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Abstract

In current systems, virtual addresses are dynamically translated into physical
addresses through a Translation Lookaside Buffer (TLB) accessed in parallel with the first
level cache. Such a TLB does not scale well with processor speeds, physical memory
sizes, and application data set sizes. Other observed trends in architecture are the migra-
tion of computations to memory (PIM) to fight the memory wall and the emulation in soft-
ware of various memory functions. We believe that these trends will eventually drive
architects of general-purpose systems to virtualize the memory hierarchy.

In this dissertation, we focus on memory systems where the TLB is moved down
the memory hierarchy, away from the processor. We propose and evaluate a novel multi-
processor architecture called Virtual COMA(V-COMA), in which the virtual memory
implementation is combined with the cache coherence protocol.

We also introduce new solutions to two critical problems plaguing systems with
virtual memory hierarchies: synonyms and late memory traps.

To solve the synonym problem, we propose a Synonym Lookaside Buffer (SLB),
which translates synonyms before virtual addresses are issued to the memory hierarchy. In
contrast to TLBs, SLBs are very small and scale very well.

We then present an in-depth analysis of the trapping behavior of ILP (Instruction-
Level Parallelism) processors, and propose new techniques to tolerate the late detection of
memory traps. With these techniques, the performance cost of a trap is much less sensitive
to the location where the trap is detected, even deep in the memory system.

This dissertation demonstrates that virtually-addressed memory hierarchies are
feasible and efficient, that the hardware to support them scales much better than for physi-
cal memory hierarchies, and that they open new opportunities for future computer archi-
tectures.

KEYWORDS: Virtual Memory, Distributed Shared Memory, TLB, Trap, NUMA,
COMA, Processor Microarchitecture, Memory Consistency, Performance Evaluation



Chapter 1

INTRODUCTION

Microprocessor performance is continually improving at a fast pace by increasing
clock rate and instruction level parallelism (ILP). The memory hierarchy of the processors
must satisfy multiple memory accesses in every cycle at a rate currently approaching
1GHz. It must sustain high speed and high bandwidth memory accesses in the face of the
growing disparity between processor execution rate and main memory access time, and of
the growing memory demand of emerging applications. One additional complication is
that, in the process of accessing memory, the virtual address issued by the processor must
at some point be translated into a physical address to support virtual memory. Currently,
this dynamic translation between virtual and physical addresses is supported by a transla-
tion lookaside buffer (TLB). Typically the virtual address translation is performed before
or in parallel with the first level cache access, so that the memory hierarchy is accessed
with physical addresses throughout[92](83]. We call this current design of memory system
physically-addressed memory hierarchy.

In this dissertation, we advocate virtually-addressed memory hierarchies where the
TLB is removed from the processor and located within the memory hierarchy. Virtually-
addressed memory hierarchies cut the overhead and improve the scalability of virtual
memory implementations. Moreover, virtually-addressed memory hierarchies open new
opportunities to build more flexible and smarter memory systems.

Attacking the TLB Bottleneck. The TLB of a physically-addressed memory hier-
archy is a hardware bottleneck, because it must be accessed before or in parallel with time-
critical accesses to the first level cache integrated very closely with the processor core
where the chip real-estate is very precious. To satisfy the access constraints of the first
level cache, the latency and bandwidth requirements of the TLB must scale up with the
clock rate and instruction level parallelism[3]. It is getting more difficult and costly to
implement a large TLB meeting these speed and bandwidth requirements. Figure 1.1 illus-
trates a bandwidth hierarchy for a typical computer system, where the dynamic address
translation has to meet the peak bandwidth requirement.

The TLB inside the processor core does not scale with the growing working set
size of applications and with the size of physical memory. For a given application, the
miss ratio of the TLB is primarily determined by the TLB reach, or coverage[19]. New
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applications are emerging, and at the same time the working sets of applications keep
growing and changing. The TLB is fixed within the processor and is very difficult to scale
with the applications. It can not be changed when building various computer systems
using the microprocessor chips.

Shared memory multiprocessors have become commonplace recently. Small and
medium scale multiprocessors are already very successful commercially. Large scale mul-
tiprocessors have also been built and will become more and more popular in the near
future. The current design of TLBs scales very poorly with the number of processors in a
multiprocessor. Multiprocessors tend to have larger memory size and run larger applica-
tions. In a multiprocessor, some TLB entries are replicated, wasting TLB space but, more
importantly, creating a consistency problem[81]. Maintaining TLB consistency is very
expensive and does not scale well. The overhead of maintaining TLB consistency tends to
grow in the presence of new optimizations such as page migration for NUMA(Non-Uni-
form Memory access Architecture) machines to reduce the number of remote data
accesses.

Translation misses in the TLB trigger expensive “table walks™ through levels of
page tables located in main memory. It has been shown in the past[22][54] that the execu-
tion overhead due to TLB handling was about 5% - 10% of the total execution time. How-
ever, current technology and application trends put more pressure on the dynamic address
translation hardware. Some recent studies have shown that the TLB service time alone can
consume up to 50% of the user execution time in some workloads[65][79].

In virtually-addressed memory hierarchies where the cache is virtually indexed
and tagged, most memory accesses are completed without TLB involvement. The actual

5]



address translation, performed only when it is needed, can be done in different locations in
the memory hierarchy, and can be implemented in various ways. Putting the TLB after the
virtual address cache hierarchy can dramatically reduce the number of TLB misses
because of the filtering effect of the caches and also because the TLB may be much larger
given the much reduced speed and bandwidth requirements. When the TLBs are shared at
the main memory in multiprocessors, the number of TLB misses may become insignifi-
cant because of sharing and prefetching effects. The size of the TLB is no longer fixed
within the processor chip and therefore can scale with the main memory size. Moreover,
maintaining TLB consistency can be eliminated, which largely improves the scalability of
virtual memory systems for multiprocessors.

Supporting Generic Memory Function Paradigm. Virtual memory is actually
nothing more than a special memory function which provides each user program with the
illusion of an exclusive memory space hiding the complexity of managing the physical
memory. In general, a memory function is the method or action taken to maintain a partic-
ular semantics of the memory system. As a generic programming paradigm, memory
functions can be extracted from application programs so that the programs are split into
separate parts. The part of memory functions maintain a memory system with some partic-
ular semantics or properties which are assumed by the rest parts of the programs. The
semantics or properties are usually well-defined to improve the performance, portability,
and programmability. For example, the abstraction of virtual memory improves program
portability and programmability. As another example, we can consider memory forward-
ing[49] which maintains the correctness of dynamic memory relocation, so that aggressive
run-time data layout optimization is enabled to enhance spacial locality, facilitate
prefetching, and avoid cache conflicts and false sharing.

The memory functions express a level of parallelism that can be exploited in
coarse granularity. Unlike the SPMD (Single Program Multiple Data) model where all the
programs and processing units are somewhat symmetric, memory functions have different
functionality and of course quite different behaviors with the original user application pro-
grams. It has big potential to take advantage of techniques such as processing-in-memory
(PIM) and simultaneous multithreading(SMT).

Traditionally, the support for memory functions has been limited to the support for
virtual memory implementation. The TLB handles the most common cases in hardware by
caching the recent translation entries, and a trapping mechanism is provided so that
uncommon cases such as TLB misses and page faults are completed in software. Recent
examples of memory functions such as the concurrent garbage collection algorithm[2] and
the original shared virtual memory implementation proposed by Kai Li[48] rely on the vir-
tual memory support.

A virtually-addressed memory hierarchy provides more flexible support for mem-
ory functions than the traditional physically-addressed memory hierarchy. This is because
of two reasons: 1) In order to support virtually-addressed memory hierarchies, the proces-
sors have to be able to take traps from the memory hierarchy. Therefore, special hardware
devices can be inserted in the memory hierarchy to handle common cases for particular



memory functions, and to generate traps to trigger memory function software for compli-
cated cases. 2) Because the inserted hardware devices can “see” virtual addresses, the
memory system semantics can be defined in the virtual address space, and the memory
function implementation can be done at the user level. As an example, consider again
memory forwarding. First, trapping from main memory is required in case a memory
access hit on an indirect relocation pointer. Second, if virtual address is available, the trap
handler can be dispatched on any processor (a PIM processor close to the data is preferred
but not required) with the correct user context, running in parallel with the computing pro-
gram.

Fighting the Memory Wall. Microprocessor performance has improved at a rate
of 60% per year since the mid 80’s, while in contrast the DRAM access time has lagged
behind, improving at only 7% per year. Although many latency tolerance techniques such
as prefetching and memory consistency models have been exploited to mitigate the gap
between processor and memory, it has been shown that the memory bandwidth will soon
become a major bottleneck[6], especially given that most latency tolerance techniques
consume extra memory bandwidth.

A radical solution to attack this so-called “memory wall” problem is processing-
in-memory (PIM), which is enabled by recent VLSI technology integrating processing
logic with DRAM memory chips. PIM processors can exploit the huge internal bandwidth
associated with the memory banks within the memory chip, as well as the much reduced
memory access latency. PIM processors are usually much simpler and may be slower as
compared to state-of-the-art microprocessors which exploit parallelism to increase the
instruction execution throughput.

Future high performance computer systems should take advantage of in-memory
processing, as well as of the increasing on-chip instruction level and thread level parallel-
ism, as illustrated in Figure 6.1. Data-intensive programs such as index searching and vir-
tual memory function run far more efficiently in memory than on ILP processors.
Virtually-addressed memory hierarchy is a necessary step to integrate PIM processors into
general purpose computing systems. With virtual addressing of memory, system software
such as operating system functions can be migrated into memory so that they can executed
more efficiently in parallel with user programs, but more importantly, user-level in-mem-
ory computing can be naturally supported.

The communication between processor and memory is a major bottleneck because
of the big performance gap. For well-behaved applications with good temporal and spatial
locality, the cache hierarchy within the processor chip can reduce the necessary communi-
cation bandwidth across the processor and memory. PIM processors can execute memory-
intensive tasks within memory, which improves the system performance at least in 3 direc-
tions: 1) The necessary communication bandwidth between processor and memory is
reduced because the processing is absorbed within the memory closer to the data: 2) The
memory-intensive tasks can be executed much faster by PIMs than by the ILP processors
because higher clock rate or deeper pipelining will not improve their performance; 3) The



processors can run compute-intensive applications in parallel with the PIMs, increasing
the overall throughput of the system.

Memory functions are a perfect paradigm to split the application programs and dis-
tribute the work among processors and PIMs. The memory functions can be executed
either in PIMs or on ILP processors. While cache-friendly memory system properties can
be defined and maintained to reduce the memory bandwidth, portable and efficient PIM
programs can be written to execute various layers of memory functions in memory, even-
tually leading to a smooth transition path for PIM technology to the general-purpose com-
puting.

1.1 Research Contributions

In this dissertation, we evaluate the performance issues associated with virtually-
addressed memory hierarchies and propose new ideas to support and exploit virtually-
addressed memory hierarchies.

* Various memory systems are compared where the address translation is done in
different places in the context of large scale multiprocessors. Our evaluation
results show that because of the filtering of the virtual address caches the number
of address translation misses is dramatically reduced when the TLB is moved
down to the memory hierarchy.

« Novel multiprocessor architectures are proposed and evaluated. In one of them,
called the virtual COMA(V-COMA) architecture, the entire memory hierarchy
is accessed with virtual addresses. The dynamic address translation mechanism
is shared among all the processors, and is combined with the cache coherence
protocols. The translation overhead is reduced to a minimum and the consistency
problem is eliminated. V-COMA scales well and even works better with larger
number of processors.

* A new solution to the synonym problem is introduced to enable virtually-
addressed memory hierarchies. The major idea is to replace the TLB in the pro-
cessor with a Synonym Lookaside Buffer (SLB), which translates synonyms into
unique identifiers to address the memory hierarchy. An SLB can remain very
small because its size depends on the sharing of synonyms, not on the size of
applications or of the physical memory.

» Using contemporary workloads running on a real operating system (SGI Irix
5.3), we compare the performance of virtually-addressed caches and traditional
physical address caches. It appears that virtual address caches have better miss
rates than physical caches. In particular, our proposed solution using a small
SLB in front of the caches avoids short misses in large caches, while safeguard-
ing the benefits of the temporal and spatial locality presented in the virtual
address stream.



* The behavior of traps in modern ILP processors is analyzed in-depth. Several
metrics are defined to quantify the overhead of traps. In particular, the perfor-
mance impact of late memory traps is identified.

* Three techniques are proposed to tolerate late memory traps. The performance
cost of any trap is very high in ILP processors. At the same time, using our tech-
niques, the overhead due to the lateness of detecting traps is considerably lower.
Therefore, with our techniques, the overhead of traps is not much sensitive to the
location where the trap is detected.

1.2 Organization of the Dissertation

In chapter 2, we describe some background material for this research. We start
with a brief overview of virtual memory systems, followed by an introduction of the archi-
tecture of contemporary microprocessors, which are the building blocks of most computer
systems. Then we briefly describe some multiprocessor architectures. Multiprocessors are
becoming the prevalent architecture for computers from low end desktops to high end
supercomputers and commercial servers.

In chapter 3, we look at various design options for virtually-addressed memory
hierarchies in the context of large scale multiprocessor systems. In particular, a novel mul-
tiprocessor architecture V-COMA is proposed and evaluated.

In chapter 4, we focus on the synonym problem, which is one of the major techni-
cal difficulties faced by virtually-addressed memory hierarchies. We propose and evaluate
a new scheme to solve the synonym problem, the synonym lookaside buffer (SLB). We
also compare the miss rate behavior of physical and virtual address caches.

In chapter 5, memory traps in ILP processors are analyzed in-depth. Several met-
rics are defined to capture the overhead of traps. In particular, the impact of late memory
traps is identified. Three techniques are proposed to tolerate late memory traps.

In chapter 6, we discuss some implications of virtually-addressed memory hierar-
chies. Virtually-addressed memory hierarchy empowers more flexible and smarter mem-
ory systems enhanced with the general memory functions and processing-in-memory
(PIM). In chapter 7, we summarize the related work. In chapter 8, we present the conclu-
sion of this research.



Chapter 2

BACKGROUND

In this chapter, we describe some background material for this research. We start
with a brief overview of virtual memory systems, followed by an introduction of ILP pro-
cessors. We also briefly describe multiprocessor architectures.

2.1 Virtual Memory

Virtual memory system manages physical main memory and provides each indi-
vidual user program an illusion of a single large memory space. Through cooperative
hardware and software support, the virtual memory system automatically moves data
between secondary storage and main memory. User programs running in their virtual
address spaces are no longer concerned with physical memory management.

Figure 2.1 illustrates a typical implementation of a virtual memory system. Most
virtual memory systems implement demand paging, where the physical memory is divided
into fixed pages, typically 4K or 8K bytes. Each virtual address is dynamically translated
into a physical address to access physical memory. If the accessed data is not present in
physical memory, a page fault trap is generated and the system software loads the page
from secondary storage, updates the virtual-physical page mapping and resumes the exe-
cution of the user program.

Typically, the virtual-physical page mapping is maintained by page tables which
are special data structures maintained by the virtual memory system software. There exist
different page table organizations. The two major structures are forward page table and
inverted page table. Forward page table is indexed with the virtual page number. Because
the virtual address space is usually huge and very sparse, a naive one level page table is
wasteful of memory. A multi-level page table structure saves memory by taking a hierar-
chical approach. In multi-level page tables, several memory accesses are required to trans-
late a virtual address. An example of a forward page table structure is shown in Figure 2.2.
An inverted page table is indexed by the physical page number instead of the virtual page
number. The size of the inverted page table is proportional to the size of main memory.
The inverted page table can not be directly accessed by virtual addresses. A hash function
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is necessary to find the physical page number from the virtual address. An example of
inverted page table structure is shown in Figure 2.3.
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Figure 2.2. Forward Page Table Structure



Logically, the main memory is organized as a fully associated cache controlled by
the page table with the block size equal to the page size. Virtual memory system software
manages the data movement between main memory and backup secondary storage, typi-
cally a disk. Because of the huge latency gap between main memory and disk I/O access,
usually software controlled context switches are necessary to tolerate the latency in case of
a page fault.

A special cache commonly called TLB (Translation Lookaside Buffer) is used in
almost every current computer system to accelerate the dynamic address translation. The
TLB caches the most recently used page table entries is typically located very close to the
processor pipeline and is accessed before or in parallel with the first level cache. If a vir-
tual address hits in the TLB, it is immediately translated into a physical address by the
matching TLB entry. If it misses, the in-memory page table is looked up to complete the
translation. If the look up procedure is successful and the page table entry is valid, it is
inserted into the TLB and the program execution is resumed, otherwise a page fault is gen-
erated. The TLB either is fully associative or has a high degree of associativity in order to
reduce the number of conflict misses.
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Figure 2.3. Inverted Page Table

Figure 2.4 illustrates a typical entry of the TLB. Besides the virtual and physical
page numbers, a hardware context identifier is included to avoid flushing the entire TLB
on every context switch. The access right bits restrict accessibility to the page. Typically, a
memory trap is generated if access rights are violated. The entry is invalid if the valid bit
(V) is reset. The reference (R) and dirty (D) bit are usually needed by the software to opti-
mize the paging algorithm. Some TLBs include a global bit which allows the TLB entry to



map a global virtual address area across all the contexts. Many TLBs support the mapping
of multiple page sizes in power of two. Such pages are called superpages and their purpose
is to increase the coverage of the TLB mapping.

context virtual page number physical page frame accessright | R|D |V

Figure 2.4. TLB Entry

This is a very brief summary of the basic concepts in a virtual memory system.
Any real implementation is far more complex. Memory management is now the heart of
almost every operating system.

2.2 ILP (Instruction Level Parallelism) Processor

With the advance of VLSI technology, the architecture of computer systems is cen-
tered around microprocessors[24]. Almost all modern computers from laptops to super-
computers are built with microprocessors because of technological and economic reasons.
In order to achieve high performance, modern microprocessors use very complex microar-
chitectures to exploit instruction level parallelism(ILP).

Figure 2.5 shows the block diagram of a typical ILP processor similar to the MIPS
R10000[92]. Multiple instructions are fetched and decoded in program order, execute out-
of-order in the execution engines, and finally graduate in program order again.

In the instruction fetch stage, the addresses of instructions following the branch are
predicted. In the decode stage, logical registers are renamed to physical registers, and the
decoded instruction is appended to an active list and put into one of the instruction queues
waiting to issue. When a branch instruction is decoded, the processor state is saved in a
branch stack, from which the state can be recovered in case the branch is mispredicted. A
branch mask associated with each instruction in the instruction queues and in the execu-
tion pipelines points to the depending branches. If any one of these branches is mispre-
dicted, the instruction is aborted. The instruction queues act as reservation stations,
monitor the register write ports and issue the instructions to the pipelined execution units
based on data flow dependencies. When an execution unit completes an instruction, it
sends the instruction tag to the active list. Instructions are retired in program order after
they are completed. When retiring an instruction, the active list commits the register map-
ping and returns the physical registers to the free list.

Retiring instructions in order is critical for handling precise interrupts[75]. An
exception can only be taken when the instruction reaches the top of the active list, at which
point all previous instructions have successfully retired. The pipeline is flushed and the
state is recovered by unmapping the registers in reverse order of instructions in the active
list, usually at the same rate as the decode rate.
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2.3 Shared Memory Multiprocessors

Shared memory multiprocessors are the prevalent architecture to achieve perfor-
mance levels beyond that of single processors. Most supercomputers and high end servers

are multiprocessors, and it is now very common to see multiple processors in low end
servers and desktops. Considering technology and architecture trends, single chip multi-
processor products are likely to appear in the near future.
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Figure 2.6. Bus-Based Multiprocessor
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2.3.1 Architecture

Most small scale multiprocessors are bus-based symmetric multiprocessors
(SMP). As shown in Figure 2.6, all the processor modules as well as the main memory and
I/O devices are attached on the snooping bus. Cache coherence is maintained by the
snooping protocol. Memory accesses that miss in the processor cache are broadcast on the
bus, and are snooped by all the caches. Depending on the coherence protocol, either
another cache or the main memory supplies the data to complete the memory access.

Bus-based multiprocessors do not scale well because they are restricted by the
bandwidth of the snooping bus. For large scale multiprocessor systems with hundreds or
even thousands of processors, directory-based distributed shared memory systems become
the natural design choice. Each node in a distributed shared memory system contains a
portion of its main memory which is shared and can be addressed by all the processors.
Because the system is not limited by a centralized broadcasting mechanism such as the
snooping bus, the distributed shared memory system can scale up to a very large number
of processors. Usually, a directory-based cache coherence protocol is used, where the
directories contain the copy information for each memory block.

