A Method for Applying Double Scheme Dynamic Reconfiguration
over InfiniBand™™

Timothy M. Pinkston, Bilal Zafar and Jose Duato

CENG Technical Report 02-03

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089-2562
(213) 740-4475

March 2002

Abstract

InfiniBand Architecture is a newly established general-purpose interconnect standard appli-
cable to local area, system area and Storage area networking and I/O. It is designed to provide
significantly higher levels of reliability, availability, performance, and scalability than alterna-
tive technologies. Networks based on this standard should be capable of tolerating topological
changes due to resource failures, link/switch activations, and/or hot swapping of components. In
order to maintain connectivity, the network’s routing function may need to be reconfigured on each
topological change. Although the architecture has various mechanisms useful for configuring the
network, no strategy or procedure is specified for ensuring deadlock freedom during dynamic net-
work reconfiguration. In this paper, a method for applying the Double Scheme [1] over InfiniBand
networks is proposed. The Double Scheme provides a systematic way of reconfiguring a network
dynamically while ensuring freedom from deadlocks. We show how features and mechanisms
available in InfiniBand Architecture for other purposes can also be used to implement dynamic

network reconfiguration based on the Double Scheme.

Keywords: InfiniBand Architecture, Dynamic Reconfiguration, Double Scheme.

1 Introduction

In the wake of increasing market demand for high performance computing, clustered sys-
tems have emerged as a favored solution for low-end commodity systems as well as high-end
servers [2, 3]. The flexibility, scalability and cost/performance capabilities of clustered systems
are among some of the things that make them so attractive. While certain interconnect subsystems
like Ethernet [4], Autonet [5], Myrinet [6] and Fibre Channel [7] have traditionally been used,
cluster computing/storage systems are shifting toward an open, non-proprietary, low-overhead,
switched interconnect paradigm that provides not only high-performance communication but also
high reliability, availability and dependability. These attributes are increasing in importance with
the emergence of bandwidth-hungry applications such as high-definition video/audio on-demand
processing, distributed on-line transaction processing, database and decision support systems, and
the like. Such applications impose a great demand on the communication subsystem not only to
be high performance but also to be highly robust.

Toward this end, InfiniBand Architecture (IBA) [8] is a newly established general-purpose
interconnect standard designed to solve a wide spectrum of interprocessor communication and
/O problems associated with servers and cluster systems. In addition to providing low latency
and high bandwidth point-to-point communication support, it also includes certain features and
mechanisms useful for improving system reliability and availability. Features such as subnet-
work management, service levels, data and control virtual lanes, table-driven routing, end-to-end
path establishment, packet time-out and virtual destination naming are all useful for implement-
ing reconfiguration functions in IBA networks. To be truly dependable, however, IBA-compliant
networks should be capable of deadlock-free dynamic reconfiguration, able to efficiently adapt to
changes in real-time if and when voluntary or involuntary changes occur. That is, IBA networks
should remain up and running with high performance in the presence of hot-swapping of compo-
nents, failure or addition of links/nodes, activation or deactivation of hosts/switches, partitioning
or isolation of network components, etc., arising from changes in users’ needs and/or system state.
The reliability, availability, and performance predictability (overall, the dependability) of IBA-
compliant cluster computing and storage systems depend critically on the networks’s ability to
efficiently support such functions while maintaining certain service level targets.

Although IBA has various mechanisms useful for network configuration, no strategy or pro-

cedure is specified in the standard for ensuring deadlock freedom during dynamic reconfigura-

tion of the network. Network configuration mechanisms are specified for detecting and acquir-
ing information about constituent network components (e.g., active links, ports, switches/routers,
host/target channel adapters, buffer/queue sizes, etc.), assigning an identity to those components,
and mapping (or topologically graphing) connections among the active components physically es-
tablished through active links. Source-based routing functions—which supply the possible paths
packets can take in the network to reach their destinations from their current location—are sup-
ported by various mechanisms using forwarding tables within IBA network switches and channel
adapters. Mechanisms are also specified for periodically monitoring system state to allow the net-
work to react to events that may require it to undergo reconfiguration. Although many things such
as these are specified, no details are included in the standard that specify how routing or reconfig-
uration should be carried out in a deadlock-free manner. Deadlock can occur when packets block
cyclically waiting for resources while holding onto other resources indefinitely [9, 10]. If allowed
to persist, deadlocks can bring the entire system to a standstill, making it vitally important for both
the routing algorithm and the reconfiguration technique to guard against them.

