An ATPG for Threshold Testing:
Obtaining Acceptable Yield in Future Processes

Zhigang Jiang and Sandeep K. Gupta

CENG Technical Report 02-02

Department of Electrical Engineering-Systems
University of Southern California
Los Angeles, California 90089-2562
(213)-740-2251

February 2002

An ATPG for Threshold Testing: Obtaining Acceptable

Yield in Future Processes

Zhigang Jiang and Sandeep K. Gupta
Department of EE-Systems
University of Southern California
Los Angeles CA 90089-2562
Tel: (213)740-4474; (213)740-2251
Email: zjiang@poisson.usc.edu; sandeep(@poisson.usc.edu

Abstract

As VLSI scaling reaches closer to the laws of physics and to the limits of the fabrication
processes, yields, especially at desired speed, will decrease. However, for a large class of
applications, chips need not be perfect to be acceptable. In this paper, we describe the notion of
threshold testing that can help improve effective yield for future processes. We then develop an

ATPG and demonstrate that significant increase in effective yield in test application cost.

1 Introduction

As VLSI fabrication process moves deeper into sub-micron, devices will operate near the
limits of physical laws and fabrication will test the limits of abilities of fabrication processes and
equipment. Consequently, yields measured in terms of perfect chips, especially at desired speeds,
are likely to decrease drastically. This paper develops an approach to enhance yield, for large
classes of applications, to mitigate this problem when it becomes important.

A large proportion of digital chips manufactured today are used to implement digitally
applications that are essentially analog. One predominant example of this are digital audio and
video applications. In these applications, the sound and images are analog when they are captured
and are perceived by the end user in essentially analog form. In such digital systems, the original
signals captured are not identical to those perceived by the end user due to noise in the input,
quantization errors in analog-to-digital and digital-to-analog conversions, lossy compression, and

SO O1n.

value. Assume that for each bus, the relative significance (e.g., LSB, MSB, and so on) of each of
its constituent bits is known.

Threshold testing of a combinational block of logic can be defined as a type of testing
that identifies as acceptable, any fabricated copy of the circuit that contains within the block any
modeled fault that, for any vector,

(i) does not create an error at any control output, and
(ii) does not create at any output data bus an error whose absolute numerical value exceeds a
specified threshold for that bus.

Errors at control outputs can cause data to be routed differently, a different operation to
be performed in a subsequent block, to completely change the subsequent computation, and so
on. In an overwhelming number of applications, any such change will lead to values at data
outputs at this or subsequent clocks to be unacceptably different from that for a fault-free circuit.
Hence, we do not consider as acceptable any fault that can cause an error at a control output.
However, in some specific applications, this restriction may be relaxed for carefully selected
control outputs.

For example, consider a combinational block C; in a full scan circuit shown in Figure 1.
The output of C; can be viewed as a 3-bit data bus, 2-bit data bus and two control outputs.
Assume that in this case, any fault in the target fault list that can not cause any error at control
outputs Zs and Z7 and can not create an error of absolute magnitude exceeding 3 and 2 at Bus,
and Bus;, respectively, under any of the 28 possible vectors at its inputs x;, ..., Xs, 1S said to be
acceptable.

Note that for simplicity, we can consider all control outputs as another bus with a
threshold value of 1. This helps simplify the following discussion. For example, under such
naming convention for outputs, the notion of threshold testing can be simplified as follows.
Threshold testing of a combinational logic block can be defined as the type of testing that
identifies as acceptable, any fabricated copy of a chip that contains within the block any modeled
fault that, for any vector, does not create an error at any output bus whose numerical value

exceeds the threshold of the bus.

Expected

Response

0..0 Chip ﬂ
"""" c—y| under |——>| Comparison

....... test

Normal test set

\
l No
Determine the set of : Acceptable
possible faults S¢in : >chip
the chip i
'
v i

Are all faults in S¢

acceptable faults? ——» Acceptable

; (but faulty)
-.-_._.-.-.-.-.-._-_._I i chip
Bad chip
(discard)
Figure 2. Paradigm 1

3.2 Paradigm 2: Direct Threshold Testing

High complexities of storing and analyzing responses in the diagnostic step of paradigm 1
make its average cost exceedingly high. This is evident in the fact that, in current practice,
diagnosis is performed only under special circumstances, such as very low yield. Even then it is
applied to a small batch of randomly selected chips [JG 02, Chapter10].