Cache Coherent Non-Uniform Memory access Architecture (CC-NUMA) and
Cache Only Memory Architecture (COMA) are two major variations of the large scale
distributed shared memory systems. Figure 2.7 shows a typical CC-NUMA architecture.
In CC-NUMA, the data replication and migration happen in the processor caches. If a
memory access misses in the cache, a memory request has to be sent to the home node of
the memory block, which could be either remote or local to the processor. Based on the
directory at the home node, appropriate coherence actions will be taken to complete the
memory request.

Figure 2.8 shows a typical COMA architecture. Here we consider a flat
COMA[44] instead of a hierarchical COMA[35] architecture. In COMA, the main mem-
ory is organized as another level of cache which is called attraction memory. Automatic
data replication and migration can happen in the attraction memory. After a memory
access misses in the processor cache, the local attraction memory is first looked up. If the
data is not present in the attraction memory, the request has to be sent to the home node
where the directory information resides indicating the location of the copies. The home
node does not necessarily contain the data as in CC-NUMA. The COMA protocols are
much more complex to implement compared to the CC-NUMA protocols.

2.3.2 Memory Consistency Model

In order to guarantee the correct execution of parallel programs, the memory con-
sistency model must be respected[25].

A memory consistency model specifies the constraints on the order in which mem-
ory operations must be globally performed (i.e. become visible to all the processors)[25].
The most intuitive and natural model for programmers is the sequential consistency(SC)



model, which is defined by Lamport[50] as the following:

A system is sequentially consistent if the result of any execution is the same as if
the operations of all the processors were executed in some sequential order, and the oper-
ations of each individual processor appear in this sequence in the order specified by its
program.

Sequential consistency enforces very strict constraint on orders of memory
accesses, which restricts many performance optimizations that modern uniprocessor com-
pilers and microprocessors employ. There are other different memory consistency models
that relax the ordering restrictions of sequential consistency. Total store order(TSO) and
processor consistency(PC) relax the write-to-read order. Partial store order (PSO) relax
both write-to-read and write-to-write orders. Weak ordering(WO) and release consistency
(RC) relax all memory access orders and rely on synchronization instructions to guarantee
correct execution of programs.

2.4 Evaluation Methodologies

In order to understand the issues and evaluate various ideas, we simulate the archi-
tectures using trace-driven and execution-driven simulations.

Trace-driven simulation is used to study the performance for memory hierarchy in
the uniprocessor environment. The trace is a sequence of load/store memory accesses
from the application workload, which drives the cache/memory simulator to evaluate the
performance. Trace-driven simulation is simple and fast. However, it has many limitations.
Only the behavior of memory system is accurately evaluated, the overall execution time
and other system components including the processor are not simulated. In addition, it is
not accurate for multiprocessor evaluation.

We also use execution-driven simulation in this research. Typically, an execution-
driven simulator models the function and timing for all the components of the target com-
puter system, including the processors, the cache/memory system, bus, interconnection
network, and I/O. The models can have different levels of detail depending on the accu-
racy and simulation time trade-off. The application executables are run on top of the simu-
lator just as they run on the target machine. The simulated processor interprets and
executes the application instructions based on the appropriate timing. Usually, there will
be an event engine that maintains an internal global time and schedule the order of events.



Chapter 3

VIRTUALLY ADDRESSED MEMORY HIERAR-
CHIES

In this chapter, we look at various design options for virtually-addressed memory
hierarchies in the context of large scale multiprocessors. The basic idea is to move the
address translation closer to memory, where the TLBs are shared, do not have coherence
problems, and scale well with both the memory size and the number of processors.

3.1 Virtual Address Cache Issues

Virtual address caches can relieve the latency and bandwidth requirements of the
TLBs. When the cache is virtually indexed and tagged, most memory accesses are com-
pleted without TLB involvement; in fact, address translation can be done in different loca-
tions in the memory hierarchy[85], and can be implemented in various ways, such as in-
cache translation[89] or even by software[42].

There are a series of issues related to any system with virtually indexed and virtu-
ally tagged caches, such as the synonym problem for which we will propose a new solu-
tion in chapter 4. We briefly summarize these issues here.

3.1.1 Synonyms and Address Mapping Changes

Virtual address caches suffer from synonym and address mapping change prob-
lems. Synonyms happen when multiple virtual addresses map to the same physical address
and may cause inconsistencies in a virtual address cache. Virtual-physical address map-
ping changes are due to deallocation and reallocation of pageframes. Since mappings may
still remain in the virtual address cache after a page has been demapped, they must be
flushed to avoid inconsistencies.

Chapter 4 analyzes the synonym problem in detail. In this chapter, we assume that
the virtual addresses that are used to address the memory hierarchy do not contain syn-
onyms. A PowerPC-like segmented memory system or a single address space operating
system can create a global virtual address space where synonyms are not allowed. The



SLB scheme proposed in chapter 4 can also be used to generate unique virtual addresses
for synonyms.

3.1.2 Write-backs and Inclusion

Besides cache misses, stores must also propagate down the hierarchy as write-
through or write-back accesses. Because write-backs may not be part of the current work-
ing set of the applications, they have a higher probability of missing in the TLB which is
located right after the virtual address caches.

Usually, inclusion is maintained between the caches. Thus, when a block is
removed from a lower level cache, the caches up the hierarchy must be invalidated. When
the TLB is inserted in the cache hierarchy such as the L1-TLB shown in Figure 3.1, the
caches above the TLB are indexed in virtual addresses, while the caches after the TLB are
indexed in physical addresses. A reverse translation mechanism, usually in the form of
backpointers, is needed between a physical address cache and the virtual address cache
above it[85] in order to maintain the inclusion property between the caches.

Maintaining inclusion between the TLB and the virtual address cache memory
above it avoids TLB misses on write-backs from the cache. Although the TLB placed after
a virtual address cache can be very large and slow in uniprocessors, inclusion is expensive
in multiprocessors. First, whereas a large cache cuts the number of capacity misses dra-
matically, coherence misses can not be filtered out and the longer address translation
latency impacts coherence operations. Second, the TLB size to maintain inclusion grows
with the cache size, leading to higher cost and longer latency. Third, it is not mandatory to
maintain inclusion. Physical pointers stored in the virtual address cache can avoid
accesses to the TLB on a write-back, just as pointers are used in the physical address
cache to access the virtual address cache above it[85].

Because of the effect on coherence misses and the sheer cost of fast, large TLBs,
we do not enforce inclusion between a TLB and the virtual address caches above it.

3.1.3 Late Detection of Memory Faults

After a virtual address is translated into a physical address, the processor assumes
the memory access will complete without fault (except for fatal errors) because the TLB
only contains mapping for valid pages in memory. The traditional TLB coverage thus pro-
vides a “safe-access subset” such that any memory access that passes the TLB does not
generate any exception in normal execution. However, this is a conservative strategy, in
which every memory access outside the subset stalls the processor even though it may not
lead to a memory fault.

Putting the address translation mechanism after the virtual address cache post-
pones the decision time of the memory fault. The virtual address cache and the following
TLB expand the “safe-access subset”, which means that a page fault or a miss of the TLB
will trap the processor after a longer detection time as compared to a system with physical
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Figure 3.1. Possible Locations for the TLB in CC-NUMA

caches. This issue of late detection of memory traps is studied in chapter 6, where the trap
in ILP processors is analyzed and new techniques are proposed to tolerate the late memory
traps.

3.1.4 Access Rights

Each page table entry contains protection bits such as read, write, and execute for
the page. These attributes migrate to the TLB on a TLB miss. Thus, in a system with vir-
tual address caches access right bits must be copied at least in the first level cache. This
requires cache flushing when access rights are changed. Of course in a segmented system
as the PowerPC architecture, access rights can be easily checked at the segment granular-
ity[42][52] by storing access right bits in the segment register.

3.2 Options for Dynamic Address Translation

3.2.1 Dynamic Address Translation in CC-NUMA

Address translation can be done at different levels of the memory hierarchy in a
traditional CC-NUMA architecture, as shown in Figure 3.1. Most processors translate vir-
tual addresses in a TLB before or in parallel with the first-level cache (LO-TLB). However,
provided caches are virtually indexed and tagged. the TLB could be placed between the
first- and second-level caches (L1-TLB) or after the second-level cache (L2-TLB). In
these cases, the TLBs are private and their consistency must be maintained. Alternatively,
the TLB could be associated with the home node (SHARED-TLB). In this latter case, the
TLBs are shared, map the local memory only, and do not cause coherence problems. How-
ever, because the home node is selected with the virtual address the programmer has no
control over page location and page migration is impossible. Because page placement can-
not be optimized for locality, capacity misses are remote most of the time resulting in poor
performance for applications whose significant working set does not fit in the second-level
cache.



3.2.2 Dynamic Address Translation in COMA

The design options for dynamic address translation and their trade-offs in
COMA[44] are different than in CC-NUMA. Locating the TLB at the memory in a
COMA does not affect the latency of capacity misses much because of the automatic
migration and replication of memory lines. We compare five schemes called LO-TLB, L1-
TLB, L2-TLB, L3-TLB and V-COMA. These schemes are illustrated in Figure 3.2.

The LO-TLB scheme is the traditional dynamic address translation design in most
current processors[83][92] and the habitual scheme for a physical COMA. Every memory
address issued by the processor is translated by the TLB. All caches and the attraction
memory are physically addressed.

The L1-TLB scheme puts the address translation mechanism after a virtual FLC
(first-level cache), but before a physical SLC (second-level cache) [85]. Backpointers in
the physical address SLC are needed to maintain inclusion. The LO-TLB and L1-TLB
schemes are not very different for CC-NUMA and COMA.

In the L2-TLB scheme both FLC and SLC are virtual address caches. The soft-
ware-managed address translation scheme proposed in [42] can be seen as an L2-TLB
scheme which has O entry and traps the processor on every SLC miss. The L2-TLB
scheme for COMA is different than the L2-TLB scheme for CC-NUMA in that backpoint-
ers are needed in the attraction memory to maintain inclusion.

Network Network
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Figure 3.2. Possible Locations of the TLB in COMA

In a COMA the attraction memory acts as a cache and may also be virtually
indexed and virtually tagged. In the case of L3-TLB, address translation is postponed
until a miss in the local node, as shown in Figure 3.2. The coherence protocol is main-
tained with the physical address, which points to the home node.

In a typical COMA, the attraction memory in every node is divided into an equal
number of sets. A global set is made of all the sets with the same number in all attraction
memories, as is illustrated in Figure 3.3 where each attraction memory is 4-way set asso-



ciative. The size of a global set increases linearly with both the number of processing
nodes and the set size in each attraction memory.
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For a physically indexed attraction memory a virtual address can be mapped into
different global sets depending on the virtual-to-physical address mapping. By contrast, in
the L3-TLB scheme, a data block is restricted to reside in the global set indexed by its vir-
tual address. The number of slots for a given block is limited by the size of a global set. A
page occupies the same slots in consecutive global sets, so that we can also speak of the
slot of a page. The global page set is made of all the contiguous global sets in which the
blocks of the page can reside. The number of slots for a page is limited by memory pres-
sure, which is given by the number of slots occupied in a global set divided by the size of
the global set. When the pressure approaches 1, replication in the global set is inhibited.
Therefore, if the pressure in the global page set to which a new page maps is too high, a
page must be swapped out even though the pressure in other global page sets is low. In a
nutshell, the virtual-to-physical address mappings are set-associative instead of fully asso-
ciative and the set size is equal to the size of a global page set.
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Figure 3.4. Page Coloring in the Attraction Memory for L3-TLB

This page allocation strategy is equivalent to page coloring applied to the attraction
memory. Page coloring allocates virtual pages to physical pageframes sharing the same
least significant bits so that the virtual address and the physical address index to the same
set of the cache[51]. As shown in Figure 3.4, if the virtual and the physical addresses have
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the same color, the set index for the data in the physically indexed attraction memory is
determined to be the same as in the virtually indexed attraction memory. The most signifi-
cant bits of the physical page number contain the slot number. The maximum number of
slots of each global set is given by the number of processors multiplied by the associativ-
ity of each attraction memory.

3.3 Virtual COMA (V-COMA)

In L3-TLB a TLB is still private to a processor node, which means replication of
TLB entries across nodes and TLB consistency enforcement. We propose to move the
address translation into the home node and to integrate it with the cache coherence proto-
col as shown in Figure 3.2. In this new design, which we call V-COMA, the support for
address translation is located at the home node.

In V-COMA the attraction memory is accessed as in L3-TLB, but the directory at
the home node is accessed with virtual addresses instead of physical addresses. Thus, as in
SHARED-TLB, the home node is fixed by the virtual address. Because its architecture is
not conventional, V-COMA is described further in the next section.

3.3.1 V-COMA Processor Node Architecture

Figure 3.5 shows the architecture of one processing node in V-COMA. The proces-
sor P does not need a TLB. Its caches and attraction memory are all virtually indexed and
tagged. Some private memory in each processing node stores page tables for local pages
and can also be used for private (non-replicated) data. The directory for local pages is
stored in private memory or in a separate memory. The DLB (Directory Lookaside Buffer)
is a cache to speed up translations from virtual addresses to directory addresses in the
directory address space. The PE (Protocol Engine) executes the cache coherence protocol
and refills DLB entries on DLB misses and is similar to the MAGIC chip in FLASH[47].
PE programs reside in local private memory. If the PE has enough processing ability and
bandwidth, it could perform additional functions, such as periodically resetting the refer-
ence bits in page table entries.

3.3.2 Directory Organization and Coherence Protocol

Virtual addresses are not suitable to address the directories. Compared to the phys-
ical address space, the virtual address space is huge and sparse. Every virtual address
issued by the processor is not guaranteed to reside in primary storage, or even exist. The
size of the necessary directory memory is determined by the size of the main memory.
Since only a small part of the virtual address space resides in physical memory, it is
impossible and unnecessary to reserve a directory entry for every virtual address block.
Virtual addresses have a limited life time, which makes it more difficult to manage the
directory space by virtual addresses. Thus V-COMA moves the virtual address translation
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Figure 3.5. Processor Node Architecture in V-COMA

into the directory look up procedure by translating virtual addresses into directory
addresses to find a directory entry.

The directory memory is organized in directory pages. Contiguous directory
entries in a directory page correspond to contiguous memory blocks of a memory page.
Therefore, a directory page has as many entries as there are blocks in a memory page. The
directory memory is allocated and reclaimed in directory page unit by the virtual memory
system. Due to the set-associative nature of the attraction memory, the mapping of a vir-
tual page to a directory page in the page table is also set-associative, where the set is the
global set.

Figure 3.6 shows how the virtual address is decomposed into fields to access the
directory. Assume that the number of attraction memory setq per node is S = 2%, the asso-
ciativity is K = 2K blocks per set, the block size is B = 2" bytes, the number of processor
nodes is P = 2P, and the page size is N = 2" bytes. The p least significant bits of the page
number point to the home node and the n-b most significant bits of the page displacement
point to the entry within the directory page. s-p-n+b bits of the page number are used to
index the global set in the page table (of size PxK) where the base address of the directory
page can be found. The virtual address tag is then matched to the tags in the set. Since the
global set is very large, we must use hashing or hierarchical translation based on the vir-
tual tag to access the page table entry. A detailed page table structure is described in sec-
tion 4.3.
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Figure 3.6. Access to the Directory of V-COMA
Because the latency to locate the directory for a memory block is in the critical
path of the cache coherence protocol, a DLB is put between the protocol engine and the
directory memory in every processing node to accelerate the directory look up procedure.
Accesses to the DLB are fully or set associative, as illustrated in Figure 3.7.

The protocol is write invalidate and is basically the same as in COMA-F[44]. Each
block in attraction memory can be in one of four stable states: Shared, Master-shared,
Exclusive and Invalid. The replacement policy is random. Replacements of Exclusive or
Master-shared copies send the block to the home node, which accepts the injection only if
it has spare Invalid blocks in the same set. If not, the home node forwards the block copy

Virtual address Page

| ]
0

» Home index | Pirectory page Block offset
I

: >
= % . Directory
> — . page
DLB .

°

@ Concatenate

Directory memory

Figure 3.7. V-COMA Address Translation with DLB
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to a random node. The selected node accepts the injection if it has an Invalid or Shared
block available. If not, it forwards the request to the next node.

Cache coherence is maintained using virtual addresses. If a processor access is sat-
isfied at the local node, no address translation is needed. If the access misses in the local
node, a request is sent to the home node specified in the virtual address. The home node
translates the virtual address to a directory address to find the state and copy set of the
accessed block. The rest of the protocol transaction is handled with virtual addresses.

3.3.3 Page Table Structure

Since the virtual address space is set associative, the page table and directory
memory are also set associative in the same structure. Each set is independent and detects
memory pressure separately. The management of the physical memory can be much easier
because of the slot concept instead of a contiguous physical address space and also
because of the reduced memory size per global page set. However, a page table structure is
still necessary because of the sparse and huge space represented by the virtual tag for each
global page set. We describe an inverted page table structure in this section. Other alterna-
tives inspired from conventional page table structures are also possible.

Figure 3.8 shows the structure of the page table in V-COMA. It is a set associative
inverted page table (IPT). As an IPT, every page table entry connects to a directory page
permanently. Hash Anchor Table(HAT), [PT and directory memory are all set associative
just as the virtual address space. The home node index bits of the virtual page do not hash,
while the other bits in the virtual page number participate in the hashing. The set index bits
at each node is the same set index for HAT, IPT and directory memory. The virtual tag
which is the most significant part of the virtual address is hashed into the HAT. Hash func-
tion is the same but independent for different sets. The base address of the page table and
HAT can be stored in the private memory or in a control register if implemented in hard-
ware. The virtual address bits are compared with the tag in the inverted page table entry. If
they match, it is the right page table entry and the DLB entry is refilled; otherwise, the
next entry is searched through the next pointer in the page table entry. If there is no match
at the end of the chain, the virtual page is not resident in the physical memory.

Unlike a forward-mapped page table, there is only one page table entry for each
page slot. The size of the page table depends on the size of the primary memory. There-
fore, the size of the necessary private memory for the page table scales with the attraction
memory size. The page table resides in the private memory on each home node, and guar-
antees directory accesses be completed locally at the home node.

3.3.4 Impact on Virtual Memory Management

The impact of V-COMA’s memory organization on memory management is no
greater than for traditional COMAs. From the point of view of virtual memory manage-
ment, the directory page corresponds to the physical pageframe in a classical system.
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On a page fault, a directory page and a page table entry are requested from the
page’s home node. A resident page may have to be swapped out by the page daemon if the
memory pressure of the page’s global page set is higher than a threshold. A page table
entry is filled with the necessary virtual address bits as well as other information, and is
inserted in the page table. This action allocates a directory page to the new page.

Page access information such as the reference and modify bits must be maintained.
Since the DLB sees the virtual address stream after the attraction memory the reference bit
in the DLB of a page with many coherence misses is updated much more often than the
reference bit of shared read-only or non-shared pages. The impact on the accuracy of the
replacement algorithm is hard to predict. The Modify bit in the DLB is implemented as
follows. When a writable page is first created or loaded from disk, the Modify bit is set
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immediately if the page fault is caused by a write access. Otherwise, the state of the page’s
memory blocks is set to Master-shared. Then, if any node tries to get exclusive ownership
for any attraction memory block of the page, the request is sent to the home node where
the modification bits are set in both the DLB and the page table.

Besides segment-level protection, page-level protection can also be implemented
in V-COMA. The protection bits must be copied in every level of the memory hierarchy. If
a processor wants to change the protection bits of a page, it sends a message to the home
node which hosts the page. The PE at the home node changes the bits in the page table and
in the DLB. Then, according to the directory entries, it sends update messages to the nodes
holding the blocks of that page. Another solution is to dedicate access right checking hard-
ware within the processor, such as the PLB (Protection Lookaside Buffer) proposed for
Single Address Space Operating Systems (SASOS)[18][46].

3.4 Experimental Evaluation

3.4.1 Methodology

We have run execution-driven simulations to compare the five options for dynamic
address translation in COMAs. Our simulated baseline architecture has 32 nodes, each of
which has a 200 Mhz Sparc processor. Because we can only simulate applications in
which the data set sizes are much smaller than those expected for the target machine, we
have to scale down the sizes of attraction memories, caches, and TLBs.

