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Abstract

Handling deadlocks is essential for providing reliable communication paths be-
tween processing nodes in multiprocessor/multicomputer systems. The existence of
multiple message types and associated inter-message dependencies may cause message-
dependent deadlock in networks that are designed to be free of routing deadlock. Most
methods currently used for dealing with message-dependent deadlocks require more
system resources than are necessary and/or do not use system resources efficiently.
This may have an adverse eflect on system performance if resources are scarce. In this
paper, we evaluate different approaches for handling message-dependent deadlocks,
and we propose an alternative technique based on progressive deadlock recovery. Re-
sults show that the proposed technique relaxes restrictions considerably, allowing the
routing of packets and the handling of message-dependent deadlocks to be much more

efficient—particularly when network resources are scarce.

1 Introduction

In multiprocessor/multicomputer systems, efficient and reliable communication amongst
processing nodes is crucial for achieving high performance. However, deadlock anoma-
lies occurring as a result of cyclic hold-and-wait dependencies by messages on network
resources reduce communication efficiency and reliability, consequently degrading network
and system performance considerably. Thus, it is important to guard against deadlock in
such a way as not to impose overly restrictive measures that can under-utilize network
resources.

Recent research [1, 2, 3, 4, 5] has focused on the development of very efficient net-

work routing techniques that either avoid or recover from routing-dependent deadlock,



but these techniques assume that messages' in the network always sink upon arrival at
their destinations. That is, it is assumed that the delivery of messages is not coupled in
any way to the injection (generation) or reception (consumption) of any other message in
the network or at network endpoints. This simplifying assumption is valid for networks
with homogeneous message types, but it inaccurately represents network behavior when
heterogeneous messages are routed in which dependencies between different message types
exist. Deadlock-free routing algorithms designed using that assumption may provide effi-
cient and deadlock-free communication paths between network endpoints (thus eliminating
routing-dependent deadlocks), however they are still susceptible to deadlocks arising from
the interactions and dependencies created at network endpoints, between different message
types.

Data transactions in multiprocessor/multicomputer systems consist of various types
of messages. The most generic message types used to exchange information between
communicating entities are request and reply. In addition to these, many other message
types may be defined by the communication protocol of the system. At any given end
node in the system, there can be a coupling referred to as message dependencies. There
may not be a direct or indirect coupling between all message types, and each message type
may have several message sub-types for which there is no coupling. However, a distinct
class of message dependency is created for each pair of message types for which a direct
coupling exists and is transferred to network resources.”

A message dependency chain represents a partially (or totally) ordered list of message
dependencies allowed by the communication protocol. We define the partial order relation
“<” between two message types m; and my by the following: m; < mgy if and only if
ma can be generated by a node receiving m; for some data transaction. Message type
ms is said to be subordinate to my, and all message types subordinate to mgy are also
subordinate to m;. The final message type at the end of the message dependency chain
is said to be a terminating message type. The number of message types allowed within a
message dependency chain is referred to as the chain length. For example, if for all data
transactions a system defines only two message types, request and reply, and the message
types establish the dependency relation request < reply, then the chain length is two.

Message dependencies occurring at network endpoints (i.e., on injection and recep-
tion resources) may prevent messages from sinking at their destinations. When they

are added to the complete set of resource dependencies, knotted cycles [6] may form

!Messages can be divided into packets. However, as both are routable units of information, there is no

distinction between the two regarding deadlock. Therefore, both terms are used interchangeably.
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“The class of message dependency created by any pair of message sub-types composing two message
types is the same as that created by the two message types.



along escape resources [1], resulting in possible deadlock. We refer to such deadlocks as
message-dependent deadlocks. As is the case for routing-dependent deadlock, approaches
for addressing message-dependent deadlock can be based either on avoidance or on re-
covery. The primary distinction between these approaches is the trade-off made between
routing freedom and deadlock formation. The advantages of techniques based on these
approaches, therefore, depend on how frequently deadlocks occur and how efficient (in
terms of resource cost and utilization) messages can be routed while guarding against
deadlocks. Our previous work [7] shows that message-dependent deadlocks occur very
infrequently even when network resources are scarce. This motivates us to investigate
alternative message-dependent deadlock handling techniques which are less restrictive in
the common case.

In this paper, we propose a new technique for handling message-dependent deadlock
that is based on progressive deadlock recovery. We also evaluate various approaches for
handling them, including the proposed technique. Analysis is performed by simulating CC-
NUMA? systems with communication protocols similar to the S-1 Multiprocessor [8, 9],
Origin2000 Multiprocessor [10], and the Alpha-21364 processor [11]. Using benchmark ap-
plication traces, we measure the actual message traffic loads generated during execution
as well as the frequency of message-dependent deadlocks. The deadlock statistics gathered
allow us to gain insight into the severity of this problem in realistic environments. The
traffic statistics gathered from these benchmark applications are used later as references
for the interpretation of some other simulation results obtained using synthetic traffic
loads. Synthetically generated traffic loads are used to stress the network in order to ob-
tain a broader evaluation of the various message-dependent deadlock handling techniques.
Critical network and network interface parameters are varied across the simulations to
observe their effect on performance.

