Optimizing Graph Algorithms for Improved Cache Performance

Joon-Sang Park, Michael Penner,
and Viktor K. Prasanna

CENG 02-01

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213-740-4483)



Optimizing Graph Algorithms for Improved Cache Performance "

Joon-Sang Park, Michael Penner, and Viktor K. Prasanna
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
{jsp, mipenner, prasanna }(@usc.edu
http://advisor.usc.edu

Abstract

Graph algorithms are fundamental in a wide variety of fields, and while much focus has been on
optimizing various algorithms for improved cache performance, little focus has been on the area of
graph algorithms. The reasons for this are varied, but at the core is that graph algorithms pose a very
different and complex challenge to improving cache performance. In this paper, we present a new
recursive implementation for the fundamental graph problem of Transitive Closure, namely the Floyd-
Warshall Algorithm, and prove its optimality with respect to processor-memory traffic. Using this
cache-oblivious implementation we show more than a 6x improvement in execution time on three
different architectures. We also discuss the impact of data layout on cache performance in the context
of a tiled implementation of the Floyd-Warshall algorithm. Secondly, we address Dijkstra’s algorithm
for the single-source shortest-path problem and Prim’s algorithm for Minimum Spanning Tree, for
which neither tiling nor recursion can be directly applied. For these algorithms, we demonstrate up to
a 2x improvement by using a cache-firiendly graph representation. Finally, we apply both the cache
friendly graph representation and the basic idea of tiling to the problem of graph matching. Using
these techniques we show performance improvements of 2x — 3x. Experimental results are shown for
the Pentium 111, UltraSPARC 1Il, Alpha 21264, and MIPS R12000 machines. Problem sizes ranged
Jrom 1024 to 4096 vertices for the Floyd-Warshall algorithm and up to 65536 vertices for Dijkstra’s
algorithm, Prim’s algorithm, and graph matching. We demonstrate improved cache performance
using the SimpleScalar simulator.
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Patterson Airforce Base and in part by an equipment grant from Intel Corporation.

" A previous version of this paper appears in Proceedings of the International Parallel and Distributed Processing
Symposium, April 2002,

N



1. Introduction

The motivation for this work is what is commonly referred to as the processor-memory gap.
While memory density has been growing rapidly, the speed of memory has been far outpaced by the
speed of modern processors. Current latencies to memory are on the order of 100 processor cycles.
This phenomenon has resulted in severe application level performance degradation on high-end
systems. This problem has been well studied for many dense linear algebra problems, such as matrix
multiplication and FFT (see for example, [23][32][36]). A similar problem is also present and well
studied in I/O systems (see for example, [17][33]).

A number of groups are attempting to improve performance by performing computations in
memory. Smart memory or processing in memory takes advantage of the high on chip bandwidth of
memory to perform data intensive operations (see for example, [4][20][37]). Other groups are
attacking the problem in software; either in the compiler through reordering instructions and
prefetching (see for example, [16][18][27]) or through complex data layouts to improve cache
performance (see for example, [6][10][13]).

Achieving better overall performance by optimizing cache performance is a difficult problem. The
performance of deep memory hierarchies present in most modern processors has been shown to differ
significantly from predictions based on a single level of cache. Different miss penalties for each level
of the memory hierarchy as well as the TLB also play an important role in the effectiveness of cache-
friendly optimizations. These penalties vary among processors and cause large variations in the
effectiveness of cache performance optimizations.

The area of graph problems is fundamental in a wide variety of fields, most notably network
routing, distributed computing, and computer aided circuit design. Network routing in particular is a
rapidly growing problem with the explosion of the Internet. Routing tables are growing in size and the
frequency of updates is pushing the limits of current routers. Graph problems pose unique challenges
to improving cache performance due to their irregular data access patterns. These challenges often
cannot be handled using standard cache-friendly optimizations [9]. The focus of this research is to
develop methods of meeting these challenges. A suite of data intensive kernels or stressmarks
designed to stress the memory hierarchy is discussed in [21] & [22]. The transitive closure problem
discussed in this paper is from the stressmark suite.

In this paper we present a number of cache-friendly optimizations to the Floyd-Warshall algorithm,
Dijkstra’s algorithm, Prim’s algorithm, and graph matching. For the Floyd-Warshall algorithm we
present a cache-oblivious recursive implementation that achieves more than a 6x improvement over
the baseline implementation on three different architectures. We also show that by tuning the base
case for the recursion, we can further improve performance by up to 2x. We also show analysis and
discuss the impact of data layout on cache performance in the context of a tiled implementation of the
Floyd-Warshall algorithm. While these techniques are well known for dense linear algebra problems
such as matrix multiply, their application to transitive closure faces a significantly different set of
challenges. Note that today’s state of the art research compilers cannot generate these
implementations [9].

There are some natural combinations of implementation and data layout that decrease overhead
costs, such as index computation, and yield performance advantage. In this paper, we show that the
recursive and tiled implementations of the Floyd-Warshall algorithm perform roughly equal with
either the Morton layout or the Block Data Layout.



For Dijkstra’s algorithm and Prim’s algorithm, to which tiling and recursion are not directly
applicable, we use a known cache-friendly graph representation. By using a data layout for the graph
representation that matches the access pattern we show up to a 2x improvement in execution time.

Finally, we use the techniques discussed with respect to the Floyd-Warshall algorithm and
Dijkstra’s algorithm to optimize cache performance for the problem of graph matching. The algorithm
we use is a primitive graph matching algorithm for bipartite graphs. We first apply the cache friendly
graph representation used for Dijkstra’s algorithm and Prim’s algorithm, since the data access pattern
to the graph is similar. We then use the idea of tiling to reduce the working set size. Performance
improvements were in the range of 2x to 3x depending on the density of the graph and the quality of
the partitioning done to accomplish tiling.

The remainder of this paper is organized as follows: In Section 2 we give the background needed
and briefly summarize some related work in the areas of cache optimization and compiler
optimizations. In Section 3 we discuss optimizing the Floyd-Warshall algorithm. In Section 4 we
discuss optimizing Dijkstra’s algorithm. In Section 5 we apply the optimizations discussed in Section
4 to Prim’s algorithm. In Section 6 we discuss applying the techniques to the problem of graph
matching. Finally, in Section 7 we draw conclusions.

2. Background and Related Work

In this section we give the background information required in our discussion of various
optimizations in Section 3 - 6. In Section 2.1 we give a brief outline of the graph algorithms. Those
readers comfortable with the algorithms can skip this. For more details of these algorithms see [7] or
[14]. In Section 2.2 we give some background on cache-based architectures and optimizing algorithms
for improved cache performance. In Section 2.3 we discuss some of the challenges that are faced in
making the transitive closure problem cache-friendly. We also discuss the model that we use to
analyze cache performance and the four architectures that we use for experimentation throughout the
paper. Finally, in Section 2.3 we give some information regarding other work in the fields of cache
analysis, cache-friendly optimizations, and compiler optimizations and how they relate to our work.