Shared

Benchmark Parameters | Memory
(MB)

RADIX [-n524288 -r2048 -m1048576 6.12
FFT -m20 -t 51.29

FMM 16384 particles 29.23
OCEAN 258*258 15.52
RAYTRACE car 34 .86
BARNES 16384 particles 3.94

Table 3.1. Benchmarks

Each node contains 4 MB of attraction memory, a 16 KB first-level cache (FLC),
and a 64 KB second-level cache (SLC). The FLC is direct-mapped and write through with
a block size of 32 bytes. The SLC is 4-way set associative and write-back with a block size
of 64 bytes. The attraction memory is also 4-way set associative, and its block size is 128
bytes. The page size is 4 KB for all simulations. The timing and network model are the
same as in [53]. An FLC hit has no latency charge and an SLC hit takes 6 cycles. A hitin
attraction memory takes 74 cycles. The network is an 8-bit wide crossbar clocked at
100Mhz. An 8-byte request takes 16 cycles and a message containing a data block takes
272 cycles.
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Figure 3.9. Number of Address Translation Misses vs. TLB/DLB size

We only simulate shared data accesses. Random replacement is used for the fully
associative TLB/DLB. The parameters of the six Splash2 benchmarks[88] are shown in
Table 3.1. The important working sets always fit in our simulated attraction memory, but
sometimes do not fit in caches. The data sets fit in main memory and are preloaded so that
no paging activity is simulated.

3.4.2 Address Translation Misses

Figure 3.9 shows the number of address translation misses per node as a function
of the TLB/DLB size. The solid line for L2-TLB shows the number of misses in the case
where SLC writebacks access the TLB. The L2-TLB/no_wback curve in dash line shows
the number of L2-TLB misses without the writeback impact. Recall that we do not enforce
inclusion between a TLB and the caches above it.



One obvious observation is that the number of address translation misses consis-
tently decreases with the level of the TLB provided SLC writebacks do not access the TLB
in L2-TLB. This is due to a filtering effect by the caches. Namely, the number of misses in
a TLB cannot be larger than the number of misses in the cache above it. This effect is
especially large when the TLB reach is less than the working set size. SLC writebacks
affect the number of L2-TLB misses significantly, especially for FFT and OCEAN. With
the writebacks, L2-TLB is sometimes even worse than LO-TLB. As explained before this
is due to the poor locality of writebacks. Thus, it might be preferable to keep physical
pointers in a virtual SLC so that writebacks can bypass the TLB.

The case of RADIX stands out (note the different scale in the graph). The curves
show no clear significant working set for any TLB organization or size, until the size
reaches 512 entries. RADIX has a disproportionately large number of writes and these
write accesses cause coherence transactions and are not filtered by the caches or the attrac-
tion memory. Except for RADIX, the TLB-miss curve for L3-TLB is much flatter than for
L2-TLB.

As we expected, the number of DLB misses is negligible for all benchmarks, even
for very small DLB sizes. This is due to a sharing effect. DLB entries are shared and are
not replicated. Thus the effective amount of DLB entries increases proportionally with the
number of processors. This is not true for systems with TLBs. This effect can be huge, as
in RADIX. In each pass of RADIX, a key is written into a large output array shared and
distributed among all nodes. The number of DLB misses in RADIX is consistently less
than the number of TLB misses in an L3-TLB system with 32 times more TLB (recall that
we simulate 32 processors). All other benchmarks show similar trends, albeit not as pro-
nounced because their access patterns are more complex.

Since, in the case of RADIX, the DLB miss rate is lower than the miss rate of a
TLB whose size is 32 times larger, another effect is at play besides the sharing effect. For
example, a 16-entry DLB has even less misses than a 512-entry TLB in L3-TLB. This
comes from a prefetching effect, a consequence of the sharing of DLB entries. Although
the nodes do not interfere with the TLBs of other nodes in L3-TLB, they can not benefit
from each other either. For example, if processor 1 writes a shared data which is then read
by processor 2, a TLB miss at processor 1 does not help prevent a TLB miss at processor
2. The impact of this prefetching effect is significant for cold misses when the whole
working set fits in TLB or DLB. In this case, every page table entry is loaded only once in
the whole system in V-COMA instead of once per node in L3-TLB.

Table 3.2 shows the miss rates (misses/processor reference) for the DLB and
TLBs. In LO-TLB the TLB miss rates are comparable to SLC miss rates when the TLB has
8 or 32 entries. Thus the TLB effects cannot be ignored. The situation improves somewhat
in L2- and L3-TLB. V-COMA is the only case where we could neglect address translation
misses as compared to cache misses.

Another way to compare the five options is to ask which TLB size it would take to
have the same performance as the DLB in V-COMA. The answer to this question is shown
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Table 3.2. TLB/DLB Miss rates Per Processor Reference (%)

in Table 3.3. We see that in many cases it would take TLBs with several hundred entries to
have the same miss rate as an 8-entry DLB in V-COMA. Because of the writebacks, some
equivalent L2-TLBs are larger than L1-TLBs, or even LO-TLBs.

LO-TLB| LI-TLB| L2-TLB | L3-TLB

RADIX 360 360 344 256
FFT 60 60 86 86

FMM 335 321 347 187
RAYTRACE 157 152 144 21
BARNES 327 318 298 160
OCEAN 175 174 251 113

Table 3.3. TLB Size Equivalent to an 8-entry DLB

3.4.3 Sensitivity

So far we have considered fully associative TLB/DLBs. However large, fully asso-
ciative memories are slow and expensive. We also have simulated direct-mapped TLB/
DLBs. Figure 3.10 shows the number of misses for the direct mapped vs. fully associative
address translation mechanisms. The dash lines in the figure are for the fully associative
cases which are the same as in Figure 3.9. The size and the set associativity of the virtual
address caches can absorb potential conflicts which would happen in the TLB below it. As
observed, whereas the gap between direct-mapped and fully associative TLBs is large for
LO-TLBs and L1-TLBs, it becomes quite small in L2-TLB, L3-TLB and even more so0 in
V-COMA. The big gap between the LO-TLB/DM and LO-TLB makes direct mapped TLB
an unpractical design, and actually no existing processor adopts it. The filtering effect of
the direct mapped write-through FLC is not as good as that of the larger set associative
write-back SLC, while the sharing effect for the DLB helps reduce the gap further because
the DLB coverage grows very fast with the DLB size per node. The large coverage of the
DLB makes the organization less important.
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3.4.4 Execution Time

We compare the execution times of V-COMA with those of the LO-TLB scheme, a
traditional physical COMA. Physical addresses are distributed round robin among proces-
sors. Based on the timing of our simulation model and the average TLB service times in
current computer systems[54][79], 40 cycles are charged for each LO-TLB miss. Each
DLB miss also takes 40 cycles. The memory consistency model is sequential consistency.

LO-TLB DLB| LO-TLB DLB
(8) (8) (16) (16)
RADIX 10.61 1.25 8.093 0.04

FFT 15.24 0.88 12.56 0.76

FMM 96.54 1.15 59.54 0.38
RAYTRACE 30.95 1.04 17.46 0.82
BARNES 38.14 0.45 22.12 0.01
OCEAN 21.53 0.45 15.95 0.23

Table 3.4. Address Translation Time / Total stall time (%)

Table 3.4 shows the average TLB/DLB overhead divided by the average processor
stall time on local and remote memory accesses for DLB/TLBs of sizes 8 and 16. Note
that these small TLB sizes have been selected to offset the effects of the small data set
sizes in our benchmarks. The data show that address translation is a significant part of the
memory latency in the traditional LO-TLB system and that its effect is at least comparable
to the effect of memory consistency models [28]. Fortunately, the memory access penal-
ties due to translation can be drastically cut to a point where they are negligible by trans-
lating addresses at the home node.

The effects on the execution time are shown in Figure 3.11, where Busy indicates
the time spent executing the instructions in each processor, Sync is the synchronization
time, Loc-stall counts time spent on local cache misses, and Rem-stall refers to the service
time for attraction memory misses. TLB/8 is LO-TLB with an 8-entry fully associative
TLB, DLB/8 is V-COMA with an 8-entry fully associative DLB, TLB/8/DM and DLB/8/
DM correspond to the same systems but with direct mapped TLB/DLBs.

Address translation overhead is negligible in V-COMA, as we expected. The total
execution time improvement over the physical COMA depends on the original address
translation overhead. Virtual address indexing of attraction memory does not have a sig-
nificant impact on the overall execution times (excluding the TLB overhead), although in
general it is no better than for the physically indexed attraction memory except for BAR-
NES. In RAYTRACE however we observe that the execution time of V-COMA (excluding
the TLB overhead) is much larger than in physical COMA due to the increased synchroni-
zation time. This effect is due to the fact that the virtual address layout is not optimized,
whereas the round robin pageframe assignment turns out to be a good strategy for the
physical COMA. RAYTRACE shows an extreme case of this effect because in the defini-
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Figure 3.11. Execution Time of V-COMA and LO-TLB

tion of raystruct, which is the private stack for the ray tree of each node, padding is used to
avoid false sharing. The padding is aligned on multiple of 32KB in the virtual address
space, which causes uneven conflicts in V-COMA leading to the increase of the synchroni-
zation time. By simply aligning the padding to one page size (4 KB), the synchronization
time is reduced significantly, as shown as DLB/8/V2 in Figure 3.11. This simple example
indicates that there is plenty of room for virtual address layout optimization for the V-
COMA architecture.

3.4.5 Relative Miss Rate and TLB-less Systems

The TLB/DLB miss rate is decreased when it is moved further down the memory
hierarchy as shown in Table 3.2, due to the filtering effect of the caches. The number of
accesses to the TLB is much less when it is located after a cache than if it is located before
the cache. Therefore, as the total number of TLB/DLB misses is decreased, so is the TLB/
DLB miss ratio per processor reference. However as we have seen, this is mostly due to
the filtering effect of the cache. The effectiveness of the TLB is decreased in general when
it is moved further away from the processor because of the poorer locality of the memory
reference stream after each cache. Table 3.5 and Figure 3.12 show the relative TLB/DLB
miss rate, which is the percentage of TLB/DLB misses relative to the number of TLB/
DLB accesses. Due to the sharing and prefetching effect, V-COMA exhibits much better



relative miss rate than L3-TLB, which is also accessed after the attraction memory, and its
relative miss rate improves much faster with the DLB size.

TLB/
DLB 8 32 128
S12¢
SYS-|| LO| LI1| L2 L3 V- LO| L1|{ L2| L3 V-(| LO| LI| L2| L3 V-
TEM COMA COMA COMA

RADIX|| 10.8] 21.3| 71.9| 854| 44.5/|8.06|16.8| 61.8|81.0 0.48|[5.39| 11.3] 45.1| 65.5 0.32

FFT|| 2.02| 4.97| 39.1| 40.1 26.0(|0.59| 1.45| 14.5(27.7 14.5]10.11]10.27|3.48]17.6] 4.21

FMM]|| 8.44| 17.8| 50.7| 54.9| 27.6|(2.43[9.34|41.0|48.2| 3.87|{0.40]3.76]22.2|30.5 0.91

RAY-(| 2.23| 5.02| 23.8| 28.7| 20.0/|0.68(2.65| 14.2]|21.6 11.8]10.19(0.89|5.79| 17.6|  2.50
TRACE

BAR-|| 2.68( 3.85| 54.7| 52.8| 25.7||1.13|2.46| 38.1|44.5 0.13[[0.18|0.43| 12.6]27.7 0.13
NES

OCEAN]|| 6.45| 12.5] 40.5| 314 10.1(|1.87|4.25| 18.6]| 14.8| 2.96]|0.16] 0.51|3.52]8.13 0.21

Table 3.5. TLB/DLB Relative Miss Rates (%)

Except for V-COMA, fast but small TLB in memory hierarchy is not as efficient as
the traditional LO-TLB, with respect to the relative miss rates. Although the TLB perfor-
mance is less sensitive to its organization and can be built much larger, another design
choice is to do without the TLB. Due to the cache filtering effect and the poor efficiency,
the TLB after a large virtual address cache can be eliminated without significant impact on
system performance. Indeed, removing the TLB could save some hardware cost, and more
importantly get rid of the overhead of maintaining TLB consistency, which does not scale
well in multiprocessors. Actually, the in-cache translation[89] and software-managed
translation[42] can be considered as L2-TLB schemes with 0 TLB entry.

The mechanism to search page table for address translation in case of virtual
address cache misses is very important to maintain robust system performance when the
TLB is eliminated. The virtual address translation can be served by trapping the main pro-
cessor as in [42], by the protocol engine, or by a hardware controller through some pro-
grammable logic. Despite the possible caching for page table entries in all schemes,
schemes other than V-COMA could have remote page table accesses, while in V-COMA,
a page table is always accessed locally, which means that the time to find a translation is
less than in other architectures.

For L2-TLB, L3-TLB and V-COMA, the performance impact of 0 TLB/DLB will
not be significant. even though every coherence miss triggers address translations. Com-
pared to the long latency of coherence activities, this address translation overhead could be
very small. Removing L1-TLB will cause significant performance degradation due to the
limited size and write through behavior of L1 cache. Although V-COMA has much
smaller DLB miss rate and much higher effectiveness than L2-TLB and L3-TLB, remov-
ing the DLB should not hurt V-COMA badly because of the very low access frequency to
the DLB.
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Figure 3.12. Relative TLB/DLB Miss Rate (%)
3.5 Further Discussion on Virtual COMA

Set Associative Memory. Although the V-COMA architecture eliminates address
translation overhead, the restriction on memory mappings may be of concern. If the attrac-
tion memory at each node can contain N pages and is K-way set associative, the number of
global page sets is N/K. Each global page set contains up to P*K page slots, where P is the
number of processing nodes. The memory management unit in a traditional physical
COMA can control the global page set index of a new virtual page through the virtual-to-
physical page mapping. On the other hand, V-COMA has no control over the global page
set index for the virtual pages. The danger is that the conflicts in the virtual address space
will affect the page fault rate and thus overall system performance.

35



Although this danger is real, it can be overcome. First, the virtual address has good
locality within each process[51]. Although virtual address layout tends to be uniform
across different processes and may cause high conflicts in some global page sets and
under-utilization of others, this situation can be improved by several methods. First a base
address could be added to each virtual address; this base address can be different for every
context. Second the code and data segments of different contexts could be located in dif-
ferent areas of their virtual space by the compiler[1]. Third, the operating system controls
dynamic memory allocation, and can optimize the scheduling strategy to spread paging
activity evenly across the global page sets. Fourth, the whole problem is a non-issue in
large scale systems, considering that the capacity of each global page set scales up linearly
with the number of processing nodes. For example, if each node has a 32MB 8-way set
associative attraction memory, a 1024 processor system has up to 1024*8 = 8192 page
slots per global page set, which is equal to the total number of physical address page-
frames on each node!

Figure 3.13 shows the pressure profile on each global page set in our evaluation. It
shows, that even without trying we observe a very uniform pressure on every global page
set. This is because program locality is maximized in the virtual space. In the physical
space, locality only exists within a page. Our experience with allocating memory in physi-
cal COMA [53] has taught us that the intervention of the memory management unit can
result in disastrous --albeit well-intended-- physical page allocations for COMAs.

In fact, the advantages of this memory structure are very attractive. As a machine
running on virtual addresses, V-COMA provides a simple and consistent hardware model
to the operating system and the compiler where further optimization opportunities are pos-
sible. Virtual addresses are divided into S sets each of which has P*K page slots. The lin-
ear contiguous physical memory space no longer exists, and the management of the pages
in the main memory is much simplified.

While the operating system guarantees correct execution, the performance of V-
COMA is enhanced by the compiler and the programmer. Unlike in the traditional flat
COMA where the programmer and compiler have no chance of affecting memory pressure
and conflicts, the virtual address layout directly controls the occupation of global page sets
in the attraction memory. Static virtual address layout optimization can generate good pro-
grams which get more performance benefit from the V-COMA architecture.

Virtual Address Tag. Because the virtual address is usually longer than the physi-
cal address, the tag memory is larger in V-COMA. For example, the 32-bit PowerPC archi-
tecture has 52-bit virtual addresses and 32-bit physical addresses; the 64-bit PowerPC
architecture has 80-bit virtual addresses and 64-bit physical addresses. With the access
right bits, the virtual tag may be 2 to 3 bytes longer than the physical tag. This will
increase the tag memory by a small fraction of the attraction memory. If this is a concern
in a particular design, techniques to reduce tag sizes can be considered[73][86].
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Extensions and Optimizations. Due to its special architecture, V-COMA offers

the opportunity to build a more efficient and smarter memory system. The following are
some examples of extensions and optimizations of the V-COMA architecture.

* Smart Replacement. V-COMA offers an opportunity for a smart replacement

policy compared to other flat COMA protocols. Because the home node assign-
ment bits are part of the bits of the global page set index, all the attraction mem-
ory blocks within each global set will be assigned to the same home node. The
disadvantage of this is that it will reduce the probability of a replacement block
to be accepted by the home node because all the replacement messages within
each global set are sent to the same home node. However, because the home
node contains the directory information for all the blocks within the global set, it
can find out which nodes have vacancy to accept the replaced block, and even
predict among them which one will most probably access the data in the future
based on access history. These optimizations can reduce both the replacement
traffic and the node miss rate.

Moving Functions to Memory. The page tables are distributed among the home
nodes and under the control of the protocol processor. Therefore, it is possible
that some operating system functions, especially virtual memory related func-

37



tions, can be migrated to the protocol processor. For example, periodical updates
of the reference bit for the page table entries can be done easily by the protocol
processor. Some system processes such as fsflush which periodically synchro-
nizes the file system between memory and secondary storage can also be moved
to the memory side instead of executing in the main processors. If the protocol
processor is powerful enough, we can further imagine that virtual memory sys-
tem or even the whole operating system may move to memory side because the
protocol processor can understand virtual addresses. Besides the operating sys-
tem functions, it is also possible that some user level functions can be moved to
the memory side given that the processing bandwidth is enough. A good exam-
ple is database server daemons.

* Fast Page Fault and Victim Cache at Home Node. One of the drawbacks of
V-COMA is the set associative main memory. Unlike traditional systems in
which the page table implements a fully associative mapping for main memory,
V-COMA depends on the hardware caching mechanism to locate the data and
therefore inherits the set associativity of the attraction memory. We have dis-
cussed that it does not have significant impact on the overall system perfor-
mance. Moreover, the impact can be further reduced by reserving some main
memory at the home node to be shared by all the global sets on the node as a vic-
tim cache. This reserved main memory can be managed by the operating system
as page caches. Access to these pages will generate fast page fault which is han-
dled by the protocol processor at the home node. Alternatively, the reserved
memory can also be managed without OS involvement as a victim cache for the
global sets of attraction memory. When receiving a replacement message, the
home node can make the decision whether to keep the block in the attraction
memory and inject it into some node or kick it out of the attraction memory and
reserve the block in the local victim cache.

» Easy System Extension for V-COMA. Unlike other software DSM systems
where the operating system has to allocate physical addresses for the shared
memory of remote node, V-COMA can be much easier to expand beyond the
pure hardware limit. Physical addresses do not exist in V-COMA. Data blocks
identified by virtual addresses are injected into the attraction memory without
the need to allocate a physical address. Since virtual memory implementation is
integrated with the cache coherence protocol, caching for outside data is much
more flexible and does not need to be backed up by physical memory. The proto-
col processors can make local decisions for caching and swapping based on the
global sets of the attraction memory.

3.6 Summary

The virtual memory implementation in current computer systems does not scale
well for various reasons. The dynamic virtual address translation of the TLB is becoming
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a performance bottleneck with the current trends of the technology and the applications.
Virtually-addressed memory hierarchies move the TLB out of the processor core and
locate it in the memory hierarchy.

In this chapter, we have analyzed and evaluated five different designs for virtually-
addressed memory hierarchies in the context of large scale distributed shared memory
multiprocessors. The dynamic address translation mechanism is located after the caches
and the caches are virtually indexed and virtually tagged. We have discussed various
issues related to virtually-addressed memory hierarchies in multiprocessors. We have run
detailed execution-driven simulations to evaluate the systems. Our simulation results have
shown that the overhead of the dynamic address translation is dramatically reduced when
it is moved down to the memory hierarchy due to the filtering effect of the virtual address
caches.