The remainder of this paper is organized as follows. Section 2 reviews schemes for
avoiding message-dependent deadlocks, Section 3 proposes a new scheme based on pro-
gressive deadlock recovery. Section 4 presents evaluation methodology and performance
results. Related work is briefly discussed in Section 5 and, finally, conclusions are given

in Section 6.

3CC-NUMA stands for cache coherent non-uniform memory architecture.
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Figure 1: Separation of request and reply networks avoids cyclic dependencies in the

channel dependency graph, but it reduces channel utilization.

2 Handling Message-Dependent Deadlocks

2.1 Strict Deadlock Avoidance

Message-dependent deadlock can be avoided by enforcing routing restrictions on network
resources used to escape deadlock such that all dependencies on those resources, including
message dependencies, are acyclic [1, 12]. Alternatively, they can be avoided while allowing
cyclic dependencies on escape resources by requiring some subset of escape resources to
be large enough such that they can never become fully occupied. Since sufficient resources
and/or routing restrictions on a set of resources always prevent the formation of deadlock,
these techniques for handling deadlock are said to be based on deadlock avoidance. The
second technique can be implemented by providing enough buffer space in each node’s
network interface message queues to hold at least as many messages as can be supplied
as in [13, 14, 15]. Although simple to implement, this technique is not very scalable since
the size of the message queues grows as O(P x M) messages, where P is the number of
processor nodes and M is the number of outstanding messages allowed by each node.

The first technique for avoiding message-dependent deadlock is more scalable and
more commonly used. One way of guaranteeing acyclic dependencies on escape resources
is to provide logically independent communication networks for each message type, im-
plemented as either physical or virtual channels [16, 17, 18, 19]. The partial ordering on
message dependencies defined by the communication protocol is transferred to the logical
networks so that the usage of network resources is acyclic. Figure 1 illustrates this for the
example of a four node ring system which allows a message dependency chain length of
two, i.e., request < reply.

With this technique, the size of network resources does not influence deadlock prop-

erties, but at least as many logical networks are required as the length of the message



dependency chain. For example, the Cavallino router/network-interface chip [19] (which
can be used to build networks with thousands of nodes) has network interface message
queues of less than 1536 bytes each but requires two logically separated networks to han-
dle request-reply dependency. Such partitioning of network resources decreases potential
resource utilization and overall performance, particularly when message dependencies are
abundant and resources (i.e., virtual channels) are scarce.

For example, consider a system which supports a message dependency chain length of
four such that m; < ms < m3 < my. Two virtual channels are required for each message
type m; to escape from routing-dependent deadlocks in a torus network [20]. A total
of eight virtual channels are required to escape from message-dependent deadlock, and
only one of these is potentially available to each message. If sixteen virtual channels were
implemented, only three would be available to each message. In general, the availability
of virtual channels is limited to (1 + (C/L — E,)) such that C > E,,, where L is the
message dependency chain length, E, is the minimum number of virtual channels required
to escape from routing-dependent deadlock for a given network, E, = L x E, is the
minimum number of virtual channels required to escape from message-dependent deadlock
(including routing-dependent deadlocks) for a given network, and C is the number of
virtual channels implemented. Channel availability can be increased if all channels other
than the minimum number required to escape from message-dependent deadlock are shared
amongst all message types, as proposed in [21]. That is, the upper limit on virtual channel
availability is increased to (1 + (C — E,,)). Nevertheless, restrictions enforced on escape
channels (i.e., only one channel out of E,, is available) limits overall potential channel
utilization to well below 100%.

Evidently, the main disadvantage of avoiding deadlock by disallowing cyclic depen-
dencies on escape resources is the number of partitioned logical networks required. It is
possible to reduce the number of partitions by allowing different message types to use
the same logical network and removing message(s) from cyclic dependencies only when a
potential deadlock situation is detected. Since a detection mechanism and recovery ac-
tion are required to resolve the potential deadlock situation, this technique for handling

message-dependent deadlock is said to be based on deadlock recovery.

2.2 Deadlock Recovery

There are many ways in which potential message-dependent deadlock situations can be
detected and resolved. They can be detected at a node’s network interface when three
conditions are met, as in [10, 22, 23]: (1) both the input and output queues allocated

to a message type and its subordinate message type fill up beyond a threshold value, (2)
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message-dependent deadlock is detected, otherwise the maximum chain length is three.

the message type at the head of the input queue is one that generates a non-terminating
message type, and (3) the first two conditions continue for more than a threshold time-
out period. They can be resolved by killing and later re-injecting messages (i.e., regressive
recovery), deflecting messages out of resources involved in cyclic dependency by converting
them from a non-terminating type to a terminating type (i.e., deflective recovery), or by
progressively routing messages using resources along a path that is guaranteed to sink
(i.e., progressive recovery). The actions taken by regressive and deflective recovery increase
the number of messages needed to complete each data transaction, whereas progressive
recovery does not—all packets always make progress toward their destinations and never
regeneratively regress or deflect.

