an operation involves a long and/or unpredictable latency, the statement that re-
quests that the operation be performed is issued in one fiber and the statement that
depends on the result of the operation is issued on a different fiber. A dormant fiber
receives synchronization signals from other fibers — executing either in the same
processor or on a remote processor — through a synchronization slot.

A typical split phase operation, an EARTH block-move-sync operation, is illus-
trated in Figure 4.2. In Figure 4.2(a): (1) a fiber running on the execution unit of
processor P; issues a request that a block of data be copied from the memory of a
processor P; to its local memory. The requesting fiber may continue performing op-
erations that do not depend on the arrival of the requested block, but will eventually
terminate and allow the EU of processor P; to run other enabled threads. The block

move request must specify the source and destination addresses for the movement

ot
o

INTER-NODE NETWORK INTER-NODE NETWORK

by

P, i MEMORY MEMORY P MEMORY MEMORY

Figure 4.2: (a) (1) An active fiber in the KU of P; requests an EARTH split-phase
block-move-synec operation; (2) The SU of P; decodes the source address to the
memory of P; and sends a request for the block; (3) The SU of P, receives the
request and reads the block from the local memory. (b) (4) The SU of P; sends the
block over the network to the SU of F;; (5) The SU of F; writes the block in the local
memory; (6) The SU of P; decrements a synchronization slot counter, that becomes
zero and causes the spawning of a fiber that will use the block transferred.
as well as the address of a synchronization slot that will receive a synchronization
signal when the data transfer is complete. (2) The SU of P;, having received the
request for the block move, sends a block request to the SU of P; through the net-
work. (3) the SU of P; reads the requested block from the local memory of P;. In
Figure 4.2(b): (4) the SU of P; sends, through the network, the requested block
to the SU of P;. (5) The SU of P; writes the block into the destination address.
Finally (6) the synchronization slot indicated in the block move request receives a
synchronization signal and causes the fiber that will use the transferred data to be
spawned and executed in the EU of processor P;. In this example we assume that the
destination of the block move and the synchronization slot that received the signal
upon the completion of the data transfer were in the same processor that requested
the data movement. However the EARTH model is general enough to allow each
one of these addresses to be in a different processor.

Observe in the example presented in Figure 4.2 that the EU of processor P, is
never involved in the data transfer requested by processor P;. Thus if two processing

units are actually available in the machine to support the EU-SU model of EARTH,

the only impact of the data movement on the execution of fibers in P; would be
possible conflicts on accesses to the memory between the SU and the EU. Moreover,
during the steps (2) to (6) in Figure 4.2, the EU of P; is not involved and is free
to execute other enabled thread. The capacity to overlap the remote data transfer
with the execution of other fibers in the EU is a distinguishing characteristic of a

fine grain multi-threading system.

4.2 Single Assignment Storage Structures

In this chapter we study the use of soltware cache for [-structures, a single-assignment
data structure, in the EARTH model. The name [-structure was originally used by
Arvind and Thomas in the context of functional languages to designate an array
built with a fine-grained update operator with no repeated indexes [11]. Later, I-
structures were proposed as separate data structures for functional programs. In [10],
Arvind, Nikhil, and Pingali demonstrate, through several programming examples,
that the introduction of I-structures in functional languages eliminates ineflicien-
cies and increases the programmability of functional languages. The proposition to
incorporate I-structures in functional languages was derived from the observation
that without the ability to store a state, it is very difficult to solve even simple
problems in a manner that is efficient, easy to code, and enables the exploitation of
parallelism [10].

Our motivation to introduce a single assignment structure in Threaded-C stems
from the observation that the use of such structures significantly reduces the number
of synchronization operations required in some programs. The single-assignment
characteristic of I-structures eliminates the need for consistency related network
operations when these structures are enhanced with temporary storage buffers. The
former makes it easier to code problem solutions in Threaded-C, and the latter makes

it easier to implement software caches for [-structures.

ot
B

delete

reset

Deferred

delete
reset

write

parar,
ERROR

delete
reset

Figure 4.3: State Transition Diagram for the I-Structure Implementation

Originally an I-structure was defined as an array of elements ?, where each el-
ement of the array can be in one of three states: empty, full, and deferred. Each
element of the array can only be written once, thus the name single-assignment, but
it can be read many times. When the I-structure is created, all the elements of the
array are empty. If a read occurs before the write, the element goes into the deferred
state and the read operation is kept in a queue associated with that element. Sub-
sequent reads are also queued. When a write to an empty element occurs, the value
is written and the element becomes full. I the element was in the deferred state, all
the reads that were queued for that element are serviced before the writing operation
is complete, and the element goes into the full state. A read to a full element returns
immediately with the value previously written. A write to a full element is consid-
ered a fatal error and causes the program fo terminate. Figure 4.3 shows the state

diagram of an [-structure. Notice that this state diagram includes the operations

“However, nothing prevents the implementation of a single element I-structure, or other data
structure organizations.

delete and reset that were not in the original definition of an I-structure. These op-
erations were included in our implementation because, different from the functional
language environment in which the I-structure was originally defined, Threaded-C
is an imperative language that does not offer garbage collection. Therefore the pro-
grammer must delete data structures after they are no longer needed. The reset
operation allows reuse of I-structures avoiding frequent deletion/allocation in some
applications

Observe that for its proper functioning, the state transitions on the I-structure
must be atomic. For instance if a write is performed in a deferred element, all reads
in the queue of the deferred element must be served the value written before another
operation to the same element can be performed. In the current implementations of
Threaded-C this atomicity is derived from the fact that fibers are non-preemptive
and that with a single processor in each processing node, only a single thread can
run on a node at a time.

The two key functions to implement I-structures in threaded-C are the FREAD

and FWRITE operations.

THREADED I_READ x(int iid, int index, void *GLOBAL place, SPTR
slot_adr)
Reads the element index of the I-structure iid. The value read is written in
place by a split phase transaction that when completed synchronizes the slot
slot_adr. If the element index is empty, I_READ stores place and slot_adr
in the reading queue corresponding to that element. When the write operation
to that element is performed, the value written is copied in place and the slot

slot_adr is synchronized.

THREADED I_WRITE x(int iid, int index, T value)

Writes value to the element index of the I-structure iid. If the element index

is full, I_WRITE prints a fatal error message in the standard error output and

terminates the program.

4.3 ISSC Implementation on EARTH

4.3.1 ISSC implementation using Threaded-C language

Split-phased transactions for remote data memory accesses provide the ability to tol-
erate communication latency in a multi-threaded system. The data obtained through
a split phase transaction is managed by the programmer, and is not automatically
cached by the system. Therefore if repeated requests for the same data are issued,
they will be sent through the network to the source of the data requested.

We presented our design and implementation of our [-Structure Software Cache
(ISSC) in Chapter 3 [51, 52, 53] to cache I-Structure elements on multi-threaded
systems that support split-phased transactions. The ISSC takes advantage of the
spatial and temporal localities of memory operations in [-Structure memory systems.

The single assignment property of the [-Structure memory system enables the
implementation of the ISSC as a software cache without any hardware support.
The ISSC intercepts all the read operations to the I-Structure. A remote memory
request is sent out to the remote host only if the requested data is not available on
the software cache of the local host. We explore the spatial locality in the references
to the I-structure through a blocking mechanism. Instead of requesting a single
element of the structure, an entire block of data including the requested element is
requested to the node that hosts the [-structure.

The state transition diagram for an element of the ISSC is shown in Figure 4.4.
There is no space allocated in the ISSC for invalid elements. An invalid element
might be allocated in ISSC and change state because a read of the element is per-
formed by the local node, or because a read to another element in the same block

is performed. In either case a request is issued to the host node. If the element

57

replacement or invalidation

read

replacement or
invalidation

.-:-Défékred, :
. Request

write

" Deferred
. Read

FATAL
~ ERROR

replacement or
invalidation

Figure 4.4: State Transition Diagram for the [-Structure Software Cache

itself is read, it goes into the deferred read state, otherwise it goes into the deferred
request state. If a read to a deferred request element is issued, there is no need
for a new request to be issued and the element goes into the deferred read state.
Further read operations to a deferred read element are queued in the element and do
not cause further state transitions. If a write to a deferred read or deferred request
is performed in the host node and the value written is sent to the local node, the
element goes into the full state. Read operations for elements in the full state are
serviced immediately and do not cause any state transition. A write to a full element
is a fatal error. Both a full element and a deferred request element can be evicted
from the ISSC either by a replacement operation or by an invalidation operation. A
deferred read element is irreplaceable. An invalidation or a replacement of such an
element is a fatal error. A write to an invalid element is ignored and the element is
not placed in the cache.

The ISSC'is implemented in the Threaded-C [6, 70] language for EARTH [37]

systems. Our implementation of ISSC builds on the I-Structure user library [7, 5]. In

this section we describe the key data structures, functions and policies implemented

in the 1ISSC library.

DATA STRUCTURE Clache.
This is the main data structure for [-Structure software caches. The layout
of our software cache is the one of a set-associative cache. Set-associative
soltware caches have faster cache entry searching time than fully associative
caches and better cache utilization than direct mapped caches. The caching
address consists of the node number of the host node, the I-Structure 1.D.
and the index of the element for which a read is requested. Upon receiving a
read request, the caching address is mapped to a set by a hash function, and a
soltware search is performed to see if there is a match for the address in the set.
In our simulation studies [51, 52|, we determined that a cache block of 8 data
elements would yield reasonable cache hit ratio. Therefore, in our experiments
discussed in chapter 5, we use a cache block size of 8 and implemented the
software cache with 256 sets and 8 cache blocks within each set. That would
be 16/ elements in the cache. The complete definition of the data structures

used in ISSC implementation is shown in Appendix A.

THREADED InitCache(SPTR done)
InitC'ache allocates memory space for software cache in local node and initial-
izes it. The initialization should be done before any cache accesses. After the

initialization, a synchronization signal is sent to the address done.

THREADED SC_I_READ(int node, int i_id, int index, int type,
void *GLOBAL place, SPTR slot_adr)
This is the read function for I-Structure elements through the utilization of the
software caches. Instead of invoking the original _ READ _X at the remote node
in which the I-Structure is allocated to request an [-Structure data element.,

the SC_I_LREAD is invoked in the local node. No requests are sent to the owner

59

node of the I-Structure if the data already exists in the local software cache or
if the element has already been requested. The node that hosts the I-Structure
is node_id, i_id is the I-Structure requested, index is the element of the I-
Structure, type is the data type of the element, and place and slot_adr are
the address where the requested data will be sent and synchronized when the

data is back.

4.3.2 Usage of ISSC in Threaded-C language

A simple example to show how the ISSC library is used in a Threaded-C program is
shown in Figure 4.5. In this example, an I-Structure floating point array of length 8
is allocated on the last node of the system. The data of these [-Structure elements
are then generated by a node, and node 0 reads back the value of those 8 data
elements.

In line 4, we define the I-Structure host, I.NODE, as the last node of the system.
NUMNODES-1. In Thread_0 (lines 20-25), we initialize the I-Structure in ILNODE
and software caches on each node. In Thread_l (lines 27-31), a floating point I-
Structure array of 8 elements is allocated in [_INODE. The handle for the allocated
[-Structure is stored in F_str. In Thread_ 2 (lines 33-45), the data of [-Structure
array I"_str are generated by ARRAY_INIT function (line 6-12) which is invoked by
TOKEN function in line 34. Then, data of this [-Structure array are read back in
line 35-44. In line 38, we use a compiler flag to activate/deactivate the ISSC. If
the CACHE flag has been defined in the compilation, the function SC_ILREAD is
invoked locally (at node NODE_ID), otherwise, the function I_LREAD_F is invoked
in the I-Structure host (node ILINODE). After all the 8 data elements are read back
from node [_INODE, THREAD_3 is activated, prints out the data, and terminates
the program. In this program, if ISSC is not used, 8 data requests for the I-Structure

array I'_str are sent to the remote node, . NODE, by invoking 8 [_ READ_F functions

60

#include <stdio.h>

#define EXTERN

Finclude "isseh”!