Recent work has been done on computing deadlock-free routing paths in IBA networks [11,
12], but there is no literature to-date on solving the difficult problem of deadlock-free dynamic
reconfiguration of IBA-compliant networks. What makes this a hard problem to solve is that dy-
namic reconfiguration (unlike static reconfiguration) does not halt the injection or delivery of user
packets in the network before or during the reconfiguration process. Although severe performance
degradation is prevented as measured by network latency, throughput, and packet loss (as shown
in [1, 13]), dynamic reconfiguration allows packets to be routed in the network under the influence
of multiple routing functions—an old one existing before reconfiguration and a new one existing
afterwards. If one or more packets are subjected to both routing functions, residual dependencies
on network resources from the old routing function can interact in an illegal way with current de-
pendencies from the new routing function. This can cause deadlock even if both routing functions
independently are designed to be deadlock-free.

Several schemes have been proposed in the literature to combat this problem, but most do not
appear very applicable to InfiniBand Architecture. The NetRec scheme [14] requires every switch
to maintain information about nodes some number of hops away and is only applicable to worm-
hole networks. IBA does not provide mechanisms to keep track of such information in switches
or channel adapters, and it is packet-switched, not wormhole switched. Partial Progressive Re-

configuration (PPR) [15] requires a complicated sequence of synchronizing steps to progressively

update old forwarding table entries with new ones while ensuring that no cycles form. Although
this scheme works for packet-switched networks, it is not clear whether InfiniBand has all the
complicated mechanisms needed to support this complex technique.

In this paper, a straightforward method for applying the Double Scheme [1] over InfiniBand
networks is presented. In prior work, the Double Scheme is proven to provide a systematic way
of reconfiguring a network dynamically while ensuring deadlock freedom. It is generally appli-
cable to virtual cut-through (packet-switched) networks, independent of the routing function or
topology being implemented. In this work, we show how features and mechanisms available in
InfiniBand Architecture for other purposes can also be used to implement Double Scheme dy-
namic reconfiguration. Performance advantages for the Double Scheme in comparison to static
reconfiguration have been documented in prior work [1]. The contribution of this paper, there-
fore, is in the straightforward methodology presented for applying this technique to InfiniBand
using mechanisms already included in the standard. This work allows InfiniBand networks to
better support applications requiring certain quality of service (QoS) guarantees that do not well
tolerate intermittant performance drops-offs, as would be the case without deadlock-free dynamic
reconfigurabilty.

The remainder of this paper is organized as follows. Section 2 gives an overview of the Dou-
ble Scheme and useful InfiniBand mechanisms. Section 3 describes the proposed method for
implementing the Double Scheme over IBA, followed by an example and discussion in Section 4.

Finally, conclusions and future work are presented in Section 5.
2 The Double Scheme and Exploitable InfiniBand Mechanisms
2.1 The Double Scheme

The Double Scheme [1] provides a straightforward way of updating a network’s routing func-
tion in a deadlock-free manner when the network undergoes dynamic reconfiguration. Many varia-
tions of the scheme exist, however the basic idea behind the scheme can be summarized as follows.
At all times, packets are routed under the influence of one and only one routing function—either
the old routing function (R,;q) existing before reconfiguration or the new one (Rpe,,) correspond-
ing to the new configuration, but never both. This is accomplished simply by spatially and/or
temporally separating the routing resources used by each routing function into two sets: one used

exclusively by R4 and the other by R,.,,. By allowing dependencies to exist from one set of re-

sources to the other but not from both at any given time, a guarantee on deadlock freedom during
and after reconfiguration can be proved [1].

One possible scenario on how this could work is the following. The routing function before
reconfiguration, R4, allows packets to be injected into a connected set of routing resources (des-
ignated as Cyq) supplied by R,;q. Once the need for a reconfiguration event is determined and
the new routing function R,.,, is computed, a connected set of routing resources (designated as
Chrew) is required to become available for use by newly injected packets routed under the influence
of Ry Which supplies those resources. This could be done by allowing packets in a subset of
Co14 resources to be delivered to their destinations while not injecting new packets into that sub-
set, which essentially drains those resources. Non-routable packets encountering the topological
disconnectivity which caused the need for reconfiguration can be discarded. As packets are no
longer injected into any of the C,4 resources after Cpe,, resources are used, Cojq resources even-
tually become free and can be incorporated into the set of C,e, resources once completely empty,
nullifying R4 (i.e., R4 now supplies the null set).