2.1.  Overview of Key Graph Algorithms

For the sake of discussion, suppose we have a directed graph G with N vertices labeled 1 to N and
E edges. The Floyd-Warshall algorithm is a dynamic programming algorithm, which computes a
series of N, NxN matrices where D" is the /" matrix and is defined as follows: D%y = shortest path
from vertex i to vertex j composed of the subset

of vertices labeled 1 to k. The matrix D’ is the | Floyd-Warshall(})

original cost matrix for the given graph G. We

can think of the algorithm as composed of N | 1. n < rows[WV]

steps. At each & step, we compute DF using the | 2. D' « W

data from D*’ in the manner shown below for | 3. fork« 1 ton

each (i, j)"’ value. Pseudo-code is given in | 4, fori— 1ton

Figure 1. 5 forje1ton
Dk(f.ﬂ = min(Dk_]{i.j),Dk_](i,k) + Dk_l(k,j)) 6 (f,j(k) — min(d,;,-‘k'”, d,-k(k_” + dgj(k—”)
Dijkstra’s algorithm is designed to solve the | 7. return D"

single-source shortest path problem. It does this

by repeatedly extracting from a priority queue Q  Figure 1: '?59“_3_"’ code for the Floyd-Warshall
algorithm



the nearest vertex u to the source, given the distances Dijkstra’s(/)
known thus far in the computation (Extract-Min
operation). Once this nearest vertex is selected, all | | ¢— @
vertices v that neighbor u are updated with a new | 5 = V[G]
distance from the source (Update operation). The 3 ;\‘fhile 0+0
pseudo-code for the algorithm is given in Figure 2. The 4 " ;Extract-Min(O)
optimal implementation of Dijkstra’s algorithm utilizes 5‘ S=SU {u) =
the Fibonacci heap and has complexity O(N Ig(N) + E), 6‘ farench I Adi
although the Fibonacci heap may only be interesting in 7 o %lcd ver;e:f ve Adjlu]
theory due to large constant factors. ’ S pdate d[v]
Prim’s algorithm for Minimum Spanning Tree is i

very similar to Dijkstra’s algorithm for the single-source  Figure 2: Pseudo code for Dijkstra’s
shortest path problem. In both cases a root node or algorithm

source node is chosen and all other nodes reside -

in the priority queue. Nodes are extracted using Find_Matehi(G; M}
an Extract-min operation and all neighbors of
the extracted vertex are updated. The

[—

while (there exists an augmenting path)

difference in Prim’s algorithm is that nodes are 2, 4 . ) ;
updated with the weight of the edge from the = increase |M] by one using the augmenting
extracted node instead of the weight from the path;
source or root node. %
For the sake of graph matching a subset M
5. return M;

of E is considered a matching if no vertex is
incident on more than one edge in M. A
matching is considered maximal if it is not a  Figure 3: Pseudo code for primitive graph

subset of any other matching. A vertex is wiatching algorithm

considered free if no edge in M is incident upon it. Using these definitions a primitive matching
algorithm can be defined as follows [29]. Beginning at a free vertex use a breadth first search to find a
path P from that free vertex to another free vertex alternating between edges in M and edges not in M.
This is considered an augmenting path. Update the matching M by taking the symmetric difference of
the edge sets of M and P. The algorithm is complete when no augmenting path can be found. The
running time of this algorithm has been shown to be O(N*E). Pseudo-code is given in Figure 3. A
more detailed explanation of this primitive matching algorithm is given in [29].

2.2. Overview of Cache Based Architectures and Optimizing Algorithms for Improved Cache
Performance

It is a well-known fact that the speed of modern processors is increasing at a rate of roughly 60%
per year while the speed of memory is increasing at a rate of roughly 7% per year. This difference is
often referred to as the processor-memory gap, and it causes the latency to memory as seen by the
processor to increase significantly with each passing year. In order to hide this increasing latency,
caches have been designed to take advantage of locality of reference; the fact that once an element is
accessed there is a good chance that it and/or elements near will be accessed in the near future. The
cache is much smaller than main memory and is placed much closer to the processor in terms of
latency. Modern processors are including more levels of cache, each level larger in size and farther
from the processor in terms of latency.



Invariably the processor will access data that is not in the cache and this will result in a cache miss.
Cache misses can be categorized into one of three categories: cold misses, capacity misses, and
conflict misses. A cold miss occurs the first time a data element is accessed. These misses are
unavoidable. A capacity miss occurs if the working set of the application is larger than the cache.
These misses can be avoided by either decreasing the working set or increasing the size of the cache.
A conflict miss occurs if two or more data elements in the working set map to same place in the cache
and the replacement of one results in a subsequent cache miss when that element is accessed. This
type of miss can be avoided in a number of ways including improved data access patterns, improved
data layout, reducing the working set, etc [24].

Two other issues that should be addressed are cache pollution and TLB misses. TLB misses are
similar to cache misses except that they refer to misses in the Translation Look-aside Buffer. They can
be categorized the same as cache misses and reducing them follows a similar pattern. Cache pollution
is a somewhat different issue. This refers to when a cache line is brought into the cache and only a
small portion of it is used before it is pushed out of the cache. A large amount of cache pollution will
increase the bandwidth requirement of the application, even though the application is not utilizing
more data.

Based on this discussion, the keys to improve the performance of the memory system are as
follows: increase data reuse, decrease cache conflicts, and decrease cache pollution. The techniques
that we use to achieve these ends can be categorized as data layout optimizations and data access
pattern optimizations. In our data layout optimizations we attempt to match the data layout to an
existing data access pattern. For example, we use the Block Data Layout to match the access pattern
of a tiled algorithm (see Section 3), or we an adjacency array to match the access pattern of Dijkstra’s
algorithm and Prim’s algorithm (see Section 4 & 5). In our data access pattern optimizations, we
design both novel and trivial optimizations to the algorithm to improve the data access pattern. For
example, we implemented both a novel tiled implementation and a novel recursive implementation of
the Floyd-Warshall algorithm to improve the data access pattern.

A different approach to improving the performance of the cache is to design cache-oblivious
algorithms. This is explored in by Frigo, et. al. in [12]. In this article, the algorithms do not ignore the
presence of a cache, but rather they use recursion to improve performance regardless of the size or
organization of the cache. By doing this, they can improve the performance of the algorithm without
tuning the application to the specifics of the host machine. In our work we develop a cache-oblivious
implementation of the Floyd-Warshall algorithm. One difference between this work and ours is that
they assume a fully associative cache when developing and analyzing the techniques. For this reason,
they do not consider any data layout optimizations to avoid cache conflicts. They assume that at some
point in the recursion the problem will fit into the cache and all work done following this point will be
of optimal cost. In fact we show between 20% and 2x performance improvements by optimizing what
is done once we reach a problem size that fits into the cache.

2.3. Challenges

Transitive closure presents a very different set of challenges from those present in dense linear
algebra problems such as matrix multiply and FFT. In the Floyd-Warshall algorithm, the operations
involved are comparison and add operations. There are no floating-point operations as in matrix
multiply and FFT. We are also faced with data dependences that require us to update the entire NxN
array D" before moving on to the (k+7)" step (see Figure 4). This data dependence from one 4™ loop
to the next eliminates the ability of any commercial or research compiler to improve data reuse. We



have explored using the SUIF research compiler and found
that it cannot perform the optimizations discussed in Section 3
without user provided knowledge of the algorithm [9]. These
challenges mean that although the computational complexity
of the Floyd-Warshall algorithm is O(N°), equivalent to matrix
multiply, often transitive closure displays much longer running
times.