Hdefine 1 NODE NUM_NODES-1

THREADED ARRAY_INIT{int i_node. int i_id, int length)
f

8 inti;

Q: Jor(i=0; 1 < length; i++)

10: INVOKE(i_nade, I_WRITE_E i_id, (Hoat)i);

11: END_FUNCTION():

12:)

5 O Eh Bkt

14: THREADED MAIN()

15: f

16: SLOTSYNC_SLOTS[3]:
17: imF_sir i;

18: fioar F_variable{8]:

200 INIT SYNC(ONUM_NODES+! NUM_NODES+1,1):
21: INVOKE(I_NODE, I_INIT, SLOT_ADR(0)):

22: /* Allocare cache space on each nede */

23 for(i=0; I<NUM_NODES; i++)

24: INVOKE(i, InitCache, SLOT_ADR(0});

25: END_THREAD():

26:

27 THREAD_I:

28 INIT_SYNC(I, 1, 1, 2):

29: /* Allocate I-Structure */

31: END_THREAD():

3

33: THREAD_2:

3d: TOKEN(ARRAY_INIT, I NODE, F_str. 8):
35: INIT_SYNC(2. 8.8 3):

36: /* Read from F_str(:7]%/

37 for(i=0p (<8 i++)

38: #ifdef CACHE

39; INVOKE(NODE_ID, SC_I_READ, I_NODE, F_str, i, T,
40 TO GLOBAL(&F variablefi]), SLOT ADR(2));
A1 Aelse

42 INVOKE(I_NODE, I_READ F,F str,i,

43: TO_GLOBAL(&F_variablefi]), SLOT _ADR(2));

A4z Hendif

451 END_THREALX():

46:

47: THREAD_3:

A8 for(i=0; 1<8; i++) pringf{ “%f . F_variable[i]);
49: RETURN():

\\50: J

30: INVOKE(I_NODE, I_ALLOCATE, 8, TO_GLOBAI{&F _str), SLOT_ADR(1));

/

Figure 4.5: Threaded-C with ISSC program

example

61

on I.NODE. However, if ISSC is used, even though 8 SC.I.READ functions are
invoked locally, only one data request is sent to the remote node [ZNODE.
A more complete example of using ISSC in a real application written by Threaded-

(" language is shown in Appendix B.

62

Chapter 5

Experiment results on EARTH systems

To study the effectiveness of our implementations of both I-structures and 1S5C, we
coded four benchmarks (see Section 5.3) in both versions of the system (Threaded-
C with I-Structure and Threaded-C with I-Structures and 1SSC). Our experimental
results were obtained in the MANNA machine. We also measured the latency for

basic EARTH operations and for I-structure based operations.

5.1 Highlights of Experimental Results

Our main results can be summarized as follows:

1. The addition of ISSC to the EARTH system results in increased
robustness to latency variation. The speedup obtained with ISSC in-
creases for machines with higher costs for remote operations (see Figures 5.1

and 5.2 for details).
2. The ISSC significantly reduces the amount of traffic in the network. As

shown in Table 5.3 in all applications the number or remote requests for I-

structure elements was reduced from one up to four orders of magnitude.

3. The sole addition of I-Structures (without ISSC) decreases the
performance of the EARTH system. Even for machines with higher laten-

cies, the overhead of the software emulation of I-structures hurts performance

63

(as shown in the graphs of Figure 5.3) unless it is offset by the benefits of the

ISSC (see Section 5.3 for details).

4. ISSC operations can be implemented very efficiently in the MANNA

machine. In 5.2 we demonstrate that the MANNA machine network interface
is very efficient. Our experiments demonstrated that our implementation of

the ISSC on top of the EARTH operations is also efficient (see Table 5.1).

5. The performance of the system with ISSC improves for all
benchmarks for machines with moderately high latency for remote
operations. As shown in Figure 5.2 for all four benchmarks if 10 ps (500
cycles) are added to the latency of MANNA (which is 3.5 us = 175 cycles), the
benchmarks running on the software with the ISSC produces greater spreedup

over the system with [-structures only.

5.2 The Cost of ISSC Operations

Our studies are based on an implementation of EARTH on the MANNA machine.
MANNA is a 20 node, 40 processor machine. Each node has two Intel 1860 XP
processor running at 50 MHz with 32 MB memory and is interconnected with other
nodes through a crossbar switch network. The MANNA machine is a research plat-
form of which only a few were constructed. With the full control of network in-
terface in MANNA machine, the implementations of inter-node communication and
synchronizations are very efficient as demonstrated by the measurements presented
in this section. We measure the latency of some EARTH and ISSC operations for
the EARTH-MANNA-SPN machine. EARTH-MANNA-SPN is an implementation
of the EARTH model on the MANNA machine in which only one processor is used

in each node [69].

64

| Operation | Local | Remote ||

Get_Sync 141 348
Fun. Call 250 451
[_.READ_F 317 492
ISSC hit 479 - -
ISSC miss 2693 -
ISSC deferred | 1354 -

Table 5.1: Latency of EARTH and ISSC operations on EARTH-MANNA-SPN, mea-

sured in number of cycles (1 cycle = 20 ns).

The MANNA machine is a research platform of which only a few were con-
structed. With the full control of network interface in MANNA machine, the imple-
mentations of inter-node communication and synchronizations are very efficient as
demonstrated by the measurements presented in this section. However, this network
efficiency is usually not available in affordable and widely available networks of work-
stations. The sending and receiving of network packages may take from hundreds
to thousands of cycles depending on the design of the network interface [21]. In
some machines, a parallel environment is built on top of the TCP protocol and the
communication interface overhead may be as high as hundreds of micro-seconds [44].
Even with some improved protocols, like Fast Sockets [66] and Active Messages [72],
it still costs 40~60 micro-seconds to send a message to the network.

The latency of the operations required to communicate and synchronize across
processing nodes is a determinant factor in the performance of some applications.
Observe that the processor is not busy with the operation for the number of clock
cycles shown in Table 5.1. Most of the remote operation time is spent either waiting
on queues or in the network, thus releasing the processor to execute other ready
fibers.

Table 5.1 lists the latency of some EARTH and ISSC operations in the MANNA
platform used in the analytical model. In a local measurement all operations are

within a processor, while in a remote measurement, all operations are issued to other

nodes through network. The EARTH operations measured in Table 5.1 include a
get_sync operation in which thread 1 requests a word of data from thread 2 and
thread 2 synchronizes thread 1 when the data arrives; and function calls which
represent the invocation of a threaded function either in the same node or in a
remote node.

At the bottom of Table 5.1 are the measured latency of ISSC operations and of
the basic [-Structure read function, I_READ_F. The measurement starts from thread |
invoking the . READ_F function in [-Structure node either in the same node or in a
remote node until the [_READ_F function finished and synchronizing thread 1 when
the data arrives. ISSC hit measures the invoking of an I_LREAD_F for a remote data,
finding the requesting data in local software cache and synchronizing the requesting
thread with the data found in software cache. ISSC miss is the case that the entire
surrounding data block is not found in the software cache and a new request for
the whole block is issued to a remote node, and finally the requested data along
with the whole data block are sent back from remote node and the synchronization
is done. Notes that, this measurement is made by issuing multiple requests in a
pipeline fashion. Therefore the time spent on the remote node is overlapped with
other issues of requests and only the time spent in local node is measured. ISSC
deferred is the case that the surrounding data block already allocated in the local
software cache however the requested data element is not there yet. The original
request is therefore deferred in the software cache until the requested data is available
along with entire data block or sent back individually from remote I-Structure node.
The same measurement as ISSC' miss is done to ensure that no idle time and remote
operation time is measured.

The difference between local and remote cases of L READ_I denotes four times
of the communication interface overhead. It includes one for the requester sending
the request, one for the I-Structure node receiving the request, one for I-Structure

node sending the data back and finally one for the requester receiving the data. The

66

one-way communication interface overhead takes only 175/4 processor cycles (0.825
ps). This measurement indicates that the inter-node communication in MANNA

machines is very efficient when compared with network of workstations.

5.3 Description of Benchmarks

To measure the improvement in the system performance when both [-structures and
ISSC are used, we selected four different benchmarks: dense matrix multiplication,
Conjugate Gradient, Hopfield network, and sparse matrix multiplication. To com-
pare the performance of the software cache with the original system, we implemented
three versions of codes for each benchmark: A plain Threaded-C code, a Threaded-
C code using the I-Structure library, Threaded-C+15 and a Threaded-C code using
both the I-structure library and the I-Structure Software Cache (/SSC), Threaded-
C+155C. All our experimental results were performed in the MANNA machine. The
two processors of a processing node on MANNA share 32 Mbytes of DRAM. The
nodes of MANNA are diskless, therefore all the code, runtime system, data, and the
software emulations of the [-structure and the ISSC must fit in 16 Mbytes per node.
Therefore we were only able to test moderate data set size for the benchmarks. In
a related research work, Theobald developed a detailed cycle-by-cycle simulation of
the MANNA architecture and demonstrated that applications scale well for larger

versions of the platform [69].

Dense Matrix Multiplication. Two 128x128 dense matrices are multiplied. The
algorithm that we use in this study is a simple minded, non-blocking algorithm
that computes €' = A x B. The computation of rows in the resulting matrix
(' is evenly distributed among all nodes. Node 0 invokes threads on each node
to compute the rows that it is responsible for. The results of C' elements are

written directly to where they reside.

Conjugate Gradient. The Conjugate Gradient algorithm from the NAS bench-
mark suite [13, 12] uses the inverse power method to find an estimate of the
largest eigenvalue of a symmetric positive definite sparse matrix with a ran-
dom pattern of non-zeros. In our experiment, the problem size is 256 linear
equations with 256 unknown variables. Calculations of matrix-vector mul-
tiplications are done in parallel across all the nodes and the calculations of
vector-vector multiplication are done on node 0. In this algorithm, most of the
computation consists in updating array elements. Therefore, the benchmark

does not have much temporal data locality.

Hopfield Network. Hopfield is a kernel benchmark [7] based on the Hopfield Net-
work. It is a recursive neural network that is often used in combinatorial op-
timization problems as well as an associative memory. The network is formed
by a set of neurons that are connected by synapses. At time k + 1, the ac-
tivation value of each neuron is updated based on the activation values of
neurons at time & weighted by synapse values. In the I-Structure and ISSC
implementation, two I-Structure arrays are used to store the current and pre-
vious activation values of neurons. Before updating to the current value, the
[-Structure array is reset and reassigned with a new L.D., therefore, the same
memory space can be re-utilized and no cache flush would be needed. The

problem size we tested is 256 neurons.

Sparse Matrix Multiplication. Sparse matrix multiplication is an application
with irregular data access pattern. Two unstructured sparse 256x256 matrices
A and B are randomly generated with density of 10%. Matrix A is then stored
in Compress Row Storage (CRS) format and matrix B is stored in Compress
Column Storage (CCS) format. A dense resulting matrix C' is generated by

multiplying A and B.

