Memory Hierarchy Performance of Tiling and Block Data Layout

Neungsoo Park, Bo Hong and Viktor K. Prasanna
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089-2562
neungsoo, bohong, prasanna@halcyon.usc.edu

Technical Report No. CENG 02-15

Department of Electrical Engineering — Systems
University of Southern California
Los Angeles, California 90089-2562
213-740-4465

Memory Hierarchy Performance of Tiling and Block
Data Layout *

Neungsoo Park, Bo Hong and Viktor K. Prasanna
Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089-2562
{neungsoo, bohong,prasanna}@halcyon.usc.edu
http://advisor.usc.edu

Abstract

Recently, several experimental studies have been conducted on block data layout
in conjunction with tiling as a data transformation technique to improve cache perfor-
mance. In this paper, we analyze cache and TLB performance of such alternate layouts
(including block data layout and Morton layout) when used in conjunction with tiling.
We derive a tight lower bound on TLB performance for standard matrix access pat-
terns, and show that block data layout and Morton layout achieve this bound. To
improve cache performance, block data layout is used in concert with tiling. Based
on the cache and TLB performance analysis, we propose a data block size selection
algorithm that finds a tight range for optimal block size. To validate our analysis,
we conducted simulations and experiments using tiled matrix multiplication, LU de-
composition and Cholesky factorization. For matrix multiplication, simulation results
using UltraSparc II parameters show that tiling and block data layout, with a block
size given by our block size selection algorithm, reduces up to 93% of TLB misses com-
pared with other techniques (copying, padding, etc.). The total miss cost is reduced
considerably. Experiments on several platforms (UltraSparc II and III, Alpha, and
Pentium III) show that tiling with block data layout achieves up to 50% performance
improvement over other techniques that use conventional layouts. Morton layout is also
analyzed and compared with block data layout. Experimental results show that matrix
multiplication using block data layout is up to 15% faster than that using Morton data
layout.

Index Terms: block data layout, tiling, TLB misses, cache misses, memory hierarchy

=Supported by the DARPA Data Intensive Systems Program under contract F33615-99-1-1483 monitored
by Wright Patterson Air force Base and the National Science Foundation under grant No. 99000613 and in
part by an equipment grant from Intel Corporation.

1 Introduction

The increasing gap between memory latency and processor speed is a critical bottleneck in
achieving high performance. The gap is typically bridged by a multi-level memory hierar-
chy that can hide memory latency. This memory hierarchy consists of multi-level caches,
which are typically on- and off- chip caches. To improve the effective memory hierarchy
performance, various hardware solutions have been proposed [3, 7, 9, 10. 19]. Recent pro-
cessors such as Intel Merced [24] provide increased programmer control over data placement
and movement in a cache-based memory hierarchy, in addition to providing some memory
streaming hardware support for media applications. To exploit these features, it is important

to understand the effectiveness of control and data transformations.

Along with hardware solutions, compiler optimization techniques have received consid-
erable attention [14, 15, 22]. As the memory hierarchy gets deeper, it is critical to efficiently
manage the data. To improve data access performance, one of the well-known optimization
techniques is tiling. Tiling transforms loop nests so that temporal locality can be better
exploited for a given cache size. Iowever, tiling focuses only on the reduction of capacity
cache misses by decreasing the working set size. Cache in most state-of-the-art machines
is either direct-mapped or small set-associative. Thus, it suffers from considerable con-
flict misses, thereby degrading the overall performance [6, 12]. To reduce conflict misses,
copying [12, 25] and padding [16, 20] techniques with tiling have been proposed. However,
most of these approaches target mainly the cache performance, paying less attention to the
Translation Look-aside Buffer (TLB) performance. As problem sizes become larger, TLB
performance becomes more significant. If TLB thrashing occurs, the overall performance will
be drastically degraded [23]. Hence, both TLB and cache must be considered in optimizing

application performance.

Most previous optimizations, including tiling, concentrate on single-level cache [6, 12,

16, 20, 25]. Multi-level memory hierarchy has been considered by a few researchers. For
improving multi-level memory hierarchy performance, a new compiler technique is proposed
in [27] that transforms loop nests into recursive form. However, only multi-level caches were
considered [21, 27] with no emphasis on TLB. It was proposed in [13] that cache and TLB
performance be considered in concert to select the tile size. In this analysis, TLB and cache
were assumed to be fully-set associative. However, the cache is direct or small set-associative

in most of the state-of-the-art platforms.

Some recent work [4, 11, 12, 17, 18, 25] proposed changing the data layout to match the
data access pattern, to reduce cache misses. It was proposed in [11] that both data and loop
transformation be applied to loop nests for optimizing cache locality. In [4], conventional
(row or column-major) layout is changed to a recursive data layout, referred to as Morton
layout, which matches the access pattern of recursive algorithms. This data layout was shown
to improve the memory hierarchy performance. This was confirmed through experiments;

we are not aware of any formal analysis.

The ATLAS project [26] automatically tunes several linear algebra implementations. It
uses block data layout with tiling to exploit temporal and spacial locality. Input data, orig-
inally in column major layout, is re-mapped into block data layout before the computation
begins. The combination of block data layout and tiling has shown high performance on
various platforms. However, the selection of the optimal block size is done empirically at

compile time by running several tests with different block sizes.

In this paper, we study block data layout as a data transformation to improve memory
hierarchy performance. In block data layout, a matrix is partitioned into sub-matrices called
blocks. Data elements within one such block are mapped onto contiguous memory. These
blocks are arranged in row-major order. First, we analyze the intrinsic TLB performance of
block data layout. We then analyze the TLB and cache performance using tiling and block

data layout. Based on the analysis. we propose a block size selection algorithm. Morton data

layout is also discussed as a variant of block data layout. The contributions of this paper are

as follows:

o We present a lower bound analysis of TLB performance. Further, we show that block
data layout intrinsically has better TLB performance than row-major layout (Sec-
tion 2). As an abstraction of matrix operations. the cost of accessing all rows and all
columns is analyzed. Compared with row major layout, we show that the number of

TLB misses is improved by O(v/P,) where P, is the page size.

e We present TLB and cache performance analysis when tiling is used with block data
(Section 3.1 and 3.2). In tiled matrix multiplication, block data layout improves the
number of TLB misses by a factor of B, where B is the block size. Cache perfor-
mance analysis is also presented. We validate our analysis through simulations using

SimpleScalar [2].

o On the basis of our cache and TLB analysis, we propose a block size selection algorithm
(Section 3.3). The best block sizes found by ATLAS fall in the range given by our

algorithm.

o We validate our analysis through simulations and measurements using matrix multiply,

LU decomposition and Cholesky factorization (Section 4).

o We compare the performance of block data layout and Morton data layout. Block size
selection for Morton data layout is limited. This limitation causes the performance of
Morton data layout to be worse than that of block data layout. Experimental results on
UltraSparc IT and Pentium III show that matrix multiplication and LU decomposition
executions using block data layout were up to 15.8% faster than that obtained using

Morton data layout.

The rest of this paper is organized as follows. Section 2 describes block data layout and
gives analysis of its TLB performance. Section 3 discusses the TLB and cache performance
when tiling and block data layout are used in concert. A block size selection algorithm
is described based on this analysis. Section 4 shows simulation and experimental results.

Concluding remarks are presented in Section 5.

2 Block Data Layout and TLB Performance

In this paper, we assume the architecture parameters to be fixed (e.g. cache size, cache line
size, page size, TLB entry capacity, etc.). The following notations are used in this paper.
Sus denotes the number of TLB entries. P, denotes virtual page size. It is assumed that the
TLB is fully set-associative with Least-Recently-Used(LRU) replacement policy. Block size
is B x B, where it is assumed B? = kP,. S is the size of the ith level cache. Its line size is

denoted as L. Cache is assumed to be direct-mapped.

In Section 2, we analyze the TLB performance of block data layout. We show that block

data layout has better intrinsic TLB performance than conventional data layouts.