An example of a CC-NUMA system which uses the detection mechanism and deflec-
tive recovery technique discussed above is the Origin2000 multiprocessor [10]. The cache
coherence protocol permits message dependency chains shown in Figure 2. An original
request message (ORQ) arriving at a home node is forwarded to the owner or sharers
as a forwarded-request message (FR(Q) before being responded to by a terminating reply
message (T'RP) if the home node is unable to fulfill the request. Thus, in the absence
of deadlock, the length of the message dependency chain can be two (ORQ < TRP) or
three (ORQ < FRQ < TRP). Deadlocks can be strictly avoided by partitioning resources
into three separate logical networks, one for each message type. However, to reduce the
number of logical networks to two, the system allows both ORQ and F RQ messages to use
the same request network and T RP messages to use a reply network. Message-dependent
deadlocks can now potentially form on the request network, which must be resolved once
detected.

If a potential deadlock situation is detected at a home node, the node takes ORQ
messages that would generate F'R(Q) messages off from the head of the input request

queue and deflects back to the requesters backoff-reply (BRP) messages.? These mes-

“In the DASH system, the removal of ORP messages from the queue head continues until one is found



sages contain owner or sharer information that allows the requester to generate a FRQ
message(s) directly to the intended target(s) without further intervention from the home
node. They are additional messages needed to carry out the data transaction. That is,
the ORQ < FRQ < TRP message dependency chain is converted into a ORQ < BRP <
FRQ < TRP chain only when potential message-dependent deadlock is detected. Although
the message dependency chain length is increased during recovery, the number of logical
networks implemented need not increase. The system allows BRP messages to use the
same reply network as TRP messages and strictly avoids message-dependent deadlock on
the reply network using the second avoidance technique: space in the input reply queue
of the requester is preallocated for the responses of all outstanding O RQ messages.

As can be seen with the Origin2000, an appropriate combination of deadlock avoidance
and recovery can reduce the amount of network resources (logical networks in the case
of Origin2000) required to handle deadlock, as compared to strictly avoiding deadlock.
This allows network resources to be used more efficiently and increases communication
performance. However, as potential deadlock situations have been shown to occur mainly
when the system nears a saturated state [7, 24], resolving potential deadlock situations by
increasing the number of messages required to complete data transactions only exacerbates
the problem. This is the case for regressive “abort-and-retry” recovery and deflective
“backoff” recovery. Like these techniques, progressive recovery efficiently utilizes network
resources in the common case of there being no message-dependent deadlock by relaxing
routing restrictions that strictly avoid them. However, unlike these techniques, it resolves
potential deadlock situations more efficiently by using the same number of messages as
that required to strictly avoid deadlock. Below, one such progressive message-dependent

deadlock recovery technique is proposed.

3 The Proposed Technique

The technique proposed for handling message-dependent deadlock is derived from a pro-
gressive deadlock recovery technique proposed previously for handling routing-dependent
deadlocks, called Disha Sequential [25, 5]. In Disha Sequential, each router has a cen-
tralized flit-sized deadlock buffer (DB) used to progressively route potentially deadlocked
messages once detected. Only one message is allowed to use the set of deadlock buffers at
any given time, implemented by a token passing and capture mechanism. A circulating
token visits all nodes, is captured by a node containing a potentially deadlocked message,
and is released once the message reaches its destination. With this mechanism, the rout-

ing function defined on the set of deadlock buffers provides a connected and deadlock-free

that would generate a TRP or until the output request queue is below its threshold value.



recovery path to/from any two network endpoints. The Disha Sequential scheme is appli-
cable to all networks and is proved to safely recover from all potential routing-dependent
deadlocks [5].

The proposed technique extends the notion of a Disha-like recovery path between net-
work endpoints to one that includes network endpoints. Hence, the circulating token must
also visit all network interfaces attached to each router node, and a deadlock buffer (re-
ferred to as a deadlock message buffer or DMB) must also be provided in each network
interface. The size of the DMB is determined by the minimum unit of information on
which end-to-end error detection/protection (i.e., ECC, checksum) is performed. Typi-
cally, this is at the packet level, requiring these deadlock buffers to be at least packet-sized.
This is also the minimum size of the network interface input and output message queues;
however, larger input/output queues are typically used to increase performance. All net-
work resources can be completely shared by all message types. That is, network virtual
channels between network endpoints and network interface input/output queues at net-
work endpoints can be independent of message type.” Relaxing resource allocation and
routing restrictions in this way maximizes the utilization of resources but does not strictly
prevent message-dependent deadlock from potentially forming.

A block diagram of the network interface architecture needed to support this recovery
technique is depicted in Figure 3. When the memory controller needs to send a response
message to n individual destination nodes, it is assumed to generate n messages each for
point-to-point communication instead of one message for multicast communication. It is
also assumed that the memory controller processes a message only if the output message
queue in the network interface provides a sufficient amount of free space for the subordinate
message(s). When the memory controller of a node produces an output message for which
one or more subordinate messages are expected to return to the node, it preallocates
internal resources (e.g., missing status handling registers or MSHRs implemented in the
lockup-free cache) in order to sink the subordinate messages successfully, as is typically
done in real systems.

Potential message-dependent deadlocks can be detected at network interfaces as de-
scribed previously. Once detected, a potential deadlock situation is resolved following the
Eztended Disha Sequential recovery procedure shown in Figure 4. After the circulating
token is captured at the network interface, the non-terminating message type at the head
of the input queue m; is processed by the memory controller. The generated subordinate
message type m; (m; < m;) is put into the DMB at the network interface and routed

over the recovery lane to its destination node’s DMB with the token. The source and

®This does not preclude the separation of resources to prevent some higher priority message types from
being blocked behind other message types.