We have proposed a novel multiprocessor architecture called V-COMA, which
extends the concept of virtual address cache to its limit so that the entire memory hierar-
chy is virtually-addressed. While still supporting a conventional virtual memory system,
V-COMA reduces the address translation overhead to a minimum. The traditional physical
address concept is eliminated in V-COMA and the virtual memory support is integrated
with the cache coherence protocol. The DLB in V-COMA, which translates virtual address
into directory address at the home node, is shared among all processor and scales with the
main memory. Therefore, in addition to the filtering effect, the DLB also benefits from a
sharing effect and a prefetching effect so that the address translation overhead becomes
negligible. Although the virtual memory has a set-associative organization, V-COMA
scales well and works better in larger-scale systems. As a machine running on virtual
address, V-COMA provides a simple and consistent hardware model to the operating sys-
tem and the compiler in which further optimization opportunities are possible.
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Chapter 4

VIRTUAL ADDRESS CACHE

In the past, the strong motivation to remove some of the TLB overhead drove sev-
eral companies to adopt virtually-addressed caches (i.e. caches indexed and tagged with
virtual addresses a.k.a V/V caches) and inspired some very ambitious academic research
projects in both software and hardware such as the Opal operating system project [18] at
the University of Washington and the Spur project [89] at Berkeley.

However, the well-known “curse” of virtually-addressed caches is the synonym
problem: because of sharing and other factors, multiple virtual addresses may map to the
same physical address. This complicates cache management because of the lack of a sys-
tem-wide unique identifier for memory locations. Unique identifiers are also required to
disambiguate memory addresses in the load/store unit of ILP processors.

One approach to create unique identifiers is segmentation[15][42][52][89]. Seg-
ment registers managed by software translate user virtual addresses into global virtual
addresses before accessing the cache. An example of a segmented architecture is illus-
trated as Figure 4.1. Sharing is implemented at the segment level. Segments have fixed
size and very coarse granularity. The operating system must support the global virtual
addresses and the segment structures and the porting effort is large, requiring ad-hoc
patches for various situations involving synonyms[15].

Another approach is the Single Address Space Operating Systems (SASOS)[18],
where all processes share one single address space. Synonyms are resolved by using the
same virtual address. However, the software community is clearly not ready for such a
radical change.

This chapter introduces new ideas to enable the use of virtual addresses throughout
the memory hierarchy, thus removing the TLB from the processor and associating it with
memory where it scales much better. The major idea is the replacement of the TLB in the
processor by a Synonym Lookaside Buffer (SLB), which can remain small because its size
depends on the number of synonyms, not on the size of the application or of the physical
memory. The synonym lookaside buffer(SLB) is a translation cache very much like a tra-
ditional TLB but it only translates synonyms. It creates unique identifiers as the segment
registers in the PowerPC architecture[52], but it is much more flexible and is managed in
hardware without affecting the software. Because the mapping is more flexible and is
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restricted to synonyms, it is very effective even if the number of SLB entries is small. The
SLB can be accessed before or in parallel with the first level cache.

4.1 Synonyms

Multiple virtual addresses mapped to the same physical address are called syn-
onyms. Synonyms are very convenient to kernel and user software in many situations.
Synonyms should be aligned at least on page boundaries since virtual memory is managed
in page granularity.

Synonyms are often used to implement shared memory semantics across different
user virtual address spaces. Read-only segments such as libraries and text segments are
widely shared and the kernel is usually shared among all private virtual address spaces at a
fixed location. User processes can also request shared memory segments to facilitate com-
munication with other processes. Users may even define synonyms within the same pro-
cess for convenience.

In addition to the true sharing semantics, synonyms are also critical for the effi-
ciency of various memory operations. Copy-on-write avoids unnecessary memory copies
and reduces the consumption of physical memory. In this case, different virtual addresses
share the same physical memory location for as long as the content is not modified.
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It is very frequent that a particular physical page P is remapped from one virtual
page V1 to another virtual page V2. We consider that VI and V2 are synonyms even
though the VI-P and V2-P mappings may not coexist at the same time. Traditional mes-
sage passing semantics can be optimized using the remapping operation to avoid real
memory copies. As an example, process 1 wants to send a message page at virtual address
V1 to process 2 at virtual address V2. Instead of copying V1 to V2, the system can simply
remap the physical page P from V1 to V2. The old V1-P mapping can either remain valid
as copy-on-write or destroyed depending on the message semantics. As a special case, the
operating system kernel usually buffers the pages used in I/O in physical memory
accessed with kernel address and remap them to user address space when needed.

In the message passing optimization, it is the content of the physical page P that is
passed from V1 to V2. However, it is also very common that V1 and V2 share the resource
of the pageframe rather than its content. For example in demand paging system, V1 may
be swapped out and the physical page P can be freed and allocated to another virtual page
V2. V1 and V2 do not have any logical connection. Physical page P should be overwritten
with new content before it is allocated to V2.

4.2 Virtual Address Caches

4.2.1 Translation Lookaside Buffer (TLB) and V/P Cache

Figure 4.2 shows a typical architecture for a V/P cache and a TLB accessed in par-
allel. Cache blocks are named by their physical address, while their virtual address is used
as a hint or hashing function to quickly find their location. After a cache set is indexed by
the virtual address, all tags in that set are compared with the physical page number trans-
lated by the TLB. A miss in that set does not guarantee that the data block is not present in
the cache. The block may reside in any set within the superset. The superset is made of all
the cache sets whose set indexes share the same (p-b) least significant bits, where p is the
number of page offset bits and b is the number of block offset bits.

To detect synonyms in the superset a backpointer[85] is stored in the L2 physical-
address cache for every valid block in the L1 cache. Each pointer points to the frame in L1
where the block is valid. A synonym is detected whenever an L1 cache miss hits in the L2
cache and the backpointer is valid in L2. In this case, the block is moved to the new cache
setin L1 and retagged, and the backpointer in L2 is updated. This is called a short miss.

When the TLB misses, usually the processor is trapped and the TLB is filled by the
trap handler before resuming the access. The miss rate of the TLB is primarily determined
by its reach or coverage, which is the aggregate virtual memory area mapped by all its
entries[19]. Superpages can improve TLB coverage[79]. However, if one TLB entry maps
a superpage, all the physical pages inside the superpage must be allocated in contiguous
frames in physical memory. The size of a superpage is also hard to figure out at the time
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Figure 4.2. TLB and V/P Cache

when the virtual address is first allocated. Page placement in multiprocessors and coloring
of pages to optimize cache behavior[7] may conflict with the use of superpages.

4.2.2 Synonym Lookaside Buffer and V/V cache

To solve the synonym problem, we must associate a unique identifier to each page.
To do this, we split the entire virtual address space in two sets: the main address set and
the synonym set. The synonym set contains all the virtual addresses that are synonyms to
some virtual addresses in the main address set. The main address set contains the rest of
the virtual addresses which include virtual addresses with no synonyms and one virtual
address selected in each group of synonyms. The main addresses act as unique identifiers
for all pages.

An SLB (Synonym Lookaside Buffer) dynamically translates virtual addresses in
the synonym set into their corresponding shared virtual addresses in the main address set.
Just as a traditional TLB, the SLB can be accessed in parallel with the first level cache.
Figure 4.3 shows the parallel access to cache and SLB. Backpointers in the second-level
cache take care of short misses as in the V/P cache. The main difference between Figure
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4.2 and Figure 4.3 is that each SLB entry contains the main address instead of the physical
address.

As we will see, a small SLB of 8 or 16 entries (similar to the number of segment
registers in segmented architectures) is sufficient. It is therefore possible to access the SLB
on the access path to the first-level cache. To be protected against programs with bad
behavior, we can imagine adding a second level SLB accessed in parallel with the L1
cache. In case a synonym misses in the first-level SLB but hits in the second-level SLB,
the cache access is aborted and reissued using the main address translated in the second-
level SLB. When the SLB is accessed before the L1 cache, L2 cache backpointers and
short misses in L1 cache are eliminated.

A virtual address missing in the SLB may be either a synonym or a main address.
Whether or not it misses in the SLB the memory access proceeds. If it is a synonym, it will
miss in the cache hierarchy and will eventually be detected at the point where the physical
address is needed, trapping the processor which then fills the SLB. The access is then
retried using the main address.



Just as in the traditional TLB, the SLB entry must include access right bits corre-
sponding to the synonym address. The cache hierarchy also contains protection bits asso-
ciated with the main address. A synonym access is checked for protection twice, once in
the SLB and once in the cache hierarchy. The main address must have equal or less access
restrictions than all of its synonyms.

Most current operating systems implement demand paging virtual memory. On top
of the machine-dependent layer, there is usually a machine-independent layer organizing
virtual memory in logical segments. Sharing of synonyms is decided in the logical layer
independently of physical paging. Since sharing is already managed in the operating sys-
tem in the logical layer, only some minor changes are needed in current operating systems
to use an SLB.

4.2.3 Comparing TLB and SLB

Although the SLB has practically the same hardware organization as a traditional
TLB, its scalability is much better. Some issues specific to SLBs must also be solved.

4.2.3.1 Coverage

The coverage of the SLB is much better than that of a TLB and scales with appli-
cation and main memory sizes, for two major reasons.

Physical Memory

Virtual Memory

Vi v2

Figure 4.4. A Synonym Example

First, synonyms can be allocated in very coarse granularity and can cover a large
number of pages. This has the same affect on the coverage as superpages in the TLB, but
the major difference is that contiguous physical memory pages are not allocated. For
example, in Figure 4.4, virtual address segments V1 and V2 are synonyms. The physical
page mapping is not contiguous and most virtual pages in the synonym segments are not
even mapped to physical space. Nevertheless the synonyms can be represented in one sin-
gle SLB entry. For any given process, the consumption of SLB entries depends on the syn-
onym usage instead of on the memory allocation. In general, increasing data set size does
not create more synonyms --the synonyms simply cover larger memory areas.

Second, unlike the traditional TLB which holds translations covering every single
virtual page accessed by the processor, the SLB is only responsible for a subset of these
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Figure 4.5. Total Number of Misses as a Function of the Number of Entries in a TLB
and in an SLB for Four Benchmarks

pages, i.e. the synonyms. The main address set does not use the SLB and, with some coop-
eration from the operating system, we expect that it will cover the best part of the whole

virtual address space.

To demonstrate the better coverage of an SLB as compared to a TLB, we have run
some simulation experiments. (The benchmarks and the experimental set-up are described
in section 4.3.1) Figure 4.5 compares the number of TLB and SLB misses in four bench-
marks as a function of the number of entries. At the low end of these graphs, the number
of TLB misses overwhelms the number of SLB misses by orders of magnitudes.

Figure 4.6 shows the SLB/TLB miss comparison for two Splash benchmarks,
Radix and Ocean, with 4 different data set sizes. We see from these graphs that the miss
curve for the TLB takes off as the data set size increases. An SLB of size 8 or bigger has
negligible amount of misses,

4.2.3.2 Page Mapping Changes and TLB/SLB Shootdowns

Another important issue for V/P and V/V caches is the demapping and remapping
of pages. In a V/P cache, every time a virtual address is remapped to a different physical
address the TLB must be updated, which triggers TLB shootdowns in multiprocessors. In
V/V caches, the cache hierarchy must sometimes be flushed.
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In contrast with a TLB, not every virtual-to-physical address mapping changes
need to update the SLB. Paging activities (swap-in and swap-out) as well as page migra-
tions do not affect the SLB nor the V/V caches. The only mapping changes that affect the
SLB or the V/V caches are when the content of a virtual page is actually changed through
the re-mapping. For example when the process image is overlapped through a EXEC sys-
tem call, or when a process is terminated and its virtual space is reclaimed by another pro-
cess, the SLB must be updated for all addresses in the synonym set and the V/V cache
must be flushed for all addresses in the main set.

Benchmarks Remaps SLB flush | L.2-cache Flush (Blocks)
User Kernel User Kernel User Kernel

Pmake 799 11311 490 10211 11008 24587
Radix 10 4471 4 4460 345 245

Rsim 6 2301 3 2275 112 738
TPC-C 18 33072 9 33028 317 043
Kaffe 923 3002 326 2925 2710 833

Table 4.1. Remaps and Flushes

Table 4.1 shows the activity associated with virtual-physical page remaps in our
five benchmarks. In our simulation, we always flush either the SLB entry (synonym
access) or the virtual address cache hierarchy (main address access) on a remap, even if
this is not always needed. Our counts do not include the activity associated with reclaim-
ing virtual address pages at the end of the execution.

In the table, Remaps is the number of virtual-physical page remaps in the execu-
tion; SLB flush is the number of SLB flushes. The rest of the remaps flush the cache hierar-
chy but not the SLB. L2-cache Flush (Blocks) is the total number of L2 cache blocks
flushed by all these remaps.

These numbers are very small and practically negligible, when compared with the
length of the trace in the simulation. The majority of the remaps are for synonyms in ker-
nel space, which explains the very low number of L2 cache blocks that are flushed. User
address remap is very rare even for Pmake, which is a multiprogramming workload.

4.2.3.3 Some Issues Specific to SLB

Memory Traps. The SLB cannot help verify/resolve memory trap conditions for
virtual addresses as the traditional TLB does. Memory traps such as page faults may be
triggered deep in the memory hierarchy. The performance impact of such late memory
traps will be addressed in chapter 5, where it is shown that the latency of late memory
traps can be largely tolerated by ILP processors.

Synonym Coherence. In the rare instance when the same data is accessed with
different addresses at very fine granularity coherence may be violated. A store to an
address in the synonym set may miss in the SLB and in the virtual address cache hierarchy
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even though its main address is allocated in the cache hierarchy. In this case, a following
load accessing the same data with the main address hits in the V/V cache before the trap
for the store is detected, thus bypassing the previous synonym access. Coherence is vio-
lated.

This is not an issue for processor architecture implementing sequential consistency
such as the MIPS or PA-RISC architectures because memory operations are retired one
after another, after they are completed. Logically, the following loads will not be issued
until the previous stores are globally performed, at which point the synonym has be
solved.

However for weaker memory models[25] the coherence issue is real because the
stores can be retired as soon as they reach the local store buffer. We now propose some
solutions in the context of weak memory models.

Since, the main address has, in general, less restrictions than its synonyms, the
main address for a writable synonym is also writable. This indicates that, in the coherence
violation described above, there are at least two writable virtual addresses shared within
the same virtual address space. The use of synonyms within the same address space is
purely optional and can be avoided by simply using the same virtual address. Most syn-
onyms are generated and managed by the operating system kernel without the involvement
of user programs. The OS kernel should not generate two writable sharings for user pro-
grams.

A more flexible solution is to allocate a quota of SLB mappings (for example 8)
for each virtual address space to map writable sharings within the process. As long as the
number of user writable sharings does not exceed the quota, coherence violation is pre-
vented because suspicious stores always hit in SLB.

A general and totally flexible solution consists in checking all stores before retiring
the store instruction as is done in TLBs. If a store misses in the SLB it must trap the pro-
cessor to fill the SLB. Load misses in SLB are still issued to the cache hierarchy as usual.
Although the SLB must now map writable main addresses, its coverage is still scalable --
at least as scalable as segment registers[52]. The coverage of each SLB entry still scales
well because it does not depend on the application or physical memory size.

Choosing the Main Address. Among all the virtual addresses sharing the same
page, one single virtual address must be selected as the main address. The operating sys-
tem should select the address with the longest lifetime as the main address, because the
overhead associated with remapping a main address is much higher than remapping
addresses in the synonym set. Allocating main addresses by first touch is both simple and
effective because of the way the operating system fork processes. We have used first touch
in our simulation experiments except for one special case, now described.

Lock Bit Optimization. The remap of physical addresses is widely used by the
OS kernel to communicate with user processes and to optimize message passing in gen-
eral. One common scenario is that the kernel prepares a page on behalf of a user process in

49



kernel space and then remaps the page to user space. The kernel address is then freed and
reused by other pages. The current SLB scheme may generate excessive cache flushing for

this very common case, given that the kernel address is selected as the main address since
it is first touched.

We propose an optimization for remap-based message-passing in general, espe-
cially for kernel buffer handling. Suppose V2 is a receiver user buffer expecting a message
from V1 which is mapped to a physical page P. The current procedure is to demap V1-P
and remap V2-P to pass the page. In this case V1 is the main address and its demapping is
very costly.

To reduce the overhead, V2 is deemed the main address and V1 a synonym. In
order to synchronize, V2 accesses must be locked out while the page is actually trans-
ferred. A lock bit is added in the page table and in the dynamic address translation hard-
ware for the V2-P translation. This lock bit is part of the access right bits and is also
copied in the V/V caches. While the lock is set, any access via VI proceeds as usual, but
an access to the page via V2 is locked out by the page table.

SLB Miss Handling. Virtually-addressed memory hierarchies considered in chap-
ter 3 rely on unique virtual addresses which can be created by the SLB scheme. The mem-
ory hierarchy is indexed by virtual addresses in the main address set, while the synonym
addresses have to be translated into main addresses by the SLB before issuing to the mem-
ory hierarchy. Although this is very rare, a virtual address missing in the SLB may eventu-
ally turn out to be a synonym. In this case, the synonym address will miss throughout the
virtually-addressed memory hierarchy until at some point the virtual address has to be
translated to locate the physical data. As an example, we look at the V-COMA architec-
ture. The synonym address missing in SLB will be directed to the home node indexed by
the synonym virtual address. Since the synonym address does not index the directories, it
will miss in the directory look up at the home node. A NACK message sent by the home
node will eventually trap the processor that issued the synonym address. The software trap
handler can figure out that the virtual address is indeed a synonym. The processor will
reload the SLB and reissue the virtual address which will then access the memory hierar-
chy with its main address.

4.3 Impact on the Miss Rate

Besides the overhead caused by SLB misses, SLB flushes, and cache flushes, one
major concern associated with virtual memory hierarchies is the effect of cache addressing
on miss rates.

Because the cache index function is different, conflict misses are affected. In a V/P
cache accessed in parallel with a TLB or in a V/V cache accessed in parallel with an SLB
the index is the virtual address. In a physical (P/P) cache the index is the physical address.
Finally in a V/V cache accessed after an SLB, the index is the main virtual address. From
now on in this chapter we will refer to these three systems as V/P cache, P/P cache
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and V/V cache respectively, knowing that V/P caches and V/V caches with parallel
access to SLB have the same behavior.

The second issue is short misses in V/P caches. Short misses are just as expensive
as regular misses hitting in the L2 cache. Their number grows with the cache size, contrary
to conflict misses whose number tends to decrease with the cache size.

Benchmarks | Instructions Loads/ Description
Stores

Pmake 1427M 570M 4 way parallel Makes for Modified Andrew Benchmark, many

small,

short-lived processes that make heavy use of OS services

Radix 1212M 269M | Splash benchmark, with parameters -n2097152 -r2048 -m4194304

Rsim 4771M 2434M Instruction driven simulator rsim[55] runs radix, sequential

consistency with speculation, simulate uniprocessor for 200k

cycles

TPC-C 34422M | 15695M OLTP benchmark TPC-C runs on Postgres95 database system,

4 warehouses, scale 100 times. 46 transactions mixed

Kaffe 13698M 5368M JAVA interpreter Kaffe runs a raytracer written in java

Table 4.2. Benchmarks

4.3.1 Methodology

Table 4.2 shows the benchmarks used in the simulations. The column titled
Instructions shows the total number of instructions simulated, and the column titled
Loads/Stores indicates the total number of memory accesses in our traces. These bench-
marks represent different categories of applications and include a JAVA virtual machine,
an OLTP commercial workload, a computer architecture simulation, a multiprogramming
workload, and a compute intensive splash benchmark

We use trace-driven simulation. Traces are collected by running SimOS[37], a
complete machine simulator developed at Stanford University. The simulated SGI work-
station for collecting traces has 64MB of main memory, 64KB of instruction cache, 64KB
of data cache, and a IMB L2 cache. It runs the Irix 5.3 operating system. The page size is
4 KB. All user and kernel memory accesses are recorded in the trace.

With the traces, we drive the simulator of a single-processor system with a 2-level
cache hierarchy. The L2 cache is fixed with a size of IMB and is 2-way set associative. L1
cache size varies from 8KB to IMB, and its organization is direct mapped or 4 way set
associative. For V/P caches, the L2 cache is physically indexed with backpointers to LI.
For V/V caches, both L1 and L2 are virtually indexed and tagged. and a 16-entry SLB is
accessed before the L1 cache. The cache block size is 64 bytes for all caches. The LRU
policy is used for all replacement. To be conservative, we always flush either the V/V
cache (main address access) or the SLB (synonym access) on every page remapping, even
if some of these flushes could be avoided.