In order for Double Scheme dynamic reconfiguration to be applied to a network, support for
the following must exist: (a) support for subjecting some packets to one routing function (or rout-
ing subfunction) and other packets to a different routing (sub)function throughout packet lifetime
in the network; (b) support for initiating, detecting and notifying drainage of resource sets in the
network and network interfaces; and (c) support for changing (updating) the prevailing routing
function across the network and network interfaces. For optimization purposes, there should also
be support for segregating and re-integrating connected subsets of resources from a unified set
so that resources can be used efficiently during the common state of no network reconfiguration.
Below, many of the inherent features and mechanisms in InfiniBand Architecture that can be ex-
ploited to achieve the above are described. As is shown in Section 3, this allows Double Scheme

dynamic reconfiguration to be successfully applied to IBA-compliant networks.
2.2 Exploitable Features of InfiniBand Architecture

InfiniBand is a layered network architecture that employs switch-based, point-to-point links
for the interconnect fabric. An IBA network is composed of one or more sub-networks (subnets)
through which communication is done using routers. A subnet is the smallest functional composi-
tion of IBA-compliant components which can operate independently. End-nodes within a subnet

are interconnected through switches, and each end-node has one or more channel adapters (CAs)

attached directly to it. These CAs serve as the source and terminus of IBA packets. Each subnet
is managed autonomously by an associated subnet manager (SM). It is responsible for discovery,
configuration and maintenance of components associated with a particular subnet. Only one mas-
ter SM is active at any one time for each subnet, but passive subnet management agents (SMAs)
residing in IBA network components are used to communicate with the master SM through a set
of well-defined protocols, referred to as the subnet management interface (SMI).

Routing in IBA is source-based but implemented in a distributed manner using forwarding
tables residing in each switch. Each CA or switch/router port has a globally unique identifier
(GUID)—a physical name—but can have up to 128 local identifiers (LIDs)—a logical name—
associated with it. A 3-bit link mask control (LMC) value can be used to map multiple LIDs to the
same GUID port. LIDs in the range of BaseLID to BaseLID+2%C — 1 map to the same port to
allow destination renaming [11]. For instance, if a CA port has a LMC value of 3 and a hex base
address of 0x0010, then addresses 0x0010 to 0x0017 all map to the same physical destination port.
Mapping of GUIDs to LIDs allows components in the network to persistently identify other com-
ponents either logically or physically. How and where this mapping is done is not specified; it is
assumed that the SM (possibly with the help of SMAs) can maintain this mapping function. Since
there is a unique LID entry corresponding to each address in the forwarding tables as described be-
low, multiple logical addresses pointing to the same physical port can be used to implement source
adaptive routing—a technique that allows packets to reach destinations using different paths in the
network.

IBA allows packets to be distinguished by service class into one of sixteen different service
levels (SLs). The service level of a packet is contained in a 4-bit field in the local routing header
(LRH) of the packet used by switches as the packet traverses the subnet. IBA also allows packets
to traverse the physical links of a network using different virtual lanes. A virtual lane is a repre-
sentation of a set of transmit and receive buffers on a link. Up to sixteen virtual lanes (VL0O-VL15)
are allowed, but a minimum of two (VL0,VL15) are required by all ports. VL15 is used only for
control packets, whereas the other virtual lanes (VL0-VL14) are used only for data packets. Vir-
tual lane assignment exists only between ports at each end of a link, and virtual lane assignment
on one link is independent of the assignment on another link, given by a 4-bit VL field in the LRH
of a packet.

The actual number of data virtual lanes used by ports and how packets of a given service

level map to virtual lanes is determined by the SM at the time that the network is configured

or reconfgured. The VL assignment of a packet is not necessarily the same across a subnet,
possibly composed of heterogeneous components. Packets of a given service level may need to
be switched between different VLs as they traverse the network. Service level to virtual lane (SL-
to-VL) mapping is used to change the VL assignment of packets as they traverse a subnet. The
SM is responsible for confguring a 16 entry, 4-bit wide SL-to-VL mapping table associated with
each CA or switch port in which each entry indicates the VL to be used for the corresponding SL.
The SL-to-VL mapping table can be read and modifed by the SM through subnet management
methods SubnGet() and SubnSet(). This allows, among other things, the possibility of two packets
with the same SL and VL arriving from different input ports yet destined to the same output port

to be assigned different VLs.

Langar Forwarging Table

Port Block ID

64 entrles

Max.48 entries
{Unicast)

Ranaom Fonwarding Tant:

| up Jvaiid] LMC | Reserved | Pon |

Lo » e LID/Port o
Block ID il
[-
& gl 5%
-] . 8
8 =]
2 3
¢ — T > ¢ s ?

Figure 1. Linear and Random Forwarding Tables in InEniBand.

