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Abstract

Most applications driving the advancements in microarchitecture and memory
system research have a non-negligible interaction with the operating system. Yet, most
architectural investigations are based on user-level simulators in which operating sys-
tem activity is not modelled. This has motivated us to design SimWattch, a microarchi-
tectural modeling infrastructure. SimWattch is based on Simics — a system-level
simulation tool — and Wattch (SimpleScalar extended with power modeling) — a flexible
user-level simulation tool. As a result, it can analyze performance and power dissipa-
tion in microarchitectures at the cycle level for complex workloads running on com-

modity operating systems.

In this paper, we present the design issues we had to resolve in integrating a sys-
tem-level with a user-level simulator. We then use SimWattch to identify the type of
errors a user-level simulator typically does when predicting performance and power
dissipation while omitting operating system activity. Our results, which are based on
applications such as SPEC95, SPEC JVM98, and TPC-B, show that the error can be
large for commercial workloads such as TPC-B, in which IPC rate is overestimated by
more than 20% and total energy used is underestimated by more than 100%. Although

errors are lower for other benchmarks, they are still surprisingly high.

This paper demonstrates 1) that O/S activity must be modelled for accurate
microarchitecture evaluations 2) that modelling O/S activity is feasible and its cost is
reasonable, and 3) that complex and realistic microarchitecture evaluations including

O/S activity can be done in reasonable simulation times today.

Keywords: computer architectures, simulation, operating systems, database systems, performance

and power dissipation analysis.



1 Introduction

The applications that drive high-end computing have moved from scientific/engineering to information
processing applications, such as database, decision support, and web search engines. In analyzing perfor-
mance as well as power dissipation tradeoffs in computer architecture research, one should therefore
reflect this change. Many studies have contrasted the characteristics of scientific/engineering with com-
mercial applications and found noticeable differences. For example, Maynard et al. [19] showed that com-
mercial applications are typically more challenging with respect to their interaction with the memory
system and branch prediction mechanisms. One distinctive factor is that they typically have more operat-
ing system interactions than scientific/engineering applications. By contrast, scientific/engineering appli-
cations typically spend a very small fraction of their execution in system calls. As a result, it has been an
accepted practice in computer architecture research to completely disregard the impact of operating system

code on architectural decisions.

Over the years, the development of simulation tools to aid in performance and power dissipation
tradeoff analyses of architectural decisions has also reflected the change in application focus. For a long
time, user-level simulators, in which system calls are executed inside the simulator, have been the primary
vehicle in architectural research. Several tools such as Asim [9], MINT [27], Rsim [15], Shade [8], and
SimpleScalar [5] belong to this group. Recently, to satisfy the requirement for fast and flexible power eval-
uation tools, architectural-level power estimation tools like Wattch [4], SimplePower [28] and Architec-
tural Power Evaluation [6] have been introduced. SimpleScalar, on which Wattch is based, is the most
widely used user-level simulator because of its flexibility in modeling a wide range of microarchitectural
design points. Despite this fact, since it ignores the effect of the operating system, it can make gross errors

for applications from the information processing domain.

The development of complete system simulators has been directly motivated by the inability of user-
level simulators to target complex workloads. Although complete system simulation tools are extremely
large and complex, their benefits are diverse and significant [13][25]: evaluation of hardware design, devel-
opment of operating system, and performance tuning of workloads. Complete system simulation
approaches such as Simics [17][18] and SimOS [21] can functionally model the execution of applications
with operating system interaction on the instruction-set architectural abstraction level. By choosing that

abstraction level, the simulation speed is fast enough to measure execution statistics that normally can be



captured by hardware counters in the context of realistically sized workloads. The SimOS project further
demonstrated that it is possible to connect detailed microarchitectural simulators to predict the perfor-
mance of microarchitectural features. SimOS is an environment for analyzing performance of architectural
and software design alternatives of computer systems [13][21]. It can boot IRIX 5.3 or DEC UNIX [3] and
run realistic workloads. SimOS contains three microarchitecture models to tradeoff simulation speed and
detail. Recently, the capability of extending a MIPS microarchitectural model with power models has also
been demonstrated [11]. However, none of these microarchitectural models provides the flexibility of Sim-
pleScalar (or Wattch) to easily change microarchitectural resources. Additionally, SimOS provides flexible
data collection and classification mechanisms, assisting the users to clearly and comprehensively under-
stand simulation statistics. A simulator based on SimOS and called PharmSim is also being currently

developed to evaluate microarchitecture in the context of complete system simulation [7].

This paper introduces SimWattch, a simulator that currently estimates performance and power con-
sumption of a range of out-of-order issue superscalar microprocessors in a complete machine simulation
environment. It is capable of supporting analysis of power-efficient microarchitecture, application, com-
piler and operating system design decisions. It does this by combining the powerful system-level support
provided by Simics with the cycle-level microarchitecture timing and power estimations provided by Wat-

tch.

SimWattch will especially fill the important gap of supporting microarchitectural research to improve
energy efficiency. For example, recent studies targeting issue logic [10], instruction dispatch logic [16],
pipeline mechanisms [2] have used user-level simulation approaches; thus, they have not been able to study
the effects of workloads that rely on operating system support. Being based on SimpleScalar, the most
widely used simulation tool for microarchitectural research, makes SimWattch a very attractive tool in the

microarchitectural research domain.

The chief contribution of this paper is the approach by which we managed to integrate two very differ-
ent simulators built independently and widely used in industry and academia: a user-level simulator (Sim-
pleScalar/Wattch) and a complete-system simulator (Simics). By contrast, in SimOS [21], the integration
of the two simulations is very tight and was planned when they were both designed. In SimOS, the
microarchitecture simulator interacts with the system-level simulator at each instruction fetch, which may

cause a lot of overhead. In SimWattch we take advantage of Simics’ high-speed instruction execution by



letting it produce an instruction trace at full speed. This instruction trace is buffered in a FIFO queue and
consumed by Wattch at a slower pace. This mechanism introduced several non-trivial synchronization
issues such as how to support speculative execution. We present in the next two sections the complete

design of SimWattch and the fashion in which we solved these problems.

A second contribution in this paper is to use SimWattch to analyze the kind of errors made by user-
level simulators which ignore the effect of operating system code in analyzing performance and power dis-
sipation tradeoffs. By measuring miss rates, IPC, energy, power, and occupancy rates of various processor
resources in a superscalar processor executing applications such as SPEC95int, SPEC JVM98, and TPC-B
running on MySQL, we show that the errors can be very high for some metrics. For example, the relative
error in predicting IPC for TPC-B using a user-level simulator is typically 20% whereas the energy used
can be underestimated by more than 100%. Significant errors are also observed for power and energy per
instruction, even in the context of SPEC95. This error analysis is presented in Section 4. We conclude the

paper in Section 5 and expose our future research plans.

2 Overview of SimWattch

The overall structure of the SimWattch simulation environment is illustrated in Figure 1. Basically, Sim-
Wattch contains three main components: Simics, the complete system simulator; a modified version of
Wattch, the cycle-level microarchitectural performance and power simulator; as well as the SimWattch
Control Interface (SCI). On top of SimWattch, the Solaris 8 operating system and all workloads that rely

on such operating system support can execute.
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Figure 1: The architecture of SimWattch.

Simics is a complete system simulator that functionally simulates various microprocessors and

peripheral devices. It can run unmodified operating systems through its highly tuned instruction-set simu-



lator that interacts with its memory and device models needed to accommodate an operating system. In our
framework, Simics is employed to dynamically generate instruction traces, including operating system
activity, at high speed and supply sufficient information to the microarchitecture level processor and mem-

ory simulator which is responsible for detailed modeling of performance and power at the cycle level.

The microarchitecture level performance and power simulation engine of SimWattch is built on Wat-
tch [4], a power modeling extension of SimpleScalar. The SimpleScalar toolset models a range of detailed,
dynamically scheduled processors with multiple-level memory hierarchies, speculative execution, and
state-of-the-art branch prediction at the cycle-level. Although a few significant changes are made to Sim-
pleScalar for supporting the SPARC-V9 instruction set, a goal has been to maintain compatibility with the
SimpleScalar toolset as much as possible through providing an interface to Simics that will make it possi-
ble to upgrade SimpleScalar’s future extensions and to retain the advantages of SimpleScalar’s flexible

microarchitecture configuration, and well documented and structured designs [1].
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Figure 2: Simulation flow of SimWattch.

The SimWattch Control Interface (SCI) implements the interface between Simics and Wattch. SCI is
responsible for three tasks: First, it buffers the committed instructions executed on Simics; second, it
serves memory accesses issued by the microarchitecture simulation module; and finally, it dynamically
translates SPARC-V9 instructions into the native instruction set of SimpleScalar. Before explaining its

design and implementation, we at first provide a brief description of the SimWattch work flow, which is

displayed in Figure 2.



The entire simulation procedure can be divided into three main stages. The aim of the first stage
(“Boot Solaris 8” in Figure 2) is to prepare the simulation environment for the following detailed perfor-
mance and power simulation. This stage only involves Simics and takes advantage of its high functional
simulation speed which provides a slowdown of just two orders of magnitude. It functionally simulates a
few billion instructions to boot Solaris 8, runs workloads until some point where we are interested to do
detailed analysis and generates a checkpoint containing the entire simulated machine state. In our experi-
ment, this stage takes around ten minutes on a Sun SunBlade 1000 workstation. Just like in SimOS [13],

we can skip the above steps by loading the checkpoint in a later simulation session.

In the second stage (“Simics Instruction Fetch” in Figure 2), the Instruction History Queue (IHQ) is
filled with an instruction trace from Simics. For each committed instruction in Simics, the instruction
word, its PC, and its associated operands are stored in the next free slot of the IHQ. The above process

keeps going until the THQ is full.

In the third stage (“Microarchitecture simulation” in Figure 2), the microarchitecture simulation
module starts cycle-level performance and power simulation. It retrieves SPARC V9 instructions from the
IHQ and translates them to an extended set of the native Simplescalar ISA (PISA) to model the SPARC V9

ISA. It then models its execution on the microarchitecture model.

Synchronizing Simics with SimpleScalar, preserving memory semantics under speculation as well as

exception handling pose interesting challenges. These issues are discussed in the next section.

3 Design Decisions in SimWattch
3.1 Synchronization Between Simics and SimpleScalar
When integrating a microarchitectural simulator with a system-level simulator, the most obvious choice
would be to let the microarchitecture simulator act as a master that lets the system-level simulator carry out
memory accesses. This is the approach taken in most simulators. However, in Simics, the memory access
path, which involves address translation, is heavily optimized so that it only consumes between 10-50
instructions in the common case of a successful address translation.

To take advantage of the optimized memory access path in Simics, a key design decision we made

was to let Simics act as the master by executing instructions in advance and inserting committed instruc-



tions into the Instruction History Queue (IHQ) as shown in Figure 3. Apart from synchronizing Simics

with SimpleScalar, the IHQ also helps to match the speed between them.
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Figure 3: Synchronization between Simics and SimpleScalar

3.2 Speculative Execution and Exception Handling

SimpleScalar supports speculative execution. The fact that Simics executes and commits instructions,
without speculating along a mispredicted path, introduces a number of challenges to make SimWattch sup-

port speculative execution along correct as well as mispredicted paths.

As long as SimpleScalar executes along the correct path, Simics will always be in advance and will
have already inserted the correct instructions in IHQ. Conversely, when SimpleScalar executes along a
mispredicted path, it will only find the instruction in IHQ if it has been previously visited on the correct
path in which case the instruction address is used to locate it in IHQ. Otherwise, we let SCI access the
memory model in Simics directly to retrieve the instructions needed by the speculation. This may lead to
an address translation exception, e.g., a TLB miss or a page fault. We deal with such exceptions on mispre-
dicted paths by signalling misprediction and squashing the execution of all instructions in the pipeline by

injecting No-ops. This approach will neither pollute the caches nor the TLB.

Another issue concerns how to preserve memory semantics. Since Simics executes in advance special
precaution have to be taken when SimpleScalar executes load and store instructions. As long as Simple-
Scalar speculates along the correct execution path, Simics has already committed all these speculated
instructions and updated the memory state accordingly. As a result, store instructions issued by SimpleSca-
lar can be handled silently inside SimpleScalar. On the other hand, loads issued by SimpleScalar must
reflect the memory state as it was when the load instruction was executed. Since Simics executes in
advance, it may have modified the memory state. To guarantee that SimpleScalar loads the correct value,
the source operand of the load is inserted in the IHQ along with the load instruction and SimpleScalar sim-

ply gets the data from there.



When SimpleScalar executes along a mispredicted path, the values associated with store instructions
will never be committed to memory. Load instructions should however return the value of the latest store
which either corresponds to the checkpointed memory state at the beginning of the speculation or to a sub-
sequent store to the same address along the mispredicted path. Because the effect of feeding mispre-
dicted load instructions with incorrect data is expected to be small, we let a load instruction that
executes along a mispredicted path read directly from memory assuming that the memory state is

up-to-date most of the time.

Exception processing leverages on the support for speculative execution. It can be viewed as an unex-
pected procedure call and causes a change of the current instruction flow. In SimWattch, a trap is detected
in the instruction dispatch stage. We then treat it as a branch misprediction besides preserving and updating
the simulated machine states [23], which is not needed when dealing with a normal branch misprediction.

After that, the instruction flow resumes from the first instruction of the trap handler.

3.3 Architecture Mapping

Since Simics does not implement the PISA instruction set, we had to make an architecture mapping

between SPARC V9 and PISA. Table 1 displays the major differences between the two architecture mod-

els.
SPARC-V9 PISA
[ Instruction Size 32-bit 64-bit
Address Space 64-bit 32-bit
Register Window Yes No
INT Registers 32 GPR (64-bit) 32 GPR (32-bit)
32 Single-Precision (32-bit) . . .
FP Registers 32 Double-Precision (64-bit) 13 62 gmg;]e -l:[')rec1§ ton (36%141)31?
16 Quad-Precision (128-bit) ouble-Precision (64-bit)

Table 1: Differences in the register model of SPARC-V9 ISA and SimpleScalar PISA.

Each processor architecture has its own register organization using a convention that may be different
from others. Thus, to run unmodified SPARC-V9 instructions on the SimpleScalar architecture, the
SPARC-V9 register state must be emulated by SimpleScalar. We extended the SimpleScalar register model
to match the floating-point and control/status registers in SPARC V9. We also implemented the register
window containing 136 integer registers in SimpleScalar. In addition, the 32-bit SimpleScalar address

space is extended to 64-bit to emulate the SPARC-V9 memory organization.



Instruction translation was simplified significantly because both architectures support the same
addressing modes and has a similar instruction format. In SimWattch, mapping the layout of each SPARC-
V9 instruction word to PISA is dynamically conducted by the SimWattch Instruction Translation Engine.
At first, it decomposes a SPARC-V?9 instruction into several parts, and then fills them into the correspond-
ing fields of the PISA instruction format after a few minor changes. In our implementation, each generic
SPARC V9 instruction accessing no more than three registers is translated into a single PISA instruc-

tion.The benchmarks we have run so far have been successfully translated by the ITE.

3.4 Power Models

The dynamic power consumption of CMOS microprocessors is in Wattch [4] modeled as

where C is the load capacitance, ¥, is the supply voltage, and F is the clock frequency. The activity factor,

o, is a fraction between 0 and 1 indicating how often clock ticks lead to switching activity on average.

The power models in Wattch [4] assume that the main processor components are arranged into four
groups: array structures, CAM, combinational logic and wires, and clocking. Based on the above equation,

the physical character of circuits and process technology, different C, V44, 0 and F are modeled for various

component groups to calculate their power consumption. On each cycle of the simulation of an application,
the power models for each active unit will be invoked to calculate and record the energy consumed. In
addition, Wattch implements different conditional clocking styles: (1) no conditional clocking; (2) simple
conditional clocking; (3) aggressive, ideal conditional clocking: zero power consumption when a unit is
turned off; and (4) an aggressive, non-ideal conditional clocking: power of active units is scaled linearly
with port or unit usage, and unused units still dissipate 10% of the maximum power rather than zero. In this
paper, we assume a 0.18 micron process technology at 600MHz, and aggressive, non-ideal conditional

clocking style is employed for all results.

3.5 Validation
The critical issue in validating the SimWattch infrastructure has been to make sure that the instruction trace

presented to SimpleScalar is the same as the one issued by Simics and that the extension of the PISA
instruction set to implement SPARC-V9 semantics is correct. We have validated the infrastructure using

several approaches. First, we have measured the instruction mixes, i.e. the fraction of dynamically exe-



cuted instructions in each category, for the executed instructions on Simics and for the retired instructions
on the modified version of Wattch for the four applications to be presented later and found that they were
the same. Second, as far as the implementation of SPARC-V9 on SimpleScalar we analyzed in detail that
the instruction dependencies are maintained correctly in the pipeline by analyzing the instructions from a
set of small test programs cycle by cycle. As for the correctness of the power model, we rely on the valida-

tion of Wattch [4].

4 O/S Effects on Micro-architecture Simulations

Intuitively, it would seem important to include operating system code in the evaluation of microarchitec-
tures. There are three reasons for this. First we expect that operating system code has a distinctive behavior
different from user code, and, therefore, in applications relying heavily on operating system services — such
as commercial workloads —~ we would expect that the overall microarchitecture performance is affected by
both types of code, not just user code. Second, we expect significant interactions between O/S and user
codes as they dynamically execute in turn: Right after returning from an O/S call, it is likely that the state
of the microarchitecture — including pipeline and caches — is markedly different from the state of the
micro-architecture before the call was made, resulting in pollution effects inside the microarchitecture.
This pollution effect may modify the sequence of simulated events in the user code for some time and
impact measurements. Third, the timing of activities scheduled in an O/S call may affect the behavior of
the micro-architecture. For example the timing of I/O responses may affect the contents of caches, the tim-
ing of future O/S calls and the interference of O/S code activities with user code activities in the micro-

architecture.

To verify this intuition and justify the need for including O/S code in simulations, we have performed
several simulation evaluations using SimWattch. The goals of these evaluations are 1) to compare the
effectiveness of microarchitectures for SPEC applications and commercial workloads, 2) to observe errors
in micro-architecture simulation due to O/S code omission, and 3) to demonstrate that SimWattch can be
used to conduct a very detailed and flexible performance and power analysis of a complex micro-architec-

ture in the context of a complete system simulation.

4.1 Architecture Model

Table 2 gives the default microarchitecture parameters of a state-of-the-art 4-issue superscalar processor

studied in this paper. Particularly, this architecture implements out-of-order issue and execution, based on a

10



Register Update Unit (RUU) [22]. RUU is a unified instruction window, which uses a reorder buffer to

automatically rename and hold the results of pending instructions. Unless otherwise stated, the results in

this paper are collected based on this default configuration.

Parameter Value
= — = —
RUU size 128 instructions
LSQ size 8 instructions
Fetch Queue size 4 instructions
Fetch, Decode, Issue and Com- . .
mit width 4 instructions/cycle
Issue Mechanism out-of-order
. 4 INT ALUs, 4 FP ALUs
Functional Units 1 INT Multiply/Divide
1 FP Multiply/Divide
Combined, Bimodal 4K table, 2-Level 1K table,
Branch Predictor 10-bit history table
4k Chooser
BTB 512-entry, 4-way
Mispredict Penalty 7 cycles
L1 Instruction Cache 128K, direct-mapped, 32B blocks, 1 cycle latency
L1 Data Cache 128K, 4-way (LRU), 32B blocks, 1 cycle latency
L2 Cache Unified, 1M, 4-way (LRU), 64B blocks, 3 cycles latency
Memory 100 cycles first chunk, 30 cycles inter chunk
I-TLB/D-TLB 128-entry, fully associative, 30-cycle miss penalty

Table 2: Microarchitectural default parameters.

4.2 Benchmarks
We have picked four programs from SPECint95, SPEC JVM98 and TPC-B running on the MySQL data-

base engine. The four programs run on top of Solaris 8. SPEC95 is a suite of compute-intensive bench-
marks. They stress the performance of the processor, the memory hierarchy, and the compiler. SPEC
JVMO8 not only evaluates CPU (integer and floating-point), cache and memory architectures but also
stresses the efficiency of JVM, the JIT compiler, and the operating system implementations. SPEC JVM98
contains more operating system activities than SPEC95. In addition, a database workload, TPC-B running
on the MySQL database engine is analyzed. TPC-B is an official OLTP benchmark, and has similar behav-
jor to its successor, TPC-C. MySQL is a popular open source database engine supporting many websites,
datawarehouses, business applications, and logging systems (e.g. in Yahoo, Finance, MP3.com, and

Motorola). Database workloads are known to heavily depend on operating system support and have a radi-
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cally different behavior from scientific and engineering workloads [19]. Thus, SPEC95, JV M98 and TPC-

B are interesting candidates in evaluating a complete performance and power simulation environment.

A detailed description of the benchmarks is shown in Table 3. We compiled them for the SPARC-V9
ISA using GCC 3.0 with -O2 optimization flag. However, _201_compress runs in interpreter mode. To

evaluate the essential execution behavior of the workloads, we simulate 100 million instructions after skip-

ping the initialization phase of each program.

Category Benchmark Input Set Description
126.gcc protoize.i GNU C compiler
SPECInt3 129.compress 30000 q 2131 UNIX compression utility
JVM98 _201_compress sl A java port of the 129.compress
Database TPC-B (MySQL) 40 branches Database management systems

Table 3: Benchmarks, input set, and description.

In our simulations all statistics are collected in two modes: Overall and User. Overall numbers cover
the entire execution of the 100M instructions including O/S and user codes. User numbers are collected for
user instructions only: O/S instructions in the 100M instructions are filtered out by Simics, which means
only user instructions are fed into the IHQ and simulated in the microarchitecture simulation module.
Since the microarchitecture is not affected by instructions other than user instructions, the numbers

reported under User would be the same numbers as reported by a user-level simulator ignoring O/S code.

4.3 Performance Characteristic

4.3.1 Instruction Mixes

Figure 4 and Table 4 show the basic instruction mix of the four workloads. First, the fraction of user
instructions are given in Figure 4. As expected, TPC-B has the least user-level activity. A majority of its
work (50.9%) is done by the operating system. By contrast, engineering workloads such as 126.gcc and
129.compress exercise the operating system very little. And user instructions make up more than 97% of
its total execution. Surprisingly, even _20I_compress has very little operating system activity. Table 4
shows that the inclusion of operating system code has little or no impact on the instruction mix of engi-

neering workloads whereas the instruction mix of TPC-B is somewhat affected.
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Figure 4: Percentage of user instructions.

126.gcc 129.compress _201_compress TPC-B
Load 17.9/17.9 12.6/12.5 22.9/23.0 17.6/16.9
Store 4.23/4.04 7.66/1.71 7.97/7.96 9.78/7.16
Branch 22.3/22.3 10.6/10.5 13.6/13.6 19.2/21.1
Table 4: Instruction mix in percent (Overall/User).
4.3.2 Miss Rates

Table 5 shows the miss rates in caches and TLBs. They qualitatively match the results reported in [19].The
overall miss rates in caches and TLBs are consistently higher than the corresponding miss rates in user

mode. The difference is particularly large for TPC-B and is due to the pollution of caches and TLBs by

O/S code execution.
126.gcc 129.compress | _201_compress TPC-B
L1 ICache 1.31/1.16 0.04/0.00 0.07/0.01 6.13/4.52
L1 DCache 0.38/0.27 3.18/3.14 3.47/3.37 0.91/0.29
L2 Cache 5.67/4.03 2.50/1.12 3.58/2.58 1.76/1.04
ITLB 0.02/0.01 0.01/0.00 0.01/0.00 0.41/0.34
DTLB 0.06/0.01 0.14/0.06 0.13/0.01 0.94/0.02
Table 5: Cache and TLB miss rate in percent (Overall/User).
126.gcc ’ 129.compress | _201_compress TPC-B
- - e —— ;?* ——
Branch Direction 88.98/89.01 91.35/91.41 93.43/93.46 91.21/91.26
Prediction Accuracy
Branch Address 82.49/82.81 90.80/91.08 92.60/92.98 72.30/78.82
Prediction Accuracy

Table 6: Branch prediction accuracy in percent (Overall/User).

Table 6 gives branch prediction accuracy statistics. We see little difference between overall and user

13

codes, except for TPC-B where frequent O/S traps foils the branch address prediction hardware.




Miss rate numbers in the memory hierarchy showing the need to include O/S code in commercial
workloads are not new, as they can be derived easily with Simics or SimOS [3, 7, 13, 18, 19]. In the context

of SimWattch, we can further evaluate the effect of O/S code execution on the microarchitecture efficiency

and power dissipation.

4.3.3 Microarchitecture Efficiency
Figure 5 shows the IPC (instructions per cycle) of the four workloads in the default hardware configura-

tion. The overall IPC varies from 2.3 for 129.compress to 0.68 for TPC-B, as it is well known that engi-
neering workloads tend to have instruction level parallelism that is easier to exploit. In general, the overall
IPC is lower than the user IPC. This is expected in TPC-B, which has a large fraction of OS instructions.
The effect of O/S code on IPC in 129.compress and _201_compress is a bit surprising, given the small
amount of Q/S activity in these applications, but can still be explained by the pollution of the caches and

microarchitecture by OS code execution.
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Figures 7, 8 and 9 show the IFQ (instruction fetch queue), RUU (register update unit) and LSQ (load

store queue) occupancy rate for the four workloads. Occupancy rates are related to IPC: high occupancy
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means adequate utilization of hardware resources, which eventually leads to high performance. The occu-
pancy rates of /29.compress and _201_compress are much higher than /26.gcc and TPC-B. We see again

that the simulation of user code only overestimates resource utilization.

4.4 Power and Energy

Another important application for the SimWattch infrastructure is measuring power and energy dissipated.
The power dissipated (see Figure 6) is directly related to IPC. As for the IPC, power is overestimated by

simulating user code only instead of all the code.

Figure 10 shows the total energy consumed by the entire execution and by user code only. In the three
engineering workloads little energy is spent outside of user code. However, in TPC-B, the overall energy is
more than twice the energy spent in user mode. Obviously, it is impossible for a user-level simulator to
investigate adequately the energy consumption of database applications. Figure 11 shows the amount of
energy spent to execute each instruction. This metric removes the effect of the different number of instruc-
tions executed in Overall and User. Differences between User and Overall are less pronounced but still

exist.
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Figure 10: Total energy. Figure 11: Energy / instruction.

4.5 Energy and Performance Tradeoffs

An important application of SimWattch is to study the impact of architectural changes on power and per-
formance. In the following, we consider a range of implementations where we successively increase the
issue width, which is always equal to the decode and commit width. We use the parameters of the default
configuration, except that, to prevent integer ALUs from becoming the performance bottleneck, we use

eight integer ALUs when the issue width is equal to eight. The rest of the microarchitectural resources are
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kept unchanged. As issue width increases, performance improves, but renaming, instruction window, reg-

ister file and result bus consume more and more power.

Figures 12 through 15 show the trends of IPC and power, as the issue width increases from one to

eight. 129.compress reaps a significant performance gain from increasing the issue width. To support this

level of performance, the power increases almost linearly with the issue width and the IPC. By contrast,

TPC-B is not able to exploit wider issue widths because it does not have enough instruction-level parallel-

ism which can be exploited by more aggressive superscalar design. Because IPC gains are so modest,

power dissipation increases only marginally.
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Figure 15: TPC-B power.