Network Interface

Message Input Quoue
| reception
" aal ] - channel(s)
lemary g —» Message Flow
Processor € oo DMB(s| DB(s) Deadlock
Cantroller - = fiai Recovery Path
+» injection
Messago Output Queue channei(s)

Figure 3: Network interface for progressive recovery of message-dependent deadlocks.

the destination of the message are referred to as a token sender and a foken receiver,
respectively.

To prevent the resources for deadlock recovery from being involved in deadlocked, the
message arriving at the DMB of its destination should be guaranteed to leave the DMB.
Hence, if the input queue at the destination is full, the memory controller is preempted
after it completes its current operation and processes the message. If the processed message
m; is a terminating message type or if it is non-terminating and the newly generated
subordinate message my (m; < my) is successfully put into the output queue, the token is
returned to the token sender over the DB lane. Otherwise, the recovery process continues
by putting the newly generated message type my into the DMB at that node for routing
over the recovery lane. In this case, the token will be reused to deliver my, through the set
of DBs, where the node becomes a token sender with respect to the subordinate message
type.

This recovery process continues throughout the length of the message dependency chain
until either the subordinate message is delivered to an output queue or an input queuethe,
or terminating message type is eventually generated, which will be consumed directly by
a memory controller or by an input queue. Each token receiver returns the token to the
associated token sender. If the memory controller of a token receiver generates multiple
subordinate messages for the message type being processed (i.e., m; < mj,,mj,...m;, ),
the node repeatedly uses the token in order to deliver each subordinate message m;,,
(1 < m < n) to its destination before returning the token to that node’s sender. All
potentially deadlocked messages that undergo this progressive recovery procedure are said
to be rescued. If the token returns to the node which initiated the recovery process and
the node has no more messages to deliver with the token, the deadlock recovery process
ends. At this point, the token is released for re-circulation. A proof that the Eztended
Disha Sequential technique safely recovers from all potential message-dependent deadlocks
is given in the Appendix by extending the theory provided in [5, 26].

Eztended Disha Sequential maximizes routing freedom and resource utilization. How-

ever, the token presents a single point-of-failure, and only one message-dependent deadlock
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Figure 4: Flowchart for message-dependent deadlock handling based on progressive dead-
lock recovery.

can be resolved at a time. In dealing with the first shortcoming, it is necessary to have
a reliable token management mechanism. For instance, the token can be transmitted
as a control packet multiplexed over network bandwidth with data packets. The path
taken by the token can be logical and, thus, configurable as opposed to being hardwired
in order to increase reliability. The second shortcoming is not a problem as long as the
frequency of message-dependent deadlocks is low. Section 4.2 confirms previous work [7]
which indicates that message-dependent deadlocks rarely occur.

The proposed technique differs from its predecessor (Disha Sequential) in the following
ways. First, it extends the set of recovery resources to include network endpoints, i.e.,
the network interfaces. Second, the token path includes network endpoints, and the token
can be captured either by a network interface or by a network router. Third, if the token
is captured by a network interface, it is released for re-circulation by the same network

interface. Finally, the token may be reused during the rescue of a potentially deadlocked
message to deliver its subordinate message(s).
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4 Characterization and Performance Evaluation

4.1 Simulation Methodology

Empirical analysis is performed using FlexSim 1.2 [24], a flit-level network simulator devel-
oped by the SMART Interconnects Group at USC. The simulator performs flit-level traffic
flow within the interconnection network and maintains data structures that represent re-
source allocations and dependencies (resource wait-for relationships) occurring within the
network.

Deadlock detection based on the channel wait-for graph(CWG) model implemented in
FlexSim 1.2 is augmented to include message-level activities and dependencies in network
interfaces. The CWG-based deadlock detection identifies all the cycles in CWG to exam-
ine the existence of knots [26] (deadlocks) every 50 cycles. However, this approach suffers
from an explosive increase in the number of CWG cycles as network load increases. A
newly added feature allows end nodes to detect potential deadlocks using locally available
information when the number of CWG cycles is prohibitively large. A deadlock is pre-
sumed to have occurred if both the input and output message queues at a node remain
full for more than a threshold value, T' network cycles, without making any progress. A
threshold of 25 cycles is assumed since detection using the CWG method typically takes
25 cycles on average. Deadlock frequency is measured in relative terms by the normalized
number of deadlocks—which is the ratio of the number of deadlocks to the number of
messages delivered.

Two classes of simulation input sets are used for this work: execution traces and
synthetic traffic. We first simulate network models with execution traces of benchmark
applications to measure the actual amount of message traffic in the network and the
frequency of message-dependent deadlocks generated throughout the execution. Unlike
synthesized simulation inputs, real application traces have dynamic and sometimes unpre-
dictable access patterns that might drive the system into deadlock situations. Simulations
with application traces give us not only realistic references on the interpretation of sim-
ulation results based on synthetic traffic, but also insight on the severity of the deadlock
problem in realistic environments. However, these simulations oftentimes do not stress the
network enough to sufficiently analyze the behavior of a particular anomaly being studied.
In the particular case of deadlocks, usually the network must near its saturation point
before deadlocks occur. It is, therefore, useful to conduct simulations driven by both trace

as well as synthesized traffic loads.
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types (shown in lower case) for application-driven experiments (MSI cache coherence).