We propose another approach to accomplish threshold testing at a low cost. In this

approach, depicted in Figure 3, a threshold test set can be used to test each CUT, where a

UC= the cost of applying one vector and analyzing response.

Figure 4. C17 containing fault line 10 stuck at 0 with test vector 00010 applied

So as long as the new test set generated is not prohibitively larger than the normal test set,

the cost of paradigm 2 is comparable to that of traditional test methodology.

To put paradigm 2 into practice, an ATPG tool for generating threshold test vectors has to

be developed, where a threshold ATPG tool needs to generate threshold test vectors for all faults

in a given fault list.

4 Threshold ATPG

4.1 Terminology

In our study, error threshold is represented by absolute numerical error.

For a data bus with k lines, absolute numerical error (ANE) can be defined as:
k-1
ANE=D (¥ (i)* (Vs (1) = Voo (D))
i=0

where W(i) is the weight of ith bit of the bus, V(i) is the response captured for a

particular copy of the chip being tested and V,.,(i) is the corresponding response value expected

of the fault-free version.

In threshold testing, an error is weighted in terms of the significance of the output at
which it appears. A fault in the transitive fan-in of a more significant output tends to cause an
error greater than that in the transitive fan-in of a less significant output.

This observation leads us to study characteristics of circuits to see if we can identify
acceptable stuck-at faults by merely analyzing circuit topology. If the targeted fault set can be
drastically reduced in this means, a normal ATPG can be used with slight modification.

We start with two postulates:

1) If a fault’s effect can reach a more significant bit, it will be more likely to be an

unacceptable faulit.

2) Ifa faultis located in a more significant arithmetic block, it will be more likely to be

an unacceptable fault.
4.2.1 Postulate 1

This postulate is later proved to be wrong in that it doesn’t address the phenomenon that
adverse fault effects can counteract with each other. So even if the fault effects of a fault can
reach outputs with high significance, it doesn’t necessarily cause a large numerical error.

A simple example can be found in the adder shown in Figure 6. Consider a stuck-at-1
fault at Cj,. With the input vector shown in the figure, this fault can have a fault effect at S;. But
the absolute numerical error induced is only 1. And in fact the largest absolute numerical error
this fault can cause is 1.

So the ability of a fault’s effect to reach more significant bits doesn’t directly imply that
the fault can cause a large absolute numerical error.

But the converse is true, a fault has to be able to cause an error at bits significant enough
to cause a large absolute numerical error. For example, if the threshold is four, a fault has to be
able to cause an error at one/more bits more significant than S;. So the condition that a fault can

reach a bit significant enough is a necessary condition but not a sufficient condition.

10

The efficiency of the proposed ATPG is predicated on the availability of mechanisms to

determine an efficient bounding condition.

4.3.1 ANE Directed Branch and Bound

Test generation starts with a completely unspecified vector. Since that implies unknown

response at most (nearly all) outputs, the possible ANE it can attain with further specification can

be any value between 2N_1 and 0. As the search for test vector continues, the vector as well as the

response gets more specific and possible ANE range narrows in various ways. Three scenarios,

shown in Figure 7, may occur for a given desired value of ANE threshold.

{01} — — {0,1,D,D}

O} =1 % L —10,1,0,D
{0,1} —

{0’1} — _{Oal,D95}

— desired
threshold

—— min

(a)

Figure 7. Three scenarios of prospective ANE range

0= i—{0,1,0,0}
{1} - | x
f —{0
0} — {0}
{0,1}— — {1}
desired
threshold
max
—— min

[

(®)

[

(©)

{0,1}— — {0,1}
{1} —
{1} — — {D}
— max
—— min
—> desired
threshold

In scenario (a), the desired threshold falls in the possible ANE range. With further

specification, an error greater than the threshold may be attained. So the search process should

continue branching. In scenario (b), the desired threshold is above the prospective ANE range.

With further branching, there is no chance of obtaining an ANE above the desired threshold. In

scenario (c), the desired threshold is lower than lower bound on ANE. That means, no matter

12

A general formula for calculating numerical error for 16-value system is as following:

ANE= Y (0-D)eW(i)+ D (ODeW(i)+ Y (0,~L)eW (i)

Vil (1)eDps Vil (i)eDps Vil (1)eDps
+ Y (DeW@H+ Y Mo+ D .(-LheW () — (D
il (i)eDs vill’ (iYeDs Vil (i)yeDs

where

B is the set {{0},{1},{0,1}}, in which no value contains D/D. D/D will not
appear at the primary output with further branching.