51



In order to support the SLB in the simulation, we dynamically detect and construct
sharings among virtual addresses. We maintain a page table, a reverse page table, and a
segment table in the simulation. Every memory access is first checked with these tables in
an efficient way before it is sent to the trace driven modules. Any new mapping or change
of mapping between virtual and physical addresses triggers an update of the table struc-
tures, where we aggressively construct and merge virtual address segments and sharings
among the segments. To apply the lock-bit optimization in the SLB scheme, we identify
kernel pages that should have a main address in user space in a preliminary run of the
trace.

4.3.2 Synonym Alternation

We first look at the characteristic of synonyms in our benchmarks. We define and
detect a synonym alternation as an instance of using a different virtual address in two con-
secutive accesses to the same physical page. Synonym alternation characterizes the
dynamic interleaving of synonym accesses, which affects cache miss rate.

For every synonym alternation, we define the degree of proximity between the two
synonyms as the number of identical least significant bits in the two virtual page numbers.
In the simulation, we collect a histogram of the degree of proximity between the two syn-
onyms in each alternation.

To interpret these results keep in mind that the least significant bits of the virtual
page number are used to index a V/P cache; so, if the V/P cache index uses n bits of the
virtual page address, then all synonym alternations with a degree of proximity less than n
create short misses.

For each benchmark, we separate the synonym alternations into three categories.
User and Kernel count the cases that the two synonyms are both within user or kernel
domain respectively. Kernel-User is for the case when the two synonyms are in different
address spaces. Figure 4.7 shows the resulting histograms. The Y-axis is the number of
synonym alternations, and the X-axis is the degree of proximity between the two syn-
onyms.

For 32-bit virtual addresses (without counting the PID), and a page size of 4 KB,
the degree of proximity ranges between 0 and 20. The figure illustrates both the total num-
ber and the distribution of synonym alternations. Except for Kaffe, user synonyms all have
the same virtual addresses and index into the same cache set in any V/P cache. Unlike the
other benchmarks, Kaffe contains system calls making use of the memory mapping facili-
ties provided by the kernel.

Unlike user synonyms kernel-user and kernel synonyms may generate a large
number of short misses in V/P caches. Most kernel-user synonyms pass information
across the kernel-user boundary. If every block in the page is touched by both kernel and
user, one synonym alternation may cause one short miss per block in the page. Within the
kernel however, the reason for an alternation is not to transmit the content of a page but to
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Figure 4.7. Histograms of the Degree of Proximity of Synonym Alternations

share it. Each synonym usually addresses different data block at each alternation and syn-
onyms are interleaved in fine granularity. Thus each kernel alternation creates fewer short
misses as compared to kernel-user alternations.

4.3.3 Overall Miss Rates

Figure 4.8 shows the miss rates, including kernel and user, for direct-mapped, and
4-way set associative L1 caches. All curves show the same trends. The index to the cache
only affects conflict misses, which are significant in a direct mapped cache.

A very big gap exists between P/P caches on one hand and V/P or V/V caches on
the other in the case of direct mapped caches for RSIM and TPC-C benchmark. This gap
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Figure 4.8. Absolute Miss Rate of L1 caches

is clearly due to conflict misses. A closer look into the RSIM trace exposes that one phys-
ical page for the stack was aligned with one data page at a IMB boundary. This suggests
that for low associativity, V/P or V/V caches are more robust than physical address caches.
Although the operating system can select the virtual-to-physical page mapping to mini-
mize cache conflicts, its effectiveness at doing so is questionable, whereas virtual-address
indexing takes full advantage of the spatial and temporal locality naturally exhibited by
most programs[51].

The relative differences between the miss rates of V/V and V/P caches are dis-
played in Figure 4.9. They are computed as the number of V/P misses minus the number
of V/V misses divided by the number of V/V misses. As the cache size increases, the
impact of cache indexing becomes relatively more significant. The miss rate of the V/P
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Figure 4.9. Relative Miss Rate Difference Between V/P and V/V L1 Caches

cache becomes much worse than the V/V cache (up to 70% worse in RSIM). A significant
part of this difference is due to short misses.

4.3.4 Short Misses

V/P caches are affected by short misses. Figure 4.10 shows the fraction of short
misses in all the benchmarks, i.e. the number of short misses divided by the total number
of misses for V/P caches. Again we show results for direct-mapped and four-way set-asso-
ciative caches. When the cache size increases, more synonyms are indexed into different
sets (see Figure 4.7) and tend to stay longer in the cache leading to an increase in short
misses; at the same time, the number of capacity misses decreases sharply. We observe a
sharp increase of the fraction of short misses for all benchmarks as soon as the cache size
reaches 128KB. Actually if we compare the short miss rates with the relative miss rate dif-



ference in Figure 4.9, we can see that the short misses dominate the relative difference for
4 way set associative caches, especially for large cache sizes.
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Figure 4.10. Fraction of Short Misses in V/P L1 Caches
4.4 Summary

Moving the virtual-to-physical address translation down the memory hierarchy
presents some technical challenges, among which the synonym problem is one of the
major two problems. One physical address can be mapped to different virtual addresses
(synonyms) which may create inconsistencies in the virtual address cache. The other
major problem that of late memory traps also has many solutions, elaborated upon in next
chapter.

In this chapter, we have studied the usage of the synonyms and proposed a new,
simple, and effective solution to the synonym problem. In this solution, one main virtual
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address is used to name each virtual page uniquely in the processor and in the memory
hierarchy and a Synonym Lookaside Buffer (SLB) translates synonyms into main
addresses dynamically. We have given reasons why a very small SLB is effective and we
have shown performance data to back this claim up. Using actual applications from differ-
ent domains, we have shown that the purging and flushing of virtual-address caches is very
limited in practice and has insignificant impact on performance.

Using contemporary workloads running on a real operating system (SGI Irix 5.3),
we also evaluated the miss rate of virtually-addressed caches. We have presented extensive
performance results comparing the miss rate behavior of physical and virtual address
caches. It appears that virtual-address caches have better miss rates than physical caches
and the solution using a small SLB in front of the caches avoids short misses in larger
caches, while safeguarding the benefits of temporal and spatial locality in the virtual
space.
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Chapter 5

HANDLING MEMORY TRAPS IN ILP PROCES-
SORS

Traditionally, recoverable exceptions such as page faults can only be detected by
the access control mechanism in the TLB which is very close to the processor pipeline.
Virtually-addressed memory hierarchies require to take traps from the memory hierarchy.
In this chapter, we analyze the trap behaviors of ILP processors, especially the impact of
taking memory traps late. We propose new techniques to tolerate late memory traps for
ILP processors.

5.1 Trapping From Memory Hierarchy

Although the semantics of memory instructions is very clear and uniform from the
viewpoint of user programs, their implementation varies greatly. A load instruction or a
store instruction issued by a program may trigger the swapping of a page from disk, an /O
operation, or a message transfer through a network. These hardware extensions are imple-
mented by software traps on memory instructions.

Memory traps have to be generated for software to handle page faults and TLB
misses. In addition to the virtual memory implementations, there are increasing demands
for taking efficient memory traps, especially from the memory hierarchy. We list some
examples of research ideas other than virtual memory implementation that are based on
memory traps.

One important application is software and hybrid DSMs. Virtual shared memory
systems[48] still rely on the traditional virtual memory access control mechanisms to gen-
erate memory traps to emulate shared memory[2][48]. Chaiken and Agarwal[ 13] explored
a spectrum of software-extended protocols, in which traps are taken from the local direc-
tory when the directory runs out of space. Hill et al.[38] proposed cooperative shared
memory which can be seen as a software-extended protocol with a single hardware
pointer. Grahn and Stenstrom’s software-only DSM[31] emulates directory activity in
software as well. Multigrain shared memory systems[93] can be constructed by memory
traps combined with a hardware coherence protocol. In Blizzard-E[71] an ECC error may
trap the processor from deep in the memory system. Moga et al. evaluated a software con-
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trolled COMA (SC-COMA) where the memory controller may trap the processor when an
access misses in the local node.

_ More generally, informing memory operations[39] have been proposed to provide
feedback to software by trapping on L1 cache misses. These operations can easily be
extended to any level of the memory hierarchy provided processors can take late memory
traps. Finally, in [78], the TLB reach is expanded by constructing coarse grain superpages
from non-contiguous physical pages, and by remapping them to “real” physical memory.
To achieve this a page fault can be detected in the memory controller even though a mem-
ory access has passed the processor TLB.

These examples show that efficient memory traps from the memory hierarchy are
highly desirable to promote interactions between software and hardware for memory
access functions.

Without the “safety net” provided by the traditional TLB attached to the first-level
cache, the processor cannot decide whether a memory access will trigger an exception at
the time when it is issued to memory because the exception condition depends on the state
of the data somewhere deep in the memory hierarchy. The only certainty is that the mem-
ory trap must be decided before the access is globally performed[25]. The memory consis-
tency model must also be adhered to in multiprocessors.

5.2 Memory Traps in ILP Processors

5.2.1 Traps and Branches

Unlike external interrupts which are asynchronous to the program execution, traps
are synchronous and associated with instructions. Like branches, traps change the instruc-
tion flow of programs. Intuitively, a trap acts as an implicit procedure call. It stops the cur-
rent instruction flow and jumps to a predefined memory location, from which a software
handler executes and finally resumes the program execution from the point in the program
where the trap was taken.

Traps and branches have different behaviors although both of them interrupt the
normal instruction flows. Branches can only happen on branch instructions, while traps
may occur on almost every kind of instructions. If we are only interested in memory traps,
memory instructions typically contribute a very large fraction of the instructions of the
whole program execution. Compared to branch instructions where the branch may or may
not be taken with reasonable probabilities, traps are taken on very rare occasions. Usually
each kind of trap will jump to a fixed or predefined address regardless of the instructions
on which they are taken. The destination address has to be in kernel address space and
shared by all user programs. Therefore, unlike branches, traps will usually switch the pro-
cessor to privileged mode.

In modern ILP processors, it is very costly to interrupt the instruction flow. In order
to reduce the frequency of changing the instruction flow due to mispredicted branches,



there have been extensive research (o improve the branch prediction rate, which is
extremely important for performance given the increasing degree of parallelism within the
current processors. Logically, each instruction subject to traps can either complete suc-
cessfully or trigger a trap on exceptions. However, a processor always predicts that every
instruction will be successfully completed. The processor state will be restored if an
exception happens as for mispredicted branches.

To avoid saving the processor state for all instructions, precise interrupt[75]
defines a clean and simple state for the processor to save for restart. According to [75], the
three following conditions have to be satisfied for precise interrupts:

* Allinstructions preceding the instruction indicated by the saved program counter
have been executed and have modified the process state correctly.

* All instructions following the instruction indicated by the saved program counter
are unexecuted and have not modified the process state.

* The saved program counter points to the interrupted instruction. The interrupted
instruction may or may not have been executed, depending on the definition of
the architecture and the trap.

Because of the different behaviors of traps and branches, they are implemented dif-
ferently in ILP processors. As an example, we look at the MIPS R10000[92] microproces-
SOr.

The front end of the processor has to handle branch instructions to maintain a high
bandwidth for instruction fetch. In the instruction fetch stage, the instruction addresses
following the branch are predicted. In the decode stage where logical registers are
renamed to physical registers and the decoded instruction is appended to the active list, a
branch instruction triggers a checkpoint, i.e. the processor state is saved in a branch stack
from which the state can be recovered in case the branch was mispredicted. A branch
mask associated with each instruction in the instruction queues and in the execution pipe-
lines points to the depending branches. If any one of these branches is mispredicted, the
instruction is aborted. Therefore, if a branch is mispredicted, the processor state is recov-
ered immediately and all depending instructions are aborted. Because the branch stack
requires a large amount of on chip resource to save the processor state, the depth of the
stack is usually limited. When all the stack entries are occupied, the instruction fetch is
blocked on any branch instruction.

Traps must be implemented differently because the processor can not afford to
save the state for every instruction that may have exceptions. Precise interrupts are sup-
ported by the reorder buffer scheme proposed in [75]. Instructions are retired in program
order based on the active list after they are completed out of program order. An exception
is taken when the instruction reaches the top of the active list, at which point all previous
instructions have successfully retired. The pipeline is flushed and the state is restored by
unmapping the registers in reverse order of instructions in the active list, usually at the
same rate as the decode rate.
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5.2.2 Memory Trap Overhead

We focus on the pure hardware overhead of taking a memory trap in ILP proces-
sors. To remove the effects of the execution of a particular trap handler, we do not execute
a trap handler after the trap. Rather the trapped instruction is re-executed immediately
after the trap is taken, in a way similar to the soft exceptions in the MIPS R10000[92] to
roll back coherence speculations. |

From the perspective of the instruction fetch unit, the cycles between fetching the
trapped instruction before and after the trap are wasted because no useful instruction is
fetched. We call this time the ferch-to-fetch time. Although this is an intuitive metrics for
the trap overhead, the fetch-to-fetch time overestimates the overhead of the trap because
the cycles between the two fetches are not fully utilized even if the trap is not taken. The
instruction fetch unit may be stalled due to various hazard conditions, or may fetch useless
instructions because of mispredicted branches. Actually, the re-execution of the faulting
and following instructions can be much quicker after the trap because the pipeline has
been flushed.

The hardware overhead of a trap is made of two parts. The first part, which we
called the flush time, is the time to clean up the state of the processor. It is usually propor-
tional to the number of instructions in the active list when the trap is taken. The second
part, called the pipeline restart time, comes from the fact that some partially executed
instructions in the active list are cancelled when the trap is taken and must be repeated
after the trap. Unfortunately, it is very hard to estimate the pipeline restart time in an ILP
processor as the following simplified discussion illustrates.

To simplify the discussion, we consider that 1) the flush time is zero: 2) the trap
does not change the program flow of the execution other than the trap itself: 3) the execu-
tion time (from issue to complete) of every instruction is not affected by the trap, and 4) a
maximum of one instruction is fetched and retired in every cycle. Figure 5.1 shows the
execution of four instructions when the trap is taken (E,) and when it is not taken (E,).

An instruction is at the same position in the pipeline in two different executions if
it takes the same time to complete its execution from the two positions. For example in
Figure 5.1, at time t3 in execution E, instruction i reaches the same position it had at time
t, in execution E;.

When the trap is taken, each instruction in the active list has reached a particular
position. When the pipeline restarts after the trap, each instruction has to reach the posi-
tion it lost due to the trap before it can start doing new work. Referring to E; and E, in
Figure 5.1, we define the repeat time of an instruction in E; as the number of cycles
needed in E, to reach the same position it had in E; at the time when it is fetched in E,.
The repeat time is the increased execution time due to the trap. In Figure 5.1 the repeat
time of an instruction in E, is the time from instruction fetch to the cycle pointed to by a
small arrow. The pipeline restart time is the time needed to repeat all the instructions can-
celled by the trap.
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Figure 5.1. Dissection of a trap

In Figure 5.1, the shaded area represents the increased amount of work due to the
trap; it expands downwards while shrinking as more instructions are executed in E, and E,
and contributes to the pipeline restart time.

The repeat time of instructions and the pipeline restart time are very difficult to
estimate in an actual execution. For example, a completed load instruction flushed by the
trap may have brought the data closer to the processor. This reduces the time to re-execute
the instruction and therefore cuts the instruction repeat time.

5.2.3 Late Detection Time of Memory Traps

In Figure 5.1, the trap condition is detected before instruction i reaches the top of
the active list. This is an early trap. It is possible that a trap is late in the sense that its con-
dition is not resolved when the instruction reaches the top of the active list, as shown in
Figure 5.2.

We define the time from the cycle when the faulting instruction reaches the top of
the active list to the cycle when it is acknowledged for an exception as the late detection
time. The processor may continue decoding instructions during the late detection time,
adding to the flush time when the trap is taken. The late detection time also increases the
repeat time of cancelled instructions, leading to increased pipeline restart time as shown in
Figure 5.2.
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5.2.4 Performance Effects of Late Traps on Non-faulting Instructions

From the perspective of exceptions, we can consider that instructions are executed
speculatively until they reach the retirement point, where the program execution can roll-
back in case of a trap. Instructions must stay in the active list until their trap condition is
verified. Late memory traps may prolong the lifetime of active list entries and increase the
chance of stalling the instruction fetch unit.

A load instruction cannot be retired until its value is bound since it must fill its des-
tination register. By that time it is guaranteed to be exception-free. Therefore, late memory
exceptions do not slow down the retirement of load instructions, regardless of the memory
model.

The fate of store instructions differs for different memory consistency models. A
store instruction can be retired and put in a store buffer before it is globally performed[25]
only if it is known to be exception-free. In a system supporting late memory traps a store
instruction must stay in the active list until the exception condition is known. For sequen-
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tial consistency (SC), the impact is minor. Sequential consistency does not benefit much
from a store buffer because the active list stalls on a load instruction whenever the store
buffer is not empty[61]. Indeed, some processors[92] do not implement store buffers and
retire store instructions only after they are performed. The situation is different under
weak ordering(WO)[25] and release consistency(RC)[28], which permit the overlap of
memory accesses. Thus disabling the store buffer affects the performance of WO and RC
implementations.

5.3 Cutting the Late Memory Trap Overhead

We propose to prefetch memory exception conditions to reduce the late detection
time. Additionally, we propose to implement deferred traps instead of precise traps to cut
the overhead on non faulting store instructions under RC.

5.3.1 Prefetching Memory Exception Conditions

5.3.1.1 Hardware-Controlled Prefetch

Hardware-controlled prefetch and speculative execution[29] tend to reduce the
performance gap between different memory consistency models. The processor issues
memory accesses as soon as possible despite memory consistency restrictions, while the
hardware monitors possible consistency violations. If a prefetch violates the memory con-
sistency model, the processor rolls back and re-executes the memory instruction.

In a plain SC implementation without prefetch, a memory access cannot be issued
until all previous memory accesses are performed[25]. However, the cycles between the
times when the address is ready and when the instruction reaches the top of the active list
could be utilized to probe the exception conditions.

The hardware already present in ILP processors for prefetch and speculative exe-
cution can be easily enhanced to prefetch memory exception information along with the
data block. The non-blocking cache must be able to handle memory exception acknowl-
edge messages which may not contain valid data blocks. Reply messages from the lower
levels of the memory hierarchy must contain access control information even though they
may not include data, in which case the cache will not be refilled. If a memory request
returns with a memory exception, the corresponding memory instruction is trapped.
Although the prefetched data is non-binding, the prefetched exception condition must be
bound with the memory instruction to avoid losing it since it is not stored in cache. Bind-
ing the prefetches for memory exception does not affect program correctness even if the
exception condition is changed before the processor actually issues the memory access, at
most leading to an unnecessary memory trap.

Take the example of the MIPS R10000[92]. As shown in Figure 2.5, the address
queue contains all the decoded load/store instructions in their original program order.
Whenever the L1 data cache is accessed by the external interface, all pending entries in the
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address queue are compared with the incoming address. A matching load entry sends the
data directly to the destination register. To prefetch exception conditions, the incoming
buffer of the R10000 must accept exception acknowledge messages, which are then fort—,
warded to the address queue, bypassing the L1 cache. If an entry in the address queue
matches the address, the memory exception bit is set for that instruction and the trap will
be taken when the instruction is ready to be retired at the top of the active list.

5.3.1.2 Software Controlled Prefetch

Software controlled non-binding prefetch can also prefetch exception conditions
for memory instructions. In this case, it is possible that the prefetch instruction prefetches
the data before the instruction it prefetched for is decoded. If the memory block is
prefetched normally, the data is inserted into the cache close to the processor as usual.
However, if the prefetch instruction encounters an exception, instead of simply dropping
the prefetch as in most current implementations[87], the prefetch must return the excep-
tion condition to the processor.

We propose to add an exception buffer. When a prefetch instruction returns an
exception message, the information is copied into the exception buffer. The following
memory instruction using the prefetched value is very likely to hit in the exception buffer
and to detect the trap immediately.

The exception buffer can simply be a fully associative cache with the same granu-
larity as the L1 cache line size. Each entry contains the memory address and the access
control of the memory block. The size of the exception buffer is comparable to the number
of MSHR registers. As for a traditional TLB, the exception buffer is searched in parallel
with the L1 cache. On a hit, the instruction is trapped. No action is taken if the exception
buffer misses.