2.1 Block Data Layout

To support multi-dimensional array representations, most programming languages provide
a mapping function, which converts an array index to a linear memory address. In current
programming languages, the default data layout is row-major or column-major, denoted as
canonical layouts [5]. Both row-major and column-major layouts have similar drawbacks.
For example, consider a large matrix stored in row-major layout. Due to large stride, column
accesses can cause cache conflicts. Further, if every row in a matrix is larger than the size of a

page, column accesses can cause TLB trashing, resulting in drastic performance degradation.

oi1|2{3lals|6]7 0 104 5|8 912 13 o 1]4 5|16 17|20 21
HHEIREERE 2 3|6 7[10 11{14 15 2 3l6 7|18 192 2
1617|1819] 20 21| 22]23 16 17[20 21|24 25(28 29 8 9012 13|24 2528 29
2425|2627 28|29 30]31 18 1922 23|26 27|30 31 10 11|14 15|26 27|30 31
3233 |34 |35]|36 |37 3830 32 33|36 3740 41|44 45 32 33[36 37|48 49[52:83
40| 41| 42|43 a4 |45 |a6]a7 3¢ 35(38 39|42 43|46 47 34 35138 39s0 5}, ;4 55
48|49 (50 (51 (52|53 |54]55 48 49|52 53|56 57|60 61 a0 41|44 4s|se st [0 61
5657 |58|50|60|61|62]63 50 51|54 55|58 59|62 63 42 43046 47|58 59|62 63

(a) Row-major layout (b) Block data layout (c) Morton data layout

Figure 1: Various data layouts: block size 2 x 2 for (b) and (c)

In block data layout, a large matrix is partitioned into sub-matrices. Fach sub-matrix
is a B x B matrix and all elements in the sub-matrix are mapped onto contiguous memory
locations. The blocks are arranged in row-major order. Another data layout of recent interest
is Morton data layout [4]. Morton data layout divides the original matrix into four quadrants
and lays out these sub-matrices contiguously in the memory. Each of these sub-matrices is
further recursively divided and laid out in the same way. At the end of recursion, elements
of the sub-matrix are stored contiguously. This is similar to the arrangement of elements
of a block in block data layout. Morton data layout can thus be considered as a variant of
the block data layout. They only differ in the order of blocks. Figure 1 shows block data
layout and Morton data layout with block size 2 x 2. Due to the similarity, the following

TLB analysis holds true for Morton data layout also.

2.2 TLB Performance of Block Data Layout

In this section, we present a lower bound on the TLB misses for any data layout. We discuss
the intrinsic TLB performance of block data layout using a generic access pattern. We give
an analysis on the TLB performance of block data layout and show improved performance

compared with conventional layouts. Throughout this section, we consider an N x N array.

2.2.1 A Lower Bound on TLB Misses

In general, most matrix operations consist of row and column accesses, or permutations of
row and column accesses. In this section, we consider an access pattern where an array is
accessed first along all rows and then along all columns. The lower bound analysis of TLB
misses incurred in accessing the data array along all the rows and all the columns is as

follows.

Theorem 2.1 For accessing an array along all the rows and then along all the columns, the

L) . 2
asymptotic minimum number of TLB misses is given by 2%.
v

Proof: Consider an arbitrary mapping of array elements to pages. Let .4, = {i] at least one
element of row ¢ is in page k }. Similarly, let Bx = {j| at least one element of column j is
in page k }. Let ax = |Ax| and by = |Bi|. Note that ag x by > P,. Using the mathematical

identity that the arithmetic mean is greater than or equal to the geometric mean (ax + by >

2v/P,), we have:

%

(aL + bk) > 2——\/_

1

=
1]

Let z; (y;) denote the number of pages where elements in row ¢ (column j) are scattered. The
number of TLB misses in accessing all rows consecutively and then all columns consecutively
is given by Tmiss > T (2 — O(Suws)) + 230, (y; — O(Sms)). O(Se) is the number of page
entries required for accessing row ¢ (column j) that are already present in the TLB. Page k
is accessed a; times by row accesses, thus, 1-'”: = 2 *, ak. Similarly, ZJ WY = ka_;l by..
Therefore, the total number of TLB misses is given by

72

VP,

As the problem size (V) increases, the number of pages accessed along one row (column)

Toniss Z (U. + b)) — 2N - O(Sw) > 2 x — 2N - O(Sus)-

i [\/]“JI 3

becomes larger than the size of TLB (Sy;). Thus the number of TLB entries that are reused is

~1

reduced between two consecutive row (column) accesses. Therefore the asvmptotic minimum

number of TLB misses is given by 2%. 0]

We obtained a lower bound on TLB misses for any layout when data are accessed along
all rows and then along all columns. This lower bound of TLB misses also holds when data

is accessed along an arbitrary permutation of all rows and columns.

Corollary 2.1 For accessing an array along an arbitrary permutation of row and column

. . . o . . 2
accesses, the asymptotic minimum number of TLB misses is given by ’2%3-.
.

2.2.2 TLB Performance

In this section, we consider the same access pattern as discussed in Section 2.2.1. Consider
a given N x N array stored in a canonical layout. Without loss of generality, canonical
layout is assumed to be row-major layout. During the first pass (row accesses), the memory
pages are accessed consecutively. Therefore, TLB misses caused by row accesses is equal to
%. During the second pass (column accesses), elements along the column are assigned to
N different pages. llence, a column access causes N TLB misses. Since N > Sus, all N
column accesses result in N2 TLB misses. The total number of TLB misses caused by all
row accesses and all column accesses is thus % + N2. Therefore, in canonical layout, TLB

misses drastically increase due to column accesses.

Compared with canonical layout, block data layout has better TLB performance. The

following theorem shows that block data layout minimizes the number of TLB misses.

Theorem 2.2 For accessing an array along all the rows and then along all the columns,

block data layout with block size \/P, x /P, minimizes the number of TLB misses.

To analyze the number of TLB misses for this data access pattern, we consider two cases:

B%/P, > 1 and B%*/P, < 1. For each case, we estimate the number of TLB misses by

(0]

comparing the TLB size. the number of page entries in a row, and the number of pages in
a block. The optimal block size is then derived from these estimations. Detailed proof of
the above theorem is presented in Appendix A. In general, the number of TLB misses for
a B x B block data layout is Iv% + % It is reduced by a factor of %(z E%) when

compared with canonical layout. When B = /P, (k = 1), this number approaches the lower

bound shown in Theorem 2.1.

The above theorem holds true even when data in block data layout is accessed along an

arbitrary permutation of all rows and columns.

Corollary 2.2 For accessing an array along an arbitrary permutation of rows and columns,

block data layout with block size \/P, x \/P, minimizes the number of TLB misses.

Similar to Theorem 2.2 and Corollary 2.2, the number of TLB misses is minimized when

blocks are stored in Morton data layout and elements are accessed along rows and columns.

Corollary 2.3 For accessing an N x N array along along all the rows and then along all

the columns (or along an arbitrary permutation of rows and columns), Morton data layout

with block size \/P, x /P, minimizes the number of TLB misses.

To verify our analysis, simulations were performed using the SimpleScalar simulator [2].
It is assumed that the page size is 8K Byte and the data TLB is fully set-associative with 64
entries (similar to the data TLDB in UltraSparc 2.) Double precision data points are assumed.
The block size is set to 32. Table 1 shows the comparison of TLB misses using block data
layout with using canonical layout. Table 1 (a) shows the TLB misses for the “first all rows
and then all columns” access. For small problem sizes, TLB misses with block data layout
are considerably less than those with canonical layout. This is due to the fact that TLDB
entries used in a column(row) access are almost fully reused in the next column(row)access.