In Dijkstra’s algorithm and Prim’s algorithm, the largest k' column
data structure is the graph representation. An optimal
representation, with respect to space, would be the adjacency-
list representation. However, this involves pointer chasing . Cuth s .
when traversing the list. The priority queue has been highly Flgurek :-(n ;:zr?&;fsf:alﬁer loop
optimized by various groups over the years. Unfortunately, Algor%hm
the update operation is often excluded, as it is not necessary in
such algorithms as sorting. The asymptotically optimal implementation that considers the update
operation is the Fibonacci heap. Unfortunately this implementation includes large constant factors and
did not perform well in our experiments.

The primitive graph matching algorithm poses challenges that resemble challenges in both the
Floyd-Warshall algorithm and Dijkstra’s algorithm. As in the Floyd-Warshall algorithm, each breadth
first search to find an augmenting path could examine any part or the entire input graph. Recall that
the Floyd-Warshall algorithm requires updating the entire graph at each step. Unlike the Floyd-
Warshall algorithm, tiling and recursion cannot be applied, even with clever reordering, since the
search cannot be limited to a small part of the graph and still find a maximal matching for the entire
graph. We also have the situation as in Dijkstra’s algorithm where the size of the graph representation
can affect performance and, although optimal with respect to size, the adjacency list representation
could cause a degradation of cache performance due to pointer chasing when traversing the list.

The model that we use in this paper is that of a uniprocessor, cache-based system. We refer to the
cache closest to the processor as L; with size C, and subsequent levels as L; with size C;. Throughout
this paper we refer to the amount of processor-memory traffic. This is defined as the amount of traffic
between the last level of the memory hierarchy that is smaller than the problem size and the first level
of the memory hierarchy that is larger than or equal to the problem size. In most cases we refer to
these as cache and memory respectively. Finally, we assume an internal TLB with a fixed number of
entries.

We use four different architectures for our experiments. The Pentium III Xeon running Windows
2000 is a 700 MHz, 4 processor shared memory machine with 4 GB of main memory. Each processor
has 32 KB of level-1 data cache and 1 MB of level-2 cache on-chip. The level-1 cache is 4-way set
associative with 32 B lines and the level-2 cache is 8-way set associative with 32 B lines. The
UltraSPARC 11l machine is a 750 MHz SUN Blade 1000 shared memory machine running Solaris 8.
It has 2 processors and 1 GB of main memory. Each processor has 64 KB of level-1 data cache and 8
MB of level-2 cache. The level-1 cache is 4-way set associative with 32 B lines and the level-2 cache
is direct mapped with 64 B lines. The MIPS machine is a 300 MHz R12000, 64 processor, shared
memory machine with 16 GB of main memory. Each processor has 32 KB of level-1 data cache and 8
MB of level-2 cache. The level-1 cache is 2-way set associative with 32 B lines and the level-2 cache
is direct mapped with 64 B lines. The Alpha 21264 is a 500 MHz uniprocessor machine with 512 MB
of main memory. It has 64 KB of level-1 data cache and 4 MB of level-2 cache. The level-1 cache is
2-way set associative with 64 B lines and the level-2 cache is direct mapped with 64 B lines. It also
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has an 8 element fully-associative victim cache. All experiments are run on a uniprocessor or on a
single node of a multiprocessor system. Unless otherwise specified simulations are performed using
the SimpleScalar simulator with a 16 KB, 4-way set associative level-1 data cache and a 256 KB, 8-
way set associative level-2 cache.

2.4. Related Work

A number of groups have done research in the area of cache performance analysis and
optimizations in recent years. Detailed cache models have been developed by Weikle, McKee, and
Waulf in [35] and Sen and Chatterjee in[31]. XOR-based data layouts to eliminate cache misses have
been explored by Valero and others in [13]. Data layouts for improving cache performance of
embedded processor applications have been explored in [10].

A number of papers have discussed the optimization of specific dense linear algebra problems with
respect to cache performance. Whaley and others discuss optimizing the widely used Basic Linear
Algebra Subroutines (BLAS) in [36]. Chatterjee, et. al. discuss layout optimizations for a suite of
dense matrix kernels in [5]. Frigo and others discuss the cache performance of cache oblivious
algorithms for matrix transpose, FFT, and sorting in [12]. Park and Prasanna discuss dynamic data
remapping to improve cache performance for the DFT in [23]. One characteristic that all these
problems share is a very regular memory accesses that are known at compile time.

Another area that has been studied is the area of compiler optimizations (see for example [27]).
Optimizing blocked algorithms has been extensively studied (see for example [18]). The SUIF
compiler framework includes a large set of libraries including libraries for performing data
dependence analysis and loop transformations. In this context, it is important to note that SUIF does
not handle the data dependences present in the Floyd-Warshall algorithm in a manner that improves
the processor-memory traffic. It will not perform the transformations discussed in Section 3 without
user intervention [9].

Although much of the focus of cache optimization has been on dense linear algebra problems,
there has been some work that focuses on irregular data structures. Chilimbi et. al. discusses making
pointer-based data structures cache-conscious in [6]. He focuses on providing structure layouts to
make tree structures cache-conscious. LaMarca and Ladner developed analytical models and showed
simulation results predicting the number of cache misses for the heap in [19]. However, the
predictions they made were for an isolated heap, and the model they used was the hold model, in
which the heap is static for the majority of operations. In our work, we consider Dijkstra’s algorithm
and Prim’s algorithm in which the heap is very dynamic. In both Dijkstra’s algorithm and Prim’s
algorithm O(N) Extract-Mins are performed and O(E) Updates are performed. Finally in [30], Sanders
discusses a highly optimized heap with respect to cache performance. He shows significant
performance improvement using his sequential heap. The sequential heap does support Insert and
Delete-min very efficiently, however the Update operation is not supported.

In the presence of the Update operation, the asymptotically optimal implementation of the priority
queue, with respect to time complexity, is the Fibonacci heap. This implementation performs
O(N*1g(N) + E) operations in both Dijkstra’s algorithm and Prim’s algorithm. In our experiments the
large constant factors present in the Fibonacci heap caused it to perform very poorly. For this reason,
we focus our work on the graph representation and the interaction between the graph representation
and the priority queue.

In [34],Venkataraman, et. al. present a tiled implementation of the Floyd-Warshall algorithm that
is essentially the same as the tiled implementation shown in this paper. In this paper, we consider a



wider range of architectures and also analyze the cache performance with respect to processor memory
traffic. We also consider data layouts to avoid conflict misses in the cache, which is not discussed in
[34]. Due to the fact that we use a blocked data layout we are able to relax the constraint that the
blocking factor should be a multiple of the number of elements that fit into a cache line. This allows
us to use a larger block size and show more speedup. In [34], they derive an upper bound on
achievable speed-up of 2 for state-of-the-art architectures. Our optimizations lead to more than a 6x
improvement in performance on three different state-of-the-art architectures.

