University of Southern California

CENG Technical Report: 01-03

Asynchronous 1 of n logic using single-track
protocol

Student: Marcos Ferretti (ferretti@usc.edu)

Professor: Peter A. Beerel (pabeerel @usc.edu)

July 12" 2001

Asynchronous 1 of n logic using single-track protocol

A. Introduction

The proposed circuitry implements an asynchronous 1 of n logic using a single-track
protocol. Single-track protocol was previously used to communicate control signals
between logic blocks.

In our approach, two logic blocks communicate using the following procedure: the
sender writes the data in the connecting wires, the receiver reads the data and reset the
wires (restore them to a “blank”™ value), which informs the sender that the receiver got the
data. While the wires are “blank”, there is no data flowing and while the wires are
holding data (“busy”), the sender will wait until the receiver set them “blank™ before send
a new data.

The main advantage of this idea is that there are no extra control wires and the data
itself is performing the “hand-shaking” protocol between the logic blocks.

B. Description.
- Single track

The single-track protocol consists basically in specifying the “transmitter driver
direction” and the “receiver restore direction”. For example, for control signals, we can
define that, if the communication wire was low (“ready™), the transmitter can drive the
wire high and, when the receiver get the “request”, it will “acknowledge™ it by driving
the wire low (restoring the wire level for the next communication).

The figure below shows an example of a block diagram for this procedure.

Transmitter Receiver

Communication wire
/Request out P= ~ @—————vereeeee Request in

Ack in I—— Ack out

Figure 1 - Single-track protocol block diagram.

Notice that, it is also possible to implement “transceivers” using the communication
wire to transport request and acknowledge in both directions if, for every communication
event, it is well defined which block will send and which will receive. Also, with care,
several transmitter and receivers may be connected to the same wire.

- Wire voltage holders (staticizers)

If the wire is subject to long periods of inactivity, a small memory unit (two inverters)
may be used to “hold” the voltage level of the wire (see Figure 2-a). This solution implies
that the transmitter and the receiver circuits fight against the state of the inverter, which
may be energy inefficient.

We have a new approach to prevent the wire voltage drift from its intended value.
The idea is that: the side that “drives high” will “hold low™ and the side that “drives low”
will “hold high”. This “no-fight” solution offers the same drift protection of the two
inverters approach and avoids short-circuit currents as shown in the diagram below.

Transmitter Receiver
Communication wire
/Request out Request in
Ack in I—— Ack out

- Communication F .
Transmitter wire Receiver
/Request out 09 —@————@--- I P Request in
Ack in I—O— Ack out

Figure 2 - Single-track protocol block diagrams with voltage holders
(staticizers): (a) two inverters holder and (b) our “no-fight” holders.

For simplicity, the following diagrams don’t show any line staticizer circuit, just the
driver transistors.

- The proposed 1 of n logic with single-track protocol

In order to present the proposed asynchronous 1 of n logic using single-track protocol
circuits, this documentation will focus on the 1 of 2 case, also known as “dual-rail” logic.

- Dual-rail single-track buffer

In asynchronous design, buffers are used to hold the information allowing “slack™
matching or simply storing the data.
The figure below shows our dual-rail STFB (Single-Track Full Buffer) buffer

implementation. LO and L1 are the left-side dual-rail inputs and RO and R1 are the right-
side dual-rail output.

L0 S0
|_ . RO Buffer
._C([: 10 RO
A - L1 RIF>

iy g L Pt
I_ o < (b)

(a)

Figure 3 — Dual-rail (1of 2) STFB (Single-Track Full Buffer) Buffer: (a) logic
diagram and (b) symbol.

A CMOS transistor-level implementation of Figure 3 is shown below.

S1
RO L1 R1
I—A
SO RO
S1 B_C@RI

Figure 4 — Dual-rail (1of 2) STFB (Single-Track Full Buffer) Buffer transistor-
level logic diagram.

Notice that, the internal signals A and B are generated based on the buffer internal
state SO and S1 and on the buffer outputs RO and R1 respectively. When one of the
internal state SO or S1 goes low, the NAND generates A=1, which is used to reset the
inputs “Acknowledging” the left environment. If RO or R1 are high, the NOR generates
B=0, which means that the output is “Busy” and any new incoming data must wait.

The figure below shows an optimization of the circuit shown in Figure 4. The NAND
gates are merged and only the B signal restores SO and S1.

A weak PMOS may be added to hold SO and S1 high during long periods of
inactivity. Also, reset signals (Reset and /Reset) may be added to initialize the input lines
and the buffer state (SO and S1).

Optional weak
PMOS holder

R1

SO RO
/Reset 3}3—/\ B —C(F Reset
S1 = R1

Figure 5 — Optimized Dual-rail (1of 2) STFB (Single-Track Full Buffer) Buffer
transistor-level logic diagram with PMOS holder and reset inputs.