For a problem size of 1024 x 1024, a 504.37 times improvement in the number of TLB misses

Table 1: Comparison of TLB misses

(a) Along all rows and then all columns

(b) Arbitrary permutation of row and column accesses

Layout 1024 2048 4096 Layout 1024 2048 4096
Block Layout 2081 81794 | 1196033 Block Layout 64140 | 273482 | 1080986
Morton Layout 2072 | 274473 | 1081466 Morton Layout 64257 | 273477 | 1080955
Canonical Layout || 1049601 | 4198401 | 16793601 Canonical Layout || 1053606 | 4208690 | 16822675

(c) Arbitrary permutation of all rows followed by arbitrary permutation of all columns accesses

Layout || 1024 | 2048 4096
Block Layout 64501 | 274473 | 1080465
Morton Layout 64813 | 274472 | 1081469
Canonical Layout || 1053713 | 4208681 | 16822395

is obtained with block data layout. This number is much less than the lower bound obtained
from Theorem 2.1. This is because the TLB entries are reused for this problem size. For
larger problem sizes the TLB entries cannot be reused. The total number of TLB misses
approaches the lower bound. For these large problem sizes, TLB misses with block data

layout are upto 16 times less compared with canonical layout.

To verify Corollary 2.1 and 2.2, two sets of access patterns were simulated: an arbitrary
permutation of all rows and columns, and an arbitrary permutation of all rows followed by
an arbitrary permutation of all columns. With these access patterns, TLB entries referenced
during one row(column) access are not reused when accessing the next row(column). The
number of TLB misses with block data layout approaches the lower bound on TLB misses.
The results are shown in Table 1 (b) and (c).

Morton data layout shows a performance

similar to block data layout.

Even though block data layout has better TLB performance compared with canonical
layouts with generic access pattern, it alone does not reduce cache misses. The data access

pattern of tiling matches well with block data layout. In the following section, we discuss the

10

for kk=0 to N by B
for jj=0 to N by B
for i=0 to N

for jj=0 to N by B
for kk=0 to N by B
for ii=0 to N by B

for k=kk to min(kk+B-1,N) for i=ii to min(ii+B-1,N)
r = X(i,k) for k=kk to min(kk+B-1,N)
for j=jj to min(jj+B-1,N) r = X{i k)
Z(i,3) += r*¥Y(k,j) for j=jj to min(jj+B-1,N)

Z{i,j) += r*Y(k,j)

(a) 5-loop tiled matrix multiplication (b) 6-loop tiled matrix multiplication

Figure 2: Tiled matrix multiplication

performance improvement of TLDB and caches when block data layout is used in conjunction

with tiling.

3 Tiling and Block Data Layout

Tiling is a well-known optimization technique that improves cache performance. Tiling
transforms the loop nest so that temporal locality can be better exploited for a given cache
size. Consider an N x N matrix multiplication represented as Z = XY. The working set
size for the usual 3-loop computation is N? + 2N. For large problems, the working set size
is larger than the cache size, resulting in severe cache thrashing. To reduce cache capacity
misses, tiling transforms the matrix multiplication to a 5-loop nest tiled matrix multiplication
(TMM) as shown in Figure 2(a). The working set size for this tiled computation is 3% +2B.
To efficiently utilize block data layout, we consider a 6-loop TMM as shown in Figure 2(b)

instead of a 5-loop TMM.

3.1 TLB Performance

In this section, we show the TLB performance improvement of block data layout with tiling.
To illustrate the effect of block data layout on tiling, we consider a generic access pattern

abstracted from tiled matrix operations. The access pattern is shown in Figure 3 where the

11

\

IEE: gfill
i

(a) Tiled row access (b) Tiled column access
Figure 3: Tiled accesses

tile size is equal to 3.

With canonical layout, TLB misses will not occur when accessing consecutive tiles in
the same row, if B < Sy;. Hence, the tiled accesses along the rows generate %j TLB misses.
This is the minimum number of TLB misses incurred in accessing all the elements in a
matrix. However, tiled accesses along columns cause considerable TLB misses. B page table
entries are necessary for accessing each tile. For all tiled column accesses, the total number
of TLB misses is T,y = B x % X % = %. It is reduced by a factor of B compared with the
number of TLB misses for all column accesses without tiling (see Section 2.2).

The total number of TLB misses are further reduced when block data layout is used in
concert with tiling, as shown in Theorem 3.1. Throughout this paper, the block size of block
data layout is assumed to be the same as the tile size so that the tiled access pattern matches
block data layout. In block data layout, a 2-dimensional block is mapped onto 1-dimensional
contiguous memory locations. A block extends over several pages, as shown in IFigure 4 for
an example of block size B? = 1.7P,. To analyze TLB misses for column accesses using

block data layout, the average number of pages in a block is required.

Lemma 3.1 Consider an array stored in block data layout with block size B x B, where

B? = kP,. The average number of pages per block is given by k + 1.

Proof: For block size kP,, assume that k = n + f, where n is a non-negative integer and

12

<

B*= 1.7P, B*=1.7P

v v

)
Y
®
)
o
°
Iv
.
.
v
°

(a) over 2 pages (b) over 3 pages

Figure 4: Blocks extending over page boundaries

0 < f < 1. The probability that a block extends over n + 1 contiguous pages is 1 — f. The
probability that a block extends over n + 2 contiguous pages is f. Therefore, the average
number of pages per block in block data layout is given by: (1—f)x(n+1)+fx(n+2) = k+1.

0]

Theorem 3.1 Assume that an N x N array is stored using block data layout. For tiled row

. . 2
and column accesses, the total number of TLD misses is (2 + %)%

Proof: Blocks in block data layout are arranged in row-major order. So, a page overlaps
between two consecutive blocks that are in the same row. The page is continuously accessed.
The number of TLB misses caused by all tiled row accesses is thus %, which is the minimum
number of TLB misses. However, no page overlaps between two consecutive blocks in the
same column. Therefore, each block along the same column goes through (k + 1) different
pages according to Lemma 3.1. The number of TLB misses caused by all tiled column ac-
cesses is thus Toor = (k+1) x & x & = (k+ 1)%. Therefore, the total TLB misses caused
by all row and all column accesses is Tiss = (2 + %)%. o)
For tiled access, the number of TLB misses using canonical layout is % + X where
B = VkP,. Using Theorem 3.1, compared with canonical layout, block data layout re-

duces the number of TLB misses by ¥ kzlz":l‘/z = 3221/1[

To verify our analysis, simulations for tiled row and column accesses were performed

using the SimpleScalar simulator. The simulation parameters are equal to those in Section 2.

13

Table 2: TLB misses for all tiled row accesses followed by all tiled column accesses

Layout 1024 2048 4096

Block Layout 2081 | 12289 | 49153
Canonical Layout || 33794 | 139265 | 561025

A 32 x 32 block size was considered. The block size is the same as the page size. Table 2
shows TLB misses for 3 different cases. For problem sizes of 2048 x 2048 and 4096 x 4096,
the number of TLB misses conform our analysis in Theorem 3.1. The number of TLB misses
with block data layout is 91% less than that with canonical layout. For a problem size of
1024 x 1024, TLB misses with block data layout is 2081, which is very close to the minimum
number of TLB misses (2048). This is a special case in which each block starts on a new
page.

A similar analytical result can be derived for real applications. Consider the 5-loop
TMM with canonical layout in Figure 2 (a). Array Y is accessed in a tiled row pattern. On
the other hand, arrays X and Z are accessed in a tiled column pattern. A tile of each array
is used in the inner loops (i, %, 7). The number of TLB misses for each array is equal to the
average number of pages per tile, multiplied by the number of tiles accessed in the outer
loops (kk,jj). The average number of pages per tile is B + %3. Therefore, the total number
of TLB misses is given by: 2N%(gz + B;Pu) + N} (§ + 7,1-‘-)

Consider the 6-loop TMM on block data layout as shown in I'igure 2 (b). A B x B
tile of each array is accessed in the inner loops (7,k,j) with block layout. The number of
TLB misses for each array is equal to the average number of pages per block multiplied by
the number of blocks accessed in the outer loops (iz,kk, jj). According to Lemma 3.1, the

average number of pages per block is %: + 1(= k + 1). Therefore, the total number of TLB

14

200 r 3000 r

| From simulation B Tiling+BDL
O Estimated O Tiling only
= — 2500 |
v
2150 °
© & =
o« & 2000
3 3
o o —
£ =
=00 = 1500 |
w
[0 (03}
% w
= g 1000 |
m 50 ©
- it
P £ 500 |
0 S L L. 0 j__i;-_gg-_gi
28 32 36 40 28 32 36 40
Block size Block size
Figure 5: Comparison of TLB misses Figure 6: Comparison of TLB misses
from simulation and estimation using tiling+BDL and tiling only

misses (T'M) is

)

B? N\? VY2 1 11
T™™M = | — 2| = — :2'3(—) ;2(_ =, (]
e (P.+l){ (B) +(B)} NAsp T T Pl.+B-’))

v

Compared with the 5-loop TMM with canonical layout, TLB misses decrease by a factor of
O(B) using the 6-loop TMM. Note that the 6-loop TMM uses block data layout.