In addition to the SL-to-VL mapping tables, the SM is also responsible for confguring for-
warding tables in CAs and switches. Routing functions in IBA are implemented explicitly through
forwarding tables using LIDs. Alternatively, a special mechanism for exchange of control packets
between the SM entities could also be used. This mechanism, called the directed routes, allows
the sender to specify the complete path that the packet must take from the source node to the des-
tination node and back. The directed routes mechanism also allows packets to be routed using the
normal LID routing on either side of the directed route. Forwarding tables are composed of a set
of entries addressed by the LID of a packet’s LRH such that a matching entry specifes the output
port that should be used by the packet. They can be organized as linear or as random forwarding
tables, as shown in Figure 1.

Linear forwarding table (LFT) entries are confgured by the SM through an attribute modi£er.

This modifier is a pointer to a list of 64 forwarding table entries or port block elements, where
each entry or element is an 8-bit port identifier to which packets with LIDs corresponding to this
entry are forwarded. All entries in a LFT are in sequential (linear) order starting from the address
specified in the attribute modifier. The level of granularity at which the LFT can be modified is
one block, i.e., 64 entries. Assuming the SM can do a read-modify-write on each block, entries
within a particular block would be unavailable for lookup only during the time of writing back the
block, in the worst case. Random forwarding tables (RFTs) provide greater flexibility since a finer
granularity is used for table modification. The attribute modifier for RFTs points to a block of only
16 L1ID/Port block elements to which this attribute applies. Also, unlike LFTs, consecutive entries
in RFTs are not necessarily in sequential addressing order. This flexibility comes at the cost of
more complex implementation and higher access time, as RFTs may require implementation using
content addressable memories.

The virtual interface between IBA hardware and an IBA consumer process is the send and
receive queue pair (QP). Each port can have up to 224 QPs which are operationally independent
from one another. Connection-oriented service types bind QPs at the sending and receiving ends
whereas datagram (connectionless) service types target QPs at the receiving end by specifying
the QP number along with the target CA’s port LID. QPs are not directly accessible to consumer
processes; instead, consumer processes use “verbs” to submit work requests (WRs) to a send queue
or a receive queue. The CA processes this request and places it on the respective queue. QPs can
be created by invoking the CreateQP verb with a set of initial attributes. IBA allows CAs to pre-
allocate QPs or allocate them in response to a request for communication. For simplicity, this
paper assumes that queue pairs are allocated only when a request for communication is received.

When a consumer wants to establish a path, it queries the SM with a “PathRecord” request.
The initiator may specify the destination LID (DLID) in the request message, in which case the
SM will return only the information related to the path or paths to the specified destination. Alter-
natively, it may not specify the DLID value, in which case the SM will return information for all
the ports that are reachable from the source. Having received path record information, the initiator
sends a request message to the target. The requested service type’s service level is placed in the
request message. Should the request be accepted, the target responds with a response message
containing the QP number (for connection oriented services) or end-to-end context (for reliable
and unreliable datagram services). The target may reject the request by sending a reject message

or the target may specify a different set of variables on which communication can be done through

a response message. The communication establishment sequence is completed when the initiator

sends a “Ready to Use” message to the target.
3 Applying the Double Scheme to InfiniBand Architecture

The support necessary to implement the Double Scheme over InfiniBand was mentioned at
the end of Section 2.1. Here, specific mechanisms introduced in Section 2.2 that can be used to
provide that support and how those mechanism should be used to implement the Double Scheme
is described.

The first requirement can be supported by assigning two sets of LID addresses for each GUID.
As routing in IBA is source-based and dependent on LID addresses, this allows two different
routing functions to route packets, one using one set of LIDs and the other using the other set.
This, in effect, means that only half of the total possible number of LIDs and routing table entries
are useable during normal operation, which should not typically be a problem. It is not necessary
to divide LIDs equally among the routing functions, but this may be preferred to allow source
adaptivity in both the routing functions. In the extreme case, 127 out of the maximum of 128
allowed LIDs per port may be used by one routing function and only one by the other. In that case,
the second routing function which has only one available destination LID will not have any source
adaptivity.

The second requirement can be supported by allowing only half (or any restricted number of)
the SLs to be available to packets at any given time outside of reconfiguration. During reconfig-
uration, when the both routing functions exist in the network simultaneously, packets under the
influence of one routing function use one set of SLs while packets under the influence of the other
use the other set of SLs.! During normal operation, these SLs can be mapped to all the available
VLs, allowing the optimization mentioned in Section 2.1 to be supported as well. Given the con-
tinuing reductions in integration costs, it is likely that most IBA-compliant devices will support
multiple data virtual lanes. During reconfiguration, the SM can modify the SL-to-VL mapping to
allow a set of VLs to be drained. The SM can also initiate a ”Send Queue Drain” to drain QPs [3].
The drainage state of VLs and QPs can be tracked and notified by the SM.