For simplicity, the optional reset inputs and the holder transistors will not be shown in
most of the following circuits.

We can say that we have a SCD (State Completion Detector) to generate “A”
(Acknowledge) when the data computation is “inside™ the circuit and a RCD (Right
environment Completion Detector) to generate “B™ (Busy) when the output is still
holding data (not ready). These two blocks are the essence of this new communication
protocol. They supply locally the required signals for a proper communication avoiding
external or explicit communication signals.

[n the circuits of Figure 3, Figure 4 and Figure 5, we can see that the forward latency
is 2 gate-delays, the backward latency is 4 gate-delays and the cycle-time is 6 gate-
delays.

RO
H B

Ll Wd
S R1

|_

Figure 6 — Dual-rail (1of 2) STFB (Single-Track Full Buffer) Buffer logic
diagram with timing margin of 2 gate-delays.

Also, the timing margin between the high driver “request” and the low driver
“acknowledge” is zero. This may not be a problem after careful transistor sizing and

timing analysis, but a circuit with explicit timing margin of 2 gate-delays is proposed
below.

In Figure 6, we can see that the forward latency is 4 gate-delays, the backward
latency is 4 gate-delays and the cycle-time is 8 gate-delays.

The timing margin between the high driver “request” and the low driver
“acknowledge™ is 2 because each line-driver transistor is still active for only 3 gate-
delays.

(a) (b)
(c) STFB = [[L+ A R-]; R+, L—; R¥, L*]

Figure 7 — Signal Transition Graph (STG) of the buffer (a) from Figure 5 and
(b) from Figure 6 and (¢) STFB handshaking expansion (HSE).

Figure 7 shows two Signal Transition Graphs (STG) and the handshaking expansion
(HSE) equation from the presented buffers. The signs “+”, “-” and “*” represent the
rising, falling and floating state of the signals respectively. The dashed arrows are driven

by the left and right environments.

- 1 of n single-track buffer

|
L0
. RO Buffer
: ; - L0 ROP>
Ln .D: :l i —| Ln__ Rnpp
Sn R'n
" <
(a)]

Figure 8 — 1 of n STFB (Single-Track Full Buffer) Single-Track Protocol Buffer:
(a) logic diagram and (b) symbol.

The Figure 8 shows an example of our 1 of n STFB (Single-Track Full Buffer) buffer
implementation. LO to Ln are the left-side 1 of n inputs and RO to Rn are the right-side 1
of n output.

- Dual-rail single-track logic.
Logic gates can be implemented to operate under this single-track protocol. For
simplicity, the following examples are two inputs dual-rail (I of 2) single-track logic

gates. More inputs and/or 1 of n data can be naturally expanded.

- Dual-rail single-track AND

SO PB_qE‘ S1 |

c0 a0 { l al cl

S0 A H} Ilfl | ™ c0 (b)
S Ié lb Ié | B—‘(?(-z
(a)

Figure 9 — Two inputs Dual-rail STFB_AND logic gate: (a) transistor-level logic
diagram and (b) symbol.

In Figure 9, the circuit performs the AND logic operation: a*b = ¢, where a and b are
dual-rail single-track inputs and c is the dual-rail single-track output.

All the inputs are “acknowledged” by the signal A when SO or S1 goes low. For S1,
this will happen when a/ and b1 are high. For SO, just a0 or b0 high should be enough to
compute the logic result, but we need to be sure that both values (a and b) arrived at the
logic gate before drive SO. That’s why the input combinations: 00, 01 and 10 are covered
to drive SO.

Notice that, since we are using dual-rail, to perform a NAND operation, we can just
invert the output wires c0 and c/.

The figure below shows a modified AND circuit. This circuit will forward a zero
result if one of the inputs is zero even if the other input has not arrived yet. When all the
inputs are finally present, they are acknowledged.

/A
w LCD - Left
(% environment
Optional - ; Completion
weak Detector

mverter

(a)

Figure 10 — Improved two inputs Dual-rail STFB_ANDiI logic gate: (a)
transistor-level logic diagram with reset signal and (b) symbol.

In Figure 10, while forwarding an “obvious result”, the gate’s SCD (State Completion
Detector) sets A=1 which will disable the logic for future evaluations through /A=0 and
will hold the information that an acknowledge is pending. When the LCD (Left
environment Completion Detector) detects that all data are present, the acknowledge
signal is passed to the transistors that will “consume” the data at the inputs and A is reset
to zero. This will restore /A=1 and the gate will be ready to evaluate again.

The LCD may be slightly simplified since we know that the logic gate will only
generate A=1 if certain inputs are already present. In this figure, for clarity, the LCD
designed checks all inputs combinations.

Notice that, unlike other asynchronous designs, the LCD is used here to enable the
acknowledge to the left environment not to enable the evaluation or pre-charge of the
gate.