To verify our TLB miss estimation, simulations on the 6-loop TMM were performed.
The problem size was fixed at 1024 x 1024, Simulation parameters were the same as those
in Section 2. Tigure 5 compares our estimations (given by Eq. (1)) with the simulation

results. Figure 6 shows that block data layout reduced TLB misses considerably compared

with tiling.

3.2 Cache Performance

For a given cache size, tiling transforms the loop nest so that the temporal locality can be
better exploited. This reduces the capacity misses. llowever, since most of the state-of-the-
art architectures have direct-mapped or small set-associative caches, tiling can suffer from

15

considerable conflict misses that degrade the overall performance. Figure 7 (a) shows cache
conflict misses. These conflict misses are determined by cache parameters such as cache size,
cache line size and set-associativity, and runtime parameters such as array size and block

size. Performance of tiled computations is thus sensitive to these runtime parameters.

e -_’,AC,"//_'
CACHE CACHE
{ PN A] [v 7 | NN [
(a) Canonical layout (b) Block data layout

Figure 7: Example of conflict misses

If the data layout is reorganized from a canonical layout to a block layout (assuming tile
size is same as block size) before tiled computations start, the entire data that is accessed
during a tiled computation will be localized in a block. As shown in IMigure 7 (b), a self
interference miss does not occur if the block is smaller than the cache since all elements in

a block can be stored in contiguous memory locations.

In general, cache miss analysis for direct mapped cache with canonical layout is com-
plicated because the self interference misses cannot be quantified easily. Cache performance
analysis of tiled algorithm was discussed in [12]. The cache performance of tiling with copy-
ing optimization was also presented. We observe that the behavior of cache misses for tiled
access patterns on block layout is similar to that of tiling with copying optimization on
canonical layout. We have derived the total number of cache misses for 6-loop TMM (which

uses block data layout). Detailed proof can be found in Appendix B. For i** level cache with

16

@ 40 |
c
—
E 30
$ B From simulation
3 20 O Estimated
E
]
S
© 10
(@]
0 = -
36 40 44
Block size

Figure 8: Comparison of cache misses from simulation and estimation for 6-loop TMM

line size L.; and cache size S.;, the total number of cache misses (C'M;) is:

N o 1 (3Le42L2 4B+6L; <
}{%(3+(5__+’__))+%+'B—§:-Lﬂn} for B'< v/ S

L S
CMim g E{@+5-F+2- 5+ %) for /Ss < B < V255 (2)
sz (1+ k) (22)] for 255 < B

To verify the cache miss estimations, we conducted simulations using SimpleScalar for 6-loop
TMM with block data layout. The problem size was fixed at 1024 x 1024. A 16 K Byte direct
mapped cache was assumed (similar to L1 data cache in UltraSparc II). Figure 8 compares

our estimated values (given by IZq. (2)) with the simulation results.

3.3 Block Size Selection

To test the effect of block size, experiments were performed on several platforms. Figure 9
shows the execution time of a 6-loop TMM with size 1024 x 1024 on UltraSparc 11 (400
MIIz) as a function of block size. It can be observed that block size selection is significant
for achieving high performance.

With canonical data lavout, tiling technique is sensitive to problem and tile sizes. Several

L7

S N
o N
T T

[]

w
»
T

5o

w
s>
T
g
[]

Execution time (secs)

w
N
T

Il ! 1 1

12 24 36 48 60 72
Block size

(4]
(=)

Figure 9: Execution time of TMM of size 1024 x 1024

GCD based tile size selection algorithms {6, 8, 12] were proposed to optimize tiled compu-
tation. Ilowever, their performance is still sensitive to the problem size. In [13], TLB and
cache performance were considered in concert. This approach showed better performance
than algorithms that separately consider cache or TLB. llowever, all these approaches are
based on canonical data layout. On the other hand, ATLAS [26] utilizes block data layout.
However, the best block size is determined empirically at compile time by evaluating the

actual performance of the code with a wide range of block sizes.

In a multi-level memory hierarchy system, it is difficult to predict the execution time
(Teze) of a program. But, Teze is proportional to the total miss cost of TLB and cache. In
order to minimize T,z., we will evaluate and minimize the total miss cost for both TLB and

[-level caches. We have:

{
MC = TM-Muy+) CMHi (3)

i=1
where MC denotes the total miss cost, CM; is the number of misses in the ith level cache,
TM is the number of TLB misses, I; is the cost of a hit in the it" level cache, and My, is

the penalty of a TLB miss. The (/+ 1)** level cache is the main memory. It is assumed that

all data reside in the main memory (C My, = 0). Using the derivative of MC with respect

18

9 9
x 10 10)(10

2
B, sans.)) w g
g1s h ‘:, %:3‘
3] ; &
g / 3 ©
3 1 J 8
3 ; 3 4
@ ;' ; 15
So0s ; ~——"TLB miss cost s
! ---- L1 miss cost o 2
RS e L2 miss cost k=
0 b = 0
0 20 40 60 80 100 0 20 40 60 80 100
Block size Block size
(a) Miss cost of TLB, L1, and L2 cache (b) Total miss cost with various L2
(B:cy 1s obtained using Eq.(4)) miss penalty

Figure 10: Miss cost estimation for 6-loop TMM (UltraSparc I parameters)

to the block size, we can find the optimal block size that minimizes the overall miss cost.

For a simple 2-level memory hierarchy that consists of only one level cache and TLB,
the total miss cost (denoted as My,) in Iiq. (3) reduces to:

J\[(rr,;] =T1TM - .nl[:lb + Cl"[# [fg,

where I, is the access cost of main memory. In the above estimation, My, and C'M are
substituted with Eq.(1) and Eq.(2), respectively. Using the derivative of MC, the optimal

block size (Bie;) that minimizes the total miss cost caused by Ll cache and TLB misses is

given as
20y Myy, ; 3L +2L2 cr
B iy (]P,. 4 T ["2 + 1-9:1] H’g) bC] (1]
tcl 4 1{2

We now extend this analysis to determine a range for optimal block size in a multi-level
memory hierarchy that consists of TLB and two levels of cache. The miss cost is classified
into two groups: miss cost caused by TLB and L1 cache misses and miss cost caused by
L2 misses. Figure 10 (a) and (b) show the miss cost estimated through Eqgs.(1) and (2).

ig. 10(a) is the separated TLB, L1, and L2 miss cost, using UltraSparc Il parameters.

19

Fig. 10(b) shows the variance of the estimated total miss costs as the ratio between L1 cache

miss penalty (H;) and L2 cache miss penalty (Hs) varies. Using Eq.(4), we discuss the total

miss cost for 3 ranges of block size:

Lemma 3.2 For B < By, MC(B) > MC(By,).

Proof: Using the derivatives of TLB and cache miss equations (Eq.(1) and (2)), it can

be easily verified that M—‘-ﬂl < 0 and dc"’ < 0 for B < By. This is shown in Figure 10(a).

For B < By, TLB, L1, and L2 miss cost increase as block size decreases, thereby increasing

the total miss cost. Therefore, the optimal block size cannot be in the range B < By,;. ©

Lemma 3.3 For B > +/S.;, MC(B) > MC(\/5.).

Proof: Intherange B > v/, TLB miss cost is optimized by tiling and block data layout.
However, the change in TLB miss cost is negligible as the block size increases. Since block
size is larger than L1 cache size, self-interferences occur in this range. The number of L1
cache misses drastically increases as shown in Figure 10(a). For /Sq < B < /254, the

ratio of derivatives of Eq.(2) for L1 and L2 misses is as follows:

dCM N[4 o 4Scl _ _'-'_]

Hy 5t | _ Ha Lo [scl T B T

H icl‘z T OHp | N[_ (-) M) -1_]
37dB 3 J 2+ Se2 B?