We have recently published work on the Floyd-Warshall algorithm in [25] that showed a 2x
improvement using the Unidirectional Space Time Representation. Compared with [25], this paper
represents a new approach to optimizing the Floyd-Warshall algorithm, namely recursion and tiling,
which gives up to an additional 3x improvement in execution time. Further, we expand our scope of
algorithms to include Dijkstra’s algorithm for the single source shortest path problem, Prim’s
algorithm for the mimimum spanning tree problem, and graph matching.

3. Optimizing FW

In this section we address the challenges of the Floyd-Warshall algorithm. In Section 3.1 we
introduce and prove the correctness of a recursive implementation for the Floyd-Warshall algorithm.
We analyze the cache performance and show experimental results for this implementation compared
with the baseline. We also show that by tuning the recursive algorithm to the cache size, we can
improve its performance by up to 2x. In Section 3.2, we perform some analysis and discuss the impact
of data layout on cache performance in the context of a tiled implementation of the Floyd-Warshall
algorithm.  Finally, in Section 3.3, we address the issue of data layout for both the tiled
implementation and the recursive implementation.

Throughout this section we make the following assumptions. We assume a directed graph with N
vertices and E edges. We assume the cache model described in Section 2.3, where C; < N for some i
and the TLB size is much less than N. To experimentally validate our approaches and their analysis,
the actual problem sizes that we are working with are between 1024 and 4096 nodes (1024 < N <
4096). Each data element is 8 bytes. Many processors currently on the market have in the range of 16
to 64 KB of level-1 cache and between 256 KB and 4 MB of level-2 cache. Many processors have a
TLB with approximately 64 entries and a page size of 4 to 8 KB.

In [15], it was shown that the lower bound on processor-memory traffic was Q(N*/JC) for the
usual implementation of matrix multiply. By examining the data dependence graphs for both matrix
multiplication and the Floyd-Warshall algorithm, it can be shown that matrix multiplication reduces to
the Floyd-Warshall algorithm with respect to processor-memory traffic. Therefore, we have the
following:

Lemma 3.1: The lower bound on processor-memory traffic for the Floyd-Warshall algorithm,

given a fixed cache size C, is Q(N*/JC), where N is the number of vertices in the input graph.

3.1. A Recursive Implementation of FW

As stated earlier, recursive implementations have recently been used to increase cache
performance. It was stated in [11] that recursive implementations perform automatic blocking at every
level of the memory hierarchy. To the authors’ knowledge, there does not exist a recursive
implementation of the Floyd-Warshall algorithm. The reason for this, is that the Floyd-Warshall
algorithm not only contains all the dependences present in ordinary matrix multiplication, but also



additional dependences that can not be satisfied by | gjoyd-Warshall-2b2-Unrolled(/¥)
the simple recursive implementation of matrix
multiply. What is shown here is a novel recursive | o DO W
implementation of the Floyd-Warshall algorithm.
We also prove the correctness of the
implementation and show analytically that it reaches
the asymptotically optimal amount of processor
memory traffic.

In order to design a recursive implementation of
the Floyd-Warshall algorithm, first examine the
standard implementation when applied to a 2x2
matrix. The standard implementation loops over the
variables £, i, and j from 1 to N. When the 2x2 case
is unrolled we have the code shown in Figure 5.
Notice that 8 calls are made to the min() operation | 11.  return D%
and each call requires 3 data values from the matrix.
This is converted into a recursive program by Figure 5: Pseudo code for the 2x2 unrolled
replacing the call to the min() function with a version of the Floyd-Warshall
recursive call. Instead of passing 3 data values, we slgorithm
pass 3 sub-matrices corresponding to quadrants of
the input matrix. This code is shown in Figure 6.
The initial call to the recursive algorithm passes the 1
entire input matrix as each argument. Subsequent ’
calls pass quadrants of their input arguments as
shown in Figure 6. The code similar to Figure 5 2 Ay,  FWR(A y, By, Ca);
calling the min() operation is used as the base case | 4 Ay & FWR(4,), By, C));
for when the input matrices are of size 2x2. 5. Ayy ~ FWR(4,,, By, Cp5);

6
7
8

dnY « min(d,®, d,\¥ + d;, )
di" « min(d2"”, d® + d,,?)
dz](l) = .miﬂ(dzlm), dgl(o} -+ £f| 1(0))
dry" e min(dan”, do)'” + d1,®)
dzzlz) — min(dzp_m, dgg“) + dzz(”)
dn® — min(ds,"", dx'" + dp V)
dlz(z) — lnill(du“), d|2“) + dn“))
0. d11(2)<—min(d11(", d]2(1)+d2]{l))

S 00N o v

Floyd-Warshall-Recursive(4, B, C)

if (not base case) {
Ay« FWRMA,, By, Cyy);

In order to complete the proof of the correctness Ayy ¢~ FWR(Ayy, By, Co):
of the recursive implementation of the Floyd- Ao FWR( A, B,,, C, );
Warshall algorithm we need the following claim. AZI FWR 42" Bz-’ C-I '

Claim 1: When computing the following 12 (A2 By Cao);

equation it is sufficient for the correctness of the 9. Ay < FWR(A,, Byy, Gy
Floyd-Warshall algorithm that & >k —1. }(1) }] {
_ . o . ; . else
Dy = mm(DA "irs DY iy + D U"-f)) 12.  /* run base case */ 1
Proof: 13. }

By virtue of the min operation, the values used

fOl' D[ﬁ“ & D(il._” will be < to D:;-:;) & D(Ak_“lr) . 14. return 4

Therefore, D), +Dj; ,, < D3\ +Dfy » and D,
_ ) o ' ' ” Figure 6: Pseudo code for the recursive

using k =k —1 will be < the value computed using version of the Floyd-Warshall

k-1.  Since no values are used that are not algorithm

representative of paths, there exists a path from the

i" vertex to the " vertex of cost given by Equation 1. Also, since the goal of the Floyd-Warshall

algorithm is to find the shortest path, Equation 1 will give the correct final result. ®

As a final note, this does not claim that Equation 1 computes the shortest path from the i vertex to
the j* vertex using vertices up to & . It merely computes a path from the i vertex to the /" vertex that
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is less than or equal in cost to the shortest path from the i vertex to the /™ vertex using vertices up to
k-1.

Theorem 3.1: The recursive implementation of the Floyd-Warshall algorithm detailed above

satisfies the dependences given by Equation 1 and correctly computes the transitive closure of

the input graph.

Proof:

By definition the straightforward implementation of the Floyd-Warshall algorithm computes the
outer product of the input matrix with addition replaced by minimum and multiplication replaced by
addition. Subsequently, this is referred to as the FW outer product. Also, for the sake of simplicity,
assume that the problem size (%) is a power of 2.

Base case:

When the number of vertices is equal to 2, the recursive implementation is identical to the original
implementation of the Floyd-Warshall algorithm given in Figure 5.

Induction Step:

Assume that the recursive implementation correctly computes the FW outer product for problem
sizes up to N/2. Then, for a problem of size N, the 8 recursive calls shown in Figure 6 will be made.