4.2 Characterization using Application Traces
4.2.1 Simulation Environment

Traces are gathered through execution-driven simulation and are used to drive our network
simulator. A trace contains a full set of data access activities to L1 cache by each processor
in RSIM [27], an execution-driven simulator with enabled ILP features and full-mapped,
invalidation-based directory cache coherence protocol capability. All data accesses of each
application are recorded into a trace file along with timing information in order to preserve
traffic burstiness properties over the network. The simulation traces are gathered from
four applications in the Splash-2 benchmark suite (FFT, LU, Radix and Water). The
actual amount of network traffic is measured by counting the number and frequency of
messages injected into the network. This is later used to analyze and compare the results of
simulations with synthetic loads. The benchmark applications are run with the following
default parameters: 16 processors, 16 byte request header, 4 bytes per flit, 64 byte cache
line, 64 KByte cache size and release memory consistency model.

To simulate data access behavior in CC-NUMA systems, FlexSim incorporates a three-
state MSI cache coherence protocol with full-mapped directory (see Figure 5).5 The
following default settings are used for trace-driven simulation: 4 x4 torus network, channel
queue size of 2 flits, input and output message queues of size 16 messages, and four virtual
channels per physical channel. Routing dependent deadlocks are strictly avoided using

Duato’s protocol [28], thus isolating message dependent-deadlock events if they occur.

4.2.2 Characterization Results

The load rate distributions of the simulated benchmark applications are shown in Figure 6.
All benchmarks except for Radix have very low network loads that are insufficient to drive

the network to saturation (see corresponding figures for synthetic traffic loads shown in

5The message dependencies of this protocol are similar to those of the S-1 Multiprocessor [8] which uses

the Censier and Feautrier cache coherence protocol [9].
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Figure 6: Load rate distributions of the benchmark applications.

Section 4.3.2). For FFT, LU and Water, the network load remains under 5% of total
network capacity for more than 92-99% of the execution time. Only Radix generates
network loads up to 30% of network capacity, but under 5% for about 50% of the entire
execution time.

Table 1 shows the distributions of response types to request messages for the four
Splash benchmark applications. Direct Reply is the case when the home node sends a
reply message directly back to the requester. Invalidation and Forwarding are the cases
when the home node sends a forwarded request message(s) to the sharer and/or the owner
of the requested data block respectively. The reply to the forwarded request is sent to the
home where a reply message is sent to the requester. The maximum message dependency
chain length is 4, but the average length is a little more than 2 for all benchmarks except
Water.

During the simulations, no applications experienced message dependent deadlocks. This
is expected since network load is so low. For Radix, the average network load measures
19.4% of network capacity which is typically much lower than the network saturation
point. Simulation results based on synthetic traffic patterns obtained in previous work
indicate that a network experiences no message-dependent deadlocks until it reaches deep
saturation [7]. This being the case, network load is increased by doubling and quadrupling
the bristling factor such that 2 and 4 nodes share the same router in 2 x 4 and 2 x 2 torus
networks, respectively. However, no deadlock was observed with the bristled networks for
all applications. For Radix, average network load still remains under 27% and 33% of the
total network capacity when the network is bristled by a factor of 2 and 4, respectively.

This is near the saturation point, but not enough to drive the network into deep saturation.
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Table 1: Types and frequencies of responses to request messages.

| Application | Direct Reply [ Invalidation | Forwarding ||

FFT 98.7% 0.9% 0.4%
LU 96.5% 3.0% 0.5%
Radix 95.5% 3.6% 0.8%
Water 15.2% 50.1% 34.7%

4.3 Performance Evaluation using Synthetic Loads
4.3.1 Simulation Environment

Regular k-ary n-cube toroidal networks with the default parameters given in Table 2 are
simulated unless specified otherwise. The simulator generates request messages—the first
message type in all message dependency chains—at the rate specified as a simulation
parameter. All other subordinate message types are generated automatically upon com-
pletion of servicing messages at end-nodes. Three message-dependent deadlock handling
techniques are evaluated: a strict avoidance (SA) technique similar to that used in the
Alpha 21364 processor, the deflective recovery (DR) technique used in the Origin2000

multiprocessor, and our proposed progressive recovery (PR) technique.

Table 2: Default simulation parameters for FlexSim.