Figures 16 and 17 show that the total energy goes down as the issue width increases from one to four
but, as the issue width increases further, the total energy consumed trends up. Figure 17 shows that the

energy spent in user mode is a little more than a third of the overall energy in TPC-B. Thus one can expect
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to expand much more energy executing 7PC-B than its user instructions would let us believe: The large

majority of the energy is spent in O/S mode.
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Figure 17: TPC-B total energy.

Figures 18 and 19 show the energy normalized to the number of instructions. The trend is the same as

for the total energy. Energy per instruction is a fairer metrics than total energy for evaluations using user

code only since it is independent of the number of instructions executed.
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Figure 19: TPC-B energy / instruction.

When we look at figures, we see that simulating user code only can lead to significant overestimation

of performance and significant underestimation of energy. Although the trends are similar in every case,

the absolute values are sometimes completely off-fields, as in the case of IPC and energy for TPC-B.

Tables 7 and 8 show the relative errors caused by omitting O/S code in the simulations. The errors are

computed as the absolute difference between overall and user values divided by user value. The error can

be excessively large, especially for IPC and energy in the case of TPC-B. Surprisingly, relative simulation

errors are non-negligible in the case of 129.compress as well.
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Issue Width 1 2 4 8

IPC 2.37 4.50 7.25 8.15

Total Energy 3.54 4.18 5.06 5.84
Energy per clock 1.81 337 5.35 5.58
Energy per Inst. 0.20 0.77 1.54 2.25

Table 7: Relative error due to O/S code omission in 129.compress (%).

Issue Width 1 2 4 8
IPC 17.45 22.17 2591 27.21
Total Energy 127.15 136.72 145.55 151.96
Energy per clock 7.93 9.53 10.67 9.94
Energy per Inst. 10.04 14.33 17.01 17.36

Table 8: Relative error due to O/S code omission in TPC-B (%).

5 Conclusion and Future Work

In this paper, we have introduced SimWattch, a complete system simulation environment that can be used
to conduct performance and power-oriented microarchitecture research or revisit existing techniques from
a more complete perspective taking into account operating system interactions on the power dissipated in
microarchitectural components. As a combination and extension of Simics and Wattch, it facilitates the
analysis of a wider design space for computer architects, application, compiler and operating system devel-

opers. In addition, it explores a new approach to cost-effective simulator design.

We have reported on performance and power measurements made with SimWattch to motivate the
inclusion of O/S code in microarchitecture simulations. To this end we measured both User and Overall
statistics. The performance and energy effects of O/S code execution were surprisingly large in engineer-
ing workloads such as SPEC95, even if these workloads execute very little O/S code. IPC is broadly over-
estimated by ignoring O/S code, by more than 20% in 7PC-B. Likewise, energy is underestimated by large
amounts, especially for commercial workloads. Simulations ignoring O/S code are generally too optimistic

and should be seen as a lower bound on energy and an upper bound on performance.

SimWattch is still in a preliminary development phase and there is room for improvement. Accuracy
is a serious concern of existing architectural-level power analysis tools. First, current power models must
be improved to factor in leakage power because this effect is becoming more important as we shrink the
feature size further. Second, more powerful and accurate data collection and classification mechanism can

help us have a better and clearer understanding of different system/user behaviors. Finally, the microarchi-
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tectural simulation speed of SimWattch is roughly 20k instructions/second on a SunBlade 1000 worksta-
tion running Solaris 8. This compares with a simulation speed of about 100k instructions on the same
machine for SimpleScalar in user mode. We believe that the improved accuracy is well worth the effort of
including O/S code. In any case, SimWattch’s speed could be further improved through optimizing instruc-

tion translation and removing some of the function overlap between Simics and Wattch.

Extensions to the simulator are topics of future research. So far, SimWattch models microarchitec-
tures. To fully exploit a complete system simulation tool such as Simics, power models of other modules in
the system, such as disks, should be added. Additionally, research on power-efficient multiprocessor
design is still in its infancy although its importance begins to attract more and more attention. We believe

SimWattch can be an ideal simulation tool for power/performance studies on such topics.
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Abstract

In current systems, virtual addresses are dynamically translated into physical addresses
through a Translation Lookaside Buffer (TLB) accessed in parallel with the first level cache. Such
a TLB does not scale well with processor speeds, physical memory sizes, and application data set
sizes. Other observed trends in architecture are the migration of computations to memory (PIM) to
fight the memory wall and the emulation in software of various memory functions. We believe that
these trends will eventually drive architects of general-purpose systems to virtualize the memory
hierarchy.

In this dissertation, we focus on memory systems where the TLB is moved down the
memory hierarchy, away from the processor. We propose and evaluate a novel multiprocessor
architecture called Virtual COMA(V-COMA), in which the virtual memory implementation is
combined with the cache coherence protocol.

We also introduce new solutions to two critical problems plaguing systems with virtual
memory hierarchies: synonyms and late memory traps.

To solve the synonym problem, we propose a Synonym Lookaside Buffer (SLB), which
translates synonyms before virtual addresses are issued to the memory hierarchy. In contrast to
TLBs, SLBs are very small and scale very well.

We then present an in-depth analysis of the trapping behavior of ILP (Instruction-Level
Parallelism) processors, and propose new techniques to tolerate the late detection of memory traps.
With these techniques, the performance cost of a trap is much less sensitive to the location where
the trap is detected, even deep in the memory system.

This dissertation demonstrates that virtually-addressed memory hierarchies are feasible
and efficient, that the hardware to support them scales much better than for physical memory hier-
archies, and that they open new opportunities for future computer architectures.

KEYWORDS: Virtual Memory, Distributed Shared Memory, TLB, Trap, NUMA,
COMA, Processor Microarchitecture, Memory Consistency, Performance Evaluation



Chapter 1

INTRODUCTION

Microprocessor performance is continually improving at a fast pace by increasing clock
rate and instruction level parallelism (ILP). The memory hierarchy of the processors must satisfy
multiple memory accesses in every cycle at a rate currently approaching 1GHz. It must sustain
high speed and high bandwidth memory accesses in the face of the growing disparity between pro-
cessor execution rate and main memory access time, and of the growing memory demand of
emerging applications. One additional complication is that, in the process of accessing memory,
the virtual address issued by the processor must at some point be translated into a physical address
to support virtual memory. Currently, this dynamic translation between virtual and physical
addresses is supported by a translation lookaside buffer (TLB). Typically the virtual address trans-
lation is performed before or in parallel with the first level cache access, so that the memory hier-
archy is accessed with physical addresses throughout[92][83]. We call this current design of
memory system physically-addressed memory hierarchy.

A ) i Address Translation A

L1-Cache

L2-Cache

Memory

Figure 1.1 A Bandwidth Hierarchy

In this dissertation, we advocate virtually-addressed memory hierarchies where the TLB is
removed from the processor and located within the memory hierarchy. Virtually-addressed mem-



ory hierarchies cut the overhead and improve the scalability of virtual memory implementations.
Moreover, virtually-addressed memory hierarchies open new opportunities to build more flexible
and smarter memory systems.

Attacking the TLB Bottleneck. The TLB of a physically-addressed memory hierarchy is
a hardware bottleneck, because it must be accessed before or in parallel with time-critical accesses
to the first level cache integrated very closely with the processor core where the chip real-estate is
very precious. To satisfy the access constraints of the first level cache, the latency and bandwidth
requirements of the TLB must scale up with the clock rate and instruction level parallelism[3]. It is
getting more difficult and costly to implement a large TLB meeting these speed and bandwidth
requirements. Figure 1.1 illustrates a bandwidth hierarchy for a typical computer system, where
the dynamic address translation has to meet the peak bandwidth requirement.

The TLB inside the processor core does not scale with the growing working set size of
applications and with the size of physical memory. For a given application, the miss ratio of the
TLB is primarily determined by the TLB reach, or coverage[19]. New applications are emerging,
and at the same time the working sets of applications keep growing and changing. The TLB is
fixed within the processor and is very difficult to scale with the applications. It can not be changed
when building various computer systems using the microprocessor chips.

Shared memory multiprocessors have become commonplace recently. Small and medium
scale multiprocessors are already very successful commercially. Large scale multiprocessors have
also been built and will become more and more popular in the near future. The current design of
TLBs scales very poorly with the number of processors in a multiprocessor. Multiprocessors tend
to have larger memory size and run larger applications. In a multiprocessor, some TLB entries are
replicated, wasting TLB space but, more importantly, creating a consistency problem[81]. Main-
taining TLB consistency is very expensive and does not scale well. The overhead of maintaining
TLB consistency tends to grow in the presence of new optimizations such as page migration for
NUMA(Non-Uniform Memory access Architecture) machines to reduce the number of remote
data accesses.

Translation misses in the TLB trigger expensive “table walks” through levels of page
tables located in main memory. It has been shown in the past[22][(54] that the execution overhead
due to TLB handling was about 5% - 10% of the total execution time. However, current technol-
ogy and application trends put more pressure on the dynamic address translation hardware. Some
recent studies have shown that the TLB service time alone can consume up to 50% of the user exe-
cution time in some workloads[65][79].

In virtually-addressed memory hierarchies where the cache is virtually indexed and
tagged, most memory accesses are completed without TLB involvement. The actual address trans-
lation, performed only when it is needed, can be done in different locations in the memory hierar-
chy, and can be implemented in various ways. Putting the TLB after the virtual address cache
hierarchy can dramatically reduce the number of TLB misses because of the filtering effect of the
caches and also because the TLB may be much larger given the much reduced speed and band-
width requirements. When the TLBs are shared at the main memory in multiprocessors, the num-
ber of TLB misses may become insignificant because of sharing and prefetching effects. The size
of the TLB is no longer fixed within the processor chip and therefore can scale with the main
memory size. Moreover, maintaining TLB consistency can be eliminated, which largely improves
the scalability of virtual memory systems for multiprocessors.

Supporting Generic Memory Function Paradigm. Virtual memory is actually nothing
more than a special memory function which provides each user program with the illusion of an
exclusive memory space hiding the complexity of managing the physical memory. In general, a



memory function is the method or action taken to maintain a particular semantics of the memory
system. As a generic programming paradigm, memory functions can be extracted from application
programs so that the programs are split into separate parts. The part of memory functions maintain
a memory system with some particular semantics or properties which are assumed by the rest parts
of the programs. The semantics or properties are usually well-defined to improve the performance,
portability, and programmability. For example, the abstraction of virtual memory improves pro-
gram portability and programmability. As another example, we can consider memory forward-
ing[49] which maintains the correctmess of dynamic memory relocation, so that aggressive run-
time data layout optimization is enabled to enhance spacial locality, facilitate prefetching, and
avoid cache conflicts and false sharing.

The memory functions express a level of parallelism that can be exploited in coarse granu-
larity. Unlike the SPMD (Single Program Multiple Data) model where all the programs and pro-
cessing units are somewhat symmetric, memory functions have different functionality and of
course quite different behaviors with the original user application programs. It has big potential to
take advantage of techniques such as processing-in-memory (PIM) and simultaneous multithread-
ing(SMT).

Traditionally, the support for memory functions has been limited to the support for virtual
memory implementation. The TLB handles the most common cases in hardware by caching the
recent translation entries, and a trapping mechanism is provided so that uncommon cases such as
TLB misses and page faults are completed in software. Recent examples of memory functions
such as the concurrent garbage collection algorithm[2] and the original shared virtual memory
implementation proposed by Kai Li[48] rely on the virtual memory support.

A virtually-addressed memory hierarchy provides more flexible support for memory func-
tions than the traditional physically-addressed memory hierarchy. This is because of two reasons:
1) In order to support virtually-addressed memory hierarchies, the processors have to be able to
take traps from the memory hierarchy. Therefore, special hardware devices can be inserted in the
memory hierarchy to handle common cases for particular memory functions, and to generate traps
to trigger memory function software for complicated cases. 2) Because the inserted hardware
devices can “see” virtual addresses, the memory system semantics can be defined in the virtual
address space, and the memory function implementation can be done at the user level. As an exam-
ple, consider again memory forwarding. First, trapping from main memory is required in case a
memory access hit on an indirect relocation pointer. Second, if virtual address is available, the trap
handler can be dispatched on any processor (a PIM processor close to the data is preferred but not
required) with the correct user context, running in parallel with the computing program.

Fighting the Memory Wall. Microprocessor performance has improved at a rate of 60%
per year since the mid 80’s, while in contrast the DRAM access time has lagged behind, improving
at only 7% per year. Although many latency tolerance techniques such as prefetching and memory
consistency models have been exploited to mitigate the gap between processor and memory, it has
been shown that the memory bandwidth will soon become a major bottleneck[6], especially given
that most latency tolerance techniques consume extra memory bandwidth.

A radical solution to attack this so-called “memory wall” problem is processing-in-mem-
ory (PIM), which is enabled by recent VLSI technology integrating processing logic with DRAM
memory chips. PIM processors can exploit the huge internal bandwidth associated with the mem-
ory banks within the memory chip, as well as the much reduced memory access latency. PIM pro-
cessors are usually much simpler and may be slower as compared to state-of-the-art
microprocessors which exploit parallelism to increase the instruction execution throughput.

Future high performance computer systems should take advantage of in-memory process-



ing, as well as of the increasing on-chip instruction level and thread level parallelism, as illustrated
in Figure 6.1. Data-intensive programs such as index searching and virtual memory function run
far more efficiently in memory than on ILP processors. Virtually-addressed memory hierarchy is a
necessary step to integrate PIM processors into general purpose computing systems. With virtual
addressing of memory, system software such as operating system functions can be migrated into
memory so that they can executed more efficiently in parallel with user programs, but more impor-
tantly, user-level in-memory computing can be naturally supported.

The communication between processor and memory is a major bottleneck because of the
big performance gap. For well-behaved applications with good temporal and spatial locality, the
cache hierarchy within the processor chip can reduce the necessary communication bandwidth
across the processor and memory. PIM processors can execute memory-intensive tasks within
memory, which improves the system performance at least in 3 directions: 1) The necessary com-
munication bandwidth between processor and memory is reduced because the processing is
absorbed within the memory closer to the data; 2) The memory-intensive tasks can be executed
much faster by PIMs than by the ILP processors because higher clock rate or deeper pipelining
will not improve their performance; 3) The processors can run compute-intensive applications in
parallel with the PIMs, increasing the overall throughput of the system.

Memory functions are a perfect paradigm to split the application programs and distribute
the work among processors and PIMs. The memory functions can be executed either in PIMs or on
ILP processors. While cache-friendly memory system properties can be defined and maintained to
reduce the memory bandwidth, portable and efficient PIM programs can be written to execute var-
ious layers of memory functions in memory, eventually leading to a smooth transition path for
PIM technology to the general-purpose computing.

1.1 Research Contributions

In this dissertation, we evaluate the performance issues associated with virtually-
addressed memory hierarchies and propose new ideas to support and exploit virtually-addressed
memory hierarchies.

¢ Various memory systems are compared where the address translation is done in differ-

ent places in the context of large scale multiprocessors. Our evaluation results show that
because of the filtering of the virtual address caches the number of address translation
misses is dramatically reduced when the TLB is moved down to the memory hierarchy.

* Novel multiprocessor architectures are proposed and evaluated. In one of them, called
the virtual COMA(V-COMA) architecture, the entire memory hierarchy is accessed
with virtual addresses. The dynamic address translation mechanism is shared among ail
the processors, and is combined with the cache coherence protocols. The translation
overhead is reduced to a minimum and the consistency problem is eliminated. V-
COMA scales well and even works better with larger number of processors.

* A new solution to the synonym problem is introduced to enable virtually-addressed
memory hierarchies. The major idea is to replace the TLB in the processor with a Syn-
onym Lookaside Buffer (SLB), which translates synonyms into unique identifiers to
address the memory hierarchy. An SLB can remain very small because its size depends
on the sharing of synonyms, not on the size of applications or of the physical memory.



* Using contemporary workloads running on a real operating system (SGI Irix 5.3), we
compare the performance of virtually-addressed caches and traditional physical address
caches. It appears that virtual address caches have better miss rates than physical caches.
In particular, our proposed solution using a small SLB in front of the caches avoids
short misses in large caches, while safeguarding the benefits of the temporal and spatial
locality presented in the virtual address stream.

» The behavior of traps in modern ILP processors is analyzed in-depth. Several metrics
are defined to quantify the overhead of traps. In particular, the performance impact of
late memory traps is identified.

* Three techniques are proposed to tolerate late memory traps. The performance cost of
any trap is very high in ILP processors. At the same time, using our techniques, the
overhead due to the lateness of detecting traps is considerably lower. Therefore, with
our techniques, the overhead of traps is not much sensitive to the location where the trap
is detected.

1.2 Organization of the Dissertation

In chapter 2, we describe some background material for this research. We start with a brief
overview of virtual memory systems, followed by an introduction of the architecture of contempo-
rary microprocessors, which are the building blocks of most computer systems. Then we briefly
describe some multiprocessor architectures. Multiprocessors are becoming the prevalent architec-
ture for computers from low end desktops to high end supercomputers and commercial servers.

In chapter 3, we look at various design options for virtually-addressed memory hierarchies
in the context of large scale multiprocessor systems. In particular, a novel multiprocessor architec-
ture V-COMA is proposed and evaluated.

In chapter 4, we focus on the synonym problem, which is one of the major technical diffi-
culties faced by virtually-addressed memory hierarchies. We propose and evaluate a new scheme
to solve the synonym problem, the synonym lookaside buffer (SLB). We also compare the miss
rate behavior of physical and virtual address caches.

In chapter 5, memory traps in ILP processors are analyzed in-depth. Several metrics are
defined to capture the overhead of traps. In particular, the impact of late memory traps is identi-
fied. Three techniques are proposed to tolerate late memory traps.

In chapter 6, we discuss some implications of virtually-addressed memory hierarchies.
Virtually-addressed memory hierarchy empowers more flexible and smarter memory systems
enhanced with the general memory functions and processing-in-memory (PIM). In chapter 7, we
summarize the related work. In chapter 8, we present the conclusion of this research.



Chapter 2

BACKGROUND

In this chapter, we describe some background material for this research. We start with a
brief overview of virtual memory systems, followed by an introduction of ILP processors. We also
briefly describe multiprocessor architectures.
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Figure 2.1. Virtual Memory Implementation



2.1 Virtual Memory

Virtual memory system manages physical main memory and provides each individual user
program an illusion of a single large memory space. Through cooperative hardware and software
support, the virtual memory system automatically moves data between secondary storage and
main memory. User programs running in their virtual address spaces are no longer concerned with
physical memory management.

Figure 2.1 illustrates a typical implementation of a virtual memory system. Most virtual
memory systems implement demand paging, where the physical memory is divided into fixed
pages, typically 4K or 8K bytes. Each virtual address is dynamically translated into a physical
address to access physical memory. If the accessed data is not present in physical memory, a page
fault trap is generated and the system software loads the page from secondary storage, updates the
virtual-physical page mapping and resumes the execution of the user program.

Typically, the virtual-physical page mapping is maintained by page tables which are spe-
cial data structures maintained by the virtual memory system software. There exist different page
table organizations. The two major structures are forward page table and inverted page table. For-
ward page table is indexed with the virtual page number. Because the virtual address space is usu-
ally huge and very sparse, a naive one level page table is wasteful of memory. A multi-level page
table structure saves memory by taking a hierarchical approach. In multi-level page tables, several
memory accesses are required to translate a virtual address. An example of a forward page table
structure is shown in Figure 2.2. An inverted page table is indexed by the physical page number
instead of the virtual page number. The size of the inverted page table is proportional to the size of
main memory. The inverted page table can not be directly accessed by virtual addresses. A hash
function is necessary to find the physical page number from the virtual address. An example of
inverted page table structure is shown in Figure 2.3.

Virtual Address

Page Offset

Level-1 Table Level-2 Table Level-3 Table

4

»i Page Table Entry

Figure 2.2. Forward Page Table Structure

Logically, the main memory is organized as a fully associated cache controlled by the
page table with the block size equal to the page size. Virtual memory system software manages the
data movement between main memory and backup secondary storage, typically a disk. Because of
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the huge latency gap between main memory and disk I/O access, usually software controlled con-
text switches are necessary to tolerate the latency in case of a page fault.

A special cache commonly called TLB (Translation Lookaside Buffer) is used in almost
every current computer system to accelerate the dynamic address translation. The TLB caches the
most recently used page table entries is typically located very close to the processor pipeline and is
accessed before or in parallel with the first level cache. If a virtual address hits in the TLB, it is
immediately translated into a physical address by the matching TLB entry. If it misses, the in-
memory page table is looked up to complete the translation. If the look up procedure is successful
and the page table entry is valid, it is inserted into the TLB and the program execution is resumed,
otherwise a page fault is generated. The TLB either is fully associative or has a high degree of
associativity in order to reduce the number of conflict misses.

Virtual Page Number Page Offset
HAT
/
Hash
Function IPT

Figure 2.3. Inverted Page Table

Figure 2.4 illustrates a typical entry of the TLB. Besides the virtual and physical page
numbers, a hardware context identifier is included to avoid flushing the entire TLB on every con-
text switch. The access right bits restrict accessibility to the page. Typically, a memory trap is gen-
erated if access rights are violated. The entry is invalid if the valid bit (V) is reset. The reference
(R) and dirty (D) bit are usually needed by the software to optimize the paging algorithm. Some
TLBs include a global bit which allows the TLB entry to map a global virtual address area across
all the contexts. Many TLBs support the mapping of multiple page sizes in power of two. Such
pages are called superpages and their purpose is to increase the coverage of the TLB mapping.

context virtual page number physical page frame accessright | R [D |V

Figure 2.4. TLB Entry
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This is a very brief summary of the basic concepts in a virtual memory system. Any real
implementation is far more complex. Memory management is now the heart of almost every oper-
ating system.

2.2 ILP (Instruction Level Parallelism) Processor

With the advance of VLSI technology, the architecture of computer systems is centered
around microprocessors[24]. Almost all modern computers from laptops to supercomputers are
built with microprocessors because of technological and economic reasons. In order to achieve
high performance, modern microprocessors use very complex microarchitectures to exploit
instruction level parallelism(ILP).

Figure 2.5 shows the block diagram of a typical ILP processor similar to the MIPS
R10000[92]. Multiple instructions are fetched and decoded in program order, execute out-of-order
in the execution engines, and finally graduate in program order again.

In the instruction fetch stage, the addresses of instructions following the branch are pre-
dicted. In the decode stage, logical registers are renamed to physical registers, and the decoded
instruction is appended to an active list and put into one of the instruction queues waiting to issue.
When a branch instruction is decoded, the processor state is saved in a branch stack, from which
the state can be recovered in case the branch is mispredicted. A branch mask associated with each
instruction in the instruction queues and in the execution pipelines points to the depending
branches. If any one of these branches is mispredicted, the instruction is aborted. The instruction
queues act as reservation stations, monitor the register write ports and issue the instructions to the
pipelined execution units based on data flow dependencies. When an execution unit completes an
instruction, it sends the instruction tag to the active list. Instructions are retired in program order
after they are completed. When retiring an instruction, the active list commits the register mapping
and returns the physical registers to the free list.

Retiring instructions in order is critical for handling precise interrupts[75]. An exception
can only be taken when the instruction reaches the top of the active list, at which point all previous
instructions have successfully retired. The pipeline is flushed and the state is recovered by unmap-
ping the registers in reverse order of instructions in the active list, usually at the same rate as the
decode rate.

2.3 Shared Memory Multiprocessors

Shared memory multiprocessors are the prevalent architecture to achieve performance lev-
els beyond that of single processors. Most supercomputers and high end servers are multiproces-
sors, and it is now very common to see multiple processors in low end servers and desktops.
Considering technology and architecture trends, single chip multiprocessor products are likely to
appear in the near future.

2.3.1 Architecture

Most small scale multiprocessors are bus-based symmetric multiprocessors (SMP). As
shown in Figure 2.6, all the processor modules as well as the main memory and /O devices are
attached on the snooping bus. Cache coherence is maintained by the snooping protocol. Memory
accesses that miss in the processor cache are broadcast on the bus, and are snooped by all the
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Figure 2.5. Block Diagram of an ILP Processor

caches. Depending on the coherence protocol, either another cache or the main memory supplies
the data to complete the memory access.

Snooping Bus

Memory

1/0

Figure 2.6. Bus-Based Multiprocessor

Bus-based multiprocessors do not scale well because they are restricted by the bandwidth
of the snooping bus. For large scale multiprocessor systems with hundreds or even thousands of
processors, directory-based distributed shared memory systems become the natural design choice.
Each node in a distributed shared memory system contains a portion of its main memory which is
shared and can be addressed by all the processors. Because the system is not limited by a central-
ized broadcasting mechanism such as the snooping bus, the distributed shared memory system can
scale up to a very large number of processors. Usually, a directory-based cache coherence protocol



is used, where the directories contain the copy information for each memory block.
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Figure 2.7. CC-NUMA Architecture
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Figure 2.8. COMA Architecture (COMA-F)
Cache Coherent Non-Uniform Memory access Architecture (CC-NUMA) and Cache Only
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Memory Architecture (COMA) are two major variations of the large scale distributed shared mem-
ory systems. Figure 2.7 shows a typical CC-NUMA architecture. In CC-NUMA, the data replica-
tion and migration happen in the processor caches. If a memory access misses in the cache, a
memory request has to be sent to the home node of the memory block, which could be either
remote or local to the processor. Based on the directory at the home node, appropriate coherence
actions will be taken to complete the memory request.

Figure 2.8 shows a typical COMA architecture. Here we consider a flat COMA[44]
instead of a hierarchical COMA[35] architecture. In COMA, the main memory is organized as
another level of cache which is called attraction memory. Automatic data replication and migra-
tion can happen in the attraction memory. After a memory access misses in the processor cache,
the local attraction memory is first looked up. If the data is not present in the attraction memory,
the request has to be sent to the home node where the directory information resides indicating the
location of the copies. The home node does not necessarily contain the data as in CC-NUMA. The
COMA protocols are much more complex to implement compared to the CC-NUMA protocols.

2.3.2 Memory Consistency Model

In order to guarantee the correct execution of parallel programs, the memory consistency
model must be respected[25].

A memory consistency model specifies the constraints on the order in which memory
operations must be globally performed (i.e. become visible to all the processors)[25]. The most
intuitive and natural model for programmers is the sequential consistency(SC) model, which is
defined by Lamport[50] as the following:

A system is sequentially consistent if the result of any execution is the same as if the oper-
ations of all the processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its program.

Sequential consistency enforces very strict constraint on orders of memory accesses,
which restricts many performance optimizations that modern uniprocessor compilers and micro-
processors employ. There are other different memory consistency models that relax the ordering
restrictions of sequential consistency. Total store order(TSO) and processor consistency(PC) relax
the write-to-read order. Partial store order (PSO) relax both write-to-read and write-to-write
orders. Weak ordering(WO) and release consistency (RC) relax all memory access orders and rely
on synchronization instructions to guarantee correct execution of programs.