Because the exception buffer is simply a temporary place to hold exception condi-
tions, it is very easy to maintain. When it is full, the newly fetched exception condition
simply overlays a selected victim. There is no need to maintain consistency as for a TLB
because program correctness is not affected even if the exception buffer is stale -- a stale

buffer at most triggers an unnecessary trap.

5.3.2 Deferred Trap for Memory Exception

One critical problem with late memory traps is the restriction on store buffering.
We solve this problem by relaxing the precise interrupt requirement on store instruction
induced traps. We retire a store instruction from the active list and put the store into the
store buffer before the trap condition is verified. Following instructions are committed,
and cannot be recovered from if the store instruction triggers a memory trap some time
later. The memory trap on the store instruction is not precise, but deferred in a way similar
to some floating point exceptions[87].
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In such a scheme, sufficient state information must be saved to resume execution.
The program counter saved by the hardware may not point to the faulting instruction. The
trap 1s taken on a subsequent instruction resumed after the trap. By the time a trap is
detected on a store instruction, several other stores may be in the store buffer. They will
eventually complete and may still trigger traps. It is also important to support nested traps
where another trap can occur within the context of the trap handler. Since different trap
levels may have different protection restrictions, the store buffer entries holding pending
stores should be tagged and segregated in different trap levels for protection reas%ns. ”

We focus on the design for release consistency, but with some changes, it is also
applicable to other consistency models including sequential consistency. We assume a
write-back non-blocking L1 cache. The following three issues must be considered: 1) how
to save and recover the state when a store buffer entry triggers a memory trap; 2) what
happens if a load hits on a store buffer entry whose exception condition is not resolved; 3)
how to deal with the store buffer when a trap or interrupt happen and the store buffer is not
empty.

To answer these questions, we propose an aggressive design based on a ragged
store buffer shown in Figure 5.3. In this design, when a store buffer entry triggers a mem-
ory exception, the entry is dumped to a predefined memory address. Load instructions and
following instructions can use the value in the store buffer, although another option is to
stall the load instruction until the store buffer entry propagates to the L1 cache and then
read the value from cache. When a trap happens, the hardware does not flush the store
buffer even though its entries may still cause traps.

As shown in Figure 5.3, a stack of register pairs is associated with the tagged store
buffer. The depth of the stack is equal to the maximum level of nested traps that the pro-
cessor can support. If the processor does not support nested traps, two register pairs are
necessary. Within each level of the stack, the register pair contains a dump address register
and a counter register. There are two additional fields in each store buffer entry: a trap bit
indicates whether the entry encountered an exception and a tag field contains its level of
traps or the index of its register pair in the stack.

When a new entry is allocated in the store buffer, the tag is set to the current level
of traps. Store instructions can be coalesced only if they have the same tag value, and a
load instruction returns the value in the store buffer only if it hits and the current trap level
matches the tag of the store buffer entry.

Entries are retired from the store buffer out-of-order as soon as stores are success-
fully completed in the L1 cache or an exception is detected. The store buffer entries are
compared with the address in the reply messages to the L1 cache. If an entry matches the
address with no exceptions, the data is merged and copied into the L1 cache as usual.

If an exception happens, the counter register indexed by the tag of the matched
store buffer entry is increased. The store buffer entry is dumped into memory at the
address given by the dump address register. The dump address register contains two parts:
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Figure 5.3. Tagged Store Buffer

the base part and the offser part. The offset part is increased by a fixed size which is equal
to the size of the dumped entry from the store buffer. The store buffer entry that has been
dumped can be freed for reuse. If the tag of the entry is equal to the current trap level, a
store buffer exception signal is raised to the processor. The processor will then abort the
current instruction at the top of the active list and save the processor state as if the trap was
taken on that instruction. If the tag is not equal to the current trap level, no exception sig-
nal is raised immediately. Traps are generated whenever the processor returns to a trap
level with a non-zero counter.

Some special instructions are provided to manipulate the store buffer and its regis-
ter pairs. The handler for the store buffer trap must access the dumped entries in local pri-
vate memory and globally perform those stores saved in the entries with appropriate
actions, and then resume execution from the saved program counter.

For traps other than store instruction traps, the trap handlers can decide whether or
not to complete the stores in the store buffer. For example, the timer interrupt handler must
execute all pending store instructions before switching context. However, a software
coherence handler responding to a load instruction trap might be fine tuned and may not
empty the tagged store buffer.
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5.4 Experimental Evaluation

5.4.1 Methodology

We have run instruction-driven simulations using the RSIM[55] simulator from
Rice University, which models both processors and memory system in great detail. The
processor model is based on the MIPS R10000 microprocessor. Our baseline processor
architecture has a 64 entry active list, 2 integer units, 2 floating point units, 2 address cal-
culation units, 8 branch stack entries and a 32 entry address queue. The cache line size is
64 bytes for both L1 and L2 caches. L1 cache is 16K byte write back, direct mapped with
I cycle hit time, 8 MSHR registers and 2 request ports. L2 cache is 64K byte write back, 4
way set associative pipelined with 8 cycle hit time. It has 1 request port and 8 MSHR reg-
isters. Local memory access time is 18 cycles. Multiprocessor configurations have 16 pro-
cessor nodes connected by a 4 x 4 mesh network. The network operates at half the clock
rate of the main processor and is 64 bit wide. The benchmarks are shown in Table 5.1.

The purpose of the evaluations is to estimate the overhead caused by traps and,
more specifically, by late memory traps. Because the executions with and without traps are
not identical, it is very difficult to measure accurately the pipeline restart time as defined in
section 5.2. Instead we first measure an overhead value directly related to the execution
time called the cost of a trap. The cost of a trap is computed as the difference of the total
execution times with traps and with no trap divided by the total number of traps in all pro-
cessors. Remember that we do not execute a trap handler at the occurrence of a trap, we
simply re-execute the code at the faulting address.

Clearly the cost of a trap is an imperfect metrics. It includes much more than the
pipeline restart time plus flush time, especially in multiprocessors. It also includes second-
ary effects due to differences in executions such as different memory stall times or syn-
chronization times. In the case of release consistency with precise traps it also includes the
increased stall times on store instructions due to the disablement of the store buffers. Not
withstanding these shortcomings, since execution time is the ultimate measure of perfor-
mance, the cost of a trap is a useful metric.

Benchmark Parameter
FFT 65536 points
RADIX 1024 radix, 512K keys, max 512K
WATER 125 molecules
MP3D 50000 particles

Table 5.1. Benchmarks
The late detection time is measured in the simulation with traps and indicates the

increased trap time due to the lateness of the trap. The flush time is the number of instruc-
tions in the active list when the trap is taken divided by the rate at which instructions are
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flushed (in our case, 4). The ferch-to-fetch time is the number of cycles between the first
and second times the trapped memory instruction is fetched, including the flush time.

We first show measurements on a uniprocessor simulation and then we show
results for multiprocessors.

5.4.2 Uniprocessor

We simulate two basic schemes for uniprocessor: TLB is the conventional TLB

No Prefetch Prefetch
Bench- Schemes 1
e ate
marks ]au,. fetch to : _ fetch to
detectio| flush cost : detectio| flush cost .
fetch fetch
n n
TLB 0.01 9.78 11.58 37.73 0.00 14.91 23.75 64.06

FFT TLB/I5+ 14.89 15.99 32.29 58.06 0.72 15.58 2430 67.32
L2_TLB 3.96 15.99 20.60 81.95 0.08 15.48 21.80 85.61
L2 _TLB/15+ 18.93 16.00 35.00 96.40 0.60 15.56 22.18 86.06

TLB 0.99 15.98 18.17|  69.33 1.71 15.73| 2898 4757
RADIX TLB/15+ 15.99 16.00| 33.17 84.33 8.67 15.71 37.01 58.61

L2_TLB 5.00 16.00| 2198 80.24 3.11 1562 3051 51.02
L2 _TLB/15+||  20.00 16.00]  36.96| 95.23 10.23 15.83|  3863] 61.07

TLB 0.02 13.35 18.73 51.11 0.01 12.62 21.60| 34.33
WATER TLB/15+ 11.75 15.80 32.76 65.29 6.94 15.54 32.16 43.85
L2_TLB 1.88 13.80| 2090 53.14 1.09 13.35 28.46| 3521

L2 TLB/15+ 15.90 15.93 37.04 69.29 9.57 15.79 31.52 46.02

TLB 0.06] 1293 18.01| 35422 006 1262 1969 4265
MP3D TLB/I5+ 12.49 1596 33.16] 69.67 10.43 15.86| 29.07| 5581

L2_TLB 280 14.08] 2171 5896 1.55| 1364 2267| 4533
L2_TLB/15+ 1646]  16.00]  37.10]  74.54|[ 14.03| 1591] 31.64| 59.64

Table 5.2. Uniprocessor. All times are in cycles.

scheme where the TLB is accessed in parallel with the L1 cache; in L2_TLB the TLB is
accessed after a virtually indexed and tagged L1 and L2 caches. The processor is trapped
on TLB misses in both schemes. The TLB maps 4K byte pages per entry, and is fully asso-
ciative with LRU replacement policy. We have chosen a 32-entry TLB size for FFT,
RADIX and MP3D, but we have reduced the TLB size to 16 entries for WATER in order
to trigger enough traps. The processor model enforces sequential consistency (SC) as in
the MIPS R10000. We compare the metrics for the plain SC implementation without
prefetch and the SC implementation including hardware controlled prefetching of data and
of exception conditions. In order to observe the tolerance to the lateness of memory traps,
we delay the trap detection further by 15 cycles for the two base schemes. These two
delayed schemes are called TLB/15+ and L.2_TLB/15+ in Table 5.2.
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The fetch-to-fetch time is an upper bound on the overhead of the trap. It is consis-
tently much larger than the cost of the trap measured directly from the execution times.
Thus the fetch-to-fetch time is not a good estimate of the hardware overhead of a trap.

The cost of a trap varies widely among different benchmarks because of the differ-
ent memory access behaviors. Under prefetching, the late detection time drops for all
benchmarks but the extent of the drop depends on the benchmarks.

Prefetching exception conditions is effective at tolerating some or all of the trap
delay. This can be seen from Table 5.2 by comparing 7LB with TLB/15+ and L2_TLB with
L2_TLB/15+. In systems with no hardware prefetch, the additional 15 cycle delay of the
trap is practically added to the late detection time and to the cost of the trap from TLB to
TLB/15+ and from L2_TLB to L2_TLB/15+. This shows no tolerance for trap delay. The
system with prefetching behaves differently, especially for FFT where most of the trap
delay is hidden and the cost of the trap is practically independent of the delay of the trap.
We also see some reduction in the late detection time in other benchmarks, reflected in the
cost of the trap.

Looking at the results for 7LB where most of the traps are detected early, we
observe that the cost of the trap is higher under prefetch than under no prefetch. This
important effect comes from the fact that the pipeline restart time is larger in a more
aggressive pipeline since there may be more memory instructions cancelled by the trap.
This is even more obvious in Table 5.3 for multiprocessors.

In most cases, the active list is very close to full, which is very desirable. Although
the number of pending instructions increases when we prolong the trap detection time, the
impact on the flush time is very limited. The flush time hovers between 13 and 16 cycles.

5.4.3 Multiprocessors

We are going to look at the overhead of traps in more detail in the context of multi-
processors. In this section, we evaluate the trap overhead for three systems called
L2_cache, Local and Home which all rely on late memory traps. In L2_cache the proces-
sor is trapped on L2 cache misses to handle virtual-to-physical address translation or/and
cache coherence protocol[20]. Local traps the processor on local node misses, which is
needed by many software extended cache coherence protocols. Home detects the excep-
tion at the home node of the memory block, which can either be remote or local. This can
happen when virtual address translations are done at the memory. Unlike L2_cache and
Local which trap on every miss, Home generates exception on approximately 5% of the
directory accesses at the home node. This 5% is much more than the frequency of traps in
V-COMA, which only occur on very rare events such as page faults. In the case of release
consistent (RC) memory systems, we compare the implementations with precise and
deferred traps.
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5.4.3.1 Trap Overhead

First, we show results for the trap overhead in the case of sequential consistency. In

Plain SC Implementation Speculative SC Implementation
Bench- | Schemes late flush cost | fetchto || late flush cost | fetchto
marks detection fetch ||detection fetch
L2_cache 3.82 15.91 21.00f 106.43 1.58 15.53 75.55 98.1
FFT Locall] 1595 16.00| 33.58| 201.54/| 11.79| 1539 12991 171.39

Home 75.60 16.00 9748 329.36 53.50 1596 16047 173.96

L2_cache 4.72 1599 23.89] 121.99 3.07 15.27| 45091 80.36
RADIX Local 12.41 16.00 35.85| 140.54 11.71 15.65 60.89|  92.05
Home|| 109.03 16.00] 173.00] 266.00]] 111.51 1599 125.04| 179.12

L2_cache 351 15.66 1673 170.42 1.69 15.36 80.23] 150.13
WATER Local 16.61 15.82 36.06| 185.07 11.95 1568 10049| 162.69
Homel| 111.13 16.00] 22857 574.48 62.2 1575 127.30] 363.46

L2_cache 3.20 1509 2021 179.10 2.07 15.05 77.42] 17230
MP3D Local 13.07 15.67 2749 210.88 10.36 15.54 92.04| 200.47
Home|| 11939 16.00| 139.80] 47490 92.93 15.83] 116.65] 328.94

Table 5.3. Trap Overhead in Sequential Consistency (SC)

Table 5.3, Plain SC Implementation represents the scheme without prefetching of data and
exception condition. In addition to comparing the plain SC implementation with the
prefetch scheme for both data and exception condition, we simulate one more case that the
data is prefetched speculatively but the exception condition is not fetched until the mem-
ory instruction is issued, which is shown as Speculative SC Implementation in Table 5.3.
The same data is also appeared in Table 5.4 as No Prefetch of Exception Condition in order
to compare against the scheme of prefetching both data and exception condition, which is
shown as Prefetch of Exception Condition in Table 5.4.

As in the uniprocessor case, the fetch-to-fetch time grossly overestimates the cost
of the trap. The active list is about full at the point of the trap in all cases, which means
that the flush time is roughly constant and close to 16 cycles.

Table 5.3 can better explain the impact of a more sophisticated processor on the
trap overhead. The cost of the trap increases significantly from Plain SC Implementation
to Speculative SC Implementation, for the cases of L2_cache and Local where the restart
time plus the flush time dominates the cost of the trap. In the case of Speculative SC
Implementation, the processor efficiency is much better because of overlapped pending
memory requests, which in turn increases the amount of work that is cancelled by the trap
and thus the restart time.

Comparing the late detection times for the two schemes in Table 5.3, we observe
that prefetching data only as the Speculative SC Implementation can also somewhat
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reduce the late detection time for most benchmarks. The memory instructions have more
time between the cycle when they are ready to issue and the cycle when they reach the top
of the active list. In other words, in Speculative SC Implementation, memory instructions
are ready sooner because preceding memory instructions are completed faster.

No Prefetch of Exception Condition Prefetch of Exception Condition

Bench- Schemes late flush cost fetch to late flush cost fetch to

marks detection fetch ||detection fetch
L2_cache 1.58 15.53] 75.55 98.1 0.04 1542  7393] 96.77
FFT Local 11.79 15.39( 12991 171.39 0.20 15.33| 116.34] 160.66
Home 53.50 15.96| 160.47 173.96 31.84 15.88 139.56| 155.27
L2_cache 3.07 1527 4591 80.36 0.82 14.87| 4345] 77175
RADIX Local 11.71 15.65 60.89| 92.05 421 1523 5263 84.26
Homel|| 111.51 1599 125.04| 179.12] 85.49 1594 97.40| 161.85
L2_cache 1.69 1536 80.23| 150.13 0.78 15.21 78.45] 14934
WATER Local|| 11.95 15.68| 100.49| 162.69 8.83 1555  90.31| 15943
Home 62.2 15.75| 127.30| 363.46|| 57.55 1572  79.42| 354.02
L2_cache 2.07 15.05| 7742 17230 0.43 14.78|  76.35| 170.67
MP3D Local|| 10.36| 15.54| 92.04| 200.47 6.83 15.32| 89.84| 197.62
Home|| 9293 15.83| 116.65| 328.94|| 78.88 15.77| 102.98| 343.17

Table 5.4. Prefetching Exception Condition in Sequential Consistency (SC)

Table 5.4 emphasizes the impact of prefetching the exception condition. Looking
at the late detection times under prefetch and no prefetch, we see that the prefetching of
exceptions conditions can further tolerate a large fraction of the trap delay. Because mem-
ory instructions can probe the exception condition along with the data prefetch as soon as
the address is ready, the cycles that can be utilized to tolerate the lateness of trap detection
is further enlarged. If we focused on the cost of trap of these two schemes, prefetching
exception condition always give us some improvement on the total cost per trap. The
improvement comes from the reduction of late detection times.

In Table 5.5 we show results for the trap overhead in a multiprocessor under RC
with precise and deferred traps. The difference between the two cases is the disablement
of the store buffer when precise traps are supported. Again we observe that the active list
is almost full whenever a trap is taken so that the flush time is constant. Deferred traps are
very effective at reducing the effect of the late traps in all cases. The reason is that, under
deferred traps, a store instruction that reaches the top of the active list can retire even if it
triggers a trap later on and during that time the processor does useful work. This is not the
case under precise traps. We also see that the cost of a trap has been inflated dramatically
under precise traps, because the cost of disabling the store buffer for all store instructions
has been charged to the traps.

If we compare the cost of traps at different trap detection locations in Table 5.3 and
Table 5.4, from L2_cache, to Local to Home, the cost under Plain SC Implementation is
much more sensitive to the trap detection point than under Prefetch of Exception Condi-



RC/Precise Trap RC/Deferred Trap

Bench- Schemes late flush cost fetch to late flush cost fetch to
marks detection fetch  [|detection fetch

L2_cache 1.47 15.56 81.63 98.26 0.16 12.79 49.13 79.05

FFT Local 743 1542 163.72 191.38 118 15.08] 79.06 13681

Home 41.24 1596 62953 221.51 41.57 15.93 84.47] 13851

L2_cache 2.70 1590 144.70] 86.81 0.82 1485 25.68] 4051
RADIX Local 10.76 15.97| 20436 99.09 1.24 15.23 31.81 44.03
Homel|| 101.61 15.99] 2538.05| 193.68 16.26 1576 45.66| 68.71

L2 _cache 2.51 1539 132.61 150.63 0.97 15.09 66.47| 143.52
WATER Local 13.62 15.64| 155.63| 162.68 5.55 1538 62.54| 148.09
Homel| 9229 15.89| 3497.87| 468.81 31.28 1477|  84.12| 213.69

L2_cache 2.02 15.10| 112.97| 172.40 0.91 14.28 62.64| 140.35
MP3D Local 9.78 1554 130.65| 199.94 3.80 1491 69.70| 160.43
Home 91.90 15.85] 1370.07| 359.55 44.14 15.79| 151.15| 21848

Table 5.5. Precise vs. Deferred Trap in Release Consistency (RC)

tion. Under Plain SC Implementation the cost varies from about 20 cycles to more than
200 cycles depending on the benchmark and on the trap detection point. However under
Prefetch of Exception Condition, the cost of the trap is not much sensitive to the trap
detection point. This is of course due to both the increased pipeline restart time and the
ability to tolerate lateness of detection. For a processor with a more aggressive memory
system, the overhead of traps are increased whereas the overhead due to the lateness of the
trap can be largely tolerated. This trend is more pronounced if we look at Table 5.5 for RC.
The precise trap requirement makes the trap detection point essential because it not only
affects trapping instructions, but also impedes non-faulting store instructions.

5.4.3.2 Execution time

In this section, we present the breakdown of the execution times excluding the exe-
cution of the software handlers. Contrary to previous results presented in this paper, the
execution time takes into account the frequency of traps. Because of caching effects in the
memory hierarchy, the frequency of traps usually decreases when its delay increases. We
follow the convention in [56] to count the stall time components, where the stall time is
charged to the first instruction that cannot be retired from the active list. If all four instruc-
tions are retired in one cycle, the cycle is credited as busy. In Figure 5.4, Flush is the total
flush time to clean up the active list when the trap is taken and Derect is the late detection
time for the memory traps. SC/No prefetch represents the plain SC implementation with-
out prefetching. SC/prefetch scheme prefetches data and exception condition.