If the gate is subject to long periods of inactivity, a weak inverter may be added to
hold the acknowledge state (A) as shown in the Figure 10.

- Dual-rail single-track OR

The following circuit perform the OR logic operation: a+b = ¢, where a and b are
dual-rail single-track inputs and ¢ is the dual-rail single-track output.

B
SO I | S1

c0 al l al cl
b — I—b] —\ 0

—>

e —

S0 AICIC IC | c0 (b)
S1 % % ”% | B_C@c]

Figure 11 — Two inputs Dual-rail STFB_OR logic gate: (a) transistor-level logic
diagram and (b) symbol.

(a)

In Figure 11, all the inputs are “acknowledged™ by the signal A when SO or S1 goes
low. For S0, this will happen when @0 and b0 are high. For S1, just a/ or b1 high should
be enough to compute the logic result, but we need to be sure that both values (a and b)
arrived at the logic gate before drive S1. That’s why the input combinations: 11, 01 and
10 are covered to drive S1.

Notice that, since we are using dual-rail, to perform a NOR operation, we can just
invert the output wires ¢0 and c/.

The figure below shows a modified OR circuit. This circuit will forward a one result
if one of the inputs is one even if the other input has not arrived yet. When all the inputs
are finally present, they are acknowledged.

In Figure 12, while forwarding an “obvious result”, the gate’s SCD (State Completion
Detector) sets A=1 which will disable the logic for future evaluations through /A=0 and
will hold the information that an acknowledge is pending. When the LCD (Left
environment Completion Detector) detects that all data are present, the acknowledge
signal is passed to the transistors that will “consume” the data at the inputs and A is reset
to zero. This will restore /A=1 and the gate will be ready to evaluate again.

The LCD may be slightly simplified since we know that the logic gate will only
generate A=0 if certain inputs are already present. In this figure, for clarity, the LCD
designed checks all inputs combinations.

10

L

LCD - Left

'lI'i.‘. e aww .." .-:
(V % environment

Optional Completion
weak Detector

inverter

(a)

Figure 12 — Improved two inputs Dual-rail STFB_ORI logic gate: (a) transistor-
level logic diagram with reset signal and (b) symbol.

Notice that, unlike other asynchronous designs, the LCD is used here to enable the
acknowledge to the left environment not to enable the evaluation or pre-charge of the
gate.

If the gate is subject to long periods of inactivity, a weak inverter may be added to
hold the acknowledge state (A) as shown in the Figure 12.

- Dual-rail single-track XOR

The following circuit perform the XOR logic operation: a®b = ¢, where a and b are
dual-rail single-track inputs and c is the dual-rail single-track output.

In Figure 13, all the inputs are “acknowledged” by the signal A when SO or S1 goes
low. For SO0, this will happen when a is equal to b, which means: a0 and b0 are high or a/

11

and b1 are high. For S1, @ must be different than b, which means: a/ and b0 high or a0
and b1 high

Notice that, since we are using dual-rail, to perform a XNOR operation, we can just
invert the output wires ¢0 and c1.

j 3 b b
S0 AT | ||§] c0 (b)
S % Ib % I B‘O@c;

Figure 13 — Two inputs Dual-rail Single-Track XOR logic gate: (a) transistor-
level logic diagram and (b) symbol.

(a)

Unlike the AND and the OR gates above, the XOR must wait until all its inputs are
present to generate the proper result. Therefore, no improved XOR gate can be designed.

- Dual-rail single-track Fork operation

The Fork operation consists in copy the incoming data to several different paths if all
output paths are ready. If one or more paths are busy, the data must wait.
The figure below shows the 1 to 2 fork circuit.

.y
Ri1b Rla

-5 ROa
L0 LI _'_RO"
B _C@I_Reset (b)
S0 A
_l——IRla

/Reset (a)
31 R1b

R0a

oA

Figure 14 — Dual-rail STFB 1 to 2 FORK Buffer: (a) logic diagram and (b)
symbol.

- Dual-rail single-track Non-conditional Merge operation

The Non-conditional Merge (also know as Join) operation consists in concatenate the
incoming data from several different paths if the output path is ready. If the output path is
busy, the data must wait. The inputs are mutually exclusive by the left environment.

The figure below shows the 2 to | non-conditional merge circuit and symbol.

LOa
Lla RO

NC Meree
LOb R1

L1lb

1
L
1
1
O
21}

RO R1
B
:;I I_ _I—RO

LOaLlaLObLl1b B Reset (b)
SO A R1
/Reset
a
s (a)

Figure 15 — Dual-rail STFB 2 to 1 NC MERGE Buffer: (a) logic diagram and (b)
symbol.

13

- Dual-rail single-track Split operation

The Split operation consists in forward the incoming data based on a control (C)
input. If the chosen output path is busy, the data must wait. After forwarding the data, the
control signal is also consumed.