2.4 Evaluation Methodologies

In order to understand the issues and evaluate various ideas, we simulate the architectures
using trace-driven and execution-driven simulations.

Trace-driven simulation is used to study the performance for memory hierarchy in the uni-
processor environment. The trace is a sequence of load/store memory accesses from the applica-
tion workload, which drives the cache/memory simulator to evaluate the performance. Trace-
driven simulation is simple and fast. However, it has many limitations. Only the behavior of mem-
ory system is accurately evaluated, the overall execution time and other system components
including the processor are not simulated. In addition, it is not accurate for multiprocessor evalua-
tion.
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We also use execution-driven simulation in this research. Typically, an execution-driven
simulator models the function and timing for all the components of the target computer system,
including the processors, the cache/memory system, bus, interconnection network, and I/O. The
models can have different levels of detail depending on the accuracy and simulation time trade-off.
The application executables are run on top of the simulator just as they run on the target machine.
The simulated processor interprets and executes the application instructions based on the appropri-
ate timing. Usually, there will be an event engine that maintains an internal global time and sched-
ule the order of events.
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Chapter 3

VIRTUALLY ADDRESSED MEMORY HIERAR-
CHIES

In this chapter, we look at various design options for virtually-addressed memory hierar-
chies in the context of large scale multiprocessors. The basic idea is to move the address transla-
tion closer to memory, where the TLBs are shared, do not have coherence problems, and scale well
with both the memory size and the number of processors.

3.1 Virtual Address Cache Issues

Virtual address caches can relieve the latency and bandwidth requirements of the TLBs.
When the cache is virtually indexed and tagged, most memory accesses are completed without
TLB involvement; in fact, address translation can be done in different locations in the memory
hierarchy[85], and can be implemented in various ways, such as in-cache translation[89] or even
by software[42].

There are a series of issues related to any system with virtually indexed and virtually
tagged caches, such as the synonym problem for which we will propose a new solution in chapter
4. We briefly summarize these issues here.

3.1.1 Synonyms and Address Mapping Changes

Virtual address caches suffer from synonym and address mapping change problems. Syn-
onyms happen when multiple virtual addresses map to the same physical address and may cause
inconsistencies in a virtual address cache. Virtual-physical address mapping changes are due to
deallocation and reallocation of pageframes. Since mappings may still remain in the virtual
address cache after a page has been demapped, they must be flushed to avoid inconsistencies.

Chapter 4 analyzes the synonym problem in detail. In this chapter, we assume that the vir-
tual addresses that are used to address the memory hierarchy do not contain synonyms. A Pow-
erPC-like segmented memory system or a single address space operating system can create a
global virtual address space where synonyms are not allowed. The SLB scheme proposed in chap-
ter 4 can also be used to generate unique virtual addresses for synonyms.
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3.1.2 Write-backs and Inclusion

Besides cache misses, stores must also propagate down the hierarchy as write-through or
write-back accesses. Because write-backs may not be part of the current working set of the appli-
cations, they have a higher probability of missing in the TLB which is located right after the virtual
address caches.

Usually, inclusion is maintained between the caches. Thus, when a block is removed from
a lower level cache, the caches up the hierarchy must be invalidated. When the TLB is inserted in
the cache hierarchy such as the L1-TLB shown in Figure 3.1, the caches above the TLB are
indexed in virtual addresses, while the caches after the TLB are indexed in physical addresses. A
reverse translation mechanism, usually in the form of backpointers, is needed between a physical
address cache and the virtual address cache above it[85] in order to maintain the inclusion property
between the caches.

Maintaining inclusion between the TLB and the virtual address cache memory above it
avoids TLB misses on write-backs from the cache. Although the TLB placed after a virtual address
cache can be very large and slow in uniprocessors, inclusion is expensive in multiprocessors. First,
whereas a large cache cuts the number of capacity misses dramatically, coherence misses can not
be filtered out and the longer address translation latency impacts coherence operations. Second,
the TLB size to maintain inclusion grows with the cache size, leading to higher cost and longer
latency. Third, it is not mandatory to maintain inclusion. Physical pointers stored in the virtual
address cache can avoid accesses to the TLB on a write-back, just as pointers are used in the phys-
ical address cache to access the virtual address cache above it[85].

Because of the effect on coherence misses and the sheer cost of fast, large TLBs, we do
not enforce inclusion between a TLB and the virtual address caches above it.

3.1.3 Late Detection of Memory Faults

After a virtual address is translated into a physical address, the processor assumes the
memory access will complete without fault (except for fatal errors) because the TLB only contains
mapping for valid pages in memory. The traditional TLB coverage thus provides a “safe-access
subset” such that any memory access that passes the TLB does not generate any exception in nor-
mal execution. However, this is a conservative strategy, in which every memory access outside the
subset stalls the processor even though it may not lead to a memory fault.

Putting the address translation mechanism after the virtual address cache postpones the
decision time of the memory fault. The virtual address cache and the following TLB expand the
“safe-access subset”, which means that a page fault or a miss of the TLB will trap the processor
after a longer detection time as compared to a system with physical caches. This issue of late
detection of memory traps is studied in chapter 6, where the trap in ILP processors is analyzed and
new techniques are proposed to tolerate the late memory traps.

3.1.4 Access Rights

Each page table entry contains protection bits such as read, write, and execute for the
page. These attributes migrate to the TLB on a TLB miss. Thus, in a system with virtual address
caches access right bits must be copied at least in the first level cache. This requires cache flushing
when access rights are changed. Of course in a segmented system as the PowerPC architecture,



Network Network

LO-TLB L1-TLB L2-TLB SHARED-TLB

FLC SLC L DIRECTORY OWNER

Request node Home node Owner| node

Figure 3.1. Possible Locations for the TLB in CC-NUMA

access rights can be easily checked at the segment granularity([42][52] by storing access right bits
in the segment register.

3.2 Options for Dynamic Address Translation

3.2.1 Dynamic Address Translation in CC-NUMA

Address translation can be done at different levels of the memory hierarchy in a traditional
CC-NUMA architecture, as shown in Figure 3.1. Most processors translate virtual addresses in a
TLB before or in parallel with the first-level cache (L0-TLB). However, provided caches are virtu-
ally indexed and tagged, the TLB could be placed between the first- and second-level caches (L1-
TLB) or after the second-level cache (L2-TLB). In these cases, the TLBs are private and their con-
sistency must be maintained. Alternatively, the TLB could be associated with the home node
(SHARED-TLB). In this latter case, the TLBs are shared, map the local memory only, and do not
cause coherence problems. However, because the home node is selected with the virtual address
the programmer has no control over page location and page migration is impossible. Because page
placement cannot be optimized for locality, capacity misses are remote most of the time resulting
in poor performance for applications whose significant working set does not fit in the second-level
cache.

3.2.2 Dynamic Address Translation in COMA

The design options for dynamic address translation and their trade-offs in COMA[44] are
different than in CC-NUMA. Locating the TLB at the memory in a COMA does not affect the
latency of capacity misses much because of the automatic migration and replication of memory
lines. We compare five schemes called LO-TLB, L1-TLB, L2-TLB, L3-TLB and V-COMA. These
schemes are illustrated in Figure 3.2.

The LO0-TLB scheme is the traditional dynamic address translation design in most current
processors[83][92] and the habitual scheme for a physical COMA. Every memory address issued
by the processor is translated by the TLB. All caches and the attraction memory are physically
addressed.
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The L1-TLB scheme puts the address translation mechanism after a virtual FLC (first-
level cache), but before a physical SLC (second-level cache) [85]. Backpointers in the physical
address SLC are needed to maintain inclusion. The LO-TLB and L1-TLB schemes are not very dif-
ferent for CC-NUMA and COMA.

In the L2-TLB scheme both FLC and SLC are virtual address caches. The software-man-
aged address translation scheme proposed in [42] can be seen as an L2-TLB scheme which has 0
entry and traps the processor on every SLC miss. The L2-TLB scheme for COMA is different than
the L2-TLB scheme for CC-NUMA in that backpointers are needed in the attraction memory to
maintain inclusion.

Network Network
L0O-TLB LI1-TLB L2-TLB L3-TLBj V-COMA

FLC SLC AM DIRECTORY OWNER

Request node Home node Owngr node

Figure 3.2. Possible Locations of the TLB in COMA

In a COMA the attraction memory acts as a cache and may also be virtually indexed and
virtually tagged. In the case of L3-TLB, address translation is postponed until a miss in the local
node, as shown in Figure 3.2. The coherence protocol is maintained with the physical address,
which points to the home node.

In a typical COMA, the attraction memory in every node is divided into an equal number
of sets. A global set is made of all the sets with the same number in all attraction memories, as is
illustrated in Figure 3.3 where each attraction memory is 4-way set associative. The size of a glo-
bal set increases linearly with both the number of processing nodes and the set size in each attrac-

tion memory.
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For a physically indexed attraction memory a virtual address can be mapped into different
global sets depending on the virtual-to-physical address mapping. By contrast, in the L3-TLB
scheme, a data block is restricted to reside in the global set indexed by its virtual address. The
number of slots for a given block is limited by the size of a global set. A page occupies the same
slots in consecutive global sets, so that we can also speak of theslot of a page. The global page set
is made of all the contiguous global sets in which the blocks of the page can reside. The number of
slots for a page is limited by memory pressure, which is given by the number of slots occupied in a
global set divided by the size of the global set. When the pressure approaches 1, replication in the
global set is inhibited. Therefore, if the pressure in the global page set to which a new page maps is
too high, a page must be swapped out even though the pressure in other global page sets islow. In
a nutshell, the virtual-to-physical address mappings are set-associative instead of fully associative
and the set size is equal to the size of a global page set.

AM Tag _,_ Global Set Index
>l »>
Virtual address ! Virtual page color Block offset
Physical address Node index Physical page color Page offset
: Page Slot Number

w

Pageframe Number

Figure 3.4. Page Coloring in the Attraction Memory for L3-TLB

This page allocation strategy is equivalent to page coloring applied to the attraction mem-
ory. Page coloring allocates virtual pages to physical pageframes sharing the same least significant
bits so that the virtual address and the physical address index to the same set of the cache[51]. As
shown in Figure 3.4, if the virtual and the physical addresses have the same color, the set index for
the data in the physically indexed attraction memory is determined to be the same as in the virtu-
ally indexed attraction memory. The most significant bits of the physical page number contain the
slot number. The maximum number of slots of each global set is given by the number of proces-
sors multiplied by the associativity of each attraction memory.

3.3 Virtual COMA (V-COMA)

In L3-TLB a TLB is still private to a processor node, which means replication of TLB
entries across nodes and TLB consistency enforcement. We propose to move the address transla-
tion into the home node and to integrate it with the cache coherence protocol as shown in Figure
3.2. In this new design, which we call V-COMA, the support for address translation is located at
the home node.

In V-COMA the attraction memory is accessed as in L3-TLB, but the directory at the
home node is accessed with virtual addresses instead of physical addresses. Thus, as in SHARED-

TLB, the home node is fixed by the virtual address. Because its architecture is not conventional,
V-COMA is described further in the next section.
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Figure 3.5. Processor Node Architecture in V-COMA

3.3.1 V-COMA Processor Node Architecture

Figure 3.5 shows the architecture of one processing node in V-COMA. The processor P
does not need a TLB. Its caches and attraction memory are all virtually indexed and tagged. Some
private memory in each processing node stores page tables for local pages and can also be used for
private (non-replicated) data. The directory for local pages is stored in private memory or in a sep-
arate memory. The DLB (Directory Lookaside Buffer) is a cache to speed up translations from vir-
tual addresses to directory addresses in the directory address space. The PE (Protocol Engine)
executes the cache coherence protocol and refills DLB entries on DLB misses and is similar to the
MAGIC chip in FLASH[47]. PE programs reside in local private memory. If the PE has enough
processing ability and bandwidth, it could perform additional functions, such as periodically reset-
ting the reference bits in page table entries.

3.3.2 Directory Organization and Coherence Protocol

Virtual addresses are not suitable to address the directories. Compared to the physical
address space, the virtual address space is huge and sparse. Every virtual address issued by the pro-
cessor is not guaranteed to reside in primary storage, or even exist. The size of the necessary direc-
tory memory is determined by the size of the main memory. Since only a small part of the virtual
address space resides in physical memory, it is impossible and unnecessary to reserve a directory
entry for every virtual address block. Virtual addresses have a limited life time, which makes it
more difficult to manage the directory space by virtual addresses. Thus V-COMA moves the vir-



tual address translation into the directory look up procedure by translating virtual addresses into
directory addresses to find a directory entry.

The directory memory is organized in directory pages. Contiguous directory entries in a
directory page correspond to contiguous memory blocks of a memory page. Therefore, adirectory
page has as many entries as there are blocks in a memory page. The directory memory is allocated
and reclaimed in directory page unit by the virtual memory system. Due to the set-associative
nature of the attraction memory, the mapping of a virtual page to adirectory page in the page table
is also set-associative, where the set is the global set.

Figure 3.6 shows how the virtual address is decomposed into fields to access the directory.
Assume that the number of attraction memory sets per node is S = 25, the associativity is K = 2K
blocks per set, the block size is B = 20 bytes, the number of processor nodes is P = 2P, and the page
size is N = 2" bytes. The p least significant bits of the page number point to the home node and the
n-b most significant bits of the page displacement point to the entry within the directory page. s-p-
n+b bits of the page number are used to index the global set in the page table (of size PxK) where
the base address of the directory page can be found. The virtual address tag is then matched to the
tags in the set. Since the global set is very large, we must use hashing or hierarchical translation
based on the virtual tag to access the page table entry. A detailed page table structure is described
in section 4.3.
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I > > > |
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Figure 3.6. Access to the Directory of V-COMA

Because the latency to locate the directory for a memory block is in the critical path of the
cache coherence protocol, a DLB is put between the protocol engine and the directory memory in
every processing node to accelerate the directory look up procedure. Accesses to the DLB are fully
or set associative, as illustrated in Figure 3.7.

The protocol is write invalidate and is basically the same as in COMA-F[44]. Each block
in attraction memory can be in one of four stable states: Shared, Master-shared, Exclusive and
Invalid. The replacement policy is random. Replacements of Exclusive or Master-shared copies
send the block to the home node, which accepts the injection only if it has spare Invalid blocks in
the same set. If not, the home node forwards the block copy to a random node. The selected node
accepts the injection if it has an Invalid or Shared block available. If not, it forwards the request to
the next node.

Cache coherence is maintained using virtual addresses. If a processor access is satisfied at
the local node, no address translation is needed. If the access misses in the local node, a request is
sent to the home node specified in the virtual address. The home node translates the virtual address
to a directory address to find the state and copy set of the accessed block. The rest of the protocol
transaction is handled with virtual addresses.
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3.3.3 Page Table Structure

Since the virtual address space is set associative, the page table and directory memory are
also set associative in the same structure. Each set is independent and detects memory pressure
separately. The management of the physical memory can be much easier because of the slot con-
cept instead of a contiguous physical address space and also because of the reduced memory size
per global page set. However, a page table structure is still necessary because of the sparse and
huge space represented by the virtual tag for each global page set. We describe an inverted page

table structure in this section. Other alternatives inspired from conventional page table structures
are also possible.
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Figure 3.7. V-COMA Address Translation with DLB

Figure 3.8 shows the structure of the page table in V-COMA. It is a set associative
inverted page table (IPT). As an IPT, every page table entry connects to a directory page perma-
nently. Hash Anchor Table(HAT), IPT and directory memory are all set associative just as the vir-
tual address space. The home node index bits of the virtual page do not hash, while the other bits in
the virtual page number participate in the hashing. The set index bits at each node is the same set
index for HAT, IPT and directory memory. The virtual tag which is the most significant part of the
virtual address is hashed into the HAT. Hash function is the same but independent for different
sets. The base address of the page table and HAT can be stored in the private memory or in a con-
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Figure 3.8. Page Table and Directory Memory Organization

trol register if implemented in hardware. The virtual address bits are compared with the tag in the
inverted page table entry. If they match, it is the right page table entry and the DLB entry is
refilled; otherwise, the next entry is searched through the next pointer in the page table entry. If
there is no match at the end of the chain, the virtual page is not resident in the physical memory.

Unlike a forward-mapped page table, there is only one page table entry for each page slot.
The size of the page table depends on the size of the primary memory. Therefore, the size of the
necessary private memory for the page table scales with the attraction memory size. The page table
resides in the private memory on each home node, and guarantees directory accesses be completed
locally at the home node.
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3.3.4 Impact on Virtual Memory Management

The impact of V-COMA’s memory organization on memory management is no greater
than for traditional COMAs. From the point of view of virtual memory management, the directory
page corresponds to the physical pageframe in a classical system.

On a page fault, a directory page and a page table entry are requested from the page’s
home node. A resident page may have to be swapped out by the page daemon if the memory pres-
sure of the page’s global page set is higher than a threshold. A page table entry is filled with the
necessary virtual address bits as well as other information, and is inserted in the page table. This
action allocates a directory page to the new page.

Page access information such as the reference and modify bits must be maintained. Since
the DLB sees the virtual address stream after the attraction memory the reference bit in the DLB of
a page with many coherence misses is updated much more often than the reference bit of shared
read-only or non-shared pages. The impact on the accuracy of the replacement algorithm is hard to
predict. The Modify bit in the DLB is implemented as follows. When a writable page is first cre-
ated or loaded from disk, the Modify bit is set immediately if the page fault is caused by a write
access. Otherwise, the state of the page’s memory blocks is set to Master-shared. Then, if any node
tries to get exclusive ownership for any attraction memory block of the page, the request is sent to
the home node where the modification bits are set in both the DLB and the page table.

Besides segment-level protection, page-level protection can also be implemented in V-
COMA. The protection bits must be copied in every level of the memory hierarchy. If a processor
wants to change the protection bits of a page, it sends a message to the home node which hosts the
page. The PE at the home node changes the bits in the page table and in the DLB. Then, according
to the directory entries, it sends update messages to the nodes holding the blocks of that page.
Another solution is to dedicate access right checking hardware within the processor, such as the
PLB (Protection Lookaside Buffer) proposed for Single Address Space Operating Systems
(SASOS)[18][46].

3.4 Experimental Evaluation

3.4.1 Methodology

We have run execution-driven simulations to compare the five options for dynamic
address translation in COMAs. Our simulated baseline architecture has 32 nodes, each of which
has a 200 Mhz Sparc processor. Because we can only simulate applications in which the data set
sizes are much smaller than those expected for the target machine, we have to scale down the sizes
of attraction memories, caches, and TLBs.

Each node contains 4 MB of attraction memory, a 16 KB first-level cache (FLC), and a 64
KB second-level cache (SLC). The FLC is direct-mapped and write through with a block size of
32 bytes. The SLC is 4-way set associative and write-back with a block size of 64 bytes. The
attraction memory is also 4-way set associative, and its block size is 128 bytes. The page size is 4
KB for all simulations. The timing and network model are the same as in [53]). An FLC hit has no
latency charge and an SLC hit takes 6 cycles. A hit in attraction memory takes 74 cycles. The net-
work is an 8-bit wide crossbar clocked at 100Mhz. An 8-byte request takes 16 cycles and a mes-
sage containing a data block takes 272 cycles.



We only simulate shared data accesses. Random replacement is used for the fully associa-
tive TLB/DLB. The parameters of the six Splash2 benchmarks[88] are shown i.n Table 3.1. Tl)e
important working sets always fit in our simulated attraction memory, but sometimes do not fit in
caches. The data sets fit in main memory and are preloaded so that no paging activity is simulated.

Shared

Benchmark Parameters | Memory

(MB)

RADIX |-n524288 -r2048 -m1048576 6.12

FFT -m20-t| 51.29

FMM 16384 particles 29.23

OCEAN 258*258 15.52

RAY- car 34.86
TRACE

BARNES 16384 particles 3.94

Table 3.1. Benchmarks

3.4.2 Address Translation Misses

Figure 3.9 shows the number of address translation misses per node as a function of the
TLB/DLB size. The solid line for L2-TLB shows the number of misses in the case where SLC
writebacks access the TLB. The L2-TLB/no_wback curve in dash line shows the number of L2-
TLB misses without the writeback impact. Recall that we do not enforce inclusion between a TLB
and the caches above it.

One obvious observation is that the number of address translation misses consistently
decreases with the level of the TLB provided SLC writebacks do not access the TLB in L2-TLB.
This is due to a filtering effect by the caches. Namely, the number of misses in a TLB cannot be
larger than the number of misses in the cache above it. This effect is especially large when the
TLB reach is less than the working set size. SLC writebacks affect the number of L2-TLB misses
significantly, especially for FFT and OCEAN. With the writebacks, L2-TLB is sometimes even
worse than LO-TLB. As explained before this is due to the poor locality of writebacks. Thus, it
might be preferable to keep physical pointers in a virtual SLC so that writebacks can bypass the
TLB.

The case of RADIX stands out (note the different scale in the graph). The curves show no
clear significant working set for any TLB organization or size, until the size reaches 512 entries.
RADIX has a disproportionately large number of writes and these write accesses cause coherence
transactions and are not filtered by the caches or the attraction memory. Except for RADIX, the
TLB-miss curve for L3-TLB is much flatter than for L2-TLB.

As we expected, the number of DLB misses is negligible for all benchmarks, even for very
small DLB sizes. This is due to a sharing effect. DLB entries are shared and are not replicated.
Thus the effective amount of DLB entries increases proportionally with the number of processors.
This is not true for systems with TLBs. This effect can be huge, as in RADIX. In each pass of
RADIX, a key is written into a large output array shared and distributed among all nodes. The
number of DLB misses in RADIX is consistently less than the number of TLB misses in an L3-
TLB system with 32 times more TLB (recall that we simulate 32 processors). All other bench-
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Figure 3.9. Number of Address Translation Misses vs. TLB/DLB size

marks show similar trends, albeit not as pronounced because their access patterns are more com-
plex.

Since, in the case of RADIX, the DLB miss rate is lower than the miss rate of a TLB
whose size is 32 times larger, another effect is at play besides the sharing effect. For example, a
16-entry DLB has even less misses than a 512-entry TLB in L3-TLB. This comes from aprefetch-
ing effect, a consequence of the sharing of DLB entries. Although the nodes do not interfere with
the TLBs of other nodes in L3-TLB, they can not benefit from each other either. For example, if
processor 1 writes a shared data which is then read by processor 2, a TLB miss at processor 1 does
not help prevent a TLB miss at processor 2. The impact of this prefetching effect is significant for
cold misses when the whole working set fits in TLB or DLB. In this case, every page table entry is
loaded only once in the whole system in V-COMA instead of once per node in L3-TLB.

Table 3.2 shows the miss rates (misses/processor reference) for the DLB and TLBs. In LO-
TLB the TLB miss rates are comparable to SLC miss rates when the TLB has 8 or 32 entries. Thus
the TLB effects cannot be ignored. The situation improves somewhat in L2- and L3-TLB. V-
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COMA is the only case where we could neglect address translation misses as compared to cache
misses.

TLB/|
DLB 8 32 128
size
Sys-|| LO| L1| L2j L3 V-|| LO] L1| L2{ L3 V-|| LO| L1| L2| L3 V-
TEM COM COM COM

A A A
RADIX|| 10.8] 10.2] 6.31| 3.48( 1.84(/8.06|8.03{5.43|3.30 0.02{|5.39(5.3913.96{2.67 0.01

FFT|| 2.02| 2.01| 1.47] 0.35} 0.17|[0.59]|0.59|0.54}0.24| 0.10{0.11]0.11}0.13}10.15| 0.03

FMM|| 8.44] 1.68] 0.80| 0.24| 0.11)[2.4310.89[0.65]|0.21| 0.01]0.40{0.36|0.35/0.13| .004

RAY-{[2.23| 1.05]| 0.74| 0.22] 0.17){0.68/0.55|0.44|0.16| 0.10](0.19(0.19]0.180.13| 0.02
TRACE

BAR-|[2.68| 1.42| 0.43] 0.06] 0.03(]1.13|0.91{0.30/0.05] 0.0001](0.180.16/0.10]0.03 | 0.0001
NES

OCEAN][6.45| 3.86| 3.42] 0.48] 0.14(/1.87|1.32{1.58|0.23| 0.04/[0.16{0.160.30]0.12] 0.003

Table 3.2. TLB/DLB Miss rates Per Processor Reference (%)

Another way to compare the five options is to ask which TLB size it would take to have
the same performance as the DLB in V-COMA. The answer to this question is shown inTabl e3.3.
We see that in many cases it would take TLBs with several hundred entries to have the same miss
rate as an 8-entry DLB in V-COMA. Because of the writebacks, some equivalent L2-TLBs are
larger than L1-TLBs, or even LO-TLBs.

[[Lo-TLB] L1-TLB] L2-TLB] L3-TLB
RADIY[] 360| 360 344 256

FFT 60 60 86 86
FMM 335 321 347 187
RAYTRACE 157 152 144 27

BARNES 327 318 298 160
OCEAN 175 174 251 113

Table 3.3. TLB Size Equivalent to an 8-entry DLB

3.4.3 Sensitivity

So far we have considered fully associative TLB/DLBs. However large, fully associative
memories are slow and expensive. We also have simulated direct-mapped TLB/DLBs. Figure 3.10
shows the number of misses for the direct mapped vs. fully associative address translation mecha-
nisms. The dash lines in the figure are for the fully associative cases which are the same as in Fig-
ure 3.9. The size and the set associativity of the virtual address caches can absorb potential

33



60000

40000
20000
0
o
(a) RADIX
400000
300000 —
200000 +—
100000
L. [ |
n E’\g&é
0 1 g I 1
° & & & &
(b) FFT

LO-TLB A A LI-TLB 0O O L2-TLB < < L3-TLB ¥ ¢ V-COMA
&-© LO-TLB/DM A—A Li-TLB/DM T8 L2-TLB/DM ©&—< L3-TLB/DM ¥k V-COMA/DM



700000 —

600000 |~

500000 |-

400000 |-

300000

200000 —

100000 —

150000

T

100000

50000

(d) RAYTRACE

LO-TLB A A LI-TLB O O L2-TLB < < L3-TLB #* % V-COMA
& LO-TLB/DM A—A L1-TLB/DM &1 L2-TLB/DM << L3-TLB/DM k& V-COMA/DM

35



600000

500000

400000

300000

200000

100000

(e) BARNES

300000

250000

I
-

T

200000

150000

100000

50000 - \E\A
- _@ "E"—-—._________-

A = - - —_— —
0% 1 % L [—__ 1

(f) OCEAN
L0-TLB A A LI-TLB O O L2-TLB  © < L3-TLB > % V-COMA
G-© LO-TLBIDM A—A L1-TLBIDM @-81 L2-TLB/DM &< L3-TLB/DM 3k V-COMA/DM

Figure 3.10. Address Translation Misses for Direct Mapped TLB/DLB

2]
s



conflicts which would happen in the TLB below it. As observed, whereas the gap betw.een direcF-
mapped and fully associative TLBs is large for LO-TLBs and L1-TLBs, it becomes quite small in
L2-TLB, L3-TLB and even more so in V-COMA. The big gap between the LO-TLB/DM and LO-
TLB makes direct mapped TLB an unpractical design, and actually no existing processor adopts it.
The filtering effect of the direct mapped write-through FLC is not as good as that of the larger set
associative write-back SLC, while the sharing effect for the DLB helps reduce the gap further
because the DLB coverage grows very fast with the DLB size per node. The large coverage of the
DLB makes the organization less important.