Number of Nodes

Benchmarks

Dense M.M. | C.G. | Hopfield | Sparse M.M

2 99.71 93.70 | 99.90 99.92
4 99.52 93.69 | 99.80 99.87
8 99.13 93.52 | 99.61 99.76
16 98.35 92.92 [99.22 99.53

Table 5.2: I-Structure Software Cache Hit Ratios (%)

Number Benchmarks
of Dense M.M. C.G. Hopfield Sparse M.M
Nodes || no ISSC | w/ISSC | no ISSC | w/ISSC | no ISSC | w/ISSC | no ISSC | w/ISSC
2 528384 1536 33536 2112 32768 32 986668 761
1 396288 1920 25152 1587 24576 48 731842 971
8 231168 2016 14672 950 14336 56 | 426002 1038
16 123840 2040 7860 557 T680 60 | 227979 1078

Table 5.3: Average number of remote memory requests per node

Table 5.2 shows the cache hit ratios of the four benchmarks in our experiments
and Table 5.3 shows the average number of remote memory requests in each bench-
mark both without and with ISSC. ISSC did help the system to exploit global data
locality. For three of the four benchmarks (except conjugate gradient), more than
99% of cache hit ratios could be achieved, and even in conjugate gradient algorithm
which has poor temporal data locality, 93% of cache hit ratio could be achieved.
Table 5.3 shows that ISSC reduces the number of remote memory requests actually
sent to remote nodes. In all the cases, at least 93% of the original remote memory

requests are eliminated out by the I-Structure Software Cache.

5.4 Robustness to Latency Variation

We measured the speedup between the I-Structure Software Cache version of the
benchmarks and a version ol the same benchmarks written in plain Threaded-C and
running on a single processing node. We performed two sets of experiments. The first

set, shown in Figure 5.1 measures the performance on the MANNA machine. As a

69

160
vao | 4
120 | 4
120
10 |
& g
E
- — “5; wo |-
2 & oo
ao a0
r 0
oo
B - " 12 AL Q-9 o - - =z 16
NMumiber of Noodes MNumber of Nodes
(aa) Matrix Multiplication (b) Conjugate Gradient
100 b 0.0
2
wo |k ol
-
¥L ine |
_,/
- LT
+r 0.0 bk # : w
% e ' T
3 ¥ 2 ool
) 4 2
&4 a0t - 5 4 3
PR -
- i
;
L] /Sﬂ‘ i i
2 Pt E
¢4
g
S Ed “ o ra 10 o el - o 12 10
Numiber of Moden Numitiar of Nodes
(c) Hoptield (cl) Sparse Matrix Multiplication

Figure 5.1: Speedup in the MANNA machine.

result of the efficient implementation of the network and its interface on the MANNA
machine, the plain Threaded-C version have the best performance for all benchmarks.
When the cost to execute split-phase operations is very low, the overhead incurred
in the I-Structure and software cache operations in Threaded-C+I1S and Threaded-
C+ISSC can degrade the performance. In the Conjugate Gradient and Hopfield
benchmarks, Threaded-C+1S version has better performance than the Threaded-
C+I1SSC version. This is because of the poor temporal data locality in the algorithms
which results in the high ratio of deferred cache hits in the cache hit situation. The
overhead of deferred hits is much larger than the I-Structure access and the IS5C
hit as reported in the beginning of this section.

In our second set of experiments, shown in Figure 5.2, we add 10 ps to the cost

of both I-structure and ISSC operations. This is equivalent to a machine with a

peaIoAo adejIajul torpestunuiod sif o Yy dnpeads anosqy -G 2undi,|

uoneadnin xumew esteds (p) pleydol (2)

ORI I

wnpoN jo inguuneg

oo
- o
7
4or ®
&
i
of -~ ogL = -~ o0
P -
ooz aw
waenpeas) sebnfuon (q) uoneordniniy xuepy (2)
HBON 4O Jeatun g mer ORI SN
oL =t “ " z 9L, Bt = o v = o
e R
r 1 + D-pPelwell L o e
R T e How
1% & i
2 g
= 4 ow m.
J o & 1
<n
o - -1 oEe
q 4 ow
<
GRS = = ou

higher communication/computation cost ratio, i.c., a machine in which requesting
remote

of four applications on the MANNA machine with 10 ps add-on synthetic com-
munication interface overhead. In this set of experiments, Threaded-C+1SSC version
out-performs other two versions in all applications. Even though we added 10us syn-
thetic communication interface overhead into this set of experiments, it is still far
less than the communication interface overhead of fast local area network [66], which
cost 4060 micro-seconds. However, the Plain Threaded-C version still has better per-
formance than Threaded-C+15 because of the I-Structure access overhead. In these
experiment, we show that even though ISSC pays extra overhead for its operations,
by taking advantage of the global data locality in applications and with the amount
of communication interface overhead saved by ISSC, the [-Structure Software Cache
improves system performance in the Network of Workstation platforms.

From the previous experiments, we know that the communication interface over-
head is a determinant factor in the performance of I-Structure Software Caches. To
have a better understanding of the relationship between the ISSC performance and
the communication interface overhead, we ran our experiments on a 16 node system
with a variable synthetic communication overhead for our selected benchmarks. Fig-
ure 5.3 shows the execution time of applications under different overhead. In each
application, we marked the point of communication interface overhead where the
Threaded-C+1SSC version starts to out-perform the plain Threaded-C implementa-
tion. ISSC starts to help the system when the communication interface overhead is
greater than 6.3us, 9.2us, 6us and 3.2us respectively in dense matrix multiplication,
conjugate gradient, Hopfield and sparse matrix multiplication. When the communi-
cation interface overhead exceeds 100us, the Threaded-C+1SSC versions run almost

10 times faster than the plain Threaded-C versions in our benchmarks.

=]
[3%]

Ercuton Ties)

Erseuten Tims (uf

Figure 5.

head

]
3

3

107
e
i
[}
E 10% |-

b

I 1o®

70 Ton oo 1 1o 700 woo
Cammunication Interface Cvarhsad gun) CIFMLINIS Aty rlemitaces Ovesr P (e
(aa) Matrix Multiplication (b) Conjugate Gradient
¥ 107
: of]
T2 Thimaded-C o« 18 »
S Thimasgeno 4 e
/’é;
Gpas -
& i
-l,i 10 = -
&l
55
o
o g I
1
w00 VO TG 300 Foo

Commipication ntartass Ovarfeaad (in)

() Hopfield

Communicatiin Maitace Cvarfead {jin)

(cl) Sparse Matrix Multiplication

Execution time with synthetically variable communication interface over-

5.5 Summary

In this Chapter, we compare the performance of two extensions to the original pro-
gramming environment in the EARTH system: (i) the programming environment
is extended with an implementation of I-structures, a single assignment data struc-
ture that facilitates the implementation of synchronizations across multiple process-
ing nodes; (ii) the programming environment is extended with I-structures and an
[-Structure Software Cache (ISSC) that enables the exploitation of temporal and
spatial locality in the I-structures. The motivation to introduce both I-structures
and [SSC to the original EARTH programming environment stems from the single
assignment nature of [-structures. When single-assignment storage structures are
used, the need for consistency related transactions in the network is eliminated.
Our studies are based on an implementation of EARTH on the MANNA ma-
chine. MANNA is a 20 node, 40 processor machine. lach processing node has two
processors. The nodes are interconnected through a crossbar switch network. In the
EARTH-MANNA version that we use, the functions of the synchronization unit are
emulated in the same processor that executes the fibers. Because neither MANNA
nor the original programming environment for EARTH provide direct support for
single assignment storage such as I-structures, we emulate both the I-structure oper-
ations and the ISSC in software. Our study focuses on the robustness of the resulting
programming model to latency tolerance. Therefore we measure the latency for ba-
sic EARTH operations, I-structure operations, and ISSC operations. Then we vary
these latencies by introducing delays in the operations to identify the lower bound of
latency (measured in processor cycles) bevond which the introduction of I-structure
and 1SSC in the system would no longer have a positive effect on performance. Our
results indicate that the extension of the Threaded-C programming environment
with ISSC is robust to variations on latency. This robustness is reflected in better

speedup curves for machines with highes costs for remote operations.

Chapter 6

Performance Modeling

Our ISSC is a pure software approach to exploit the global data locality in non-
blocking multithreaded execution without adding any hardware complexity. It pro-
vides the ability to reduce the communication latency while maintaining the ability
to tolerate the communication latency in multithreaded execution. Some reason-
able research questions are: Do software caches really work? Will the overheads
of software cache operations compromise its performance? What are the conditions
for ISSC to improve system performance? What kind of applications could benefit
from ISSC 7 1t is the single assignment property of the I-Structure memory system
that makes the use of a software cache profitable. Because the cache of a single
assignment memory is inherently coherent, no cache coherence problem is encoun-
tered in an [-Structure cache design. The absence of coherence related operations
significantly reduces the overhead of the soffware cache system. Indeed, with the ca-
pability of communication latency tolerance in multithreaded execution, the major
benefit of ISSC comes from the saving from communication interface overhead.

In this Chapter, we present an analytical model for the performance of a mul-
tithreading system with and without [SSC support. This model consists of two

sets of factors, platform-related and benchmark-related parameters, which affect the

=

own

performance of ISSC. From this model, we could analyze the lower bound of com-
munication interface overhead from which ISSC starts to yield performance gain in

different benchmarks and platforms.

6.1 Performance Analysis

Before we present the analytical model, we analyzes the performance measurement
that we shown in Chapter 5. In table 5.2, we shown the cache hit ratios of the four
benchmarks in our experiments and Table 5.3 shows the average number of remote
memory requests in each benchmark both with and without ISSC. ISSC did help
the system to exploit global data locality. For three of the four benchmarks (except
conjugate gradient), more than 99% of cache hit ratios could be achieved, and even
in conjugate gradient algorithm which has poor temporal data locality, 93% of cache
hit ratio could be achieved. Table 5.3 shows that 1SSC reduces the number of remote
memory requests actually sent to remote nodes. In all the cases, at least 93% of
the original remote memory requests are eliminated out by the [-Structure Software
Cache.

With the capability of communication latency tolerance in multithreaded exe-
cution, the major benefit of ISSC comes from the saving from the communication
interface overhead. In the measurements presented in Section 5.2 we show that the
network implementation of MANNA is very efficient. However, this efficiency is
usually not available in affordable and widely available networks of workstations.
To have a better understanding of the relationship between the ISSC performance
and the cost of remote operations, we ran our experiments on a 16 node EARTH-
MANNA system with adding a variable synthetic communication interface overhead
on top of existing overhead.