The first call, step 1, passes the Northwest quadrant as each argument. By assumption, this will
correctly compute the Northwest quadrant of DY In other words, the shortest path will be found
from i to j with all intermediate vertices in the set | to , where i, j, and k are in the set 1 to N/2.

The second call, step 2, computes the Northeast quadrants of DV By Claim 1, we can use the
data from the Northwest quadrant of D" instead of D"'. This step finds the shortest path from i to j
with all intermediate vertices in the set 1 to k, where i and k are in the set 1 to N/2 and j is in the set
N/2 +1to N.

In the same fashion, the third and fourth calls complete the computation of D™ and after the first
four recursive calls we have correctly computed the shortest path from from i to j with all intermediate
vertices in the set 1 to k, where i and j are in the set | to N and k is in the set 1 to N/2.

The second set of four recursive calls works in the same way that the first set did and complete the
computation of D", the last three using result from other quadrants of D instead of D*! by Claim 1.
In this way, we correctly compute the shortest path from i to j, and by induction the recursive
implementation of the Floyd-Warshall algorithm is correct for all N, where N is a power of 2. B

Theorem 3.2: The recursive implementation reduces the processor-memory traffic by a factor

of B, where B = O[JE).

N/2

Proof:
Note that the running time of this algorithm is given by
N
7*(1\/):8*1’(7 ]= O(N?) 2

Define the amount of processor memory traffic by the function D(x). Without considering cache,
the function behaves exactly as the running time.

D(N)=8*D[ N

v 3

. ]— O(N7) 3
Consider the problem after k recursive calls. At this point the problem size is N/2*. There exists

some k such that N/2* = O(JE) where C = cache size. For simplicity we set B = N/2F. At this point, all

data will fit in the cache and no further traffic will occur for recursive calls below this point.
Therefore:



D(B)=0(B?) 4
By combining Equation 3 and Equation 4 it can be shown that:
N3 " _ N3
P :
Therefore, the processor-memory traffic is reduced by a factor of B. ®
Theorem 3.3: The recursive implementation reduces the traffic between the i"™ and the (i-1)"
level of cache by a factor of B; at each level of the memory hierarchy, where B, = o(\[E= )

Proof:

Note first of all, that no tuning was assumed when calculating the amount of processor-memory
traffic in the proof of Theorem 3.2. Namely, Equation 5 holds for any N and any B where B = O(JE )

In order to prove Theorem 3.3, first consider the entire problem and the traffic between main
memory and the m™ level of cache (size C,,). By Theorem 3.2, the traffic will be reduced by B,, where
B = O(JF ) Next consider each problem of size By, and the traffic between the m™ level of cache and

the (m-1)" level of cache (size Cp.;). By replacing N in Theorem 3.2 by By, it can be shown that this
traffic is reduced by a factor of B,,.; where B__, =o( /cm_] )

This simple extension of Theorem 3.2 can be done for each level of the memory hierarchy, and
therefore the processor-memory traffic between the i™ and the (i-1)" level of cache will be reduced by
a factor of B;, where B, = o(\[g ) [

Finally, recall from Lemma 3.1 that the lower bound on processor-memory traffic for the Floyd-
Warshall algorithm is given by Q(N/\/C ), where C is the cache size. Also recall from Theorem 3.2
the upper bound on processor-memory traffic that was shown for the recursive implementation was
O(N°/B), where B* = O(C). Given this information we have the following Theorem.

Theorem 3.4: Our recursive implementation is asymptotically optimal among all

implementations of the Floyd-Warshall algorithm with respect to processor-memory traffic.

As a final note in the recursive implementation, we show up to 2x improvement when we set the
base case such that the base case would utilize more of the cache closest to the processor. Once we
reached a problem size B, where B* is on the order of the cache size, we execute a standard iterative
implementation of the Floyd-Warshall algorithm. This improvement varied from one machine to the
other and is due to the decrease in the overhead of recursion. It can be shown that the number of
recursive calls in the recursive algorithm is reduced by a factor of B° when we stop the recursion at a
problem of size B. A comparison of full recursion and recursion stopped at a larger block size showed
a 30% improvement on the Pentium III and a 2x improvement on the UltraSPARC I11.

In order to improve performance, B* must be chosen to be on the order of the L1 cache size. The
simplest and possibly the most accurate method of choosing B is to experiment with various tile sizes.
This is the method that the Automatically Tuned Linear Algebra Subroutines (ATLAS) project
employs [36]. However, it is beneficial to find an estimate of the optimal tile size. A block size
selection heuristic for finding this estimate is discussed in [25], and outlined here.

e Use the 2:1 rule of thumb from [24] to adjust the cache size to that of an equivalent 4-way set
associative cache. This minimizes conflict misses since our working set consists of 3 tiles of
data. Self-interference misses are eliminated by the data being in contiguous locations within
each tile and cross interference misses are eliminated by the associativity.

e Choose B by Equation 6, where d is the size of one element and C is the adjusted cache size.
This minimizes capacity misses.

12



3*B**d =C 6
The baseline we use for our experiments is a
straightforward implementation of the Floyd-Warshall :j
algorithm. It was shown in [25] that standard optimizations 12
yield limited performance increases on most machines. The

Simulation results in Table 1 for the recursive g 8 .‘é’—*’\_/‘
implementation show a 30% decrease in level-1 cache o 6
misses and a 2x decrease in level-2 cache misses for 4
problem sizes of 1024 and 2048. In order to verify the i =

improvements on real machines, we compare the recursive
implementation of the Floyd-Warshall algorithm with the
baseline. For these experiments the best block size was - " v
. —&— Pentium —— UltraSPARC |
found experimentally. The results show more than 10x —a&— Alpha —%—MIPS .
improvement in overall execution time on the MIPS, ' '
roughly than 7x improvement on the Pentium III and the
Alpha, and more than 2x improvement on the UltraSPARC
III. These results are shown in Figure 7. Differences in

0 1000 2000 3000 4000 5000

Figure 7: Speedup results for the
recursive implementation of
the Floyd-Warshall algorithm

performance gains between machines are expected, due to Data level-1 cache misses
the wide variance in cache parameters and miss penalties. N Baseline  Recursive |
1024 0.806 0.546 |
’ g = . 9
3.2. A Tiled Implementation for FW 2048 [ 6.442 4362 |10
Compiler groups have used tiling to achieve higher data Drata level‘-z cache il
: N Baseline Recursive
reuse in looped code. Unfortunately, the data dependences 1024 0537 0280
from one k-loop to the next in the Floyd-Warshall 2048 4.294 2232 10

algorithm make it impossible for current compilers,
including research compilers, to perform 3 levels of tiling  Taple 1: Simulation result

[9]. In order to tile the outermost loop we must cleverly

reorder the tiles in such a way that satisfies data dependences from one 4-loop to the next as well as
within each k-loop.