Finally, the third requirement can be supported by having the SM perform forwarding table

updates and PathRecord modifications to allow packets to be sent using the alternative set of LIDs.

't is expected that this would not cause any significant QoS degradation as most implementations are likely not to

use all sixteen service levels at once.

By exploiting these IBA features and mechanisms, Double Scheme dynamic reconfiguration can

be accomplished with a sequence of steps, as presented below.
3.1 Proposed Reconfiguration Procedure

1. Initiate reconfiguration: The need for reconfiguration is established by the SM. Recon-
figuration could be triggered by a physical link being down, which is either detected the
SMA in a neighbor switch and notified to the SM or is identified directly by the SM dur-
ing network exploration. Exactly how this is done is beyond the scope of this study. We,
therefore, assume that the SM is notified for the need to reconfigure by some IBA supported
mechanism. Packets which cannot be routed due to physical disconnectivity are discarded

using, for instance, IBA’s packet timeout mechanism.

2. Modify SL-to-VL Mapping and Update Forwarding Tables: The SM (possibly with the
assistance of SMAs) reads the SL-to-VL mapping tables from each port of a CA or switch
and modifies them such that the set of SLs that is currently being used by the packets map
to only half the VLs (or any restricted number of VLs between 1 and 14). The basic idea is
to drain at least one VL for packets that would be using the new routing function. Subnet

management packets continue to use VL15.

In parallel with this, the SM updates forwarding table entries at the switches and CAs that
correspond to the LID addresses used for the new routing function. This can be done using
a process similar to that used during network initialization. If forwarding is implemented
using RFTs, updates can be done without obstructing current routing operations since the
old and the new routing functions can be implemented on two independent sets of LID/port
blocks, as shown in Figure 1. If, however, LFTs are implemented, the SM will have to
do a read-modify-write on each port block that needs to be modified. Packets may not be
able to be forwarded concurrently with the update if their destination LIDs lie in the block
being written back. This presents a tradeoff between using more complex RFTs that can
be modified transparently and using simpler to implement LFTs whose port blocks may

become unavailable for a short period of time during reconfiguration.

3. Detect VL Drainage: Before the routing information at the injection nodes can be updated,
the VLs to be used by the new routing function have to be drained. The drainage algorithm

we propose is described in Section 3.2. That algorithm is generally applicable to any deter-

10

ministic routing function as drainage is based solely on channel dependency properties of

the new routing function.

4. Modify PathRecord and GUID-to-LID Mapping Information: Once all the forwarding
tables have been updated and VLs for the new routing function have been drained, the SM
modifies the PathRecord information for each node such that it now supplies the set of SLs
that were previously unused. By doing this, the SM will ensure that any new packets being
injected into the network use only the VLs that are reserved for them (i.e., VLs that are not
being used by packets already in the network and using the old routing function). Notice
that by changing the PathRecord information, the SM will force all newly formed QPs to
comply with the new set of SLs; QPs which had been formed earlier and contained messages
with old SLs will have to be drained using the “Send Queue Drain” mechanism invoked by

the SM.

In parallel with this is the modification of the GUID-to-LID mapping by the SM. The ad-
dresses which were previously unused (but within the valid range of Base LID+25MC for
each port) are now supplied. Recall that the new routing function is implemented in the for-
warding tables on this set of LIDs. So, supplying these addresses as destination addresses
essentially means that packets will now be routed using the new routing function. It is im-
portant that the modification of the PathRecord and GUID-to-LID information be performed
in synchronism at a particular node so that newly injected packets with the LIDs correspond-
ing to the new routing function are placed in Send queues with the appropriate set of SL.

However, these modifications may be performed asynchronously over the network.

5. Detect VL Drainage and Restore the SL-to-VL mapping: Once the network has been
drained of packets using the old routing function, the SM can restore the SL-to-VL mapping
tables at all nodes such that they now provide all available VLs to packets using the new
routing function. The same drainage algorithm described in Step 3 can be used, and a

similar process as described in Step 2 can be used to modify SL-to-VL mapping.
3.2 Algorithm to Detect VL Drainage

By modifying the SL-to-VL mapping such that the SL-to-VL mapping tables allow use of only
a restricted set of VLs for packets with the SLs associated with the old routing functions, VLs for

the new routing function can be drained in a single hop. However, before packets using the new

11

routing function can be allowed to use these VLs, complete drainage of these VLs across the entire
subnet must be guaranteed. This is because the actions of the steps given previously need not be
carried out synchronously across the entire network. A particular node can maintain the state of
buffers at its input and output ports and, thus, detect local drainage of VLs, but it has no way of
knowing whether or not it will receive more packets on these VLs from its neighboring nodes.
There needs to be some form of synchronization between the nodes in order to detect drainage
across the entire subnet.