Figure 6.1 shows the execution time of applications as the communication over-

head increases. The marked points are the values measured from actual runs on

76

§ {a) Dense Maltx Multipdcation

— Threaded:
Q

ThreadedCa IS

4+
- ThieadadCe ISS0G
2

(b) Conupate Gradient

— Threadeds
© ThieadedCa S

4
+ o ThivadedCISSC

-~

3)
£ gt
-] - "
i i e
- w - il
10 - . 10* .
10 10 L 10" 10" 10’ 10° 10°
Communication Interface Ovorhisad (us) Gommurcation nterfaca Ovorhieard (us)
- (e} Hopheld " (d) Sparse Matix Mulliphcation
T 10
— ThreadedC — Threadods
ThisadedTe IS ThieadutCalS
<o o ThuoadedGa ISSG ot o ThreadedGHISSC
x ®
=10k =C
")
a £
S 3
g 10
& g
3 . e e 7
5 ETETS PR T AL SRR s
d 10°f: i fooe™
P G MG 1r s B K 6 BENURA
10t - - 10’ - e
10° 10 10 10’ 10 10’ 10° 10

Commurication iiterface Ovethioad (us) communication inferlace Ovarhgad (us)

Figure 6.1: Execution time with add-on synthetically variable communication inter-
face overhead. (a)Dense Matrix Multiplication (b)Conjugate Gradient (c)Hopfield
(d)Sparse Matrix Multiplication

EARTH-MANNA machine and the timing curves are derived from the measurement
in a least square sense with degree of 1. The timing equations are shown in Ta-
ble 6.1. To find where ISSC starts to improve system performance, we could just
solve the equation T preaded—crissc < TThreaded—c to find the cross points of the
Trircaded—c+15s¢ and Tppreaded—c curves. These points are shown at the right of
Table 6.1. The logical meaning of these points is that when the communication
interface overhead of a system is greater than the value plus the existing communi-
cation interface overhead on the MANNA machine (0.825 pus), then ISSC will yield
increased performance gain. As we can see, ISSC starts to help the system when
the communication interface overhead is greater than 7.1us, 9.7us, 5.9us, and 4.8us,

respectively in dense matrix multiplication, conjugate gradient, Hopfield and sparse

[LBcnfhm-\rk:' | Versions [Crosaz
| Threaded-C I Threaded-CFT15 | Threaded-C+IS5C | Point J]

Dense M. M 2478 x 107 Con + 3.135 X 10° | 2471 x 10°Coq + 4.174 x 10° 3877.6Con + 4.431 x 107 5.3
C.G. 1.855 X 107 Coa + 1.07T4 % 10" | 1.847 % 109 Cpog + 1.301 % 10° | 1274.8Coq + 2.618 x 107 8.0
Hopfield 1.548 X 10" Cpq + 7198 % 107 | 1.541 % 10°Coq + 9.114 % 107 118.8C 0 + 1.505 x 107 5.1
Sparse M.M. 1.855 % 10°Coq + 2.040 % 107 | 4,811 % 10°Con + 3.542 X 10° | 1798.7C0a + 3.521 x 10° 3.95

Table 6.1: Timing equations and the cross-points (us)

matrix multiplication, which are still far less than the ones in most of network of

workstations.

6.2 The Analytical Models

The experiments presented in Chapter 5 provide useful information about the per-
formance of the ISSC on existing hardware platform. However we would like to be
able to predict, for machines yet to be built, under which circumstances the imple-
mentation of ISSC becomes profitable. To enable such predictions, in this section,
we develop an analytical model for the execution time of benchmarks written in
Threaded-C, Tihreaded—e, 1Threaded-C with I-Structure support, T1g, and Threaded-
C with both I-Structure and [-Structure Software Cache support, Tissc. The base
for our analytical model is Tz, the execution time of the benchmark on a fine grain
multi-threaded machine without I-Structures and the cost of split-phase memory ac-
cesses is deducted. Our model uses the following set of benchmark-related parameters

and platform-related parameters:

Benchmark-related parameters:

Ng: Number of local reads
Ng: Number of remote reads
Riie: (Cache hit ratio on remote reads

Ri_nii: Cache deferred hit ratio

Platform-related parameters:

e One-way communication interface overhead (original)

=1
o0

Cia One-way communication interface overhead (add-on)

Oyr: Local I-Structure read service time
O,: Read request invoking time

Opir: [SSC hit service time

Ouiss: 1SSC miss service time

Oley: ISSC deferred hit service time

Where R,_p; is the ratio between the cache hits that have been deferred and the
total number of cache hits. The higher R;_j; is, the poor temporal data locality is
in the application. The C, and C,, are defined as one-way communication interface
overheads which are only incurred in either sending or receiving network data, but
not both. The definitions of other platform-related parameters were presented in
Section 5.2. In our analytical model O, does not include communication interface
overhead.

The analytical models are defined as follows:

Titreaded—c = 1B+ (N + Nr)O; + Np2(Cy + Cou)

Tis = Ty + NpO; + NrO, + Ng2(C, + C..)

Tissc = Ts + NpO;+ NrBri(1 — Ra—nit)Onit + NrRpie RicpitOue s
+NR(1 = Rait)Omiss + Nr(1 = Ryit)2(Co + Coa)

In the development of the analytical model, we assume owner computation rule.
Therefore, all the write operations are performed locally and incur no communication
overhead. We also assume that the I-structure arrays are evenly distributed across
the nodes. Therefore that the jobs are also evenly distributed. We assume the
same basic execution time, T for all three versions of the system. In fact, Tz in
T;ssc should be smaller than the ones in Tihreadea—c and Tis because caching remote
mermory requests decreases the average turn-around time for all the requests and as

a result, it increases parallelism and processor utilization. However, this assumption

79

Parameters Benchmarks

Dense M.M. | C.G. | Hopfield | Sparse M.M
N, 139328 614 ol12 19140
Ngr 123840 9210 7680 234784
Rui (%) 98.35 93.65 | 99.22 99.55
Ra—nir (%) 20.00 51.80 | 100.00 21.20

Table 6.2: Benchmark-related Parameters

i JRNSRETS i
Parameters . Or | Oy | Onit | Omiss | Ouey
micro-second || 0.875 | 6.34 | 2.82 | 9.58 | 51.54 | 27.08

Table 6.3: Platform-related Parameters Measured from MANNA machine

in T1sse provides the upper-bound of the execution time for the system with ISSC.
In our implementation, only remote reads are cached in [SSC. Hence, those local
[-Structure reads in Tissc still need the [-Structure read service in local node. In
these models, the remote costs for Ty eaded—e and Trg are Np2(C', + C,,) and for
Tissc is Ng(l — Rpy)2(C, 4+ C,,) which only include the communication overhead
incurred in the local node. The overheads in remote node are actually hidden by

the multithreaded execution.

6.2.1 Verifying the Model

To verify the analytical models, we compare the execution time prediction obtained
from the models with our experimental results on EARTH-MANNA shown in Chap-
ter 5. In Table 6.2, we list the benchmark-related parameters which are collected
from our experiments on MANNA for a selected set. of benchmarks. The platform-
related parameters of MANNA machine, measured in Section 5.2, are listed in terms
of pus in Table 6.3.

From our analytical models, we know that the execution time of Threaded-C'
and Threaded-C+1S versions are linear proportional to the add-on communication
overhead, (,,, with the factor of 2 times number of remote reads, 2Ng, which

are 247680, 18420, 15360, and 469568 respectively in dense matrix multiplication,

80

conjugate gradient, Hopfield and sparse matrix multiplication. Also, the execution
time of Threaded-C+1SSC is also linear proportional to C,, with the factor of two
times the number of cache misses, 2Ng(1 — Rpit), which are 4086, 1170, 119, and
2113 respectively. These numbers match the curve-fitting timing equations from our
experiments described in Table 6.1 within 10% error range.

According to the analytical models, for Tyssc < Tihreaded—c. We need,

(NL + NR)O, + Nr2(Cy + Coa) > NpOr + NrRuir(1 — Ry_pit)Onis + NrRpis Ry—1is Qs
+Ng(l = Rpit)Omiss + Nr(1 — Rhit)2(C, + Cq)

1\!}1 2 . ‘ N N
= woang it (200 + 2C0) > 7501 + 5 - Bhie((1 — Ra-it)Ohit + Ra—nitOuey)

+ 8 (1 = Riit)Ormise — O errveneens (1)

Ny+Ng

The meaning of Equation 1 is quite straight forward. The condition for 1SSC
starts to improve the system is that the communication interface overhead saved
by ISSC (left hand side of the equation) should be greater than the I-Structure
read service time required for local access plus ISSC operation overhead minus the
read request handling time in the original system (right hand side of the equation).
We plug in the Np, N, B, and Ry_pi parameters for each benchmark and use
the MANNA parameters to derive the minimum add-on communication interface
overhead from which point ISSC starts to improve the system performance. We
get 6.7us, 9.0us, 11.5us, and 4.6us respectively for dense matrix multiplication,
conjugate gradient, Hopfield, and sparse matrix multiplication.

Our analytical model for Tjsse defines the upper bound of the execution time.
Therefore, the cross-point derived from Equation 1 is the lower-bound of communi-
cation interface overhead from which ISSC starts to improve system performance.
For example, if the point derived from our models is 10us, for this upper-bound
estimation of Tyssc, we could say that as long as the communication interface over-
head is larger than 10us, our ISSC is going to improve the performance. Values of

these cross-points derived from our analytical models are greater than but close to

81

the values we measured in our experiments shown in Table 6.1 except in Hopfield.
This is because the synchronization of the activation updates after each time stamp
vields partial sequential behavior. In this case, the basic execution time in Tjssc
is much smaller than in T eadea—e. Therefore the cross-point we predicted is much

larger than what we measured.

6.2.2 Performance Predictions

In this section, we introduced our analytical models for the multithreading system
with and without I-Structure software cache support and we verified these models
with our experiment results based on EARTH-MANNA machine. With these mod-
els, we could predict the lower bound of communication interface overhead from
which ISSC starts to yield performance gain in different kind of benchmarks and
platforms.

By using these models, for a fixed platform parameters (like plug in the param-
eters measured from EARTH-MANNA) and varied benchmark-related parameters,
we could estimate the value of communication overhead where Threaded-C+ISSC
starts to out-perform pure Threaded-C for the benchmarks with different charac-
teristics. Figure 6.2 shows these cross-points of different kinds of benchmarks by
varying the cache hit ratio and deferred hit ratio while assuming only half of mem-
ory requests are issued to remote nodes. From this figure, we could see that even in
those benchmarks with poor locality (Rp; = 0.5 and Ry_pi = 1.0), 1SSC still yield
performance gain for communication interface overhead greater than 40us. which
is still faster than most of the network implementation in network of workstations.
For those benchmarks with extremely good locality, i.e. more than 98% of cache hit
ratio with 0 deferred hit, ISSC starts to improve the system for the communication
overhead as low as Hyus.

Some researcher dedicate their work on communication optimizations to reduce

the number of remote memory accesses. This kind of optimizations are based on

¢

oo
()

Pt peadiction 1or dfetent (W1 NUNEANI) = 0.5)

% RO-N=0.0
s Rd-hit=02
403 = Hd-hit=0.4

. oo HA-NI=0 6
35' N —=— Ra-hit=046 |/
- _Rd-hit=10

~ &
Ll =S

Communication Intetlace overhead {us)
[
-]

L
~ P
~8.

05 055 06 065 07 075 04
ISSC hilt ralio (%)

Figure 6.2: Performance prediction for dif-
ferent benchmarks

Pettormane prodotion for cominnication optngzation (with Fd-tit=0.5 and Fhit=0.8)
a5 T T T T T T T T

&
=]
"

Communication miectace overtisad (ush
"~ e
= o

&

el 0z 04 04 05 06 07 0B 08 1
RAatlo of 1emide accesses (NOINraND)

Figure 6.3: Performance prediction for
communication optimization

the static analysis of the program behavior which is different from exploiting the
data locality during the run-time by the caches. However, ISSC could still yield
performance gain in the benchmarks compiled with the communication optimization
techniques. In Figure 6.3, we vary the ratio of remote memory requests to the total
number of memory requests. We find out that even in an application with only
10% of memory accesses are remote and moderate cache hit ratio (R, = 0.8 and

Ri—nit = 0.5) ISSC still improves the system at 33.5us of communication overhead.

Performance prediction for technology improvement

=
o=

7

& ek

o N E

T T T
/

4

i s L

Communication inteérface overhead (us)
[+-]
T
/
/

L i i i : 5 T -

0 i
50 100 150 200 250 300 350 400 450 500
Processor spead (MHz)

Figure 6.4: Performance prediction for technology improvement

As the speed of processors becomes faster and faster, the gap between the com-
putation and communication latencies become larger and larger. Because, our IS5C
is a pure software implementation, the ISSC operation overhead decreases propor-
tional to the increase of processor speed. In Figure 6.4 we vary the platform-related
parameters based on 50MHz MANNA processor by increasing the speed of proces-
sors for an application with 50 % of remote memory accesses, 80% cache hit ratio,
and 50% deferred hit ratio. From this curve, we could predict that if we have a
500MHz processor available, which is already there on the market, the cross-point
drops to less than 2us. In this case, ISSC could almost yield performance gain on

any parallel machine.