Let B%2 = a5, (1 € a < 2). Note that L < Seo.

M _H; Lo Se 2 Ih Lo Se
et [2a—-1 _,/s' e et (3 2. Sc)
HstM Hy La S —20aSq (° ¥ Vo) Hs La S —4Sa (Ve l

In a general memory hierarchy system, Tzs-f's—. ~ 1 since S, € Sec2. Also, %’j > 1 and

V25,4 > % Therefore,

dB

dCM;
3%5E

H dC M,
‘ > 1

Thus, although the number of L2 cache misses decreases (d—g‘gz < 0), the total miss cost

increases for /S, < B < /25,1 because the increase in L1 cache miss cost is larger than

20

~

3
[N]
(=]

1.0 I i
150

50;I |
0 0 | 0

8 20 32) 4 56 8 20 32 44 56 8 20 32
Block size Block size Block size

TLB misses (millions)
38

Cache misses (miilions)
L2 cache misses (millions)
3

44 56

(a) TLB miss (b) L1 miss (c) L2 miss

Figure 11: Simulation results of 6-loop TMM

the decrease in L2 cache miss cost. For B > /25, there is no reuse in L1 cache. Thus,
the L1 cache miss cost saturates. Figure 10(b) shows the change of the total miss cost as
the ratio of %;— varies. Liven though L2 miss penalty is 40 times that of L1 miss penalty,
TM(B) > TM(/Sa) for B > V25,;, because L1 self-interference miss cost is dominantly
large for B > 1/25.;. Therefore, the optimal block size cannot be in the range B > VSa. ®

Theorem 3.2 The optimal block size B,y satisfies Biy < Bopt < V/Sa-

Proof: This follows from Lemma 3.2 and 3.3. Therefore, an optimal block size that

minimizes the total miss cost is located in

Btcl S Bopt < V Scl- (5)
We select a block size that is a multiple of L, (L1 cache line size) in this range. '0)

To verify our approach, we conducted simulations using UltraSparc I parameters (Table
3). Figure 11 shows the simulation results of 6-loop TMM using block data layout. As
discussed, the number of TLB and L2 misses decreased as block size increases. Also, the
minimum number of L1 misses was obtained for B = 36 and then drastically increased for

B > 45. Figure 12 shows the total miss cost. For UltraSparc II, Bier = 32.2, /S = 45.3,

21

___Search range of ATLAS

1600 -

< f-
el

1400 Our range

1200 |
1000
800 +
600 +

400 +

~ 0l innNnnannl

8 32 4ad 56

Block Size
W TLB miss cost L1 miss cost OL2 miss cost

Total Miss Cost (million cycles)

Figure 12: Total miss cost for 6-loop TMM

and L. = 4. Theorem 3.2 suggests the range for optimal block size is to be 36-44. Simulation
results show that the optimal block size for this architecture was 44.

1600

1500

Our Range
.
N1400
w

£

1300
o

o
a 1200t

1100

10005 a0 60

IFigure 13: Optimal block sizes for 6-loop TMM

We also tested ATLAS on UltraSparc 11. Through a wide search ranging from 16 to
44, ATLAS found 36 and 40 as the optimal block sizes. These blocks lie in the range given

by Eq. (5). We further tested 6-loop TMM with respect to different problem and block

o
o

sizes. For each problem size, we performed experiments by testing block sizes ranging from
8-80. In these tests, we found that the optimal block size for each problem size was in the
range given by Eq. (5) as shown in Figure 13. These experiments confirm that our approach

proposes a reasonably good range for block size selection.

4 Experimental Results

To verify our analysis, we performed simulations and experiments on the following ap-
plications: tiled matrix multiplication(TMM), LU decomposition, and Cholesky factor-
ization(CF). The performance of tiling with block data layout (tiling+BDL) is compared
with other optimization techniques: tiling with copying(tiling+copying), and tiling with
padding(tiling+padding). For tiling+BDL, the tile size (of the tiling technique) is chosen
to be the same as the block size of the block data layout. Input and output is in canoni-
cal layout. All the cost in performing data layout transformations (from canonical layout
to block data layout and vice versa) is included in the reported results. As stated in [12],
we observed that the copying technique cannot be applied efficiently to LU and CT" ap-
plications, since copying overhead offsets the performance improvement. Hence we do not
consider tiling+copying for these applications. In all our simulations and experiments, the

data elements are double-precision.

4.1 Simulations

To show the performance improvement of TLB and caches using tiling+BDL, simulations
were performed using the SimpleScalar simulator [2]. The problem size was 1024 x1024. Two
sets of architecture parameters were used: UltraSparc Il and Pentium III. The parameters

are listed in Table 3.

. m Tiing+Copying o)
O Tiling*B0L 120 B Tiing Canyin B Tiling+Copying
25 O Ting:Patng OTinge5on S
’ +
= At O Tiling*Padding _ fngrrecenn
= m = w
g 2t -] g
% 2 e &=
@ 15 ¢ E . E
o]
@ 2 @
n » 0
£ 1 8 . a
@ E E ;
- ™~
Foos - i :
o UMCEL M. K 0 ,
28 32 36 40 28 32 36 20 = = 2% W
Block Size Block Size Block Size
(a) TLB misses (b) L1 misses (c) L2 misses

Figure 14: Simulation results for TMM using UltraSparc 11 parameters

Figure 14 compares the TMM simulations of different techniques, based on UltraSparc
I parameters. Tiling+BDL reduces L1 and L2 cache misses as well as TLB misses. Block
size 32 leads to increased L1 and L2 cache misses for block data layout because of the cache
conflicts between different blocks. Tiling+BDL reduced 91-96% of TLB misses as shown
in Figure 14(a). This confirms our analysis presented in Section 3.1. Figure 15 shows the
total miss cost (calculated from Eq. (3)) for TMM using block size 40 x 40. L1, L2, and
TLB miss penalties were assumed to be 6, 24, and 30 cycles, respectively. This figure shows
that tiling+BDL results in the smallest total miss cost and that the TLB miss cost with
tiling+BDL is negligible compared with L1 and L2 miss costs. Though tiling+BDL has
more L2 cache misses than tiling+padding, its total miss cost is smaller. Figure 12 shows
the effect of block size on the total miss cost for TMM using tiling+BDL. As discussed in
Section 3.3. the best block size (44) is in the range 36-44 suggested by our approach.

Figure 16 presents simulation results for LU using Intel Pentium II1 parameters. Similar
to TMM, the number of TLB misses for tiling+BDL was almost negligible compared with
that for tiling+padding as shown in Figure 16(a). For both techniques, L1 and L2 cache
misses were reduced considerably because of 4-way set-associativity. Ior tiling+padding,

when the block size was larger than L1 cache size, the padding algorithm in [16] suggested a

8]
&S

1000 O L2 miss cost
O L1 miss cost
B TLB miss cost

900 |
800 |
700

600

500 |

400

300 |

Total Miss Cost (million cycles)

200
100

0».hg -

Tiling+Copying Tiling+BDL Tiling+Padding

I'igure 15: Total miss cost for TMM using UltraSparc Il parameters

14 120 ; B Tiling+BDL 120 ¢)
) m Tiling+BOL
W Tiling+BDL 3 OTiling+Padding HTRRREs
12 + BTiling+Padding —| 100 100 | OTiing+Pacding
-
‘(.-ﬂ‘- _—
c 10 2 A
= 5 80t g
E 8t E Z
: ‘E’ B0 + _E, 60
@ E4 | 3
w 6 b %
s 0 < 40 }
= ‘E 40 E
g 4 5 =
—~ 20 +
[L
s, 20
| Lo _ﬂﬂ]]_[L[LI]J]_IJ o ML 0.m m.m el
0 ; ‘ . Al 0 :
e 2 om0 s 16 24 32 40 48
6 24 32 40 48 _ Block size
Block size Block size
(a) TLB misses (b) L1 cache misses (¢) L2 cache misses