Recall that Claim 1 stated that when computing Equation 1, it was sufficient that kK’2 k—1.
Consider a special case of Claim | when we restrict &’ such that k—1<k’<k+B-1, where B is the
blocking factor. This special case leads to the following tiled implementation of the Floyd-Warshall
algorithm. This tiled implementation has also been derived in [34] using an alternate analysis. A brief
description of the algorithm is as follows. Tile the problem into BxB
tiles. During the & block iteration, first update the (k,k)™ tile, then the
remainder of the A" row and k™ column, then the rest of the matrix.
Figure 8 shows an example matrix tiled into a 4x4 matrix of blocks. :Hj-
Each block is of size BxB. During each outermost loop, we would i
update first the black tile representing the (k%)™ tile, then the grey tiles, I
then the white tiles. In this way we satisfy all dependences from each Z:H:
K™ loop to the next as well as all dependences within each K™ loop.

3.2.1. Analysis. In [34], an upper bound for any cache optimized
Floyd-Warshall algorithm was shown, however, no formal analysis  gigure 8: Tiled
with respect to traffic was shown for their tiled implementation. In fact  jmplementation of FW

13



our results show speed-ups significantly larger than the upper bound shown in [34]. The following

analysis is performed for the tiled implementation in the context of the model discussed in Section 2.
Theorem 3.5: The proposed tiled implementation of the Floyd-Warshall algorithm reduces the
processor-memory traffic by a factor of B where B” is on the order of the cache size.

Proof sketch: At each block we perform B® operations.
There are N/B x N/B blocks in the array and we pass
through each block N/B times. This gives us a total of N
operations. In order to process each block we require only
3*B* elements. This gives us a total of N°/B total
processor-memory traffic. B

Given this upper bound on traffic for the tiled
implementation and the lower bound shown in Lemma 3.1,
we have the following.

Theorem 3.6: The proposed tiled implementation is

asymptotically optimal among all implementations of

the Floyd-Warshall algorithm with respect to processor-
memory traffic.

3.2.2. Optimizing the Tiled Implementation. It has been
shown by a number of groups that data layouts tuned to the
access pattern can significantly impact cache performance
and improve overall execution time. In order to match the
access pattern of the tiled implementation we use the Block
Data Layout (BDL). The BDL is a two level mapping that
maps a tile of data, instead of a row, into contiguous
memory. By setting the block size equal to the tile size in
the tiled computation, the data layout will exactly match the
data access pattern. By using this data layout we can also
relax the restriction on block size stated in [34] that the
block size should be a multiple of the number of elements in
a cache block.

As mentioned in Section 3.1, the best block size should
be found experimentally, and the block size selection
heuristic discussed in Section 3.1 can be used to give a
rough bound on the best block size. However, when
implementing the tiled implementation, it is also important
to note that the search space must take into account each
level of cache as well as the size of the TLB. Given these
various solutions for B the search space should be expanded
accordingly. In [34], only the level-1 cache is considered,
however, with an on-chip level-2 cache often the best block
size is larger than the level-1 cache. Table 2 shows the
result of comparing the tiled implementation using a row-
wise layout and the block size selection used in [34] with
the tiled implementation using the block data layout and

our block size selection. Simulation results show that the
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Data level-1 cache performance

Row-wise | BDL |
Misses 0.312 0.276 | 10°
Miss Rate 4.82% | 4.28% |

Data level-2 cache performance

Row-wise = BDL
 Misses | 9143 | 745 | 10°
Miss Rate | 29.11%  2.68%

Execution time

| Row-wise BDL
SUN 283.72 201.38 |
P II1 124.2 97.62 | (sec)
N =2048
Table 2: Comparison result
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Figure 9: Speedup results for the
tiled implementation of the
Floyd-Warshall algorithm

Data level-1 cache misses

N Baseline Tiled
1024 [ 0.806 0.542
2048 | 6.442 4.326 107

Data level-2 cache misses

N Baseline Tiled
1024 0.537 0.276
2048 4,294 2.195 10°

Table 3: Simulation result




block size selection used in [34] optimizes the level-1 cache misses, but incurs a level-2 cache miss
ratio of almost 30%. The Block Data Layout with a larger block size has roughly equal level-1 cache
performance and far better level-2 cache performance. The execution times for these implementations
show a 20% to 30% improvement by the Block Data Layout over the row-wise data layout.

A comparison for the tiled implementation using the Block Data Layout with the best compiler
optimized implementation was also performed. Simulation results for this are shown in Table 3.
These results show a 2x improvement in level-2 cache misses and a 30% improvement in level-1 cache
misses. Experimental results show a 10x improvement in execution time for the Alpha, better than 7x

improvement for the Pentium III and the MIPS and roughly a 3x improvement for the UltraSPARC III
(See Figure 9).

3.3. Data Layout Issues

It is also important to consider data layout when implementing
any algorithm. It has been shown by a number of groups that data
layouts tuned to the data access pattern of the algorithm can reduce .
both TLB and cache misses (see for example [5], [23], [25]). In the Blocks laid out| " |
case of the recursive algorithm, the access pattern is matched by a REHRES | ' |
Z-Morton data layout. The Z-Morton ordering is a recursive layout Elements laid |
defined as follows: Divide the original matrix into 4 quadrants and el ‘
lay these tiles in memory in the order NW, NE, SW, SE. — —
Recursively divide each quadrant until a limiting condition is reach.
This smallest tile is typically laid out in either row or column major
fashion (see Figure 10). See [5] for a more formal definition of the
Morton ordering. 112]5]6[17018]21]22

In the case of the tiled implementation, the Block Data Layout 3 40718(1920023)24
(BDL) matches the access pattern. Recall from Section 3.2.2 that 9 |10[13 14|25/26|29|30]
the BDL is a two level mapping that maps a tile of data, instead of a ;;,;:};f; ;g e ;;%i
row, into contiguous memory. These blocks are l‘Elld out row-wise = 6f lhlEils]
in the matrix and data is laid out row-wise within the block (see 41142 45/46|57 58 61|62
Figure 11). By setting the block size equal to the tile size in the 43 44 47/48[59 60|63/ 64
tiled computation, the data layout will exactly match the data access
pattern.

N
<+ - R
1 page/block | |
> o s e

Figure 10: The Block Data
Layout

Figure 11: The Morton Layout

We experimented with both of these data layouts Recursive Implementation

for each of the implementations. The results are N Mt ‘ Block Data |
shown in Tables 4 and 5. All of the execution times Layout | Layout

were within 15% of each other with the Z-Morton data 2048 [ 10348 | 11142 |
layout winning  slightly for the recursive 4096 | 82045 | 878.89 | (sec)

implementation and the BDL winning slightly for the

tiled implementation. The fact that the Z-Morton was Tiled Implementation

: S ; N Morton Block Data |
s'llght!y better for the recursive _1mplementat.10n and I Layout | Kayout
likewise the BDL for the tiled implementation was 2048 99 25 9939 |
exactly as expected, since they match the data access 4096 779.53 ~ 780.41 (sec)

pattern most closely. The closeness of the results is
mostly likely due to the fact that the majority of the  Tapje 4: Pentium Ill results
data reuse is within the final block. Since both of these
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data layouts have the final block laid out in contiguous
memory locations, they perform equally well.