Parameters | Values |
Network Topology 8 x 8 torus

Link Transmission Full-duplex

Switch Technique Wormbhole

Message Length 4 (Request) / 20 (Reply) flits
Bristling Factor 1 processor/node

Virtual Channels per Link | 4 virtual channels

Flit Buffers per Channel 2 flits

Message Types 2 (Request and Reply)
Message Service Time 40 clocks

Message Traffic Patterns | Random

Message Queue Size 16 messages

For SA, both message-dependent deadlocks and routing-dependent deadlocks are strictly
avoided by providing logically separate sets of escape channels and message queues for each
message type. Resource dependencies are allowed in only one direction, i.e., from a mes-
sage type to its subordinate message type(s). For DR, routing-dependent deadlocks are
strictly avoided but message-dependent deadlocks are possible since only two sets of es-

cape channels and message queues are used—one for a request network and the other for
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Figure 7: The ordering among message types (m;) for the generic cache coherence protocol

used in the experiments driven by synthetic traffic loads.

a reply network, as discussed in Section 2.2. For PR, both types of deadlocks are possible
since True Fully Adaptive Routing [5] is used. This allows unrestricted use of all channel
and message queue resources, as discussed in Section 3. For both SA and DR, Dimen-
sion Order Routing [20] is used unless enough virtual channels are provided to allow for
adaptive routing using Duato’s Protocol [1], i.e., C > E,, for SA or C > 2 x E, for DR.
When a message-dependent deadlock is detected in DR or PR, minimum recovery action
is taken, which consists of recovering only one message from deadlocked resources.

Various combinations of message dependencies and chain lengths are simulated to
mimic the behavior of various cache coherence protocols. The possible message depen-
dencies chains for the Origin2000 and S-1 multiprocessors are shown in Figures 2 and 5.
A generic message dependency chain that allows chain lengths of two, three, and four is
shown in Figure 7, which is what we use in our analysis. As can be seen, the cache co-
herence protocol of the Origin2000, S-1 (and MSI), and any other architecture with chain
lengths no greater that four can easily be mapped to this generic protocol. For instance,
the Origin2000 protocol has m; = ORQ, ms = BRP, m3 = FRQ, and m4 = TRP. The
S-1 (and MSI) protocol has m; = RQ, ms = FRQ, m3z = FRP, and my = RP.

The frequency of use of each message type depends on the cache coherence proto-
col, the status of requested memory blocks in memory (ie., at the home directory), and
the behavior of the application. To generalize and simplify our experiments, we assume
five possible message type distributions (data transaction patterns) as shown in Table 3.
PAT100 represents a protocol with only two message types (i.e., as in message passing
distributed memory systems) or a protocol with greater than two message types in which
all blocks are owned by the home node (i.e., in a shared memory system). The first three
Splash-2 applications exhibit behavior close to this, e.g., chain lengths of two 95-99% of
the time. Patterns PAT721 through PAT271 represent a protocol with four message types
in which some blocks are owned or shared by nodes other than the home node to varying
degrees. The Water benchmark is an example application exhibiting similar behavior, e.g.,

chain length of two 15% of the time. PAT280 represents an Origin2000-like protocol in



which no message-dependent deadlocks are detected. In this case, chain lengths are of at
most three message types. For each of the patterns with chain lengths greater than two,
it is assumed that there is only one sharer node for each block in a shared state; more

sharers could be modeled with the effect of increasing the network load.

Table 3: Simulated message type distributions (data transaction patterns.

Traffic Patterns | Dependency Chain Lengths Message Type Distribution
2 [ 3 ] 4 my | mp | mz | my
PAT100 100% | 0% 0% 50.0% | 0% 0% | 50.0%
PATT721 70% | 20% 10% 47.7% | 12.4% | 4.2% | 47.7%
PAT451 40% | 50% 10% 37.1% | 221% | 3.7% | 37.1%
PAT271 20% | T0% 10% 34.5% | 27.6% | 3.4% | 34.5%
PAT280 20% | 80% 0% 35.7% | 0% | 28.6% | 35.7%

Simulations are run for network loads up to a point just beyond saturation, which is
also the point at which deadlocks typically start to form, as indicated in [7, 24]. Each run
lasts for 30,000 simulation cycles beyond steady state. Performance results are plotted in
Burton Normal Form [29] such that the z-axis plots throughput, the y-axis plots average
latency, and points of the curves are values of average latency and throughput for increasing
values of applied load. Latency is measured in terms of network cycles and includes
message queue waiting time as well as network routing time. Throughput is measured as
normalized delivered traffic in flits/node/cycle. The effects of recovering from message-
dependent deadlocks on latency and throughput are factored into the performance results

if they occur.

4.3.2 Performance Results

We compare the performance of the various techniques first by varying the number of
virtual channels per physical link from 4 to 8 to 16 to 64. Figures 8, 9, and 10 plot
performance assuming 4, 8, and 16 virtual channels, respectively. Since each physical link
must have more than 4 virtual channels to implement SA when the chain length is greater
than two, only results for DR and PR are given for simulations with 4 virtual channels
for all patterns except PAT100. Likewise, for PAT100, DR is not valid, so no results
are given. As there is no significant difference between the results for 16 and 64 virtual
channels, the latter are not plotted.