84

6.3 Summary

Do software caches really work? In this chapter, we demonstrated a software imple-
menfation of I-Structure cache, i.e. [SSC, can deliver performance gains for most
distributed memory systems which don’t have extremely fast inter-node communi-
cations, such as network of workstations [21, 44, 66, 41].

ISSC caches values obtained through split-phase transactions in the operation of
an [-Structure. It also exploit spatial data locality by clustering individual element
requests into block. Our experiment results show that the inclusion of ISSC in a
parallel system that provides split-phase transactions reduces the number of remote
memory requests dramatically and reduces the traffic in the network. The most
significant eflect to the system performance is the elimination of the large amount
of communication interface overhead which is incurred by remote requests.

We developed analytical models for the performance of a distributed memory
multithreading system with and without [-Structure Software Cache support. We
verified these models with our experiment results on an existing multithreaded ar-
chitecture, EARTH-MANNA. These models consist of two sets of factors, platform-
related and benchmark-related. Platform-related parameters are those latencies in-
curred by remote memory requests and ISSC operations. Benchmark-related pa-
rameters are the characteristics of applications, such as number of remote and local
memory accesses and data locality. By finding the cross-point of two execution time
curves. which have the communication interface overhead as variable, of the systems
without and with ISSC, we could find when ISSC starts to yield performance im-
provement for different benchmarks and platforms. Through systematic analysis, we
show that ISSC delivers performance gains for a wide range of applications in most

of the parallel environments, especially in network of workstations.

oo
(&3]

Chapter 7

Conclusions and future research

7.1 Conclusions

In this dissertation, a split-phased transaction caching scheme for the [-Structure-
like memory systems is proposed and implemented as a runtime system to exploit
global data locality in the non-blocking multithreaded systems. Our ISSC provides a
software caching mechanism to further reduce the communication latency by caching
the split-phase transactions while maintaining the benefits of latency tolerance in
multithreaded execution.

The ISSC design was first validated by our Generic MultiThreaded machine
(GMT) simulator with several benchmarks. Then, we implemented our ISS5C as an
user library on EARTH systems using Threaded-C language. With the implementa-
tion on real machines, we were able to measure the overhead of the ISSC operations
and measure its actual performance with some benchmarks. We further developed
analytical models for the for the performance of a multithreading system with and
without ISSC support. From these models, we can analyze the lower bound of com-
munication interface overhead from which ISSC starts to yield performance gain in
different benchmarks and platforms.

The following contributions are achieved in this research work,

o Combination of the benefits of latency tolerance and latency reduction in dis-
tributed memory multiprocess systems. Traditional multithreading models
provide the capability of latency tolerance through overlapping useful com-
putation with the long communication overhead in distributed memory en-
vironment. Caching provides the capability of this latency reductions in the
shared memory environment. However, our ISSC provides a software caching
mechanism to further reduce the communication latency by caching the split-
phase transactions while maintaining the benefits of latency tolerance in mul-

tithreaded execution in distributed memory multiprocessor systems.

e Network traffic reduction to reduce communication overhead and network con-
tention. From our experiments, we shown the effect of our ISSC on network
traffic reduction. More than 90% of the original remote memory request are
eliminated out by our ISSC. Each remote memory request needs to be sent
through network interface to the remote node, and each request will suffer
from the network interface overhead four times. Therefore, our ISSC elim-
inates quite large amount of network interface overhead incurred by remote
memory requests. Moreover, it relieves network traffic and avoids potential

network contention problems.

o Harmless low-cost software implementation. ISSC is a pure software approach
to exploit the global data locality with adding any hardware complexity. The
design of I1SSC is efficient enough to be implemented in software layer without
degrading the system performance. Indeed, the overhead of ISSC itself would
had dragged down the system performance, but the tremendous amount of
communication interface overhead saved by the ISSC not only compensate its

overhead but also improve the overall system performance.

e Single thread performance improved by latency reduction. In some applica-

tions with embarrassing parallelism, the long communication latency may not

87

be tolerated by enough threads. In these applications, ISSC’s capability of

latency reduction could improve the system performarnce.

o Consistent cache performance and robust fine-grain multi-threaded execution
in Network of Workstation platform. The cache advance scheme in our 1SSC
provides the adaptability to the unpredictable communication characteristics
in the Network of Workstation environments. This makes the svstem achieve
the same performance without being affected by the variation of the communi-
cation latency. [SSC also eliminate tremendous amount network interface over-
head incurred by the large number of split-phase remote memory requests in
the fine-grain multithreaded systems. This make the fine-grain multithreaded

execution more robust in the NOW platforms.

e [rame work for further split-phased transaction cache design. This research
established a solid foundation for further split-phased transaction cache design.
The design issues we discussed and the approaches adopted by our design pro-
vide fundamental knowledge for it. The analytical model we developed would
allow us to predict the performance of the caching with advanced technology

improvement which may not be available today.

7.2 Future research

There are several research directions could be derived from this research.

e Cache coherence protocol design and implementation for multiple-assignment
split-phased transactions. The ISSC could be extended with cache coherence
protocol when multiple-assignment storage systems are required. In some ap-
plication, frequent updates of variables are desired and using I-Structures in
this kind of application may degrade the system performance because of ex-

cessive overhead caused by frequent [-Structures deallocation and reallocation.

88

Extending the split-phased transaction software caches with proper coherence
protocols could do a lot of help on exploiting global data locality for all applica-
tion. Releasing the constraint of memory construct and destruct of [-Structures
would provide the programmers with full control of memory usages and hence

programmers have more flexibility to implement application.

However, the extra overhead incurred by the cache coherence protocol needs to
be evaluated in more details. It may make the software caches less beneficial
because ol heavier software cache operation overhead. Fortunately, releasing
the single assignment constrain in memory construct will simplify the cache
design in some aspects. For example, no more deferred reads on data elements
and therefore no deferred read handling is needed. Further more, the whole
memory block could be brought back to the requester without checking the
states of each individual data elements. All of these may still make the idea
of split-phased transaction software cache for multiple assignment memory

system feasible and beneficial.

Hardware supports for I-Structure caching. Hardware supported cache systems
for split-phased transactions could further manifest the benefits of I-Structure
caching in non-blocking multithreaded architectures. There are two different
approaches to implement the hardware supported cache: The first approach
is to use a piece of dedicated hardware. The concept of I-Structure caches is
not limited on software implementation. It could be implemented in hard-
ware as well. With a customized chip or FPGA to work as the controller of
[-Structure cache management along with SRAM for caching data storage, the
overhead of I-Structure cache operations could be reduced dramatically, and
hence, 1-Structure cache will deliver performance gains and more significant
performance improvement on all platforms. Indeed, the [-Structure memory

system management could be also incorporated into this dedicated hardware

to further improve the system performance. The alternative of hardware sup-
ported I-Structure caching is to use a decoupled processor. A decoupled pro-
cessor for communication and memory management has been adopted in many
multiprocessor system design. The operations of I-Structure memory access
and caching could be also executed on this decoupled processor. This will off-
load the I-Structure cache overhead from other processors which then could
be dedicated to useful computation. As a matter of fact, no complex floating
point operations needed in these management jobs, and therefore, a low cost

micro-controller or DSP could be used as this purpose.

Network Caching. While some researchers concentrate on the development of
faster network interfaces [16, 27, 57|, the concept of our split-phased transac-
tion caches for the distributed data could be integrated into next generation
network interface design. In this network interface, a message from local pro-
cessor requesting for a remote data element will be translated into a new
message requesting for the whole data block containing the original requested
element. A cache block space will be reserved for the new request in the
network interface before the message is injected into the network and the suc-
cessive requests for the elements in this block will wait in the interface without
actually been sent to the remote nodes. The requested remote data element
along with other surrounding elements in the same data block are cached in
the interface when they are brought back from remote nodes. Cache coherence
protocol should be also implemented in the design to provide general purpose
usages for parallel computing on NOW platforms. Using this next generation
network interface with the capability of network caching in NOW, network
traffic could be reduced dramatically and fine-grain parallelism in NOW plat-

forms would become possible.

90

e Integrating Data Caches into Non-Strict Caches. The hardware supported I-
Structure cache could be further integrated with local L2 caches. With this
approach, the remote data fetched via split-phased are only stored in the in-
tegrated cache. There are no local storages for remote data. Therefore, all
the data references are referred by the global addresses as in shared memory

systems.

In this approach, the continuation vector carried by split-phased fetch only
includes the thread number which is going to consume this data without pro-
viding local storage address for storing the fetched data. When data is brought
back to local host and stored in the integrated non-strict data cache, a signal is
sent to consuming thread to inform the arrival of requested data item. When
all the data become available in the non-strict data cache, it is enabled and

the data are accessed directly from caches during the execution.

To avoid the cache controller automatically replace the data that was just
fetched before the corresponding thread is actually executed, we could elimi-
nate this problem by allowing memory reservations in the local cache. When
a cache line is first allocated for a missing read, the cache line is reserved and
the missing read is deferred at the corresponding location for the requested
element. The deferred read is pending on the data cache until the data item is
brought back from remote node and is referred by the consuming thread. To
implement this, when a remote data item arrives and is stored into the cache,
if the cache element is in deferred state, signals are sent to the consuming
threads indicating by the pending reads to inform the arrival of this data item.
However, these pending reads are not de-queued until the data item actually
referred by the consuming threads. When the consuming starts to execute and
refers the data item, the pending read associated with this consuming thread
is removed from the queue. The cache element is not changed fo present state

until all the pending reads are removed. As long as there is any deferred cache

91

element in the cache line, the cache line will still be reserved until all the
cache elements in this cache line are all either in present or empty state. A
reserved cache line is not subject to replacement by the cache controller until
its state has been changed to non-reserved by the runtime system. Our initial
studies indicate that this property can be integrated with the support for non-
strict access hardware cache with the single addition of one bit for the state

representation of each cache line.

Apply non-blocking multithreaded execution model with split-phased transac-
tion cache support on SMT architectures. A robust fine-grain non-blocking
multithreaded execution model with ISSC support could be implemented on
versatile architectures. It would be very interesting to implement it on SMT
architectures [71, 54, 32, 15]. Each ready thread from the execution model
has all the variables it needs locally and is guaranteed to be run from start
to the end without synchronization, remote memory requests and other long
latency operations inside the thread. Each ready thread is an independent
entity and won’t interfere with each other. This would very likely to drive the
SMT processors with very high throughput. Since all the variables needed in a
thread are available locally, we could further bring all the data frame memory
and instruction frame memory into caches right before the thread is scheduled
for execution. All of these features of non-blocking multithreaded execution
model applied on SMT architectures could fully exploit the benefits of SMT

architecture for a single application performance.

Reference List

[1] A. Agarwal. Performance Tradeofls in Multithreaded Processors. [FEE Trans-

actions on Parallel and Distributed Systems, September 1992.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubia-
towicz, B.-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife Machine:

Architecture and Performance. In [SCA 95, 1995.

[3] A. Agarwal, J. Kubiatowicz, D. Kranz, B.H. Lim, D. Yeung, G. D'Souza, and
M. Parkin. Sparcle: An Evolutionary Processor Design for Multiprocessors.

IEEE Micro, pages 48-61, June 1993.