3.4.4 Execution Time

We compare the execution times of V-COMA with those of the LO-TLB scheme, a tradi-
tional physical COMA. Physical addresses are distributed round robin among processors. Based
on the timing of our simulation model and the average TLB service times in current computer sys-
tems[54][79], 40 cycles are charged for each LO-TLB miss. Each DLB miss also takes 40 cycles.
The memory consistency model is sequential consistency.

LO-TLB DLB| LO-TLB DLB
(8) (8) (16) (16)
RADIX 10.61 1.25 8.93 0.04
FFT 15.24 0.88 12.56 0.76
FMM 96.54 1.15 59.54 0.38

RAY- 30.95 1.04 17.46 0.82
TRACE

BARNES 38.14 0.45 22.12 0.01
OCEAN 21.53 0.45 15.95 0.23

Table 3.4. Address Translation Time / Total stall time (%)

Table 3.4 shows the average TLB/DLB overhead divided by the average processor stall
time on local and remote memory accesses for DLB/TLBs of sizes 8 and 16. Note that these small
TLB sizes have been selected to offset the effects of the small data set sizes in our benchmarks.
The data show that address translation is a significant part of the memory latency in the traditional
LO-TLB system and that its effect is at least comparable to the effect of memory consistency mod-
els [28]. Fortunately, the memory access penalties due to translation can be drastically cut to a
point where they are negligible by translating addresses at the home node.

The effects on the execution time are shown in Figure 3.11, where Busy indicates the time
spent executing the instructions in each processor, Sync is the synchronization time, Loc-stall
counts time spent on local cache misses, and Rem-stall refers to the service time for attraction
memory misses. TLB/8 is LO-TLB with an 8-entry fully associative TLB, DLB/8 is V-COMA
with an 8-entry fully associative DLB, TLB/8/DM and DLB/8/DM correspond to the same sys-
tems but with direct mapped TLB/DLBs.

Address translation overhead is negligible in V-COMA, as we expected. The total execu-
tion time improvement over the physical COMA depends on the original address translation over-
head. Virtual address indexing of attraction memory does not have a significant impact on the
overall execution times (excluding the TLB overhead), although in general it is no better than for
the physically indexed attraction memory except for BARNES. In RAYTRACE however we
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Figure 3.11. Execution Time of V-COMA and LO-TLB

observe that the execution time of V-COMA (excluding the TLB overhead) is much larger than in
physical COMA due to the increased synchronization time. This effect is due to the fact that the
virtual address layout is not optimized, whereas the round robin pageframe assignment turns out to
be a good strategy for the physical COMA. RAYTRACE shows an extreme case of this effect
because in the definition of raystruct, which is the private stack for the ray tree of each node, pad-
ding is used to avoid false sharing. The padding is aligned on multiple of 32KB in the virtual
address space, which causes uneven conflicts in V-COMA leading to the increase of the synchro-
nization time. By simply aligning the padding to one page size (4 KB), the synchronization time is
reduced significantly, as shown as DLB/8/V2 in Figure 3.11. This simple example indicates that
there is plenty of room for virtual address layout optimization for the V-COMA architecture.

3.4.5 Relative Miss Rate and TLB-less Systems

The TLB/DLB miss rate is decreased when it is moved further down the memory hierar-
chy as shown inTable 3.2, due to the filtering effect of the caches. The number of accesses to the
TLB is much less when it is located after a cache than if it is located before the cache. Therefore,
as the total number of TLB/DLB misses is decreased, so is the TLB/DLB miss ratio per processor
reference. However as we have seen, this is mostly due to the filtering effect of the cache. The
effectiveness of the TLB is decreased in general when it is moved further away from the processor
because of the poorer locality of the memory reference stream after each cache. Table 3.5 and Fig-
ure 3.12 show the relative TLB/DLB miss rate, which is the percentage of TLB/DLB misses rela-
tive to the number of TLB/DLB accesses. Due to the sharing and prefetching effect, V-COMA



exhibits much better relative miss rate than L3-TLB, which is also accessed after the attraction
memory, and its relative miss rate improves much faster with the DLB size.

TLB/

DLB 8 —" 32 128

size

SYS-f| Lo| L1| L2| L3 v-|| Lo| L1| L2| L3 Vv-|| LO| L1|] L2}] L3 V-

TEM COM COM COM
A A A

RADIX|| 10.8] 21.3| 71.9] 85.4| 44.5[|8.06|16.8(61.8|81.0 0.48(|5.39(11.3145.1{65.5| 0.32

FFT|[ 2.02]| 4.97] 39.1]| 40.1| 26.0|{0.59(1.45]14.5|27.7| 14.5(|0.11|0.27(3.48|17.6 4.21

FMM|| 8.44| 17.8] 50.7| 54.9| 27.6{|2.43|9.34141.0|48.2| 3.87/{0.40|3.76|22.2|30.5| 0.91

RAY-|[2.23]| 5.02| 23.8] 28.7| 20.0[0.68(2.65(14.2|21.6} 11.8}j0.19]0.89|5.79}17.6| 2.50
TRACE

BAR-|] 2.68| 3.85| 54.7] 52.8| 25.7|{1.13(2.46(38.1(44.5( 0.13}|0.18]|0.43[12.6]27.7| 0.13
NES

OCEAN(| 6.45| 12.5} 40.5| 31.4 10.1{|1.87]|4.25|18.6|14.8| 2.96{|0.16/0.51]3.52(8.13| 0.21

Table 3.5. TLB/DLB Relative Miss Rates (%)

Except for V-COMA, fast but small TLB in memory hierarchy is not as efficient as the
traditional LO-TLB, with respect to the relative miss rates. Although the TLB performance is less
sensitive to its organization and can be built much larger, another design choice is to do without
the TLB. Due to the cache filtering effect and the poor efficiency, the TLB after a large virtual
address cache can be eliminated without significant impact on system performance. Indeed,
removing the TLB could save some hardware cost, and more importantly get rid of the overhead of
maintaining TLB consistency, which does not scale well in multiprocessors. Actually, the in-cache
translation[89] and software-managed translation[42] can be considered as L2-TLB schemes with
0 TLB entry.

The mechanism to search page table for address translation in case of virtual address cache
misses is very important to maintain robust system performance when the TLB is eliminated. The
virtual address translation can be served by trapping the main processor as in [42], by the protocol
engine, or by a hardware controller through some programmable logic. Despite the possible cach-
ing for page table entries in all schemes, schemes other than V-COMA could have remote page
table accesses, while in V-COMA, a page table is always accessed locally, which means that the
time to find a translation is less than in other architectures.

For L2-TLB, L3-TLB and V-COMA, the performance impact of 0 TLB/DLB will not be
significant. even though every coherence miss triggers address translations. Compared to the long
latency of coherence activities, this address translation overhead could be very small. Removing
L1-TLB will cause significant performance degradation due to the limited size and write through
behavior of L1 cache. Although V-COMA has much smaller DLB miss rate and much higher
effectiveness than L2-TLB and L3-TLB, removing the DLB should not hurt V-COMA badly
because of the very low access frequency to the DLB.
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Figure 3.12. Relative TLB/DLB Miss Rate (%)

3.5 Further Discussion on Virtual COMA

Set Associative Memory. Although the V-COMA architecture eliminates address transla-
tion overhead, the restriction on memory mappings may be of concern. If the attraction memory at
each node can contain N pages and is K-way set associative, the number of global page sets is N/
K. Each global page set contains up to P*K page slots, where P is the number of processing nodes.
The memory management unit in a traditional physical COMA can control the global page set
index of a new virtual page through the virtual-to-physical page mapping. On the other hand, V-
COMA has no control over the global page set index for the virtual pages. The danger is that the
conflicts in the virtual address space will affect the page fault rate and thus overall system perfor-

mance.
Although this danger is real, it can be overcome. First, the virtual address has good local-

ity within each process[51]. Although virtual address layout tends to be uniform across different
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processes and may cause high conflicts in some global page sets and under-utilization of others,
this situation can be improved by several methods. First a base address could be added to each vir-
tual address; this base address can be different for every context. Second the code and data seg-
ments of different contexts could be located in different areas of their virtual space by the
compiler[1]. Third, the operating system controls dynamic memory allocation, and can optimize
the scheduling strategy to spread paging activity evenly across the global page sets. Fourth, the
whole problem is a non-issue in large scale systems, considering that the capacity of each global
page set scales up linearly with the number of processing nodes. For example, if each node has a
32MB 8-way set associative attraction memory, a 1024 processor system has up to 1024*8 = 8192
page slots per global page set, which is equal to the total number of physical address pageframes
on each node!

Figure 3.13 shows the pressure profile on each global page set in our evaluation. It shows,
that even without trying we observe a very uniform pressure on every global page set. This is
because program locality is maximized in the virtual space. In the physical space, locality only
exists within a page. Our experience with allocating memory in physical COMA [53] has taught us
that the intervention of the memory management unit can result in disastrous --albeit well-
intended-- physical page allocations for COMAs.

In fact, the advantages of this memory structure are very attractive. As a machine running
on virtual addresses, V-COMA provides a simple and consistent hardware model to the operating
system and the compiler where further optimization opportunities are possible. Virtual addresses
are divided into S sets each of which has P*K page slots. The linear contiguous physical memory
space no longer exists, and the management of the pages in the main memory is much simplified.
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While the operating system guarantees correct execution, the performance of V-COMA is
enhanced by the compiler and the programmer. Unlike in the traditional flat COMA where the pro-
grammer and compiler have no chance of affecting memory pressure and conflicts, the virtual
address layout directly controls the occupation of global page sets in the attraction memory. Static
virtual address layout optimization can generate good programs which get more performance ben-
efit from the V-COMA architecture.

Virtual Address Tag. Because the virtual address is usually longer than the physical
address, the tag memory is larger in V-COMA. For example, the 32-bit PowerPC architecture has
52-bit virtual addresses and 32-bit physical addresses; the 64-bit PowerPC architecture has 80-bit
virtual addresses and 64-bit physical addresses. With the access right bits, the virtual tag may be 2
to 3 bytes longer than the physical tag. This will increase the tag memory by a small fraction of the
attraction memory. If this is a concern in a particular design, techniques to reduce tag sizes can be
considered[73][86].

Extensions and Optimizations. Due to its special architecture, V-COMA offers the
opportunity to build a more efficient and smarter memory system. The following are some exam-
ples of extensions and optimizations of the V-COMA architecture.

» Smart Replacement. V-COMA offers an opportunity for a smart replacement policy
compared to other flat COMA protocols. Because the home node assignment bits are
part of the bits of the global page set index, all the attraction memory blocks within each
global set will be assigned to the same home node. The disadvantage of this is that it
will reduce the probability of a replacement block to be accepted by the home node
because all the replacement messages within each global set are sent to the same home
node. However, because the home node contains the directory information for all the
blocks within the global set, it can find out which nodes have vacancy to accept the
replaced block, and even predict among them which one will most probably access the
data in the future based on access history. These optimizations can reduce both the
replacement traffic and the node miss rate.

 Moving Functions to Memory. The page tables are distributed among the home nodes
and under the control of the protocol processor. Therefore, it is possible that some oper-
ating system functions, especially virtual memory related functions, can be migrated to
the protocol processor. For example, periodical updates of the reference bit for the page
table entries can be done easily by the protocol processor. Some system processes such
as fsflush which periodically synchronizes the file system between memory and second-
ary storage can also be moved to the memory side instead of executing in the main pro-
cessors. If the protocol processor is powerful enough, we can further imagine that
virtual memory system or even the whole operating system may move to memory side
because the protocol processor can understand virtual addresses. Besides the operating
system functions, it is also possible that some user level functions can be moved to the
memory side given that the processing bandwidth is enough. A good example is data-
base server daemons.

* Fast Page Fault and Victim Cache at Home Node. One of the drawbacks of V-
COMA s the set associative main memory. Unlike traditional systems in which the
page table implements a fully associative mapping for main memory, V-COMA
depends on the hardware caching mechanism to locate the data and therefore inherits the
set associativity of the attraction memory. We have discussed that it does not have sig-
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nificant impact on the overall system performance. Moreover, the impact can be further
reduced by reserving some main memory at the home node to be shared by all the global
sets on the node as a victim cache. This reserved main memory can be managed by the
operating system as page caches. Access to these pages will generate fast page fault
which is handled by the protocol processor at the home node. Alternatively, the reserved
memory can also be managed without OS involvement as a victim cache for the global
sets of attraction memory. When receiving a replacement message, the home node can
make the decision whether to keep the block in the attraction memory and inject it into
some node or kick it out of the attraction memory and reserve the block in the local vic-
tim cache.

Easy System Extension for V-COMA.. Unlike other software DSM systems where the
operating system has to atlocate physical addresses for the shared memory of remote
node, V-COMA can be much easier to expand beyond the pure hardware limit. Physical
addresses do not exist in V-COMA. Data blocks identified by virtual addresses are
injected into the attraction memory without the need to allocate a physical address.
Since virtual memory implementation is integrated with the cache coherence protocol,
caching for outside data is much more flexible and does not need to be backed up by
physical memory. The protocol processors can make local decisions for caching and
swapping based on the global sets of the attraction memory.

3.6 Summary

The virtual memory implementation in current computer systems does not scale well for
various reasons. The dynamic virtual address translation of the TLB is becoming a performance
bottleneck with the current trends of the technology and the applications. Virtually-addressed
memory hierarchies move the TLB out of the processor core and locate it in the memory hierarchy.

In this chapter, we have analyzed and evaluated five different designs for virtually-
addressed memory hierarchies in the context of large scale distributed shared memory multipro-
cessors. The dynamic address translation mechanism is located after the caches and the caches are
virtually indexed and virtually tagged. We have discussed various issues related to virtually-
addressed memory hierarchies in multiprocessors. We have run detailed execution-driven simula-
tions to evaluate the systems. Our simulation results have shown that the overhead of the dynamic
address translation is dramatically reduced when it is moved down to the memory hierarchy due to
the filtering effect of the virtual address caches.

We have proposed a novel multiprocessor architecture called V-COMA, which extends
the concept of virtual address cache to its limit so that the entire memory hierarchy is virtually-
addressed. While still supporting a conventional virtual memory system, V-COMA reduces the
address translation overhead to a minimum. The traditional physical address concept is eliminated
in V-COMA and the virtual memory support is integrated with the cache coherence protocol. The
DLB in V-COMA, which translates virtual address into directory address at the home node, is
shared among all processor and scales with the main memory. Therefore, in addition to the filter-
ing effect, the DLB also benefits from a sharing effect and a prefetching effect so that the address
translation overhead becomes negligible. Although the virtual memory has a set-associative orga-
nization, V-COMA scales well and works better in larger-scale systems. As a machine running on
virtual address, V-COMA provides a simple and consistent hardware model to the operating sys-
tem and the compiler in which further optimization opportunities are possible.
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Chapter 4

VIRTUAL ADDRESS CACHE

In the past, the strong motivation to remove some of the TLB overhead drove several com-
panies to adopt virtually-addressed caches (i.e. caches indexed and tagged with virtual addresses
a.k.a V/V caches) and inspired some very ambitious academic research projects in both software
and hardware such as the Opal operating system project [18] at the University of Washington and
the Spur project [89] at Berkeley.

However, the well-known “curse” of virtually-addressed caches is the synonym problem:
because of sharing and other factors, multiple virtual addresses may map to the same physical
address. This complicates cache management because of the lack of a system-wide unique identi-
fier for memory locations. Unique identifiers are also required to disambiguate memory addresses
in the load/store unit of ILP processors.

One approach to create unique identifiers is segmentation[15]{42][52][89]. Segment regis-
ters managed by software translate user virtual addresses into global virtual addresses before
accessing the cache. An example of a segmented architecture is illustrated as Figure 4.1. Sharing is
implemented at the segment level. Segments have fixed size and very coarse granularity. The oper-
ating system must support the global virtual addresses and the segment structures and the porting
effort is large, requiring ad-hoc patches for various situations involving synonyms[15].

Another approach is the Single Address Space Operating Systems (SASOS)[18], where all
processes share one single address space. Synonyms are resolved by using the same virtual
address. However, the software community is clearly not ready for such a radical change.

This chapter introduces new ideas to enable the use of virtual addresses throughout the
memory hierarchy, thus removing the TLB from the processor and associating it with memory
where it scales much better. The major idea is the replacement of the TLB in the processor by a
Synonym Lookaside Buffer (SLB), which can remain small because its size depends on the num-
ber of synonyms, not on the size of the application or of the physical memory. The synonym
lookaside buffer(SLB) is a translation cache very much like a traditional TLB but it only translates
synonyms. It creates unique identifiers as the segment registers in the PowerPC architecture[52],
but it is much more flexible and is managed in hardware without affecting the software. Because
the mapping is more flexible and is restricted to synonyms, it is very effective even if the number
of SLB entries is small. The SLB can be accessed before or in parallel with the first level cache.
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4.1 Synonyms

Multiple virtual addresses mapped to the same physical address are called synonyms. Syn-
onyms are very convenient to kernel and user software in many situations. Synonyms should be
aligned at least on page boundaries since virtual memory is managed in page granularity.

SegNo Segment Offset Page Offset

Segment Registers

! Y Y

Segment ID Segment Offset Page Offset

Figure 4.1.Segment Translation

Synonyms are often used to implement shared memory semantics across different user vir-
tual address spaces. Read-only segments such as libraries and text segments are widely shared and
the kernel is usually shared among all private virtual address spaces at a fixed location. User pro-
cesses can also request shared memory segments to facilitate communication with other processes.
Users may even define synonyms within the same process for convenience.

In addition to the true sharing semantics, synonyms are also critical for the efficiency of
various memory operations. Copy-on-write avoids unnecessary memory copies and reduces the
consumption of physical memory. In this case, different virtual addresses share the same physical
memory location for as long as the content is not modified.

It is very frequent that a particular physical page P is remapped from one virtual page V1
to another virtual page V2. We consider that V1 and V2 are synonyms even though the V1-P and
V2-P mappings may not coexist at the same time. Traditional message passing semantics can be
optimized using the remapping operation to avoid real memory copies. As an example, process 1
wants to send a message page at virtual address V1 to process 2 at virtual address V2. Instead of
copying V1 to V2, the system can simply remap the physical page P from V1 to V2. The old V1-P
mapping can either remain valid as copy-on-write or destroyed depending on the message seman-
tics. As a special case, the operating system kernel usually buffers the pages used in I/O in physical
memory accessed with kernel address and remap them to user address space when needed.
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In the message passing optimization, it is the content of the physical page P that is passed
from V1 to V2. However, it is also very common that V1 and V2 share the resource of the page-
frame rather than its content. For example in demand paging system, V1 may be swapped out and
the physical page P can be freed and allocated to another virtual page V2. V1 and V2 do not have
any logical connection. Physical page P should be overwritten with new content before it is allo-
cated to V2.

4.2 Virtual Address Caches

4.2.1 Translation Lookaside Buffer (TLB) and V/P Cache

Figure 4.2 shows a typical architecture for a V/P cache and a TLB accessed in parallel.
Cache blocks are named by their physical address, while their virtual address is used as a hint or
hashing function to quickly find their location. After a cache set is indexed by the virtual address,
all tags in that set are compared with the physical page number translated by the TLB. A miss in
that set does not guarantee that the data block is not present in the cache. The block may reside in
any set within the superset. The superset is made of all the cache sets whose set indexes share the
same (p-b) least significant bits, where p is the number of page offset bits and b is the number of
block offset bits.

To detect synonyms in the superset a backpointer[85] is stored in the L2 physical-address
cache for every valid block in the L1 cache. Each pointer points to the frame in L1 where the block
is valid. A synonym is detected whenever an L1 cache miss hits in the L2 cache and the back-
pointer is valid in L2. In this case, the block is moved to the new cache set in L1 and retagged, and
the backpointer in L2 is updated. This is called a short miss.

When the TLB misses, usually the processor is trapped and the TLB is filled by the trap
handler before resuming the access. The miss rate of the TLB is primarily determined by its reach
or coverage, which is the aggregate virtual memory area mapped by all its entries[19]. Superpages
can improve TLB coverage[79]. However, if one TLB entry maps a superpage, all the physical
pages inside the superpage must be allocated in contiguous frames in physical memory. The size
of a superpage is also hard to figure out at the time when the virtual address is first allocated. Page
placement in multiprocessors and coloring of pages to optimize cache behavior[7] may conflict
with the use of superpages.

4.2.2 Synonym Lookaside Buffer and V/V cache

To solve the synonym problem, we must associate a unique identifier to each page. To do
this, we split the entire virtual address space in two sets: the main address set and the synonym set.
The synonym set contains all the virtual addresses that are synonyms to some virtual addresses in
the main address set. The main address set contains the rest of the virtual addresses which include
virtual addresses with no synonyms and one virtual address selected in each group of synonyms.
The main addresses act as unique identifiers for all pages.

An SLB (Synonym Lookaside Buffer) dynamically translates virtual addresses in the syn-
onym set into their corresponding shared virtual addresses in the main address set. Just as a tradi-
tional TLB, the SLB can be accessed in parallel with the first level cache. Figure 4.3 shows the
parallel access to cache and SLB. Backpointers in the second-level cache take care of short misses
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as in the V/P cache. The main difference between Figure 4.2 and Figure 4.3 is that each SLB entry
contains the main address instead of the physical address.

As we will see, a small SLB of 8 or 16 entries (similar to the number of segment registers
in segmented architectures) is sufficient. It is therefore possible to access the SLB on the access
path to the first-level cache. To be protected against programs with bad behavior, we can imagine
adding a second level SLB accessed in parallel with the L1 cache. In case a synonym misses in the
first-level SLB but hits in the second-level SLB, the cache access is aborted and reissued using the
main address translated in the second-level SLB. When the SLB is accessed before the L1 cache,
L2 cache backpointers and short misses in L1 cache are eliminated.

A virtual address missing in the SLB may be either a synonym or a main address. Whether
or not it misses in the SLB the memory access proceeds. If it is a synonym, it will miss in the cache
hierarchy and will eventually be detected at the point where the physical address is needed, trap-
ping the processor which then fills the SLB. The access is then retried using the main address.

Just as in the traditional TLB, the SLB entry must include access right bits corresponding
to the synonym address. The cache hierarchy also contains protection bits associated with the main
address. A synonym access is checked for protection twice, once in the SLB and once in the cache
hierarchy. The main address must have equal or less access restrictions than all of its synonyms.

Most current operating systems implement demand paging virtual memory. On top of the
machine-dependent layer, there is usually a machine-independent layer organizing virtual memory
in logical segments. Sharing of synonyms is decided in the logical layer independently of physical
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Figure 4.3. SLB and V/V Cache
paging. Since sharing is already managed in the operating system in the logical layer, only some
minor changes are needed in current operating systems to use an SLB.

Physical Memory

Virtual Memory

Vi V2

Figure 4.4. A Synonym Example

4.2.3 Comparing TLB and SLB

Although the SLB has practically the same hardware organization as a traditional TLB, its
scalability is much better. Some issues specific to SLBs must also be solved.
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Figure 4.5. Total Number of Misses as a Function of the Number of Entries in a TLB
and in an SLB for Four Benchmarks

4.2.3.1 Coverage

The coverage of the SLB is much better than that of a TLB and scales with application and
main memory sizes, for two major reasons.

First, synonyms can be allocated in very coarse granularity and can cover a large number
of pages. This has the same affect on the coverage as superpages in the TLB, but the major differ-
ence is that contiguous physical memory pages are not allocated. For example, in Figure 4.4, vir-
tual address segments V1 and V2 are synonyms. The physical page mapping is not contiguous and
most virtual pages in the synonym segments are not even mapped to physical space. Nevertheless
the synonyms can be represented in one single SLB entry. For any given process, the consumption
of SLB entries depends on the synonym usage instead of on the memory allocation. In general,
increasing data set size does not create more synonyms --the synonyms simply cover larger mem-
ory areas.

Second, unlike the traditional TLB which holds translations covering every single virtual
page accessed by the processor, the SLB is only responsible for a subset of these pages, i.e. the
synonyms. The main address set does not use the SLB and, with some cooperation from the oper-
ating system, we expect that it will cover the best part of the whole virtual address space.

To demonstrate the better coverage of an SLB as compared to a TLB, we have run some
simulation experiments. (The benchmarks and the experimental set-up are described in section
4.3.1) Figure 4.5 compares the number of TLB and SLB misses in four benchmarks as a function
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of the number of entries. At the low end of these graphs, the number of TLB misses overwhelms
the number of SLB misses by orders of magnitudes.

Figure 4.6 shows the SLB/TLB miss comparison for two Splash benchmarks, Radix and
Ocean, with 4 different data set sizes. We see from these graphs that the miss curve for the TLB
takes off as the data set size increases. An SLB of size 8 or bigger has negligible amount of misses,

4.2.3.2 Page Mapping Changes and TLB/SLB Shootdowns

Another important issue for V/P and V/V caches is the demapping and remapping of
pages. In a V/P cache, every time a virtual address is remapped to a different physical address the
TLB must be updated, which triggers TLB shootdowns in multiprocessors. In V/V caches, the
cache hierarchy must sometimes be flushed.

In contrast with a TLB, not every virtual-to-physical address mapping changes need to
update the SLB. Paging activities (swap-in and swap-out) as well as page migrations do not affect
the SLB nor the V/V caches. The only mapping changes that affect the SLB or the V/V caches are
when the content of a virtual page is actually changed through the re-mapping. For example when
the process image is overlapped through a EXEC system call, or when a process is terminated and
its virtual space is reclaimed by another process, the SLB must be updated for all addresses in the
synonym set and the V/V cache must be flushed for all addresses in the main set.

Benchmarks Remaps SLB flush| L2-cache Flush (Blocks)
User Kernel User Kernel User Kernel

Pmake 799 11311 490 10211 11008 24587
Radix 10 4471 4 4460 345 245

Rsim 6 2301 3 2275 112 738
TPC-C 18 33072 9 33028 317 943
Kaffe 923 3002 326 2925 2710 833

Table 4.1. Remaps and Flushes

Table 4.1 shows the activity associated with virtual-physical page remaps in our five
benchmarks. In our simulation, we always flush either the SLB entry (synonym access) or the vir-
tual address cache hierarchy (main address access) on a remap, even if this is not always needed.
Our counts do not include the activity associated with reclaiming virtual address pages at the end
of the execution.

In the table, Remaps is the number of virtual-physical page remaps in the execution; SLB
flush is the number of SLB flushes. The rest of the remaps flush the cache hierarchy but not the
SLB. L2-cache Flush (Blocks) is the total number of L2 cache blocks flushed by all these remaps.

These numbers are very small and practically negligible, when compared with the length
of the trace in the simulation. The majority of the remaps are for synonyms in kernel space, which
explains the very low number of L2 cache blocks that are flushed. User address remap is very rare
even for Pmake, which is a multiprogramming workload.