Ds ={{D}}. A D value currently appears at the primary output.

l-)s ={ {ﬁ} }.A D value currently appears at the primary output.

6 ={ {D,T)} }. There definitely will be a D/D at the primary output, but one or
other may occur depending on the branch taken to further specify the current vector.

Dps is the set{{0,D},{1,D},{0,1,D}}, in which every value contains a D and
doesn’t contain D. Note {D} is not a component of Dps. There possibly will be a D at the
primary output with further branching.

Dps={ {O,T)},{ 1 ,f)},{O,l,_D} }, in which every value contains a D and doesn’t
contain D. Note {D} is not a component of Dps. There possibly will be aD at the
primary output with further branching.

ﬁps={ {0,D.D},{1,D.D,}, {0,1,D,D}}. There possibly will be a D/D at the primary

output with further branching, but D, D, or neither may occur depending on further

branching.

Note that in Equation (1) to capture ANE, a value such as (0,1) denotes a variable that

may become 0 or 1, similarly (0,-1,1) can take values 0,-1, or 1.

MSB LSB
Output Bit# (i) 6 5 4 3 2 1 0

value v(@i) {0,D,D} {1,D} {D} {1} {0,1} {D} {D}

Figure 9. Another example response

14

43.2.3 Lower Bound
The procedure of finding lower bound is a little more involved than that of the upper

bound. It also has two phases, namely, finding smallest positive error and finding smallest
negative error. The one with smaller absolute value is the lower bound on ANE.

Our algorithm considers four cases separately.

(1) No output has value in Ds, Ds, or Ds.
(2) Next three cases assume that at least one output has value in one of the above sets. In

each of the following three subcases, let P denote the position of the most significant

output that has a value in Ds, D S, b S.
(a) Value at output P, i.e., V(P)={ D }.
(b) VP)={ D},

© V(®)={D}.

For case 1, the lower bound is obviously zero.
For case 2(a), the smallest negative error is obtained by first computing the largest
positive error for all outputs less significant than P and adding that to —2P, the numerical error

contribution of output P. Next the smallest positive error can be computed by finding the output

Q, that is the output of minimum significance greater than P that has a value in D ps or D ps- A

value { D }is assigned at Q to contribute 29 to numerical error. The greatest negative error is
computed for all outputs less significant than Q and added to 29 to obtain this minimum positive
numerical error. The minimum ANE is obtained by taking the minimum of the absolute values of
the smallest positive and negative errors computed above.

Case 2(b) is dual of the above case.

Finally consider the case 2(c). In this case, smallest negative error is computed by
assigning {D} at output P and adding to the corresponding numerical error contribution, -2, the
maximum positive error for bits less significant than P. The smallest positive numerical error is
computed by assigning {5} to P and adding to the corresponding numerical error contribution,

2P, the maximum negative error for bits less significant than P. Finally, the minimum ANE is

16

4.3.3 Threshold ATPG Implementation

We have modified a classical PODEM implementation to use the sixteen valued system
described above. We also use our linear complexity algorithm to compute lower and upper
bounds on ANE. The values of the lower and upper bounds are used to decide whether PODEM
should continue to branch, bound, or stop in the manner depicted in Figure 7.

We also perform equivalence fault collapsing to reduce the number of faults to be

targeted by the ATPG.

4.3.4 Example Execution of Proposed Threshold ATPG

— Lo (o.n =
L P I, (0.1.0.D}

' 120

I3 0.1} lis (O»l,D,ﬁ}
{ ly }7 X oy —
lh {0,1} SAO {0,1,D,D)

l6 {() |3 © (0’1}

l|5 ll9
1 {0.1}

Figure 11. Example circuit with a fault 1;,s SA0

Consider the process of generating a threshold test vector for one fault, (say) li¢ SAO, for
the circuit shown in Figure 11. Assume that the desired threshold is 2, output line 1; has a weight
of 1 and output line I3 has a weight of 2.

Threshold ATPG would basically work with the same fault effect excitation (FEE), fault
effect propagation (FEP) subtasks to try to propagate the fault effects to the primary outputs.