[4] Rovert Alverson, David Callahan, Daniel Cummings, Brain Koblenz, Allan
Porterfield, and Burton Smith. The Tera computer system. In Conference

Proceedings, 1990 International conference on Supercompuling, June 1990.

[5] J. N. Amaral, G. Gao, and X. Tang. An implementation of a hopfield network
kernel on earth. In X Brazilian Symposium on Computer Avchitecture and High

Perfor mance Processing, pages 223-232, Buzios, RJ, Brazil, Sept. 1998.

(6] J.N. Amaral, Z. Ruiz, S. Ryan, A. Marques, C. Morrone, and G.R. Gao.
Portable Threaded-C Release 1.1. Technical note 05, Computer Architecture

and Parallel System Laboratory, University of Delaware, September 10 1998.

[7] Jose Nelson Amaral and Guang R. Gao. Implementation of I-Structures as a

Library of Functions in Portable Threaded-C. Technical note 04, Computer

93

(10]

[11]

[13]

[14]

Architecture and Parallel System Laboratory, University of Delaware, July 28

1998.

B. S. Ang, Arvind, and D. Chiou. StartT the Next Generation: Integrating
Global Caches and Dataflow Architecture. CSG MEMO 354, Laboratory for

Computer Science, MIT., February 1994.

Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Par-
allel Computing. ACM Transactions on Programming Languages and Systems,

October 1989,

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: Data struc-

tures for parallel computing. ACM TOPLAS, 11(4):598-632, October 1989.

Arvind and R. E. Thomas. [-structures: An efficient data structure for func-
tional languages. Technical Report MIT/LCS/TM-178, Massachusetts Institute

of Technology, Cambridge, 1981. MIT Lab. for Computer Science.

D. Bailey, E Barszcz, IX. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga. The NAS parallel benchmarks. Technical Report

RNR-94-007, RNR, March 1994.

D. H. Bailey, J. T. barton, T. A. Lasinski, and H. D. Simon. The NAS parallel
benchmarks. Technical Report NASA Technical Memorandum 103863, NASA

Ames Research Center, July 1993.

Michael J. Beckerle. Overview of the START(*T) multithreaded computer.
In Digest of Papers, 38th IEEE Computer Society International Conference,
COMPCON Spring 93, Feb. 1993.

94

[15]

[16]

[19]

[20]

[21]

M. Bekerman and ef al. Performance and hardware complexity tradeoffs in
designing multithreaded architectures. In Proceedings of Parallel Architectures

and Compilation Techniques, 1996.

M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, and E. Felten. Virtual Memory
Mapped Network Interface for the SHRIMP Multicomputer. In Proceedings of

the 21th Annual International Symposiuim on Computer Architecture, 1994.

D. Cann. Compilation techniques for high performance applicative computa-

tion. Technical Report CS-89-108, Colorado State University, 1989.

D. Cann and J. Feo. Sisal 1.2 : An Althernative to FOTRAN for shared Mem-
ory Multiprocessors. Technical Report UCRL-102263, Lawrence Livermore Na-

tional Laboratory, 1989. rev 1. for ACM SIGGPLAN "90.

D. Cann and R. Oldehoeft. A guide to the optimizing Sisal compiler. Techni-
cal Report UCRL-MA-108369, Lawrence Livermore National Laboratory, Sep.
1991.

David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories:
A scalable cache ¢oherence scheme. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating

Systems, pages 224-234, April 8-11, 1991.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, 2. Santos, R. Sub-
ramonian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, May 1993.

D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. A
compiler-controlled threaded abstract machine. In Proceedings of ASPLOS-1V,

April 1991.

[23]

[29]

[30]

David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser, and T. von Eicken.
Empirical study of a dataflow language on the CM-5. In G.R. Gao, L. Bic,
and J-L. Gaudiot, editors, Advanced Topics in Dataflow Computing and Multi-

threading, pages 187-210. IEEE Press, 1994.

[. Darema, D.A. Georage, V.A. Norton, and G.F. Pfister. A single program-
multiple-data computational model for EPEX/FORTRAN. Parallel Comput-

ing, 7:11-24, April 1988.

J. B. Dennis and G. R. Gao. On Memory Models and Cache Management for
Shared-Memory Multiprocessors. CSG MEMO 363, Laboratory for Computer

Science, MIT., March 1995.

Jack B. Dennis. The Paradigm Compiler: Mapping a functional language for
the Connection Machine. In Scientific Applications fo the Connection Machine,

pages 301-315, 1989.

C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2: Efficient
Support for Reliable, Connection-Oriented Communication. In Proceedings of

the Hot Interconnects Symposium V, August 1997.

Michel Dubois and Faye A. Briges. Effects of Cache Coherence in Multiproces-
sors. In Proceedings of the 9" Annual Symposium on Computer Architecture,

pages 299-308, May 1982.

Guang R. Gao. An Efficient Hybrid Dataflow Architecture Model. Journal of

Parallelism, 19(4), December 1993.

Guang R. Gao, Herbert H. J. Hum, and Yne-Bong Wong. Parallel unction
Invocation in a Dynamic Argument-Fetching Dataflow Architecture. In Proc.
of PARBASE-90: Intl. Conf. on Databases, Parallel Architectures, and their
Applications, Miami Beach, Florida, pages 112-116, March 1990.

96

31)

[32]

[34]

[37]

(39]

J-L Gaudiot and C-T Cheng. A Scalable Cache Design for I-Structures. In

Proceedings of the International Conference on Parallel Processing, Aug. 1996.

M. Gulati and N.Bagherzadeh. Performance study of a multithreaded super-
scalar microprocessor. In Proceedings of Int’l Symp. on High-Performance Com-

puter Architecture, 1996.

Robert H. Halstead Jr. and Tetsuya Fujita. MASA: A multithreaded processor
architecture for parallel symbolic computing. In Proceedings of the 15th Annual

International Symposium on Computer Architecture, pages 443-451, 1988.

J. Hicks, D. Chiou, B. S. Ang, and Arvind. Perfornamece Studies of Id on
Monsoon Dataflow System. Journal of Parallel and Distributed Computing.
pages 273-300, 1993.

High Performance Fortran Forum. High-performance fortran language specifi-

cation. Technical report, Rice University, May 1993.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimiza-
tions for fortran d on mimd distributed-memory machine. In Proceedings of

Supercomputing ‘91, pages 86-100, Nov. 1991.

H. H.J. Hum, O. Maquelin, K. B. Theobald, X. Tian, X. Tang, G. Gao,
P. Cupryk, N. Elmasri, L. J. Hendren, A. Jimenez, S. Krishnan, A. Marquez,
S. Merali, S. S. Nemawarkar, P. Panangaden, X. Xue, and Y. Zhu. A Design
Study of the EARTH Multiprocessor. In PACT 93, June 1995.

Herbert Hing-Jing Hum. The Super-Actor Machine: a Hybrid Dataflow/von
Neumann Architecture. PhD thesis, School of Computer Science, McGill Uni-

versity, Montreal, Québec, 1992.

Robert A. lannucci. A dataflow/von Neumann Hybrid Architecture. PhD thesis,

Massachusetts Institute of Technology, July 1988.

97

[40]

[41]

[44]

[45]

46

Robert A. lannucei. Toward a dataflow/von neumann hybrid architecture. In
Proceedings of the 15th Annual International Symposium on Computer Archi-

tecture, pages 131-140, May 1988.

V. Karamcheti and A. Chien. Software overhead in messaging layers: Where
does the time go? In Proceedings of the 6th ACM International Conference on
Architectural Support for Programming Languages and Systems (ASPLOS Vi),
Oct. 5-7, 1994.

M. Katevenis. Reduced instruction set computer architectures for VLSL. PhD
thesis, Comput. Sci. Division (EECS), UCB/CSD 83/141, Univ. California at
Berkeley, Oct. 1983.

K. M. Kavi, A.R. Hurson, P. Patadia, [5. Abraham, and P. Shanmugam. Design
of Cache Memories For Multi-Threaded Dataflow Architecture. In [SCA 95,

pages 253-264, 1995.

K. Keeton, T. Anderson, and D. Patterson. LogP Quantified: The Case [or
Low-Overhead Local Area Networks. In Hot Interconnects Il1: A Symposium

on High Performance Interconnects, August 1995.

Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr. Data optimization:
Allocation of arrays to reduce communication on SIMD machines. Journal of

Parallel and Distributed Computing, 8(2):102-118, February 1990.

Yuetsu Kodama and et al. A prototype of a highly parallel dataflow machine
EM-4 and its preliminary evaluation. In Proceedings of InfoJapan 90, pages

291-298. October 1990.

Yuetsu Kodama and et al. EMC-Y: Parallel processing element optimizing
communication and computation. In Conference Proceedings, 1993 Interna-

tional Conference on Supercomputing, pages 167-174, July 1993.

98

[43]

49

[50]

[51]

[53]

Charles Koelbel. Compuile-time generation of communications for scientific
programs. Technical report crpe-tr91089, Center for Research on Parallel Com-

putation,Rice University, January 1991.

James T. Kuehn and Burton J. Smith. The Horizon supercomputing system:
Architecture and software. In Proceedings of Supercomputing ‘88, pages 28-34,

Nonvember 1988.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and

J. Hennessy. The Stanford FLASH Multiprocessor. In ISC'A 94, 1994,

Wen-Yen Lin and Jean-Luc Gaudiot. I-structure Software caches - A split-
phase transaction runtime cache system. In Proceedings of the 1996 Parallel

Architectures and Compilation Techniques Conference, Oct. 1996.

Wen-Yen Lin and Jean-Luc Gaudiot. Exploiting Global Data Locality in Non-
Blocking Multithreaded Architectures. In Proceedings of the Third Interna-
tional symposium on Parallel Archilectures, Algorithms and Networks, Dec.

1997.

Wen-Yen Lin and Jean-Luc Gaudiot. The Design of An I-Structure Software
Cache System. In Workshop on Mullithreaded Evecution, Architecture and

Compilation, 1998. Held in conjunction with HPCA-/4, Feb. 1998.

M. Loikkanen and N. Bagherzadeh. A fine-grain multithreading superscalar
architecture. In Proceedings of Parallel Arvchitectures and Compilation Tech-
niques, 1996.

0. C. Maquelin, H. H.J. Hum, and G. R. Gao. Costs and Benefits of Mul-

tithreading with Off-the-Shelf RISC Processors. In Proceedings of EURO-
PAR’95, August 1995,

99

[56] J. R. McGraw and et al. SISAL: Streams and iteration in a single assignment

[61]

[62]

[63]

64]

language - language reference manual version 1.2. Technical Report M-146,

Lawrence Livermore National Laboratory, 1985.

S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent Network
Interfaces for Fine-Grain Communication. In Proceedings of the 23th Annual

International Symposium on Computer Architecture, 1996.

R. S. Nikhil and Arvind. Can dataflow subsume von Neumann computer? In

Proceedings of ISCA-16, May-Jun 1989.

Rishiyur S. Nikhil and Arvind. Id: a language with implicit parallelism. CSG

MEMO 305, Computation Structures Group, 1990.

H. Nishikawa, H. Terada, S. Komori, K. Shima, T. Okamoto, and S. Miyata.
Architecture of a VLSI-Oriented Data-Driven Processor: the Q-vl. In J-L. Gau-
diot and L. Bic, editors, Advanced Topics in Data-Flow Compuling. Prentice

Hall, 1991.

Michael D. Noakes, Deborah A. Wallah, and William J. Dally. The J-Machine
multicomputer: An architectural evaluation. In Proceedings of the 20th Annual

International Symposium on Compuler Architecture, pages 224-235, May 1993.