Presented here is a simple yet general algorithm that can be used to detect virtual lane (or
channel) drainage across the network. The algorithm uses the channel dependency information
available in the deadlock-free routing function to be implemented in order to determine which
channels must be drained. This information is represented in the form of a directed graph, which
encodes the dependencies between the channels as allowed by the routing function. By system-
atically collecting channel drainage information at individual nodes along this dependency graph,
channel drainage across the entire network for that particular routing function can be guaranteed.

The key data structure in this algorithm is the channel dependency graph (CDG) [16], which
gives dependency relations between different channels. A CDG is simply a directed graph in
which vertices (or nodes) of the graph are channels connecting the various routing nodes of the
network. Each bidirectional channel is represented as two independent nodes in the graph. Arcs
in the CDG represent the dependencies between channels. For example, an arc from channel ¢;
to ¢; indicates that a packet can request c; while holding resources associated with ¢;. Also, the
properties of the CDG assert that in order for a deterministic routing function to be deadlock free,
the CDG must be acyclic [16].

The drainage algorithm can be implemented in an IBA subnet with the following steps:

1. The SM computes the CDG for the routing function to be implemented. IBA’s source-based
routing is deterministic; therefore, the CDG must be cycle-free in order for the routing

function being implemented to be deadlock-free.

2. Having computed the CDG, the SM sends control packets to the switches connected to all

the source channels (i.e., source nodes, from the standpoint of the CDG).

3. Every switch forwards control packets along all the directions indicated by arcs in the CDG,
when no more packets remain in the VLs that are to be drained. These control packets are

transmitted through VL15, not through the data VLs to be drained.

12

4. When a leaf node of the CDG receives this control packet, it forwards it to the SM.

5. When the SM has received control packets that have traversed all the legal routes as deter-

mined by the CDG, the set of channels is guaranteed to be drained.

The SM has knowledge of the routing function to be implemented, and, therefore, it can com-
pute the CDG. From an implementation standpoint, the key issue is that of sending the control
packets by the SM to the hosts connected to switches at the originating end of the source channels
in the CDG and then collecting them from the leaf channels. These packets have to traverse all the
legal paths in the CDG before they reach the leaf channels, which forward them to the SM. Since,
only the SM is assumed to have knowledge of the CDG, a combination of LID-based and directed
routing could used be to accomplish this task. The number of control packets sent to these source
channels and gathered by the SM is equal to the total number of possible paths to leaf channels

accessible by source channels.

Figure 2. An example IBA subnet comprising a 2D mesh topology.

4 Discussion

As an example, let us consider an IBA subnet with nine switches connected in a 2-D mesh
topology. Each switch connects to only one channel adaptor, as shown in Figure 2. For simplicity,
let us assume that SL1 through SL8 are allocated to the current routing function, while the re-
maining SLs are reserved for the new one. Also, let the number of data VLs per physical channel
across the subnet be equal to four. To illustrate the various steps of the reconfguration process,

we will assume that the source-based deterministic routing function implemented on this network

13

has to be reconfigured from XY-routing to YX-routing. Both these routing functions are deadlock
free independently.

Notice that both routing algorithms are defined on a C x N domain [16], i.e., these routing
functions take into account the input channel and the destination node to compute the output
channel of a packet in the network. In IBA, forwarding is defined on an N x N domain [9] because
the forwarding tables consider only the current and destination nodes of a packet to determine its
output port (recall that forwarding tables in IBA are implemented on a per node basis rather than
per port basis). Ina C' x N based routing algorithm, if the incoming port is not considered while
making the routing decision, routing rules cannot be enforced, and, hence, deadlock-freedom
cannot be guaranteed. However, previous work reported in [12] has shown that C x N based
routing algorithms can be implemented on IBA by use of destination renaming. The basic idea
is the following. Given any C x N — C routing table, when there is some switch that supplies
two different paths for the packets arriving at different input channels but destined for the same
node/host, the destination of one of them is modified, selecting an unused address within the
valid range of addresses assigned to that destination node/host. As the destination addresses of
these packets are now different from the point of view of the switches within the subnet, they
can be routed along the different paths without considering the input channel. This technique
undoubtedly will have an impact on the size of the forwarding tables (and consequently, the time
for the table lookup), and the maximum number of renamings that can be done is limited by the
maximum available number of addresses for each host. For the implementation of the Double
Scheme that we are proposing, each host must have at least one LID address reserved for the
new routing function during the time reconfiguration of the network is in progress. From this
point onwards, we shall refer to all the addresses associated with a host that are being used by the
old or the new routing function as including the addresses required for renaming. Note that this
reservation of addresses for renaming is necessary only for those cases where the routing function
to be implemented in defined on C x N domain.