Let us first consider the results for 4 virtual channels, shown in Figure 8. Up to the net-
work load at which throughput is 20%, the performance gap between the schemes remains
under 15% in terms of average message latency. Under these lightly loaded conditions, few

network resources are sufficient to deliver messages without notable congestion. Beyond
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Figure 8: Network throughput and latency for the networks with message-dependent
deadlock avoidance and recovery. (a) PAT100, (b) PATT721, (c) PAT451, (d) PAT271 and

(e) PAT280 transaction patterns in 8 x 8 bidirectional torus with 4 virtual channels.

this load, however, DR and SA suffer from poor throughput and high average latency.
This is due to inefficient utilization of network channel resources. In SA, network parti-
tioning and restricted use of network resources needed to strictly avoid message-dependent
deadlock lead to unbalanced use of network resources and, hence, increased congestion.
With only four virtual channels, DR experiences the same influences on congestion as SA
except that message-dependent deadlock is not strictly avoided for chain lengths greater
than two. In contrast, PR yields up to 100% more throughput than DR for PAT721 and
over 100% more throughput than SR for PAT100. As the average chain length increases,
however, the difference in improvement reduces but is still substantial. The reduction in
throughput is due to network endpoints experiencing message coupling, due to the mes-
sage queues being shared by all message types in PR. This phenomenon is also observed
in the networks with 8 and 16 virtual channels, and is explain in greater detail later.

Let us now consider the results for 8 channels, shown in Figure 9. For the same
reasons as given above, the SA saturates at an early load due to only one of the eight
virtual channels being available for routing of each message type. This unbalanced use of
network resources is particularly acute when the message distribution is concentrated on
only a few of the message types within a given message dependency chain, as with PAT721
and PAT421. However, when the chain length is only two, as with PAT100, three of the
eight virtual channels (or five if the method in [21] is used) are available for routing of
each message type. This provides more balanced use of network resources and sufficient

routing freedom to make the difference between SA and PR negligible. A similar effect is
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seen with DR in which the network is partitioned into only two logical network partitions.
Therefore, in those patterns with chain lengths greater than two, most of the traffic is
nearly equally distributed over all network resources as is the case with PR, making the
difference between DR and PR practically negligible.

Finally, Figure 10 plots results for 16 virtual channels. Since the maximum chain length
is four, the additional channels can be used to distribute traffic more evenly. That is, three
(or nine [21]) of the sixteen virtual channels are available for routing of each message type
for SA, and seven (or 13 [21]) are available for DR. All sixteen are available for PR.
However, beyond a certain number of virtual channels, the difference in performance falls
off dramatically since the use of network link bandwidth is already fairly evenly utilized
[30].

However, another important and more significant effect is observed when traffic bal-
ancing is not an issue. As mentioned briefly in the discussion of results for 4 virtual
channel, the sharing of message queues at network endpoints causes some degree of mes-
sage coupling between heterogeneous message types. This occurs with DR for two message
types and with PR for four message types. Both of these schemes have lower throughput
than SA due to the fact that message coupling (and blocking) at network endpoints is a
dominant factor that can limit performance. However, with both schemes, it is possible
to separate message queues according to each message type (as is required by SA) and
realize increased performance. This is shown in Figure 11 assuming PAT271. When each
message type uses its own input and output message queues (denoted as Q4 in the figure),
both the DR and PR schemes outperform SA. On the other hand, when message queues
are shared between heterogencous message types, inter-message coupling and blocking in

the message queues are performance bottlenecks.

5 Related Work

Traditional solutions to message-dependent deadlock either provide network interfaces
with sufficiently large queues or provide logically separate networks for each message type
or group of message types. The IBM SP2 [13] which has a multistage interconnection
network (MIN) communication backbone avoids message-dependent deadlock by guaran-
teeing sufficient queue space for each source-destination pair. Along with a configurable
buffer space, end-to-end windowing flow-control is used such that messages are only sent
when they are guaranteed to be sunk. The Cray T3D [17], Cray T3E [18], SGI Ori-
gin2000 [10], Intel Teraflops [19] and Stanford DASH [31] multiprocessor machines either
strictly avoid message-dependent deadlocks by providing logically separate networks for

each message type or deflectively recover from them by providing logical networks for
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Figure 9: Network throughput and latency for the networks with message-dependent
deadlock avoidance and recovery. (a) PAT100, (b) PATT721, (¢) PAT451, (d) PAT271 and

(e) PAT280 transaction patterns in 8 x 8 bidirectional torus with 8 virtual channels.

groups of message types and guaranteeing that some message types can always sink via

deflection (or “backoff”).

The idea of progressively recovering from potential deadlock

situations in interconnection networks was first proposed in [25] and [32]. However, as

proposed, the recovery algorithm is only valid for networks consisting of homogeneous

messages. Thus, to the best of our knowledge, the technique presented in this paper is the

first progressive message-dependent deadlock recovery scheme proposed. Finally, a recent

study characterizing message-dependent deadlocks [7] using synthetic traffic loads provides

results that are consistent with those discovered here using execution-driven application

traces.

6 Conclusion

In this paper, message-dependent deadlocks are described and various approaches for han-

dling them are evaluated. A new technique is also proposed which relaxes restrictions con-

siderably, allowing the routing of packets and the handling of message-dependent deadlocks

to be much more efficient, particularly when network resources are scarce. Results indicate

that message-dependent deadlocks rarely occur for typical traffic loads and network param-

eters. Results also indicate that the proposed progressive recovery technique outperforms

its avoidance-based and deflective recovery-based counterparts for a wide range message

type distributions, i.e., cache coherence protocols and data transaction patterns. When

network resources are abundant, it is profitable to separate message queue resources at
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Figure 10: Network throughput and latency for the networks with message-dependent
deadlock avoidance and recovery. (a) PAT721, (b) PAT451, (¢) PAT271 and (d) PAT280
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Figure 11: Network throughput and latency for the networks with message-dependent
deadlock avoidance and recovery for various message buffer configurations in 8 x 8 bidi-

rectional torus with 4 message types and 16 virtual channels.