The late detection time is not significant in all cases because it is only charged
when taking memory traps. As we expected, it is further reduced greatly by hardware
prefetch (SC) and deferred trap (RC). Without prefetch, SC restricts the issue time of
memory accesses, leading to a late detection time comparable to the flushing time of the
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active list; when the trap detection point moves further away from the processor, the late
detection time becomes dominant in the time overhead due to traps. By contrast, the late
detection time contribution to the total trap cost becomes negligible when prefetch is
added.

The write stall time is very small in RC executions with no traps, because the store
instructions can be immediately retired from the active list as long as the store buffer is not
full.

Except for RC with precise traps, the increase of the execution time over the no
trap base scheme comes from taking traps. Other non-faulting memory instructions are not
affected. On the other hand, the RC scheme with precise traps enforces restriction on retir-
ing store instructions, leading to a big increase on write stall time. Actually, because it
enforces similar restrictions on store instructions, the execution time for RC/precise inter-
rupt is very close to the SC/prefetch implementation. As also shown in the figure, deferred
trap reduces the late detection time as well because the processor retires useful instruc-
tions by the time it detects exceptions for the store buffer entries.

5.5 Summary

Memory traps are necessary to support the virtual memory system and many other
important systems and applications. In this chapter, we have analyzed and evaluated the
overhead created by traps in the context of ILP processors. More specifically, we have
focused on the added overhead of late memory traps and have proposed ways to tolerate
this overhead. Compared to the ideal case where the memory trap is decided as soon as the
instruction reaches the top of the active list, late memory traps introduce extra overhead
because 1) a store instruction cannot be retired until its trap condition is verified, and 2)
memory instructions must wait at the top of the active list before the trap is detected.

The restriction on store instructions due to the support of precise late traps destroys
the advantages of store buffering in release consistent systems. However this restriction on
store instructions can be removed if the requirement of precise interrupt is relaxed to that
of deferred trap for stores. The tagged store buffer acts as a temporary storage for the
stores whose exception conditions are not resolved, and provides enough information to
resume execution after the trap.

Because ILP processors look ahead in the program flow and can start memory
accesses very early in the pipeline, the lateness of trap detection can be tolerated with
slight modifications of current prefetching hardware.

The deferred trap and prefetch of exception information proposed in this chapter
efficiently cut the overhead due to delaying the decision time of memory exceptions. The
cost of traps is high and quite unpredictable in ILP processors. As our simulation results
show, when the memory system of the processor becomes more aggressive, the cost of late
detection is reduced while in most cases the cost of traps increases. Systems in which
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these traps can be taken as late as possible will become increasingly desirable if we can
take advantage of their reduced frequency due to caching effects in the memory hierarchy.
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Chapter 6

IMPLICATIONS FOR VIRTUALLY ADDRESSED
MEMORY HIERARCHY

With the rapid progress of VLSI technology the integration of processing logic and
DRAM memory on one single chip is becoming commercially feasible. Processing-in-
Memory (PIM) [45][57][68] is a promising solution to attack the memory wall problem.
Typically, PIM processors are much simpler and may be slower compared to regular state-
of-the-art microprocessors. However, since processor and DRAM are integrated on the
same chip, PIM processors can exploit the huge internal bandwidth offered by the parallel
memory banks within DRAM chips. Access bandwidth inside the DRAM chip is several
orders of magnitude larger, and the memory access latency is reduced by up to a factor
four[36], due to the elimination of off-chip communication.

The key to fight the memory wall with PIM technology to achieve high perfor-
mance computing is to de-centralize the computing among processing resources, i.e. the
main microprocessors and the PIMs in memory. We argue that virtually-addressed mem-
ory hierarchies are a necessary step for user level in-memory processing to smoothly
transfer PIM technology into the arena of general-purpose computing systems.

6.1 PIM in General Purpose Computing

6.1.1 Future Computer Systems

Future high-performance multiprocessors should take advantage both of the
instruction-level parallelism exploited by high-end microprocessors for compute-intensive
tasks, and of low-cost memory chips with processing capabilities for data or memory
intensive tasks. Logically, the system can be divided into processor side and memory side.
The main microprocessors are high-end processing engines which exploit aggressive
instruction-level and thread-level parallelism at a very high clock rate. A large virtual
address cache hierarchy is included in the processor to bridge the speed and bandwidth
gaps across chip boundaries.
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Figure 6.1. A View of Future Computer System

As illustrated in Figure 6.1, the memory side contains PIM arrays and memory
banks. Compared with the main processors, the PIM processors have a relatively lower
clock rate, and their pipeline is much simpler. However, accesses to DRAM from the PIM
processors have high bandwidth and low latency. Because of the simple processor model,
the context switch time of the PIM processors is very low as well.

A challenge is to distribute the tasks among all the processing resources in order to
balance the load. Contrary to a traditional multiprocessor systems, the processing
units(main processor and PIMs) are specialized. Ideally, the computation should migrate
to improve memory access locality.

6.1.2 Moving Processing Towards Memory

While the main processors are still responsible for major compute-intensive tasks,
resource management and memory-intensive tasks should migrate to the memory side,
which is close to the data and the physical devices.

Given that the on-chip caches are virtually indexed and virtually tagged, the virtual
memory system and even the entire operating system can be moved to memory executed
by the PIMs. Moving the system software to memory can have significant speedup
because their code and data accesses tend to be random or sequential with poor locality.
Moreover, moving the system software to memory enables processing in memory at the
user level. In a general purpose computing environment users should be able to program
the PIMs, and the PIMs should be able to execute user programs in the virtual address
space.

Now we show the logical steps involved in migrating the executions of user tasks
to memory in the context of a general-purpose system.
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Moving the Virtual Memory System to Memory. Once the memory hierarchy is
virtually-addressed, one may consider moving the virtual memory system into memory.

In a classical system, the dynamic address translation hardware including the TLB
handles the most common cases without software intervention. In a virtually-addressed
memory hierarchy, we can envision as a first step that he PIM processor refills the TLB on
a miss. To do that a PIM processor must be aware of the page table structures, which are
also exposed to the main processors. In systems without PIMs, either microcode or a soft-
ware handler triggered by a trap on the main processor must refill the TLB.

When a page fault happens, pages must be swapped in and out to satisfy the mem-
ory access. To migrate the entire virtual memory system to memory the PIMs must be able
to handle page faults. To do that, the PIM processors must be aware of most of the kernel
data structures, and run large amount of code. I/O operations, at least disk I/O for swap-
ping, must be managed by the PIM processors. Actually, when the entire virtual memory
system is moved to memory, the PIM processors can easily access the kernel data struc-
tures. The overall system performance can be improved because the main processor can
continue to compute at the same time the PIM processor execute the page fault handler,
which does not run very efficient on an ILP processor.

As an example, take the V-COMA architecture, in which the page tables are dis-
tributed among processing nodes and are accessed by the protocol processor. The protocol
processor at the home node can execute virtual memory functions in case the hardware is
unable to complete the memory access. The entire virtual memory system can be imple-
mented in memory and combined with the cache coherence protocol.

Moving Operating System to Memory. With the virtual memory system in mem-
ory, the next logical step is to move other operating system functions or even the entire
operating system into memory. In this case the main processors are freed from system
resource management, which is done physically closer to those resources inside the mem-
ory (see Figure 6.1).

The major advantages of in-memory operating system execution are speedup,
improved programmability, and easier management of PIM-based systems. When the
operating system executes in memory, the main processors are dedicated to user programs
and do not trap on every system call; moreover their caches are not polluted by system
code and data. Much of the operating system is expected to run more efficiently in mem-
ory than in the main processor. An in-memory operating system provides a uniform envi-
ronment to user tasks executed in memory and on the main processor, and PIM system
programming can be done using a standard multithreading package. In-memory tasks have
the same ease of access to the same system resources as the main processor tasks. Protec-
tion, security, and debugging facilities at low or no performance cost to the application
programs are also provided.

Moving User Computing to Memory. The in-memory operating system can
safely expose the PIM processors and memory to user programs. User level computing in
memory enables portable programs for PIMs, and may change the programming model for
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large applications. The ability to move user and system tasks to memory has the potential
to significantly relieve the well-known memory wall problem. Additionally, new program-
ming models to explicitly expose PIMs to the user and split a computation between the
main processor and memory may radically solve the problem.

Alternative Approach. The classical approach to support user-level PIM comput-
ing is to add a TLB in each PIM to translate virtual addresses, in the context of physically
addressed memory hierarchies. PIM processors are treated as regular processors in a tradi-
tional multiprocessor system. User-level tasks can still execute in PIMs since virtual
addresses are supported. However, as compared to virtually-addressed memory hierar-
chies, this approach has two drawbacks.

* The memory-intensive system software must still be executed on the main pro-
cessors as well as on the PIM processors. Maintaining the consistency of the
TLBs among the PIM processors and the main processors could be too expen-
sive to make this approach feasible.

» PIM processors cannot respond to virtual addresses issued by the main proces-
sors because they can only “see” physical addresses, restricting the usage of the
PIM processors. As described in the next section, user level memory functions
must operate on virtual addresses. In a physical memory hierarchy, processing
units exchange physical addresses. Thus the physical addresses must be reverse-
translated in a reverse translation buffer (RTLB) as was done to support user-
level shared memory in [63]. The effect of synonyms on such reverse transla-
tions has not really been addressed.

6.2 Emulating Memory Functions

We have shown how virtually-addressed memory hierarchies can improve the per-
formance and scalability of the virtual memory system. As a level of abstraction, virtual
memory provides each user program with the illusion of a single large memory space
through cooperative hardware and software support. Virtual memory is actually a special
case of what we call a memory function.

6.2.1 Generic Memory Functions

Application programs make some assumptions on the memory systems on which
they run. These assumptions form the programmer’s view of the memory access seman-
tics. Typically, the user/system interface is the contract between user programs and their
runtime environment, which includes the properties/behaviors of the memory system. The
abstraction of memory semantics is usually in various layers and may be quite different for
different programs. For example, a program written in the physical address space sees the
memory system as a contiguous set of memory locations within a fixed address range;
within that range a load returns the last value written to the same address, while the mean-
ing is undefined outside that range. Without support for virtual memory, part of the pro-
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gram must be dedicated to the management of physical memory in order to provide the
illusion of a big enough memory. This abstraction of the physical memory is needed by all
programs; in a virtual memory system it is extracted from each individual user program
and becomes common to all programs as a memory function of the system. A program
written with virtual addresses ignores the physical limitation and expects the same access
semantics throughout the entire virtual address space.

A memory function is the method or action taken to maintain a particular seman-
tics of the memory system. Memory functions can either be built in within user programs
to provide another level of abstraction on top of the user/system boundary, or they can be
implemented within the system as libraries, operating system functions or hardware prim-
itives as shown in Figure 6.2.

User Programs

&
>\
Librry ;&Q:v

@ Operating System
\)

Hardware

Figure 6.2. Memory Functions

Memory functions can be extracted from user programs and integrated within the
runtime environment in which the programs run. This paradigm facilitates the portability
and programmability of user applications. At the implementation level, the parallelism
extracted in the memory function can be exploited by various computing agents --such as
PIMs-- to improve overall system performance.

As a general paradigm, memory functions provide useful semantics to application
programs. Many memory functions have already been proposed or implemented besides
virtual memory. Here we list some examples. This is by no means a complete list of exist-
ing ideas. With more effective support, more innovative memory functions may emerge in
the future.

Shared Memory. Instead of explicitly sending messages among processing ele-
ments, shared memory semantics lets parallel programs communicate and synchronize via
memory accesses. Similar to the virtual memory abstraction, shared memory program-
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ming simplifies user programs and improves portability and programmability. Most of the
time the shared-memory paradigm is supported in hardware. Virtual shared memory sys-
tems (also called software DSMs) are examples of shared memory supported by software.

Automatic Data Migration/Replication. In a distributed shared memory multi-
processor, the memory access latency is non-uniform. In order to achieve high perfor-
mance, it is important to limit the number of remote memory accesses. Although user
programs can be aware of the NUMA memory and manage the allocation of their data to
optimize performance, the management of data allocation may also be integrated in the
memory system to provide user programs with the illusion of a much simpler UMA mem-
ory access semantics. This new memory function enhances the portability and simplicity
of the code and can accelerate legacy software on NUMA machines without any change to
the code.

There have been many attempts to implement automatic data migration/replication
for DSMs. The most notable is the COMA approach, in which automatic migration and
replication are maintained in hardware. The same memory system property can be imple-
mented in the system software layer by controlling the placement of physical data through
the mapping of virtual to physical addresses, as is done in Simple COMA.

Prefetching and Smart Cache Management. The traditional cache provides sup-
port for automatic data replication controlled by hardware to reduce average access laten-
cies. Effective prefetching can further hide memory access latencies. Better cache
management, replacement strategy, or prefetch algorithm can improve latency and band-
width to access the main memory. Complex strategies can be implemented in hardware,
software, or an hybrid combination.

Garbage Collection. While some programming languages such as C specify
explicitly the allocation and deallocation of memory space, programs written in JAVA or
Lisp rely on garbage collection by the runtime system. To alleviate the burden on the pro-
grammer, the memory system may provide a higher level abstractions (object-oriented or
functional) where memory allocation is no longer necessary.

Memory Mapped I/O and Communication. In contrast to /O system calls,
memory-mapped 1/O provides user programs with a memory access semantics for /0
transfers. I/O operations are triggered implicitly through memory accesses. Since they are
efficiently supported by the virtual memory system, memory-mapped file operations have
been widely used. Recently, there has been extensive research on virtual memory-mapped
network communications.

Informing Memory Operation. Informing memory operations[39] provide a
feedback mechanism for memory accesses. Memory access conditions are explicitly mon-
itored by trap handlers running on the processor. [39] discussed several applications of
informing memory operations, such as performance monitoring, software controlled
prefetching, enforcing cache coherence, and software controlled multithreading.
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User-Tailored Memory System. With efficient user level support, user programs
can define their own memory system semantics. This is a natural way to extract memory
intensive operations to fight the memory wall problem. For example, memory forward-
ing[49] enables aggressive memory address layout optimizations. The Impulse project[9]
pursues the same goal with a smarter memory controller.

6.2.2 Memory Function Implementation

Memory functions can either be implemented in dedicated hardware, or emulated
in software. Memory functions usually execute concurrently with other parts of programs.
Dedicated hardware can fully exploit the parallelism and achieve very high performance.
Conventionally, tightly-coupled shared-memory multiprocessors are supported in hard-
ware. Common cases for virtual memory system implementations are also executed in
dedicated hardware. The translation lookaside buffer (TLB) translates virtual addresses
into physical address and performs access right checks without any software involvement.
Albeit fast, dedicated hardware is expensive and not flexible. Adding new hardware fea-
tures for particular memory functions is practically impossible when using commodity
components to build computer systems, as more and more of the memory system is
migrated inside the microprocessor chip.

In contrast to hardware implementations, software is inexpensive. It is flexible and
has more powerful functionality. Memory functions requiring very complex operations
such as concurrent garbage collection are traditionally implemented in software. The soft-
ware emulating memory functions can either run in the CPU along with application pro-
grams or they can be run anywhere in the memory hierarchy where there is processing
support, and, in particular, within the memory chips on the PIMs.

With the trend of more aggressive ILP, higher processor clock rates and relatively
longer memory access latencies, much of the processor bandwidth is unused due to vari-
ous dependencies and memory access delays. This provides the opportunity to emulate
more memory functions in software utilizing the unused processing bandwidth within the
ILP processors. On the other hand, PIM technology expands the design space for the emu-
lation of memory functions in software. Memory functions may execute much more effi-
ciently in memory than in the main processors. These trends point to the programming
memory functions emulated in software.

In the case of software emulation sophisticated memory functions must be
extracted from application programs. These software memory functions may be common
to many programs or specific to one particular program. Application programs are split
into several layers which can be executed concurrently on different processing units.

When a memory function is emulated in software, one or several memory service
providers logically maintain the memory system properties expected by application pro-
grams. A service provider manipulates the state of the memory units to enforce synchroni-
zation and provide the service to various parts of an application program. For a single
threaded main processor, the application program usually must trap on the memory access



requiring the service of a memory function and must relinquish control to the service pro-
vider for the memory functions. The service provider may also run on a different proces-
sor or as a different thread in a multi-threaded processor, and may or may not trap on
memory accesses requiring the service of a memory function. The service provider may
also reside in the memory hierarchy running on PIMs in parallel with the main processors.

Other parts of the application programs are generally not aware of the service pro-
vider, and do not care if it is built-in in physical memory through dedicated hardware or
emulated through software running on the main processor or on PIMs in memory.

6.2.3 Support for Emulating Memory Functions

Support in Current Computer Systems. Most current commercial processors
limit their hardware support for memory functions to virtual memory.

A hardware implemented dynamic address translation mechanism is required to
handle the common cases. This hardware is generally a special cache--the TLB--
holding recently accessed page table entries.

» The processor is able to take memory trap generated by the TLB, which triggers
software intervention. This support is needed because complex operations such
as page fault can not be completed in hardware alone. These traps are detected
by the TLB when translating virtual addresses.

We have shown that the current virtual memory implementation scales poorly and
is quickly becoming a performance bottleneck. In addition, it is not efficient nor extend-
able to support software emulations other than virtual memory system. All recoverable
memory traps are generated by the traditional TLB before accesses are issued to the mem-
ory hierarchy. Other software emulations have to rely on the conventional virtual memory
support as is done in virtual shared memory[48]. Although it is sometimes feasible, using
the virtual memory mechanism is not efficient to support all applications. For example for
software DSM, the granularity of the page table entry is too coarse to avoid false sharing.
Modification of the state of data(page table) is too expensive given the high frequency of
data sharing events. Some schemes propose to emulate memory functions on a separate
dedicated processor in order to avoid trapping the processor from memory. Many other
proposals[39][49][78] exploit various memory functions implemented by software and
hardware cooperation simply by assuming that traps can be taken from the memory hierar-
chy even though current processors do not support it.

Emulating Memory Functions on Main Processors. In order to efficiently sup-
port the emulation of memory functions, 1) hardware on the memory access path must be
added to handle the common cases of a memory function, 2) the hardware must be able to
generate recoverable memory traps to the processor to request software involvement for
complicated uncommon cases.
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[t is very unlikely that dedicated hardware will be integrated within future com-
mercial processors to support specific memory functions as is done for virtual memory.
However, the processors have to provide the hook for easy and efficient hardware and soft-
ware cooperation. In other words, the processor should be able to take recoverable mem-
ory traps from the memory hierarchy so that any detection mechanism can be attached
anywhere along the memory access path to trigger software handling whenever it is
needed.

Virtually-addressed memory hierarchies solves the problem fundamentally. When
the TLB is moved out of the processor and located in the memory hierarchy, the processor
has to be able to take traps generated from deep in the memory hierarchy. The TLB and
any other special hardware support can be easily inserted in the memory access path given
that the virtual address caches can satisfy most memory requests. In addition, because the
hardware can be accessed with virtual addresses, the support for user-level implementa-
tions is simplified. As an example, the Tempest[63] user level shared memory could be
implemented much more easily in a virtually-addressed memory system, without the need
for an RTLB to translate physical addresses back into virtual addresses [63].

In a virtual address cache, the cache is logical in the sense that there is no physical
information involved. The dynamic address translation, as well as all other software
assisted memory access implementations can be located anywhere in the memory hierar-
chy after the virtual address cache. The caching algorithm is general and remains
unchanged despite of various memory functions emulated by software.

Emulating Memory Functions in Memory. For performance reasons, software
actions to emulate memory functions should be handled as close as possible to where the
actions are invoked. Memory functions that are memory-intensive should be implemented
in the memory side. Memory functions is a perfect paradigm to decentralize computing
among main processors and PIMs.

Take the pointer chasing problem as a simple example. User programs need to
chase a pointer chain to locate some data. This piece of code does not run efficiently in a
ILP processor because of the poor memory access locality and the dependencies. There
are two possible approaches to splitting the user programs into compute-intensive and
memory-intensive parts:

* We can encapsulate the pointer chasing code inside a procedure, which is exe-
cuted on PIM processors. Therefore, PIM tasks provide memory-intensive prim-
itives which the main processor programs can call through an interface such as
the procedure call.