At the start of the reconfiguration process, the SM residing on CA-6, for instance, establishes a
need for reconfiguration of the subnet. The SM reads in the SL-to-VL mapping table from each CA
and switch, and modifies it such that SL1 through SL8, which are the SLs being used by current
routing function, map to only two of the four available data virtual lanes at each channel, i.e.,
VL0 and VL1. Once the modification has been done, the tables are written back to their respective
ports. Concurrently, the SM starts updating the forwarding tables at the switches. In the case of the

14

RFTs, the SM reads in the LID/Port blocks that are not being used by the current routing function,
modifes them to include entries corresponding to the new routing function, validates these entries

and then writes back the modi£ed block to their respective tables, as illustrated in Figure 3.

Old Forwarding Table New Forwarding Table
LID/Port Block 1D LID/Port Block ID
Old Forwarding Table New Forwarding Table
Port Block ID Port Block ID
00 0o
01 01
02 02
03 03
LID/Port Block 1D LID/Port Block 1D 04 04
05 05
" 06 06 D Unused Entries
n ntries
07 07 B ©'d Routing Entries
Bl 0Oid Routing Entries
|:] New Routing Entries
[New Routing Entries
4F 4F

Figure 3. Old and new instantiations of a Random Forwarding Table and a Linear

Forwarding Table.

In the case of LFTs, each 64-entry port block may contain addresses corresponding to both the
current and the new routing functions, and thus has to be modifed. A port block is unavailable at
most during the time that the SM writes back the modi£ed block to the forwarding table. Structure

of a LFT before and after reconfguration is also illustrated in Figure 3.

B Switch

(O Non-leaf/non-source channel
Q Leaf channel

© Source channel

Directed route paths

Figure 4. Channel Dependency Graph (CDG) for the YX-routing function. Nodes in the

CDG are channels in the network.

Next, the SM starts the process of detecting the drainage of VL2 and VL3 across the subnet.

Following the algorithm detailed in Section 3.2, the SM begins by computing the CDG for the

15

new routing function, i.e., the YX-routing function, shown in the Figure 4. The SM sends control
packets to the CAs connected to the switches at the originating ends of the source channels in the
CDG. The forward path for each of these packets could be determined by LID routing, however,
the return path is set by the SM using directed routes. The SM sends a control packet to the
source channels for each path to leaf channels that can be established from that particular source
channel. For instance, CA-0 will receive two packets, each of which will be destined for CA-5
and CA-8 using directed routes and forwarded on to the SM. The CAs in the path of these directed
route control packets will forward each packet to the next node once VL2 and VL3 are drained at
their input and output ports. Finally, the SM will receive control packets from each leaf channel’s
destination CA corresponding to each path that terminates at this leaf channel. This is to ensure
that all the channels accessible through CA-0 are drained of packets using the old routing function
when the SM receives the two control packets back. Figure 4 shows the path followed by the two
control packets sent by the SM to CA-0. VL2 and VL3 at each of the channels on this path are
drained of old packets when the SM receives the appropriate number of packets back.

Once the VL2 and VL3 have been drained and forwarding tables have been updated, the SM
atomically updates the PathRecord and GUID-to-LID mapping information corresponding to each
CA in the subnet although multiple ports may be modified in any order. This information primarily
resides with the SM, however, the CAs may have ’cached’ the information depending on the
particular implementation. In that case, the update has to be done at each CA in the network. At
this point, the CAs start injecting packets which are routed using the new routing function. Old
packets may still be routing in the network using the old routing function (i.e., old LIDs) but are
spatially separated from packets using the new routing function (i.e., new LIDs).