network endpoints according to message type—mnot for deadlock avoidance purposes but,
rather, for performance purposes. This reduces inter-message coupling and congestion
at network endpoints but does not altogether prevent deadlock from occurring. Although
the performance of avoidance-based techniques improves with increased network resources,
the required partitioning of network resources (i.e., virtual channels) and limited routing
freedom is overly restrictive. Considering the fact that many commercial systems imple-
ment sixteen or less virtual channels per physical link and use communication protocols
consisting of message dependency chain lengths greater than two, the proposed Eztended

Disha Sequential progressive recovery technique presents an attractive alternative.
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Appendix

Lemma 1 The Eztended Disha Sequential technique allows the network to safely recover

from all message-dependent deadlocks.

Proof Sketch The Disha Sequential [5] technique provides for a connected and
deadlock-free recovery path between network endpoints. It is, therefore, free from routing-
dependent deadlocks by design. It follows that only deadlocks involving resource depen-
dencies at network endpoints (i.e., network interfaces) are possible. A mechanism capable
of detecting potential message-dependent deadlocks (as discussed in Section 2.2) is as-
sumed to exist in each network interface. The circulating token mechanism guarantees
that there exists at least one message in each potential message-dependent deadlock that
is rescued, and at most one rescued message at a time gains access to the set of recov-
ery resources. During rescue, the token is used as the mechanism which grants access to
recovery resources, and it is sent along with each message that is routed over recovery
resources. The set of recovery resources themselves do not become involved in deadlock
since messages using them during the rescue process are not allowed to occupy those re-
sources indefinitely. There are four cases for all messages that have been granted access

to the memory controller during the rescue process:

1. the message generates one or more subordinate messages, all of which can be deliv-

ered to the output queue at that node,

2. the message generates at most one subordinate message, which is terminating and

cannot be delivered to the output queue at that node,

3. the message generates at most one subordinate message, which is non-terminating

and cannot be delivered to the output queue at that node, or

4. the message generates more than one subordinate message, all of which cannot be

delivered to the output queue at that node.

Let us consider each case separately. In Case 1, the subordinate message(s) are placed
in the output message queue of the node after being generated. If this node is the node
which originally captured the token or is the original token sender, the token is re-circulated
and the message-dependent deadlock is resolved; otherwise, the token is sent back to the
node which sent it, and the rescue process continues.

In Case 2, the subordinate terminating message is either delivered to the input queue at
its destination (using DMB and DB recovery resources) or is sunk directly by the memory

controller (via preemption) at its destination. In either case, the token that was sent along

24



with this message is sent back to the node which sent the subordinate message. If this
node is the original token sender, the token is re-circulated and the message-dependent
deadlock is resolved; otherwise, the token is sent back to the node which sent it, and the
rescue process continues.

In Case 3, the subordinate non-terminating message is either delivered to the input
queue at its destination or is processed by the memory controller (via preemption) at its
destination. If processed by the memory controller at its destination, this message falls
under one of the three cases mentioned above. If delivered, the token that was sent along
with this message is sent back to the sender node which sent the subordinate message. If
this node is the original token sender, the token is re-circulated and the message-dependent
deadlock is resolved; otherwise, the token is sent back to the node which sent it, and the
rescue process continues.

In Case 4, the first subordinate message that cannot be placed in the output queue
of the node is either delivered to the input queue at its destination or is processed by
the memory controller (via preemption) at its destination. If processed by the memory
controller at its destination, this message falls under one of the three cases mentioned
above. If delivered, the token that was sent along with this message is sent back to
the sender node which sent the subordinate message. All other subordinate messages
generated by the message being processed by the memory controller of that sender node
undergo the same process as the first subordinate message, reusing the token. That is,
they are either delivered to the input queue at their destination or are processed by the
memory controller (via preemption) at their destination. This continues until the token
for the last subordinate message has been received by the sender node. If this node is
the original token sender, the token is re-circulated and the message-dependent deadlock
is resolved; otherwise, the token is sent back to the node which sent it, and the rescue
process continues.

When a rescued message tries to preempt the memory controller at the destination
node, one of three situations exist. In the first case, the memory controller is idle, so
preemption can take place immediately. In the second case, the memory controller is
currently servicing a message from the input message queue, but is not rescuing it. In
this case, the memory controller is guaranteed to complete the operation and deposit the
subordinate message(s) in the output queue, making it available for preemption. In the
third and final case, the memory controller is processing a message that is part of the
message dependency chain of a message being rescued. In this case, local resources had
to have been preallocated for sinking the incoming message, according to our assumption.
Therefore, preemption is not needed to free-up recovery resources. Evidently, the token is

reused for subordinate messages along a message dependency chain until one of them is
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delivered or sinks. Nevertheless, the rescue process is guaranteed to terminate since each
message dependency chain is acyclic and has a terminating message type. Therefore, in all
cases, message-dependent deadlock is resolved as at least one message (and all subordinate
messages generated by it) no longer wait only for resources involved in the deadlock [26].
O
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