Figure 16: Simulation results for LU using Pentium III parameters
g g P

pad size of 0. There is essentiallv no padding effect, thereby drastically increasing L1 and 1.2
cache misses. Figure 17 shows the block size effect on total miss cost using tiling+padding
and tiling+BDL. Tiling+padding reduced L1 and L2 cache miss costs considerably. However,
TLB miss costs were still significantly high, affecting the overall performance. As discussed
in Section 3.3, the suggested range for optimal block size is 32-44. Simulations validate that
the optimal block size achieving the smallest miss cost locates in the range selected using

our approach.

o
o

800 800

—_ OL2 miss cost = aL2 miss cost
§ 700 1 g1 miss cost B 700{ OL1 miss cost
> 600{ ®TLBmiss cost % 600 - 8 TLB miss cost
[=4 pt _
2 2 500 1 B
§ E— 400 - =
8 73
8 8 300 -
a 0
2 8 500
£ g 200 @ %
K] G] X
° g 100 £
" oo] []
16 2 R 40 48 16 20 24 28 32 3 48
Block size Block size
(a) Tiling+Padding (b) Tiling+BDL

Figure 17: Effect of block size on LU decomposition using Pentium III parameters

Table 3: Features of various experimental platforms

Platforms Speed L1 cache L2 cache TLB

(MHz) | Size Line | Ass. | Size Line | Ass. | Entry | page [Ass.
(KB) | (Byte) (K B) | (Byte) (KB)
Alpha 21264 500 64 64 2 4096 64 1 128 8 128
UltraSparc 11 400 16 32 1 2048 64 1 64 8 64
UltraSparc 111 750 64 32 4 4096 64 4 512 8 2
Pentium 111 800 16 32 4 512 32 4 64 4

4.2 Execution on real platforms

To verify our block size selection and the performance improvements using block data layout,
we performed experiments on several platforms as tabulated in Table 3. gcc compiler was
used in these experiments. The compiler optimization flags were set to “~fomit-frame-pointer
-03 -funroll-loops”. Execution time was the user processor time measured by sys-call
clock(). All the data reported here is the average of 10 executions. The problem sizes

ranged from 1000 x 1000 to 1600 x 1600.

Figure 18 shows the comparison of execution time of tiling+BDL with other techniques.

120 Tiling+TSS

......... Tiling Only

100f..._.. Tiling+Padding
---- Tiling+Copying

[—— Tiling+BDL

[e5)
o

40¢

Execution Time (Secs)
(2]
o

20r

1?)00 1200 1400 1 600

Figure 18: Execution time comparison of various techniques for TMM on Pentium III

The performance of tiling+TSS (tile size selection algorithm [6]) shown in this figure selects
block size based on GCD computation. Tiling solves the cache capacity miss problem but
it cannot avoid conflict misses. Conflict misses are strongly related to the problem size and
block size. This makes tiling sensitive to problem size. As discussed on Section 3.2, block
data layout greatly reduces conflict misses, resulting in smoother performance compared

with others.

The effect of block size on tiling+BDL is shown in Figures 19-21. Various problem
sizes were tested and results on all these problems showed similar trends as in Figures 19-
21. As an illustration, the results for problem size of 1024 x 1024 are shown. As shown in
Figures 19-21, the optimal block sizes for Pentium III, UltraSparc II, Sun UltraSparc III and
Alpha 21264 are 40, 44, 76, and 76 respectively. All these numbers are in the range given
by our block size selection algorithm. For example, the range for best block size on Alpha
21264 is 64-78. This confirmed that our block size selection algorithm proposes a reasonable
range. As discussed earlier, block sizes 32 and 64 should be avoided (for use with block data

layout) because the performance degrades due to conflict misses between blocks.

Figures 22-24 show the execution time comparison of tiling+BDL with tiling+copying

and tiling+padding. In these figures, block size for tiling+BDL was given by our algorithm

(8]
~1

125 . .
3 ; i
LY < L4 o
En.’r E ! § e
I S2 3 2
2 05 § §|, §n
3 g 3 g
o 10, 3 |Z'llt‘L l,H‘l
% @ & @ o % 20 w0 & 80 % o s & o % 0 4 6 8

(a) Alpha 21264 (b) UltraSparc 11 (¢} UltraSparc I (d) Pentium III

Figure 19: Effect of block size on TMM

~
-
©°

g

N2

g
|
8
8
g8
Ly

Execution time (sccs)
-~ L
Exocution time (we_u)
b - o
Exoculon time Lwcl)
e @ =
» L) [T
Execution time (socs)
» v

8

&

8

8

¥
5
8
8
g
&
3
8
8

{a) Alpha 21264 (b) UltraSparc II (¢) UlwraSparc I11 (d) Pentium III

Figure 20: Effect of block size on LU decomposition

discussed in Section 3.3. The tile size for the copying technique was given by the approach
in [12]. The pad size was selected by the algorithm discussed in [16). Tiling+BDL technique
is faster than using other optimization techniques, for almost all problem sizes and on all

the platforms.

4.3 Block data layout and Morton data layout

Recently nonlinear data layouts have been considered to improve memory hierarchy perfor-
mance. One such layout is the Morton data layout(MDL) as defined in Section 2.1. Similar
to block data layout, elements within each block are mapped onto contiguous memory loca-

tions. However, Morton data layout uses a different order to map blocks as shown in Figure 1.

This order matches the access pattern of recursive algorithms. In this section, we compare

the performance of recursive algorithms using MDL (recursive+MDL) with iterative tiled

]
oL

2 Y 2 215
£ £, g2
§ g §1. ‘
34 i B

%

- a
@

I T

-4
8
8
8
o
i
8
8
8
8
¥
g

(a) Alpha 21264 (b) UltraSparc II {c) UltraSparc 1 (d) Pentium III

Figure 21: Effect of block size on Cholesky factorization

g v o T
-5 £
g 1o
i e
gw fo N
S 5
1200 1600 Boo o0 1400 1800
(a) Alpha 21264 (b) UltraSparc I1 (c) UltraSparc 111 (d) Pentium III
Figure 22: Execution time of TMM
20
g gus
£ g
§ §°
g .
& 8 oLkt
1800 1200 120 1800 Mo 20 i te
(a) Alpha 21264 (b) UltraSparc 11 (c) UltraSparc HI {(d) Pentium III

Figure 23: Execution time of LU decomposition

B

ijl i i
I I :
i i i
8 | S a a
- - TEngeBOL !
1500 1200 1400 1600
(a) Alpha 21264 (b) UltraSparc 11 (c) UltraSparc I1I (d) Pentium III

Figure 24: Execution time of Cholesky factorization

29

Table 4: Comparison of execution time of TMM on various platforms: All times are in

seconds.
(a) Pentium III (b) UltraSparc I1
Size || iterative+BDL | recursive+MDL Size || iterative4+BDL | recursive+MDL
1024 10.37 10.98 1024 18.87 21.80
1280 20.43 20.64 1280 36.17 40.63
1408 27.06 28.21 1408 48.76 53.70
1600 39.77 43.78 1600 70.44 81.61
2048 83.27 87.64 2048 149.65 170.86

algorithms using BDL (iterative+BDL), for matrix multiplication and LU decomposition.
We show that the performance of recursive+MDL is comparable with that of iterative+BDL
if the block size of MDL lies in the optimal block size range for BDL as given by our al-
gorithm (Eq. (5) in Section 3.3). However, if the block size of MDL is outside this range,

recursive+MDL is slower than iterative+BDL.

Similar to block data layout, block size for Morton layout also plays an important role
in the performance. However, due to recursion, the choice of block sizes is limited. For an
N x N matrix, if the depth of recursion is d, the block size of MDL is given by Baypr = %
Such a block size can lie outside the optimal range given by our approach. Our experiment

results show that this degrades the overall performance.