The figure below shows the 1 to 2 split circuit and symbol. In this example, when
C=0, L is directed to Ra and, when C=1, to Rb.

h SOa #

ROa Rla

VY VY

(b)

R0a
Reset
Rla

Reset

ROb RIb

Bu—c&:'—;
RO
Bb—c@‘#—_ :

LO L1 CO CI
A

/Reset

Sla
(a) S1b

Figure 16 — Dual-rail STFB 1 to 2 SPLIT Buffer: (a) logic diagram and (b) symbol.

- Dual-rail single-track Merge operation

The Merge operation consists in choosing one of the incoming data based on a control
(C) input. If the output path is busy, the data must wait. After forwarding the data, the
control signal is also consumed.

The figure below shows the 2 to 1 merge circuit and symbol. In this example, when
C=0, La is directed to R and, when C=1, Lb is directed to R.

14

(b)

RO
B _(@Reset
R1

i\

LOaLla CO LObL1b Cl
S0a Aa SOb . Ab
/Reset /Reset
Sla Slib
(a)

Figure 17 — Dual-rail STFB 2 to 1 MERGE Buffer: (a) logic diagram and (b)
symbol.

- Dual-rail single-track Full Adder (FA)

To implement a full adder (STFB_FA) we need to compute the sum and the carry out
before reset the inputs as shown below.

A three-input XOR and a three input majority (MAJ) gate basically compose the full
adder. The XOR generates the sum (s=a+b+ci) and the MAJ generates the carry out
(co=MAI(a,b,ci)).

15

vy

A

_» (10 (,IO CI.I
—»{al
FULL S0
ADDER $/
0 —pi b0
{01 o0 col
(c)
s0
Reset
s/
col)
_I—co()
Reset
_I—coi

Figure 18 — Dual-rail STFB_FA main blocks: (a) three-input XOR gate to generate
the sum, (b) three-input MAJ gate to generate the carry out and (c) symbol.

16

Optional
weak
inverter

Figure 19 — Dual-rail STFB_FA acknowledge circuitry.

In Figure 18 and Figure 19, we have the proposed STFB_FA circuits. In this
implementation, if a=1 and b=1, we have enough information to generate a carry out
co=1 and, if a=0 and b=0, we have enough information to generate a carry out co=0. This
will speed-up the result and the circuit of Figure 19 will acknowledge all the inputs when
both results (s and ce) have been transmitted.

Notice that, the same result would be possible if we duplicate the input signals (a, b,
ci) using three STFB_FORK gates and, then, connect to one three-input XOR gate and
one three-input MAJ gate. The main difference in this case is that we add the FORK gate
in the critical path (the carry path), which may result in a lower performance when
compared with the proposed circuit in Figure 18 and Figure 19.

17

- Dual-rail four-phase to single-track transmitter (Tx)

In order to interface with four-phase asynchronous logic, the circuit below is an
example of a transmitter four-phase to single-track buffer.

In this circuit, if Le is high and the right environment is ready, a data from the left
environment will be transmitted and the signal Le will be set low. This also disables the
buffer, avoiding re-transmit the same data after the right environment consumes it.

Le will remain low until both inputs return to zero (four-phase protocol). When this
happens, Le is set high and the transmitter is ready for the next data.

Tx
| LO RO

L1 R1

B

<4 Le

(b)

R0
Reset
R1

Optional L0
weak

inverter

(a)

L1

Figure 20 — Dual-rail (1of 2) STFB_Tx Buffer: (a) logic diagram and (b) symbol.

- Dual-rail single-track to four-phase receiver (Rx)

In order to interface with four-phase asynchronous logic, the circuit below is an
example of a receiver single-track to four-phase buffer.

In this circuit, if Re is high (the right environment is ready), a data from the left
environment will be received and the buffer will wait for the signal Re to be set low.

18

When Re goes low, a three gate-delay pulse is generated to consume the left
environment data and the receiver is reset (RO and R1 goes low).

While Re is low, RO and R1 are reset and no new data is received (four-phase
protocol). When Re returns to high, the receiver is ready for the next data.

Rx
—»{ L0 RO >
—» LI R1 >
Re |4
(b)
LO LI
;” “ d E 1 Re

(a)

Figure 21 — Dual-rail (1of 2) STFB_Rx Buffer: (a) logic diagram and (b) symbol.

- Dual-rail single-track Data Consumer (DC)

In this single-track protocol, a data must be consumed or it will remain in the “wires”
and will prevent the previous block to continue computing.
The circuit below simply destroys unwanted data by detecting it and resetting it.

L0 DC
L L0

—»
—»| LI

(a) (b)

Figure 22 — Dual-rail STFB_DC: (a) circuitry and (b) symbol.