It is also important to note that the Z-Morton data
layout has a very complex index computation, which
can only be hidden in a recursive algorithm. The BDL
has a very simple index computation in comparison.
Therefore it is significant to show that for non-
recursive algorithms, the BDL performs just as well or
better, while avoiding the overhead of a complex index
computation.

Recursive Implementation

N Morton Block Data
Layout | Layout |

2043| 307.33 | 311.26

4096 | 246053 | 248888 | (sec)

Tiled Implementation

N Morton Block Data
Layout | Layout

2048 | 27848 | 27135 |

4096 | 224820 | 2184.09 | (sec)

4. Optimizing the Single-Source Shortest Path
Problem

Table 5: UltraSPARC lll results

Due to the structure of Dijkstra’s algorithm neither tiling nor recursion can be directly applied.
Much work has been done to generate cache friendly implementations of the heap, however, the
update operation has not been considered in great detail (see section 2.3). In the presence of the

update operation, the Fibonacci heap represents the
asymptotically optimal implementation with respect to time
complexity. Unfortunately, in the problem sizes being
considered, the performance of the Fibonacci heap was very
poor compared with even a straightforward implementation
of the heap.

As mentioned in Section 2, the largest data structure is
the graph representation. This structure will be of size
O(N+E), where E can be as large as N* for dense graphs. In
contrast, the priority queue, the other data structure
involved, will be of size O(N). Also note that each element
in the graph representation will be accessed exactly once.
For each node extracted from the priority queue, the
corresponding adjacent nodes are read and updated. All
nodes will be extracted from the priority queue and no node
can be extracted more than once. Therefore, the traffic as a
result of the graph representation will be proportional to its
size and the amount of prefetching possible. For these
reasons, we focus on providing an optimization to the graph
representation based on the data access pattern.

In the context of the graph representation, we can take
advantage of two things. The first is prefetching. Modern
processors perform aggressive prefetching in order to hide
memory latencies. The second is to optimize at the cache
line level. In this case, a single miss would bring in multiple
elements that would subsequently be accessed and result in
cache hits. In this way cache pollution is minimized.

There are two commonly used graph representations.
The adjacency matrix is an NxN matrix, where the (i,)"
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Figure 12: Speedup results for
Dijkstra’s algorithm
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Figure 13: Speedup results for
Dijkstra’s algorithm




element of the matrix is the cost from the i™ node to the L

node of the graph. This representation is of size O(N*). It Cache misses

. : Linked-List | Adj. Arr:
has the nice property that elements are accessed in a Data level 1 | 1“7904 = ’5;””
contiguous fashion and therefore, cache pollution will be | pata level 2 3.50 182

minimized and prefetching will be maximized. However,
for sparse graphs, the size of this representation is
inefficient. The adjacency list representation is a pointer-
based representation where a list of adjacent nodes is stored for each node in the graph. Each node in
the list includes the cost of the edge from the given node to the adjacent node. This representation has
the property of being of optimal size for all graphs, namely O(N+E). However, the fact that it is
pointer based, leads to cache pollution and difficulties in prefetching. See [7] or [14] for more details
regarding these common graph representations.

Consider a simple combination of these two representations [28]. For each node in the graph, we
have an array of adjacent nodes. The size of each array is exactly the out-degree of the corresponding
node. There are simple methods to construct this representation when the out-degree is not known
until run time. For this representation, the elements at each point in the array look similar to the
elements stored in the adjacency list. Each element must

(Input: 16K nodes, 0.1 density) (10%

Table 6: Simulation results

store both the cost of the path and the index of the adjacent
node. Since the size of each array is exactly the out-degree of
the corresponding node, the size of this representation is
O(N+E). This makes it optimal with respect to size. Also,
since the elements are stored in arrays and therefore in
contiguous memory locations, the cache pollution will be
minimized and prefetching will be maximized. Subsequently
this representation will be referred to as the adjacency array
representation. This graph representation is essentially the
same as a graph representation discussed in [28]. 0

In order to demonstrate the performance improvements .
using our graph representation, we performed simulations as

[ —&— Linked-List |
— —B—Adj. Array T
| —©—FW-Tiled |
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well as experiments on two different machines, the Pentium
[II and UltraSPARC III, for Dijkstra’s algorithm. The
simulations show approximately 20% reduction in level-1

Figure 14: Dijkstra’s algorithm vs.
best FW on Pentium Ill, N = 2048
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— —B—Adj. Array
| —&—FW-Tiled |

cache misses and a 2x reduction in the number of level-2
cache misses (see Table 6). This is due to the reduction in
cache pollution and increase in prefetching that was
predicted. Due to memory limitations, experiments for all
graph densities were only performed at small problem sizes,
namely 2K nodes and 4K nodes. These results demonstrate
improved performance using the adjacency array for all graph
densities and are shown in Figure 12. Experiments on larger
problem sizes (16K nodes up to 64K nodes) at a graph density
of 10% are shown in Figure 13 and again are limited by the 0
size of main memory. All of the results show a 2x
improvement for Dijkstra’s algorithm on the Pentium III and

2000

Execution time (s)

1000

0 0.2 0.4 0.6
Graph density

a 20% improvement on the UltraSPARC III. This significant
difference in performance is due primarily to the difference in

Figure 15: Dijkstra’s algorithm vs.
best FW on UltraSPARC Ill, N = 4096



the memory hierarchy of these two architectures.

A second comparison to observe is between the Floyd-Warshall algorithm and Dijkstra’s algorithm
for sparse graphs, i.e. edge densities less than 20%. For these graphs, Dijkstra’s algoritlnp is more
efficient for the all pairs shortest path problem. By using the adjacency array representation of the
graph in Dijkstra’s algorithm, the range of graphs over which Dijkstra’s algorithm outperforms the
Floyd-Warshall algorithm can be increased. Figures 14 & 15 show a comparison of the best Floyd-
Warshall algorithm with Dijkstra’s algorithm for sparse graphs. On the Pentium III, we were able to
increase the range for Dijkstra’s algorithm from densities up to 5% to densities up to 20%. On the
UltraSPARC I1I we increased the range from densities up to 20% to densities up to 30%.

5. Optimizing the Minimum Spanning Tree Problem

As mentioned in Section 2, Prim’s algorithm for
minimum spanning tree is very similar to Dijkstra’s
algorithm for the single source shortest path problem. In
fact they are identical with respect to the access pattern, the

difference being only in how the update operation is
performed. In Dijkstra’s algorithm nodes in the priority
queue are updated with their distance from the source node.
In Prim’s algorithm nodes are updated with the shortest
distance from any node already removed from the priority
queue. For this reason the optimizations applicable to
Dijkstra’s algorithm are also applicable to Prim’s algorithm.
Figures 16 & 17 show the result of applying the
optimization to the graph representation discussed in
Section 4 to Prim’s algorithm. Recall that this optimization
replaces the adjacency list graph representation with the
adjacency array graph representation. This representation
matches the streaming access that is made to the graph and
in this way minimizes cache pollution and maximizes the
prefetching ability of the processor.