Experiments using TMM and LU were performed on UltraSparc II and Pentium III. Ta-
ble 4 shows the execution time comparison of MM using iterative+BDL with recursive+MDL.
For iterative+BDL, we selected the block size according to the algorithm discussed in Sec-
tion 3.3. For recursive+MDL, we tested various recursion depths (resulting in various basic
block sizes) and used the best for comparison. For problem size 1280 x 1280 and 1408 x 1408,
optimal block sizes for recursive+MDL were 40 and 44 respectively, which were in the range

given by our algorithm, 36-44. Both the layouts showed competitive performance for these

30

Table 5: Comparison of execution time of LU decomposition on various platforms: All times

are in seconds.

(a) Pentium III (b) UltraSparc II
Size || iterative+BDL | recursive+MDL Size || iterative+-BDL | recursive+MDL
1024 4.15 4.43 1024 8.77 9.94
1280 8.10 8.10 1280 18.97 18.54
1408 10.85 11.57 1408 22.76 22.45
1600 15.85 18.44 1600 33.51 35.58
2048 33.58 35.90 2048 75.30 81.66

cases. For problem size 1600 x 1600, recursive+MDL was up to 15.8% slower than itera-
tive+BDL. Among possible choices of 25, 50, and 100, the performance of recursive+MDL
was optimized at block size 25, where 25 = %’i—o. This is because it is outside the optimal
range specified by our algorithm. Table 5 shows the execution time comparison of tiled LU

decomposition using BDL and recursive LU decomposition [27] using MDL. These results

confirm our analysis.

5 Concluding Remarks

This paper studied a critical problem in understanding the performance of algorithms on
state-of-the-art machines that employ multi-level memory hierarchy. We showed that using
block data layout, TLB misses as well as cache misses are reduced considerably. Further, we
proposed a tight range for block size using our performance analysis. Our analysis matches

closely with simulation based as well as experimental results.

This work is part of the Algorithms for Data IntensiVe Applications on Intelligent and
Smart MemORies (ADVISOR) Project at USC [1]. In this project we focus on developing

algorithmic design techniques for mapping applications to architectures. Through this we

31

understand and create a framework for application developers to exploit features of advanced

architectures to achieve high performance.

Acknowledgment

We would like to thank Shriram Bhargava Gundala for careful reading of drafts of this work.
We also would like to thank Sriram Vajapeyam and Cauligi S. Raghavendra for their inputs

on a preliminary version of this work.

Appendix A TLB performance of block data layout

This section gives a detailed proof of Theorem 2.2 in Section 2.2. The theorem is repeated
for convenience:

Theorem For accessing an array along all the rows and then along all the columns, block
data layout with block size \/P, x \/P, minimizes the number of TLB misses.

Proof: Suppose the block size B? = kP,. Two cases (for & > 1 and k < 1) are discussed
separately.

Case I: k > 1. We consider three scenarios for this case.

1L %> Sw
Accesses to the first row cause % TLDB misses. Ilowever, these entries cannot be reused
since Sy is small. Therefore, TLB misses caused by row accesses is Ty = % x N.
Similarly, TLB misses caused by column accesses are T, = % -k - N. Therefore, the

total number of TLB misses is

To minimize the total TLB misses,

dTmi $8 N’? 1 1

aw —ver 7w

Therefore, as k decreases, the total number of TLB misses decreases. The total number

).

of TLB misses is minimized when k = 1. Note that when B = /P, (k = 1), the number

of TLB misses is ‘27’%, which is the lower bound given by Theorem 2.1.

b
Wl

Sup
<3
In this scenario, both column and row access can reuse TLB entries. Therefore, the

total number of TLDB misses is

N? N?
Tniss = 2k§ = 2-Fv-.

This is equal to twice the number of TLB misses caused by all row accesses in canonical

layout. Therefore, this will be the minimum number of TLB misses for such an access

pattern.

3. %“" < % < S
In this scenario, only row accesses can reuse TLB entries accessed in the previous row
accesses. TLB misses for row accesses are Tyq, = k’—;—:-. Therefore, the total number of
TLB misses is
72 72 2 72
Nal 2.V

+k

Tmiss = k'EE ? Pv \/E

As k decreases, TLB misses also decrease. The number of TLB misses for block data
layout is minimized when k approaches 1. Note that this scenario will reduce to scenario
2 when k = 1. Therefore, the minimum number of TLB misses in this scenario is the

same as that in scenario 2.

Case II: k£ < 1. Three scenarios are discussed as follows:

33

l.

o

The first row access causes k% TLB misses. These entries cannot be reused in the
next row access. TLB misses caused by row accesses are T,,, = k% - N. On the other
hand, the first column access causes % TLB misses, since all the elements in each block

are stored in one page. The TLB misses caused by column accesses is T,y = % -N.

Therefore, the total number of TLB misses is

N2 N? NZ 1
Tmiss=k_ B = /AT~ k).
5+ \/T’I(\/l?+\/_)
To minimize the total TLB misses,
dTmiss_ N? X—I—X(l __)
dk V2P, " Vk kK’

Therefore, as k increases, the total number of TLB misses decreases. The total number

of TLB misses is minimized when k& = 1, B = \/P,. Again, the minimum number is

2%. equal to the lower bound given by Theorem 2.1.

= < S

w2

In this scenario, both row and column access can reuse TLB entries. Therefore, the

total number of TLB misses is

N? N2
P S
Toiss = 2 = 25

This is equal to twice the number of TLB misses caused by all row accesses in the

canonical layout. Therefore, it is the minimal number of TLB misses caused by all row

(1°* pass) and then all column (2" pass) accesses.

: N o S

Sup < 5 < =t

In this scenario, only row accesses can reuse TLB entries accessed in the previous row
- . 72

accesses. TLB misses of row accesses is denoted as: Ty,,, = k%5. Therefore, the total

number of TLB misses is

N2 N?T N2 N2
Thiss =k— + — = .
FEYE SR Y AR

34

As k increases, TLB misses decrease. Like scenario 3 in Case I, the minimum number
of TLB misses in this scenario is obtained when k£ = 1, and this number is the same

as that in the previous scenario.

According to the above analysis, block data layout with block size v/ P, x v/ P, minimizes
the total number of TLB misses. As the problem size (V) increases, this minimum number

asymptotically approaches the lower bound given by Theorem 2.1.

Appendix B Cache Miss Analysis

In this section, we provide detailed cache miss analysis for a tiled access pattern with block
data layout. Individual levels of cache are not considered explicitly, as this analysis is
applicable to all cache levels. We consider a tiled program that consists of nested loops.
Each loop level is denoted by the loop index i, j, {, etc. Arrays referenced by the program
are denoted as u, v, etc. Within an iteration of a loop [, a portion of an array v (called the
footprint F,(v)) is referenced. The body of the loop ! will be executed R(v) times, where

R(v) is the reuse factor.

Let (i) IC Mi(v) denote the number of inirinsic cache misses [12] caused by accessing
array v during the first iteration of loop /; (ii) SC M;(v) denote the number of self-interference
misses when array v is accessed in one iteration of loop [; (iii) C1M(v) denote the number
of cross-interference misses between array v and other arrays for an iteration of loop [. The
number of cache misses caused by array v for one iteration of loop ! is thus:

CM(v) = ICMi(v) — SCMi(v) + R(v) x {SCMi(v) + CIM(v)} (6)
CIM(v) in the above equation can be calculated as:
CIM(v) = ICM(v) x PrCF(v), (7)

35

where PrCF(v) denotes the probability of conflict between one element of array v and
elements of other arrays for loop /. It is given by
PrCF(v) =Y Prov,(v,u),
utv
where Prov.s(v,u) is the probability that an element of array v falls into the footprint of
the array u, accessed with a stride (s,) in the cache. For simplicity, it is assumed that an

element of array v does not conflict with elements in two or more arrays at the same time.

The cache misses of array v is computed as follows:
CM(v) = NIO(l) x CMi(v), (8)

where NIO(!) denotes the total number of iterations of outer loops. The total number of
misses incurred by accessing all arrays is the sum of misses incurred in accessing individual
arrays (3; CM(7)). The above cache miss equation (Eq.(8)) is applicable to any data layout
with nested loops. But the factors (SC M;(v), Prov.(v,u), R(v), etc.) cannot be quantified

unless the data layout and loop structure are known.