4.2.3.3 Some Issues Specific to SLB

Memory Traps. The SLB cannot help verify/resolve memory trap conditions for virtual
addresses as the traditional TLB does. Memory traps such as page faults may be triggered deep in



the memory hierarchy. The performance impact of such late memory traps will be addressed in
chapter 5, where it is shown that the latency of late memory traps can be largely tolerated by ILP
processors.

Synonym Coherence. In the rare instance when the same data is accessed with different
addresses at very fine granularity coherence may be violated. A store to an address in the synonym
set may miss in the SLB and in the virtual address cache hierarchy even though its main address is
allocated in the cache hierarchy. In this case, a following load accessing the same data with the
main address hits in the V/V cache before the trap for the store is detected, thus bypassing the pre-
vious synonym access. Coherence is violated.

This is not an issue for processor architecture implementing sequential consistency such as
the MIPS or PA-RISC architectures because memory operations are retired one after another, after
they are completed. Logically, the following loads will not be issued until the previous stores are
globally performed, at which point the synonym has be solved.

However for weaker memory models[25] the coherence issue is real because the stores
can be retired as soon as they reach the local store buffer. We now propose some solutions in the
context of weak memory models.

Since, the main address has, in general, less restrictions than its synonyms, the main
address for a writable synonym is also writable. This indicates that, in the coherence violation
described above, there are at least two writable virtual addresses shared within the same virtual
address space. The use of synonyms within the same address space is purely optional and can be
avoided by simply using the same virtual address. Most synonyms are generated and managed by
the operating system kernel without the involvement of user programs. The OS kernel should not
generate two writable sharings for user programs.

A more flexible solution is to allocate a quota of SLB mappings (for example 8) for each
virtual address space to map writable sharings within the process. As long as the number of user
writable sharings does not exceed the quota, coherence violation is prevented because suspicious
stores always hit in SLB.

A general and totally flexible solution consists in checking all stores before retiring the
store instruction as is done in TLBs. If a store misses in the SLB it must trap the processor to fill
the SLB. Load misses in SLB are still issued to the cache hierarchy as usual. Although the SLB
must now map writable main addresses, its coverage is still scalable --at least as scalable as seg-
ment registers[52]. The coverage of each SLB entry still scales well because it does not depend on
the application or physical memory size.

Choosing the Main Address. Among all the virtual addresses sharing the same page, one
single virtual address must be selected as the main address. The operating system should select the
address with the longest lifetime as the main address, because the overhead associated with remap-
ping a main address is much higher than remapping addresses in the synonym set. Allocating main
addresses by first touch is both simple and effective because of the way the operating system fork
processes. We have used first touch in our simulation experiments except for one special case, now
described.

Lock Bit Optimization. The remap of physical addresses is widely used by the OS kernel
to communicate with user processes and to optimize message passing in general. One common
scenario is that the kernel prepares a page on behalf of a user process in kernel space and then
remaps the page to user space. The kernel address is then freed and reused by other pages. The cur-
rent SLB scheme may generate excessive cache flushing for this very common case, given that the
kernel address is selected as the main address since it is first touched.
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We propose an optimization for remap-based message-passing in general, especially for
kernel buffer handling. Suppose V2 is a receiver user buffer expecting a message from V1 which
is mapped to a physical page P. The current procedure is to demap V1-P and remap V2-P to pass
the page. In this case V1 is the main address and its demapping is very costly.

To reduce the overhead, V2 is deemed the main address and V1 a synonym. In order to
synchronize, V2 accesses must be locked out while the page is actually transferred. A lock bit is
added in the page table and in the dynamic address translation hardware for the V2-P translation.
This lock bit is part of the access right bits and is also copied in the V/V caches. While the lock is
set, any access via V1 proceeds as usual, but an access to the page via V2 is locked out by the page
table.

SLB Miss Handling. Virtually-addressed memory hierarchies considered in chapter 3
rely on unique virtual addresses which can be created by the SLB scheme. The memory hierarchy
is indexed by virtual addresses in the main address set, while the synonym addresses have to be
translated into main addresses by the SLB before issuing to the memory hierarchy. Although this
is very rare, a virtual address missing in the SLB may eventually turn out to be a synonym. In this
case, the synonym address will miss throughout the virtually-addressed memory hierarchy until at
some point the virtual address has to be translated to locate the physical data. As an example, we
look at the V-COMA architecture. The synonym address missing in SLB will be directed to the
home node indexed by the synonym virtual address. Since the synonym address does not index the
directories, it will miss in the directory look up at the home node. A NACK message sent by the
home node will eventually trap the processor that issued the synonym address. The software trap
handler can figure out that the virtual address is indeed a synonym. The processor will reload the
SLB and reissue the virtual address which will then access the memory hierarchy with its main
address.

4.3 Impact on the Miss Rate

Besides the overhead caused by SLB misses, SLB flushes, and cache flushes, one major
concern associated with virtual memory hierarchies is the effect of cache addressing on miss rates.

Because the cache index function is different, conflict misses are affected. In a V/P cache
accessed in parallel with a TLB or in a V/V cache accessed in parallel with an SLB the index is the
virtual address. In a physical (P/P) cache the index is the physical address. Finally in a V/V cache
accessed after an SLB, the index is the main virtual address. From now on in this chapter we
will refer to these three systems as V/P cache, P/P cache and V/V cache respectively, knowing
that V/P caches and V/V caches with parallel access to SLB have the same behavior.

The second issue is short misses in V/P caches. Short misses are just as expensive as regu-
lar misses hitting in the L2 cache. Their number grows with the cache size, contrary to conflict
misses whose number tends to decrease with the cache size.

4.3.1 Methodology

Table 4.2 shows the benchmarks used in the simulations. The column titled Instructions
shows the total number of instructions simulated, and the column titled Loads/Stores indicates the
total number of memory accesses in our traces. These benchmarks represent different categories of
applications and include a JAVA virtual machine, an OLTP commercial workload, a computer



architecture simulation, a multiprogramming workload, and a compute intensive splash bench-
mark

Benchmarks | Instructions Loads/ Description
_ Stores

Pmake 1427TM 570M 4 way parallel Makes for Modified Andrew Benchmark, many

small,

short-lived processes that make heavy use of OS services
Radix 1212M 269M | Splash benchmark, with parameters -n2097152 -r2048 -m4194304
Rsim 4771IM 2434M Instruction driven simulator rsim(55] runs radix, sequential
consistency with speculation, simulate uniprocessor for 200k

cycles

TPC-C 34422M| 15695M OLTP benchmark TPC-C runs on Postgres95 database system,
4 warehouses, scale 100 times, 46 transactions mixed

Kaffe 13698M| 5368M JAVA interpreter Kaffe runs a raytracer written in java
Table 4.2. Benchmarks

We use trace-driven simulation. Traces are collected by running SimOS[37], a complete
machine simulator developed at Stanford University. The simulated SGI workstation for collecting
traces has 64MB of main memory, 64KB of instruction cache, 64KB of data cache, and a IMB L2
cache. It runs the Irix 5.3 operating system. The page size is 4 KB. All user and kernel memory
accesses are recorded in the trace.

With the traces, we drive the simulator of a single-processor system with a 2-level cache
hierarchy. The L2 cache is fixed with a size of IMB and is 2-way set associative. L1 cache size
varies from 8KB to 1MB, and its organization is direct mapped or 4 way set associative. For V/P
caches, the L2 cache is physically indexed with backpointers to L1. For V/V caches, both L1 and
L2 are virtually indexed and tagged, and a 16-entry SLB is accessed before the L1 cache. The
cache block size is 64 bytes for all caches. The LRU policy is used for all replacement.To be con-
servative, we always flush either the V/V cache (main address access) or the SLB (synonym
access) on every page remapping, even if some of these flushes could be avoided.

In order to support the SLB in the simulation, we dynamically detect and construct shar-
ings among virtual addresses. We maintain a page table, a reverse page table, and a segment table
in the simulation. Every memory access is first checked with these tables in an efficient way
before it is sent to the trace driven modules. Any new mapping or change of mapping between vir-
wal and physical addresses triggers an update of the table structures, where we aggressively con-
struct and merge virtual address segments and sharings among the segments. To apply the lock-bit
optimization in the SLB scheme, we identify kemnel pages that should have a main address in user
space in a preliminary run of the trace.

43.2 Synonym Alternation

We first look at the characteristic of synonyms in our benchmarks. We define and detect a
synonym alternation as an instance of using a different virtual address in two consecutive accesses
to the same physical page. .Synonym alternation characterizes the dynamic interleaving of syn-
onym accesses, which affects cache miss rate.
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Figure 4.7. Histograms of the Degree of Proximity of Synonym Alternations

For every synonym alternation, we define the degree of proximity between the two syn-
onyms as the number of identical least significant bits in the two virtual page numbers. In the sim-
ulation, we collect a histogram of the degree of proximity between the two synonyms in each
alternation.

To interpret these results keep in mind that the least significant bits of the virtual page
number are used to index a V/P cache; so, if the V/P cache index uses » bits of the virtual page
address, then all synonym alternations with a degree of proximity less than n create short misses

For each benchmark, we separate the synonym alternations into three categories. User and
Kernel count the cases that the two synonyms are both within user or kernel domain respectively.
Kernel-User is for the case when the two synonyms are in different address spaces. Figure 4.7
shows the resulting histograms. The Y-axis is the number of synonym alternations, and the X-axis
is the degree of proximity between the two synonyms.
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Figure 4.8. Absolute Miss Rate of L1 caches

For 32-bit virtual addresses (without counting the PID), and a page size of 4 KB, the
degree of proximity ranges between 0 and 20. The figure illustrates both the total number and the
distribution of synonym alternations. Except for Kaffe, user synonyms all have the same virtual
addresses and index into the same cache set in any V/P cache. Unlike the other benchmarks, Kaffe
contains system calls making use of the memory mapping facilities provided by the kernel.

Unlike user synonyms kernel-user and kernel synonyms may generate a large number of
short misses in V/P caches. Most kernel-user synonyms pass information across the kernel-user
boundary. If every block in the page is touched by both kernel and user, one synonym alternation
may cause one short miss per block in the page. Within the kernel however, the reason for an alter-
nation is not to transmit the content of a page but to share it. Each synonym usually addresses dif-
ferent data block at each alternation and synonyms are interleaved in fine granularity. Thus each
kernel alternation creates fewer short misses as compared to kernel-user alternations.
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Figure 4.9. Relative Miss Rate Difference Between V/P and V/V L1 Caches
4.3.3 Overall Miss Rates

Figure 4.8 shows the miss rates, including kernel and user, for direct-mapped, and 4-way
set associative L1 caches. All curves show the same trends. The index to the cache only affects
conflict misses, which are significant in a direct mapped cache.

A very big gap exists between P/P caches on one hand and V/P or V/V caches on the other
in the case of direct mapped caches for RSIM and TPC-C benchmark. This gap is clearly due to
conflict misses. A closer look into the RSIM trace exposes that one physical page for the stack was
aligned with one data page at a 1MB boundary. This suggests that for low associativity, V/P or V/
V caches are more robust than physical address caches. Although the operating system can select
the virtual-to-physical page mapping to minimize cache conflicts, its effectiveness at doing so is
questionable, whereas virtual-address indexing takes full advantage of the spatial and temporal
locality naturally exhibited by most programs[51].
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Figure 4.10. Fraction of Short Misses in V/P L1 Caches

The relative differences between the miss rates of V/V and V/P caches are displayed in
Figure 4.9. They are computed as the number of V/P misses minus the number of V/V misses
divided by the number of V/V misses. As the cache size increases, the impact of cache indexing
becomes relatively more significant. The miss rate of the V/P cache becomes much worse than the
V/V cache (up to 70% worse in RSIM). A significant part of this difference is due to short misses.

4.3.4 Short Misses

V/P caches are affected by short misses. Figure 4.10 shows the fraction of short misses in
all the benchmarks, i.e. the number of short misses divided by the total number of misses for V/P
caches. Again we show results for direct-mapped and four-way set-associative caches. When the
cache size increases, more synonyms are indexed into different sets (see Figure 4.7) and tend to
stay longer in the cache leading to an increase in short misses; at the same time, the number of
capacity misses decreases sharply. We observe a sharp increase of the fraction of short misses for
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all benchmarks as soon as the cache size reaches 128KB. Actually if we compare the short miss
rates with the relative miss rate difference in Figure 4.9, we can see that the short misses dominate
the relative difference for 4 way set associative caches, especially for large cache sizes.

4.4 Summary

Moving the virtual-to-physical address translation down the memory hierarchy presents
some technical challenges, among which the synonym problem is one of the major two problems.
One physical address can be mapped to different virtual addresses (synonyms) which may create
inconsistencies in the virtual address cache. The other major problem that of late memory traps
also has many solutions, elaborated upon in next chapter.

In this chapter, we have studied the usage of the synonyms and proposed a new, simple,
and effective solution to the synonym problem. In this solution, one main virtual address is used to
name each virtual page uniquely in the processor and in the memory hierarchy and a Synonym
Lookaside Buffer (SLB) translates synonyms into main addresses dynamically. We have given
reasons why a very small SLB is effective and we have shown performance data to back this claim
up. Using actual applications from different domains, we have shown that the purging and flushing
of virtual-address caches is very limited in practice and has insignificant impact on performance.

Using contemporary workloads running on a real operating system (SGI Irix 5.3), we also
evaluated the miss rate of virtually-addressed caches. We have presented extensive performance
results comparing the miss rate behavior of physical and virtual address caches. It appears that vir-
tual-address caches have better miss rates than physical caches and the solution using a small SLB
in front of the caches avoids short misses in larger caches, while safeguarding the benefits of tem-
poral and spatial locality in the virtual space.
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Chapter 5

HANDLING MEMORY TRAPS IN ILP PROCES-
SORS

Traditionally, recoverable exceptions such as page faults can only be detected by the
access control mechanism in the TLB which is very close to the processor pipeline. Virtually-
addressed memory hierarchies require to take traps from the memory hierarchy. In this chapter, we
analyze the trap behaviors of ILP processors, especially the impact of taking memory traps late.
We propose new techniques to tolerate late memory traps for ILP processors.

5.1 Trapping From Memory Hierarchy

Although the semantics of memory instructions is very clear and uniform from the view-
point of user programs, their implementation varies greatly. A load instruction or a store instruc-
tion issued by a program may trigger the swapping of a page from disk, an I/O operation, or a
message transfer through a network. These hardware extensions are implemented by software
traps on memory instructions.

Memory traps have to be generated for software to handle page faults and TLB misses. In
addition to the virtual memory implementations, there are increasing demands for taking efficient
memory traps, especially from the memory hierarchy. We list some examples of research ideas
other than virtual memory implementation that are based on memory traps.

One important application is software and hybrid DSMs. Virtual shared memory sys-
tems([48] still rely on the traditional virtual memory access control mechanisms to generate mem-
ory traps to emulate shared memory[2][48]. Chaiken and Agarwal[13] explored a spectrum of
software-extended protocols, in which traps are taken from the local directory when the directory
runs out of space. Hill et al.[38] proposed cooperative shared memory which can be seen as a soft-
ware-extended protocol with a single hardware pointer. Grahn and Stenstrom’s software-only
DSM|31] emulates directory activity in software as well. Multigrain shared memory systems{93]
can be constructed by memory traps combined with a hardware coherence protocol. In Blizzard-
E[71] an ECC error may trap the processor from deep in the memory system. Moga et al. evaluated
a software controlled COMA (SC-COMA) where the memory controller may trap the processor
when an access misses in the local node.

More generally, informing memory operations[39] have been proposed to provide feed-
back to software by trapping on L1 cache misses. These operations can easily be extended to any
level of the memory hierarchy provided processors can take late memory traps. Finally, in [78], the
TLB reach is expanded by constructing coarse grain superpages from non-contiguous physical
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pages, and by remapping them to “real” physical memory. To achieve this a page fault can be
detected in the memory controller even though a memory access has passed the processor TLB.

These examples show that efficient memory traps from the memory hierarchy are highly
desirable to promote interactions between software and hardware for memory access functions.

Without the “safety net” provided by the traditional TLB attached to the first-level cache,
the processor cannot decide whether a memory access will trigger an exception at the time when it
is issued to memory because the exception condition depends on the state of the data somewhere
deep in the memory hierarchy. The only certainty is that the memory trap must be decided before
the access is globally performed[25]. The memory consistency model must also be adhered to in
multiprocessors.

5.2 Memory Traps in ILP Processors

5.2.1 Traps and Branches

Unlike external interrupts which are asynchronous to the program execution, traps are
synchronous and associated with instructions. Like branches, traps change the instruction flow of
programs. Intuitively, a trap acts as an implicit procedure call. It stops the current instruction flow
and jumps to a predefined memory location, from which a software handler executes and finally
resumes the program execution from the point in the program where the trap was taken.

Traps and branches have different behaviors although both of them interrupt the normal
instruction flows. Branches can only happen on branch instructions, while traps may occur on
almost every kind of instructions. If we are only interested in memory traps, memory instructions
typically contribute a very large fraction of the instructions of the whole program execution. Com-
pared to branch instructions where the branch may or may not be taken with reasonable probabili-
ties, traps are taken on very rare occasions. Usually each kind of trap will jump to a fixed or
predefined address regardless of the instructions on which they are taken. The destination address
has to be in kernel address space and shared by all user programs. Therefore, unlike branches,
traps will usually switch the processor to privileged mode.

In modern ILP processors, it is very costly to interrupt the instruction flow. In order to
reduce the frequency of changing the instruction flow due to mispredicted branches, there have
been extensive research to improve the branch prediction rate, which is extremely important for
performance given the increasing degree of parallelism within the current processors. Logically,
each instruction subject to traps can either complete successfully or trigger a trap on exceptions.
However, a processor always predicts that every instruction will be successfully completed. The
processor state will be restored if an exception happens as for mispredicted branches.

To avoid saving the processor state for all instructions, precise interrupt[75] defines a
clean and simple state for the processor to save for restart. According to [75], the three following
conditions have to be satisfied for precise interrupts:

» All instructions preceding the instruction indicated by the saved program counter have

been executed and have modified the process state correctly.

» All instructions following the instruction indicated by the saved program counter are
unexecuted and have not modified the process state.
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* The saved program counter points to the interrupted instruction. The interrupted instruc-
tion may or may not have been executed, depending on the definition of the architecture
and the trap.

Because of the different behaviors of traps and branches, they are implemented differently
in ILP processors. As an example, we look at the MIPS R10000[92] microprocessor.

The front end of the processor has to handle branch instructions to maintain a high band-
width for instruction fetch. In the instruction fetch stage, the instruction addresses following the
branch are predicted. In the decode stage where logical registers are renamed to physical registers
and the decoded instruction is appended to the active list, a branch instruction triggers a check-
point, i.e. the processor state is saved in a branch stack from which the state can be recovered in
case the branch was mispredicted. A branch mask associated with each instruction in the instruc-
tion queues and in the execution pipelines points to the depending branches. If any one of these
branches is mispredicted, the instruction is aborted. Therefore, if a branch is mispredicted, the pro-
cessor state is recovered immediately and all depending instructions are aborted. Because the
branch stack requires a large amount of on chip resource to save the processor state, the depth of
the stack is usually limited. When all the stack entries are occupied, the instruction fetch is blocked
on any branch instruction.

Traps must be implemented differently because the processor can not afford to save the
state for every instruction that may have exceptions. Precise interrupts are supported by the reorder
buffer scheme proposed in [75]. Instructions are retired in program order based on the active list
after they are completed out of program order. An exception is taken when the instruction reaches
the top of the active list, at which point all previous instructions have successfully retired. The
pipeline is flushed and the state is restored by unmapping the registers in reverse order of instruc-
tions in the active list, usually at the same rate as the decode rate.

5.2.2 Memory Trap Overhead

We focus on the pure hardware overhead of taking a memory trap in ILP processors. To
remove the effects of the execution of a particular trap handler, we do not execute a trap handler
after the trap. Rather the trapped instruction is re-executed immediately after the trap is taken, in a
way similar to the soft exceptions in the MIPS R10000[92] to roll back coherence speculations.

From the perspective of the instruction fetch unit, the cycles between fetching the trapped
instruction before and after the trap are wasted because no useful instruction is fetched. We call
this time the fetch-to-fetch time. Although this is an intuitive metrics for the trap overhead, the
fetch-to-fetch time overestimates the overhead of the trap because the cycles between the two
fetches are not fully utilized even if the trap is not taken. The instruction fetch unit may be stalled
due to various hazard conditions, or may fetch useless instructions because of mispredicted
branches. Actually, the re-execution of the faulting and following instructions can be much
quicker after the trap because the pipeline has been flushed.

The hardware overhead of a trap is made of two parts. The first part, which we called the
flush time, is the time to clean up the state of the processor. It is usually proportional to the number
of instructions in the active list when the trap is taken. The second part, called the pipeline restart
time, comes from the fact that some partially executed instructions in the active list are cancelled
when the trap is taken and must be repeated after the trap. Unfortunately, it is very hard to estimate
the pipeline restart time in an ILP processor as the following simplified discussion illustrates.
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To simplify the discussion, we consider that 1) the flush time is zero; 2) the trap does not
change the program flow of the execution other than the trap itself; 3) the execution time (from
issue to complete) of every instruction is not affected by the trap, and 4) a maximum of one
instruction is fetched and retired in every cycle. Figure 5.1 shows the execution of four instructions
when the trap is taken (E,) and when it is not taken (E,).

An instruction is at the same position in the pipeline in two different executions if it takes
the same time to complete its execution from the two positions. For example in Figure 5.1, at time
t; in execution E; instruction i reaches the same position it had at time t, in execution E;.

When the trap is taken, each instruction in the active list has reached a particular position.
When the pipeline restarts after the trap, each instruction has to reach the position it lost due to the
trap before it can start doing new work. Referring to E | and E, in Figure 5.1, we define the repeat
time of an instruction in E, as the number of cycles needed in E; to reach the same position it had
in E; at the time when it is fetched in E;. The repeat time is the increased execution time due to the
trap. In Figure 5.1 the repeat time of an instruction in E; is the time from instruction fetch to the
cycle pointed to by a small arrow. The pipeline restart time is the time needed to repeat all the
instructions cancelled by the trap.

In Figure 5.1, the shaded area represents the increased amount of work due to the trap; it
expands downwards while shrinking as more instructions are executed in E; and E; and contrib-
utes to the pipeline restart time.

The repeat time of instructions and the pipeline restart time are very difficult to estimate in
an actual execution. For example, a completed load instruction flushed by the trap may have
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brought the data closer to the processor. This reduces the time to re-execute the instruction and
therefore cuts the instruction repeat time.

5.2.3 Late Detection Time of Memory Traps

In Figure 5.1, the trap condition is detected before instruction i reaches the top of the
active list. This is an early trap. It is possible that a trap is /ate in the sense that its condition is not
resolved when the instruction reaches the top of the active list, as shown in Figure 5.2.

We define the time from the cycle when the faulting instruction reaches the top of the
active list to the cycle when it is acknowledged for an exception as the late detection time. The
processor may continue decoding instructions during the late detection time, adding to the flush
time when the trap is taken. The late detection time also increases the repeat time of cancelled
instructions, leading to increased pipeline restart time as shown in Figure 5.2.
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5.2.4 Performance Effects of Late Traps on Non-faulting Instructions

From the perspective of exceptions, we can consider that instructions are executed specu-
latively until they reach the retirement point, where the program execution can rollback in case of
a trap. Instructions must stay in the active list until their trap condition is verified. Late memory
traps may prolong the lifetime of active list entries and increase the chance of stalling the instruc-
tion fetch unit.

A load instruction cannot be retired until its value is bound since it must fill its destination
register. By that time it is guaranteed to be exception-free. Therefore, late memory exceptions do
not slow down the retirement of load instructions, regardless of the memory model.

The fate of store instructions differs for different memory consistency models. A store
instruction can be retired and put in a store buffer before it is globally performed[25] only if it is
known to be exception-free. In a system supporting late memory traps a store instruction must stay
in the active list until the exception condition is known. For sequential consistency (SC), the
impact is minor. Sequential consistency does not benefit much from a store buffer because the
active list stalls on a load instruction whenever the store buffer is not empty([61]. Indeed, some pro-
cessors[92] do not implement store buffers and retire store instructions only after they are per-
formed. The situation is different under weak ordering(WO)[25] and release consistency(RC)[28],
which permit the overlap of memory accesses. Thus disabling the store buffer affects the perfor-
mance of WO and RC implementations.

5.3 Cutting the Late Memory Trap Overhead

We propose to prefetch memory exception conditions to reduce the late detection time.
Additionally, we propose to implement deferred traps instead of precise traps to cut the overhead
on non faulting store instructions under RC.

5.3.1 Prefetching Memory Exception Conditions

5.3.1.1 Hardware-Controlled Prefetch

Hardware-controlled prefetch and speculative execution[29] tend to reduce the perfor-
mance gap between different memory consistency models. The processor issues memory accesses
as soon as possible despite memory consistency restrictions, while the hardware monitors possible
consistency violations. If a prefetch violates the memory consistency model, the processor rolls
back and re-executes the memory instruction.

In a plain SC implementation without prefetch, a memory access cannot be issued until all
previous memory accesses are performed[25]. However, the cycles between the times when the
address is ready and when the instruction reaches the top of the active list could be utilized to
probe the exception conditions.

The hardware already present in ILP processors for prefetch and speculative execution can
be easily enhanced to prefetch memory exception information along with the data block. The non-
blocking cache must be able to handle memory exception acknowledge messages which may not
contain valid data blocks. Reply messages from the lower levels of the memory hierarchy must
contain access control information even though they may not include data, in which case the cache



will not be refilled. If a memory request returns with a memory exception, the corresponding
memory instruction is trapped. Although the prefetched data is non-binding, the prefetched excep-
tion condition must be bound with the memory instruction to avoid losing it since it is not stored in
cache. Binding the prefetches for memory exception does not affect program correctness even if
the exception condition is changed before the processor actually issues the memory access, at most
leading to an unnecessary memory trap.

Take the example of the MIPS R10000[92]. As shown in Figure 2.5, the address queue
contains all the decoded load/store instructions in their original program order. Whenever the L1
data cache is accessed by the external interface, all pending entries in the address queue are com-
pared with the incoming address. A matching load entry sends the data directly to the destination
register. To prefetch exception conditions, the incoming buffer of the R10000 must accept excep-
tion acknowledge messages, which are then forwarded to the address queue, bypassing the L1
cache. If an entry in the address queue matches the address, the memory exception bit is set for that
instruction and the trap will be taken when the instruction is ready to be retired at the top of the
active list.

5.3.1.2 Software Controlled Prefetch

Software controlled non-binding prefetch can also prefetch exception conditions for mem-
ory instructions. In this case, it is possible that the prefetch instruction prefetches the data before
the instruction it prefetched for is decoded. If the memory block is prefetched normally, the data is
inserted into the cache close to the processor as usual. However, if the prefetch instruction encoun-
ters an exception, instead of simply dropping the prefetch as in most current implementations{87],
the prefetch must return the exception condition to the processor.

We propose to add an exception buffer. When a prefetch instruction returns an exception
message, the information is copied into the exception buffer. The following memory instruction
using the prefetched value is very likely to hit in the exception buffer and to detect the trap imme-
diately.