G.M. Papadopoules. Implementation of a General-purpose Dataflow Multipro-

cessor. PhD thesis, Laboratory for Computer Science, MIT., August 1988,

G.M. Papadopoulos. I'mplementation of a General-purpose Dataflow Multipro-

cessor. The MIT Press, 1991.

G.M. Papadopoulos and D. Culler. Monsoon: An Explicit Token-Store Archi-

=th

tecture. In Proceedings of the 17" Annual International Symposium on Com-

puter Architecture, pages 82-91, June 1990.

100

[65]

[66]

[67]

[68]

[69]

D. Patterson and C. Sequin. A VLSI RISC. TEEE Computer Mag., 15(9):8-21.
Sept. 1982.

5. Rodrigues, T. Anderson, and D. Culler. High-Performance Local Area Com-
munication With Fast Sockets. In USENIX 1997 Annual Technical Conference,

Jan 1997,

L. Roh and W. A. Najjar. Design of Storage Hierarchy in Multithreaded Ar-

chitectures. In IEEE Proceedings of MICRO-28, pages 271-278, 1995.

Shuichi Sakai and et al. An architecture of a dataflow single chip processor. In
Proceedings of the 16th Annual International Symposium on Computer Archi-

tecture, pages 46-53, May 1989.

Kevin B. Theobald. FARTH - An Efficient Architecture for Running THreads.
PhD thesis, School of Computer Science, McGill University, Montreal, Québec,

1999.

Kevin B. Theobald, José Nelson Amaral, Gerd Heber, Olivier Maque-
lin, Xinan Tang, and Guang R. Gao. Overview of the portable
threaded-c language. CAPSL Technical Memo 19, University of Delaware,

http://www.capsl.udel.edu, March 16 1998.

D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simulatneous multithreading: Max-
imizing on-chip parallelism. In 22nd Ann. Int’l Symp. On Computer Architec-

ture, 1995.

T. von Eicken., D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active
messages: a mechanism for integrated communication and computation. In
Proceedings of the 19th Annual [nternational Symposium on Computer Archi-

tecture, pages 256-266, May 19-21, 1992.

101

[73] X3J3. FORTRAN 90, draft of the inetnational standard. The FORTRAN
Technical Committee of ANSI, 1990.

[74] N. Yoo. Generic MultiThreaded machine (GMT) simulator. Computer engi-
neering technical report, Department of Electrical Engineering - Systems, Uni-

versity of Southern California, December 1993.

[75] Hans P. Zima, Heinz-J. Bast, and Michael Gerndt. SUPERB: a tool for semi-
automatic MIMD/SIMD parallelization. Parallel Computing, 6:1-18, January
1988.

102

Appendix A

ISSC’s Implementation on EARTH using
Threaded-C Language

103

The complete definitions of data structures for I-Structure Software Caches (1SSC)
implementation is defined in “issc.h” header file. I1SSC operations are also defined

in that header file.

A.1 ISSC Structure

/* include the data structures defined for i-struct #*/

#include "i-struct.h"

/* total of 16K words by default #*/
#define CacheBlockSize 8
#define CacheSetSize 8

#define NofCacheSet 256

int NI_DELAY; /# parameter for add-on network interface delay */
int NET_LATENCY; /# parameter for add-on network latency */

int CNofRead;

int CNofHit;

int CNofDeferred;

int CNofRemoteHit;

int CNofRemoteMiss;

[*x*x*+x*++*%* Data Structure definition for Software Cache *k¥kkskskksxk

* Cache Block, is the basic unit of Cache access.

* "g_array", is the array ID (now using the beginning
* address of the referred I-Structure array.
* "b_index'", is the index of first cache element in

104

the original I-Structure array.
"handler", the the array which stores the sync. slot
of deferred request service handler for
each element to handle the pending
requests.
In a cache block,
If ((deferred_flag==0) && (tag==NUL)) {
means an empty cache block
} else if ((deferred_flag==1) && (tag!=NULL)) {
means the request of this cache block is on
going.
} else if ((deferred_flag==0) && (tag!=NULL)) {
means this cache block is a valid cache
block.

} else means in error state

If (reserved==1) {
means that this cache block has at least one
deferred request, so that it can not be
replaced.

else means this cache block is free to be

replaced.

Cache Set, contains the index of next victim when cache replace

is needed.

Cache, contains several performance measurement variables and

an array of CacheSet.

105

* The location of CacheSet to be checked is indexed by a
* simple hash function.
ok ok ok ok ok o o sk ke ok sk sk ok sk skl o sk o ok s ok ok sk skok sk ook sk ook ok ok ok ok sk sk sk ok ok o o ok s sk sk o s ok R ok K R kR R R R ok ok [
typedef struct CacheBlock_str CacheBlock;
struct CacheBlock_str {

char deferred_flag;

char referenced;

char type;

unsigned long g_array;

int b_index;

array_cell element [CacheBlockSize] ;

SPTR handler[CacheBlockSize];
13

typedef struct CacheSet_str CacheSet;
struct CacheSet_str {

int victim;

CacheBlock block[CacheSetSize];
¥

typedef struct Cache_str Cache;
struct Cache_str {

int NofRead;

int NofLocal;

int NofHit;

int NofDeferred;

int NofInitMiss;

int NofReplaced;

106

int NofPassed;

int NofWrite;

int NofRemoteHit;
int NofRemoteMiss;
double hit_time;
double miss_time;
double tag_time;
double service_time;

CacheSet set[NofCacheSet];

¥3

/* Software Cache space is allocated here */

Cache *cache;

107

A.2 ISSC Operations

I'he following functions define ISSC operations either invoked by user program or

invoked with ISSC operations.

/* Flushing ISSC #*/
THREADED FlushCache(SPTR done);

/* ISSC initialization function */

THREADED InitCache(int ni_delay, SPTR done);

/* These threaded functions should be invoked locally */

/* I-Structure element fetch using ISSC */
THREADED SC_I_READ(int i_node, int iid, int index, int type,

void *GLOBAL place, SPTR slot_adr);

/* I-Structure block fetch using ISSC */
THREADED SC_I_READ_BLOCK(int i_node, int iid, int index,
int block_size, void *GLOBAL place,

SPTR slot_adr);

/* This function is called by software cache library to be invoked
in I-Structure node */

THREADED I_BLKMOV_RSYNC(int iid, int index, void *GLOBAL c_block,

void *GLOBAL place, int block_size,

unsigned long g_array, SPTR slot_adr);

108

THREADED I_BLKMOVBLOCK_RSYNC(int iid, int index,

void *GLOBAL c_block,
void *GLOBAL place,

void*GLOBAL data_buf,

int block_size,

unsigned long g_array, SPTR slot_adr);

THREADED Block_Handle(int i_node, int iid, int index, int type,

int set_no, int block_no, int element_no);

THREADED Block_Handle_BLOCK(int i_node, int iid, int index, int
block_size, int set_no, int block_no,

int element_no);

THREADED Single_Handle(int type, int set_no, int block_no,

int element_no, SPTR done);

THREADED Deferred_Server(int type, int set_no, int block_no, int

element_no) ;

THREADED Deferred_Server_BLOCK(int block_size, int set_no,

int block_no, int element_no);

THREADED Or_Deferred_Server(int type, int set_no, int block_no,

int element_no);

THREADED Or_Deferred_Server_BLOCK(int block_size, int set_no,

109

int block_no, int element_no);

/* The following functions are used to add the network interface

overhead */
THREADED BLOCK_I_READ(int i_node, int iid, int index, int type,
void *GLOBAL place);

THREADED NOW_I_READ(int i_node, int iid, int index, int type,

void *GLOBAL place, SPTR slot_adr);

THREADED NOW_I_READ_TEST(int i_node, int iid, int index, int type,

void *GLOBAL place, SPTR slot_adr);

THREADED NOW_I_WRITE_B(int i_node,int iid, int index,

char value);

THREADED NOW_I_WRITE_S(int i_node,int iid, int index,

short int value);

THREADED NOW_I_WRITE_L(int i_node,int iid, int index,

long int value);

THREADED NOW_I_WRITE_F(int i_node,int iid, int index,

float value);

THREADED NOW_I_WRITE_D(int i_node,int iid, int index,

double value);

THREADED NOW_I_WRITE_G(int i_node,int iid, int index,

void *GLOBAL value);

THREADED NOW_I_WRITE_BLOCK_SYNC(int i_node,int iid, int index,

void *GLOBAL origin, SPTR slot_adr);

THREADED NOW_GET_RSYNC(void *GLOBAL src, void *GLOBAL dest, int type,
SPTR slot_adr);

void delay(int delay_par);

THREADED Print_Cache_Util(SPTR done);

THREADED Gather_Cache_Stat(int if_cache, int dim, int delay_time,

int exec_time);

111

Appendix B

Using ISSC with Hopfield Benchmark

The following program shows how Hopfield benchmark is implemented using Threaded-
C with the support of I-Structure and ISSC. A makefile is also shown here to show

how the program is compiled and how to use ISSC option.

B.1 Hopfield Benchmark

/] sk sk ke sk s sk ek ok s sk o sk ok ok sk ok sk ok ok ok sk ok o sk ok s sk sk ok ot sk s ok s sk sk s sk sk o ok sk o sk o ok ok s ok ok o ok ook ok o ok ok ok ok ok ok

*
* hopfield - An implementation of a Hopfield kernel in Threaded-C.
*

* Author: Jose Nelson Amaral <amaral@capsl.udel.edu>

* Computer Architecture and Parallel Systems Laboratory

* (http://www.capsl.udel.edu) - University of Delaware

*

* Purpose: Implement a solution for a Hopfield network kernel

* demonstrating the use of the I-STRUCTURES in a
* synchronization mechanism.
*

* Release Date: June 11 1998
s

st s sk e sk o sk ok sk ook sk e ok sk sk o o sk ok o sk ok sk o s ok sk s ok sk skok sk sk ok sk ook skok ok skl sk ook sk o R ok kR kR ok ok ok /

[s s sk ok sk sk sk stk ok ek s sk sk skske ok ok ok ok sk sk sk ok sk ko kol ok sk ks sk stk ok ok ok sk sk kol sk ook skokokskofok ko ok
*

* Revised by Wen-Yen Lin <wenyenl@usc.edu>

*

* Purpose: Implement a larger number of neurons suitable for testing

* if I-Structure and I-Structure Software Caches.

*

* Release Date: April 29 1999

*

o s sk o ook sk of sk ofe b skesfeoke sfeok skt s sk kol skof ok skl kol skl sk ok ok ok ok skokokoskok okl ok sk ok sk ok Rk R kR ok ok

#include <stdio.h>

* Because the implementation of the I-structure library uses

* conditional pre-processing, the user must include the empty

* definition of EXTERN in the file that contains the MAIN function
* before the file i-struct.h is included. This line must not be

* present in any other files.

#define EXTERN

#tinclude "issc.h"

Cache #*cache;

/* Cyclic 1 distribution macros */
#define OWNER(index) ((index) % NUM_NODES)
#define POSITION (index) ((index) / NUM_NODES)

#define IMAP(node, pos) ((pos)*NUM_NODES + (node))

/* Block distribution macros */

/*

114

#define OWNER(index) ((index) / ((DIM%DIM)/NUM_NODES))
#define POSITION(index) ((index) % ((DIM*DIM)/NUM_NODES))

#define IMAP(node, pos) ((node)*((DIM*DIM)/NUM_NODES) + (pos))
*/

#define STOPPING_CRITERIUM 0.0001
int NET_SIZE;

/*

float synapse[NET_SIZE];

*/

float *synapse;

/* I-Structure IDs for neuron activations */

float *i_old, *i_new, *temp;
float change_of_state;
/* Declare 2 arrays here for storing the activation */

float Arrayl1[256];

float Array2[256];

[sk sk ok sk s ok ok o ok ok ok sk ok o ook sk sk o sk ok sk stk sk et sk ok stk sk ko sk ok ok ko kR stk sk skokokokeskskok ko okok ok

P

* Adds the value of all the changes of state in each neuron, and

* synchronizes the slot specified by {\tt done}. This function is

* invoked by the function activation_update and effectively

* synchronizes the completion of the function execution.