For block data layout, we can easily quantify SCM;(v) and Prov.(v,u) in the above
equations. The number of self-interferences can be derived by considering three ranges of
block sizes. (i) When the block size is less than the cache size, there is no self-interference.
(ii) When the block size is larger than twice the cache size, there is no reused element in

B?

cache, resulting in 7- self-interferences misses. (iii) When the block size is in between the

2_ . .
above ranges, 2B I %) self-interference misses occur. Hence,
<

0 for B < /S,
SC!V[[(U) = 2(32:&:) fOl' \/S:S B < \/ZT'C
E—z; for vV25. < B

For loop I, F,(v) elements of array v are accessed with a stride (s,). The average number of

36

Table 6: Parameters of TMM

Array || Reuse Factor || Footprint
S T | kg
X(1,k) B B |1
Y(k,j) || N B*|B
Z(z,7) B B |B

cache lines occupied by F,(v) elements is

' mﬂ ifl<s, <L,
NCL(v) =

Fy(v) otherwise

During a tiled computation, a block of array v is accessed in loop {. Hence, IC Mi(v) is
equal to the number of cache lines, NC'L(v). For loop [, array u is accessed with stride(s,)
whose footprint size is F,(u). It occupies NC'L(u) cache lines in the cache. The probability

of conflicting with array u is
NCL(u)
S./L.

Provg(v,u) =
Therefore, the cache misses of array v on block data layout is
N ¢
CM(v) = NIO(l) x {NC'L(v) — SCM(v) + R(v) x (SC’M,(v) + NCL(v) x) %) } (9
ufv ¢
Consider the 6-loop TMM shown in [igure 2(b). The reuse factors and footprint sizes
of arrays X, Y and Z can be determined. The values are shown in Table 6. For example,
consider an array Y in loop i. B? elements of Y are referenced in each iteration of loop

i. These B? elements are reused NV times. N/O(l) can be obtained directly from the code

(Figure 2(b)). For example, N/O(i) = N3/B3. According to Eq.(9), the number of cache

37

misses for Y and Z are as follows:

AL+ (14 &) 28 for B < /5,
CMY) = ¢ 2% (L -1)+2- 4+ (1+ &) 2B for VB < B < V25,
% for V25, < B
N3 (1 L\ (B+2L)
M x — Zy\=res
ez~ i+ (0 5)

In the 6-loop TMM, each element of array X is immediately allocated to a register. So, its
probability of conflicts with other arrays is 0. Thus, the number of cache misses for array X

is
N3
BL.

The total number of cache misses for the 6-loop TMM with block data layout is thus:

CM(X) =

CM = Z CM(v) = CM(X)+ CM(Y) + CM(Z) (10)

1\'3{ (2_{_!&";23&.)4. +M} for B < /S,
% E“i’g 25°+2—N+6—L£} for /S. < B < V25, (11)
Elrhe(e8) () s

Q

The above analysis focuses on the access pattern of 6-loop TMM. Because matrix mul-
tiplication is the kernel of many linear algebra computations, the analysis can be generalized

or directly applied to other linear algebra applications.

References

[1] ADVISOR Project. http://advisor.usc.edu.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report

1342, University of Wisconsin-Madison Computer Science Department, June 1997.

(3] J. B. Carter, W. C. Hsieh, L. B. Stoller, M. R. Swanson, L. Zhang, . L. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. A. Parker, L. Schaelicke, and T. Tateyama.

38

[4]

[5]

[6]

[7]

8]

[9]

[10]

Impulse: Building a Smarter Memory Controller. Proceedings of the Fifth International
Symposium on High Performance Computer Architecture (HPCA-5), pages 70-79, Jan-
uary 1999.

S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlin-
ear Array Layouts for Hierarchical Memory Systems. Proceedings of the 13th ACM

International Conference on Supercomputing (ICS ’99), June 1999.

M. Cierniak and W. Li. Unifying Data and Control Transformations for Distributed
Shared-Memory Machines. Proceedings of the SCM SIGPLAN'95 Conference on Pro-

gramming Language Design and Implementsion, pages 205-217, June 1995.

S. Coleman and K. S. McKinley. Tile Size Selection Using Cache Organization and
Data Layout. Proceedings of the SIGPLAN ’95 Conference on Programming Language

Design and Implementation, June 1995.

R. Espasa, J. Corbal, and M. Valero. Command Vector Memory Systems: High Per-
formance at Low Cost. Technical Report UPC-DAC-1998-8, Universitat Polit‘ecnica de

Catalunya, 1998.

K. Esseghir. Improving data locality for caches. Master’s thesis, Dept. of Computer

Scienece, Rice University, September 1993.

A. Gonzalez, C. Aliagas, and M. Valero. A Data Cache with Multiple Caching Strategies
Tuned to Different Types of Locality. Proc. International Conference on Supercomput-

ing, pages 338-347, July 1995.

T. L. Johnson, M. C. Merten, and W. W. [Iwu. Run-time Spatial Locality Detection and
Optimization. Proceedings of the 30th International Symposium on Microarchitecture,

December 1997.

39

[11] M. Kandemir. A. Choudhary, J. Ramanujam, and P. Banerjee. Improving Locality
Using Loop and Data Transformations in an Integrated Framework. Proceedings of the

31st IEEE/ACM International Symposium on Microarchitecture, November 1998.

[12] M. Lam, E. Rothberg, and M. E. Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. Proceedings of the Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-1V), April
1991.

[13] N. Mitchell, K. Ilogstedt, L. Carter, and J. Ferrante. Quantifying the Multi-Level

Nature of Tiling Interactions. International Journal of Parallel Programiming, 1998.

[14] D. Padua. The Fortran I Compiler. IEEE Computing in Science & Engineering, Jan-
uary /Febrary 2000.

[15] D. A. Padua. Outline of a Roadmap for Compiler Technology. IEEE Computing in

Science & Engineering, Fall 1996.

[16] P. R. Panda, II. Nakamura, N. Dutt, and A. Nicolau. Augmenting Loop Tiling with
Data Alignment for Improved Cache Performance. IEEE Transactions on Computers,

48(2), Feburary 1999.

[17] N. Park, D. Kang. K. Bondalapati, and V. K. Prasanna. Dynamic Data Layouts for
Cache-conscious Factorization of DFT. Proceedings of International Parallel and Dis-

tributed Processing Symposium 2000 (IPDPS 2000), April 2000.

[18] N. Park and V. K. Prasanna. Cache Conscious Walsh-Hadamard Transform. Interna-
tional Conference on Acoustics, Speech, and Signal Processing 2001 (ICASSP 2001),
May 2001.

40

[19] D. Patterson, T. Anderson. N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis.
R. Thomas, and K. Yelick. A Case for Intelligent DRAM: IRAM. IEEFE Micro, April
1997.

[20] G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conflict Misses.

ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’98), June 1998.

[21] G. Riveraand C.-W. Tseng. Locality Optimizations for Multi-Level Caches. Proceedings
of IEEE Supercomputing '99(5C"99), November 1999.

[22] V. Sarkar and G. R. Gao. Optimization of Array Accesses by Collective Loop Transfor-
mations. the Proceedings of the 1991 International Conference of Supercomputing, June

1991.

[23] A. Saulsbury, I'. Dahgren, and P. Stenstrom. Receny-based TLB Preloading. The 27th

Annual International Symposium on Computer Architecture(ISCA), June 2000.

[24] H. Sharangpani. Intel Itanium Processor Microarchitecture Overview. Microprocessor

Forum, October 1999.

[25] O. Temam, E. D. Granston. and W. Jalby. To Copy or Not to Copy: A Comile-
Time Technique for Assessing When Data Copying Should be Used to Eliminate Cache
Conflicts. Proceedings of IEEL Supercomputing’93(SC’93), November 1993.

[26] R. C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software (ATLAS).
Proceedings of SC’98, November 1998.

[27] Q. Yi, V. Adve, and K. Kennedy. Transforming Loops to Recursion for Multi-Level
Memory Hierarchies. ACM SIGPLAN 2000 Conference on Programming Language De-
sign and Implementation (PLDI 2000), June 2000.

41