The exception buffer can simply be a fully associative cache with the same granularity as
the L1 cache line size. Each entry contains the memory address and the access control of the mem-
ory block. The size of the exception buffer is comparable to the number of MSHR registers. As for
a traditional TLB, the exception buffer is searched in parallel with the L1 cache. On a hit, the
instruction is trapped. No action is taken if the exception buffer misses.

Because the exception buffer is simply a temporary place to hold exception conditions, it
is very easy to maintain. When it is full, the newly fetched exception condition simply overlays a
selected victim. There is no need to maintain consistency as for a TLB because program correct-
ness is not affected even if the exception buffer is stale -- a stale buffer at most triggers an unnec-

essary trap.
5.3.2 Deferred Trap for Memory Exception

One critical problem with late memory traps is the restriction on store buffering. We solve
this problem by relaxing the precise interrupt requirement on store instruction induced traps. We
retire a store instruction from the active list and put the store into the store buffer before the trap
condition is verified. Following instructions are committed, and cannot be recovered from if the
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store instruction triggers a memory trap some time later. The memory trap on the store instruction
is not precise, but deferred in a way similar to some floating point exceptions[87].

In such a scheme, sufficient state information must be saved to resume execution. The pro-
gram counter saved by the hardware may not point to the faulting instruction. The trap is taken on
a subsequent instruction resumed after the trap. By the time a trap is detected on a store instruction,
several other stores may be in the store buffer. They will eventually complete and may still trigger
traps. It is also important to support nested traps where another trap can occur within the context of
the trap handler. Since different trap levels may have different protection restrictions, the store
buffer entries holding pending stores should be tagged and segregated in different trap levels for
protection reasons.

We focus on the design for release consistency, but with some changes, it is also applica-
ble to other consistency models including sequential consistency. We assume a write-back non-
blocking L1 cache. The following three issues must be considered: 1) how to save and recover the
state when a store buffer entry triggers a memory trap; 2) what happens if a load hits on a store
buffer entry whose exception condition is not resolved; 3) how to deal with the store buffer when a
trap or interrupt happen and the store buffer is not empty.

To answer these questions, we propose an aggressive design based on a ragged store
buffer shown in Figure 5.3. In this design, when a store buffer entry triggers a memory exception,
the entry is dumped to a predefined memory address. Load instructions and following instructions
can use the value in the store buffer, although another option is to stall the load instruction until the
store buffer entry propagates to the L1 cache and then read the value from cache. When a trap hap-
pens, the hardware does not flush the store buffer even though its entries may still cause traps.
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As shown in Figure 5.3, a stack of register pairs is associated with the tagged store buffer.
The depth of the stack is equal to the maximum level of nested traps that the processor can support.
If the processor does not support nested traps, two register pairs are necessary. Within each level
of the stack, the register pair contains a dump address register and a counter register. There are
two additional fields in each store buffer entry: a trap bit indicates whether the entry encountered
an exception and a tag field contains its level of traps or the index of its register pair in the stack.

When a new entry is allocated in the store buffer, the tag is set to the current level of traps.
Store instructions can be coalesced only if they have the same tag value, and a load instruction
returns the value in the store buffer only if it hits and the current trap level matches the tag of the
store buffer entry. '

Entries are retired from the store buffer out-of-order as soon as stores are successfully
completed in the L1 cache or an exception is detected. The store buffer entries are compared with
the address in the reply messages to the L1 cache. If an entry matches the address with no excep-
tions, the data is merged and copied into the L1 cache as usual.

If an exception happens, the counter register indexed by the tag of the matched store
buffer entry is increased. The store buffer entry is dumped into memory at the address given by the
dump address register. The dump address register contains two parts: the base part and the offset
part. The offset part is increased by a fixed size which is equal to the size of the dumped entry from
the store buffer. The store buffer entry that has been dumped can be freed for reuse. If the tag of
the entry is equal to the current trap level, a store buffer exception signal is raised to the processor.
The processor will then abort the current instruction at the top of the active list and save the pro-
cessor state as if the trap was taken on that instruction. If the tag is not equal to the current trap
level, no exception signal is raised immediately. Traps are generated whenever the processor
returns to a trap level with a non-zero counter.

Some special instructions are provided to manipulate the store buffer and its register pairs.
The handler for the store buffer trap must access the dumped entries in local private memory and
globally perform those stores saved in the entries with appropriate actions, and then resume execu-
tion from the saved program counter.

For traps other than store instruction traps, the trap handlers can decide whether or not to
complete the stores in the store buffer. For example, the timer interrupt handler must execute all
pending store instructions before switching context. However, a software coherence handler
responding to a load instruction trap might be fine tuned and may not empty the tagged store
buffer.

5.4 Experimental Evaluation

5.4.1 Methodology

We have run instruction-driven simulations using the RSIM([55] simulator from Rice Uni-
versity, which models both processors and memory system in great detail. The processor model is
based on the MIPS R10000 microprocessor. Our baseline processor architecture has a 64 entry
active list, 2 integer units, 2 floating point units, 2 address calculation units, 8 branch stack entries
and a 32 entry address queue. The cache line size is 64 bytes for both L1 and L2 caches. L1 cache
is 16K byte write back, direct mapped with 1 cycle hit time, 8 MSHR registers and 2 request ports.
L2 cache is 64K byte write back, 4 way set associative pipelined with 8 cycle hit time. It has 1
request port and 8 MSHR registers. Local memory access time is 18 cycles. Multiprocessor con-



figurations have 16 processor nodes connected by a 4 x 4 mesh network. The network operates at
half the clock rate of the main processor and is 64 bit wide. The benchmarks are shown in Table
5.1.

The purpose of the evaluations is to estimate the overhead caused by traps and, more spe-
cifically, by late memory traps. Because the executions with and without traps are not identical, it
is very difficult to measure accurately the pipeline restart time as defined in section 5.2. Instead we
first measure an overhead value directly related to the execution time called the cost of a trap. The
cost of a trap is computed as the difference of the total execution times with traps and with no trap
divided by the total number of traps in all processors. Remember that we do not execute a trap han-
dler at the occurrence of a trap, we simply re-execute the code at the faulting address.

Clearly the cost of a trap is an imperfect metrics. It includes much more than the pipeline
restart time plus flush time, especially in multiprocessors. It also includes secondary effects due to
differences in executions such as different memory stall times or synchronization times. In the
case of release consistency with precise traps it also includes the increased stall times on store
instructions due to the disablement of the store buffers. Not withstanding these shortcomings,
since execution time is the ultimate measure of performance, the cost of a trap is a useful metric.

Benchmark Parameter
FFT 65536 points
RADIX 1024 radix, 512K keys, max 512K
WATER 125 molecules
MP3D 50000 particles

Table 5.1. Benchmarks

The late detection time is measured in the simulation with traps and indicates the increased
trap time due to the lateness of the trap. The flush time is the number of instructions in the active
list when the trap is taken divided by the rate at which instructions are flushed (in our case, 4). The
Jetch-to-fetch time is the number of cycles between the first and second times the trapped memory
instruction is fetched, including the flush time.

We first show measurements on a uniprocessor simulation and then we show results for
multiprocessors.

5.4.2 Uniprocessor

We simulate two basic schemes for uniprocessor: 7LB is the conventional TLB scheme
where the TLB is accessed in parallel with the L1 cache; in L2_7LB the TLB is accessed after a
virtually indexed and tagged L1 and L2 caches. The processor is trapped on TLB misses in both
schemes. The TLB maps 4K byte pages per entry, and is fully associative with LRU replacement
policy. We have chosen a 32-entry TLB size for FFT, RADIX and MP3D, but we have reduced the
TLB size to 16 entries forWATER in order to trigger enough traps. The processor model enforces
sequential consistency (SC) as in the MIPS R10000. We compare the metrics for the plain SC
implementation without prefetch and the SC implementation including hardware controlled
prefetching of data and of exception conditions. In order to observe the tolerance to the lateness of
memory traps, we delay the trap detection further by 15 cycles for the two base schemes. These
two delayed schemes are called TLB/15+ and L2_TLB/15+ in Table 5.2.

88



The fetch-to-fetch time is an upper bound on the overhead of the trap. It is consistently
much Iarger than the cost of the trap measured directly from the execution times. Thus the fetch-
to-fetch time is not a good estimate of the hardware overhead of a trap.

- No Prefetch ff Prefetch

Bench- Schemes late ate

marks . f

' detecti | flush | cost etchto detecti | flush | cost fetchto
on fetch || ™ fetch

TLB|[  0.01] 9.78] 1158 37.73| 000] 1491 2375 64.06
FFT TLB/I5S+|| 14.89] 1599 3229| 58.06 0.72] 1558| 24.30| 67.32
L2_TLB 396 1599| 20.60f 8195 0.08] 1548| 21.80| 85.61
L2 TLB/I5+|| 18.93| 16.00] 35.00] 96.40f 060 15.56] 22.18| 86.06
TLBl|  0.99] 1598 1817 69.33| 171 1573 2898 47.57]
RADIX TLB/I5+|| 15.99| 16.00( 33.17| 8433 867 15.71] 37.01| 58.61
L2_TLB 5.00{ 16.00| 2198| 80.24 3.11 1562] 3051| 51.02
L2 TLB/IS+|| 20.00] 16.00f 3696 9523[] 10.23| 15.83] 38.63] 61.07
TLB 0.02| 1335 1873 5111 0.01] 1262 2160 34.33
WATE TLB/I5+|| 11.75] 15.80 32.76| 65.29 6.94| 15.54| 32.16] 43.85
R L2_TLB 1.88| 13.80| 2090| 53.14 1.09| 1335 2846 3521
L2 TLB/IS+|| 15.90| 15.93| 37.04] 69.29 9.57| 1579 31.52| 46.02
TLB 0.06] 1293 1801| 5422 0.06] 12.62] 19.69| 42.65
MP3D TLB/I5+| 12.49| 1596] 33.16| 69.67|] 10.43| 15.86| 29.07| 55.81
L2_TLB 2.80| 14.08] 21.71| 5896 155 13.64| 2267| 4533
L2 TLB/15+|| 16.46] 16.00] 37.10] 74.54|| 1403] 1591 3164 59.64

Table 5.2. Uniprocessor. All times are in cycles.

The cost of a trap varies widely among different benchmarks because of the different
memory access behaviors. Under prefetching, the late detection time drops for all benchmarks but
the extent of the drop depends on the benchmarks.

Prefetching exception conditions is effective at tolerating some or all of the trap delay.
This can be seen fromTable 5.2 by comparing TLB with TLB/15+ and L2_TLB with L2_TLB/15+.
In systems with no hardware prefetch, the additional 15 cycle delay of the trap is practically added
to the late detection time and to the cost of the trap from TLB to TLB/15+ and from L2_TLB to
L2_TLB/15+. This shows no tolerance for trap delay. The system with prefetching behaves differ-
ently, especially for FFT where most of the trap delay is hidden and the cost of the trap is practi-
cally independent of the delay of the trap. We also see some reduction in the late detection time in
other benchmarks, reflected in the cost of the trap.

Looking at the results for TLB where most of the traps are detected early, we observe that
the cost of the trap is higher under prefetch than under no prefetch. This important effect comes
from the fact that the pipeline restart time is larger in a more aggressive pipeline since there may
be more memory instructions cancelled by the trap. This is even more obvious in Table 5.3 for
multiprocessors.

In most cases, the active list is very close to full, which is very desirable. Although the
number of pending instructions increases when we prolong the trap detection time, the impact on
the flush time is very limited. The flush time hovers between 13 and 16 cycles.
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5.4.3 Multiprocessors

We are going to look at the overhead of traps in more detail in the context of multiproces-
sors. In this section, we evaluate the trap overhead for three systems called L2_cache, Local and
Home which all rely on late memory traps. In L2_cache the processor is trapped on L2 cache
misses to handle virtual-to-physical address translation or/and cache coherence protocol[20].
Local traps the processor on local node misses, which is needed by many software extended cache
coherence protocols. Home detects the exception at the home node of the memory block, which
can either be remote or local. This can happen when virtual address translations are done at the
memory. Unlike L2_cache and Local which trap on every miss, Home generates exception on
approximately 5% of the directory accesses at the home node. This 5% is much more than the fre-
quency of traps in V-COMA, which only occur on very rare events such as page faults. In the case
of release consistent (RC) memory systems, we compare the implementations with precise and
deferred traps.

5.4.3.1 Trap Overhead

First, we show results for the trap overhead in the case of sequential consistency. InTable

Plain SC Implementation Speculative SC Implementation
Bench- | Schemes late flush cost | fetchto|| late flush cost | fetch to
marks detec- fetch || detec- fetch
tion tion
et # et et e Sttt P =t

L2_cache 3.82 15.91 21.00| 106.43 1.58 15.53 75.55 98.1
FFT Local|| 1595 1600 33.58| 201.54/ 11.79| 1539 129.91| 171.39
Home 75.60 16.00 97.48| 329.36 53.50 15.96| 160.47] 173.96

L2_cache 472 1599 23.89] 121.99 307 1527] 4591] 80.36
RADIX Local|| 1241 16.00| 3585 14054/ 11.71| 1565 60.89 92.05

Home|| 109.03| 16.00| 173.00] 266.00| 111.51| 15.99] 12504 179.12
L2_cache 3.51 15.66] 16.73] 17042 1.69] 15.36] 80.23] 150.13

WATE Local|| 16.61| 15.82| 36.06| 18507|| 11.95| 15.68| 10049| 162.69
R Home|| 111.13] 16.00| 228.57| 574.48 62.2| 15.75| 127.30| 363.46
L2_cache 3.20{ 1509 2021 179.10 207 15.05] 77.42| 17230

MP3D Local) 13.07| 15.67| 27.49| 210.88|| 10.36| 15.54| 92.04| 200.47

Home|| 119.39 16.00] 139.80] 474.90|] 92.93 15.83] 116.65] 328.94
Table 5.3. Trap Overhead in Sequential Consistency (SC)

5.3, Plain SC Implementation represents the scheme without prefetching of data and exception
condition. In addition to comparing the plain SC implementation with the prefetch scheme for both
data and exception condition, we simulate one more case that the data is prefetched speculatively

but the exception condition is not fetched until the memory instruction is issued, which is shown as
Speculative SC Implementation in Table 5.3. The same data is also appeared in Table 5.4 as No
Prefetch of Exception Condition in order to compare against the scheme of prefetching both data

and exception condition, which is shown as Prefetch of Exception Condition in Table 5.4.



No Prefetch of Exception Condition Prefetch of Exception Condition

Be"‘;h' Schemes late flush cost | fetchto|| late flush cost | fetchto
marks de:tec- fetch detec- fetch

ton tion

L2_cache 1.58] 1553 7555 98.1 0.04] 15.42] 7393
FFT Local]l 11.79] 15.39| 12991| 17139 020| 1533| 11634
Home|l 53.50] 15.96] 160.47] 17396/ 31.84] 15.88] 139.56| 155.27
L2_cache 3.07] 1527 4591 8036|| o082 1487 4345 77.75
RADIX Locall| 11.71] 15.65| 60.89] 92.05 421| 1523] 5263 84.26
Home|| 111.51| 1599] 125.04] 179.12| 8549| 15.94| 97.40| 161.85
L2_cache 1.69] 15.36] 8023 150.13]] 0.78] 15.21] 78.45] 149.34

WATE Local]| 11.95| 1568 10049| 162.69 8.83| 15.55| 90.31| 159.43
R Home 62.2| 15.75] 127.30] 36346| 57.55] 15.72] 79.42| 354.02
L2_cache 2.07| 1505 7742 17230 043 1478 76.35| 170.67

MP3D Locall| 1036] 15.54] 92.04| 200.47 6.83| 1532 89.84| 197.62

Home 92.93 15.83] 116.65| 328.94|] 78.88 15.77] 102.98] 343.17
Table 5.4. Prefetching Exception Condition in Sequential Consistency (SC)

As in the uniprocessor case, the fetch-to-fetch time grossly overestimates the cost of the
trap. The active list is about full at the point of the trap in all cases, which means that the flush time
is roughly constant and close to 16 cycles.

Table 5.3 can better explain the impact of a more sophisticated processor on the trap over-
head. The cost of the trap increases significantly from Plain SC Implementation to Speculative SC
Implementation, for the cases of L2_cache and Local where the restart time plus the flush time
dominates the cost of the trap. In the case of Speculative SC Implementation, the processor effi-
ciency is much better because of overlapped pending memory requests, which in turn increases the
amount of work that is cancelled by the trap and thus the restart time.

Comparing the late detection times for the two schemes in Table 5.3, we observe that
prefetching data only as the Speculative SC Implementation can also somewhat reduce the late
detection time for most benchmarks. The memory instructions have more time between the cycle
when they are ready to issue and the cycle when they reach the top of the active list. In other
words, in Speculative SC Implementation, memory instructions are ready sooner because preced-
ing memory instructions are completed faster.

Table 5.4 emphasizes the impact of prefetching the exception condition. Looking at the
late detection times under prefetch and no prefetch, we see that the prefetching of exceptions con-
ditions can further tolerate a large fraction of the trap delay. Because memory instructions can
probe the exception condition along with the data prefetch as soon as the address is ready, the
cycles that can be utilized to tolerate the lateness of trap detection is further enlarged. If we
focused on the cost of trap of these two schemes, prefetching exception condition always give us
some improvement on the total cost per trap. The improvement comes from the reduction of late
detection times.

In Table 5.5 we show results for the trap overhead in a multiprocessor under RC with pre-
cise and deferred traps. The difference between the two cases is the disablement of the store buffer
when precise traps are supported. Again we observe that the active list is almost full whenever a
trap is taken so that the flush time is constant. Deferred traps are very effective at reducing the
effect of the late traps in all cases. The reason is that, under deferred traps, a store instruction that
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reaches the top of the active list can retire even if it triggers a trap later on and during that time the
processor does useful work. This is not the case under precise traps. We also see that.the costof a
trap has been inflated dramatically under precise traps, because the cost of disabling the store
buffer for all store instructions has been charged to the traps.

RC/Precise Trap RC/Deferred Trap
Bench- | Schemes late flush cost | fetchto| Ilate flush cost | fetchto
marks detec- fetch || detec- fetch
tion tion
L2_cache 147 1556] 81.63| 98.26 0.16 12,791 49.13| 79.05
FFT Local 7.43| 1542] 163.72| 191.38 1.18 15.08] 79.06| 136.81

Home|l 4124 1596] 629.53| 22151 4157 1593| 84.47| 138.51
L2_cache 270 1590 144.70] 86.81 0.82] 14.85] 25.68] 40.51
RADIX Local]l 10.76| 1597 204.36| 99.09 124| 15.23| 31.81| 44.03

Home|| 101.61| 15.99] 2538.05] 193.68|| 16.26] 15.76] 45.66] 68.71
L2_cache|]| 251 1539 132.61| 150.63 097| 1509| 66.47]| 143.52
WATE Locall|l 13.62| 1564 155.63| 162.68 555| 15.38| 62.54| 148.09

Homel|| 92.29| 15.89] 3497.87| 468.81|| 31.28{ 14.77| 84.12| 213.69
L2_cache 202 1510 11297] 172.40 091 14.28] 62.64] 140.35
MP3D Locall| 978 15.54| 130.65| 199.94 3.80| 1491| 69.70| 160.43
Home|| 9190 15.85| 1370.07| 359.55| 44.14| 15.79] 151.15| 218.48

Table 5.5. Precise vs. Deferred Trap in Release Consistency (RC)

If we compare the cost of traps at different trap detection locations inTable 5.3 and Table

5.4, from L2_cache, to Local to Home, the cost under Plain SC Implementation is much more sen-
sitive to the trap detection point than under Prefetch of Exception Condition. Under Plain SC
Implementation the cost varies from about 20 cycles to more than 200 cycles depending on the
benchmark and on the trap detection point. However under Prefetch of Exception Condition, the
cost of the trap is not much sensitive to the trap detection point. This is of course due to both the
increased pipeline restart time and the ability to tolerate lateness of detection. For a processor with
a more aggressive memory system, the overhead of traps are increased whereas the overhead due
to the lateness of the trap can be largely tolerated. This trend is more pronounced if we look at
Table 5.5 for RC. The precise trap requirement makes the trap detection point essential because it
not only affects trapping instructions, but also impedes non-faulting store instructions.

5.4.3.2 Execution time

In this section, we present the breakdown of the execution times excluding the execution
of the software handlers. Contrary to previous results presented in this paper, the execution time
takes into account the frequency of traps. Because of caching effects in the memory hierarchy, the
frequency of traps usually decreases when its delay increases. We follow the convention in [56] to
count the stall time components, where the stall time is charged to the first instruction that cannot
be retired from the active list. If all four instructions are retired in one cycle, the cycle is credited as
busy. In Figure 5.4, Flush is the total flush time to clean up the active list when the trap is taken
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and Derect is the late detection time for the memory traps. SC/No prefetch represents the plain SC
implementation without prefetching. SC/prefetch scheme prefetches data and exception condition.

The late detection time is not significant in all cases because it is only charged when tak-
ing memory traps. As we expected, it is further reduced greatly by hardware prefetch (SC) and
deferred trap (RC). Without prefetch, SC restricts the issue time of memory accesses, leading to a
late detection time comparable to the flushing time of the active list; when the trap detection point
moves further away from the processor, the late detection time becomes dominant in the time
overhead due to traps. By contrast, the late detection time contribution to the total trap cost
becomes negligible when prefetch is added.

The write stall time is very small in RC executions with no traps, because the store instruc-
tions can be immediately retired from the active list as long as the store buffer is not full.

Except for RC with precise traps, the increase of the execution time over the no trap base
scheme comes from taking traps. Other non-faulting memory instructions are not affected. On the
other hand, the RC scheme with precise traps enforces restriction on retiring store instructions,
leading to a big increase on write stall time. Actually, because it enforces similar restrictions on
store instructions, the execution time for RC/precise interrupt is very close to the SC/prefetch
implementation. As also shown in the figure, deferred trap reduces the late detection time as well
because the processor retires useful instructions by the time it detects exceptions for the store
buffer entries.

5.5 Summary

Memory traps are necessary to support the virtual memory system and many other impor-
tant systems and applications. In this chapter, we have analyzed and evaluated the overhead cre-
ated by traps in the context of ILP processors. More specifically, we have focused on the added
overhead of late memory traps and have proposed ways to tolerate this overhead. Compared to the
ideal case where the memory trap is decided as soon as the instruction reaches the top of the active
list, late memory traps introduce extra overhead because 1) a store instruction cannot be retired
until its trap condition is verified, and 2) memory instructions must wait at the top of the active list
before the trap is detected.

The restriction on store instructions due to the support of precise late traps destroys the
advantages of store buffering in release consistent systems. However this restriction on store
instructions can be removed if the requirement of precise interrupt is relaxed to that of deferred
trap for stores. The tagged store buffer acts as a temporary storage for the stores whose exception
conditions are not resolved, and provides enough information to resume execution after the trap.

Because ILP processors look ahead in the program flow and can start memory accesses
very early in the pipeline, the lateness of trap detection can be tolerated with slight modifications
of current prefetching hardware.

The deferred trap and prefetch of exception information proposed in this chapter effi-
ciently cut the overhead due to delaying the decision time of memory exceptions. The cost of traps
is high and quite unpredictable in ILP processors. As our simulation results show, when the mem-
ory system of the processor becomes more aggressive, the cost of late detection is reduced while in
most cases the cost of traps increases. Systems in which these traps can be taken as late as possible
will become increasingly desirable if we can take advantage of their reduced frequency due to
caching effects in the memory hierarchy.
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Chapter 6

IMPLICATIONS FOR VIRTUALLY ADDRESSED
MEMORY HIERARCHY

With the rapid progress of VLSI technology the integration of processing logic and
DRAM memory on one single chip is becoming commercially feasible. Processing-in-Memory
(PIM) [45][57][68] is a promising solution to attack the memory wall problem. Typically, PIM
processors are much simpler and may be slower compared to regular state-of-the-art microproces-
sors. However, since processor and DRAM are integrated on the same chip, PIM processors can
exploit the huge internal bandwidth offered by the parallel memory banks within DRAM chips.
Access bandwidth inside the DRAM chip is several orders of magnitude larger, and the memory
access latency is reduced by up to a factor four[36], due to the elimination of off-chip communica-
tion.

The key to fight the memory wall with PIM technology to achieve high performance com-
puting is to de-centralize the computing among processing resources, i.e. the main microproces-
sors and the PIMs in memory. We argue that virtually-addressed memory hierarchies are a
necessary step for user level in-memory processing to smoothly transfer PIM technology into the
arena of general-purpose computing systems.

6.1 PIM in General Purpose Computing

6.1.1 Future Computer Systems

Future high-performance multiprocessors should take advantage both of the instruction-
level parallelism exploited by high-end microprocessors for compute-intensive tasks, and of low-
cost memory chips with processing capabilities for data or memory intensive tasks. Logically, the
system can be divided into processor side and memory side. The main microprocessors are high-
end processing engines which exploit aggressive instruction-level and thread-level parallelism at a
very high clock rate. A large virtual address cache hierarchy is included in the processor to bridge
the speed and bandwidth gaps across chip boundaries.

As illustrated in Figure 6.1, the memory side contains PIM arrays and memory banks.
Compared with the main processors, the PIM processors have a relatively lower clock rate, and
their pipeline is much simpler. However, accesses to DRAM from the PIM processors have high
bandwidth and low latency. Because of the simple processor model, the context switch time of the
PIM processors is very low as well.
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A challenge is to distribute the tasks among all the processing resources in order to bal-
ance the load. Contrary to a traditional multiprocessor systems, the processing units(main proces-

]sor (;nd PIMs) are specialized. Ideally, the computation should migrate to improve memory access
ocality.

Figure 6.1. A View of Future Computer System

6.1.2 Moving Processing Towards Memory

While the main processors are still responsible for major compute-intensive tasks,
resource management and memory-intensive tasks should migrate to the memory side, which is
close to the data and the physical devices.

Given that the on-chip caches are virtually indexed and virtually tagged, the virtual mem-
ory system and even the entire operating system can be moved to memory executed by the PIMs.
Moving the system software to memory can have significant speedup because their code and data
accesses tend to be random or sequential with poor locality. Moreover, moving the system soft-
ware to memory enables processing in memory at the user level. In a general purpose computing
environment users should be able to program the PIMs, and the PIMs should be able to execute
user programs in the virtual address space.

Now we show the logical steps involved in migrating the executions of user tasks to mem-
ory in the context of a general-purpose system.

Moving the Virtual Memory System to Memory. Once the memory hierarchy is virtu-
ally-addressed, one may consider moving the virtual memory system into memory.

In a classical system, the dynamic address translation hardware including the TLB handles
the most common cases without software intervention. In a virtually-addressed memory hierarchy,
we can envision as a first step that he PIM processor refills the TLB on a miss. To do that a PIM
processor must be aware of the page table structures, which are also exposed to the main proces-
sors. In systems without PIMs, either microcode or a software handler triggered by a trap on the
main processor must refill the TLB.

When a page fault happens, pages must be swapped in and out to satisfy the memory
access. To migrate the entire virtual memory system to memory the PIMs must be able to handle
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page faults. To do that, the PIM processors must be aware of most of the kernel data structures,
and run large amount of code. I/O operations, at least disk 1/0 for swapping, must be managed by
the PIM processors. Actually, when the entire virtual memory system is moved to memory, the
PIM processors can easily access the kernel data structures. The overall system performance can
be improved because the main processor can continue to compute at the same time the PIM pro-
cessor execute the page fault handler, which does not run very efficient on an ILP processor.