Finally, the SM uses the same drainage detection algorithm as it did before in order to detect
drainage of VL0 and VL1. Notice that the SM will use the CDG for XY-routing function, as shown
in Figure 5, to detect this drainage. Once complete drainage of old packets has been detected, SL-
to-VL mapping at each switch is updated to allow packets with SL9 through SL14 to use all the
four VLs. At this point there are no more old packets present in the network, and reconfiguration

of the subnet is completed.
5 Conclusion

This paper prescribes a systematic method for applying the Double Scheme to IBA networks

which allows deadlock-free dynamic reconfiguration of the network. Three key challenges for

16

Figure 5. Channel Dependency Graph (CDG) for the XY-routing function. Nodes in the

CDG are channels in the network.

implementing the Double Scheme over IBA networks were identified. A number of IBA features
and mechanisms that address these challenges and how they should be used are also described.
It is shown that spatial and/or temporal separation of resources—which is the basic idea behind
the Double Scheme—can be accomplished in an IBA subnet by distinguishing sets of service
levels and destination local identifiers used to route packets in the network. Drainage of resources
can be accomplished under the direction of the subnet management using various methods and
attributes. An algorithm is proposed that uses only IBA mechanisms to accomplish selective
resource drainage. It is also shown that dynamic update of forwarding tables and destination
names is also supported by IBA in a manner consistent with that needed for the Double Scheme.
As a result, this work enables InfiniBand networks to better support applications requiring certain
QoS guarantees that would not well tolerate intermittant performance drops-offs as would be the
case without deadlock-free dynamic reconfigurabilty. Interesting future work could consist of
performing more detailed cost/performance analysis of the Double Scheme applied to InfiniBand

Architecture, such as through simulation or through analytical modeling.
References

[1] Ruoming Pang, Timothy Mark Pinkston, and Jose Duato. The Double Scheme: Deadlock-
free Dynamic Reconfiguration of Cut-Through Networks. In The 2000 International Con-
Jerence on Parallel Processing, pages 439—448. IEEE Computer Society, August 2000.

[2] R. Buyya. High performance cluster computing. Prentice-Hall, 1999.

17

[3] Gregory F. Pfister. An introduction to the infiniband architecture. In Proceedings of the
Cluster Computing Conference (Cluster00) Chapter 57, November 2000.

[4] Charles Spurgeon. Quick Reference Guide to the Ethernet System
http://wwwhost.ots.utexas.edu/ethernet/descript-100quickref.html, 1995.

[5] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham, T. L. Rodeheffer,
E. H. Satterthwaite, and C. P. Thacker. Autonet: A High-Speed, Self-Configuring Local Area
Network Unsing Point-to-Point Links. /EEE Journal on Selected Areas in Communication,

9(8):1318-1335, October 1991.

[6] R.E. Felderman A.E. Kulawik C.L Seitz J. Seizovic N.J. Boden, D. Cohen and W. Su.
Myrinet - A gigabit per second local area network. IEEE Micro, pages 29-36, February
1995.

[7] et al. Kumar Malavalli. Fibre Channel Switch Fabric-2 (FC-SW-2). NCITS 321-200x
T11/Project 1305-D/Rev 4.3 Specification, pages 57-74, March 2000.

[8] InfiniBand ™M Architecture Specification Volume 1, Release 1.0. InfiniBand Trande Associ-
ation, October 24, 2000.

[9] J. Duato. A New Theory of Deadlock-free Adaptive Routing in Wormhole Networks. IEEE
Transactions on Parallel and Distributed Systems, 4(12):1320-1331, December 1993.

[10] J. Duato. A Necessary and Sufficient Condition for Deadlock-free Adaptive Routing in
Wormbhole Networks. /EEE Transactions on Parallel and Distributed Systems, 6(10):1055-
1067, October 1995.

[11] Jose Carlos Sancho, Antonio Robles, and Jose Duato. Effective Strategy to Compute For-
warding Tables for InfiniBand Networks. In Proceedings of the International Conference on

Parallel Processing, pages 48-57. IEEE Computer Society Press, September 2001.

[12] Pedro Lopez, Jose Flich, and Jose Duato. Deadlock-free Routing in InfiniBand through Des-
tination Renaming. In Proceedings of the International Conference on Parallel Processing,

pages 427-434. IEEE Computer Society Press, September 2001.

[13] FJ. Quiles J.L.Sanchez R. Casado, A. Bermudez and J.Duato. Performance evaluation of
Dynamic reconfiguration in High Speed Local Area Networks. In Proceedings of the 6th
Symposium on High-Performance Computer Architecture, pages 85-96, Jan 2000.

18

[14] Dimiter Avresky. Dependable Network Computing, Chapter 10. Kluwer Academic Publish-
ers, 2000.

[15] FJ.Quiles J.L. Sanchez R.Casado, A.Bermudez and J.Duato. A protocol for deadlock-free
dynamic reconfiguration in high-speed local area networks. Special Issue on Dependable
Network Computing. IEEE Transactions on Parallel and Distributed Systesm, 12(2):115—
132, February 2001.

[16] W. Dally and C. Seitz. Deadlock-free Message Routing in Multiprocessor Interconnection
Networks. IEEE Transactions on Computers, 36(5):547-553, May 1987.

19