Our results show a 2x improvement on the Pentium I1I
and 20% for the UltraSPARC III. This performance
improvement was shown in the smaller problem sizes of 2K
and 4K nodes where experiments were done for densities
ranging from 10% to 90% as well as the large problem sizes
of 16K nodes up to 64K nodes with densities of 10%.
Simulations were also performed to verify improved cache
performance. These results are shown in Table 7. They
show approximately a 20% reduction in the number of
level-1 cache misses and a 2x reduction in the number of
level-2 cache misses. As expected, all of the results are very
close to the results shown for Dijkstra’s algorithm.

6. Optimizing Bipartite Graph Matching
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Cache misses

| Linked-List Adj. Array |
_ Datalevel 1 7.19 537 |
_ Datalevel 2 3.59 1.82 |
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Table 7: Simulation results
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In this section, we utilize the ideas and techniques developed in the previous sections to optimize
another basic graph algorithm, namely graph matching for bipartite graphs. As discussed in Section 2,
this algorithm shows similarities to Dijkstra’s algorithm with respect to memory access in each
iteration and therefore tiling and recursion cannot be easily applied.

The first optimization that is applied is to use the adjacency arrays instead of the adjacency list. In
order to find an augmenting path, a breadth first search is performed. The access pattern will then be
to access all adjacent nodes to the current node. This is the same access pattern as was displayed in
both Dijkstra’s and Prim’s algorithm.

The second optimization that is applied is intended to reduce the working set size as in tiling or
recursion. As mentioned above, neither tiling nor recursion can be directly applied. What can be done
is to use tiling to generate a good match as a starting point for the full problem. In this way the
amount of work done when examining the complete graph will be reduced. Furthermore, the work
done in the tiled steps will be cache friendly if the tiles are chosen appropriately. In order to
accomplish this, first divide the graph into sub-graphs, each of which fits into the cache and find the
local maximal matches. Then the local matches are combined to form a starting point for the original
algorithm. Finally, the algorithm is run on the complete graph, using the match already found as a
starting point, to find the maximal match.

The performance of this optimization is largely
dependant on the structure and density of the graph and the 4; ]
partitioning chosen. Assuming a good partition, the local 4 | .
maximal matches will be close to a global maximal match o 3'§ ‘ I
for dense graphs due to the large number of edges present in D 25 ‘
each sub-graph. For sparse graphs, it is difficult to find a ;,"l 2
good local match and more work will be required at the 1';5
global level. 0.5 |
In order to improve the quality of the match at the local ¢ e ‘
level, a very simple partitioning algorithm is employed. A o B b 02 ot
basic description of this algorithm is as follows. Given a Density
bipartite graph, the goal is to partition the edges into two —&— Pentium lll —8—UltraSPARC Il

groups such that the best match possible is found within
each group. In order to accomplish this, as many edges as ~ Figure 18: Speed-up vs. density
possible should have both end points in the same partition. results for graph matching
These edges are referred to as internal edges. Arbitrarily 12
partition the vertices into 4 equal partitions. Count the
number of edges between each pair of partitions. Combine
partitions into two partitions such that as many internal
edges are created as possible.

In order to support the quality of the optimization,
experiments were also performed for a graph in which a
worst possible graph partitioning was chosen, i.e. no

10 -

Speed-up
L= V) LS =]

matches were found at the local level. For this case, the 0 10000 20000 30000 40000
optimized implementation showed only 10% performance N
degradation. The majority of experimentation was o— Pentium 11l —B— UltraSPARC I

performed using randomly generated graphs in order to

average out the dependence on graph partitioning The Figure 19: Best case speed-up
random graphs were constructed by randomly choosing half results for graph matching
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of the vertices to be in one partition of the bipartite graph. 3. I
Edges were then created from each vertex in the partition to 35

randomly chosen vertices not in the partition. 5 .74___..;—‘.

As expected, the performance improvement is highly

Speed-up

dependent on the density of the graph. This dependence can 1.2 | |
be seen in Figure 18, which shows the speedup vs. graph 1 |
density. Results ranged from just over 2x for graphs of 10% 0.5 -

density to over 4x for graphs of 30% density. In this case, o+ |
the problem size was fixed at 8192 nodes and density was 0 10000 20000 30000 40000
limited to 30% by main memory. The best-case results are B N )
shown in Figure 19. For these problems, we designed the '—e— Pentium IIl —8— UltraSPARC IIl

mput graph such that the maximal matching is found in the
tiled phase and very little work is performed on the
complete graph. For these problems, results ranged from 3x

Figure 20: Average speed-up results

. for graph matching
up to 10x. The most interesting results are those shown in
Figure 20. The input graph in this case was a randomly
generated graph and the basic graph partitioning algorithm DL1 Cache P e.rformancc.: )
was used to improve the match found at the local level. l Basclne | Optiatasd |
The results shown are the average over 10 different random A ‘;;::2 %g —! 7%8 ]'
input graphs. The speedup shown is roughly 2x for all “Miss Rate | 14.86% | 5.56%
problem sizes. = We also performed simulations to | (input: 8K nodes, 0.1 density) (109

demonstrate cache performance for this case and the results
are shown in Table 8. Based on the number of access to the ~ Table 8: Simulation results

level 1 cache, the optimized implementation is performing somewhat less work. This contributes
somewhat to the decrease in the number of misses shown. However, the miss rate is also reduced by
almost 3x, which indicates that the optimized implementation does improve cache performance
beyond the amount reduced by the decrease in work.

7. Conclusion

In the course of the research discussed in this paper, we have used the techniques of tiling,
recursion, and data layout optimization to show improved cache performance both analytically and
experimentally in the area of graph algorithms. The recursive implementation of the Floyd-Warshall
algorithm represents a novel cache-oblivious implementation. Using this implementation as well as a
tiled implementation, we have shown more than a 6x improvement in execution time on three different
architectures as well as analytically showing that both implementations are optimal with respect to
processor-memory traffic. We also showed significant performance improvements for Dijkstra’s
algorithm and Prim’s algorithm using a cache friendly graph representation. Finally, we applied both
the cache friendly graph representation and a tiling optimization to the problem of graph matching.
These optimizations showed a 2x to 3x improvement in execution time for randomly generated graphs
and up to 10x improvement for graphs well suited to our partitioning algorithm.

Tiling and recursion are also used as computation decomposition techniques for parallelization.
Good parallelized code should have minimal communication and sharing between computational
nodes, thus our pursuit of data locality also benefits parallelization. Our sequential FW
implementations and matching implementation can easily be transformed into parallel code.
Computation and data are already decomposed, what need to be added are computation and data
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distribution, synchronization and communication primitives. One of our future directions will be to
implement parallel versions of the Floyd-Warshall algorithm and matching algorithm based on the
work presented in this paper.

Another area for future work is the optimization of the priority queue in Dijkstra’s algorithm and
Prim’s algorithm. As mentioned, the Fibonacci heap is the asymptotically optimal implementation for
priority queue in the presence of the update operation, however, due to large constant factors, it
performed poorly in experiments.

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and Smart
MemORies (ADVISOR) Project at USC [1]. In this project we focus on developing algorithmic
design techniques for mapping applications to architectures. Through this we understand and create a
framework for application developers to exploit features of advanced architectures to achieve high
performance.
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