As an example, take the V-COMA architecture, in which the page tables are distributed
among processing nodes and are accessed by the protocol processor. The protocol processor at the
home node can execute virtual memory functions in case the hardware is unable to complete the
memory access. The entire virtual memory system can be implemented in memory and combined
with the cache coherence protocol.

Moving Operating System to Memory. With the virtual memory system in memory, the
next logical step is to move other operating system functions or even the entire operating system
into memory. In this case the main processors are freed from system resource management, which
is done physically closer to those resources inside the memory (see Figure 6.1).

The major advantages of in-memory operating system execution are speedup, improved
programmability, and easier management of PIM-based systems. When the operating system exe-
cutes in memory, the main processors are dedicated to user programs and do not trap on every sys-
tem call; moreover their caches are not polluted by system code and data. Much of the operating
system is expected to run more efficiently in memory than in the main processor. An in-memory
operating system provides a uniform environment to user tasks executed in memory and on the
main processor, and PIM system programming can be done using a standard multithreading pack-
age. In-memory tasks have the same ease of access to the same system resources as the main pro-
cessor tasks. Protection, security, and debugging facilities at low or no performance cost to the
application programs are also provided.

Moving User Computing to Memory. The in-memory operating system can safely
expose the PIM processors and memory to user programs. User level computing in memory
enables portable programs for PIMs, and may change the programming model for large applica-
tions. The ability to move user and system tasks to memory has the potential to significantly
relieve the well-known memory wall problem. Additionally, new programming models to explic-
itly expose PIMs to the user and split a computation between the main processor and memory may
radically solve the problem.

Alternative Approach. The classical approach to support user-level PIM computing is to
add a TLB in each PIM to translate virtual addresses, in the context of physically addressed mem-
ory hierarchies. PIM processors are treated as regular processors in a traditional multiprocessor
system. User-level tasks can still execute in PIMs since virtual addresses are supported. However,
as compared to virtually-addressed memory hierarchies, this approach has two drawbacks.

* The memory-intensive system software must still be executed on the main processors as

well as on the PIM processors. Maintaining the consistency of the TLBs among the PIM

processors and the main processors could be too expensive to make this approach feasi-
ble.

* PIM processors cannot respond to virtual addresses issued by the main processors
because they can only “see” physical addresses, restricting the usage of the PIM proces-
sors. As described in the next section, user level memory functions must operate on vir-
tual addresses. In a physical memory hierarchy, processing units exchange physical
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a.ddresses. Thus the physical addresses must be reverse-translated in a reverse transla-
tion buffer (RTLB) as was done to support user-level shared memory in [63]. The effect
of synonyms on such reverse translations has not really been addressed.

6.2 Emulating Memory Functions

We have shown how virtvally-addressed memory hierarchies can improve the perfor-
mance and scalability of the virtual memory system. As a level of abstraction, virtual memory pro-
vides each user program with the illusion of a single large memory space through cooperative
hardware and software support. Virtual memory is actually a special case of what we call a mem-
ory function.

6.2.1 Generic Memory Functions

Application programs make some assumptions on the memory systems on which they run.
These assumptions form the programmer’s view of the memory access semantics. Typically, the
user/system interface is the contract between user programs and their runtime environment, which
includes the properties/behaviors of the memory system. The abstraction of memory semantics is
usually in various layers and may be quite different for different programs. For example, a pro-
gram written in the physical address space sees the memory system as a contiguous set of memory
locations within a fixed address range; within that range a load returns the last value written to the
same address, while the meaning is undefined outside that range. Without support for virtual mem-
ory, part of the program must be dedicated to the management of physical memory in order to pro-
vide the illusion of a big enough memory. This abstraction of the physical memory is needed by all
programs; in a virtual memory system it is extracted from each individual user program and
becomes common to all programs as a memory function of the system. A program written with vir-
tual addresses ignores the physical limitation and expects the same access semantics throughout
the entire virtual address space.

User Programs

N
R
Librdry g§>

Operating System

Hardware

Figure 6.2. Memory Functions
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A memory function is the method or action taken to maintain a particular semaptics of the
memory system. Memory functions can either be built in within user programs to provxde. al?other
level of abstraction on top of the user/system boundary, or they can be implemen{ed within the
system as libraries, operating system functions or hardware primitives as shown in Figure 6.2. .

Memory functions can be extracted from user programs and integrated within the runtime
environment in which the programs run. This paradigm facilitates the portability and programma-
bility of user applications. At the implementation level, the parallelism extracted in the memory
function can be exploited by various computing agents --such as PIMs-- to improve overall system
performance.

As a general paradigm, memory functions provide useful semantics to application pro-
grams. Many memory functions have already been proposed or implemented besides virtual mem-
ory. Here we list some examples. This is by no means a complete list of existing ideas. With more
effective support, more innovative memory functions may emerge in the future.

Shared Memory. Instead of explicitly sending messages among processing elements,
shared memory semantics lets parallel programs communicate and synchronize via memory
accesses. Similar to the virtual memory abstraction, shared memory programming simplifies user
programs and improves portability and programmability. Most of the time the shared-memory par-
adigm is supported in hardware. Virtual shared memory systems (also called software DSMs) are
examples of shared memory supported by software.

Automatic Data Migration/Replication. In a distributed shared memory multiprocessor,
the memory access latency is non-uniform. In order to achieve high performance, it is important to
limit the number of remote memory accesses. Although user programs can be aware of the NUMA
memory and manage the allocation of their data to optimize performance, the management of data
allocation may also be integrated in the memory system to provide user programs with the illusion
of a much simpler UMA memory access semantics. This new memory function enhances the port-
ability and simplicity of the code and can accelerate legacy software on NUMA machines without
any change to the code.

There have been many attempts to implement automatic data migration/replication for
DSMs. The most notable is the COMA approach, in which automatic migration and replication are
maintained in hardware. The same memory system property can be implemented in the system
software layer by controlling the placement of physical data through the mapping of virtual to
physical addresses, as is done in Simple COMA.

Prefetching and Smart Cache Management. The traditional cache provides support for
automatic data replication controlled by hardware to reduce average access latencies. Effective
prefetching can further hide memory access latencies. Better cache management, replacement
strategy, or prefetch algorithm can improve latency and bandwidth to access the main memory.
Complex strategies can be implemented in hardware, software, or an hybrid combination.

Garbage Collection. While some programming languages such as C specify explicitly the
allocation and deallocation of memory space, programs written in JAVA or Lisp rely on garbage
collection by the runtime system. To alleviate the burden on the programmer, the memory system
may provide a higher level abstractions (object-oriented or functional) where memory allocation is
no longer necessary.

Memory Mapped I/O and Communication. In contrast to I/O system calls, memory-
mapped I/O provides user programs with a memory access semantics for I/O transfers. I/0 opera-
tions are triggered implicitly through memory accesses. Since they are efficiently supported by the
virtual memory system, memory-mapped file operations have been widely used. Recently, there
has been extensive research on virtual memory-mapped network communications.
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‘[nforming Memory Operation. Informing memory operations[39] provide a feedback
mechamsn.l for memory accesses. Memory access conditions are explicitly monitored by trap han-
c!lers running on the processor. [39] discussed several applications of informing memory opera-
tions, such as performance monitoring, software controlled prefetching, enforcing cache
coherence, and software controlled multithreading.

User-Tailored Memory System. With efficient user level support, user programs can
deﬁne. their own memory system semantics. This is a natural way to extract memory intensive
operations to fight the memory wall problem. For example, memory forwarding[49] enables

aggressive memory address layout optimizations. The Impulse project[9] pursues the same goal
with a smarter memory controller.

6.2.2 Memory Function Implementation

Memory functions can either be implemented in dedicated hardware, or emulated in soft-
ware. Memory functions usually execute concurrently with other parts of programs. Dedicated
hardware can fully exploit the parallelism and achieve very high performance. Conventionally,
tightly-coupled shared-memory multiprocessors are supported in hardware. Common cases for
virtual memory system implementations are also executed in dedicated hardware. The translation
lookaside buffer (TLB) translates virtual addresses into physical address and performs access right
checks without any software involvement. Albeit fast, dedicated hardware is expensive and not
flexible. Adding new hardware features for particular memory functions is practically impossible
when using commodity components to build computer systems, as more and more of the memory
system is migrated inside the microprocessor chip.

In contrast to hardware implementations, software is inexpensive. It is flexible and has
more powerful functionality. Memory functions requiring very complex operations such as con-
current garbage collection are traditionally implemented in software. The software emulating
memory functions can either run in the CPU along with application programs or they can be run
anywhere in the memory hierarchy where there is processing support, and, in particular, within the
memory chips on the PIMs.

With the trend of more aggressive ILP, higher processor clock rates and relatively longer
memory access latencies, much of the processor bandwidth is unused due to various dependencies
and memory access delays. This provides the opportunity to emulate more memory functions in
software utilizing the unused processing bandwidth within the ILP processors. On the other hand,
PIM technology expands the design space for the emulation of memory functions in software.
Memory functions may execute much more efficiently in memory than in the main processors.
These trends point to the programming memory functions emulated in software.

In the case of software emulation sophisticated memory functions must be extracted from
application programs. These software memory functions may be common to many programs or
specific to one particular program. Application programs are split into several layers which can be
executed concurrently on different processing units.

When a memory function is emulated in software, one or several memory service provid-
ers logically maintain the memory system properties expected by application programs. A service
provider manipulates the state of the memory units to enforce synchronization and provide the ser-
vice to various parts of an application program. For a single threaded main processor, the applica-
tion program usually must trap on the memory access requiring the service of a memory function
and must relinquish control to the service provider for the memory functions. The service provider
may also run on a different processor or as a different thread in a multi-threaded processor, and
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may or may not trap on memory accesses requiring the service of a memory func?ion. The service
provider may also reside in the memory hierarchy running on PIMs in parallel with the main pro-
Cessors. . .
Other parts of the application programs are generally not aware of the service provider,
and do not care if it is built-in in physical memory through dedicated hardware or emulated
through software running on the main processor or on PIMs in memory.

6.2.3 Support for Emulating Memory Functions

Support in Current Computer Systems. Most current commercial processors limit their
hardware support for memory functions to virtual memory.
* A hardware implemented dynamic address translation mechanism is required to handie
the common cases. This hardware is generally a special cache--the TLB-- holding
recently accessed page table entries.

» The processor is able to take memory trap generated by the TLB, which triggers soft-
ware intervention. This support is needed because complex operations such as page fault
can not be completed in hardware alone. These traps are detected by the TLB when
translating virtual addresses.

We have shown that the current virtual memory implementation scales poorly and is
quickly becoming a performance bottleneck. In addition, it is not efficient nor extendable to sup-
port software emulations other than virtual memory system. All recoverable memory traps are
generated by the traditional TLB before accesses are issued to the memory hierarchy. Other soft-
ware emulations have to rely on the conventional virtual memory support as is done in virtual
shared memory([48]. Although it is sometimes feasible, using the virtual memory mechanism is not
efficient to support all applications. For example for software DSM, the granularity of the page
table entry is too coarse to avoid false sharing. Modification of the state of data(page table) is too
expensive given the high frequency of data sharing events. Some schemes propose to emulate
memory functions on a separate dedicated processor in order to avoid trapping the processor from
memory. Many other proposals[39](49][78] exploit various memory functions implemented by
software and hardware cooperation simply by assuming that traps can be taken from the memory
hierarchy even though current processors do not support it.

Emulating Memory Functions on Main Processors. In order to efficiently support the
emulation of memory functions, 1) hardware on the memory access path must be added to handle
the common cases of a memory function, 2) the hardware must be able to generate recoverable
memory traps to the processor to request software involvement for complicated uncommon cases.

It is very unlikely that dedicated hardware will be integrated within future commercial
processors to support specific memory functions as is done for virtual memory. However, the pro-
cessors have to provide the hook for easy and efficient hardware and software cooperation. In
other words, the processor should be able to take recoverable memory traps from the memory hier-
archy so that any detection mechanism can be attached anywhere along the memory access path to
trigger software handling whenever it is needed.

Virtually-addressed memory hierarchies solves the problem fundamentally. When the
TLB is moved out of the processor and located in the memory hierarchy, the processor has to be
able to take traps generated from deep in the memory hierarchy. The TLB and any other special
hardware support can be easily inserted in the memory access path given that the virtual address

112



caches can satisfy most memory requests. In addition, because the hardware can be accessed with
virtual addresses, the support for user-level implementations is simplified. As an example, the
Tempest[63] user level shared memory could be implemented much more easily in a virtually-
addressed memory system, without the need for an RTLB to translate physical addresses back into
virtual addresses [63].

In a virtual address cache, the cache is logical in the sense that there is no physical infor-
mation involved. The dynamic address translation, as well as all other software assisted memory
access implementations can be located anywhere in the memory hierarchy after the virtual address
cache. The caching algorithm is general and remains unchanged despite of various memory func-
tions emulated by software.

Emulating Memory Functions in Memory. For performance reasons, software actions
to emulate memory functions should be handled as close as possible to where the actions are
invoked. Memory functions that are memory-intensive should be implemented in the memory
side. Memory functions is a perfect paradigm to decentralize computing among main processors
and PIMs.

Take the pointer chasing problem as a simple example. User programs need to chase a
pointer chain to locate some data. This piece of code does not run efficiently in a ILP processor
because of the poor memory access locality and the dependencies. There are two possible
approaches to splitting the user programs into compute-intensive and memory-intensive parts:

» We can encapsulate the pointer chasing code inside a procedure, which is executed on

PIM processors. Therefore, PIM tasks provide memory-intensive primitives which the
main processor programs can call through an interface such as the procedure call.

* The other approach is the memory function paradigm. In addition to the pointer based
data structure, user programs can define another “dense and cache-friendly” data struc-
ture such as an array to represent the same data. The coherence between the two data
structures can be maintained by user defined memory functions running in PIMs. There-
fore, the main processor programs can access the data with good spatial and temporal
locality.

The memory function approach has advantages both for program portability and perfor-
mance. The service provider for the memory functions could be adaptively scheduled on the pro-
cessors close to the data. There is actually no hard boundary between threads in the main processor
and threads in memory. The main processor can also be used to emulate functions that are better
executed in memory in case the PIMs run out of processing bandwidth. In the extreme case where
dumb memory is used instead of an intelligent memory system, all tasks are executed on main pro-
Cessors.

In general, the application programs can be split into various layers, where different mem-
ory function service providers decentralize the computation. These service providers exploit the
parallelism within applications and can take advantage of the PIM in-memory processing. The
main processor programs may then have a small, clean and good-behaved data working set so that
the communication between the processor and memory may be dramatically reduced.

6.3 Summary

The gap between processor and DRAM speeds keeps increasing. A radical solution to
attack this memory wall problem is to split the computation and delegate the execution of mem-
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ory-intensive tasks to memory.

Virtually-addressed memory hierarchies facilitates the integration of PIM processors in
general-purpose computing systems. System software such as the operating system may be
migrated into memory where it can run more efficiently in parallel with user programs.

Programming of mixed PIM/ILP processor systems can be done through the memory
function paradigm. This paradigm is also useful in systems with no PIMs. Virtually-addressed
memory hierarchies provide strong support for the implementation of memory functions, which
traditionally does not exist in an architecture with physically addressed memory hierarchies. This
support may come in two forms: 1) In a traditional computer system with no in-memory proces-
sors nor PIMs, the spare processor bandwidth can be better utilized to help implement a more flex-
ible and efficient memory system. 2) In systems with PIMs, the programs emulating memory
functions can be executed more efficiently on PIMs although they can also run on main processors
in case a PIM is not available. In both cases, portability and programmability are enhanced.
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Chapter 7

RELATED WORK

7.1 Virtual Memory

Since the first virtual memory system was introduced in the Atlas computer[27] in 1961,
virtual memory has become an essential component of modern computer systems to support multi-
tasking operating systems.

7.1.1 Dynamic Address Translation

Many virtual memory systems[62][87] organize the page table as a forward-mapped struc-
ture where the page table is indexed by the virtual address, possibly in multiple levels. A less com-
mon structure is the inverted page table(IPT) [40). Since the location of an IPT entry in the table is
set by the physical address but the IPT is indexed with virtual addresses the virtual address is first
hashed to locate the page table entry.

Historically, a hardware finite state machine inside the memory management unitMMMU)
searches the page table and refills the TLB on TLB misses. Nagle et al. [54] studied the trade-offs
for software managed TLBs where a memory trap is raised on TLB misses and the software trap
handler refills the TLB. Through hardware monitoring and trace driven simulations, they evalu-
ated TLB performance on a MIPS R2000 based workstation running several different operating
systems. We have shown in our study that the hardware trap overhead is much higher in ILP pro-
cessors than in previous generation processors, which they assumed in their research.

Jacob and Mudge[43] looked at several virtual memory implementation choices including
page table organization and TLB refill mechanism. Based on trace-driven evaluations, they con-
cluded that the performance difference between virtual memory implementations did not really
come from the choice of page table structure or MMU architecture, but rather from other imple-
mentation issues such as the trap overhead and the cache misses due to TLB miss handling.

Chen et al. [19] provided a simulation-based evaluation of TLB performance, which dem-
onstrates the importance of the TLB mapping size on performance, which is also shown in other
subsequent TLB research papers[54][80]. Although they looked at some different TLB organiza-
tions, all their designs are classified as LO-TLBs according to our characterization.

Clark and Emer[22] studied the TLB performance of the VAX 11/780 using trace-driven
simulations. They showed that about 4% of execution time is due to the translation lookaside
buffer. However, recent studies have shown the TLB overhead is currently much
larger[54][67]{791(80](65] and can even run up to 50% of the total execution time[79].
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Austin and Sohi[3] evaluated the bandwidth requirement on a conventional TLB for mul-
tiple issue processors. Instead of brute force multi-ported TLBs, they compfired several method.to
expand TLB bandwidth, including interleaved TLB, multi-level TLB, piggyback ports (v«{hlch
send the translation to simultaneous arriving requests), and pretranslation (which allows a single
translation request to be used for multiple memory accesses). These TLB design optimizations
improve the dynamic address translation bandwidth. However, they do not fundamentally solve
the TLB scalability problem.

One solution to the poor performance and scalability of the traditional TLB is superpages.
Talluri et al.[79][80] and Romer et al.[65] studied the use of superpages to increase the TLB cov-
erage without enlarging the TLB. They demonstrated that superpages dramatically cut the TLB
overhead by mapping physical memory in large chunks. In [79], the TLB supports two page sizes
(4KB and 64 KB), and the page reservation restricts the allocation of physical memory. Their sub-
block TLB is similar to a subblock cache.

Romer et al.[65] advocate an on-line promotion scheme where superpages are constructed
dynamically by promoting small pages to a large page. TLB misses are counted so that when the
miss count reaches a threshold, a superpage is constructed by copying and reconstructing the phys-
ical memory layout. The promotion itself requires copying physical pages and updating kernel
data structures and TLB shootdowns. The virtual-to-physical address mapping is too complex to
satisfy the superpage requirements. The online reconstruction operations are very costly and usu-
ally increase the data set size of applications. Moreover the decision of when and how to promote
superpages requires significant hardware and software efforts.

In addition to the page size, there are other factors to consider when allocating physical
memory, including the page placement for NUMA memory systems and page coloring for cache
friendly optimizations. These requirements sometimes conflict with each other. Moreover, chang-
ing the virtual-to-physical address mapping is very expensive in multiprocessors due to the TLB
consistency overhead, which of course also limits the dynamic reconstruction of physical memory
layout to utilize superpages.

The Impulse project [78] attempts to increase TLB coverage by backing up superpages
with shadow physical memory. A superpage can be constructed by mapping to contiguous shadow
physical pages which are then translated into non-contiguous real physical pages by the memory
controller. Although this can boost performance for particular applications, it is not a general solu-
tion for superpages because shadow memory is limited and has to be managed like physical mem-
ory.

To obviate the TLB bottleneck for large applications, Saulsbury et. al. [67] proposed
recency-based TLB prefetching. The temporal locality of TLB accesses is recorded in an LRU
stack and stored along with the page table entries. Upon a TLB miss, nearby mappings in the LRU
stack are prefetched into a TLB prefetch buffer which is accessed like the TLB. The entry is then
be moved to the TLB if it hits in the following accesses.

Black et. al. [4] proposed the TLB shootdown solution to maintain TLB consistency. This
algorithm does not require any special hardware support other than inter-processor interrupts.
However, it requires global synchronization among all processors and all processors have to idle
while a page table is being modified. Therefore, the algorithm scales very poorly in large-scale
multiprocessors.

Rosenburg [66] proposed a modified TLB shootdown algorithm to improve the original
algorithm. Less synchronization is required but the scheme relies on the hardware features of the
IBM RP3 system.
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Teller{81] addressed the scalability of maintaining TLB consistency in large scale multi-
processors. In particular, she proposed a memory-based TLB scheme in the context of UMA(Uni-
form Memory Access) architectures. She demonstrated that TLB consistency scales poorly in
large-scale multiprocessors and that moving the TLB to memory can radically solve the problem.
Her scheme is similar to SHARED-TLB in CC-NUMA and inspired the design of V-COMA.

7.1.2 Virtual Address Caches

Although virtual address caches have been the topic of many research papers, there are
very few quantitative analysis of virtual address cache performance. Agarwal[1] analyzed virtual-
address cache performance using traces from VAX. Wu et. al[90] evaluated different cache types
including V/P and V/V caches using an IBM 370 trace. Although some of their observations are
similar to the ones in this dissertation, the quantitative results are hard to compare because of the
different schemes adopted for virtual address caches and of the different workloads and operating
systems used in the experiments. A survey of virtual address cache issues in uniprocessors and
multiprocessors has been recently published[10][11].

Synonyms have been used for various optimizations. For example, Chu [21] described a
zero-copy TCP implementation using virtual-physical page remappings. Chao et. al. [15]
described the porting of Mach operating system on PA-RISC, which has a virtual address cache
architecture. Flushing is necessary to solve the synonym problem.

Opal[18] is a novel approach to operating system design because it runs on a single global
virtual address space shared by all procedures and all data. Synonyms do not exist in an SASOS. It
has become clear that the software community is clearly not ready for such a radical change.

Wang et al.[85] proposed the idea of a two-level virtual-real cache hierarchy where the
TLB is after the first-level cache. We have called this system L1-TLB. They proposed to store
pointers in the two caches to solve the synonym and the writeback problems and to enforce inclu-
sion.

Among the five design options we discussed, LO-TLB, L1-TLB and L2-TLB variations
have been explored by other researchers. Jacob et al.[42] proposed a software-managed address
translation scheme where the hardware TLB is eliminated. A big virtually-indexed virtually-
tagged second level cache drastically cuts the frequency of address translations. This scheme can
be considered as a 0-entry L2-TLB.

In the VMP multiprocessor proposed by Cheriton et al.[20], dynamic address translation is
also handled by trapping the main processors, which take care of the cache coherence protocol as
well. Wood et al.[89] proposed an in-cache translation scheme in SPUR. Although it had a single
level cache, we can categorize it as an L2-TLB scheme because there is no physically indexed
cache after the address translation mechanism. As we discussed, L2-TLB is attractive in CC-
NUMA or UMA architecture since the whole cache hierarchy is virtual. However, this research
work was done before the advent of ILP processors.

Lynch(51] observed that physical cache performance varies in each run depending on the
allocation of pages by the operating system, while on the other hand the performance of virtual-
address caches is not sensitive to these implementation decisions. We have observed the same
trend --i.e. the miss rates of virtual-address caches are more robust than those of physical-address
caches, especially for caches with low associativity. Lynch also explored page coloring issues. His
simulations indicated that the page fault rate does not noticeably increase with the number of col-
ors. He concluded that the use of coloring did not affects paging much.
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7.2 Trap and Interrupt Issues

There has been little research conducted on trap and interrupt implementations in ILP pro-
cessors since Smith and Pleszkun [75] defined precise interrupt, and proposed several implementa-
tions for what they called pipelined processors. The reorder buffer scheme they proposed has been
widely used in current ILP processors, and is also the base of our study on the trapping behavior in
ILP processors.

Hwu and Patt [41] studied the repair mechanism for out-of-order execution machines.
They looked at both branches (B-repairs) and exceptions (E-repairs), which change the instruction
flows. They pointed out the different behavior of branches and exceptions and proposed different
repair algorithms for them.

The lightweight trap model relying on simultaneous multithreaded architecture was
recently proposed by Song and Dubois[76]. The microthread proposed in [16] is very similar to the
nanothread in [76). Zilles et. al. [94] studied lightweight exception handling for TLB refills. They
have shown that the lightweight trap is more advantageous than the regular trap for TLB refills. To
support lightweight traps the processor must be multithreaded. Lightweight traps cannot replace
the regular memory traps that we have analyzed in this research. Lightweight traps help the main
thread execution by taking care of some events that can be handled without preempting the main
thread. However, complex events such as page fault require very complicated handling and most
of the time preemption. For events such as TLB misses, the lightweight trap must synchronize with
the main thread. The techniques proposed in this dissertation are also applicable and can be com-
bined with lightweight traps to provide a comprehensive solution for traps in future processors.

Thekkath and Levy [82] argued that the exception mechanism was used by many applica-
tions and run-time systems in novel ways. User programs rather than the kernel should be respon-
sible for exception handling. They proposed hardware and software support to deliver user-level
exceptions to cut the overhead due to kernel context switch.

7.3 Generic Memory Functions

Traditionally, shared memory multiprocessors have been implemented by dedicated hard-
ware. Li and Hudak([48] proposed shared virtual memory where the virtual memory support is uti-
lized to implement shared memory system in virtual address space. This work pioneered the
research on software and hybrid distributed shared memory systems, which has produced a large
body of research literature and is still a very active research area.

As examples of software and hybrid shared memory implementations, Chaiken and Agar-
wal[13] evaluated a spectrum of software-assisted protocols. Hill et al.[38] proposed cooperative
shared memory which can be considered as a software extended protocol with only one hardware
pointer. Moga et al. [53] implemented a software controlled COMA (SC-COMA). Schoinas et
al.[71] overviewed some fine grain access control for shared memory implementation and Rein-
hardt et al.[64] developed decoupled hardware support for shared memory implementations.

The SHRIMP project [5] advocated a virtual memory mapped network interface to sup-
port shared memory implementation. Similar to memory-mapped file /O, virtual memory mapped
communication maps the remote virtual or physical memory into the local virtual address space.
The special network interface is designed to minimize software involvement in order to achieve
high performance.
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In the simple COMA architecture proposed by Saulsbury et. al[69], the virtual memory
system is also involved in the cache coherence handling to allocate pages for replication. Wild-
Fire[34] connects several large SMPs to build large scale shared memory multiprocessors using an
R-NUMA-like[26] protocol.