*

5k ok sk ok ok ok ok ok ok ok ok skook ok ok ok ok sk sk ok sk skeak s sksk sk s sk sk ok o sk sk ok skok ok sk sk sk ok sk ok o ok s sk ok skl o o ok ok sk ok ok ok sk ok sk ok

THREADED

compute_change_of_state(float change, SPTR done)
{

change_of_state += change;

RSYNC(done) ;

END_FUNCTION() ;
}

[3 sk sk sk sk sk sk ok sk sk sk ok ok sk sk ksk ok ok sk ok sksk ok sk ok stk ok kool sk SRR ok Kok sk sk ok Stk SR KRR KRk ok ok ok
*

* THREAD_O allocates the memory necessary for the a_old array.

* THREAD_O is also responsible for invoking the I_READ_F function

* for each element of the I-structure array.

* Because the sync slot is initialized with {\tt num_neurons}, {\tt
* THREAD_1} is not spawned until all the read operations are

* serviced. {\tt THREAD_1} computes the new activation for the

* neuron {\tt NODE_ID}, invokes the {\tt I_WRITE_F} function to

* write this new activation value to the {\tt new} I-structure,

* computes the square of the amount of change in the activation

* value and reports this change to node 0 invoking the function {\tt

* compute_change_of_state()}. This later function synchronizes the

116

* sync slot {\tt done} to signal that the activation update is
* complete.

*

sk ok ok sk ok s ok stk sk stk ok ok skt ok s sk ok sk ok ok sk sk sk sk kol sk sk sk ok sk sk sk sk sk ok ok o sk ok ok kR ok ok sk ok ok ook sk ko ook /

THREADED

activation_update(int neuron_id, float *new, float *old, SPTR done)

{

SLOT SYNC_SLOTS[2] ;
float *a_old;

float activation;
float change;

int 1y

INIT_SYNC(O, NET_SIZE, NET_SIZE, 1);

#ifdef DEBUG
fprintf(stderr, "Activation Update for neuron#)d...\n",
neuron_id) ;
#endif
a_old = (float #*) malloc(NET_SIZE#sizeof (float));
for(i=0 ; i<NET_SIZE ; i++) {
/*
#ifdef CACHE
INVOKE(NODE_ID, SC_I_READ, OWNER(i), old, POSITION(i), F,
TO_GLOBAL (&a_old[i]), SLOT_ADR(0));
#else
INVOKE(NODE_ID, NOW_I_READ, OWNER(i), old, POSITION(i), F,

117

TO_GLOBAL (%a_o1d[i]), SLOT_ADR(0));
#endif

*/

INVOKE (NODE_ID, NOW_GET_RSYNC,
MAKE_GPTR((float *)old+POSITION(i), OWNER(i)),
TO_GLOBAL(&a_old[i]), F, SLOT_ADR(0));

+
END_THREAD() ;

THREAD_1:
#ifdef DEBUG
fprintf(stderr,"Node %d - activation update: Spawned THREAD_1.
\n'", NODE_ID);
#endif
activation = 0;
for(i=0 ; i<NET_SIZE ; i++)
activation += synapse[POSITION(neuron_id) * NET_SIZE+i]
* a_old[i];
#ifdef DEBUG
fprintf(stderr, "Node d updates activation=4f\n", NODE_ID,
activation) ;
#endif
activation = (activation > 0.0) 7 +1.0 : -1.0;
#i1fdef DEBUG
fprintf(stderr, "activation turned to =Yf\n", NODE_ID,

activation);

118

#endif
/#
INVOKE(OWNER (neuron_id), I_WRITE_F, new, POSITION(neuron_id),
activation);
*/
INIT _synNc(i, 1. 1, 2)
DATA_RSYNC_F(activation, MAKE_GPTR((float *)new +

POSITION (neuron_id) ,0WNER (neuron_id)), SLOT_ADR(1));
#ifdef DEBUG
fprintf(stderr, "0ld activation=}f\n", a_old[neuron_id]);

#tendif

change = (activation - a_old[neuron_id]);

change = change*change;
#ifdef DEBUG
fprintf (stderr,"change=/f\n", change);
#endif
INVOKE(O, compute_change_of_state, change, done);
free(a_old);
END_THREAD() ;
THREAD_2:
END_FUNCTION() ;

THREADED

InitGlobal(int dim, int ni_delay, SPTR done)
{

119

int i,j;

NET_SIZE

dim;

NI_DELAY = ni_delay;
/* Allocate and initialize synapses array */
synapse = (float *)malloc(NET_SIZE * NET_SIZE / NUM_NODES *

sizeof(float));

for(i=0; i< (NET_SIZE/NUM_NODES); i++) {
for(j=0; j<NET_SIZE; j++) {
synapse [i*NET_SIZE + j] = 0.01%(IMAP(NODE_ID,i)+1)%j;

}
#ifdef DEBUG
printf ("\nNI_DELAY = }d\n",ni_delay);

#endif DEBUG

RSYNC (done) ;

END_FUNCTION() ;

THREADED
LocalAllocate(int num, SPTR done)
{

/%

120

INVOKE(NODE_ID, I_ALLOCATE, num/NUM_NODES, TO_GLOBAL(&i_old),
SLOT_ADR(0));

INVOKE(NODE_ID, I_ALLOCATE, num/NUM_NODES, TO_GLOBAL (%i_new),
SLOT_ADR(0));

*/

i_old

Arrayil;

I

i_new = Array2;
RSYNC(done) ;

END_FUNCTION() ;

THREADED
RESET_I_NEW(SPTR done)
{

float *temp;

temp = i_old;
i_old = i_new;
i_new = temp;
RSYNC(done) ;

END_FUNCTION() ;

THREADED
MAIN(int argc, char** argv)
{
SLOT SYNC_SLOTS[5] ;

/*
void *GLOBAL i_old;
void *GLOBAL i_new;

void *GLOBAL temp;

*/

float *final;

int i, par_no;
int thp;

int num_neurons;
int num_iter;

unsigned long t1,t2,dt1,dt2,delay_time;

NI_DELAY = 0;
NET_LATENCY = 0;

NET_SIZE = 16;

if(arge > 1) {
par_no = 0;
while(par_no < argc) {

if (!stremp(argv[par_nol, "-ni")) {
sscanf (argv[par_no+1], "%d", &NI_DELAY);
par_no = par_no+2;

} else if(!strcmp(argvlpar_nol, "-nl")) {
sscanf (argv[par_no+1], "%d", &NET_LATENCY);
par_no = par_no +2;

} else if(!strcmp(argvipar_nol, "-d")) {
sscanf (argv [par_no+1], "%d", &NET_SIZE);

par_no = par_no +2;

} else {

par_not++;

num_neurons = NET_SIZE;

INIT_SYNC(0,NUM_NODES,NUM_NODES, 1) ;
INIT_SYNC(1,NUM_NODES,NUM_NODES,2);
INIT_SYNC(2,num_neurons,NUM_NODES, 3) ;
INIT_SYNC(3,num_neurons,num_neurons,4) ;

INIT_SYNC(4,num_neurons,num_neurons,5) ;

final = (float *)malloc(num_neurons*sizeof (float));

for(i=0; i<NUM_NODES; i++)

INVOKE(i, InitGlobal, NET_SIZE, NI_DELAY, SLOT_ADR(0));

END_THREAD() ;

THREAD_1:

#ifdef DEBUG
fprintf (stderr,"MAIN: Allocating i_old and i_new\n");

#endif
/* Allocates two I-Structures i_old and i_new on each nodes */
for(i=0; i<NUM_NODES; i++)

INVOKE(i, LocalAllocate, num_neurons, SLOT_ADR(1));

END_THREAD() ;

THREAD_2: /* synchronized by I_ALLOCATEs of i_old and i_new */
#ifdef DEBUG

fprintf(stderr,"MAIN: Initializing i_old.\n");
#endif

flip = -1.0;
for(i=0 ; i<num_neurons ; i++)
{
flip = -1.0*flip;
/*
INVOKE (OWNER(1i), I_WRITE_F, i_old, POSITION(i),
flip*0.01*(float) (i+1));
*/
DATA_RSYNC_F(f1lip#0.01*(float) (i+1),
MAKE_GPTR((float *)i_old+POSITION(i),
OWNER(i)), SLOT_ADR(2));

num_iter=0;

dtl = ct_read();
delay (NI_DELAY);
dt2 = ct_read();

delay_time = (dt2-dt1)/25;

END_THREAD () ;

THREAD_3:
#ifdef DEBUG
fprintf(stderr,"MAIN: Activation Update\n");
#endif
if(num_iter == 0) til=ct_read();
num_iter++;
change_of_state = 0.0;
for(i=0 ; i<num_neurons ; i++)
INVOKE(OWNER(i), activation_update, i, i_new, i_old,
SLOT_ADR(3));

END_THREAD() ;

THREAD_4:
#ifdef DEBUG

fprintf(stderr,"MAIN: Criterium check.\n");
#endif

/*

temp = i_old;

i_old = i_new;

i_new = temp;
*/
#ifdef DEBUG
fprintf (stderr, " => change_of_state = %f\n",
change_of_state);

#endif

if (change_of_state > STOPPING_CRITERIUM) {
for(i=0; i<NUM_NODES; i++)
INVOKE(i, RESET_I_NEW, SLOT_ADR(2));
} else {
t2 = ct_read();
/*
for(i=0; i<NUM_NODES; i++)
INVOKE(i, I_DELETE, i_old);
*/
for(i=0 ; i<num_neurons ; i++)

/*

INVOKE(OWNER(i), I_READ_F, i_new, POSITION(i),

TO_GLOBAL(&final[i]), SLOT_ADR(4));
*/

INVOKE(NODE_ID, NOW_GET_RSYNC, MAKE_GPTR(i_new+POSITION(i),
OWNER(i)), TO_GLOBAL(&final[il), F, SLOT_ADR(4));

END_THREAD() ;

THREAD_5:
#ifdef DEBUG
fprintf(stderr,"MAIN: Finishing.\n");

#endif

free(final);

126

printf ("Number of iteration=%d\n",num_iter);

printf ("Execution time = %dus\n", (t2-t1)/25);
CALL(Gather_Cache_Stat, -1, NET_SIZE, delay_time, (t2-t1)/25);
RETURN() ;

B.2 Makefile

CC = etcc
CFLAGS = -04
TARGET = -target manna-spn

INCLUDE = “wenyenl/lib/i-struct
LIB = /m/capslguests/wenyenl/lib/i-struct/i-struct.o

/m/capslguests/wenyenl/lib/i-struct/issc.o

all: hopfield_is hopfield_issc

hopfield_is: hopfieldl.c
$(cc) $(CFLAGS) -I$(INCLUDE) $(TARGET) $(LIB)

-0 hopfield_is hopfieldl.c

hopfield_issc: hopfieldl.c
$(cc) $(CFLAGS) -I$(INCLUDE) $(TARGET) $(LIB)
-DCACHE -o hopfield_issc hopfieldl.c

clean:

-rm -f *.0 core hopfield_is hopfield_issc