* The other approach is the memory function paradigm. In addition to the pointer
based data structure, user programs can define another “dense and cache-
friendly” data structure such as an array to represent the same data. The coher-
ence between the two data structures can be maintained by user defined memory
functions running in PIMs. Therefore, the main processor programs can access
the data with good spatial and temporal locality.
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The memory function approach has advantages both for program portability and
performance. The service provider for the memory functions could be adaptively sched-
uled on the processors close to the data. There is actually no hard boundary between
threads in the main processor and threads in memory. The main processor can also be used
to emulate functions that are better executed in memory in case the PIMs run out of pro-
cessing bandwidth. In the extreme case where dumb memory is used instead of an intelli-
gent memory system, all tasks are executed on main processors.

In general, the application programs can be split into various layers, where differ-
ent memory function service providers decentralize the computation. These service pro-
viders exploit the parallelism within applications and can take advantage of the PIM in-
memory processing. The main processor programs may then have a small, clean and good-
behaved data working set so that the communication between the processor and memory
may be dramatically reduced.

6.3 Summary

The gap between processor and DRAM speeds keeps increasing. A radical solu-
tion to attack this memory wall problem is to split the computation and delegate the execu-
tion of memory-intensive tasks to memory.

Virtually-addressed memory hierarchies facilitates the integration of PIM proces-
sors in general-purpose computing systems. System software such as the operating system
may be migrated into memory where it can run more efficiently in parallel with user pro-
grams.

Programming of mixed PIM/ILP processor systems can be done through the mem-
ory function paradigm. This paradigm is also useful in systems with no PIMs. Virtually-
addressed memory hierarchies provide strong support for the implementation of memory
functions, which traditionally does not exist in an architecture with physically addressed
memory hierarchies. This support may come in two forms: 1) In a traditional computer
system with no in-memory processors nor PIMs, the spare processor bandwidth can be
better utilized to help implement a more flexible and efficient memory system. 2) In sys-
tems with PIMs, the programs emulating memory functions can be executed more effi-
ciently on PIMs although they can also run on main processors in case a PIM is not
available. In both cases, portability and programmability are enhanced.
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Chapter 7

RELATED WORK

7.1 Virtual Memory

Since the first virtual memory system was introduced in the Atlas computer[27] in
1961, virtual memory has become an essential component of modern computer systems to
support multitasking operating systems.

7.1.1 Dynamic Address Translation

Many virtual memory systems[62][87] organize the page table as a forward-
mapped structure where the page table is indexed by the virtual address, possibly in multi-
ple levels. A less common structure is the inverted page table(IPT) [40]. Since the location
of an IPT entry in the table is set by the physical address but the IPT is indexed with vir-
tual addresses the virtual address is first hashed to locate the page table entry.

Historically, a hardware finite state machine inside the memory management
unit(MMU) searches the page table and refills the TLB on TLB misses. Nagle et al. [54]
studied the trade-offs for software managed TLBs where a memory trap is raised on TLB
misses and the software trap handler refills the TLB. Through hardware monitoring and
trace driven simulations, they evaluated TLB performance on a MIPS R2000 based work-
station running several different operating systems. We have shown in our study that the
hardware trap overhead is much higher in ILP processors than in previous generation pro-
cessors, which they assumed in their research.

Jacob and Mudge[43] looked at several virtual memory implementation choices
including page table organization and TLB refill mechanism. Based on trace-driven evalu-
ations, they concluded that the performance difference between virtual memory imple-
mentations did not really come from the choice of page table structure or MMU
architecture, but rather from other implementation issues such as the trap overhead and the
cache misses due to TLB miss handling.

Chen et al. [19] provided a simulation-based evaluation of TLB performance,
which demonstrates the importance of the TLB mapping size on performance, which is
also shown in other subsequent TLB research papers[54](80]. Although they looked at
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some different TLB organizations, all their designs are classified as LO-TLBs according to
our characterization.

Clark and Emer[22] studied the TLB performance of the VAX 11/780 using trace-
driven simulations. They showed that about 4% of execution time is due to the translation
lookaside buffer. However, recent studies have shown the TLB overhead is currently much
larger[54][67][79][80][65] and can even run up to 50% of the total execution time[79].

Austin and Sohi[3] evaluated the bandwidth requirement on a conventional TLB
for multiple issue processors. Instead of brute force multi-ported TLBs, they compared
several method to expand TLB bandwidth, including interleaved TLB, multi-level TLB,
piggyback ports (which send the translation to simultaneous arriving requests), and pre-
translation (which allows a single translation request to be used for multiple memory
accesses). These TLB design optimizations improve the dynamic address translation
bandwidth. However, they do not fundamentally solve the TLB scalability problem.

One solution to the poor performance and scalability of the traditional TLB is
superpages. Talluri et al.[79][80] and Romer et al.[65] studied the use of superpages to
increase the TLB coverage without enlarging the TLB. They demonstrated that super-
pages dramatically cut the TLB overhead by mapping physical memory in large chunks.
In [79], the TLB supports two page sizes (4KB and 64 KB), and the page reservation
restricts the allocation of physical memory. Their subblock TLB is similar to a subblock
cache.

Romer et al.[65] advocate an on-line promotion scheme where superpages are con-
structed dynamically by promoting small pages to a large page. TLB misses are counted
so that when the miss count reaches a threshold, a superpage is constructed by copying
and reconstructing the physical memory layout. The promotion itself requires copying
physical pages and updating kernel data structures and TLB shootdowns. The virtual-to-
physical address mapping is too complex to satisfy the superpage requirements. The
online reconstruction operations are very costly and usually increase the data set size of
applications. Moreover the decision of when and how to promote superpages requires sig-
nificant hardware and software efforts.

In addition to the page size, there are other factors to consider when allocating
physical memory, including the page placement for NUMA memory systems and page
coloring for cache friendly optimizations. These requirements sometimes conflict with
each other. Moreover, changing the virtual-to-physical address mapping is very expensive
in multiprocessors due to the TLB consistency overhead, which of course also limits the
dynamic reconstruction of physical memory layout to utilize superpages.

The Impulse project [78] attempts to increase TLB coverage by backing up super-
pages with shadow physical memory. A superpage can be constructed by mapping to con-
tiguous shadow physical pages which are then translated into non-contiguous real physical
pages by the memory controller. Although this can boost performance for particular appli-
cations, it is not a general solution for superpages because shadow memory is limited and
has to be managed like physical memory.
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To obviate the TLB bottleneck for large applications, Saulsbury et. al. [67] pro-
posed recency-based TLB prefetching. The temporal locality of TLB accesses is recorded
in an LRU stack and stored along with the page table entries. Upon a TLB miss, nearby
mappings in the LRU stack are prefetched into a TLB prefetch buffer which is accessed
like the TLB. The entry is then be moved to the TLB if it hits in the following accesses.

Black et. al. [4] proposed the TLB shootdown solution to maintain TLB consis-
tency. This algorithm does not require any special hardware support other than inter-pro-
cessor interrupts. However, it requires global synchronization among all processors and all
processors have to idle while a page table is being modified. Therefore, the algorithm
scales very poorly in large-scale multiprocessors.

Rosenburg [66] proposed a modified TLB shootdown algorithm to improve the
original algorithm. Less synchronization is required but the scheme relies on the hardware
features of the IBM RP3 system.

Teller[81] addressed the scalability of maintaining TLB consistency in large scale
multiprocessors. In particular, she proposed a memory-based TLB scheme in the context
of UMA(Uniform Memory Access) architectures. She demonstrated that TLB consistency
scales poorly in large-scale multiprocessors and that moving the TLB to memory can rad-
ically solve the problem. Her scheme is similar to SHARED-TLB in CC-NUMA and
inspired the design of V-COMA.

7.1.2 Virtual Address Caches

Although virtual address caches have been the topic of many research papers, there
are very few quantitative analysis of virtual address cache performance. Agarwal[1] ana-
lyzed virtual-address cache performance using traces from VAX. Wu et. al[90] evaluated
different cache types including V/P and V/V caches using an IBM 370 trace. Although
some of their observations are similar to the ones in this dissertation, the quantitative
results are hard to compare because of the different schemes adopted for virtual address
caches and of the different workloads and operating systems used in the experiments. A
survey of virtual address cache issues in uniprocessors and multiprocessors has been
recently published[10][11].

Synonyms have been used for various optimizations. For example, Chu [21]
described a zero-copy TCP implementation using virtual-physical page remappings. Chao
et. al. [15] described the porting of Mach operating system on PA-RISC, which has a vir-
tual address cache architecture. Flushing is necessary to solve the synonym problem.

Opal[18] is a novel approach to operating system design because it runs on a single
global virtual address space shared by all procedures and all data. Synonyms do not exist
in an SASOS. It has become clear that the software community is clearly not ready for
such a radical change.

Wang et al.[85] proposed the idea of a two-level virtual-real cache hierarchy where
the TLB is after the first-level cache. We have called this system L1-TLB. They proposed



to store pointers in the two caches to solve the synonym and the writeback problems and to
enforce inclusion.

Among the five design options we discussed, LO-TLB, L1-TLB and L2-TLB vari-
ations have been explored by other researchers. Jacob et al.[42] proposed a software-man-
aged address translation scheme where the hardware TLB is eliminated. A big virtually-
indexed virtually-tagged second level cache drastically cuts the frequency of address
translations. This scheme can be considered as a O-entry L2-TLB.

In the VMP multiprocessor proposed by Cheriton et al.[20], dynamic address
translation is also handled by trapping the main processors, which take care of the cache
coherence protocol as well. Wood et al.[89] proposed an in-cache translation scheme in
SPUR. Although it had a single level cache, we can categorize it as an L2-TLB scheme
because there is no physically indexed cache after the address translation mechanism. As
we discussed, L2-TLB is attractive in CC-NUMA or UMA architecture since the whole
cache hierarchy is virtual. However, this research work was done before the advent of ILP
processors.

Lynch[51] observed that physical cache performance varies in each run depending
on the allocation of pages by the operating system, while on the other hand the perfor-
mance of virtual-address caches is not sensitive to these implementation decisions. We
have observed the same trend --i.e. the miss rates of virtual-address caches are more robust
than those of physical-address caches, especially for caches with low associativity. Lynch
also explored page coloring issues. His simulations indicated that the page fault rate does
not noticeably increase with the number of colors. He concluded that the use of coloring
did not affects paging much.

7.2 Trap and Interrupt Issues

There has been little research conducted on trap and interrupt implementations in
ILP processors since Smith and Pleszkun [75] defined precise interrupt, and proposed sev-
eral implementations for what they called pipelined processors. The reorder buffer scheme
they proposed has been widely used in current ILP processors, and is also the base of our
study on the trapping behavior in ILP processors.

Hwu and Patt [41] studied the repair mechanism for out-of-order execution
machines. They looked at both branches (B-repairs) and exceptions (E-repairs), which
change the instruction flows. They pointed out the different behavior of branches and
exceptions and proposed different repair algorithms for them.

The lightweight trap model relying on simultaneous multithreaded architecture
was recently proposed by Song and Dubois[76]. The microthread proposed in [16] is very
similar to the nanothread in [76]. Zilles et. al. [94] studied lightweight exception handling
for TLB refills. They have shown that the lightweight trap is more advantageous than the
regular trap for TLB refills. To support lightweight traps the processor must be multi-
threaded. Lightweight traps cannot replace the regular memory traps that we have ana-
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lyzed in this research. Lightweight traps help the main thread execution by taking care of
some events that can be handled without preempting the main thread. However, complex
events such as page fault require very complicated handling and most of the time preemp-
tion. For events such as TLB misses, the lightweight trap must synchronize with the main
thread. The techniques proposed in this dissertation are also applicable and can be com-
bined with lightweight traps to provide a comprehensive solution for traps in future pro-
CESSOrS.

Thekkath and Levy [82] argued that the exception mechanism was used by many
applications and run-time systems in novel ways. User programs rather than the kernel
should be responsible for exception handling. They proposed hardware and software sup-
port to deliver user-level exceptions to cut the overhead due to kernel context switch.

7.3 Generic Memory Functions

Traditionally, shared memory multiprocessors have been implemented by dedi-
cated hardware. Li and Hudak[48] proposed shared virtual memory where the virtual
memory support is utilized to implement shared memory system in virtual address space.
This work pioneered the research on software and hybrid distributed shared memory sys-
tems, which has produced a large body of research literature and is still a very active
research area.

As examples of software and hybrid shared memory implementations, Chaiken
and Agarwal[13] evaluated a spectrum of software-assisted protocols. Hill et al.[38] pro-
posed cooperative shared memory which can be considered as a software extended proto-
col with only one hardware pointer. Moga et al. [53] implemented a software controlled
COMA (SC-COMA). Schoinas et al.[71] overviewed some fine grain access control for
shared memory implementation and Reinhardt et al.[64] developed decoupled hardware
support for shared memory implementations.

The SHRIMP project [5] advocated a virtual memory mapped network interface to
support shared memory implementation. Similar to memory-mapped file I/O, virtual
memory mapped communication maps the remote virtual or physical memory into the
local virtual address space. The special network interface is designed to minimize soft-
ware involvement in order to achieve high performance.

In the simple COMA architecture proposed by Saulsbury et. al[69], the virtual
memory system is also involved in the cache coherence handling to allocate pages for rep-
lication. WildFire[34] connects several large SMPs to build large scale shared memory
multiprocessors using an R-NUMA-like[26] protocol.

Appel and Li[2] studied virtual-memory primitives that can be utilized by user pro-
grams. They listed some applications such as concurrent garbage collection, shared virtual
memory, concurrent checkpointing, persistent stores, extending addressability, data-com-
pression paging, and heap overflow detection. Conventional virtual memory support can
be used to implement these applications as demonstrated in [2]. However with better sup-
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port as proposed in this dissertation, more applications can be invented given the flexibil-
ity and efficiency of the hardware/software interface. For example, in the Impulse
project[78]. a second-level address translation is implemented in the memory controller to
improve memory behavior of user programs. Memory forwarding [49] accomplishes simi-
lar dynamic layout optimizations. It relies on memory traps to complete the memory func-
tion in software in uncommon cases. Informing memory operations[39] were proposed to
provide feedback on memory behavior to software by trapping on L1 cache misses.

Burger et. al. [6] and Wulf and Mckee [91] pointed out that the increasing gap
between processor and memory will lead to the so-called memory wall problem where not
only the latency but also the bandwidth of memory accesses will slow down the processor.
In this doomsday scenario. the processors will starve for data, especially in data-intensive
applications.

Saulsbury et al. [68] described a PIM design where a very wide cache line is used
to utilize the vast bandwidth within the memory chip. It includes a complete RISC proces-
sor within the memory chip with a high speed serial interconnect to communicate with
other chips. The Berkeley IRAM project[57] targets in-memory vector processing. It
would appear that vector processing can efficiently exploit the inherent huge bandwidth
within the memory chip and, at the same time, offer the user a familiar programming style.

Kogge et al. [45] discussed programming models for PIMs to develop code for a
PIM based computer. They summarized five programming models: static library model,
SPMD model, modify on access model, locally shared/globally distributed model, and
split execution model. In the static library model, program access to the PIM is through a
library of pre-written functions. The SPMD model is simply an extension of the SPMD
model for conventional multiprocessors. In the modify on access model, PIMs can execute
functions which can be pushed in memory in a way similar to filters in streams. Compress
and decompress modules in each level of memory hierarchies can be supported by this
model. The locally shared/globally distributed model is the counterpart of message pass-
ing model for PIMs. In the split execution model, the program is broken into two concur-
rent executing pieces. One performs computations and the other moves data up and down
in the memory hierarchy. Among the programming models they listed, modify on access
and split execution model are basically special memory functions dedicated to PIMs.

The main goal of the DIVA project[36] at USC is to support emerging data-inten-
sive applications with smart memories. A large-scale memory array is attached to a host
processor. The host controls the execution in memory and executes the code that the mem-
ory array cannot execute well.
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Chapter 8

CONCLUSIONS

In this dissertation, we have focussed on virtually-addressed memory hierarchies,
where the virtual-to-physical address translation is moved from the processor down inside
the memory hierarchy.

Virtual memory is supported by a hardware translation lookaside buffer (TLB)
handling most common cases, and by a set of software functions. The traditional TLB
does not scale well and is quickly becoming a performance bottleneck because: 1) The
TLB is located in the critical path of memory accesses where the speed and bandwidth
requirements increase with the processor clock rate and parallelism, 2) the TLB size is
fixed on the processor chip and cannot be changed when building various systems, 3) TLB
consistency in multiprocessors does not scale, and becomes very expensive for large sys-
tems.

Virtually addressed memory hierarchies radically solve the scalability problem of
the traditional dynamic address translation mechanism and dramatically cut the overhead.
When the cache memory is virtually indexed and virtually tagged, memory accesses can
be satisfied without virtual-to-physical address translations. Because of the filtering effect
of the virtual caches, we have shown in the dissertation that the number of address transla-
tion misses under virtually address memory hierarchies is largely reduced. In addition, vir-
tually addressed memory hierarchies enables new designs of multiprocessor architectures.
In particular, we have proposed a novel architecture called Virtual COMA(V-COMA)
where the entire memory hierarchy including main memory is virtually indexed and virtu-
ally tagged. The address translation hardware is shared among all the processors and ben-
efits from sharing and prefetching effects. Moreover, the consistency problem is
eliminated because no TLB entry is replicated. Therefore, the V-COMA architecture
scales very well and works even better for large scale multiprocessors.

Virtually addressed memory hierarchies have two technical challenges. One is the
synonym problem, the other is the lateness of detecting memory traps.

Synonym happens when two or more virtual addresses map to the same physical
address. Synonyms may generate inconsistencies in virtual-address caches and therefore
are not appropriate to address the memory hierarchy in general. We propose and evaluate a
new scheme called the synonym lookaside buffer (SLB) to solve the synonym problem
and enable virtual-address caches. The SLB replaces the traditional TLB in the processor



to handle synonyms before issuing virtual addresses to the memory hierarchy. The SLB
can remain very small because its size depends on the sharing of synonyms and not on the
sizes of applications or of the physical memory. We also compared the miss rate behavior
of physical- and virtual-address caches. It appears that virtual-address caches exhibit bet-
ter miss rates than physical-address caches and that the solution using a small SLB in front
of the caches avoids short misses in larger caches while safeguarding the benefits of tem-
poral and spatial locality in the virtual space.

Memory traps are required to implement virtual memory. Virtually-addressed
memory hierarchies require processors to take late memory traps because the dynamic vir-
tual address translation detecting exceptions is located somewhere in the memory hierar-
chy instead of within the processor close to the pipeline. We propose techniques to enable
the ILP processors to take late memory traps. We show that, while the ILP trend in modern
processors dramatically increase the cost of traps, the ability to tolerate the lateness of
memory traps is also largely increased. Therefore with the techniques we proposed, the
cost of traps becomes much less sensitive to where the trap is detected. Given the fact that
the frequency of traps generally goes down dramatically when moving the TLB down the
memory hierarchy, it becomes advantageous to take traps as deep as possible in the hierar-
chy rather than to take them at the level of the first-level cache, as is usually done.

We have run extensive simulations using state-of-the-art simulation tools to evalu-
ation schemes and ideas throughout this research. Based on the type of evaluation, we
have modeled both a detailed processor microarchitecture and a complete machine run-
ning a real commercial operating system. Our simulation results show that: 1) the syn-
onym lookaside buffer scales well and efficiently solves the synonym problem for
virtually addressed memory hierarchies, 2) late memory traps can be efficiently supported
in modern ILP processors, and 3) virtually addressed memory hierarchies dramatically cut
the overhead due to virtual memory implementation.

Virtually addressed memory hierarchies not only provide more efficient and scal-
able implementation for virtual memory, but also open the door to more flexible and
smarter memory systems. Virtualizing the memory hierarchy is a necessary step to facili-
tate the integration of processing-in-memory (PIM) technology into general-purpose com-
puting systems. Some or all operating system functions can be migrated to memory so that
they can be executed more efficiently and in parallel with user programs and so that user
level in-memory computing becomes possible. Virtually-addressed memory hierarchies
provide better support for the general memory function paradigm so that 1) new memory
functions can be developed for systems with no PIMs, and 2) applications programs can
be naturally split into programs running on ILP main processors and on PIMs in memory
following the memory function paradigm.

In summary, virtually addressed memory hierarchies are feasible and efficient and
are very attractive for new, emerging system ideas and technologies in the context of gen-
eral-purpose computing.
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