Appel and Li{2] studied virtual-memory primitives that can be utilized by user programs.
They listed some applications such as concurrent garbage collection, shared virtual memory, con-
current checkpointing, persistent stores, extending addressability, data-compression paging, and
heap overflow detection. Conventional virtual memory support can be used to implement these
applications as demonstrated in [2]. However with better support as proposed in this dissertation,
more applications can be invented given the flexibility and efficiency of the hardware/software
interface. For example, in the Impulse project[78], a second-level address translation is imple-
mented in the memory controller to improve memory behavior of user programs. Memory for-
warding [49] accomplishes similar dynamic layout optimizations. It relies on memory traps to
complete the memory function in software in uncommon cases. Informing memory operations[39]
were proposed to provide feedback on memory behavior to software by trapping on L1 cache
nisses.

Burger et. al. [6] and Wulf and Mckee [91] pointed out that the increasing gap between
processor and memory will lead to the so-called memory wall problem where not only the latency
but also the bandwidth of memory accesses will slow down the processor. In this doomsday sce-
nario. the processors will starve for data, especially in data-intensive applications.

Saulsbury et al. [68] described a PIM design where a very wide cache line is used to utilize
the vast bandwidth within the memory chip. It includes a complete RISC processor within the
memory chip with a high speed serial interconnect to communicate with other chips. The Berkeley
IRAM project[57] targets in-memory vector processing. It would appear that vector processing
can efficiently exploit the inherent huge bandwidth within the memory chip and, at the same time,
offer the user a familiar programming style.

Kogge et al. [45] discussed programming models for PIMs to develop code for a PIM
based computer. They summarized five programming models: static library model, SPMD model,
modify on access model, locally shared/globally distributed model, and split execution model. In
the static library model, program access to the PIM is through a library of pre-written functions.
The SPMD model is simply an extension of the SPMD model for conventional multiprocessors. In
the modify on access model, PIMs can execute functions which can be pushed in memory in a way
similar to filters in streams. Compress and decompress modules in each level of memory hierar-
chies can be supported by this model. The locally shared/globally distributed model is the counter-
part of message passing model for PIMs. In the split execution model, the program is broken into
two concurrent executing pieces. One performs computations and the other moves data up and
down in the memory hierarchy. Among the programming models they listed, modify on access and
split execution model are basically special memory functions dedicated to PIMs.

The main goal of the DIVA project[36] at USC is to support emerging data-intensive
applications with smart memories. A large-scale memory array is attached to a host processor. The
host controls the execution in memory and executes the code that the memory array cannot execute
well.
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Chapter 8

CONCLUSIONS

In this dissertation, we have focussed on virtually-addressed memory hierarchies, where
the virtual-to-physical address translation is moved from the processor down inside the memory
hierarchy.

Virtual memory is supported by a hardware translation lookaside buffer (TLB) handling
most common cases, and by a set of software functions. The traditional TLB does not scale well
and is quickly becoming a performance bottleneck because: 1) The TLB is located in the critical
path of memory accesses where the speed and bandwidth requirements increase with the processor
clock rate and parallelism, 2) the TLB size is fixed on the processor chip and cannot be changed
when building various systems, 3) TLB consistency in multiprocessors does not scale, and
becomes very expensive for large systems.

Virtually addressed memory hierarchies radically solve the scalability problem of the tra-
ditional dynamic address translation mechanism and dramatically cut the overhead. When the
cache memory is virtually indexed and virtually tagged, memory accesses can be satisfied without
virtual-to-physical address translations. Because of the filtering effect of the virtual caches, we
have shown in the dissertation that the number of address translation misses under virtually
address memory hierarchies is largely reduced. In addition, virtually addressed memory hierar-
chies enables new designs of multiprocessor architectures. In particular, we have proposed a novel
architecture called Virtual COMA(V-COMA) where the entire memory hierarchy including main
memory is virtually indexed and virtually tagged. The address translation hardware is shared
among all the processors and benefits from sharing and prefetching effects. Moreover, the consis-
tency problem is eliminated because no TLB entry is replicated. Therefore, the V-COMA architec-
ture scales very well and works even better for large scale multiprocessors.

Virtually addressed memory hierarchies have two technical challenges. One is the syn-
onym problem, the other is the lateness of detecting memory traps.

Synonym happens when two or more virtual addresses map to the same physical address.
Synonyms may generate inconsistencies in virtual-address caches and therefore are not appropri-
ate to address the memory hierarchy in general. We propose and evaluate a new scheme called the
synonym lookaside buffer (SLB) to solve the synonym problem and enable virtual-address caches.
The SLB replaces the traditional TLB in the processor to handle synonyms before issuing virtual
addresses to the memory hierarchy. The SLB can remain very small because its size depends on
the sharing of synonyms and not on the sizes of applications or of the physical memory. We also
compared the miss rate behavior of physical- and virtual-address caches. It appears that virtual-
address caches exhibit better miss rates than physical-address caches and that the solution using a
small SLB in front of the caches avoids short misses in larger caches while safeguarding the bene-
fits of temporal and spatial locality in the virtual space.
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Memory traps are required to implement virtual memory. Virtually-addressed memory
hierarchies require processors to take late memory traps because the dynamic virtual address trans-
lation detecting exceptions is located somewhere in the memory hierarchy instead of within the
processor close to the pipeline. We propose techniques to enable the ILP processors to take late
memory traps. We show that, while the ILP trend in modern processors dramatically increase the
cost of traps, the ability to tolerate the lateness of memory traps is also largely increased. Therefore
with the techniques we proposed, the cost of traps becomes much less sensitive to where the trap is
detected. Given the fact that the frequency of traps generally goes down dramatically when mov-
ing the TLB down the memory hierarchy, it becomes advantageous to take traps as deep as possi-
ble in the hierarchy rather than to take them at the level of the first-level cache, as is usually done.

We have run extensive simulations using state-of-the-art simulation tools to evaluation
schemes and ideas throughout this research. Based on the type of evaluation, we have modeled
both a detailed processor microarchitecture and a complete machine running a real commercial
operating system. Our simulation results show that: 1) the synonym lookaside buffer scales well
and efficiently solves the synonym problem for virtually addressed memory hierarchies, 2) late
memory traps can be efficiently supported in modern ILP processors, and 3) virtually addressed
memory hierarchies dramatically cut the overhead due to virtual memory implementation.

Virtually addressed memory hierarchies not only provide more efficient and scalable
implementation for virtual memory, but also open the door to more flexible and smarter memory
systems. Virtualizing the memory hierarchy is a necessary step to facilitate the integration of pro-
cessing-in-memory (PIM) technology into general-purpose computing systems. Some or all oper-
ating system functions can be migrated to memory so that they can be executed more efficiently
and in parallel with user programs and so that user level in-memory computing becomes possible.
Virtually-addressed memory hierarchies provide better support for the general memory function
paradigm so that 1) new memory functions can be developed for systems with no PIMs, and 2)
applications programs can be naturally split into programs running on ILP main processors and on
PIMs in memory following the memory function paradigm.

In summary, virtually addressed memory hierarchies are feasible and efficient and are
very attractive for new, emerging system ideas and technologies in the context of general-purpose
computing.

131



Bibliography

(11 Anant Agarwal, “Analysis of cache performance for operating system and multiprogram-
ming,” Kluwer Academic Publishers, Boston, 1989.

[2] Andrew Appel and Kai Li, “Virtual Memory Primitives for User Programs”, In Proceedings
of the 4th Conf. on Architecture Support for Programming Languages and Operating Sys-
tems(ASPLOS), pages 96-107, 1991.

{31 Todd Austin and Gurindar Sohi. “High-Bandwidth Address Translation for Multiple-Issue
Processors, ” In Proceedings of the 22nd Annual International Symposium on Computer Architec-
ture(ISCA), pages 158-167, 1996.

[4] David Black, Richard Rasgid, David Golub, Charles Hill, and Robert Baron, “Translation
Lookaside Buffer Consistency: A Software Approach,” In Proceedings of the 3rd Conf. on Archi-
tecture Support for Programming Languages and Operating Systems(ASPLOS), pages 113-122
1989.

[5] M. Blumrich, K Li, R. Alpert, C. Dubnicki, E. Felten, and J, Sandburg, “Virtual Memory
Mapped Network Interface for the SHRIMP Multicomputer,” In Proceedings of the 21st Annual
International Symposium on Computer Architecture(ISCA), pages 142-153, 1994,

[6] Doug Burger, James Goodman, and Alain Kagi, “Memory Bandwidth Limitations of Future
Microprocessors”, In Proceedings of the 22nd Annual International Symposium on Computer
Architecture(ISCA), pages 78-89, 1996.

[7] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam, “Compiler-
Directed Page Coloring for Multiprocessor,” In Proceedings of the 7th Conf. on Architecture Sup-
port for Programming Languages and Operating Systems(ASPLOS), Oct. 1996.

(8] H. Burkhardt III et al. “Overview of the KSR-1 Computer System,” Technical Report KSR-
TR-9202001, Kendall Square Research, Feb. 1992.

[9] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo, R.
Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a smarter memory con-
troller. In Proceedings of the 5th International Symposium on High Performance Computer
Architecture(HPCA ), January, 1999.

[10] Michel Cekleov and Michel Dubois. “Virtual-Address Caches, Part 1: Problems and Solu-
tions in Uniprocessors”, IEEE Micro, pages 64-71, Sep/Oct. 1997.

[111  Michel Cekleov and Michel Dubois, “Virtual-Address Caches, Part 2: Multiprocessor
Issues,” IEEE Micro, pages 69-74, Nov/Dec 1997.

[12] L. Censier and P. Feautrier. “A New Solution to Coherence Problems in Multicache Sys-
tems,” IEEE Transactions on Computers, C-27(12):1112-1118, Dec., 1978.

[13] David Chaiken and Anant Agarwal, “Software-Extended Coherent Shared Memory: Perfor-
mance and Cost”, In Proceedings of the 21st Annual International Symposium on Computer Archi-
tecture(ISCA), pages 314-324, 1994.

[14] Albert Chang and Mark Mergen, “801 Storage: Architecture and Programming”, ACM
Transaction on Computer Systems, Vol 6, No. 1, February 1988, Pages 28-50.

[15] Chia Chao, Milon Machey, Bart Sears, “Mach on a Virtually Addressed Cache Architec-
ture”, Proceedings of the 1st Mach USENIX Workshop, pages 31-51, Oct. 1991.

(16] R Chappel, J Stark, S. Kim, and Y. Patt, “Simultaneous Subordinate Microthreading
(SSMT)”, In Proceedings of the 26th Annual International Symposium on Computer Architec-
ture(ISCA), May 1999

133



[17] Alan Charlesworth, “STARFIRE: Extending the SMP Envelop”, IEEE Micro, pages 39-49
January/February 1998.

{18] Jeffrey Chase, Henry Levy, and Michael Feeley, “Sharing and Protection in a Single-
Address-Space Operating System,” In ACM transaction on computer systems, pages 271-307,
Nov., 1994,

{19] J. Bradley Chen and Anita Borg. “A Simulation Based Study of TLB Performance,” InPro-
ceedings of the 19th Annual International Symposium on Computer Architecture(ISCA), pages
114-123, May 1992.

[20] David Cheriton, Gert Slavenburg, and Patrick Boyle, “Software-Controlled Caches in the
VMP Multiprocessor”, In Proceedings of the 13rd Annual International Symposium on Computer
Architecture(ISCA ), pages 366-375, 1986.

[21]) Hsiao-keng Jerry Chu, “Zero-Copy TCP in Solaris”, 1996 USENIX Technical Conference,
pages 253-264, January 22-26, San Diego, CA

[22] D. W. Clark and J. S. Emer, “Performance of the VAX-11/780 Translation Buffer: Simula-
tion and Measurement,” In ACM Transactions on Computer Systems, vol. 3, no. 1, February, 1985.
(23] Richard Crisp, “Direct Rambus Technology: The New Main Memory Standard”, IEEE
Micro, pages 18-28, Nov./Dec., 1997.

[24] David Culler and Jaswinder Pal Singh with Anoop Gupta, “Parallel Computer Architecture”,
Morgan Kafmann, 1999.

[25] Michel Dubois, Christoph Scheurich, and Faye Briggs, “Memory Access Buffering in Multi-
processors”, In Proceedings of the 13rd Annual International Symposium on Computer Architec-
ture(ISCA), pages 320-328, 1986.

[26] Babak Falsafi, and David Wood, “Reactive NUMA: A Design for Unifying S-COMA with
CC-NUMA,” In Proceedings of the 24th Annual International Symposium on Computer Architec-
ture(ISCA), 1997.

[27] ). Fotheringham, “Dynamic Storage Allocation in the Atlas Computer, Including an Auto-
matic Use of a Backing Store,” Communication of the ACM, 4(10):435-436, Oct., 1961.

[28] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy, “Performance Evaluation of
Memory Consistency Models for Shared-Memory Multiprocessors,” In Proceedings of the 4th
Conf. on Architecture Support for Programming Languages and Operating Systems(ASPLOS),
pages 245-257, 1991.

[29] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy, “Two Techniques to Enhance the
Performance of Memory Consistency Models”, In Proceedings of the International Conference on
Parallel Processing, pages 1355-1364, 1991

[30] J.R., Goodman, “Coherency for Multiprocessor Virtual Address Caches,” In Proceedings of
the 2nd Conf. on Architecture Support for Programming Languages and Operating Systems(ASP-
LOS), 1987.

[31] Hakan Grahn and Per Stenstrom, “Efficient Strategies for Software-Only Directory Proto-
cols in Shared-Memory Multiprocessors”, In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture(ISCA), pages 38-47, 1995.

[32] L.Gwennap, “Design Concepts for Merced, Forecasting the Inner Workings of the Decade’s
Most Anticipated Processor,” pages 9-11, Microprocessor Report, vol. 11, no. 3, March 10, 1997.
[33] Linley Gwennap, “Alpha 21364 to Ease Memory Bottleneck,” Microprocessor Report, Oct.
26, 1998

[34] Erik Hagersten and Michael Koster, “WildFire: A Scalable Path for SMPs”, In Proceedings
of the 5th International Symposium on High Performance Computer Architecture(HPCA), Janu-
ary, 1999.

134



[35] Erik Hagersten, A. Landin, and S. Haridi. “DDM-A Cache-Only Memory Architecture,”
IEEE Computer, vol. 25, no. 9, pages 44-54, Sep. 1992.

[36] Mary Hall, Peter Kogge, Jeff Koller, et al, “Mapping Irregular Application to DIVA, a PIM-
based Data-Intensive Architecture”, in proceedings of SC99, Nov., 1999.

[37] Stephen A. Herrod, “Using Complete Machine Simulation to Understand Computer System
Behavior”, Ph.D Thesis, Stanford University, Feb, 1998.

[38] Mark Hill, James Larus, Steven Reinhardt, and David Wood, “Cooperative Shared Memory:
Software and Hardware for Scalable Multiprocessors ”, ACM Transactions on Computer Systems,
11(4):300-318, Nov. 1993.

[39] Mark Horowitz, Margaret Martonosi, Todd Mowry, and Michael Smith, “Informing Mem-
ory Operations: Providing Memory Performance Feedback in Modern Processors”, In Proceed-
ings of the 23rd Annual International Symposium on Computer Architecture(ISCA), pages 260-
270, 1996.

[40] Jerry Huck, and Jim Hays. “Architecture Support for Translation Table Management in
Large Address Space Machines, ” In Proceedings of the 20th Annual International Symposium on
Computer Architecture(ISCA), pages 39-50, 1993.

[41] Wen-mei W. Hwu, Yale N. Patt, “Checkpoint Repair for Out-of-order Execution Machines,”
In Proceedings of the 14th Annual International Symposium on Computer Architecture(ISCA),
pages 18-26, 1987.

[42] Bruce Jacob and Trevor Mudge. “Software-Managed Address Translation,” In Proceedings
of the 3rd International Symposium on High Performance Computer Architecture(HPCA), Feb.
1997.

[43] Bruce Jacob and Trevor Mudge. “A Look at Several Memory Management Units, TLB-
Refill Mechanisms, and Page Table Organizations,” In Proceedings of the 8th Conf. on Architec-
ture Support for Programming Languages and Operating Systems(ASPLOS), 1998.

[44] T. Joe. “COMA-F: A Non-Hierarchical Cache Only Memory Architecture,” PhD. Thesis,
Stanford, 1995.

[45] Peter Kogge, Jay Brockman, Thomas Sterling, and Guang Gao, “Processing In Memory:
Chips to Petaflops”, In Proceedings of the 24rd Annual International Symposium on Computer
Architecture(ISCA), Workshop on Mixing Logic on DRAM, 1997.

[46] Eric J. Koldinger, Jeffrey S. Chase, and Susan J. Eggers. “Architecture Support for Single
Address Space Operating System,” In Proceedings of the 5th Conf. on Architecture Support for
Programming Languages and Operating Systems(ASPLOS), pages 175-186, Oct. 1992.

[47] . Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D.
Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. “The Stanford
FLASH Multiprocessor,” In Proceedings of the 21st Annual International Symposium on Com-
puter Architecture(ISCA), pages 302-313, 1994,

[48] Kai Li and Paul Hudak, “Memory Coherence in Shared Virtual Memory Systems”, ACM
Transaction on Computer Systems, 7(4):321-359, Nov. 1989.

[49] C. Luk and T. Mowry, “Memory Forwarding: Enabling Aggressive Layout Optimizations by
Guaranteeing the Safety of Data Relocation”, In Proceedings of the 26th Annual International
Symposium on Computer Architecture(ISCA), May 1999.

[50] L. Lamport, “How to Make a Multiprocessor Computer That Correctly Executes Multipro-
cess Programs,” IEEE Transaction on Computers, Vol. C-28, No. 9, Sep. 1979.

[51] William Lynch. “The Interaction of Virtual Memory and Cache Memory,” Ph.D. Thesis,
Technical Report CSL-TR-93-587, Stanford University, 1993.

135



[52] C. May, E. Silha, R. Simpson, and H. Warren, Eds. “The PowerPC Architecture: A Specifi-
cation for a New Family of RISC Processors,” Morgan Kaufmann Publishers, San Francisco CA,
1994.

[53] Adrian Moga, Alain Gefflaut, and Michel Dubois, “Hardware vs. Software Implementation
of COMA?”, In Proceedings of the 1997 Int’l Conference on Parallel Processing, pages 248-256,
August 1997.

[54] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and Richard
Brown. “Design Tradeoffs for Software-Managed TLBs,” In Proceedings of the 20th Annual
International Symposium on Computer Architecture(ISCA), pages 27-38, 1993.

[55] Vijay Pai, Parthasarathy Ranganathan, Sarita Adve, “RSIM Reference Manual”, Technical
Report 9705, Department of Electrical and Computer Engineering, Rice University, Aug, 1997
[56] Vijay Pai, Parthasarathy Ranganathan, Sarita Adve, and Tracy Harton, “An Evaluation of
Memory Consistency Models for Shared-Memory Systems with ILP Processors”, In Proceedings
of the 7th Conf. on Architecture Support for Programming Languages and Operating Sys-
tems(ASPLOS), pages 12-23, Oct. 1996.

[57]1 David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton,
Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick, “A Case for Intelligent RAM:
IRAM”, IEEE Micro, April, 1997.

[58] Xiaogang Qiu and Michel Dubois, “Options for Dynamic Address Translation for COMAs”,
In Proceedings of the 25th Annual International Symposium on Computer Architecture(ISCA),
pages 214-225, 1998.

[59] Xiaogang Qiu and Michel Dubois, “Tolerating Late Memory Traps for ILP Processors”, In
Proceedings of the 26th Annual International Symposium on Computer Architecture(ISCA), pages
76-87, 1999.

[60] Xiaogang Qiu and Michel Dubois, “The Case for Virtually-Addressed Memory Hierar-
chies”, Technical report CENG 00-03, Department of Electrical Engineering - Systems, University
of Southern California.

[61] Parthasarathy Ranganathan, Vijay Pai, and Sarita Adve, “Using Speculative Retirement and
Larger Instruction Windows to Narrow the Performance Gap between Memory Consistency Mod-
els”, In Proceedings of 9th Annual ACM Symposium on Parallel Algorithms and Architec-
tures(SPAA), pages 199-210, 1997.

[62] SGI, Inc. “MIPS R10000 Microprocessor User’s Manual,” Version 2.0.

[63] Steven Reinhardt, James Larus, and David Wood, “Tempest and Typhoon: User-Level
Shared Memory”, In Proceedings of the 21st Annual International Symposium on Computer
Architecture(ISCA), page 325-336, 1994.

[64] Steven Reinhardt, Robert Pfile, and David Wood, “Decoupled Hardware Support for Dis-
tributed Shared Memory ”, In Proceedings of the 23rd Annual International Symposium on Com-
puter Architecture(ISCA), page 34-43, 1996.

[65] Theodore H. Romer, Wayne H. Ohlrich, and Anna R. Karlin. “Reducing TLB and Memory
Overhead using Online Promotion,” In Proceedings of the 22nd Annual International Symposium
on Computer Architecture(ISCA), page 176-187, 1995.

[66] Bryan Rosenburg, “Low-Synchronization Traslation Lookaside Buffer Consistency in Large
Scale Shared-Memory Multiprocessors,” In Proceedings of the 13th Symposium on Operating Sys-
tem Principles, 1989.

[67] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenstrém, “ Recency-based TLB Preloading”,
In Proceedings of the 27th Annual International Symposium on Computer Architecture(ISCA),
2000.

136



[68] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk, “Missing the Memory Wall: The
Case for Processor/Memory Integration”, In Proceedings of the 23rd Annual International Sympo-
sium on Computer Architecture(ISCA), pages 90-101, 1996.

[69] Ashley Saulsbury, Tim Wilkinson, John Carter, and Anders Landin, “An Argument for Sim-
ple COMA”, In Proceedings of the 1st International Symposium on High Performance Computer
Architecture(HPCA), January, 1995.

[70] Daniel J.Scales, Kourosh Gharachorloo, and Chandramohan A.Thekkath, “ Shasta: a low
overhead, software-only approach for supporting fine-grain shared memory”, In Proceedings of
the seventh international conference on Architectural support for programming languages and
operating systems(ASPLOS), Pages 174 - 185, 1996.

[71] Ioannis Schoinas, Babak Falsafi, Alvin Lebeck, Steven Reinhardt, James Larus, and David
Wood, “Fine-grain Access Control for Distributed Shared Memory”, In Proceedings of the 6th
Conf. on Architecture Support for Programming Languages and Operating Systems(ASPLOS),
pages 297-306, 1994.

[72] Andre Seznec, “Don’t Use the Page Number, But a Pointer To It,” In Proceedings of the
23rd Annual International Symposium on Computer Architecture(ISCA), pages 104-113, 1996.
[73] Andre Seznec, “Decoupled Sectored Caches: Conciliating Low Tag Implementation Cost
and Low Miss Ratio,” In Proceedings of the 21st Annual International Symposium on Computer
Architecture(ISCA), pages 265-274, 1994,

[74] Andre Seznec, “ A Case for Two-Way Skewed-Associative Caches,” In Proceedings of the
20th Annual International Symposium on Computer Architecture(ISCA), pages 169-178, 1993.
[75] James Smith and Andrew Pleszkun, “Implementation of Precise Interrupt in Pipelined Pro-
cessors”, In Proceedings of the 12nd Annual International Symposium on Computer Architec-
ture(ISCA), pages 36-44, 1985.

[76] Yong Ho Song and Michel Dubois,” Assisted Execution”, Technical Report #CENG 98-25,
Department of EE-Systems, University of Southern California, October 1998.

[77] Thomas Sterling, Larry Bergman, “A Design Analysis of a Hybrid Technology Multi-
threaded Architecture for Petaflops Scale Computation”, In proceedings of the International Con-
ference on Supercomputing(I1CS’99), Rhodes, Greece, June, 1999.

(78] Mark Swanson, Leigh Stoller, and John Carter, “Increasing TLB reach Using Superpages
Backed by Shadow Memory”, In Proceedings of the 25th Annual International Symposium on
Computer Architecture(ISCA), pages 204-213, 1998.

[79] M. Talluri and M. D. Hill. “Surpassing the TLB Performance of Superpages with Less Oper-
ating System Support,” In Proceedings of the 6th Conf. on Architecture Support for Programming
Languages and Operating Systems(ASPLOS), 1994.

[80] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson. “Tradeoffs in Supporting Two Page
Sizes,” In Proceedings of the 19th Annual International Symposium on Computer Architec-
ture(ISCA), pages 415-424, May 1992.

[81] Patricia Teller, “Translation Lookaside Buffer Consistency,” Ph.D thesis.

[82] C. Thekkath and H. Levy, “Hardware and Software Support for Efficient Exception Han-
dling,” In Proceedings of the 6th Conf. on Architecture Support for Programming Languages and
Operating Systems(ASPLOS), 1994.

[83] M. Tremblay and J. M. O’Connor, “Ultrasparc I: A Four-Issue Processor Supporting Multi-
media,” IEEE Micro, pages 42-50, April 1996

(84] D Tullsen, S. Eggers, and H. Levy, “Simultanous Multithreading: Maximizing On-Chip Par-
allelism,” In Proceedings of the 22nd Annual International Symposium on Computer Architec-
ture(ISCA), pages 392-403, 1995.

137



[85] W, H. Wang, J-L, Baer, and H. M. Levy, “Organization and performance of a two-level Vir-
tual-Real cache hierarchy,” In Proceedings of the 16th Annual International Symposium on Com-
puter Architecture(ISCA), pages 140-148, June 1989.

[86] Hong, Wang, Tong Sun, and Qing Yang, “CAT -- Caching Address Tags, A Technique for
Reducing Area Cost of On-chip Caches”, In Proceedings of the 22nd Annual International Sympo-
sium on Computer Architecture(ISCA), page 381-390, 1995.

[87] David Weaver and Tom Germond, “The SPARC Architecture Manual”, version 9, Prentice
Hall, 1994.

[88] S. C. Woo, M. Ohara, and E. Torrie. “The SPLASH-2 Programs: Characterization and Meth-
odological Considerations,” In Proceedings of the 22nd Annual International Symposium on Com-
puter Architecture(ISCA), pages 24-36, 1995.

[89] David Wood, Susan Eggers, Garth Gibson, Mark Hill, and Joan Pendleton. “An In-Cache
Address Translation Mechanism,” In Proceedings of the 13th Annual International Symposium on
Computer Architecture(ISCA), pages 358-365, Jan. 1986.

[90] C. Eric Wu, Yarsun Hsu, and Yew-Huey Liu, “ A Quantitative Evaluation of Cache Types
for High-Performance Computer Systems”, IEEE Transactions on Computers, pages 1154-1162,
Vol 42, No. 10, Oct. 1993.

[91] W. A. Wulf, and Mckee, “Hitting the Memory Wall: Implications of the Obvious,” ACM
Computer Architecture News, Vol. 23, No. 1, March 1995.

[92] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, pages 28-40,
April 1996.

[93] Donald Yeung, John Kubiatowicz, and Anant Agarwal, “MGS: A Multigrain Shared Mem-
ory System”, In Proceedings of the 23rd Annual International Symposium on Computer Architec-
ture(ISCA), pages 44-55, 1996.

[94] Craig Zilles, Joel Emer, and Gurindar Sohi, “The Use of Multithreading for Exception Han-
dling,”, In Proceedings of the 32nd Annual International Symposium on Microarchitecture(Micro-
32), 1999.

138