Suppose, during FEE, {0} is assigned at I, and ¢ attains a {D}. As shown in Figure 12,
the two output lines, I;; 123, each attain a {I,B}. Using the error bound computation procedure
above, we can find the ANE upper bound is 3, and lower bound is 0. Since desired threshold is
between these bounds, we continue branching.

Now D-frontier contains two lines: ly; and ly3. Suppose ly; is chosen for the next FEP

subtask and during that task {0} is assigned a l;. With this assignment, as shown in Figure 13,

18

N\ Lo {0.1} _
lg } | ,, (D1}
14 l20
Is !Iz Lie {D) I
ly) : ® [P —
\U Iy, {0} SAO {D}
b gy 1))

1 I
I {0} = {>° =

Figure 14. After backtrack, {1} is assigned at ls and now the threshold test

generation is successful.

5 Experimental Results

The proposed threshold ATPG tool has been implemented. Experimental results are
gathered for ISCAS85 benchmark circuits.

5.1 Test set size

In Figure 15, normalized threshold test set size vs. threshold is shown for each ISCASS85
benchmark circuit. In this plot, threshold test set size for each circuit at certain threshold is first
normalized with respect to its own classic test set, and then plotted vs. threshold. As can be seen
in the figure, when threshold goes as high as 128, threshold test set size for all circuits stays
under 1.6 times its classical test set size. In fact for most circuits, the ratio is below 1.2. The
average over all circuits of normalized test set size vs. threshold is shown in Figure 16.

These results show that threshold testing can be carried out without any significant

increase in test application cost.

20

nomalized threshold test time

Normatlized threshold test gencration time v.s. threshold
T

12

10 10' 10
threshold

Figure 17. Normalized threshold test ATPG run time vs. threshold

Normalized threshold test time v.s. threshold

25

nommalized threshold test time
>
3
\%
\
(/
|

15

° 1
0 10' 10
threshold

Figure 18. Average of normalized threshold ATPG run time vs. threshold

22

Nomalized threshold test efficiency vs. threshold
1.0002 —- :)

0.9998

Yz

[=]
©
©
©
o
T
1

N
N -
N

Av&‘rqge

normalized threshold test efficiency
(=] o
© ©
© ©
(%] (7
N &
T]
/
1

\,
\.
0.999 | N i
\\
0.9988 - Th— .
0.9986 L o s
10 10 10 10

threshold

Figure 20. Normalized threshold test efficiency vs. threshold

5.4 Acceptable Faults vs. threshold

Next we analyze the relationship between the threshold value and the percentage of the
faults proven to be acceptable at that threshold value. This relationship is important because it
determines how the percentage of chips that are imperfect but acceptable grows with desired
threshold value.

We limit our examination to the datapath oriented circuits in the ISCAS85 benchmark
suite, namely C880, C2670, C3540, C5315, C6288, and C7552. To enable comparison of the
trend across different circuits, we use normalized threshold, i.e., threshold value as a percentage
of the maximum valued carried by a data bus. Figure 21 shows the percentage of faults proven as
acceptable for normalized values of threshold.

Note that the percentage of faults proven acceptable is virtually independent of
normalized threshold for circuits like C2670 and C3540 while it increases rapidly with the
normalized threshold value for C880, C5315, and C6288. Structural analysis of these circuits

explains the difference in this trend. Table 1 shows the percentage of faults in each circuit and

24

Hence we conclude that for data path dominated circuits, large percentage of faults are
acceptable for higher value of the desired threshold. This implies that large percentage of chips
can be found to be acceptable despite being imperfect if error threshold can be set higher for an

application in which a chip may be used.

5.5 ATPG Time Per Fault

As shown below in Figure 23 for a typical circuit, ATPG time per fault remains virtually
constant as threshold is changed, for each type of fault, namely those that are tested (i.e., for
which a test is successfully generated), those proven acceptable, and those aborted.

It should be noted that most of the time is consumed by faults that are aborted and those
that are proven acceptable. Acceleration of threshold ATPG for these two types of faults is a

subject of ongoing research.

C€3540 run time per fault versus threshold
10° ¢ . . —r . .

borted

acceptable
p

run time per fauft
o

10 10 10

threshoid

Figure 22. C3540 run time per fault vs. threshold

26

[KP 94 TCAD] W. Kunz and D. Pradhan, “Recursive Learning: A New Implication Technique
for Efficient Solutions to CAD Problems,” IEEE Trans. on Computer-Aided Design, 13 (9), pp.
1143-1157

28

